Por favor, use este identificador para citar o enlazar este ítem:
https://dspace.ucuenca.edu.ec/handle/123456789/33168Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Muñoz Pauta, Paul Andres | - |
| dc.contributor.author | Orellana Alvear, Johanna Marlene | - |
| dc.contributor.author | Willems, Patrick | - |
| dc.contributor.author | Celleri Alvear, Rolando Enrique | - |
| dc.date.accessioned | 2019-07-31T15:51:51Z | - |
| dc.date.available | 2019-07-31T15:51:51Z | - |
| dc.date.issued | 2018 | - |
| dc.identifier.issn | 20734441 | - |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/33168 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055719343&origin=inward | - |
| dc.description | Flash-flood forecasting has emerged worldwide due to the catastrophic socio-economic impacts this hazard might cause and the expected increase of its frequency in the future. In mountain catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes involved, particularly its high rainfall variability. While process-based models are hard to implement, there is a potential to use the random forest algorithm due to its simplicity, robustness and capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive parsimonious models accounting for both hydrological functioning of the catchment (eg, input data, representation of antecedent moisture conditions) and random forest procedures (eg, sensitivity analyses, dimension reduction, optimal input composition). The methodology was applied to develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment representative of the Ecuadorian Andes. Results show that the derived parsimonious models can reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including precipitation information in contrast to the use of pure autoregressive models. View Full-Text | - |
| dc.description.abstract | Flash-flood forecasting has emerged worldwide due to the catastrophic socio-economic impacts this hazard might cause and the expected increase of its frequency in the future. In mountain catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes involved, particularly its high rainfall variability. While process-based models are hard to implement, there is a potential to use the random forest algorithm due to its simplicity, robustness and capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive parsimonious models accounting for both hydrological functioning of the catchment (eg, input data, representation of antecedent moisture conditions) and random forest procedures (eg, sensitivity analyses, dimension reduction, optimal input composition). The methodology was applied to develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment representative of the Ecuadorian Andes. Results show that the derived parsimonious models can reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including precipitation information in contrast to the use of pure autoregressive models. View Full-Text | - |
| dc.language.iso | es_ES | - |
| dc.source | Water (Switzerland) | - |
| dc.subject | Flash-Flood | - |
| dc.subject | Forecasting | - |
| dc.subject | Lag Analysis | - |
| dc.subject | Machine Learning | - |
| dc.subject | Precipitation-Runoff | - |
| dc.subject | Random Forest | - |
| dc.title | Flash-flood forecasting in an andean mountain catchment-development of a step-wise methodology based on the random forest algorithm | - |
| dc.type | ARTÍCULO | - |
| dc.ucuenca.idautor | 0104645619 | - |
| dc.ucuenca.idautor | 0104162268 | - |
| dc.ucuenca.idautor | Sgrp-1371-3 | - |
| dc.ucuenca.idautor | 0602794406 | - |
| dc.identifier.doi | 10.3390/w10111519 | - |
| dc.ucuenca.version | Versión publicada | - |
| dc.ucuenca.areaconocimientounescoamplio | 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas | - |
| dc.ucuenca.afiliacion | Muñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Lovaina, Heverlee, Belgica | - |
| dc.ucuenca.afiliacion | Orellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., University of Marburg, Marburg, Alemania | - |
| dc.ucuenca.afiliacion | Willems, P., Universidad de Lovaina, Heverlee, Belgica | - |
| dc.ucuenca.afiliacion | Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | - |
| dc.ucuenca.correspondencia | Muñoz Pauta, Paul Andres, paul.andres.munoz@gmail.com | - |
| dc.ucuenca.volumen | volumen 10, número 11 | - |
| dc.ucuenca.indicebibliografico | SCOPUS | - |
| dc.ucuenca.factorimpacto | 0.67 | - |
| dc.ucuenca.cuartil | Q2 | - |
| dc.ucuenca.numerocitaciones | 2 | - |
| dc.ucuenca.areaconocimientofrascatiamplio | 1. Ciencias Naturales y Exactas | - |
| dc.ucuenca.areaconocimientofrascatiespecifico | 1.5 Ciencias de la Tierra y el Ambiente | - |
| dc.ucuenca.areaconocimientofrascatidetallado | 1.5.10 Recursos Hídricos | - |
| dc.ucuenca.areaconocimientounescoespecifico | 052 - Medio Ambiente | - |
| dc.ucuenca.areaconocimientounescodetallado | 0522 - Medio Ambiente y Vida Silvestre | - |
| dc.ucuenca.urifuente | https://www.scimagojr.com/journalsearch.php?q=21100255400&tip=sid&clean=0 | - |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| documento.pdf | document | 5.28 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||

