Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/29236
Título : Artificial neural networks applied to flow prediction: A use case for the Tomebamba river
Autor: Veintimilla Reyes, Jaime Eduardo
Cisneros Espinosa, Felipe Eduardo francisco
Vanegas Peralta, Pablo Fernando
Correspondencia: Veintimilla Reyes, Jaime Eduardo, jaime.veintimilla@ucuenca.edu.ec
Palabras clave : Artificial Neural Networks
Ann
Forecasting
Hydrology
Floods
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.11.2 Otras Ingenierias y Tecnologías
Área de conocimiento FRASCATI específico: 2.11 Otras Ingenierias y Tecnologías
Área de conocimiento UNESCO amplio: 06 - Información y Comunicación (TIC)
ÁArea de conocimiento UNESCO detallado: 0613 - Software y Desarrollo y Análisis de Aplicativos
Área de conocimiento UNESCO específico: 061 - Información y Comunicación (TIC)
Fecha de publicación : 2016
Volumen: volumen 162
Fuente: Procedia Engineering 162
metadata.dc.identifier.doi: 10.1016/j.proeng.2016.11.031
Editor: Elsevier Ltd
Ciudad: 
Chania, Creta
Tipo: ARTÍCULO DE CONFERENCIA
Abstract: 
The main aim of this research is to create a model based on Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba river, at real time and in a specific day of a year. As inputs, this research is using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. For this article, we have selected two scenarios. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance. This research includes two ANN models: Backpropagation and a hybrid model between back propagation and OWO-HWO (output weight optimization–hidden weight optimization) to select the initial weights of the connection. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error is minimal. These predictions are useful to avoid floods in the city of Cuenca in Ecuador.
Resumen : 
The main aim of this research is to create a model based on Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba river, at real time and in a specific day of a year. As inputs, this research is using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. For this article, we have selected two scenarios. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance. This research includes two ANN models: Backpropagation and a hybrid model between back propagation and OWO-HWO (output weight optimization–hidden weight optimization) to select the initial weights of the connection. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error is minimal. These predictions are useful to avoid floods in the city of Cuenca in Ecuador.
URI : https://www.sciencedirect.com/science/article/pii/S1877705816333367?via%3Dihub
URI Fuente: https://www.sciencedirect.com/journal/procedia-engineering
ISBN : 000-000-000-0
ISSN : 1877-7058
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument2.16 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00