Por favor, use este identificador para citar o enlazar este ítem:
https://dspace.ucuenca.edu.ec/handle/123456789/34497Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Auquilla Sangolqui, Andres Vinicio | - |
| dc.contributor.author | De Bock, Yannick | - |
| dc.contributor.author | Duflou, Joost R | - |
| dc.contributor.author | Nowé, Ann | - |
| dc.date.accessioned | 2020-06-13T00:43:28Z | - |
| dc.date.available | 2020-06-13T00:43:28Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.issn | 09241868 | - |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/34497 | - |
| dc.identifier.uri | https://link.springer.com/article/10.1007%2Fs11257-020-09259-3 | - |
| dc.description | Modelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V. | - |
| dc.description.abstract | Modelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V. | - |
| dc.language.iso | es_ES | - |
| dc.source | User Modeling and User-Adapted Interaction | - |
| dc.subject | Occupancy prediction | - |
| dc.subject | Activity recognition | - |
| dc.subject | Clustering | - |
| dc.subject | Dirichlet process mixture | - |
| dc.title | Nonparametric user activity modelling and prediction | - |
| dc.type | ARTÍCULO | - |
| dc.ucuenca.idautor | Sgrp-3164-1 | - |
| dc.ucuenca.idautor | Sgrp-3164-4 | - |
| dc.ucuenca.idautor | 0103557369 | - |
| dc.ucuenca.idautor | Sgrp-3164-3 | - |
| dc.identifier.doi | 10.1007/s11257-020-09259-3 | - |
| dc.ucuenca.embargoend | 2050-06-12 | - |
| dc.ucuenca.version | Versión publicada | - |
| dc.ucuenca.embargointerno | 2050-06-12 | - |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | - |
| dc.ucuenca.afiliacion | Auquilla, A., KU Leuven, Leuven, Belgica; Auquilla, A., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador | - |
| dc.ucuenca.afiliacion | De Bock, Y., KU Leuven, Leuven, Belgica | - |
| dc.ucuenca.afiliacion | Nowé, A., Vrije Universiteit Brussel, Elsene, Belgica | - |
| dc.ucuenca.afiliacion | Duflou, J., KU Leuven, Leuven, Belgica | - |
| dc.ucuenca.correspondencia | De Bock, Yannick, yannick.debock@kuleuven.be | - |
| dc.ucuenca.volumen | Volumen 0 | - |
| dc.ucuenca.indicebibliografico | SCOPUS | - |
| dc.ucuenca.factorimpacto | 1.57 | - |
| dc.ucuenca.cuartil | Q1 | - |
| dc.ucuenca.numerocitaciones | 7955 | - |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | - |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.1 Ingeniería Civil | - |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.1.3 Ingeniería en Construcción | - |
| dc.ucuenca.areaconocimientounescoespecifico | 073 - Arquitectura y Construcción | - |
| dc.ucuenca.areaconocimientounescodetallado | 0732 - Construcción e Ingeniería Civil | - |
| dc.ucuenca.urifuente | https://www.springer.com/journal/11257 | - |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| documento.pdf Until 2050-06-12 | document | 103.87 kB | Adobe PDF | Visualizar/Abrir Solicitar una copia |
Este ítem está protegido por copyright original |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||
