Resumen

El siguiente trabajo de tesis previa a la obtención del título se basa principalmente en la experimentación factorial y en el análisis estadístico de varios experimentos que se llevaron a cabo en la empresa Cerámica Andina.

Estos experimentos se efectuaron para conseguir las condiciones de operación de una nueva tecnología que se desea implementar en el proceso productivo de la formación de jarros.

Los experimentos se realizaron dentro de las especificaciones y para el análisis de los datos se uso la herramienta del diseño experimental para de esta manera ver como actuaban unas con otras y determinar las variables con mayor influencia en el proceso.

Para esto se estudio primero el proceso actual de formación de asas que se realiza mediante colado vertical en moldes de yeso, luego el estudio se concentro en el cambio en si del proceso en lo que respecta a maquinaria, mano de obra y materiales determinando así el proceso de operación. Posteriormente se realizó un estudio económico comparativo entre el proceso actual de colado y el proceso de extrusión para determinar si el proyecto es factible y para ver si la empresa generaría un ahorro posteriormente.

Palabras clave: diseño factorial, experimentación factorial, extrusión de asas, estudio técnico, estudio económico, transducción de tecnología.

UNIVERSIDAD DE CUENCA

Summary

The following work of dissertation before to the securing of the title is

based principally on the Factorial experimentation and in the statistical analysis

of several experiments that, took place in the "Ceramica Andina" company.

These experiments were carried out to obtain the conditions of operation

of a new technology that is would be implemented in the process of production

of ceramic Mugs (pitchers.)

The experiments were done under the agreed specifications, and for the

data analysis, I used the tool of the experimental design. To see, in this way,

how they were acting one with others and to determine the variables that had a

major influences in the process.

It was studied first the current process of formation of handles that is

done by means of the vertical colado in moulds of plaster. Then the study

concentrated on the change of the process itself with respect to machinery,

labor and materials determining this way the process of operation later, an

economic comparative study is realized between the current process of Colado,

and the process of extrusion to determine if the project is feasible and to see if

the company would generate a saving later.

Key words: factorial design, extrusion of handles, technical study, economic

study, transduction of technology.

Página 2

ÍNDICE

CAPITULO 1

ANÁLISIS DE LA SITUACIÓN ACTUAL DE LA EMPRESA

- 1.1 Descripción de la empresa
 - 1.1.1 Cerámica Andina C.A.
 - 1.1.2 Situación actual de la empresa
 - 1.1.3 Política de Calidad de Cerámica Andina.
 - 1.1.4 Productos de la empresa Cerámica Andina.
- 1.2 Análisis de la situación actual del proceso de colado de asas
 - 1.2.1 Definición de análisis de operaciones.
 - 1.2.2 La técnica del colado de asas.
 - 1.2.3 Problemas más comunes en el colado:
 - 1.2.4 Descripción del proceso de colado de asas
 - 1.2.5 Diagrama de operaciones
 - 1.2.6 Distribución actual del área de Formación de Tazas
 - 1.2.7 Distribución actual del área de Colado de Asas.

CAPITULO 2

MARCO TEÓRICO

- 2.1 Extrusión de Asas
 - 2.1.1 Breve historia de la Extrusión.
 - 2.1.2 Definiciones de extrusión
 - 2.1.3 Usos de la extrusión.
 - 2.1.4 Ventajas de la extrusión:
 - 2.1.5 Análisis de fricción en la extrusión
- 2.2 Tipos de extrusión

- 2.2.1 Equipo
- 2.2.2 Defectos de extrusión
- 2.2.3 Diseño en la extrusión
- 2.3 Experimentos factoriales
 - 2.3.1 Introducción.
 - 2.3.2 Experimentos factoriales
 - 2.3.3 Experimentos 2K factoriales
 - 2.3.4 Análisis de varianza factorial 24
- 2.4 Estudio Técnico
 - 2.4.1 Objetivos del estudio técnico
 - 2.4.2 Proceso de producción
 - 2.4.3 Diagrama de proceso de operación (DPO)
 - 2.4.4 Estimación de requerimientos de espacio.
- 2.5 Estudio económico
 - 2.5.1 Componentes del estudio financiero
 - 2.5.2 Determinación de los costos

CAPITULO 3 PROPUESTA

- 3.1 Equipo y especificaciones técnicas
- 3.2 Instrucciones de operación
- 3.3 Diagrama de operación
- 3.4 Distribución de planta
- 3.5 Descripción del proceso de extrusión
 - 3.5.1 Variables independientes del proceso de extrusión.
 - 3.5.2 Variables dependientes del proceso de extrusión.

- 3.6 Experimentación factorial
- 3.7 Análisis estadístico de los resultados
 - 3.7.1 Tabla ANOVA Formación
 - 3.7.2 Tabla ANOVA Agrietado superficial
 - 3.7.3 Tabla ANOVA Cantidad de rebaba
 - 3.7.4 Tabla ANOVA Consistencia
- 3.8 Estudio económico del proyecto
- 3.9 Estudio sobre el valor actual neto (VAN)

CAPITULO 4

CONCLUSIONES Y RECOMENDACIONES

- 4.1 Conclusiones
- 4.2 Recomendaciones

ANEXOS

BIBLIOGRAFÍA

UNIVERSIDAD DE CUENCA

FACULTAD DE CIENCIAS QUÍMICAS

ESCUELA DE INGENIERÍA INDUSTRIAL

TESIS PREVIA A LA OBTENCIÓN DEL TITULO DE INGENIERO INDUSTRIAL

TEMA: ADAPTACIÓN DE TECNOLOGÍA DE EXTRUSIÓN DE ASAS Y PROCEDIMIENTOS DE OPERACIÓN EN LA SECCIÓN FORMACIÓN DE TAZAS DE LA EMPRESA CERÁMICA ANDINA.

AUTOR: PAÚL ROJAS PACURUCU

DIRECTOR: ING. JAMES ARIAS CISNEROS

CUENCA - ECUADOR

2010

CAPITULO 1 ANÁLISIS DE LA SITUACIÓN ACTUAL DE LA EMPRESA.

1.1 Descripción de la empresa

1.1.1 Cerámica Andina C.A.

La empresa Cerámica Andina se dedica a la fabricación de productos cerámicos como son vajillas, jarros y demás artículos utilitarios para el hogar, este negocio lleva ya 42 años ofreciendo productos de calidad al mercado nacional e internacional.

La gran variedad de productos ofrecida por Cerámica Andina es una de sus principales características en el mercado, así como su calidad que se basa en materias primas nacionales e internacionales. Los productos no están únicamente dirigidos para el hogar llegando también a la industria hotelera y de restaurantes. Además brinda un servicio de publicidad con jarros personalizados para las diferentes industrias dependiendo de las necesidades y requerimientos de sus clientes.

1.1.2 Situación actual de la empresa

La planta de producción de la empresa Cerámica Andina se encuentra ubicada en la ciudad de Cuenca en el sector de Monay en la Avenida 24 de Mayo.

A partir del año 90 Cerámica Andina busca nuevos métodos dentro de sus procesos productivos por lo que una renovación tecnológica se hace inevitable buscando así satisfacer al mercado internacional y nacional.

Cerámica Andina luego de examinar el mercado competitivo al que va dirigido inicia con nuevos diseños en sus productos brindando diferentes formas y presentaciones logrando así mayor aceptación.

La empresa Cerámica Andina es parte del Centro Cerámico que es una organización creada para agrupar a las empresas fabricantes y que comercializan productos de cerámica como sanitarios, cerámica plana y vajillas.

El mercado internacional al que va dirigido el producto de esta empresa se encuentra ubicado en los países de Perú, Chile, Colombia, Italia, Estados Unidos, México, Finlandia, Venezuela.

1.1.3 Política de Calidad de Cerámica Andina.

Garantizar que nuestros productos cumplan oportuna y satisfactoriamente con las necesidades y expectativas de clientes. A precios razonables del mercado, implantando métodos de trabajo adecuados, capacitando, entrenando al personal y manteniendo buenas relaciones con nuestros proveedores. Todo dentro del marco de mejoramiento continuo.

1.1.4 Productos de la empresa Cerámica Andina.

Los productos que ofrece la empresa se caracterizan por su calidad, precio y por su alta gama de diseños en lo que respecta a vajillas, jarros, tazas, teteras, saleros, fuentes, etc. en diferentes tamaños y colores que como ya dijimos se adaptan a las necesidades de nuestros clientes siendo esta una de

sus estrategias competitivas en el mercado. Los productos pintados a mano son también parte de Cerámica Andina dando así un valor agregado a sus productos y diferenciándolos de los demás en el mercado esperando así encontrar nuevos segmentos de mercado

1.2 Análisis de la situación actual del proceso de colado de asas

1.2.1 Definición de análisis de operaciones.

El análisis de operaciones puede definirse como un procedimiento sistemático empleado para estudiar todos los factores que afectan el método con que se realiza una operación para lograr la máxima economía general. A través de este estudio se encuentra el mejor método disponible para llevar a cabo cada una de las partes necesarias de una operación y se incorporan nuevos planes de manufactura y mantenimiento conforme se van descubriendo en el continuo esfuerzo por hacer que cada trabajo de un paso más hacia la automatización continua. ¹

_

¹MAYNARD W. HODSON

Puntos primordiales del análisis:

- 1- Objetivo de la operación
- 2- Diseño de la pieza
- 3- Análisis del proceso
- 4- Requerimientos de inspección
- 5- Material
- 6- Manejo de materiales
- 7- Distribución del lugar de trabajo, organización y equipamiento.
- 8- Posibilidades comunes para la mejora de trabajo.
- 9- Método

Hoja de análisis de operaciones.

DÍA DE INICIO	12 DE AGOSTO DEL 2009	DEPARTAMENTO: FORMACIÓN DE TAZAS
OPERACIÓN	COLADO DE ASAS	
DETERMINE Y DESCRIBA	DETALLES DEL ANÁLISIS	ACCIÓN
1- OBJETIVO DE LA OPERACIÓN	1- ¿Es necesaria?	1- Al momento es el único método disponible para la formación de asas en el área de formación de tazas.
	2- ¿Logra el objetivo deseado?	2- Si cumple con la tarea asignada de formar las asas.
	3- ¿Puede eliminarse?	3- Con una transducción de tecnología que es la base de esta tesis se puede obtener un método alternativo que trabaje paralelamente y con el tiempo sustituya la técnica del colado con la técnica de la extrusión.
	4- ¿Puede la operación lograr resultados adicionales que simplifiquen las operaciones subsecuentes?	4- Lo que podría lograrse de manera adicional es un corte en el asa para que la operaria encargada de pegar el asa ya no tenga que realizar esta operación. Además podría mejorarse el pulido de la rebaba en el asa reduciendo así el tiempo de clasificado. También se reduce el problema de rajadura entre el asa y el jarro ya que ahora el asa y el jarro son del mismo tipo de pasta.
2- DISEÑO DE LA PIEZA	1- ¿Se podrían usar piezas estandarizadas?	1- Al momento se están usando los mismos diseños de asas para diferentes tipos de jarro.

2- ¿El diseño permite procesamiento más barato?	2- Representa un alto costo la fabricación de nuevos modelos ya que se requiere de un mínimo de 243 moldes para abastecer de forma continua a las maquinas de formación y como mínimo de 9 personas para colar y para pulir las asas.
3- ¿Cuáles son las características de diseño usadas por la competencia?	3- No se sabe con seguridad la técnica de la competencia pero se supone que se utiliza el mismo procedimiento de colado de asas o también un colado de todo el jarro es decir se cola el cuerpo y el esa en una sola operación.
4- ¿El diseño permitirá llegara a la automatización?	4- No es posible la automatización.

	1- ¿La operación analizada puede ser eliminada?	1- Puede realizarse con una técnica diferente como la extrusión de asas.
	2- ¿La secuencia de operación es la óptima?	2- Es la más adecuada para el proceso de colado de asas.
3- ANÁLISIS DE PROCESOS	3- ¿Debería hacerse en otro departamento para reducir costos?	3- Podría realizarse en la sección de colado ya que es un departamento encargado de colar piezas auxiliares y la técnica está más desarrollada pero la materia prima tendría que ser ajustada también ya que no se usa el mismo tipo de colado en las asas.
4- REQUISITOS DE INSPECCIÓN		
Tolerancias y	1- ¿La tolerancia, acabados y	1- Son muy necesarios ya que las asas son la
especificaciones	otros requisitos son necesarios?	mayor causa de los distintos niveles de calidad en los

		jarros y tazas, al ser la parte más delicada del jarro es donde más cuidado se debe tener para mejorar la calidad.
Procedimientos de inspección	2- ¿Demasiado costosos?	2- Si se realizara una inspección al 100% de las asas el procedimiento de inspección si seria costoso pero con un muestreo el costo se reduce considerablemente.
	3- ¿Adecuados para el objetivo?	3- No son adecuados ya que los objetivos de calidad están más altos de lo que se puede lograr con un tipo de inspección por muestras.
	4- ¿Se debe usar control estadístico de la calidad?	4- Si se debe usar control estadístico para identificar las causas que están provocando rechazos y eliminarlos del proceso.
5- MATERIAL	1- ¿Se puede sustituir el material por uno más barato?	1- No se pude sustituir el material por una más barato ya que la composición del colado tiene el mínimo de arcilla necesario.
	2- ¿Si se modificaran las herramientas podría usarse materiales más baratos?	2- No se puede usar materiales más baratos en el proceso.
	3- ¿Un material más costoso podría reducir los costos de proceso?	3- Esto sí es posible y es lo que se espera con este estudio, ya que una pasta que tenga un porcentaje más alto de arcilla (55%) nos permitirá trabajar con otro tipo de maquinaria que son las extrusoras reduciendo el costo de producción en lo que respecta a la mano de obra ya que ahora solo se necesitaría de

	1	que ahora están produciendo tres personas.
6- MANEJO DE MATERIALES	1- ¿El material que ingresa puede llevarse directamente a la estación de trabajo?	1- Si es posible y se lo realiza mediante tuberías y bombas.
	2- ¿Se puede usar algún tipo de señal para indicar que el material está listo para transportarse?	2- Aunque no se dispone de este tipo de señales si es bastante factible de usarse.
	3- ¿Deben usarse transportadores especiales?	3- Únicamente bombas y tuberías.
	4- Los contenedores son de tamaño adecuado	4- Si son adecuados ya que no se requiere un constante bombeo del colado.
7-DISTRIBUCIÓN, ORGANIZACIÓN Y EQUIPAMIENTO DEL LUGAR DE TRABAJO	Arreglo del área de trabajo	1- No es nada buena ya que el colado provoca bastante desperdicio y el área de trabajo se ve sucia y desordenada.
	Colocación de herramientas materiales y suministros	2- Al ser un área bastante reducida para coladores y pulidoras las herramientas en este caso los moldes se colocan a grandes distancias del centro de trabajo provocando la rotura de los mismos y creando un ambiente pesado de trabajo.
	¿Se puede mejorar la organización?	3- Con un mayor espacio para el área y con adecuados puntos de almacenamiento si se puede mejorar la organización.
	¿Se tiene las herramientas adecuadas?	4- No se tiene las herramientas adecuadas ya que el departamento de moldes no provee de la cantidad de moldes necesarios en el proceso y se debe trabajar con moldes en mal estado. Además el calor distribuido

		a los secaderos no es uniforme dificultando de esta manera la estandarización de tiempos en el proceso.
	Comparar los métodos entre operadores	
0 DOCIDII IDADEC	Proporcionar al operario la herramienta adecuada	
8- POSIBILIDADES COMUNES PARA LA MEJORA DEL TRABAJO	Mejorar las herramientas	
	Hacer arreglos para operaciones con ambas manos	
	Colocar las herramientas dentro del área normal de trabajo	
	Cambiar la distribución	
9- MÉTODO	¿Los movimientos son simétricos?	1- No son simétricos.
	¿Se requiere un estudio de movimientos más detallado?	2- Si se recomienda realizar un estudio de MTM, o un nuevo cálculo de las tareas asignadas.
RECOMENDACIONES PARA MAYORES MEJORAS SI AUMENTA LA ACTIVIDAD		
Lo que se recomienda es dotar de las herramientas necesarias a los trabajadores para aumentar la productividad y a		
la vez mejorar la calidad de las asas. Además se podría pensar en una nueva distribución en el área para dar mayor		
comodidad a los trabajadores y evitar transportes innecesarios de las personas y de los materiales.		
Fecha de termino:	13 AGOSTO DEL 2009	Analizado por: PAUL ROJAS P.

CONDICIÓN ACTUAL EN EL ÁREA DE FORMACIÓN DE ASAS.

1.2.2 La técnica del colado de asas.

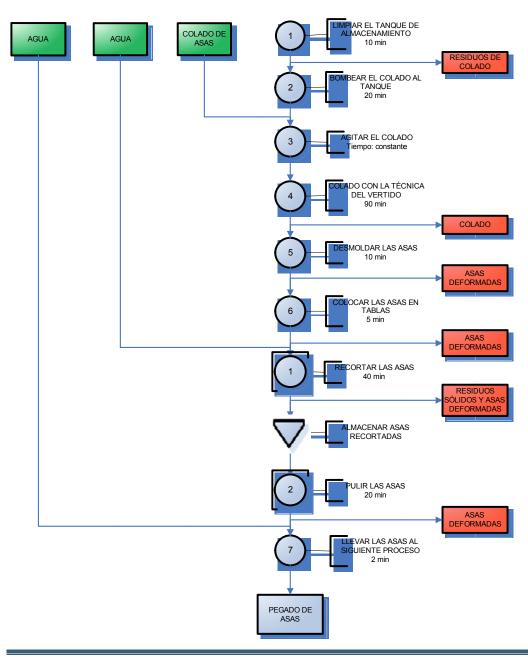
La técnica utilizada en la empresa Cerámica Andina en la sección de Formación de Tazas para la formación de las asas que se utilizaran en todos los productos que salen de la misma es la del colado por vertido siendo esta la más simple de las técnicas de colado. Para este tipo de colado de asas se necesita de una suspensión fluida de arcilla en agua que permita su fluidez en los moldes. Es importante recalcar que las piezas que se forman mediante la técnica del colado no deben desprenderse por sí mismas de los moldes a la vez que no deberán tener una contracción o deformación excesivas.

Esta pasta líguida tiene un porcentaje del 25% aproximadamente y es vertida sobre moldes de yeso seco o con un poco de humedad que adquieren durante el uso continuo de los mismos. Esta pasta empieza a circular por los moldes llenando las cavidades de estos hasta que la pasta alcanza los niveles de firmeza necesarios convirtiéndose en una masa más firme, es importante la velocidad con la que se llenan las cavidades de los moldes ya que si se realiza de una manera muy rápida posteriormente el asa presentará deformaciones o agujeros al momento del secado. La velocidad de vertido depende de la difusión de la capa formada es decir de la granulometría y contextura de la pasta, además depende de la humedad de los moldes

1.2.3 Problemas más comunes en el colado:

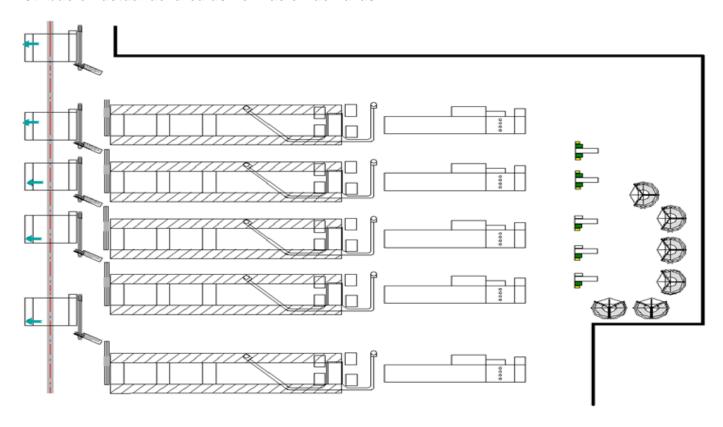
- Cuando los moldes no están formados correctamente o están mal colocados el colado se filtra entre los moldes causando malas formaciones y desperdicio.
- Mucha velocidad en el vertido del colado provoca burbujas de aire en las asas.
- Humedad excesiva en los moldes por el uso continuo de ellos y por falta de aire caliente para su secado entre turnos de trabajo.
- Desgaste de moldes por el mal manejo de los operarios o por excesivos transportes de un lugar a otro.
- Residuos sólidos en los moldes que luego provocaran deformaciones y picaduras en las asas.
- Variación en la cantidad de producción dependiendo del modelo de asa.

1.2.4 Descripción del proceso de colado de asas

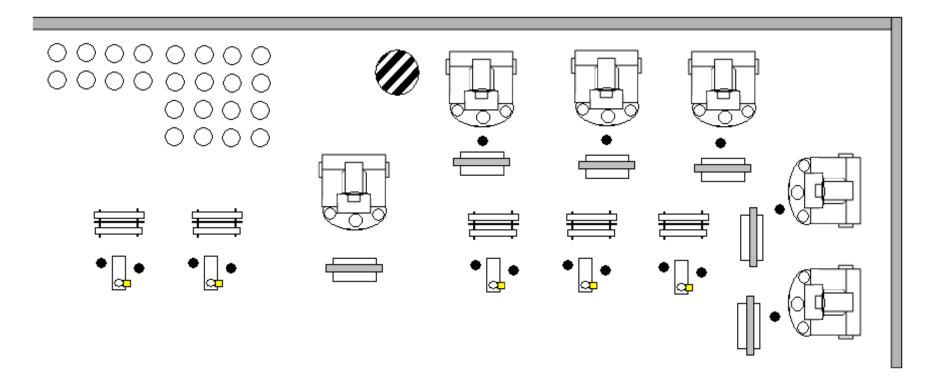

- 1- Limpiar el tanque de almacenamiento de colado.
- 2- Bombear el colado al tanque de almacenamiento hasta la capacidad óptima.
- 3- Agitar el colado para alcanzar los niveles de viscosidad necesarios (para comprobar las propiedades físicas se realizan análisis en el laboratorio de viscosidad, humedad, densidad)

UNIVERSIDAD DE CUENCA

- 4- Se deja pasar el fluido a los moldes previamente colocados y asegurados vigilando siempre un flujo continuo y la velocidad de vertido.
- 5- Se procede a desmoldar las asas previamente coladas ya que ha transcurrido el tiempo necesario para que el fluido cambie su dureza y permita el desmolde del asa.
- 6- Se colocan las asas recién sacadas en tablas.
- 7- Si es necesario son cubiertas con plásticos para evitar que el calor del ambiente las endurezca dejándolas inservibles para el proceso subsecuente que es el recorte de la rebaba y pulido del asa.
- 8- Se recorta la masa sobrante que se forma en los bordes del asa con una cuchilla, esta masa sobrante se encuentra en el borde exterior e interior del asa.
- 9- Se almacena una cantidad prudencial de asa para el posterior pulido de la misma. Este almacenaje es necesario para balancear el flujo ya que el tiempo de recorte es mayor al tiempo de pulido.
- 10-Las asas se pulen sobre esponjas para eliminar los defectos superficiales que puedan existir.
- 11-Se colocan las asas ya pulidas sobre plásticos que descansan sobre esponjas y estas a su vez se encuentran sobre un tablero de madera que facilita su transporte a la etapa siguiente. Cada "piso" de asas lleva una cantidad determinada dependiendo del modelo, los más comunes son los de 288 asas (6 pisos de 6 x 8) y el de 600 asas (6 pisos de 10 x 10).


12-Los pilos de asas son llevados cerca de los centros de trabajo donde serán utilizados por los operarios encargados de pegar las asas en los jarros.

1.2.5 Diagrama de operaciones



1.2.6 Distribución actual del área de Formación de Tazas

1.2.7 Distribución actual del área de Colado de Asas.

CAPITULO 2 MARCO TEÓRICO

2.1 Extrusión de Asas

2.1.1 Breve historia de la Extrusión.

En 1797, Joseph Bramah patentó el primer proceso de extrusión para hacer un tubo de plomo. Esta consistía en el precalentamiento del metal y pasarlo por un troquel mediante un émbolo a mano. El proceso no fue desarrollado hasta 1820 cuando Thomas Burr construyó la primera prensa hidráulica. Hasta ese momento el proceso se llamó squirting. En 1894 Alexander Dick expandió el proceso de extrusión al cobre y aleaciones de bronce. ²

2.1.2 Definiciones de extrusión

1- La palabra extrusión viene del latín, extrudere: expulsar. La extrusión es un procedimiento industrial, que permite obtener barras y perfiles de diferentes formas, generalmente complejas. El proceso consiste en una matriz, cuya salida tiene la forma de la barra que se desea realizar. Por la parte de la boca de carga, se pone la materia prima, que por medio de una prensa hidráulica, se forzará hacer pasar el material a través de la matriz, donde saldrá la barra o perfil a obtener en forma continua.

2 http://es.wikipedia.org/wiki/Extrusi%C3%B3n

UNIVERSIDAD DE CUENCA

La carga puede ser con el material en frío o caliente, dependiendo de las características mecánicas y punto de fusión del mismo.

- 2- La extrusión es un proceso usado para crear objetos con secciones transversales definidas y fijas. El material se empuja o se extrae a través de un troquel de una sección transversal deseada. Los materiales extruido comúnmente incluyen metales, polímeros, cerámicas, hormigón y productos alimenticios.
- 3- Extrusión es, en general, la acción de dar forma o moldear una masa haciéndola salir por una abertura especialmente dispuesta.
- 4- En industria, la extrusión consiste en la utilización de un flujo continuo de materias primas para la obtención de productos, generalmente metalúrgicos, plásticos y alimenticios y cerámicos

2.1.3 Usos de la extrusión.

La extrusión es un proceso mayormente usado en la industria de los metales para la extrusión de aluminio, acero, cobre y aleaciones metálicas. Además se usa el proceso de extrusión para plásticos, hormigón, cerámica y para la industria alimenticia siendo las dos últimas las más nuevas en aplicar este tipo de técnica en sus procesos.

En la industria se usa la extrusión para:

Formación de tubos

• Formación de piezas con formas exactas

• Formación de tubos plegables

- Extintor de incendios
- Cilindros del amortiguador
- Pistones de automotores
- Formación de perfiles

• Formación de piezas cerámicas

2.1.4 Ventajas de la extrusión:

- Se puede extruir una gran variedad de formas, especialmente con extrusión en caliente.
- 2- La estructura del grano y las propiedades de resistencia se mejoran con la extrusión en frío o en caliente.
- 3- Son posibles tolerancias muy estrechas, en especial cuando se usa extrusión en frío.
- 4- En algunas operaciones de extrusión se genera poco o ningún material de desperdicio
- 5- Facilidad para crear secciones transversales muy complejas y el trabajo con materiales que son quebradizos, porque el material solamente se encuentra fuerzas de compresión y de cizallamiento.
- 6- Las piezas finales se forman con una terminación superficial excelente.

2.1.5 Análisis de fricción en la extrusión

La extrusión es un proceso en el que la fricción existe entre la matriz y el material a extruirse que en nuestro caso sería la pasta de arcilla, es la fricción entre estas dos lo que aumenta la deformación experimentada por la pasta y además aumenta la presión del pistón para lograr una optima extrusión, es por esto que la pasta debe estar lubricada para que esta circule por la matriz sin mayor fricción logrando así una mejor formación de la pieza con menor esfuerzo en el pistón de presión y además con una buena lubricación se ha

demostrado que hasta el consumo de pasta es menor que cuando no se lubrica la pasta.

Dados y prensas de extrusión

Los factores importantes en un dado de extrusión son el ángulo del dado y la forma del orificio. El ángulo del dado, más precisamente la mitad del ángulo del dado, es el ángulo "α" de la figura (3a). Para ángulos menores, el área superficial del dado aumenta, así como también la fricción en la interface dadochorizo. Mayor fricción significa mayor fuerza en el pistón. Por otra parte, un ángulo grande del dado ocasiona mayor turbulencia del flujo de la pasta durante la reducción, y también incremento en la fuerza requerida del pistón. Existe un ángulo óptimo del dado, este ángulo depende de varios factores como material de trabajo, temperatura del chorizo y lubricación; en consecuencia, es difícil determinarlo para un trabajo de extrusión. Los diseñadores de dados usan reglas empíricas para decidir el ángulo apropiado. 3

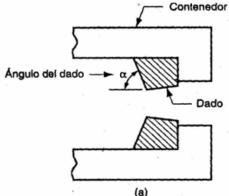


FIGURA (3a) Definición del ángulo del dado en extrusión directa,

3 http://materias.fcyt.umss.edu.bo/tecno-II/PDF/cap-323.pdf

2.2 Tipos de extrusión

Extrusión en caliente.

La extrusión en caliente se hace a temperaturas elevadas para evitar el trabajo forzado y hacer más fácil el paso del material a través del troquel. La mayoría de la extrusión en caliente se realiza en prensas hidráulicas horizontales con rango de 250 a 12, 000 t. Rangos de presión de 30 a 700 Mpz (4.400 a 102,000 psi), por lo que la lubricación es necesaria, puede ser aceite o grafito para bajas temperaturas de extrusión, o polvo de cristal para altas temperaturas de extrusión. La mayor desventaja de este proceso es el costo de las maquinarias y su mantenimiento.

Extrusión en frío

La extrusión fría es hecha a temperatura ambiente o cerca de la temperatura ambiente. La ventaja de esta sobre la extrusión en caliente es la mayor fortaleza debido al trabajo en frío o tratamiento en frío, estrecha tolerancia, buen acabado de la superficie, y rápida velocidad de extrusión si el material es sometido a breves calentamientos.

Extrusión tibia

La extrusión tibia se hace por encima de la temperatura ambiente, pero por debajo de la temperatura de recristalización del material en el rango de temperaturas de 800 a 1800 °F (de 424°C a 975 °C). Este es usualmente

UNIVERSIDAD DE CUENCA

usado para lograr el equilibrio apropiado en las fuerzas requeridas, ductilidad y propiedades finales de la extrusión.

La extrusión tibia tiene varias ventajas rentables, comparada con la extrusión fría, tiene la ventaja en la reducción de la presión que debe ser aplicada al material, y aumenta la ductilidad del material. La extrusión tibia, incluso puede eliminar el tratamiento térmico requerido en la extrusión en frio.

2.2.1 Equipo

Existen diferentes variaciones en el equipo para la extrusión. Ellos varían en cuatro características fundamentales:

1. Movimiento de la extrusión con relación al material que será sometido a extrusión. Si el troquel se sostiene de forma estacionaria el material de partida se mueve hacia él, entonces se le llama "extrusión directa". Si el material de partida esta estacionario y el troquel se mueve hacia el material de partida se llama "extrusión indirecta".

2. La posición de la prensan: vertical u horizontal.

3. Tipo de manejo: hidráulico o mecánico.

4. El tipo de carga aplicada: convencional (variable) o hidráulica.

Tipos de extrusión según el equipo:

Extrusión Directa

Extrusión directa también conocida como extrusión delantera, es el proceso más común de extrusión. Este trabaja colocando la pasta en un recipiente, la pasta es empujada a través del troquel por el pistón de extrusión. La mayor desventaja de este proceso es la fuerza requerida en la extrusión del material, es mayor que la necesitada en la extrusión indirecta porque la fuerza de fricción introducida por la necesidad del material de recorrer completamente el contenedor. Por eso la mayor fuerza requerida es al comienzo del proceso y decrece según el material se va agotando. Al final de la pasta la fuerza aumenta grandemente porque la barra es delgada y la pasta debe fluir radialmente para salir del troquel. ²

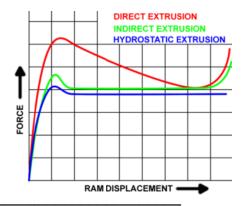
Extrusión indirecta

En la extrusión indirecta, también conocida como exclusión retardada, la barra y el contenedor se mueven juntos mientras el troquel esta estacionario. El troquel es sostenido en el lugar por un soporte el cual debe ser tan largo como el contenedor. La longitud máxima de la extrusión está dada por la fuerza de la columna del soporte. Al moverse la barra con el contenedor la fricción es eliminada. ²

2 http://es.wikipedia.org/wiki/Extrusi%C3%B3n

Ventajas:

- Una reducción del 25 a 30% de la fuerza de fricción, permite la extrusión de largas barras.
- Hay una menor tendencia para la extrusión de crear agrietamiento superficial porque no hay calor formado por la fricción.
- La matriz durará más debido al menor uso.


Desventajas:

 Impurezas y defectos en la superficie en el material afectan la superficie de la extrusión.

Extrusión hidrostática

En la exclusión hidrostática el material es completamente rodeado por un líquido a presión, excepto donde el material hace contacto con la matriz. Este proceso puede ser hecho caliente, tibio o frio, de cualquier modo la temperatura es limitada por la estabilidad del fluido usado. ²

Gráfico de fuerzas requeridas por varios procesos de extrusión

2 http://es.wikipedia.org/wiki/Extrusi%C3%B3n

2.2.2 Defectos de extrusión

- Quebradura de superficie: cuando hay grietas en la superficie de extrusión. Esto se debe a la temperatura de extrusión, fricción, o velocidad muy alta. Esto puede pasar también a bajas temperaturas, si el producto temporalmente se pega al troquel.
- Impurezas: una estructura de flujo que arrastra los óxidos de la superficie e impurezas al centro del producto. Tales como patrones que son frecuentemente causadas por altas fricciones o enfriamiento de la parte externa del material.
- El agrietamiento interior: cuando el centro de la expulsión desarrolla grietas o vacios, estas grietas son atribuidas a fuerzas de tensión hidrostática en la línea central en la zona de deformación en el troquel.

2.2.3 Diseño en la extrusión

Las pautas siguientes deben seguirse para producir una extrusión de calidad. El tamaño máximo para una extrusión es determinado por el círculo más pequeño que encajará alrededor de la sección transversal (llamado círculo circunscripto). Este diámetro, a su vez controla el tamaño del troquel requerido, qué finalmente determina si la parte encajará en la prensa.

Las secciones más espesas generalmente necesitan un tamaño de la sección aumentado. Para que el material fluya apropiadamente el soporte no debe ser

mayor que 10 veces su espesor. Si la sección transversal es asimétrica, la sección adyacentes deben de tener tamaño lo más iguales posibles. ²

2.3 Experimentos factoriales

2.3.1 Introducción.

Para lograr optimizar todo tipo de procesos es necesario identificar las variables que influyen de manera significativa y como estas afectan al proceso, si esta información no está disponible se debe experimentar para obtener los resultados. Esta serie de experimentos que se deben realizar únicamente con las variables que se puede modificar como son la temperatura, humedad, plasticidad, etc. Para obtener la información comparamos las respuestas de los distintos experimentos y obtenemos resultados.

El alto costo de la experimentación limita el diseño ya que una gran cantidad de variables generaría muchos experimentos y llevaría un largo tiempo su ejecución, es por esto que únicamente se deben seleccionar las variables que mayor influencia tengan en el proceso. Para esto utilizaremos el diseño factorial 2k, esta herramienta estadística es adecuada para conocer de forma simultánea que efecto tienen los factores sobre el resultado y además nos permite ver si hay interacción entre ellos, además se evita que las variables cambien en la misma dirección, al no haber variables correlacionadas se evita

2 http://es.wikipedia.org/wiki/Extrusi%C3%B3n

los experimentos redundantes, además los experimentos se relacionan de la tal modo que los resultados se obtienen combinando las respuestas de todos ellos en el menor tiempo y con el menor costo posible.

2.3.2 Experimentos factoriales

Los experimentos factoriales son frecuentemente utilizados en los tratamientos de datos donde existen varios factores que influyen en conjunto sobre la respuesta. Existen varios casos especiales del diseño factorial general que resultan importantes porque se usan ampliamente en el trabajo de investigación, y porque constituyen la base para otros diseños de gran valor práctico.

Se debe considerar una situación donde se quiere estudiar a dos factores A y B y su efecto sobre una respuesta por ejemplo en un experimento industrial se quiere estudiar el efecto que tiene la cantidad de tiempo de trabajo continuo con el desenvolvimiento óptimo de los trabajadores y la calidad de los productos.

Cuando decimos factor hablamos de toda característica del experimento que se puede variar como la presión, temperatura, tiempo de operación o humedad de una prueba a otra. Los niveles de un factor vienen definidos por valores reales que se pueden utilizar en el experimento.

Es importante siempre analizar si es que los factores que intervienen en el estudio tienen una influencia en el efecto causado es decir en la respuesta y además si es que existe una interacción entre ellos, siempre habrá interacción pero esta deberá ser significativa. ²

Aplicación del diseño experimental.

- 1. Planteamiento del problema
- 2. Factores y dominio experimental
- 3. Matriz de experimentos: el diseño factorial completo 2k
- 4. Plan de experimentación y realización de los experimentos
- 5. Interpretación de los resultados y conclusiones

Ventajas del experimento factorial

- Permiten el uso más eficiente de los recursos disponibles como mano de obra, materiales, tiempo.
- Los factores en estudio son evaluados bajo condiciones más cercanas a la realidad.
- 3. Permiten evaluar todas las posibles interacciones que existan entre los factores en estudio. ⁴

⁴ Mc GRAW HILL "ANÁLISIS Y DISEÑO DE EXPERIMENTOS"

Desventajas de un experimento factorial

- Podría no constituir el tipo de experimento más apropiado para obtener la información buscada.
- Cuando los factores a estudiar son muchos se puede incurrir en grandes costos volviendo imprácticos a los experimentos factoriales.
 Por ejemplo para un estudio de 10 factores se deben realizar 1024 combinaciones. ⁴

2.3.3 Experimentos 2K factoriales

Dentro de éste estudio se pone especial atención a diseños experimentales en los que el plan requiere el estudio del efecto sobre una respuesta de k factores, cada uno en dos niveles. Éstos generalmente se conocen como experimentos 2^k. Es común expresar estos niveles como "alto" y "bajo", considerando que estas expresiones son arbitrarias cuando se trata de variables cualitativas. El diseño factorial completo requiere que cada nivel de todos los factores ocurra con cada nivel de todos los demás factores, lo que da un total de 2^k combinaciones de tratamientos.

Notación en el experimento.

Existen en realidad tres notaciones distintas que se usan ampliamente para los experimentos en el diseño 2^k

⁴ Mc GRAW HILL "ANÁLISIS Y DISEÑO DE EXPERIMENTOS

- La primera es la notación "+,-", llamada "geométrica".
- La segunda consiste en el uso de letras minúsculas para identificar las combinaciones de tratamientos.
- En la tercera se utilizan los dígitos 1 y 0 para denotar los niveles
 "alto" y "bajo" del factor, respectivamente.

Uso de letras minúsculas

Denotamos los niveles más altos de los factores *A*, *B*, *C*, *D*... con las letras *a*, *b*, *c*, *d*..., y los niveles más bajos de cada factor con la notación (1). En presencia de otras letras omitimos el símbolo (1). Por ejemplo, la combinación de tratamientos en un experimento 2⁴ que contiene los niveles altos de los factores A y C y los niveles bajos de los factores B y D se escribe simplemente como *ac*. La combinación de tratamientos que consiste en el nivel bajo de todos los factores en el experimento se denota con el símbolo (1). En el caso de un experimento 2⁴ las dieciséis posibles combinaciones de tratamientos son (1), *a*, *b*, *c d*, *ab*, *ac ad*, *bc*, *bd*, *cd*, *abc*, *abd*, *bcd*, *acd*, *abcd*.

2.3.4 Análisis de varianza factorial 24

Consideremos ahora un experimento con el uso de los tres factores, A, B, C y D con niveles (1), a; (1), b; (1), c; respectivamente. Este es un experimento 2⁴ factorial que da las 16 combinaciones de tratamientos (1), a, b, c d, ab, ac ad, bc, bd, cd, abc, abd, bcd, acd, abcd.

Las combinaciones de tratamientos y los signos algebraicos apropiados para cada contraste que se utilizan al calcular las sumas de cuadrados para los efectos principales y para los efectos de interacción se presentan en la tabla (1).

TABLA (1): Signos para los contrastes en un experimento factorial 2³

Para obtener los signos correspondientes a cada combinación de factores, se multiplica una columna por aquella que proporciona la combinación deseada, por ejemplo $A \times B = AB$.

Combinac ión de tratamient						E	fect	o fac	toria	al (si	mból	ico)			
					Α	Α	Α	В	В	С	AB	AB	AC	ВС	ABC
os	Α	В	С	D	В	С	D	С	D	D	С	D	D	D	D
1	-	1	-	1	+	+	+	+	+	+	-	-	-	-	+
Α	+	-	-	-	-	-	-	+	+	+	+	+	+	-	-
В	-	+	-	-	-	+	+	-	-	+	+	+	-	+	-
С	-	-	+	-	+	-	+	-	+	-	+	-	+	+	-
D	-	-	-	+	+	+	-	+	-	-	-	+	+	+	-
Ab	+	+	-	-	+	-	-	-	-	+	-	-	+	+	+
Ac	+	-	+	-	-	+	-	-	+	-	-	+	-	+	+
Ad	+	-	-	+	-	-	+	+	-	-	+	-	-	+	+
Вс	-	+	+	-	-	-	+	+	-	-	-	+	+	-	+
Bd	-	+	-	+	-	+	-	-	+	-	+	-	+	-	+
Cd	-	-	+	+	+	-	-	-	-	+	+	+	-	-	+
Abc	+	+	+	-	+	+	-	+	-	-	+	-	-	-	-

Abd	+	+	-	+	+	-	+	-	+	-	-	+	-	-	-
Acd	+	-	+	+	-	+	+	-	-	+	-	-	+	-	-
Bcd	-	+	+	+	-	-	-	+	+	+	-	-	-	+	-
Abcd	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

La suma de cuadrados para, por ejemplo, la interacción *ABCD* con un grado de libertad, está dada por:

Y el efecto de interacción ABC está dado por

Para un experimento 2^k factorial las sumas de cuadrados de un solo grado de libertad para los efectos principales y los efectos de interacción se obtienen al elevar al cuadrado los contrastes apropiados en los totales de los tratamientos y dividir entre 2^kn, donde n es el número de réplicas de las combinaciones de tratamientos.

Un efecto siempre se calcula al restar la respuesta promedio en el nivel "bajo" de la respuesta promedio en el nivel "alto". El nivel alto y bajo para los efectos principales es bastante claro. El nivel alto y bajo simbólico para las interacciones es evidente a partir de información como la de la tabla (2).

AUTOR:

Un experimento factorial permite investigar todas las combinaciones posibles de los niveles de los factores o condiciones en cada prueba completa. El objetivo es investigar los resultados experimentales en casos donde interesa estudiar el efecto de diversas condiciones de experimentación y sus interacciones.

2.4 Estudio Técnico

2.4.1 Objetivos del estudio técnico

- Viabilidad del proyecto.
- Escoger alternativas técnicas sobre: materia prima, capacidad de producción, equipos, localización organización.
- Conseguir datos para obtener estimaciones de inversión y costos.
- Detallar el proceso de producción.
- Estimar requerimientos de espacio.

Lo que se pretende obtener con un estudio técnico es resolver todas aquellas preguntas como cuanto, donde, con quien, cómo y cuándo producir lo que se necesita, por lo que el estudio técnico comprende todo lo que concierne al funcionamiento y operación del proyecto.

_

⁷ PROYECTOS INDUSTRIALES, M MOLINA

2.4.2 Proceso de producción

El proceso de producción es la consecución de varios pasos lógicos que envuelven los recursos de mano de obra, materiales, equipos, herramientas para obtener un producto. El proceso productivo debe estar claramente determinado para permitir a los empleados obtener el producto con la mayor optimización de los recursos reduciendo así los desperdicios y aumentando la productividad.

- Aspectos fundamentales para establecer un proceso de producción son:
- Determinar todas las actividades y procesos necesarios para elaborar el producto.
- Ordenar las actividades en secuencia y de manera lógica.
- Estableces los tiempos necesarios para cada operación.
- Determinar el flujo del proceso e implantar aspectos y puntos de control en las operaciones criticas del proceso.

2.4.3 Diagrama de proceso de operación (DPO)

Un diagrama de proceso de operación es la representación grafica del punto en donde los materiales se integran al proceso y de la secuencia de inspecciones y todas las demás operaciones, excepto aquellas que se relacionan con el manejo de materiales. También incluye toda la información conveniente para su análisis como el tiempo requerido y la ubicación.

AUTOR:

2.4.4 Estimación de requerimientos de espacio.

Esta parte del estudio técnico comprende la distribución de planta o layout requerido para llevar a cabo el proceso que en este caso sería el proceso de extrusión de asas, la estimación de espacio para este proceso se llevara a cabo teniendo en cuenta factores como tamaño del equipo y requerimientos del mismo, movimientos dentro del proceso productivo y manejo de materiales, sistemas de apoyo y personal.

Por distribución se entiende la disposición física de las instalaciones industriales. Esta disposición ya sea instalada o en proyecto, incluye los espacios necesarios para el movimiento de los materiales, el almacenaje, la mano de obra directa, así como el equipo y el personal operativo.

2.5 Estudio económico

El estudio económico es la parte final del análisis donde se mide en parámetros económicos todos los factores de los otros análisis previos para evaluar si el proceso de producción es rentable o no. Las preguntas que se deben responder en este estudio podrán ser las siguientes: ¿existe una reducción en el costo actual de producción?, ¿los costos de producción proporcionan un buen margen de utilidad?, ¿existe una rentabilidad sobre la inversión? Lo que obtenemos al responder estas preguntas es si se debe efectuar este cambio en el proceso productivo.

2.5.1 Componentes del estudio financiero

Los costos: este componente nos permite conocer el costo por unidad de la materia prima, el costo por unidad en el factor mano de obra directa, así como los costos indirectos de fabricación para determinar el costo total de producción. Al conocer esta información se obtiene una clara idea de lo que se ganaría o en este caso de cuando se reduciría comparado con el proceso actual de formación de asas que es la técnica del colado.

Inversión: La inversión se hace con la esperanza de una recompensa en el futuro. La inversión se refiere al empleo de un capital en algún tipo de actividad o negocio con el objetivo de incrementarlo. Dicho de otra manera, consiste en posponer al futuro un posible consumo. El motivo que impulsa la actividad de las empresas es el deseo de lucro, quienes la proyectan y organizan aspiran a obtener beneficios de lo que han invertido.

La inversión debe ser tomada en cuanta en dos etapas del proyecto como son la instalación o montaje y la etapa de operación del proyecto

2.5.2 Determinación de los costos

Costo de Materia Prima: No se debe tomar en cuenta solamente la cantidad de producto final que se desea, sino también el desperdicio propio de cada proceso productivo.

AUTOR:

Costo de Mano de Obra: Para este cálculo también se consideran las determinaciones del estudio técnico. Se divide la mano de obra en directa e indirecta. La mano de obra directa es aquella que interviene personalmente en el proceso de producción, específicamente se refiere a los obreros. La mano de obra indirecta hace referencia a quienes aun estando en producción no son obreros, tales como los supervisores, además de que se debe tomar en cuenta el porcentaje adicional correspondiente a todo tipo de prestaciones sociales.

Costo de producción de los moldes: en el costo de producción de los moldes incluiremos el costo de la mano de obra que se utiliza en la fabricación de los mismos así como el costo de la materia prima principal de los moldes que es el yeso y de otros materiales que se involucran dentro del proceso, vale recalcar que el costo de producción se debe sacar para cada asa.

Costo de producción del colado: en el costo de producción del colado se debe incluir el costo de la mano de obra, el costo de los materiales utilizados en su fabricación como son las arcillas y además los costos que energía, maquinaria, transportes, etc.

Costos de Energía eléctrica: el principal gasto por este insumo en una empresa manufacturera se debe a los motores eléctricos que se utilizan durante el proceso. En general, el costo por alumbrado de las áreas no es significativo respecto del importe total.

AUTOR:

Costo gas metano: utilizado para secar el colado de asas dentro de los moldes, también se usa el gas para secar los moldes recién fabricados que necesitan reducir su humedad para poder ser utilizados, este costo se justifica por la importancia que tiene dentro del proceso actual de producción de asas y de moldes.

Otros Costos: su importe es tan pequeño en relación con los otros costos de producción, que tal vez no vale la pena determinarlos detalladamente, pero siguen formando parte de los costos totales.

CAPITULO 3 PROPUESTA

Introducción.

En el contenido de este capítulo encontraremos información acerca de todo lo que significa una transducción de tecnología, una transducción de tecnología se refiere a todo el conjunto de equipos, máquinas, procesos de operación, materiales, y por su puesto el estudio económico que no existen actualmente dentro de la empresa. En el Ecuador no existe un proceso igual al que la empresa Cerámica Andina quiere incursionar es por esto que la información técnica del proceso no existe en libros y se utilizaran herramientas como el diseño experimental para llegar a conclusiones válidas para optimizar el proceso.

A continuación se detallan los pasos que se deben seguir para un estudio nuevo que en nuestro caso es una transducción de tecnología:

- 3.1 Equipo y especificaciones técnicas
- 3.2 Instrucciones de operación
- 3.3 Diagrama de operación
- 3.4 Distribución de planta
- 3.5 Descripción del proceso de extrusión
 - 3.5.1 Variables independientes del proceso de extrusión.
 - 3.5.2 Variables dependientes del proceso de extrusión.
- 3.6 Experimentación factorial

- 3.7 Análisis estadístico de los resultados
- 3.8 Estudio económico del proyecto
- 3.9 Estudio sobre el valor actual neto (VAN)

3.1 Equipo y especificaciones técnicas

La maquinaria que se va a utilizar para la extrusión de asas es de procedencia italiana de la industria Quadrifoglio y su fabricante es la empresa CERMAC, a estas máquinas se las conoce con el nombre de MANICI.

Componentes de la extrusora de asas.

Mesa de almacenamiento y lubricación de chorizo

Esta es una pequeña mesa que se encuentra ubicada en la parte posterior de la extrusora junto a las

escaleras que llevan al tambor de alimentación, en este lugar vamos a colocar los chorizos previamente extruidos y se los va a lubricar para evitar que la pasta se adhiera a las paredes de los tubos del tambor de alimentación. Toda la pasta debe pasar por este proceso antes de ser extruida.

Tambor de alimentación de chorizo

y con un largo de (60 cm), es el lugar donde se colocan los chorizos (pasta) para que sean extruidos posteriormente.

• Sistema de arrastre del tambor de alimentación

Este sistema es el que gira el tambor de alimentación y se maneja mediante sensores que accionan el motor de giro.

Sistema automático de alimentación por sensores

El sensor es un infrarrojo que detecta el momento en que se ha agotado la pasta del tubo y manda una señal al PLC para que este proceda a girar el tambor y caiga un nuevo chorizo que será cortado y extruido.

Sistema hidráulico de cierre de las matrices

Es el único sistema hidráulico dentro de la extrusora ya aquí se requiere una gran fuerza de compactación para las matrices que no permitan que la pasta se filtre en el proceso de extrusión dejando una rebaba en el asa extruida.

Boquilla de extrusión y matriz de formación con sistemas de calentamiento.

La boquilla de extrusión tiene un diámetro de 1 cm y es por aquí donde pasa el chorizo a presión que llenara las cavidades de la matriz formando así el asa la cual a su vez se va secando al contacto con el dado pues este se

encuentra a una temperatura de (120 °C en promedio) que hará que la pasta se endurezca y el asa no se deforme al ser cortada. Las matrices se calientan mediante una niquelinas, esta temperatura es regulada desde el tablero de control y aumentará o disminuirá dependiendo del tipo de asa, es decir si es de

tamaño pequeño mediano o grande. Las matrices deben ser posicionadas de manera correcta para evitar filtraciones con la presión de extrusión y también para evitar la deformación o la rebaba que pueda crearse al dejar una abertura entre placas. Los cambios de matriz deben ser luego de que la misma se haya enfriado, nunca se debe forzar el enfriamiento con agua o líquidos ya que la matriz puede perder su forma debido al shock térmico.

• Cortador de exceso de pasta o rebaba.

Este cortador se encuentra ubicado al final de la banda y es el encargado de dar la forma al asa ya que con el cortador se retiran los excesos de pasta que se puedan encontrar en los extremos del asa. Una

persona es la encargada de colocar el asa en el dado y mediante la palanca se procede a cortar la pasta luego el asa se coloca en un recipiente para que sea transportado hacia las pegadoras. Es importante recalcar que cada juego de matrices viene con una cortadora o mínimo con un dado propio que puede ser cambiado conforme se cambie el tipo de asa.

Tablero de control

En el tablero de control encontramos la información sobre la cantidad de extrusiones que ha realizado la maquina es decir el numero de asas que han salido

durante el tiempo de operación de la maquina. Además tenemos el regulador

de temperatura de las niquelinas que calientan las matrices, indicadores visuales de presión y de corriente además desde el tablero de control podemos apagar las niquelinas para su enfriamiento. En el tablero de control también se encuentra un botón de "parada de emergencia" que anula cualquier operación del equipo.

Centralina hidráulica,

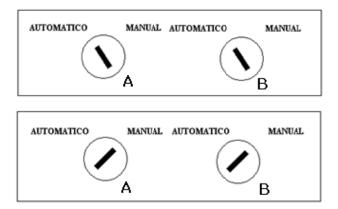
La centralina hidráulica alimenta al sistema hidráulico de cierre, este sistema es el encargado de mantener herméticamente cerradas a las matrices, requiere de aceite para su funcionamiento.

• Cilindro neumático de volteo previa extrusión.

Este cilindro neumático o pistón es el encargado de girar la boquilla de extrusión, en primera instancia la boquilla es girada para alimentarse de pasta quedando en forma paralela al sistema, luego de que el material es cortado y se ha depositado en la cámara previa a la extrusión este

cilindro se coloca en forma perpenticular al dado dejando la boquilla frente a la abertura de las matrices para que la pasta sea extruida dentro de las mismas mediante el pistón de extrusión

• Selectores de marcha-parada manual


La extrusora posee la capacidad de que las extrusiones sean de forma automática o manual dependiendo de las necesidades de operación, estos selectores nos sirven para la limpieza de la boquilla es decir para que no quede ningún residuo de pasta en la cámara previa a la extrusión.

Proceso de limpieza:

- a- Pulsar el botón de parada de la maquina.
- b- Colocar la perilla "A" en la posición de manual y esperar que la boquilla de extrusión se ubique en la posición de extrusión.
- c- Colocar la perilla "B" en la posición manual.

ADVERTENCIA: La boquilla puede salir junto con la pasta de la cámara de extrusión a gran velocidad por lo que se recomienda tomar una posición fuera del alcance de la misma.

Sistema de regulación de presión y caudal para el pistón de inyección y los demás pistones de la extrusora (pistón de volteo, pistón de corte pre extruido, pistón de corte pos extruido)

Con este sistema se controlan las entradas y salidas de aire de los pistones a su vez que las señales son transmitidas por sensores al programa del PLC que es el

encargado de controlar el flujo de todo el sistema de extrusión.

Especificaciones técnicas de las extrusoras Manici

Modelo	Extrusora Manici Peq.	Extrusora Manici Grd.
Dimensiones	Largo : 2,8 m Ancho: 1,6 m Altura: 2,15 m	Largo : 2,4 m Ancho: 1,7 m Altura: 2,3 m
Motores	Motor 1.1: V: 380/420 Rev/min: 1400 Motor 1.2: V: 360/400 Rev/min: 1120 Motor 2.1: V: 380/420 Rev/min: 1400 Motor 2.2: V: 220/380 Rev/min: 1400	Motor 1: V: 230/400 Min: 1370 Motor 2: V: 220/380 Min: 1430
Capacidad de extrusión	5460 asas cada 8 horas	5460 asas cada 8 horas

Material de la estructura	Acero	Acero				
Diámetro de la boquilla	1 cm	1 cm				
Accesorios	matrices. Estantes de almacenamien cortadoras.	Estantes de almacenamiento de matrices y de				

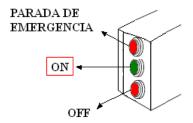
3.2 Instrucciones de operación.

Precauciones

1. No opere la extrusora con las manos húmedas

 No inserte las manos o partes del cuerpo dentro de las partes móviles de la extrusora.

 Remover la pasta seca de la extrusora en caso de existir un remanente del proceso anterior.

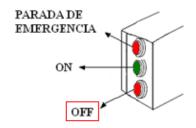


- 4. No introduzca pasta con un nivel de dureza mayor a 9 en el sistema de alimentación de la extrusora.
- 5. Antes de introducir la pasta en el sistema asegúrese de haber humectado el chorizo con el aceite correspondiente.

 Es preferible calibrar las matrices a temperaturas ambiente para evitar quemaduras y para facilitar la manipulación de sus componentes.

Operación de la extrusora.

- 1. Encender el breaker de la extrusora
- 2. Abrir la llave de aire para permitir la entrada del aire a presión
- Encender la extrusora y dejarla trabajar en vacio para verificar que no existan vibraciones o sonidos inusuales.



- 4. Proceder a acarrear el material (pasta) hasta la extrusora.
- En caso de ser necesario aumentar o reducir la presión de extrusión mediante la válvula ubicada en el sistema de regulación de presión y caudal.
- Colocar el chorizo sobre la mesa y lubricarlo hasta alcanzar un opimo estado de lubricación.
- 7. Ubicar los chorizos dentro de los tubos del tambor de alimentación.

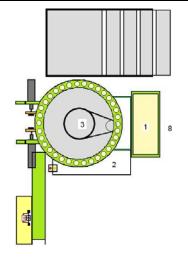
- 8. Regular la temperatura de las matrices y la presión de extrusión.
- Permitir el paso del chorizo para regular el tamaño óptimo de corte dependiendo del tipo de asa.
- 10. Proceder con el proceso de extruir las asas y cortar la rebaba de las mismas dejando un asa lista para pegar.
- 11. Colocar las asas en un recipiente para su transporte.

Después de operar la extrusora.

- Esperar que todo el chorizo sea extruido, se debe dejar que se extruya en blanco mínimo 5 veces para dejar vacías las cámaras de extrusión.
- Apagar la extrusora y desconectarla si no se la va a usar un largo periodo de tiempo.

- Esperar que se enfríen las matrices para retirarlas y proceder con la limpieza de las mismas.
- Limpiar los residuos de pasta dentro de la boquilla de extrusión con el método antes mencionado.
- 5. Limpiar los residuos de pasta del tambor de alimentación.

6. Apagar el sistema eléctrico y el de presión de aire.


Mantenimiento de la extrusora

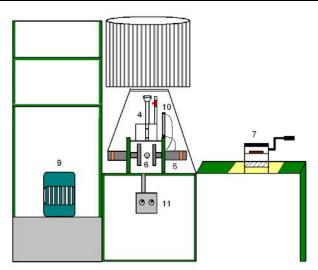
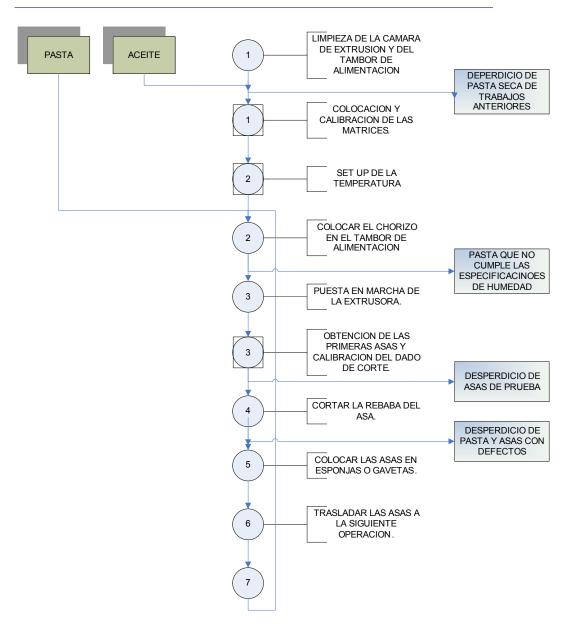
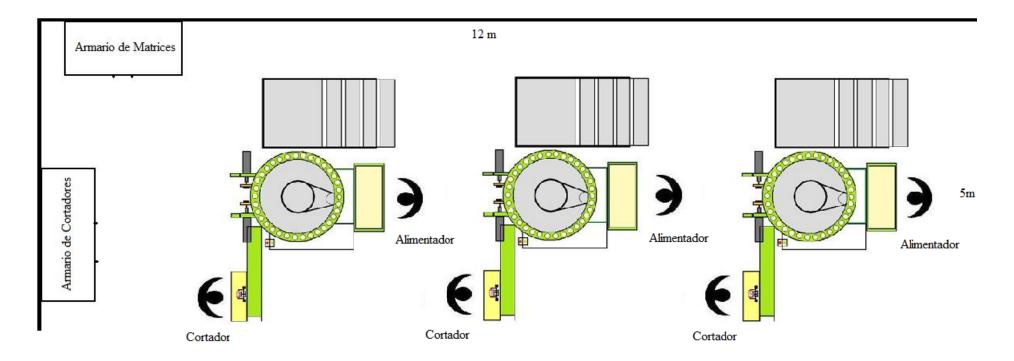

- Usar únicamente grasa para su limpieza y no agua o cualquier otro liquido corrosivo.
- Chequear semanalmente los niveles de aceite de los sistemas hidráulicos de la maquina.
- Cambiar el aceite periódicamente para mantener un óptimo funcionamiento.
- 4. Mantener las matrices en aceite para su mejor conservación.

Diagrama de la maquina extrusora de asas

1	2	3	4	5	6	7	8	9	10	11
Mesa de lubricació n de chorizo	Tambor de alimentació n	Sistem a de arrastre del tambor	Sistema de alimentació n por sensores	Sistema hidráulic o de cierre de matrices	Boquilla de extrusión y matrices de formació n	Cortado r de rebaba	Tabler o de control	Centralin a hidráulica	Cilindro neumátic o de volteo	Selectore s de marcha – parada manual



AUTOR: PAUL ROJAS PACURUCU



3.3 Diagrama de operaciones de extrusión (DPO)

3.4 Distribución de planta de las máquinas extrusoras Manici

3.5 Descripción del proceso de Extrusión de Asas.

	Caliente	De 1000 °C a 1500 C°	Rechazada
Tipo de extrusión	Fría	De T ambiente a 350 °C	Aceptada
	Tibia	400 ° C a 1000 ° C	Rechazada
	Directa	La pasta va hacia la matriz	Aceptada
Tipo de maquinaria	Indirecta	La matriz va hacia el material	Rechazada
	Hidrostática	Material rodeado de liquido	Rechazada

Según las características de cada proceso de extrusión se tiene que el siguiente proceso de extrusión de asas posee las características de ser un proceso de extrusión fría ya que las temperaturas máximas de operación oscilan entre 100 °C y 150 °C. En lo que respecta al tipo de extrusora utilizada es decir la clasificación según el tipo de equipo es una extrusión directa ya que la matriz o troquel se mantienen fijos y es el material el que se mueve hacia la matriz mediante un pistón que empuja la pasta provocando que la paste tome la forma de la matriz.

3.5.1 Variables independientes dentro del proceso de extrusión.

Dentro de todo proceso de extrusión encontramos variables como:

- Temperatura
- Presión
- Diámetro de la boquilla
- Dureza del material a extruirse
- Humedad
- Plasticidad
- Viscosidad
- Forma en la que se desea extruir el material.
- Cantidad de arcilla en la pasta
- Tamaño del asa

Variables seleccionadas para la experimentación factorial (Anexo 3A)

Cantidad de arcilla en la pasta:

Hemos tomado en consideración la cantidad o porcentaje de arcilla en la pasta debido a que una arcilla es un material natural que cuando se mezcla con agua en la cantidad adecuada se convierte en una pasta plástica además tenemos que dar importancia a cada una de sus propiedades como son la capacidad de absorción, hidratación e hinchamiento, refractariedad, porosidad,

color y la más importante que es la plasticidad debido a que esta característica facilita el deslizamiento de unas partículas sobre otras cuando se ejerce un

esfuerzo sobre ellas. Todas estas características afectan al proceso de extrusión y también al producto extruido que en nuestro caso son las asas. ⁵

Humedad

Esta variable es importante para el análisis factorial debido a la expansión por humedad (EPH) que es la característica que presentan los materiales de arcilla cocida que consistente en aumentar sus dimensiones debido a la captación de humedad ambiental.

- Factores que influyen:
 - Tipo de arcilla.
 - Temperatura de cocción.
 - Humedad. 6

Las variables de humedad y dureza al ser inversamente proporcionales deben ser consideradas como una sola variable, es decir cuando tenemos el máximo de dureza la humedad se encontrará en su límite inferior y por el contrario cuando menor sea la dureza mayor será la humedad. Esta variable será considerada debido a su incidencia en la calidad de las asas.

⁵ http://www.uclm.es/users/higueras/yymm/arcillas.htm

⁶ www.arcillex.com/expansion%20por%humedaddepiezasceramicas

Temperatura

La variable temperatura en el proceso de extrusión de asas es importante ya que tiene efectos directos sobre el producto final es decir el asa, la temperatura afecta a la formación del asa, a la calidad superficial de la misma y facilita también el proceso de extrusión debido a que si la extrusión se realizara a bajas temperaturas esta no se podría completar o produciría asas fuera de los estándares de calidad como la dureza, forma y agrietamientos superficiales.

Tamaño del asa

El tamaño del asa es una variable que no se encuentra dentro de la matriz de ponderación debido a su importancia en el proceso ya que del tamaño del asa dependerán los tiempos de producción, la cantidad de material utilizado, la eficiencia de la maquina y además esta variable tiene incidencia directa sobre las demás variables.

Las demás variables como son el diámetro de la boquilla, presión de extrusión, viscosidad se mantendrán constantes durante la experimentación ya que estas no influyen de manera significativa en el proceso y únicamente se harán cambios sobre estas al momento de la puesta en marcha de la maquina y cuando el proceso de extrusión lo requiera.

Determinación de los niveles de las variables en el experimento factorial 2^k

Los niveles de las variables para el experimento factorial fueron determinadas a partir de experimentos previos que se realizaron con pastas de prueba donde se observaron límites máximos y mínimos para un funcionamiento adecuado pero que no es el optimo ya que los extremos en las variables como por ejemplo una temperatura de 250 grados originaba fallas en el proceso productivo, también la pasta al tener una humedad de 23 provocaba la deformación del asa y dificultaba la alimentación de la maquina. Los valores de la cantidad de arcilla en la pasta se determino a partir de que la pasta actual tiene un porcentaje del 10% al 12% de arcilla y la maquinaria en Italia trabajaba con un 55% de arcilla entonces se tomaron estos como los limites. El tamaño del asa dependía de las matrices que se tenía disponible entonces se tomaron medidas para usar las matrices con menor y mayor tamaño.

VARIABLES INDEPENDIENTES	A (mínimo)	B (máximo)
Cantidad de arcilla en la pasta	10%	55%
Humedad de la pasta	19	21,5
Temperatura de la matriz	100 °C	150 °C
Tamaño del asa	3 cm	6 cm

UNIVERSIDAD DE CUENCA

Nomenclatura de las variables y niveles del experimento factorial.

La nomenclatura que se usara en el experimento factorial se realizara de

la siguiente manera: denotamos los niveles más altos de los factores A, B, C...

con las letras a, b, c,..., y los niveles más bajos de cada factor con la notación

(1). En presencia de otras letras omitimos el símbolo (1).

A: Temperatura.

B: Humedad

C: Cantidad de arcilla.

D: Tamaño del asa

Los valores de las variables que se encuentran con rojo ingresan en el

experimento por consecuencia ya que estas dependen de otra variable; por

ejemplo la humedad depende de la dureza y son inversamente proporcionales,

igual pasa con la plasticidad y la cantidad de arcilla en la pasta solo que estas

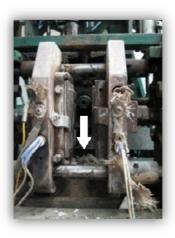
si son proporcionales entre sí, entonces no se las puede tomar como una

variable mas ya que solo aumentaría la cantidad de experimentos y los

resultados no se afectarían pero es importante tener en cuenta estas variables

para el estudio.

AUTOR:


PAUL ROJAS PACURUCU

Página 65

3.5.2 Variables dependientes de la extrusión:

Formación: la formación se refiere a las asas que después de ser extruidas caen sobre la banda de transporte para su posterior corte de los excesos de pasta. Para citar un ejemplo de un asa mal formada es aquella que cae fuera de la banda al momento que se abren las matrices convirtiéndose en un asa dañada o mal formada.

Agrietado superficial: el agrietado superficial se refiere a aquellas rajaduras que se encuentran en la parte externa del asa y que provocan que las mismas se quiebren o presenten des uniformidades en la superficie, este defecto se provoca principalmente cuando la dureza de la pasta es alta y cuando la plasticidad es baja. La temperatura es también un factor importante que provoca el agrietado superficial.

Cantidad de rebaba: al hablar de la cantidad de rebaba nos referimos al exceso de pasta que se encuentra en la cara frontal del asa y que se ubica a lo largo de toda el asa. Este es un parámetro de calidad que se necesita controlar debido al proceso posterior que se le da a la misma es decir, en el proceso actual de colado las asas luego de ser desmoldadas son recortadas y pulidas en la cara frontal pero al contrario en el proceso de extrusión las asas después de ser extruidas y cortadas son pegadas directamente en el cuerpo del jarro requiriendo únicamente una leve pasada de la esponja y si un asa extruida lleva un exceso de rebaba en la cara frontal esta no va a desaparecer con la esponja alargando el proceso de producción.

Vale recalcar que este exceso de rebaba puede presentarse también si las matrices no están bien calibradas o si el cierre de estas no es el adecuado. Para el caso del estudio se tomo en cuenta que el exceso de rebaba sea provocado únicamente por las variables del experimento es decir, temperatura, humedad, cantidad de arcilla en la pasta y por el tamaño del asa.

Consistencia: la consistencia del asa se refiere a si esta se encuentra en condiciones óptimas para ser pegada en el cuerpo del jarro, cuando un asa esta suave esta pierde su forma cuando se la aplica en el jarro y por el contrario cuando su dureza es alta esta se desprenderá del jarro luego del secado ya que el colado de pegar asas no se adhiere a la misma y esta se desprende.

AUTOR:

3.6 Experimentación factorial

Formatos para registrar los datos de los Experimentos Factoriales 2^K.

Como en todo experimento que se realice es importante mantener un orden para el investigador donde se facilite la obtención de los resultados y además donde se encuentren todos los parámetros cuantitativos y cualitativos que se desea evaluar de cada una de los experimentos y realizar las observaciones necesarias para los posteriores resultados.

		HOJA DE	REGISTRO	DE DATOS	
	MUESTRA No:			₁ ANI	DINA
	FECHA:			1	
	TAMAÑO DE LA MUESTRA	7.			
	THE THE SECTION OF TH	ι	VARIA	ABLES	
	TEMPERATURA	HUMEDA		CANT. ARCILLA	TAMAÑO
			DEFE	CTOS	
		AGRIETAD			
	FORMACIÓN	SUPERFIC	IAL	CANTIDAD DE REBA	BA CONSISTENCIA
5	+ + + + +				\dashv \vdash $+$ $+$ $+$
10					\dashv
15	 				\dashv
20 25					\dashv
<u>25</u> 30					\dashv \vdash \vdash \vdash \vdash \vdash
35					\neg
40					\dashv
45					
50					
55					
60					
65					
70					
75					
80					
85					\rightarrow
90	+				- $-$ $-$ $-$ $-$ $-$ $-$ $-$
95					- $-$ $-$ $-$
100					
				<u> </u>	
	TOTAL	TOTAL		TOTAL	TOTAL
	PORCENTAJE	PORCENTAJE	<u> </u>	PORCENTAJE	PORCENTAJE
	TOTAL ASAS BUENAS				
			OBSERV	ACIONES	

AUTOR:

PAUL ROJAS PACURUCU

Apreciación cuantitativa de los resultados de los experimentos.

		RESULTAD	OS 1		
CODIFICACI ÓN DEL EXPERIMEN TO	FORMACI ÓN	AGRIETAD O SUPERFICI AL	CANTIDA D DE REBABA	CONSISTEN CIA	TOTAL
1	60	78	17	80	235
а	90	80	35	60	265
b	80	55	10	65	210
С	9	4	0	15	28
d	95	66	25	73	259
ab	50	75	27	55	207
ac	5	15	8	30	58
ad	85	92	49	55	281
bc	3	1	0	4	8
bd	83	40	13	43	179
cd	55	15	23	29	122
abc	3	5	4	2	14
abd	60	72	35	61	228
acd	12	10	13	20	55
bcd	9	2	1	13	25
abcd	6	2	2	2	12

		RESULTAD	OS 2		
CODIFICACI ÓN DEL EXPERIMEN TO	FORMACI ÓN	AGRIETAD O SUPERFICI AL	CANTIDA D DE REBABA	CONSISTEN CIA	TOTAL
1	20	80	10	75	185
а	25	70	25	55	175
b	30	60	15	60	165
С	16	5	3	15	39
d	65	55	20	60	200
ab	20	80	23	57	180
ac	7	8	6	15	36
ad	55	85	50	60	250
bc	13	3	2	10	28

AUTOR:

PAUL ROJAS PACURUCU

UNIVERSIDAD DE CUENCA

-			i		
bd	60	60	20	50	190
cd	58	10	15	35	118
abc	2	3	3	2	10
abd	55	75	40	65	235
acd	14	12	15	15	56
bcd	25	4	5	12	46
abcd	6	4	3	5	18

		RESULTAD	OS 3		
CODIFICACI ÓN DEL EXPERIMEN TO	FORMACI ÓN	AGRIETAD O SUPERFICI AL	CANTIDA D DE REBABA	CONSISTEN CIA	TOTAL
1	25	75	18	78	196
а	30	75	29	50	184
b	35	63	17	55	170
С	18	7	2	13	40
d	60	58	25	65	208
ab	25	77	25	60	187
ac	5	6	7	10	28
ad	60	80	60	55	255
bc	12	4	3	12	31
bd	55	58	30	55	198
cd	60	8	17	33	118
abc	4	2	4	4	14
abd	65	70	45	60	240
acd	12	10	13	12	47
bcd	40	5	4	20	69
abcd	8	3	5	8	24

Con estos resultados de cada uno de los experimentos se obtendrán los efectos de todas las variables que intervienen en el proceso y nos permitirá definir las condiciones más óptimas para el mismo.

3.7 Análisis estadístico de los resultados.

Esta tabla general se aplicada a los cuatro casos de análisis, para el ejemplo hemos citado la tabla del anova de la "formación".

ANÁLISIS DE VARIANZA									
F de V		Ç	ıl	SC SC		CM		Fcal	
Total		47	<u>,-</u>	35887,92					
Tratamientos		15		27949,92		1863,33		9,32	
	а		1		1656,75		1656,75		8,29
	b		1		768,00		768,00		3,84
	С		1		16354,08		16354,08		81,79
	d		1		5547,00		5547,00		27,74
	ab		1		0,00		0,00		0,00
	ac		1		720,75		720,75		3,60
	ad		1		616,33		616,33		3,08
	bc		1		161,33		161,33		0,81
	bd		1		330,75		330,75		1,65
	cd		1		208,33		208,33		1,04
	abc		1		645,33		645,33		3,23
	abd		1		574,08		574,08		2,87
	acd		1		280,33		280,33		1,40
	bcd		1		80,08		80,08		0,40
	abcd		1		6,75		6,75		0,03
Repeticiones			1939,29		969,65				
E. Experimental			5998,71		199,96				

3.7.1 TABLA ANOVA FORMACIÓN

	ANÁLISIS DE VARIANZA					
						F
	CONTRAS	EFECT	SUMA DE	GRADOS DE	CUADRADO	CALCULA
FUENTE DE VARIACIÓN	TE	OS	CUADRADOS	LIBERTAD	MEDIO	DA
EFECTO PRINCIPAL						
A	-282	-23,50	1656,75	1	1656,75	8,285534
В	-192	-16,00	768,00	1	768,00	3,840827
С	-886	-73,83	16354,08	1	16354,08	81,788024
D	516	43,00	5547,00	1	5547,00	27,740972
INTERACCIÓN DE 2						
FACTORES						
AB	0	0,00	0,00	1	0,00	0,000000
AC	-186	-15,50	720,75	1	720,75	3,604526
AD	-172	-14,33	616,33	1	616,33	3,082330
BC	-88	-7,33	161,33	1	161,33	0,806840
BD	-126	-10,50	330,75	1	330,75	1,654106
CD	-100	-8,33	208,33	1	208,33	1,041891
INTERACCIÓN DE 3						
FACTORES						
ABC		14,67	645,33	1	645,33	3,227361
ABD	166	13,83	574,08	1	574,08	2,871035
ACD	-116	-9,67	280,33	1	280,33	1,401968
BCD	-62	-5,17	80,08	1	80,08	0,400503

AUTOR:

INTERACCIÓN DE 4 FACTORES						
ABCD	-18	-1,50	6,75	1	6,75	0,033757
				15		
FC			59502,08			
SC TOT			35887,92			
SC TRAT			27949,92	15	1863,3278	9,3186
SC REP			1939,29	2	969,6458	4,8493
Error			5998,71	30	199,9569	

3.7.2 TABLA ANOVA AGRIETADO SUPERFICIAL

		AN	ÁLISIS DE VARIANZ	A		
			SUMA DE	GRADOS DE	CUADRADO	F
FUENTE DE VARIACIÓN	CONTRASTE	EFECTOS	CUADRADOS	LIBERTAD	MEDIO	CALCULADA
EFECTO PRINCIPAL						
Α	195	16,25	792,19	1	792,19	40,380531
В	-181	-15,08	682,52	1	682,52	34,790442
С	-1531	-127,58	48832,52	1	48832,52	2489,162124
D	-35	-2,92	25,52	1	25,52	1,300885
INTERACCIÓN DE 2 FACTORES						
AB	31	2,58	20,02	1	20,02	1,020531
AC	-171	-14,25	609,19	1	609,19	31,052389
AD	73	6,08	111,02	1	111,02	5,659115
BC	37	3,08	28,52	1	28,52	1,453805
BD	-31	-2,58	20,02	1	20,02	1,020531
CD	79	6,58	130,02	1	130,02	6,627611
INTERACCIÓN DE 3 FACTORES						
ABC		-4,58	63,02	1	63,02	3,212389
ABD	-71	-5,92	105,02	1	105,02	5,353274
ACD	-109	-9,08	247,52	1	247,52	12,616991
BCD	-5	-0,42	0,52	1	0,52	0,026549
INTERACCIÓN DE 4						

AUTOR:

FACTORES						
ABCD	91	7,58	172,52	1	172,52	8,793982
				15		
FC			69540,19			
SC TOT			52434,81			
SC TRAT			51840,15	15	3456,0097	176,1647
SC REP			6,13	2	3,0625	0,1561
Error			588,54	30	19,6181	

3.7.3 TABLA ANOVA CANTIDAD DE REBABA

	ANÁLISIS DE VARIANZA						
			SUMA DE	GRADOS DE	CUADRADO	F	
FUENTE DE VARIACIÓN	CONTRASTE	EFECTOS	CUADRADOS	LIBERTAD	MEDIO	CALCULADA	
EFECTO PRINCIPAL							
Α	231	19,25	1111,69	1	1111,69	86,803492	
В	-149	-12,42	462,52	1	462,52	36,114847	
С	-505	-42,08	5313,02	1	5313,02	414,854680	
D	235	19,58	1150,52	1	1150,52	89,835701	
INTERACCIÓN DE 2							
FACTORES							
AB	-39	-3,25	31,69	1	31,69	2,474244	
AC	-215	-17,92	963,02	1	963,02	75,195207	
AD	33	2,75	22,69	1	22,69	1,771500	
BC	-23	-1,92	11,02	1	11,02	0,860536	
BD	-95	-7,92	188,02	1	188,02	14,681163	

AUTOR:

CD	-87	-7,25	157,69	1	157,69	12,312656
INTERACCIÓN DE 3						
FACTORES						
ABC		3,92	46,02	1	46,02	3,593428
ABD	3	0,25	0,19	1	0,19	0,014640
ACD	-105	-8,75	229,69	1	229,69	17,934606
BCD	-37	-3,08	28,52	1	28,52	2,226982
INTERACCIÓN DE 4						
FACTORES						
ABCD	45	3,75	42,19	1	42,19	3,294111
				15		
FC			14042,52			
SC TOT			10230,48			
SC TRAT			9758,48	15	650,5653	50,7979
SC REP			87,79	2	43,8958	3,4275
Error			384,21	30	12,8069	

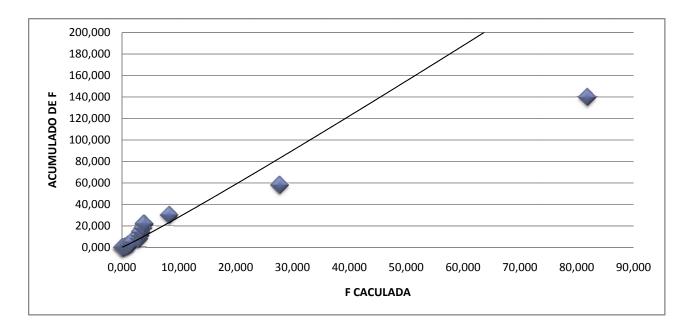
3.7.4 TABLA ANOVA CONSISTENCIA

ANÁLISIS DE VARIANZA						
			SUMA DE	GRADOS DE	CUADRADO	F
FUENTE DE VARIACIÓN	CONTRASTE	EFECTOS	CUADRADOS	LIBERTAD	MEDIO	CALCULADA
EFECTO PRINCIPAL						
A	-152	-12,67	481,33	1	481,33	21,639713
В	-228	-19,00	1083,00	1	1083,00	48,689354
С	-1116	-93,00	25947,00	1	25947,00	1166,521386

AUTOR:

UNIVERSIDAD DE CUENCA

D	24	2,00	12,00	1	12,00	0,539494
INTERACCIÓN DE 2 FACTORES						
AB	116	9,67	280,33	1	280,33	12,603185
AC	-20	-1,67	8,33	1	8,33	0,374649
AD	12	1,00	3,00	1	3,00	0,134874
BC	-68	-5,67	96,33	1	96,33	4,330940
BD	-8	-0,67	1,33	1	1,33	0,059944
CD	120	10,00	300,00	1	300,00	13,487356
INTERACCIÓN DE 3						
FACTORES						
ABC		-11,33	385,33	1	385,33	17,323759
ABD	56	4,67	65,33	1	65,33	2,937246
ACD	-160	-13,33	533,33	1	533,33	23,977521
BCD	-32	-2,67	21,33	1	21,33	0,959101
INTERACCIÓN DE 4 FACTORES						
ABCD	44	3,67	40,33	1	40,33	1,813300
-		-,-	- ,	15	- ,	,
FC			66603,00			
SC TOT			29937,00			
SC TRAT			29258,33	15	1950,5556	87,6928
SC REP			11,38	2	5,6875	0,2557
Error			667,29	30	22,2431	


AUTOR: PAUL ROJAS PACURUCU

Conclusiones con los resultados de los experimentos

Una vez que hemos obtenido todos los resultados de las variables y de los factores que intervinieron en el diseño experimental procedemos a la interpretación de los datos. Para esta interpretación procederemos a realizar un gráfico con la FC de cada experimento de manera acumulada desde el dato menor al mayor y con estos datos procedemos a realizar un gráfico para diferenciar las variables que tienen mayor incidencia dentro de de los parámetros de calidad calificados que para nuestro caso es la formación, agrietado superficial, cantidad de rebaba en el asa y la consistencia de la misma.

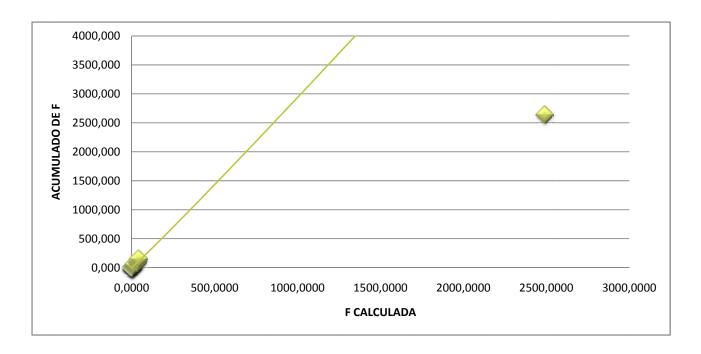
Formación:

FORMACIÓN						
FUENTE DE VARIACIÓN	F CALCULADA	ACUMULADO				
AB	0,000	0,000				
ABCD	0,034	0,034				
BCD	0,401	0,434				
ВС	0,807	1,241				
CD	1,042	2,283				
ACD	1,402	3,685				
BD	1,654	5,339				
ABD	2,871	8,210				
AD	3,082	11,292				
ABC	3,227	14,520				
AC	3,605	18,124				
В	3,841	21,965				
Α	8,286	30,251				
D	27,741	57,992				
С	81,788	139,780				

Conclusiones del análisis factorial del parámetro de calidad FORMACIÓN

- Como se ve en el gráfico la variable cantidad de arcilla en la pasta es la más influyente en el parámetro de calidad calificado de formación debido a que la plasticidad es una de las características de la arcilla con mayor incidencia en la pasta y esta afecta directamente al proceso ya que si la pasta no tiene la plasticidad suficiente la formación alcanza niveles muy bajos que no sería óptima la puesta en marcha del proyecto, es por esto que se recomienda el uso de la pasta con un 55% de arcilla aunque el costo de esta es mayor al costo de la materia prima en colado.
- Otra variable que tiene incidencia en la formación es el tamaño del asa debido a que el peso mismo del asa provoca que esta se desprenda de la boquilla de extrusión, pero esta no es una variable aislada de la cantidad de arcilla ya que la pasta mas plástica es decir la pasta con un

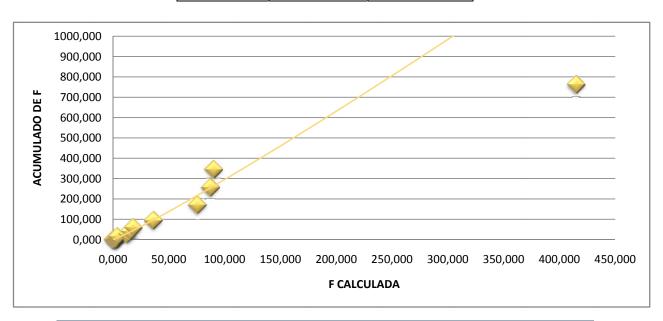
55% de arcilla tiene la capacidad de evitar la rotura en la parte más débil que es junto a la boquilla de extrusión.


- El tamaño del asa también afecta en la cantidad de pasta que se requiere sea extruida dentro de la matriz, al aumentar el tamaño se requiere de una mayor lubricación para lograr una óptima formación ya que si no se lubrica de forma correcta el chorizo se requiere de un segmento más grande en el corte para que el asa salga completa, este problema también se encuentra en las asas de menor tamaño pero en una menor proporción.
- La temperatura actúa directamente sobre todos los parámetros debido a que si está en su límite inferior las asas grandes no se separan de la matriz provocando mal formación, por otro lado si la temperatura es alta afecta a las asas pequeñas ya que su consistencia no es apta para ser pagada en los jarros ya que estas se desprenderían cuando el jarro sea sometido a las altas temperaturas del horno.

Agrietado superficial

AGRIETADO SUPERFICIAL						
FUENTE DE VARIACIÓN	F CALCULADA	ACUMULADO				
BCD	0,0265	0,027				
AB	1,0205	1,047				
BD	1,0205	2,068				
D	1,3009	3,368				
ВС	1,4538	4,822				
ABC	3,2124	8,035				

ABD	5,3533	13,388
AD	5,6591	19,047
CD	6,6276	25,675
ABCD	8,7940	34,469
ACD	12,6170	47,086
AC	31,0524	78,138
В	34,7904	112,928
Α	40,3805	153,309
С	2489,1621	2642,471

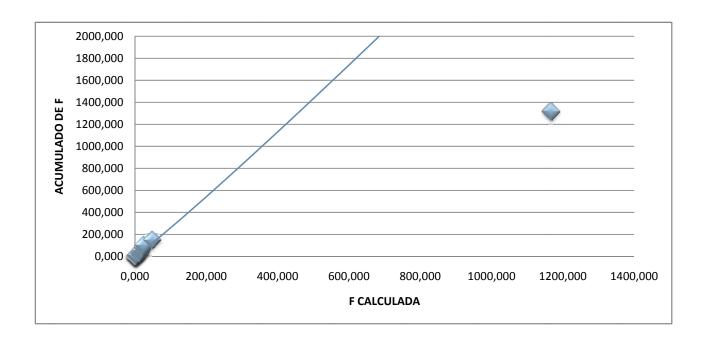


Conclusiones del análisis factorial del parámetro de calidad AGRIETADO SUPERFICIAL.

 Nuevamente la cantidad de arcilla es la variable con mayor influencia dentro del parámetro de calidad del agrietado superficial, esto se da también debido a la característica de plasticidad que permite un mejor ordenamiento de las partículas de arcilla en la pasta dando así una superficie libre de brechas y con un mejor acabado superficial brindando así también una mejoría en la calidad del asa.

Cantidad de rebaba

CANTIDAD DE REBABA						
FUENTE DE VARIACIÓN	F CALCULADA	ACUMULADO				
ABD	0,015	0,015				
BC	0,861	0,875				
AD	1,771	2,647				
BCD	2,227	4,874				
AB	2,474	7,348				
ABCD	3,294	10,642				
ABC	3,593	14,235				
CD	12,313	26,548				
BD	14,681	41,229				
ACD	17,935	59,164				
В	36,115	95,279				
AC	75,195	170,474				
Α	86,803	257,277				
D	89,836	347,113				
С	414,855	761,968				


Conclusiones del análisis factorial del parámetro de calidad CANTIDAD DE REBABA.

- Cuando se habla de la cantidad de rebaba en el asa esta se refiere a la cara externa e interna del asa donde podemos encontrar una línea que se forma debido a la unión de las matrices, aunque se puede pensar que este sería un problema del dado (matriz) no es verdad ya que de ser así esta desaparecería solo rectificando las matrices o reduciendo la presión de extrusión cosa que no sucede ya que se realizaron varias pruebas con diferentes matrices y los resultados fueron los mismos, entonces nuevamente llegamos a la conclusión que la cantidad de arcilla está relacionada con este parámetro muy importante en el proceso productivo y digo muy importante ya que si la cantidad de rebaba existente en el asa es significativa esto derivaría en crear dos nuevas operaciones dentro del proceso que son el recorte y el pulido del asa, estas dos operaciones son eliminadas del proceso únicamente con una buena calibración de las matrices y con la pasta adecuada.
- Otra variable influyente dentro del parámetro calificado es la temperatura debido a que los experimentos arrojaron resultados donde se observó que a una mayor temperatura la cantidad de rebaba aumentaba ya que la fricción entre la pasta y la matriz se reducía permitiendo que la pasta se filtrara en el dado de extrusión.

AUTOR: PAUL ROJAS PACURUCU

Consistencia

CONSISTENCIA					
FUENTE DE VARIACIÓN	F CALCULADA	ACUMULADO			
BD	0,060	0,060			
AD	0,135	0,195			
AC	0,375	0,569			
D	0,539	1,109			
BCD	0,959	2,068			
ABCD	1,813	3,881			
ABD	2,937	6,819			
ВС	4,331	11,150			
AB	12,603	23,753			
CD	13,487	37,240			
ABC	17,324	54,564			
Α	21,640	76,204			
ACD	23,978	100,181			
В	48,689	148,870			
С	1166,521	1315,392			

Conclusiones del análisis factorial del parámetro de calidad CONSISTENCIA.

• La consistencia es el parámetro de calidad que se utiliza dentro del proceso productivo es decir tenemos un asa de calidad cuando esta se encuentra lista para ser transportada al siguiente proceso y ser utilizad de inmediato que es lo que se busca dentro de la formación de tazas ya actualmente con el proceso de colado si un asa esta con una humedad muy alta esta se deforma y si la humedad es muy baja esta se desprenderá cuando sea sometida a las altas temperaturas de los hornos. Por el contrario con la pasta de 55% de arcilla esto no sucede debido a que el asa mantiene su forma a pesar de las bajas humedades y también tiene mucho que ver la compactación de las partículas que se obtienen en un proceso de extrusión y no en un proceso de colado.

Tabla de las Condiciones Óptimas para el proceso de extrusión

Variables independientes del proceso	Valor	Parámetro de incidencia
Cantidad de arcilla en la pasta	55%	Formación Agrietado superficial Cantidad de rebaba Consistencia
Tamaño del asa	De 3 cm a 6 cm	Formación Consistencia
Humedad	20%	Cantidad de rebaba Consistencia
Temperatura	Asas pequeñas: 110 °C Asas Grandes: 145 °C	Cantidad de rebaba consistencia

Determinación del volumen de producción.

Para determinar el volumen de producción tomaremos en cuenta las variables del tiempo de extrusión para cada asa así como la cantidad de operarios necesarios para lograr la máxima optimización del proceso productivo y también la eficiencia de la maquina extrusora.

Tabla con el volumen de producción en una jornada de trabajo de 8 horas

Cant. Operarios	2
Jornada	8 horas
Suplementos	1 hora
Asas por minuto	16
Eficiencia de la maquina	75%
Asas reales por minuto	12
Asas por jornada	5040

Para evitar el tiempo muerto mientras se alimenta la maquina es necesario colocar una persona exclusiva para esta función logrando así la máxima eficiencia de la máquina. La eficiencia se da debido al desperdicio que se genera en todo proceso ya que no se logra el 100% de extrusiones óptimas. Además el tiempo por jornada laboral también se reduce por el set up existente debido al calentamiento de las matrices, la calibración de las mismas y el tiempo asignado a otras tareas realizadas por los operarios como descansos o tareas personales, para el total de estos procedimientos se ha determinado una hora diaria quedando así siete horas de trabajo continuo de la maquina. La cantidad de extrusiones por minuto viene ya determinada por el programa de

PLC de la maquina extrusora, este tiempo pudiera ser modificado de acuerdo a las conveniencias del proceso y de la calidad de la extrusión.

3.8 ESTUDIO ECONÓMICO

Determinación de los costos de producción.

Es importante realizar de manera minuciosa el estudio económico debido a que la sensibilidad del sistema es amplia ya que una ligera variación en el costo de cualquier variable afecta de manera importante al costo de las asas no de manera unitaria ya que los cambios son mínimos si tomamos como referencia el costo de una sola asa, pero como la cantidad anual de producción está alrededor de los cinco millones de asas entonces aquí los valores se vuelven representativos debido a la cantidad. Es por esto que se ha tratado este tema de manera amplia y procurando llevar siempre datos reales a la producción actual en lo que respecta a consumos de gas, energía, yeso, materias primas de colado, costos de pastas, etc.

Al ser los moldes un material indirecto en el proceso de producción de asas por el método del colado entonces primero determinaremos el costo de un molde de asas de la siguiente manera

3.8.1 Costo de producción de actual de asas por el método de colado

A continuación se detalla todos los costos que se incurren en la producción de asas y el primer costo principal del método actual es el costo de un molde de asas. Este consumo se realiza de forma constante y depende de la cantidad de asas que se vayan a producir, es importante recalcar que la calidad de las asas por colado dependerá mucho del estado de los moldes por lo que su cambio debe ser periódico.

Costo de fabricación de un molde asas.

A continuación presentamos el cuadro principal de los costos de un molde de asas:

COSTO DE PRODUCCIÓN DE 1 MOLDE DE ASAS		
Mano de obra Directa (Anexo C,4,1) 0,6		
Materiales directos (anexo C,4,2)	2,647032	
	\$	
Carga fabril (Anexo C,4,3)	0,50 \$	
Costo Total de un molde de asas	3,75 \$	

Para obtener el costo de fabricación de un molde de asas se debe tener en cuenta los siguientes costos:

Costo de mano de obra directa

Tabla C.4.1

MANO DE OBRA DIRECTA MOLDES		
Cantidad de operarios	1	
Salario mensual	329,16\$	
Moldes de asa por mes	546	
Mano de obra en 1 molde de asas	0,6\$	

Vamos a suponer que se tiene a un operario trabajando 21 días al mes únicamente en la fabricación de moldes de asas, entonces este trabajador realiza 26 moldes de asa por día dando un total de 546 moldes al mes. En la realidad actual de la empresa no se tiene a una persona fija todo el mes para este trabajo pero por razones del cálculo se toman así los datos.

El salario mensual de 329,16\$ es el salario unificado, es decir teniendo en cuenta el decimo, tercero, decimo cuarto y todos los demás gastos que la empresa incurre en cada operario.

Costo de materiales directos

Tabla C.4.2

MATERIALES DIRECTOS MOLDES		
Kilos de yeso por molde	7,08	
Llaves Por molde	6	
Costo del Kg de yeso	0,3654\$	
Costo de cada llave plástica	0,01\$	
Subtotal yeso	2,59 \$	
Subtotal llaves	0,06\$	
Total	2,65 \$	

AUTOR:

Costo de la carga fabril

Tabla C.4.3

CARGA FABRIL				
Mano de obra indirecta (Anexo	0,077316			
C,4,3,1)	\$			
Materiales indirectos	0			
Gas metano (Anexo C,4,3,2)	0,39 \$			
Energía eléctrica (Anexo C,4,3,3)	0,010971			
Agua	\$			
Depreciación matrices (Anexo	0,000043			
C,4,3,4)	\$			
Mantenimiento	0,000043			
Mantenimento	\$			
Imprevistos carga fabril 5%	0,024\$			
Total	0,50 \$			

A continuación se detallan todos los gastos de la carga fabril.

Tabla C.4.3.1

MANO DE OBRA INDIRECTA				
Denominación No Mensual Por molde				
Supervisor	0,08 \$			
Cantidad de moldes por año			6552	
Total			524,16 \$	

El costo de la mano de obra indirecta se calcula por molde debido a que el supervisor de la sección de moldes no está a cargo solo de los moldes de asa sino también de otro tipo de moldes entonces el salario del supervisor se divide para 5890 que es la cantidad que se forma por mes en la sección.

Tabla C.4.3.2

Al no existir un medidor independiente para el consumo de gas en el secadero de moldes se recurrió a utilizar los datos de la auditoría realizada por la empresa Petrocheck donde se toman los BTU por kilogramos de gas y este se multiplica por las horas de consumo diario, además al ser el secadero compartido entre varios tipos de moldes se usó la cantidad de yeso por molde que se desea secar debido a que no todos los moldes tienen el mismo peso entonces no es justo dividir el consumo por unidad sino por masa.

SECADERO DE MOLDES						
DESCRIPCIÓN	CANTIDAD	QUEMADORES	TOTAL QUEMADORES	CONSUMO UNITARIO BTU/H	CONSUMO TOTAL BTU/H	
SECADERO BLOWER	1	1	1	45000	45000	
FACTOR DE SIMULTANEIDAD					1	
CARGA TOTAL					45000	
BTU POR KG DE GAS	50000					
FORMULA DEL CONSUMO	Carga	a Total / BTU Por K	g DE GAS			
CONSUMO	0,9	kg/hora				
HORAS DE USO	72	Horas				
CONSUMO	64,8	Kg/día				
COSTO POR Kg DE GAS	0,7055	\$				
COSTO TOTAL DE GAS	45,7164	\$				
VOLUMEN DIARIO DE SECADO						
		CANTIDAD DE YESO POR MOLDE	TOTAL	% DEL TOTAL		
CANTIDAD DE MOLDES DE JARRO POR DÍA	240	1,18	283,2	34%		
CANTIDAD DE MOLDES CHINOS POR DÍA	24	15,3	367,2	44%		
CANTIDAD DE MOLDES DE ASA POR DÍA	26	7,1	184,6	22%		
TOTAL	290		836	100%		
COSTO DE GAS DE 1 MOLDE DE ASAS	0,39 \$					

Tabla C.4.3.3

SUMINISTROS					
Concepto	Cantidad	Unidad	Precio unitario	Costo mensual (\$)	Costo anual (\$)
Motor de agitación 1	0,021	Kw,h/mes	0,095697	2,01	24,12
Motor de succión 1	0,046	Kw,h/mes	0,095697	4,42	53,04
Motor de agitación 2	0,021	Kw,h/mes	0,095697	1,98	23,76
Motor de succión 2	0,046	Kw,h/mes	0,095697	4,42	53,04
Motor de agitación 3	0,021	Kw,h/mes	0,095697	1,98	23,76
Motor caída de yeso 1	0,046	Kw,h/mes	0,095697	4,42	53,04
Motor de caída de yeso 2	0,031	Kw,h/mes	0,095697	3	36
Subtotal energía eléctrica				22,23	266,76
Agua				5	60
Total				27,23	326,76
Porcentaje de yeso				22%	
Costo de energía en moldes de					
asa				5,99	71,89
Cantidad de moldes				546	6552
Costo por molde 0,01 \$					6

 Para el consumo del agua se valoró un promedio de los últimos meses de la sección en donde se forman los moldes dando un valor de 5 dólares mensuales.

Tabla C.4.3.4

DEPRECIACIÓN DE MATRICES				
Concepto Costo Vida útil Valo (años) anua				
Matriz molde de asas en resina 28,53 \$ 10 2,8			2,853 \$	
Cantidad de moldes obtenidos por matriz	65520			
Costo de cada molde		0,00004354	\$	

- Para los gastos de mantenimiento se tomo la relación que sea mismo valor que la depreciación anual de los moldes
- Los imprevisto de carga fabril son todos aquellos gastos que no se pueden contabilizar pero que se encuentran dentro de todo proceso y el porcentaje se determina de acuerdo al criterio de la persona encargada del estudio financiero, para este caso se ha asignado un 5% de gastos imprevistos

Costo de producción de asas por la técnica de colado

En lo que respecta al costo de producción de las asas se debe tener en cuenta que todos los valores están dados para una producción de 8 horas por turno, en 21 días al mes y con el mismo valor de mano de obra de 329,16 \$ por trabajador.

A continuación se detalla todo el estudio económico para obtener el costo de 1 asa colada:

COSTO DE PRODUCCIÓN DE ASAS		
Mano de obra Directa (Anexo B.1)	59248,80 \$	
Materiales directos (Anexo B.2)	16506,28 \$	
Carga fabril (Anexo B.3)	27785,35 \$	
Total	103540,43 \$	

La cantidad anual que se obtiene con este gasto es de 4'717.440

Asas por pilo: 288

• Pilos por día: 65

• Días por mes: 21

Entonces tenemos:

Cantidad anual de asas = 288 asas x 65 pilos x 21 días x 12 meses

Cantidad anual de asas = 4'717.440

Costo de cada asa por la técnica del colado: Costo total / 4'717.440

Costo de cada asa por la técnica del colado: 0.0227230 \$

Tabla B.1

MANO DE OBRA DIRECTA					
Denominación	Denominación Cant. Sueldo Sueldo				
		mensual	anual		
Colador	5	1645,8 \$	19749,6 \$		
Recortadoras	5	1645,8 \$	19749,6 \$		
Pulidoras	5	1645,8 \$	19749,6 \$		
Total	15	4937,4 \$	59248,8 \$		

Tabla B.2

MATERIALES DIRECTOS					
Cantidad (ton) Precio unitario Total (\$)					
Denominación	enominación (\$)				
Colado de asas 280 58,95 16506,28					

Tabla B.3

CARGA FABRIL						
	MENSUAL	ANUAL				
	(\$)	(\$)				
MANO DE OBRA INDIRECTA (Tabla B.3.1)	155	1860				
GAS METANO (Tabla B.3.2)	426,69	5120,24				
ENERGÍA ELÉCTRICA (Tabla B.3.3)	71	852				
AGUA (Tabla B.3.3)	5	60				
MANTENIMIENTO	10	120				
MOLDES (Tabla B.3.4)	1537,5	18450				
IMPREVISTOS DE CARGA FABRIL	5%	1323,11				
		27785,35				
TOTAL		\$				

Tabla B.3.1

MANO DE OBRA INDIRECTA					
Denominación	No	Mensual	Anual		
Supervisor 1 450 \$ 5400 \$					
Total 5400 \$					

Tabla B.3.2

SECADERO BLOWER					
DESCRIPCIÓN	CANTIDAD	QUEMADORES	TOTAL QUEMADORES	CONSUMO UNITARIO BTU/H	TOTAL CONSUMO BTU/H
SECADERO BLOWER	1	1	1	180000	180000
FACTOR DE SIMULTANEIDAD					1
CARGA TOTAL					180000
BTU POR KG DE GAS	50000				
FORMULA DEL CONSUMO	Carga Total	/ BTU Por Kg DE (GAS		
CONSUMO	3,6	kg/hora			

AUTOR:

UNIVERSIDAD DE CUENCA

HORAS DE USO	8	Horas		
CONSUMO DIARIO	28,8	Kg/día		
COSTO POR Kg DE	0,7055	\$		
GAS				
COSTO TOTAL DIARIO	20,32	\$		
DE GAS				
COSTO MENSUAL DE	426,69	\$		
GAS				
COSTO ANUAL DE GAS	5120,24	\$		

Tabla B.3.3

SUMINISTROS					
			Precio	Costo	Costo
Concepto	Cantidad	Unidad	unitario	mensual	anual
Energía					
eléctrica	0,742	Kw,h/mes	0,095697 \$	71 \$	852 \$
Agua				5\$	60 \$
Total				76 \$	912 \$

Tabla B.3.4

Como ya sabemos el costo de cada molde de asas es de 3,75 \$ entonces se deduce que el costo en cada asa es de:

Asas x molde obtenidas: # de asas por molde x Cantidad de coladas por molde

Asas por molde obtenidas: 12 x 80

Asas por molde obtenidas: 960

Entonces el costo de los moldes en cada asa es de: 0.0039062 \$

Si multiplicamos por la cantidad anual de asas tenemos:

4`717.440 x 0.0039062 \$ = 18450 \$

AUTOR:

3.8.2 Costo de producción de asas por la técnica de extrusionado

En el siguiente análisis económico tenemos el total de asas anuales que se pueden producir con las 3 máquinas extrusoras Manici en un turno de ocho horas durante todo un año. Para el costo de la mano de obra se tomara el mismo valor actual es decir de 329,16 \$ por operario.

En este cuadro podemos encontrar todos los gastos en los que se incurrirá durante un año para lograr la producción de 3.810.240 asas, este valor sale de los siguientes cálculos:

Entonces: 3 Manici x 5040 asas por turno x 21 días x 12 meses =

3`810.240 asas

COSTO DE PRODUCCIÓN DE ASAS				
Mano de obra Directa (Tabla D.1)	23699,52 \$			
Materiales directos (Tabla D.2)	34873,693 \$			
Carga fabril (Tabla D.3)	14472,05 \$			
Total	73045,27 \$			

Costo de cada asa extruida: 73045.27 \$ / 3`810.240

Costo de cada asa extruida: 0.0191707 \$

Tabla D.1

MANO DE OBRA DIRECTA					
Denominación No Sueldo mensual Sueldo anual					
Alimentador	3	329,16 \$	11849,76 \$		
Cortador	11849,76 \$				
TOTAL			23699,52 \$		

Tabla D.2

La cantidad de pasta necesaria se obtuvo mediante los pesos medios de las asas extruidas más un porcentaje de desperdicio y se obtuvo:

MATERIALES DIRECTOS					
Denominación Cantidad (ton) Precio unitario Total					
PASTA 55%	34873,69 \$				
TOTAL 34873,69 \$					

Tabla D.3

CARGA FABRIL				
Mano de obra indirecta (Tabla D.3.1)	5400,00\$			
Materiales indirectos (Tabla D.3.2)	3601,08 \$			
Suministros (Tabla D.3.3)	931,83 \$			
Depreciación y amortización (Tabla				
D.3.4)	3500 \$			
Mantenimiento (Tabla D.3.5)	350 \$			
Imprevistos de carga fabril (5%)	689,15 \$			
	14472,05			
TOTAL	\$			

Tabla D.3.1

Para el método de extrusión se asignará un supervisor que a la vez hará las tareas de mecánico, esta es una diferencia con respecto al método actual donde no existe un supervisor fijo sino que es la misma persona que supervisa la formación de las tazas la que se encarga de controlar el proceso de colado de asas.

MANO DE OBRA INDIRECTA					
Denominación	Sueldo anual				
Supervisor	450 \$	5400 \$			
SU	5400 \$				
PORCENTAJ	100%				
TOTAL			5400 \$		

Tabla D.3.2

El aceite lubricante es utilizado para untarlo sobre el chorizo antes de que este sea alimentado a la extrusora, por la cantidad considerable que se va a usar y por el costo del mismo es necesario incluirlo dentro de este estudio.

MATERIALES INDIRECTOS					
Concepto Cantidad Unidad Precio unitario Total					
Aceite lubricante	3601,08 \$				
	3601,08 \$				

Tabla D.3.3

Vale recalcar que la presión se desprecio como un gasto después de realizar los estudios respectivos y ver que el consumo era mínimo para la empresa que genera en cuestión de minutos la cantidad necesaria para el consumo de aire a presión de las tres máquinas.

SUMINISTROS						
Concepto	Cantidad	Unidad	unitario	Total		
Energía	Energía					
eléctrica	9737,28	Kw/año	0,095697\$	\$		
Aire a presión	0	Kw/año	0,095697\$	0		
	931,828484					
	TOTAL					

Tabla D.3.4

Como toda maquinaria la depreciación se aplico para diez años.

DEPRECIACIÓN Y AMORTIZACIÓN						
Vida útil Valor						
Concepto	anual					
35000						
Extrusora Manici \$ 10 3500 \$						
T	3500 \$					

Tabla D.3.5

El porcentaje de mantenimiento fue dado por el jefe de mantenimiento de la empresa que por su experiencia en el campo no considero necesario igualar este costo al costo de depreciación que es la operación que comúnmente se realiza para calcular este rubro.

REPARACIÓN Y MANTENIMIENTO					
Denominación % Valor total					
Extrusora Manici	350 \$				
TOTAL	350 \$				

Conclusiones del estudio económico.

Como podemos comparar el método de extrusión es más económico que el método por colado de asas, tomando los números generales no se visualiza de la mejor forma este ahorro pero a continuación tomaremos una muestra de 5 millones de asas y compararemos el ahorro que se puede generar si llevara a cabo esta inversión:

UNIVERSIDAD DE CUENCA

Ahorro generado: (Costo de un asa por colado x 5.000.000) – (Costo de un asa

por extrusión x 5.000.000)

Ahorro generado: (0.0227230 \$ x 5.000.000) – (0.0191708 \$ x 5.000.000)

Ahorro generado: 17761 \$

3.9 Estudio sobre el valor actual neto (VAN)

Este es un método que nos sirve para valorar la inversión fija, dando una

valoración financiera o tasa en el presente para calcular los flujos de caja en el

futuro y a este valor se le resta la inversión inicial, de tal modo que el valor

obtenido es el valor actual neto del proyecto.

Primero se debe calcular el índice o tasa de interés que se utilizara para

calcular los flujos de caja.

Índice: Tasa activa 10 + Tasa LIBOR 8

Índice: 9.12 % + 1.15 %

Índice: 10.27 %

8 www.bce.fin.ec

10 Revista financiera EKOS

AUTOR:

PAUL ROJAS PACURUCU

Página 102

- La tasa LIBOR se tomo de la fuente "Banco Central del Ecuador" para la fecha 11 de Junio del 2010.
- La tasa activa fue tomada de la revista financiera "EKOS"

Entonces procedemos a calcular el VAN para la inversión:

$$VAN = -A + \frac{Q_1}{(1+k_1)} + \frac{Q_2}{(1+k_1)\cdot(1+k_2)} + \dots + \frac{Q_n}{(1+k_1)\cdot\dots(1+k_n)}$$

Donde:

✓ A: inversión inicial

√ Q: ingresos para cada periodo

√ k: índice

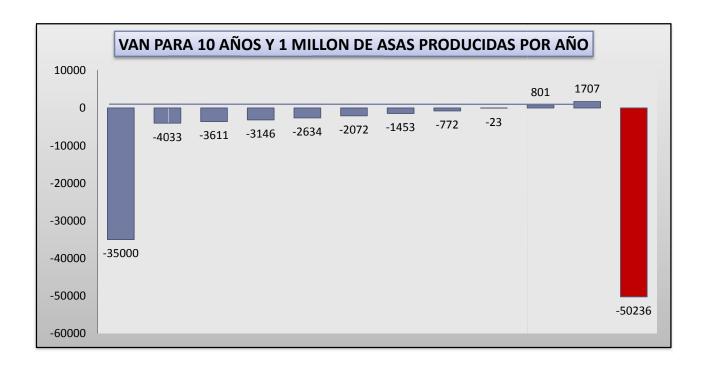
Interpretación del resultado

- VAN > 0 La inversión produciría ganancias por encima de la rentabilidad exigida y el proyecto puede aceptarse
- VAN < 0 La inversión produciría ganancias por debajo de la rentabilidad exigida y el proyecto debería rechazarse
- VAN = 0 La inversión no produciría ni ganancias ni pérdidas Dado que el proyecto no agrega valor monetario por encima de la rentabilidad exigida, la decisión debería basarse en otros criterios, como la obtención de un mejor posicionamiento en el mercado u otros factores.

AUTOR:

 A continuación procedemos a calcular el VALOR ACTUAL NETO en tres casos diferentes para 10 años y en cada año con un incremento del 10% en el costo de la mano de obra.

PRIMER CASO: se produce un millón de asas ya sea en colado o por extrusión.

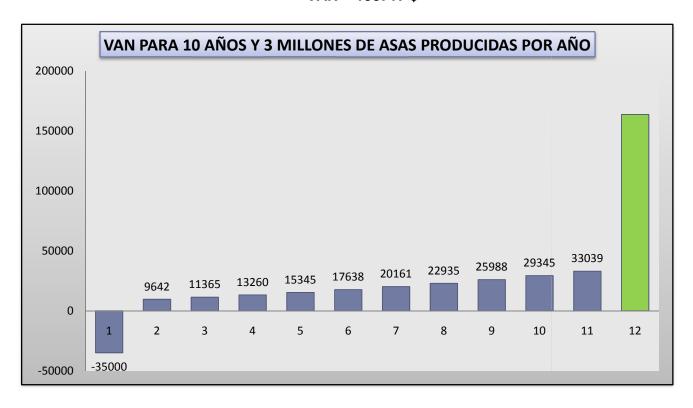

	COSTOS POR EXTRUSIÓN						
PERIODOS	MANO DE OBRA (\$)	MATERIAS PRIMAS (\$)	CARGA FABRIL (\$)	COSTO TOTAL (\$)	CANTIDAD	PRECIO DE CADA ASA \$	
1	7900	9226	14470	31596		0,03159578	
2	8690	9226	14470	32386		0,03238576	
3	9559	9226	14470	33255		0,03325474	
4	10515	9226	14470	34211		0,03421062	
5	11566	9226	14470	35262	1000000	0,03526209	
6	12723	9226	14470	36419	1000000	0,03641871	
7	13995	9226	14470	37691		0,03769098	
8	15395	9226	14470	39090		0,03909049	
9	16934	9226	14470	40630		0,04062994	
10	18627	9226	14470	42323		0,04232335	
		COST	OS POR C	OLADO			
1	12561	3360	11227	27148		0,02714834	
2	13817	3360	11227	28404		0,02840442	
3	15199	3360	11227	29786		0,0297861	
4	16718	3360	11227	31306		0,03130595	
5	18390	3360	11227	32978	1000000	0,03297778	
6	20229	3360	11227	34817	1000000	0,0348168	
7	22252	3360	11227	36840		0,03683972	
8	24477	3360	11227	39065		0,03906494	
9	26925	3360	11227	41513		0,04151267	
10	29618	3360	11227	44205		0,04420518	

A partir de este cuadro procedemos a calcular el VAN según la fórmula ya mencionada y tenemos:

	COSTO EXTRUSIÓN (\$)	COSTO COLADO (\$)	AHORRO (\$)	VAN (\$)
INV.		-35000	\$	
INICIAL				
1	31596	27148	-4447	-4033
2	32386	28404	-3981	-3611
3	33255	29786	-3469	-3146
4	34211	31306	-2905	-2634
5	35262	32978	-2284	-2072
6	36419	34817	-1602	-1453
7	37691	36840	-851	-772
8	39090	39065	-26	-23
9	40630	41513	883	801
10	42323	44205	1882	1707

VAN = -50236\$

En el grafico se representan los valores para cada uno de los periodos y al final el valor total del VAN.

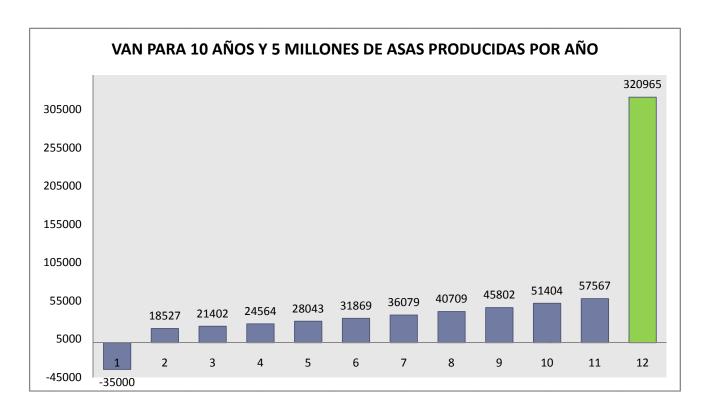

Conclusión: a partir del gráfico podemos ver que no es un proyecto rentable ya que el VAN nos dio un resultado negativo durante la mayoría de periodos y en su valor total por lo tanto no es recomendable para la empresa si la cantidad a producirse de asas va ser de 1 millón por año y se recomendaría continuar con la técnica actual de colado.

SEGUNDO CASO: se produce tres millones de asas ya sea en colado o por extrusión.

	COSTOS POR EXTRUSIÓN						
	MANO	MATERIAS	CARGA	COSTO		PRECIO DE	
PERIODOS	DE	PRIMAS	FABRIL	TOTAL (\$)	CANTIDAD	CADA ASA	
	OBRA (\$)	(\$)	(\$)	TOTAL (\$)		(\$)	
1	18683	27492	13463	59638		0,019879492	
2	20551	27492	13463	61507		0,020502262	
3	22607	27492	13463	63562		0,02118731	
4	24867	27492	13463	65823		0,021940863	
5	27354	27492	13463	68309	2000000	0,02276977	
6	30089	27492	13463	71045	3000000	0,023681569	
7	33098	27492	13463	74054		0,024684548	
8	36408	27492	13463	77363		0,025787824	
9	40049	27492	13463	81004		0,027001428	
10	44054	27492	13463	85009		0,028336392	
		COST	OS POR C	OLADO			
1	37682	10498	22090	70270		0,023423463	
2	41450	10498	22090	74039		0,024679538	
3	45596	10498	22090	78184		0,02606122	
4	50155	10498	22090	82743		0,02758107	
5	55171	10498	22090	87759	3000000	0,029252905	
6	60688	10498	22090	93276	300000	0,031091924	
7	66756	10498	22090	99345		0,033114845	
8	73432	10498	22090	106020		0,035340058	
9	80775	10498	22090	113363		0,037787792	
10	88853	10498	22090	121441		0,040480299	

	COSTO EXTRUSIÓN (\$)	COSTO COLADO (\$)	AHORRO (\$)	VAN (\$)	
INV.					
INICIAL		-35000 (\$	5)		
1	59638	70270	10632	9642	
2	61507	74039	12532	11365	
3	63562	78184	14622	13260	
4	65823	82743	16921	15345	
5	68309	87759	19449	17638	
6	71045	93276	22231	20161	
7	74054	99345	25291	22935	
8	77363	106020	28657	25988	
9	81004	113363	32359	29345	
10	85009	121441	36432	33039	
TOTAL	198717 (\$)				

VAN = 198717 \$


Conclusión: el VAN para tres millones de asas ya es rentable desde el primer año y debido al incremento que existe en la mano de obra y como en el proceso de extrusión se usan solo 2 trabajadores por maquina entonces resulta más rentable producir de esta manera y se recomienda invertir en el proyecto por tener un VAN > 0

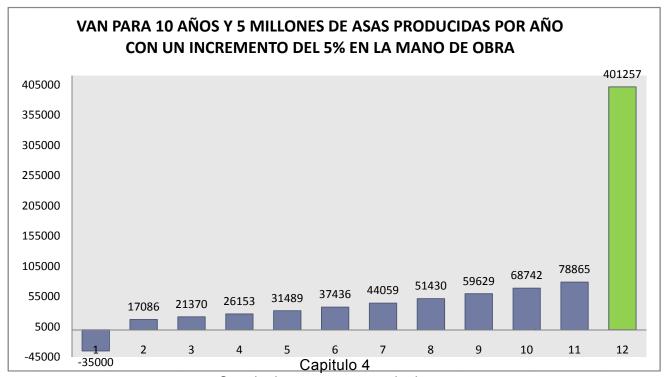
TERCER CASO: se produce cinco millones de asas ya sea en colado o por extrusión.

	POR EXTRUSIÓN						
	MANO	MATERIAS	CARGA	COCTO		PRECIO DE	
PERIODOS	DE	PRIMAS	FABRIL	COSTO	CANTIDAD	CADA ASA	
	OBRA (\$)	(\$)	(\$)	TOTAL (\$)		(\$)	
1	31102	45766	15956	92824		0,018564789	
2	34212	45766	15956	95934		0,019186822	
3	37633	45766	15956	99355		0,019871059	
4	41396	45766	15956	103119		0,020623719	
5	45536	45766	15956	107258	5000000	0,021451646	
6	50090	45766	15956	111812		0,022362365	
7	55099	45766	15956	116821		0,023364156	
8	60608	45766	15956	122331		0,024466126	
9	66669	45766	15956	128391		0,025678293	
10	73336	45766	15956	135058		0,027011677	
		F	OR COLA	DO			
1	62804	17496	32953	113253		0,022650663	
2	69084	17496	32953	119534		0,023906738	
3	75993	17496	32953	126442		0,02528842	
4	83592	17496	32953	134041		0,02680827	
5	91951	17496	32953	142401	5000000	0,028480105	
6	101146	17496	32953	151596		0,030319124	
7	111261	17496	32953	161710		0,032342045	
8	122387	17496	32953	172836		0,034567258	
9	134625	17496	32953	185075		0,037014992	
10	148088	17496	32953	198537		0,039707499	

	COSTO EXTRUSIÓN (\$)	COSTO COLADO (\$)	AHORRO (\$)	VAN (\$)
INV. INICIAL		-350	00	
1	92824	113253	20429	18527
2	95934	119534	23600	21402
3	99355	126442	27087	24564
4	103119	134041	30923	28043
5	107258	142401	35142	31869
6	111812	151596	39784	36079
7	116821	161710	44889	40709
8	122331	172836	50506	45802
9	128391	185075	56683	51404
10	135058	198537	63479	57567
TOTAL		32096	5 (\$)	

VAN = 320965 \$

Conclusión: al aumentar la cantidad de asas producidas por año vemos que el VAN también aumenta haciendo aun más rentable al proyecto por lo que se recomendaría aumentar la cantidad de turnos por máquina para aumentar el valor actual neto de la inversión.


CUARTO CASO: se produce cinco millones de asas ya sea en colado o por extrusión y el costo de mano de obra aumenta 5% cada año.

		PC	OR EXTRU	SIÓN		
PERIODOS	MANO DE OBRA (\$)	MATERIAS PRIMAS (\$)	CARGA FABRIL (\$)	COSTO TOTAL (\$)	CANTIDAD	PRECIO DE CADA ASA (\$)
1	31125	45801	15961	92887	5000000	0,018577455
2	32682	45801	15961	94444	5000000	0,018888708
3	34316	45801	15961	96078	5000000	0,019215525
4	36032	45801	15961	97793	5000000	0,019558682
5	37833	45801	15961	99595	5000000	0,019918997
6	39725	45801	15961	101487	5000000	0,020297328
7	41711	45801	15961	103473	5000000	0,020694575
8	43797	45801	15961	105558	5000000	0,021111685
9	45986	45801	15961	107748	5000000	0,02154965
10	48286	45801	15961	110048	5000000	0,022009514
		F	POR COLA	DO		
1	62804	17508	31416	111728	5000000	0,022345581
2	69084	17508	31416	118008	5000000	0,023601656
3	75993	17508	31416	124917	5000000	0,024983338
4	83592	17508	31416	132516	5000000	0,026503188
5	91951	17508	31416	140875	5000000	0,028175023
6	101146	17508	31416	150070	5000000	0,030014042
7	111261	17508	31416	160185	5000000	0,032036962
8	122387	17508	31416	171311	5000000	0,034262175
9	134625	17508	31416	183550	5000000	0,036709909
10	148088	17508	31416	197012	5000000	0,039402417

	AHORR	O GENERADO)	
	COSTO EXTRUSIÓN (\$)	COSTO COLADO (\$)	AHORRO (\$)	VAN (\$)
INV. INICIAL		-35000 (\$	5)	
1	92887	111728	18841	17086
2	94444	118008	23565	21370
3	96078	124917	28839	26153
4	97793	132516	34723	31489
5	99595	140875	41280	37436
6	101487	150070	48584	44059
7	103473	160185	56712	51430
8	105558	171311	65752	59629
9	107748	183550	75801	68742
10	110048	197012	86965	78865
TOTAL		401257 (\$	5)	

VAN = 401257 \$

Conclusiones y recomendaciones

AUTOR:

PAUL ROJAS PACURUCU

4.1 Conclusiones:

En base a los estudios realizados durante todo el desarrollo de este trabajo se ha llegado a las siguientes conclusiones:

- La experimentación factorial es una herramienta de la estadística y de los diseños de experimentos que sirven para ser aplicados en la mayoría de industrias donde los procesos pueden ser controlados por variables cuantitativas y cualitativas. Con la experimentación factorial se pueden determinar las óptimas condiciones de trabajo de una manera técnica y no únicamente con test de prueba error como es lo más común en nuestra industria ahorrándonos así costos y tiempo para las industrias. Además la experimentación factorial puede ser usada en no solo en procesos ya existentes sino se adapta muy bien a las necesidades de proyectos y procesos nuevos.
- La falta de bibliografía para el proceso de extrusión cerámica nos dio la oportunidad de brindar información importante y nueva para la empresa en lo que respecta los valores de las variables.
- Es válido indicar que cada experimento tuvo un indicador (CV) que demuestra si el experimento se realizo de manera correcta es decir cumpliendo con las especificaciones y como los CV de los experimentos tiene porcentajes entre 11% y 40% se llega a la conclusión de que los experimentos se ven afectados debido a que se llevaron a cabo con una

diferencia de 6 meses y esto afectó los resultados ya que los materiales aunque llevaron la misma cantidad provenían de minas diferentes.

- El estudio técnico parte importante de este trabajo nos da a conocer las ventajas que las industrias pueden tener sobre otras o sobre procesos existentes en la misma empresa como fue el caso de la técnica del colado y el nuevo procedo de extrusión de asas, el estudio técnico también nos sirve para reconocer las desventajas que se pueden provocar si se fuerza a la implementación de nuevos sistemas, es por esto que no siempre lo nuevo es ventajoso para la empresa en la actualidad pero puede ser implementado en el futuro brindando grandes beneficios.
- La transducción de tecnología aplicada dentro de la empresa Cerámica Andina es un proceso que no únicamente involucra al sistema productivo sino que también afecta e involucra al sistema económico y al departamento de investigación y desarrollo que fue pieza fundamental para este trabajo ya que el departamento de investigación y desarrollo es el encargado de efectuar las nuevas formulas de pastas que se adecuen a la maquinaria y al proceso ya existente, como se sabe la maquinaria del proyecto es de procedencia italiana y las materias primas utilizadas no son las mismas que las que encontramos en nuestra empresa es por esto que el proyecto debe ser estudiado y llevado a cabo de manera paralela a proceso existente de colado y no debe

reemplazarlo por completo al menos no hasta que este sea un proceso solido y bien probado.

Determinación de las condiciones de operación.

En base a lo dispuesto en los experimentos y en el análisis factorial se concluyen las siguientes condiciones de operación:

- La cantidad de arcilla es la variable con mayor incidencia dentro del proceso para todos los parámetros de calidad debido a que la cantidad de arcilla está directamente relacionada con las demás variables de la siguiente manera:
 - a. Cantidad de arcilla temperatura: con la temperatura tiene relación ya que cuando la pasta no tiene una buena plasticidad al aumentar la temperatura para extruir las asas de mayor tamaño estas presentan agrietados en la superficie del asa ya que la temperatura seca el asa y las partículas de arcilla no se mantienen juntas desprendiéndose en la matriz.
 - b. Cantidad de arcilla tamaño del asa: esta relación se nota de manera más importante cuando son asas de mayor tamaño ya que en la formación el asa debe quedar suspendida de la boquilla de extrusión y si la pasta no es plástica esta se desprende debido al peso y cae fuera de la banda de transportación.

- c. Cantidad de arcilla humedad: cuando tenemos una pasta plástica esta variable reduce su incidencia en la calidad del asa ya que en la mayoría de los casos con solo variar la temperatura podemos lograr una óptima formación y consistencia.
- El tamaño del asa será la variable que determinara la temperatura optima del proceso y también es parte importante en el parámetro de la cantidad de formación, cuando tenemos asas pequeñas se optimiza el uso de la pasta y del proceso ya que con una menor cantidad obtenemos un mayor número de asas a la vez que se reducen los tiempos de alimentación de chorizo.

El tamaño del asa tiene relación con la humedad en el sentido de que cuando la humedad es baja esta se aprovecharía de mejor manera en las asas de tamaño pequeño porque la temperatura de formación es menor y el asa no perdería mayormente la consistencia, es decir si la pasta ya está con una humedad baja y a esta le aplicamos una temperatura alta el asa se va a secar quedando inservible para ser pegada.

 La humedad tiene directa relación con la consistencia del asa por lo que en medida de lo posible se debe evitar la pasta con una humedad baja porque esto reduce el tiempo de vida útil del asa, si se tiene un asa húmeda esta puede ser almacenada en gavetas con plásticos hasta por una semana para posteriormente ser pegada al jarro sin provocar el desprendimiento de la misma.

 La calibración óptima de las matrices da como resultado un asa bien formada y con un mínimo de rebaba en la cara externa del asa permitiendo así que el pulido de la misma sea rápido a la vez que se asegura la calidad del asa.

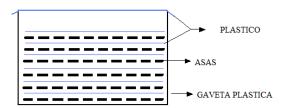
Cuadro de Condiciones Optimas para el proceso de extrusión

Variables		
independientes del	Valor	Parámetro de incidencia
proceso		
		Formación
Cantidad de arcilla en	55%	Agrietado superficial
la pasta	33 <i>7</i> 0/	Cantidad de rebaba
		Consistencia
Tamaño del asa	De 3 cm a 6 cm	Formación
Talliallo del asa	De 3 cili a 0 cili	Consistencia
Humedad	20%	Cantidad de rebaba
Tumedad	2070	Consistencia
Temperatura	Asas pequeñas: 110 °C	Cantidad de rebaba
remperatura	Asas Grandes: 145 °C	consistencia

 El chorizo o pasta debe estar excesivamente lubricado para que este resbale de manera correcta por los tubos del tambor pasando hacia la zona de corte, si el chorizo no se lubrica de manera correcta tiende a frenarse en su descenso mientras el tambor de alimentación gira provocando la para de la extrusión porque habría que proceder a retirar el chorizo que se encuentra obstaculizando el paso del los siguientes.

 La calibración de las matrices debe realizarse mientras las mismas se encuentran frías o a baja temperatura porque de lo contrario resulta muy demorado y dificultoso si es que la temperatura es alta ya que muchos de los pernos de ajuste de las matrices se localizan en lugares de difícil acceso que podrían provocar quemaduras en las manos del operario que realice la calibración.

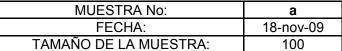
4.2 Recomendaciones.


- Por lo dicho anteriormente es recomendable para la facultad de Ciencias
 Químicas que esta herramienta sea incluida dentro de las cátedras de
 proyectos, estadística o porque no como una cátedra adicional a la
 carrera ya que con este proyecto he visto los múltiples usos que se le
 puede dar a esta herramienta.
- Una recomendación para las empresas locales seria la implementación de un departamento de investigación y desarrollo que se encargue de efectuar nuevos procesos y mejoras para la producción logrando así ventajas sobre las demás industrias siendo pioneros en brindar nuevos productos y nuevos procesos que mejoren la calidad.
- En lo que se refiere al proceso en sí de extrusión se recomienda mejorar
 el sistema de alimentación para evitar tiempos muertos en el proceso, el

problema principal es el diámetro del chorizo que no circula por tubos de la cámara de extrusión.

- También sería importante que se estudie la posibilidad de la alimentación del chorizo sin lubricación para evitar este rubro que tiene un costo importante en la carga fabril. Lo que esto provocaría es un aumento en el consumo de la pasta para las asas grandes ya que requieren un mayor tamaño del chorizo que el normal para completar la extrusión del asa.
- Se recomienda también mejorar la forma en que se calibren las matrices ya que se pierde tiempo por la incomodidad para alcanzar los pernos de ajuste aumentando los tiempos improductivos.
- La alimentación del chorizo hacia el tambor debe ser realizada con mucho cuidado de no maltratar la forma de la pasta porque esta es una causa importante para las paras de la maquina ya que si el chorizo no tiene la forma cilíndrica este se frena a la entrada de la boquilla y no permite la continua extrusión de las asas.
- La limpieza del tambor de alimentación es fundamental antes de colocar la pasta para evitar paras en el proceso ya que existen residuos de la pasta que se depositan en la parte baja de los tubos del tambor y son estos desperdicios los que no permiten la caída libre del chorizo dentro de la cámara de extrusión provocando así un desperdicio mayor de pasta y de mano de obra.

Se recomienda colocar las asas en gavetas plásticas sin aberturas en los costados y que estas sean cubiertas con plástico en la parte superior y después de cada capa de asas para prolongar la vida útil de las asas manteniendo la humedad dentro del recipiente ya que las mismas al ser cortadas tienen un menor tiempo de duración porque se secan y ya no se pueden pegar en los jarros. Las gavetas y los plásticos prolongan el tiempo de secado tres veces más que si las asas se colocaran en esponjas con plásticos.


AUTOR: PAUL ROJAS PACURUCU

- El aceite para lubricar los chorizos debe tener la propiedad no consumirse ante altas temperaturas para que el chorizo circule de manera correcta dentro de las cavidades de la matriz a la vez que permite su fácil desprendimiento.
- Para asas de mayor tamaño la boquilla debe aumentar su diámetro debido a que al momento del giro de la cámara de extrusión el asa no se desprenda antes de ser cortada sobre la banda.
- Cuando las asas no tiene la consistencia necesaria y se encuentran flexibles deben ser colocadas en esponjas sin plástico hasta que su dureza aumente y puedan ser pegadas en el jarro sin perder la forma.

ANEXOS

HOJA DE REGISTRO DE DATOS

		IAIVIA	וט טעו.		N IVIO	ட்	111/7.	i		100													
											lΑ	BLES											
	T	EMPE	RATU	JRA				HUM	1EDAE)			(CANT	. ARC	ILLA				TAN	//AÑO		
		1	150						19						10%					PEQ	UEÑC)	
											DEF	E	CTOS										
								AGRI	ETAD	0													
		FORM	ИACIĆ	N			9	SUPE	RFICI	AL			CAN	ITIDAI	D DE I	REBA	BA		С	ONSI	STEN	CIA	
5	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
10	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ
15	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ
20	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
25	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
30	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
35	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
40	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ
45	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ
50	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Х	Χ
55	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ
60	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Х	Χ
65	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х												
70	Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ												
75	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х												
80	Χ	Χ	Χ	Х	Х	Х	(Χ	Χ	Х	Х												
85	Χ	Χ	Χ	Χ	Х													I					
90	Χ	Χ	Χ	Χ	Х													I					
95																		ſ					
100																		I					

TOTAL	90	TOTA	L	80	TOTAL	35	TOTAL	60
PORCENTAJE	34%	PORCEN [*]	ГАЈЕ	30%	PORCENTAJE	13%	PORCENTAJE	23%
TOTAL AS	SAS BUI	ENAS				0	•	

OBSERVACIONES

Las asas formadas se desprenden de la matriz, el rajado superficial aumenta debido a la temperatura así como la cantidad de rebaba. La consistencia del no es adecuada para realizar pruebas de pegado en jarros.

			MUE	STR	RA No	0:				b												
			F	ECH	IA:				13	3-nov	<i>'</i> -09					A N	11-1	NΤΛ				
	Т	AMA	ÑO D	E LA	A MU	JE;	STRA			100)					Αľ	ועוי	NΑ				
										1	VAR	ΙAΙ	BLES	j								
	T	EMPE	RAT	URA	١			HUN	MEDA	νD			(CANT	. ARC	ILLA	1			MAÑ		
			100					2	21,5						10%				PE(QUEÑ	10	
											ΕC	CTOS										
		FORM	ИАСІ	ÓN					IETAI ERFIC	_				CANT RE	IDAD BAB/				CONS	ISTEI	NCIA	
5	Χ	Χ	Χ	Х	Х		Χ	Χ	Х	Х	Х		Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х
10	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ	Х	Х	Χ	Х	Х
15	Χ	Χ	Χ	Х	Х		Χ	Χ	Х	Х	Х							Х	Х	Х	Х	Х
20	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х							Х	Х	Χ	Χ	Х
25	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Х							Х	Χ	Х	Х	Х
30	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х							Х	Χ	Х	Χ	Х
35	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ							Χ	Χ	Х	Χ	Х
40	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ							Χ	Χ	Χ	Χ	Х
45	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ							Х	Х	Χ	Χ	Х
50	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ							Х	Х	Χ	Х	Χ
55	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Х	Χ	Χ							Х	Х	Х	Х	Χ
60	Χ	Χ	Χ	Χ	Χ													Х	Х	Χ	Х	Χ
65	Х	Х	Х	Х	Х													Х	Х	Х	Х	Χ
70	X	Х	X	X	Х																	
75	X	X	X	Х	Х																ļ	—
80	Χ	Х	Х	Χ	Χ												\square				 	—
85																	\square				 	—
90																	\vdash	-	1		 	
95																		-			-	
100																						

TOTAL	80		TOTAL	55	TOTAL	10	TOTAL	65
PORCENTAJE	38%		PORCENTAJE	26%	PORCENTAJE	5%	PORCENTAJE	31%
TOTAL A	SAS BU	ΕN	IAS			0		

OBSERVACIONES

Las asas formadas en su mayoría caen de la matriz después de ser extruidas es decir no se mantienen en la boquilla de extrusión para ser cortadas sobre la banda, el agrietado mantiene un porcentaje alto y la consistencia no es la adecuada para pegar las asas en los jarros.

HOJA DE REGISTRO DE DATOS MUESTRA No: FECHA: 23-mar-10 TAMAÑO DE LA MUESTRA: 100 VARIABLES **TEMPERATURA HUMEDAD TAMAÑO** CANT. ARCILLA 100 55% PEQUEÑO 19 **DEFECTOS AGRIETADO** CANTIDAD DE **FORMACIÓN SUPERFICIAL REBABA CONSISTENCIA** 5 Χ Χ $X \mid X \mid X$ Χ Χ $X \mid X$ Χ Χ Χ $X \mid X$ 10 Χ Χ Χ Χ Χ Χ Χ Χ Χ 15 Χ Χ Χ Χ Χ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 **TOTAL TOTAL TOTAL** 0 TOTAL 4 15 PORCENTAJE 32% PORCENTAJE 14% PORCENTAJE 0% **PORCENTAJE** 54% TOTAL ASAS BUENAS 80 **OBSERVACIONES** La consistencia aunque tiene el porcentaje mayor no es alto en general ya que solo quince asas presentaron el problema.

																		(See					
			MUE:			0:				d							4						
				ECH					20	-nov						F	١N۴	Π	NΑ	711			
	T	AMAÍ	NO DI	E L/	ML	JE	STR/	۸:		100													
											VAF	RI/	ABLES					_			~		
	TE	EMPE		URA	١	ŀ			1EDA	D					. ARC	ILLA					ΛΑÑC		
		1	00						19			<u> </u>			10%					GR/	ANDE	┋	
								4.00			DEF	ᆫ	CTOS					1					
	l	FORM	/ACIO	NČ				AGRI SUPE							TIDAD BAB/				C	ONSI	STEN	1CIA	
5	X																						
10				_	_					_							_		_			_	
15																							
20	X																						
25	X																						
30	X																						
35	X																						
40	X																						
45	X																						
50	X																						
55									X														
60	X	X	X	X	X		X	X	X	X	X									X	X	X	X
65	X	X	X	X	X	ŀ	X	Χ	Χ	Х	Χ									X	X	X	X
70 75	X	X	X	X	Х		Χ										-	>		X	X	-	
80	X	X	X	X	<u>^</u>	ŀ												\vdash	`	^	^	\vdash	
85	X	X	X	X	X																	$\vdash\vdash$	
90	X	X	X	X	X	-												-	-				
95	X	X	X	Х	X	ŀ												\vdash					\blacksquare
100						-												-					=
100				<u> </u>		L			<u> </u>		<u> </u>	1.		<u>l</u>									
		OTA		9				OTA		6				ΓΟΤΑΙ		2				OTAL		7	
	POR	CENT		_				CEN	ΓAJE	25	5%		POR	CEN	ГАЈЕ	10	%	P	OR	CENT	AJE	28	%
		TOT	AL A	SAS	BU	Εľ	NAS									0							
													ACIO										
													u total										
			_		sup	erf	ricial	se ma	intien	e y l	a co	ns	sisten	cia ma	antien	e un a	alto p	orce	nta	-			
	je de	la mu	uestra	ì																			

			MUE	STF	RA N	lo:				ab													
			F	ECH	łA:				13	-nov	′-09						- Al	V	DIN	Ά			
	Т	AMA	ÑO D	E L/	M P	JE	STR	A :		100								. '					
											VAR	11/	BLES	_									
	TI	EMPE		UR/	١				/IEDA	D			(CANT		CILLA	4				ΜΑÑΩ		
		•	150					2	21,5						10%					PEG	<u>UEÑ</u>	0	
											DEF	Ε	СТО										
		FORM	ИАСІО	ИČ				AGRI SUPE						CAN1 RE	ΓΙDΑΕ ΞΒΑΒ				С	ONSI	STEN	1CIA	
5	Χ	Х	Х	Х	Χ		Χ	Х	Х	Х	Х		Χ	Χ	Х	Х	Χ		Χ	Χ	Х	Х	Х
10	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
15	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ
20	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
25	Χ	Χ	Х	Х	X		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
30	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Х		Χ	Χ					Χ	Χ	Χ	Χ	Χ	
35	Χ	Х	Х	Х	Χ		Χ	Х	Χ	Χ	Х								Χ	Χ	Χ	Х	Х
40	Χ	Х	Х	Χ	Χ		Χ	X	Χ	Χ	Х								Χ	Χ	Χ	Х	Χ
45	Χ	Χ	Х	Х	Χ		Χ	Х	Χ	Χ	Х								Χ	Χ	Χ	Х	Χ
50	Χ	Χ	Х	Х	Χ		Χ	Χ	Χ	Χ	Х								Χ	Χ	Χ	Χ	Х
55							Х	Х	Х	Х	Х								Χ	Χ	Χ	Х	Χ
60							X	X	Х	Х	X											Ш	
65							X	X	X	X	X	ļ										igwdapprox	
70							X	X	X	X	X												
75							Х	Х	Х	Х	Х											₩	
80											$\vdash\vdash\vdash$											₩	
85											$\vdash\vdash\vdash$											₩	
90 95											$\vdash\vdash\vdash$											₩	
90								ļ													—	igspace	

TOTAL	50	TOTAL	. 75	TOTAL	27	TOTAL	55
PORCENTAJE	24%	PORCENT	AJE 36%	PORCENTAJE	13%	PORCENTAJE	27%
TOTAL AS	SAS BU	ENAS			0		

OBSERVACIONES

Con altas temperaturas el agrietado superficial se mantiene a pesar de que la dureza es la mínima, se realizaron pruebas de pegado de asas no satisfactorias por la calidad que presentaba el asa en los jarros.

100

						0:															Printer.		
									23								1	. _T		TNTA			
	T	<u>1AMA</u>	<u>ÑO DI</u>	<u>E L/</u>	<u>۱ M</u> ۱	<u>JE</u>	STR/	١:									<i>F</i>	IMI	U	IIN <i>E</i>	√ ™_		
											<u>VAR</u>	lΑ						_,			~		
	TE			<u>JRA</u>						<u>'D</u>	!]	С			<u>ILLA</u>							
		1	150			Ш			19		'	Ш			55%					PEQ	UEN	<u>o</u>	
											<u>DEF</u>	EC											
	Ι,		14.01/	۸.,	ļ						ľ		(_					~.	~	^T_\		
		_	_	_		H		_	_		 !	Н				_	- - 	+				1 1	_
5 10	X	Χ	X	X	X	-				4		┨				X	X		_				
15		+	 	$+\!-\!\!\!-\!\!\!\!-$	₩	-					_	┨	^		_ ^		\vdash						
20		$\vdash \vdash \vdash$	 	┼─┤	igwdapprox	╽┠		-^- '	 ^-	┼^	^-	┨			\vdash	 	\vdash						
25		$\vdash \vdash \vdash$		\vdash	$\vdash\vdash\vdash$	╽┠			 	+-	├─	┨					\vdash						
30																	\vdash						
35		$\vdash \vdash \vdash$	 	${f H}$	$\vdash \vdash$	 		\square	 	+-	├─	1			\vdash		\vdash	<u> </u>	\dashv	$\stackrel{\wedge}{\longrightarrow}$		<u> </u>	$\stackrel{\wedge}{\vdash}$
40																							
45															\Box								
50			 	\dagger	H			\Box	 	†	H	1					\Box		寸				
55				†	М					T	M	1							寸				
60												1							丁				
65			<u> </u>									[[I				
70] [
75] [
80]											
85		<u> </u>	<u> </u>	'				'	<u> </u>	<u> </u>	<u> </u>]							\dashv				
90		<u> </u>	ļ	<u> </u>				└	ļ	<u> </u>	<u> </u>]			<u> </u>	<u> </u>			\perp		<u> </u>		
95		<u> </u> '	ļ	<u> </u>	Ш			└ ──'	<u> </u>	<u> </u>	↓ '				<u> </u>		Ш	<u> </u>	\dashv			igsquare	
100		'	<u> </u>			L		'	<u> </u>	<u> </u>	<u> </u>] [丄			Ш	
ļ				т ,		П					_	П				 ,			_	<u> </u>			
		TOTAL			5 %	H		TOTAL			5 3%	Н		CENT			8	 		OTAL		52	
	PUR	CENT	TAJE TAL AS					CENT	I AJ⊏	20)%	Ш	PUR	CENT	AJE	55 55	! %	IPC	אנ	CENT	AJE	5∠	%
		101	AL A	SAS	, <u>DU</u>		NAS		<u></u>	OBS	SED	١/٨	ACION	IEC		55							\dashv
	lan:	aeta c	que se		CUE	atr:	2 An (u má								ariot:	ado e	uner	fici	<u>al v u</u>			\dashv
			cia qu																				
			eron c																				-
	асор	TOTIGIO	510110	10 10	o ju		, 0. L1	agrici	.uuo y	/u cc	Jan	Ρı	ODICII	ia ac	oanac	<u> </u>	510 00	, 400	Cu	50 50	1001		

como respondía el asa pegada.

			MUE	STR	RA N	o:				ad												
				ECH					20	-nov	-09											
	T.	IAMA	ÑO D	E L/	۱M ا	JΕ	STRA	۸:		100)						<i>F</i>	NE)IN <i>F</i>	<i>₹</i> ₩		
										\	/AR	lΑ	BLES	;								
	TE		RAT	URA	١.				/IEDA	D			C	ANT.		ILLA	١.			MAÑ(
		1	150						19						10%				GF	RANDI	Ξ	
											DEF	E	CTOS									
									IETAD				(CANT								
			/ACIO	T				_	RFIC			Ш			BABA	_		_	_	SISTEN	_	_
5	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Х	Х		Х	X	Х
10	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Х	Х	Χ	Х		X	X	Χ
15	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Х		X	X	Χ
20	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Х		X	X	Х
25	Χ	Χ	Х	Х	Х	ŀ	Х	Χ	Х	Х	Х		Χ	Х	Х	Х	Х	Х		X	Х	Х
30	X	X	X	X	Х	ŀ	Х	X	Х	X	Х		X	Х	Х	X	Х	X		X	X	Х
35	X	X	Х	Х	X	ŀ	X	X	Х	Х	Х		Х	Х	Х	Х	Х	Х		X	X	Х
40	X	X	X	Х	Х		Х	X	Х	Х	Х		X	X	X	X	X	X		X	X	Х
45	X	X	X	Х	Х		Х	X	Х	Х	Х		X	X	X	X	Х	X	_	X	X	Х
50	X	X	X	X	Х		Х	X	X	X	X		Х	Х	Х	Х		X		X	X	Х
55	X	X	X	X	Х		X	X	Х	X	Х							Х	X	Х	Х	Х
60	X	X	X	X	Х	ŀ	Х	X	X	Х	Х							<u> </u>	_	+	₩	
65	X	X	X	X	Х		X	X	X	X	X									+	₩	
70	X	X	X	X	X		X	X	X	X	X									+	₩	
75	X	X	X	X	X		X	X	X	X	X					-			_	+	—	_
80	X	X	X	X	X	ŀ	X	X	X	X	X									+	\vdash	
85 90	Χ	Χ	Х	Х	Х	ŀ	X	X	X	X	X								_	+	┼	
95						ŀ	X	X		^	^								_	+	┼	
100									-							1		-	_	+-	╁	
100						L						į į									Ь	
ĺ	Т	ОТА	ı	Q	5			ОТА		0	2	П	-	ОТА	l		19	\top	TOTA	<u> </u>	<u> </u>	5
			L TAJE	_)%	H		CEN			<u>2</u> 8%	H		CEN			7%	PC	RCEN		4)%
	1 011	_	AL A			F		OLIV	7.0	00	, ,0	Ш	1 01	OLIV.	17 WL	0	/0	1. 0	- NOLIV	117 WL		, 70
		101	, <u>, , , , , , , , , , , , , , , , , , </u>	<i>ا</i> ر در	, 50	<u></u>	17 10			OBS	SER'	٧Æ	CIO	NES								\neg
	El ag	rietac	do su	oerfi	cial	au	ment	a cua	ndo la	a ter	nper	at	ura y	la du	eza a	aume	entan	debi	ok			
			asta r	no tie	ene	la	plasti	cidad	nece	sari	а ра	ra	mant	ener	unida	sus	partí	culas				
	de ar	cilla.																				

						F	IOJA	DE R	!EGI	ISTR	(O	DE L	DATC	05							
			MUES						bc	;								3			
				ECHA				18		r-10											
	Т	AMA	ÑO DE	<u> </u>	MUE	<u>:STR/</u>	4:	<u> </u>	100							A	NDI	NΑ	## <u> </u>		
			-D 4 TI			1		4554		VAR	IΑ	BLES		A D.O.	II I A		1	T	VA NIC		_
	11		RATU 100	JKA				MEDA 21,5	ט					. ARC 55%	ILLA	_			MAÑO QUEÑ		
			100					21,3		DEE	F	CTOS		33 %				FEG	ĮUΕIN	<u> </u>	-
					T		AGR	IETAD			ΕÌ			IDAD	DE						-
		FORM	ИАСІĆ	N				RFIC						BABA			С	ONSI	STEN	1CIA	
5	Χ	Χ	Χ			Х											Х	Χ	Χ	Χ	
10								↓	<u> </u>												
15				\vdash	_			—	Ļ					<u> </u>		_					
20 25					4		<u> </u>	—	₩	-				<u> </u>		_					-
30					\dashv			+	╁	+-				1		_					\vdash
35					-		-	+		+-+				 		=					
40					-			 	\vdash												
45																					
50																					
55																					
60								↓	—	4						_					
65					4		<u> </u>	—	₩	-				<u> </u>		_					-
70 75					-		 	┼	₩	+						_					
80					-		-	+		+-+				 		=					
85					-			 	 												
90									1												
95																					
100								<u> </u>	上												
I	-				_				_			-	TOT *	1		1	-	-OT 4	ı		
		OTA	L TAJE	3 38%			TOTA CEN			1 3%	H		TOTA	L TAJE	0 0%	-		OTA CEN		50	
	FUR		AL AS				CEN	TAJE	1 13	0/ ر	Ш	FUR	CEN	IAJE	93		FUR	CLIN	IAJE	50	/0
			, ,	<u> </u>	<u> </u>	, .			OBS	SER'	٧A	CIOI	NES								\dashv
	La sı	uavida	ad del	asa e	es de	ecir sı	u con							ptima	puede	e me	jorars	e deja	an-		\neg
															ara ser						

			MUE	STR	A N	o:				bd													
				ECH					16	-nov	-09								NIC	TNTA			
	T.	IAMA	O OÑ	E LA	M M	JΕ	STRA	۸:		100								P	MND	INA			
						_					/AR	lΑ	BLES				1	_					
	TE	EMPE		JRA	١				1EDA	D			С	ANT.		ILLA	١				MAÑC		
		1	100					2	21,5				<u></u>		10%					GR.	ANDE	<u> </u>	
								400			DEF	E(CTOS		10.40			ı					
		FORN	ΛΔ ΟΙΟ	'n					ETAI RFIC				'	CANT RE	IDAD BABA				C	ONSI	STEN	Δ۱Ω	
5	Х	X	X	X	Х		Х	X	X	X	Х		Х	X	X	X	Х		Х	X	X	X	Х
10	X	X	X	X	Х	ŀ	X	X	X	X	Х		X	X	X	X	X	ŀ	X	X	X	X	X
15	X	X	X	Х	Χ	ŀ	X	X	X	Х	X	1	X	X	X		,	X X X X X					
20	Χ	Х	Х	Χ	Χ	ŀ	Х	Χ	Х	Х	Х	1							X X X X X				Χ
25	Χ	Χ	Х	Χ	Χ		Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Х
30	Χ	Χ	Х	Χ	Χ		Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Х	Х
35	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Х	Χ
40	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Х	Χ
45	Χ	Χ	Χ	Χ	Χ														Χ	Χ	Χ		
50	Χ	Χ	Χ	Χ	Χ																		
55	Χ	Χ	Χ	Χ	Χ																<u> </u>		
60	X	X	Х	X	Х	ŀ																	
65	Х	X	X	Х	Х	ŀ						-											
70	X	X	X	X	Х	ŀ						-											
75	X	X	X	X	X					1		-				<u> </u>	-	ŀ			<u> </u>	₩	
80 85	X	X	X	Х	Χ							-						ŀ				\vdash	
90	^	^	^									1										\vdash	
95						ŀ						1						ŀ			<u> </u>		
100						ŀ												ŀ					
100			<u> </u>						<u> </u>				l										
	Т	ОТА	L	8	3		Т	ОТА	L	4	0		1	OTA		1	3		TOTAL 43 PORCENTAJE 24%			3	
		CEN		_	8%			CEN			2%			CEN			%	Ħ				24	
		TOT	AL A	SAS	BU	Εľ	VAS									0							
										OBS	SER	V٨	CION	NES									
														otura									
	luego	de la	a extr	usió	n, e	l a	grieta	ido sī	perfic	cial s	e re	dı	ujo pe	ro sig	ue sie	endo	alto	<u>. L</u>	a con	-			

sistencia también se ve afectada por la falta de plasticidad de la pasta.

			NALIE	OTD	Λ Ν	٥.				cd													
			MUE	ECH		υ.			24	-mai	<u>-10</u>	-							A		- Colon		
	т	AMAŃ				IEQT	гD /	١.	24	100									N.T.				
	ı	AIVIAI	ע טוי	<u> </u>	\ IVIC	JESI	K/	١.				۸۱۵	BLES	•				P	NL)IIV	A##.		
	ТІ	EMPE	RΔTI	IRΔ				HUM	1EDA		VAIN			ANT.	ΔRC	ΠΙΔ				TΔN	ИAÑС		
			00	<u> </u>	`				19						55%	ILL/	`	ŀ			ANDE		
			00						10		DEF	F	CTOS		70 70					Ort	/ (INDL		
								AGRI	FTAI		<u> </u>	ΓÌ		CANT	IDAD	DF							
		FORN	/ACIO	NČ				SUPE	RFIC					RE	BABA					ONSI			
5	Χ	Χ	Χ	Χ	Χ		X	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ
15	Χ	Χ	Х	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ
20	Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Χ	Χ		X X X X			Χ	
25	Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ				Χ				Χ
30	Χ	Χ	Χ	Χ	Χ														Χ	Χ	Χ	Χ	
35	Χ	Χ	Х	Χ	Χ																		
40	Χ	Χ	Χ	Χ	Χ																		
45	Χ	Χ	Χ	Χ	Χ																	Ш	
50	Χ	Χ	Х	Х	Χ																		
55	Χ	Χ	Χ	Х	Χ					<u> </u>													
60						_												ļ				Ш	
65																		ŀ					
70						_						-						ŀ				—	
75												-						ŀ					
80						_												ŀ				\vdash	
85 90						_				 								ŀ					
95					\vdash	-						1				-						$\vdash\vdash\vdash$	
100						-												ŀ				\vdash	
100				<u> </u>						ļ	<u> </u>	1 1						L					
		ΓΟΤΑΙ			5			OTAI			5			ΓΟΤΑΙ			3			OTAL		2	
	POR	CENT						CENT	ΓAJE	12	2%		POR	CENT	AJE		9%		POR	CENT	TAJE	24	%
		TOT	AL A	SAS	BU	ENA	S									0							
													CIO										
														espre)		
	_						e la	band	a, ad	emá	s la	CC	nsist	encia	es su	ave	y no	es	s optii	ma			
	para	pega	r en lo	os ja	irros	3 .																	

MUESTRA No: abc FECHA: 18-mar-10 TAMAÑO DE LA MUESTRA: 100 VARIABLES **TEMPERATURA HUMEDAD TAMAÑO** CANT. ARCILLA 150 55% PEQUEÑO 21,5 **DEFECTOS AGRIETADO** CANTIDAD DE FORMACIÓN **SUPERFICIAL REBABA CONSISTENCIA** 5 Χ Χ Χ Χ $X \mid X \mid X \mid X$ Χ Χ Χ l X Χ Χ 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

TOTAL 3 TOTAL 5 TOTAL 4 TOTAL 2 PORCENTAJE 21% PORCENTAJE 36% PORCENTAJE 29% PORCENTAJE 14% TOTAL ASAS BUENAS 92

OBSERVACIONES

La temperatura alta provoca el agrietado superficial y la rebaba en el asa, la rebaba puede ser recortada pero genera mayor tiempo en el clasificado.

100

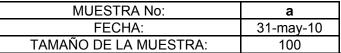
						-																
			MUE	STR	A No) :			abo	l								Br.				
			F	ECH	A:			16	-nov	_' -09										1		
	Т	AMAÍ	NO D	E LA	\ MU	ESTR.	A:		100)							N	1DII	NA]) <u> </u>		
										VAR	IΑ	BLES						11211	. 11 1			
	TE	EMPE		JRA				/IEDA	D			С	ANT.		ILLA	١				MAÑC		
		1	50				2	21,5						10%					GR	AND	Ξ	
										DEF	E	CTOS										
				4.			AGR		_				CANT					_				
		FORM	_	_	\ \		SUPE		_					BABA	_	LV	_		ONSI		_	
5 10	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
15	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
20	<u>^</u>	X	X	X	<u>^</u>	X	X	X	X	X		X	X	X	X	<u>^</u>	ŀ	X	X	X	X	^ X
25	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
30	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
35	X	X	X	Х	X	X	X	X	X	X		X	X	X	Х	X	ŀ	X	X	X	Х	X
40	X	X	X	Х	X	X	X	X	X	Х					, , , , , , , , , , , , , , , , , , ,		ŀ	X	X	X	Х	X
45	Χ	X	Х	Χ	Χ	X	Х	Х	Х	Χ							ľ	Χ	X	Х	Х	Х
50	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ							ľ	Χ	Χ	Х	Х	Х
55	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ							ı	Χ	Χ	Х	Х	Х
60	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Χ	Χ
65						Χ	Х	Χ	Х	Χ								Χ				
70						Χ	Χ	Χ	Х	Χ												
75						Χ	Х														<u> </u>	
80																					₽	
85																	ŀ					
90 95									-								ŀ					
100						-											ŀ				├─	
100																	L					
	7	ОТАІ	<u> </u>	6	0	1 -	ТОТА	l	7	2		Т	ОТА		3	5		Т	ОТА	<u> </u>	6	1
		CENT		_	_		RCEN			2%			CEN			5%			CEN		27	
						ENAS									0							
									OBS	SER'	VA	ACION	NES									
	La te	mper	<u>atura</u>	es e	el prii	ncipal	causa	nte de	el ag	rieta	ad	o sup	<u>erfici</u> a	ıl y de	la c	onsi	ste	encia	del			
		_				illa afe		la for	mac	ión p	ori	ncipal	mente	e perd	o tan	nbién	а	todo	s			
	los d	emás	pará	metr	os d	e calid	ad.															

							F	IOJA	DE R	EGI	STR	?C) DE C	DATO	S								
			MUE	STR	A N	lo:				acc	l]										
				ECH					24-	-Mai	^-10							٨	NIT	SINI			
	Т	AMA	NO DI	E LA	۱M ا	JΕ	STR	۹:		100)				_			F	INA	אווע	A		
			TIPC) DE	AS	Α			G		М		Р										
											VAR	IΑ	BLES										
	TI	EMPE		JRA	١				1EDA	D			С	ANT.		ILLA	١				ИAÑС		
		1	50						19						55%					GR	ANDE	<u> </u>	
											DEF	Ε	CTOS										
			44016	5.				AGRI					(CANT						01101	OTE.		
-		FORN		_	l v			SUPE		_	l v		V		BABA		LV			ONSI			
5 10	X	X	X	X	X		X	X	X	X	X		X	X	X	X	X		X	X	X	X	X
15	X	X	^	^	^		^	^	^	^	^		X	X	X	^	^		X	X	X	X	X
20																			X	X	X	X	X
25																							
30																						┢	
35																							
40																							
45																							
50																							
55																							
60																							
65																							
70																							
75																						<u> </u>	
80																						-	
85 90																							
95																							
100																							
.00		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ı I		<u> </u>							<u> </u>								
		ГОТА	L	1	2		-	ΓΟΤΑΙ	L	1	0		Т	OTA	L	1	3		T	TOTAL 20			
	POR	CEN	ГАЈЕ	22	2%		POR	CENT	ГАЈЕ	18	3%_		POR	CENT	ГАЈЕ	24	١%		POR	CENT	ΓΑͿΕ	36	3%
		TOT	AL A	SAS	BU	ΙĒΙ	NAS									65							
													ACION										
												mas en la formación provocando el menciono entes y la rebaba, además la											
									_	_			ncion							s la			

consistencia es muy dura para pegar las asas provocando el desprendimiento luego

AUTOR:

de que se seca el jarro.


							•				•											
ſ			MUE	STR	A N	0:				bcc	1											
ľ			FI	ECH	A:				19	-mai	r-10							ANI	DINI			
	T.	IAMA	NO DI	E LA	ML	JES	STRA	١:		100								AN	DINA	J		
						_					VAR	lΑ	BLES					-1		~		
	TE		RATI	JRA	١	L			1EDA	D		↓ ↓	С		ARC	ILLA	١			MAÑC		
ŀ		1	100					2	21,5		DEE	Ц)TOO		55%				GR	AND		
ŀ					1	Т		۸CDI	ETAD		DEF	L	CTOS		IDAD	DE	<u> </u>	I				_
		FORN	ЛАСІС	ИČ					RFIC	_				_	BABA				CONSI	STEN	ICIA	
5	Χ	Χ	Χ	Χ	Χ		Χ	Χ					Χ					Х	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ]									Χ	Χ
15												┦						X	X	Х		
20						-						┨╏										
25						-						┨╏										
30 35						H						┨╏										
40						H						┪╽						X X X X X X X X X X X X X X X X X X X				
45												┪╽										
50												1										
55												1										
60																						
65]										
70]										
75						L						┦╏						-				
80						H						┨╏							_			
85 90						-						┨╏										
95						-						┪╽										
100												1										
						_																
		OTA			9			OTA			2			ОТА			1		TOTA	1		
	POR		ГАЈЕ					CEN	ΓAJE	8	%		POR	CEN	TAJE		%	PO	RCEN	ГАЈЕ	52	2%
		TOT	AL A	SAS	BU	ΕN	AS									80						
	Δ			11			<u> </u>						CIO			1.						
}															ad de							
}																		dureza Se debe				
ŀ	_		que e				_			o ue	, he	yai	ia se	ueioi	ına el	1 CI	jaii0.	Se u	- NG			
L	cope	ıaı a	que e	1 03	a au	IIIC	iiic S	su uul	c ∠a.													

												_										
			MUE			lo:				abc	d							A.				
				ECH					19	-ma									-	1		
	Т	AMA	<u> O O</u>	E L/	۱M ۶	JE	STR	4 :		100							_A	NDI	ÑΑ)) <u> </u>		
						_					VAR	lΑ	BLES				- 1 1	1 1121	11 11 1	· ~		
	TE	EMPE		URA	١				ИEDA	D		4	С		ARC	ILLA				MAÑC		
		1	150						21,5			L			55%				GR	ANDE		
								4 O D	IETAD		DEF	F(CTOS		IDAD	<u> </u>		1				
		FORM	/ACIO	_				SUPE	RFIC	_				RE	BABA				ONSI	STEN	ICIA	
5	Χ	Χ	Χ	Х	Χ		Χ	Χ					Χ	Χ				Χ	Χ			
10	Χ					.						1										Ш
15																					<u> </u>	Ш
20												4										\vdash
25 30				-		H					-	-				\vdash		-				Н
35						1						-										\vdash
40												1										Н
45						1						1										
50												1										H
55												1										
60																						
65												1										
70																						
75																						
80																						
85																						Ш
90				_	ļ					ļ	_	1									<u> </u>	Ш
95												-									<u> </u>	Ш
100			<u> </u>		<u> </u>]			<u> </u>							Ш
		ГОТА			6			ГОТА			2			ГОТА		2			ГОТА			2
	POR	CEN				Ш		CEN	TAJE	17	7%		POR	CEN	TAJE	179	%	POR	CEN	ГАЈЕ	17	7%
		TOT	AL A	SAS	BL	JΕΙ	NAS			05:			010:	.=.		90						
	1 . 1												CION									
																		aja ya	que			
	mejo	ra su	cons	ıster	ıcıa	, <u>y</u>	mani	iene i	bajo e	і ро	rcer	ıτa	je de	agriet	ado s	uperi	ıcıaı.					
																						-

			MUE	STR	ΔΝ	<u>0.</u>			Π_	1			l							A			
				ECH		0.			18	-nov	-09							- 4	VIDINA)				
	T	AMA	ÑO D			JES	STRA	<u>λ</u> :		100							Δ	NE	Νľ	ΑÌ			
								·-				ΙA	BLES)				11 11-	, 11 1				
	TE	EMPE	RATI	URA		П		HUN	ЛEDA	D			С	ANT.	ARC	ILLA			Т	ΑN	ΛΑÑC	<u> </u>	
		1	100						19					1	0%				PI	ΞQ	UEÑ	0	
											DEF	E	CTOS										
				,		1			IETAL				(CANT									
			/ACIO			\dashv			RFIC						BAB/			-		_	STEN		_
5	Х	X	X	Х		ı L	Х	X	X	Х	X		X	Х	X	X	Х	X		_	X	Х	X
10	X	X	X	X	X	ı ŀ	X	X	X	X	X		X	X	X	X	X	X		_	X	X	X
15 20	X	X	X	X	X	ıŀ	X	X	X	X	X		X	X	Χ	Х	Х	X		_	X	X	X
25	X	X	X	X	X	ı	X	X	X	X	X		^	^				X	_	_	X	X	<u>^</u>
30	X	X	X	X	X	ı	^ X	X	X	X	X							X			X	X	X
35	X	X	X	Х	X	ı F	X	X	X	Х	Х							X			X	Х	X
40	X	X	X	Х	Х	ı F	X	X	X	Х	Х							X			X	Х	X
45	Х	X	X	Х	Х	ıF	X	X	X	Х	Χ							X			X	Х	X
50	Χ	Χ	Х	Χ	Х	.	Χ	Χ	Х	Χ	Χ							Х			Χ	Х	Х
55	Χ	Χ	Χ	Χ	Х	ıĒ	Χ	Χ	Χ	Х	Χ							Х	Х		Χ	Х	Χ
60	Χ	Χ	Χ	Χ	Χ	L	Χ	Χ	Χ	Χ	Χ							Х			Χ	Χ	Χ
65					Ш	L	Χ	Χ	Χ	Χ	Χ							Х			Χ	Χ	Χ
70					Ш	ı	X	X	X	Χ	Χ							X			Χ	Х	Х
75						ı þ	Χ	Χ	Х									X		_	X	X	X
80 85					\vdash	ı H												X	 	_	Χ	Χ	Χ
90					\vdash	ı	\dashv		 										+	\dashv	$\overline{}$	\vdash	
95						ı			 									-	+	\dashv			
100						ıŀ			 										+	\dashv			
177			<u>I</u>			L						, ,											
	Т	OTA	L	6	0		Т	OTAI	L	7	8		7	OTAI		1	7		X X X TOTAL PORCENTAJE				0
	POR		ГАЈЕ					CEN	TAJE	33	8%		POR	CENT	ΓAJE		%	PO	RCE	NT	AJE	34	%
		TOT	AL A	SAS	BU	ΕN	IAS		<u> </u>							0							
													CION										
									stra no														
	_							_	ceso							_	elaoı	nas	se				

encuentran en la formación, agrietado superficial y en la consistencia.

Experimentos 2

									,	VAR	ΙA	BLES										
	Т	EMPE	RATU	JRA			HUN	1EDA	D			(CANT	. ARC	ILLA			TAN	ΛΑÑΟ)		
		1	50					19						10%				PEQ	UEÑO)		
										DEF	Ε	CTOS										
		FORM	1ACIĆ	N			AGRI SUPE					CAN	TIDA	D DE	REBA	ABA	(CONSI	STEN	CIA		
5	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	Х	X	Χ	Χ	Χ	
10	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	
15	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	X X X X X X X X X X X X X X X X X X X					
20	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ	X X X X X					
25	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Х	Χ	
30						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
35						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
40						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
45						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
50						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
55						Χ	Χ	Χ	Χ	Χ							Χ	X	Χ	Χ	Χ	
60						Χ	Χ	Χ	Χ	Χ												
65						Χ	Χ	Χ	Х	Χ												
70						Χ	Χ	Χ	Χ	Χ												
75																						
80																						
85																						
90																						
95																						
100																						

TOTAL	25		TOTAL	_	70		TOTAL	25	TOTAL	55
PORCENTAJE	14%		PORCENT	AJE	40%		PORCENTAJE	14%	PORCENTAJE	31%
TOTAL AS	SAS BU	E١	NAS					0		
					OBSER'	V٨	CIONES			

	b	MUESTRA No:
ANDINA	01-jun-10	FECHA:
7 11 (15)11 (7.1	100	TAMAÑO DE LA MUESTRA:
_	•	<u> </u>

											VAR	IΑ	BLE	S									
	Т	EMPE	RAT	URA	١			HUN	MEDA	D			(CANT.	ARC	ILLA				TΑ	MAÑ)	
			100					2	21,5					,	10%					PE	QUEÑ	Ю	
											DEF	E	CTO										
				,					IETA					CANT									
		FORM		1					RFIC						BAB			4			SISTE		
5	Х	Х	Х	Х	Х		Χ	Х	Х	Х	Х		Х	Х	Х	Х	Х	ļ	Х	Х	Х	Х	Х
10	X	Х	Х	Х	Х		Х	X	X	Х	X		X	X	X	Х	Х	ļ	Х	X	Х	Х	Х
15	X	Х	Х	Х	Х		Х	X	X	Х	X		Х	Χ	Х	Χ	Χ	ŀ	Х	X	X	X	Х
20	X	X	X	Х	Х		X	X	X	X	X							ŀ	Х	X	X	X	Х
25	X	Х	Х	Х	Х		Χ	X	X	X	X							ŀ	Х	X	Х	Х	Х
30	Χ	Χ	Х	Х	Χ		Χ	X	X	X	X							ŀ	Х	Χ	Х	Х	Х
35				<u> </u>			Χ	Χ	Х	Х	Х							ŀ	Х	Х	Х	Х	Х
40							Χ	Χ	Χ	Х	Χ							ļ	Χ	Χ	Χ	Χ	Χ
45							Χ	Χ	Χ	Х	Χ							ļ	Χ	Χ	Х	Χ	Χ
50							Χ	Χ	Χ	Χ	Χ							ļ	Χ	Χ	Χ	Χ	Χ
55							Χ	Х	Χ	Х	Χ							ļ	Χ	Χ	Х	Х	Χ
60							Χ	Χ	Χ	Х	Χ							ļ	Χ	Χ	Χ	Χ	Х
65																		ļ					
70																		Į					
75																		L					
80																		Į					
85																							
90																		L					
95																							
100																							

TOTAL	30		TOTAL	60		TOTAL	15	TOTAL	60
PORCENTAJE	18%		PORCENTAJE	36%		PORCENTAJE	9%	PORCENTAJE	36%
TOTAL AS	SAS BU	E١	NAS				0		
				OBSER	V	ACIONES			

							-	IOJA	DE K	EGI	SIR	ŧ0	DE L	AIU	3							
			MUE	STF	RA N	lo:				С								A.		=ma		
				ECH					14-	-may	y-10						4	N II	TNT			
	Т	AMA	ÑΟ D	E L/	M A	JΕ	STRA	۹:		100							_ <i>F</i>	AND) IIV	4"		
											VAR	lΑ	BLES							~		
	TI		RAT	UR/	١			HUN	/EDA	<u>D</u>			С		ARC	ILLA	4			MAÑO		
			100						19			Ц	CTOS		55%				PEC	(UEÑ	<u>U</u>	
						П		۸CD	IETAD		DEF	E(IDAD	DE	Т	I				
			MACIO	_			5	SUPE	RFIC	IAL				RE	BAB/				ONSI			l.
5	Χ	Χ	Χ	Х			Χ	Χ	Х	Χ	Х	١.	Χ	Χ	Χ			Χ	Χ	Χ	Х	Х
10	X	X	X	X	Х					<u> </u>	<u> </u>						4	X	X	X	Х	Х
15 20	X	Х	Х	Х	Χ												4	Х	Χ	Χ	Х	Х
25	^					╽┠											-					
30																	1				 	
35						lŀ											1				<u> </u>	
40																	1					
45																						
50																						
55										-	<u> </u>	- 1					4					
60						╽┟				<u> </u>							4				 	
65 70										<u> </u>		1					-				 	
75																	1					
80																	1					
85																	1					
90																						
95																						
100																	╛					
	-			T 4	^	1 1		ГОТА	<u> </u>	Т.			-	ОТА	<u> </u>		_		OTAI	1		-
		CEN	L TAJE		6 I%	H		CEN			5 3%	Н		CEN		3 8%	╁		CENT		38	5 3%
			AL A						<u> </u>							80						
													CION									
									esenta	an p	roble	em	nas er	form	ación	ya que	las	asas	}			
	se qu	uedar	n pega	adas	en.	las	s mat	rices														

MUESTRA No:	d
FECHA:	31-may-10
TAMAÑO DE LA MUESTRA:	100
	VARIA

										VAF	RIA	BLES	S									
	TE	EMPE	RAT	JRA	١		HUN	/IEDA	D			(CANT	. ARC	ILLA				TAN	ИAÑС)	
		1	00					19						10%					GR	ANDE	Ξ	
										DEF	E	CTOS	3									
							AGRI						CANT									
		FORM		_			SUPE							BAB						STEN		
5	Χ	Χ	Χ	Х	Х	X	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Х	Х	_	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ	Х	_	Χ	Χ	Χ	Χ
15	Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ	Х	_	Χ	Χ	Χ	Χ
20	Χ	Χ	Χ	Х	Х	X	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ
25	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ							Х		Χ	Χ	Χ	Χ
30	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ							X		Χ	Χ	Χ	Χ
35	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ							Х		Χ	Χ	Х	Χ
40	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ							Х		Χ	Χ	Χ	Χ
45	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ							Х		Χ	Χ	Χ	Χ
50	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ							Х		Χ	Χ	Х	Χ
55	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Х							Х		Χ	Χ	Χ	Χ
60	Χ	Χ	Χ	Х	Х												Х		Χ	Χ	Χ	Х
65	Χ	Χ	Χ	Х	Х																	
70																						
75																						
80																						
85																						
90																						
95																						
100																						

TOTAL	65		TOTAL	55		TOTAL	20	TOTAL	60
PORCENTAJE	33%		PORCENTAJE	28%		PORCENTAJE	10%	PORCENTAJE	30%
TOTAL AS	SAS BU	JΕ	NAS				0		
				OBSER	V	ACIONES			

MUESTRA No:	ab
FECHA:	01-jun-10
TAMAÑO DE LA MUESTRA:	100

										VAF	RIA	BLES	3									
	TI	EMPE	RAT	URA	١		HUM	1EDA	D			(CANT	. ARC	ILLA	4			TAN	ΛΑÑC)	
		1	150				2	21,5						10%					PEQ	UEÑ	0	
										DEF	E	CTOS	3									
							AGRI						CANT									
		FORN					SUPE		_				_	BAB					ONSI			
5	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Х	Χ	Χ	Х	Χ	>		Χ	Χ	Х	Χ
10	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	>	_	Χ	Χ	Х	Χ
15	Χ	Χ	Χ	Х	Χ	 Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	>	_	Χ	Χ	Х	Χ
20	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	>		Χ	Χ	Χ	Χ
25						Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ			>	(Χ	Χ	Х	Χ
30						Χ	Χ	Χ	Χ	Χ							>	(Χ	Χ	Х	Χ
35						Χ	Χ	Χ	Х	Χ							>	(Χ	Χ	Х	Χ
40						Χ	Χ	Χ	Х	Х							>	(Χ	Χ	Х	Χ
45						Χ	Χ	Χ	Х	Х							>	(Χ	Χ	Х	Χ
50						Χ	Χ	Χ	Х	Χ							>	(Χ	Χ	Χ	Χ
55						Χ	Χ	Χ	Х	Χ							>	(Χ	Χ	Χ	Χ
60						Χ	Χ	Χ	Х	Χ							>	(Χ			
65						Χ	Χ	Χ	Х	Х												
70						Χ	Χ	Χ	Х	Х												
75						Χ	Χ	Χ	Х	Х												
80						Х	Χ	Χ	Х	Х												
85																						
90																						
95																						
100																						

TOTAL	20		TOTAL		80		TOTAL	23	TOTAL	57
PORCENTAJE	11%		PORCENTAJ	Ε	44%		PORCENTAJE	13%	PORCENTAJE	32%
TOTAL A	SAS BU	ΙE	NAS					0		
					OBSER	V	ACIONES			

									1				Ì										
			MUE			lo:			<u> </u>	ac									À		=min		
				ECH					14	-may								Λ	NID	TNT			
	I	AMAI	<u>O O</u>	E LA	<u>\ M</u> L	JE	STRA	4 :		100			D. =0					A	ND	MIN	J_{m_k}		
									.== .		VAR	lΑ	BLES					_					
	11		RATI	URA	١.			HUN	/EDA	D.		4	C	ANT.		ILLA	١				MAÑC		
			150						19			Ц	27.00		55%					PEC)UEÑ	<u> </u>	
						П		A O D			DEF	F(CTOS		10 4 0								
		F∩RI	ЛАСІС	ńм				AGRI SUPE					(CANT	BABA					ONSI	STEN	Δاڪاد	
5	Х	X	X	X	Х	H	Х	X	X	X	Х	H	Х	X	X	X	Х		Х	X	X	X	Х
10	X	X		 ^	\sim	1 1	X	X	X			1	X						X	X	X	X	X
15				1		1						1							X	X	X	X	X
20						1 1						1										Ħ	
25																							
30																							
35																							
40																							
45																							
50																							
55																							
60																							
65																							
70																							
75																						<u> </u>	
80												.											
85										-		.											
90												1											
95												4										-	
100				<u> </u>		J L						J I											
	-	ОТА	l I	Τ-	7	П		ГОТА	ı		3	П	Т	ОТАІ	l		3	П		ГОТА	1	1	5
			<u>г</u> ГАЈЕ			H		CEN			<u>2</u> %	H		CEN			<u>'</u> %	H		CEN		42	
			AL A								- , 3	ш				79	,,,						7.
										OBS	SER	V٨	CION	NES									
	Con	esta p	oasta	уа	esta	ı te	mper	ratura	mejo	ra la	a for	ma	ación	y la co	onsist	enci	a de	Ιa	sa pe	ro			
	qued	la lista	a para	ser	pe	ga	da de	inme	diato	ya c	ue :	si s	se dej	a sec	ar po	co ti	emp	o r	nas e	sta			
	se de	espre	nderá	del	jarr	Ο.																	

							Н	IOJA	DE R	REGI	STR	80	DE E	DATO	S								
			MUE	STR	RA N	0:				ad			1										
			F	ECH	lA:				31-	-may	/-10									X TA			
	T	AMA	D OÑ	E LA	۱ ML	JES	STRA	۸:		100							<i>F</i>	H	NDI	.INA			
											VAR	lΑ	BLES										
	TE	EMPE		URA	١.				1EDA	D			C	ANT.		ILLA	١	ļ			MAÑC		
		1	150						19			L			10%					GR	AND	<u> </u>	
						_		4 O D I			DEF	E(CTOS		10 4 0		<u> </u>	- 1					
		FORN	ЛАСІ	ИČ				AGRI SUPE					'	CANT RE	BAB/				С	ONSI	STEN	1CIA	
5	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ
10	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ
15	Χ	Χ	Χ	Х	Χ	L	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х	ļ	Χ	Χ	Χ	Χ	Χ
20	Χ	Χ	Х	Х	Χ	L	Χ	Χ	Х	Χ	Χ		Χ	Х	Х	Χ	Χ		Χ	Χ	Х	Χ	Χ
25	X	X	X	X	X	L	X	X	Х	X	X		X	X	Х	X	X	ŀ	Х	X	X	Х	X
30	X	X	X	X	X	-	X	X	Х	Х	Х		X	X	X	Х	X	ŀ	X	X	Х	X	X
35	X	X	X	X	X	-	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
40 45	X	X	X	X	X	-	X	X	X	X	X		X	X	X	X	X	-	X	X	X	X	X
50	X	X	Х	X	X	-	X	X	X	X	X		X	X	X	X	X	-	X	X	X	X	X
55	X	X	X	X	X	-	X	X	X	X	X							ŀ	X	X	X	X	X
60				<u> </u>		F	X	X	X	X	Х							ŀ	X	X	X	X	X
65				1		F	X	X	X	X	Х							ŀ					
70						F	X	X	X	Х	Х							ŀ					
75							Χ	Χ	Х	Х	Х							ľ					
80							Χ	Χ	Х	Χ	Х												
85							Χ	Χ	Χ	Χ	Χ												
90																							
95																							
100						L						Ι.						Ĺ				<u> </u>	
		ГОТА		_	5			OTA			5			ОТА		_	0			OTA		6	
	POR	CEN						CEN	ΓAJE	34	! %		POR	CEN	ГАЈЕ)%		POR	CENT	ГАЈЕ	24	.%
		TOT	AL A	SAS	BU	ΕN	IAS			000		. , ,	10101	150		0							
										ORS	SER'	٧	ACION	NES.									-
																							\dashv

HOJA DE REGISTRO DE DATOS MUESTRA No: bc FECHA: 14-may-10 TAMAÑO DE LA MUESTRA: 100 VARIABLES **HUMEDAD TAMAÑO TEMPERATURA** CANT. ARCILLA 100 55% PEQUEÑO 21,5 **DEFECTOS AGRIETADO** CANTIDAD DE **FORMACIÓN SUPERFICIAL REBABA CONSISTENCIA** 5 Χ Χ Χ $X \mid X$ Χ Χ Χ Χ Χ Χ Χ Χ $X \mid X$ 10 Χ Χ Χ Χ Χ Χ Χ Χ Χ 15 Χ Χ Χ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 **TOTAL** 13 **TOTAL** 3 **TOTAL** 2 TOTAL 10 PORCENTAJE 46% PORCENTAJE 11% PORCENTAJE 7% **PORCENTAJE** 36% TOTAL ASAS BUENAS 85 OBSERVACIONES La consistencia del asa es muy suave y se tiene problemas en el desmolde

							Н	OJA	DE R	EGI	SIR	ťΟ	DE L	DATO	S								
			MUE			0:				bd										9	****		
				ECH					01	-jun									NID	TNIA			
	Т	AMA	<u> O O</u>	E LA	ML	<u>IEST</u>	R۸	۸:		100								P	ND	IINA			
											VAR	IΑ	BLES					_			~.		
	TI	EMPE		URA	١				1EDA	D				ANT.		ILLA	١	ŀ			MAÑ		
		1	100					2	21,5			Ļ	0.7.0.0		10%					GR	AND	<u> </u>	
					П	1		A O D I			DEF	F(CTOS										
		FORN	ЛАСІ	ИČ				AGRI SUPE						CANT RE	BABA				С	ONSI	STEN	NCIA	L
5	Χ	Χ	Х	Х	Х	Х	(Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ
10	Χ	Χ	Х	Х	Χ	Х		Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ
15	Χ	Χ	Х	Х	Х	Х		Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ
20	Χ	Χ	Χ	Х	Χ	Х	_	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Χ
25	Χ	Χ	Χ	Х	Χ	X		Χ	Χ	Χ	Χ								Χ	Χ	Χ	Χ	Χ
30	Χ	Χ	Χ	Х	Χ	X		Χ	Χ	Χ	Χ								Χ	Χ	Χ	Χ	Х
35	Х	Х	X	X	X	Х		X	Х	Х	X								X	X	Х	Х	Х
40	Х	Х	Х	X	X	Х		X	Х	Х	X							ŀ	X	X	Х	Х	Х
45	X	X	X	X	X	Х	_	X	Х	Х	X							ŀ	X	X	Х	Х	Х
50	X	X	X	X	X	X		X	X	X	X							ŀ	Χ	Χ	Χ	Х	Χ
55 60	X	X	X	X	X	X		X	X	X	X							ŀ					
65	^	_ ^	_ ^		^	<u> </u>	`	^	۸	^	^							-					
70																							
75																		-					
80																		-					
85																		ŀ					
90				1														ŀ					
95																							
100																							
		<u> </u>	<u> </u>																	·			
		ΓΟΤΑ		6	-			OTAI			0			OTA			20			OTA			0
	POR	CEN						CENT	ГАЈЕ	32	2%		POR	CEN	ΓAJE	11	1%		POR	CEN	ГАЈЕ	26	6%
		TOT	AL A	SAS	BU	ENA:	S									0							
										OBS	SER'	٧Æ	CION	NES									
																							_
																							\dashv

							-	IOJA	DE K	EGI	SIF	₹0	DE L	JATO	3								
			MUE:	STR	A N	0:				cd										A	THE .		
				ECH					17-	-may	/-10												
	Т	AMA	NO DI	E LA	M M	JES	STR/	۹:		100								ΑN	DI	ΝÆ	Ź₩.		
											VAR	RIA	BLES								~		
	TI	EMPE		JRA	١	L			<u>IEDA</u>	D		4 1	C	ANT.		ILL <i>A</i>	١				ИAÑС		
		1	100						19			Ц	2700		55%					GR	ANDE	<u> </u>	
								AGRI	ГТЛГ		DEF	E(CTOS	CANT	IDAD	חר	I	1					
		FORN		_			(SUPE	RFIC	IAL				RE	BAB/	١					STEN		_
5	Х	Х	Х	Х	Х	L	Χ	Х	Х	Х	Х	4 1	Х	Х	Х	Χ	Х	>		Χ	Χ	Х	Х
10	X	X	X	X	X	L	Χ	Х	Х	Х	Х	-	X	X	X	X	Х	>		X	X	X	X
15	X	X	X	X	X	H						4 1	Χ	Χ	Х	Х	Х	\rightarrow		X	X	X	X
20 25	X	X	X	X	X	F						1						>		X	X	X	X
30	X	X	X	X	X	H												\vdash		<u>^</u>	X	X	X
35	X	X	X	X	X	-												X	X		X	X	X
40	X	X	X	Х	Х														Ť	`	,,	 ``	
45	Χ	Χ	Х	Χ	Χ																		
50	Χ	Χ	Χ	Χ	Χ																		
55	Χ	Χ	Χ	Χ	Χ																		
60	Χ	Χ	Χ															-				<u> </u>	
65						L						4 1										—	
70 75						H						4 1										<u> </u>	
80						H						-						-				 	
85						-						1						-	+			 	
90																			+			1	
95																						1	
100																							
ı				,																			
		OTA		6	-	4		OTA			0	Ц		ΓΟΤΑΙ			5	1_		DTAL			5
	POR	CEN						CEN	I AJÉ	8	%	Ш	POR	CENT	IAJÉ		2%	P(JKC	ENT	AJE	28	3%
		101	AL A	SAS	BU	⊏IV	AS			∩R9	SED	\//	CIOI	VIE S		20							
	No s	e des	nrend	len I	as a	sas	. de	la ma						NLO									
	110 3	<u> </u>	PICITO	.0111	<u> </u>	Juc	, uc	14 1114	1112 y	50 0	.010		<u> </u>										
																							_

													1			- Aller	- mark						
			MUE:			0:				abo				Λ.	VID.	IXI	$^{\parallel}$						
				ECH					14-		/-10			H.	ND:	II N	H-"						
	T.	AMAÍ	10 DI	E LA	ιMι	JE	STR/	\ :		100													
											/ARI	<u>A</u>	BLES										
	TE	MPE		JRA	ı				/IEDA	D			С		ARCI	LLA	١				MAÑC		
		1	50					2	21,5						55%					PEC	QUEÑ	<u> </u>	
											DEFE	Ξ(CTOS										
	ı	-ORN	1ACIÓ	ЙČ					IETAE RFIC						IDAD BABA				C	ONSI	STEN	ICIA	١
5	Χ	Χ					Χ	Χ	Χ				Х	Χ	Χ				Х	Χ			Τ
0																							T
5																							T
20																							T
25																							
30																							
35																							
Ю																							Τ
ŀ5																							
50																							
55																							
06																							
35																							
70																							
' 5																							
30																							
35																						<u> </u>	
00																						<u> </u>	
95																						<u> </u>	L
00																						<u> </u>	
ı										1 .			T _					_					_
		OTAI		2		Ц		OTA			3			OTA			3	4		OTA			2
ļ	POR	CENT						CEN	TAJE	30)%		POR	CEN		30)%		POR	CEN	IAJE	20	%ر
		TOT	AL A	SAS	BU	ΙEΝ	NAS			000	·==:	,,	010:	150		92							
ļ	1 . 1		. 1										CION										
l	La te	mper	atura	ayu	ao e	en	el des	smolo	le de	este	nue	VC	o mod	elo de	e asa								

AUTOR:

PAUL ROJAS PACURUCU

							•		<i>DL 1</i> .		• • • • • • • • • • • • • • • • • • •		DL L	<i>-</i> 7.7.0	•								
			MUE			0:				abo													
				ECH					01	-jun								_			1		
	T	AMA	<u> 0 O</u>	E LA	۱ ML	JES	STR/	١:		100							A	ſΝ	1DII	$NA^{\!{\scriptscriptstyle J}}$	D		
											/AR	lΑ	BLES										
	TE	EMPE	RAT	URA	١.			HUN	1EDA	D			C	ANT.	ARC	ILLA	١.			TAI	MAÑO)	
		1	150					2	21,5					•	10%			ſ		GR	ANDI	Ξ	
										I	DEF	E	CTOS	;									
								AGRI	ETAL	00			(CANT	IDAD	DE							
		FORN	//ACI	ИČ			9	SUPE	RFIC	IAL				RE	BABA	4			С	ONS	STE	NCIA	١
5	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ
10	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х
15	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Х	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ
20	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	ſ	Χ	Χ	Х	Х	Χ
25	Χ	Χ	Х	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Х	Х	Х	Х	Ī	Χ	Χ	Х	Х	Х
30	Χ	Χ	Х	Х	Х		Χ	Χ	Χ	Χ	Χ		Χ	Х	Х	Х	Х	ſ	Χ	Χ	Х	Х	Х
35	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Х	Х	Х	Х	Ī	Χ	Χ	Х	Х	Х
40	Χ	Χ	Х	Х	Х		Χ	Χ	Χ	Х	Х		Х	Χ	Х	Х	Х	Ī	Χ	Χ	Х	Х	Х
45	Χ	Χ	Х	Х	Х		Χ	Χ	Χ	Х	Х							Ī	Χ	Χ	Χ	Х	Х
50	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х							Ī	Χ	Χ	Х	Х	Х
55	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х							Ī	Χ	Χ	Χ	Х	Х
60							Χ	Χ	Χ	Х	Х							Ī	Χ	Χ	Х	Х	Χ
65							Χ	Χ	Χ	Х	Х							Ī	Χ	Χ	Х	Х	Χ
70							Χ	Χ	Χ	Х	Х							Ī					
75							Χ	Χ	Χ	Х	Х							ı					
80																		ı					
85																		ı					
90																		Ī					
95																		ı					
100																		Ī					
	•					_	•			•								-		•			
	7	ГОТА	L	5	55		T	OTA		7	5		7	ГОТА	L	4	10		T	ОТА	L	6	5
	POR	CEN						CEN	ГАЈЕ	32	2%		POR	CEN	ΓΑJΕ	17	7%		POR	CEN	ΓΑJΕ	28	8%
		TOT	AL A	SAS	BU	ΕN	IAS									0							
										OBS	SER'	V/	ACIO1	NES									

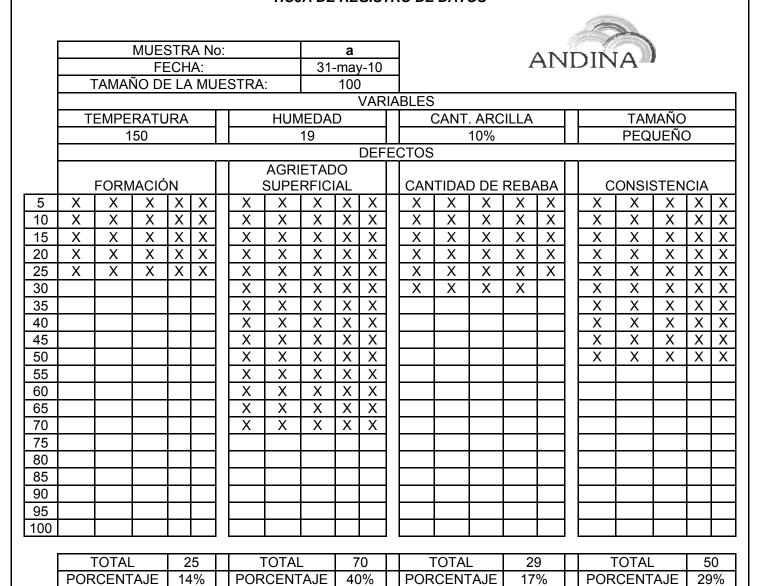
HOJA DE REGISTRO DE DATOS MUESTRA No: acd FECHA: 17-may-10 TAMAÑO DE LA MUESTRA: 100 **VARIABLES HUMEDAD TEMPERATURA** CANT. ARCILLA TAMAÑO 150 55% **GRANDE** 19 **DEFECTOS AGRIETADO** CANTIDAD DE **FORMACIÓN SUPERFICIAL REBABA CONSISTENCIA** 5 Χ Χ Χ $X \mid X$ Χ Χ Χ Х Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ 10 Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ X Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ 15 Χ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 **TOTAL** 14 **TOTAL** 12 **TOTAL** 15 TOTAL 15 PORCENTAJE 25% PORCENTAJE 21% PORCENTAJE 27% **PORCENTAJE** 27% TOTAL ASAS BUENAS 59 **OBSERVACIONES** La consistencia no es óptima ya que se desprenden las asas de los jarros.

			MUE	STR		lo:			17	bcc									A.				
ŀ		Λ N / Λ N				16	STR/	۸.	17-	100			ł					۸	NID	INI			
ŀ	I.	AIVIAI	ע טוי	<u> </u>	1 IVIC	JE	SIR	٦.				Ν	BLES	,				H	ND	IIIV <i>I</i>	J		
ŀ	TF	EMPE	RΔTI	ΠRΔ		П		нш	ЛЕDA		VAIN	Ï		ANT.	ΔRC	ΠΙΔ				ΤΔΙ	MAÑO	<u> </u>	
ŀ	- ''		100	017	`				21,5			1	— <u> </u>		55%	1667	`	-			AND		
ŀ									, 0		DEF	E	CTOS		70 70					<u> </u>	,		
İ		FORN	10 CIG	ńм					IETAI RFIC	00				CANT	IDAD BAB/					ONSI	STEN	ICIA	
5	Χ	X	X	X	Х	Н	Х	X	X	X			Х	X	X	X	Х		Х	X	X	X	X
10	X	X	X	X	X													-	X	X	X	Х	Х
15	X	X	X	X	X							1						ŀ	X	X			
20	X	X	X	X	X													ŀ		, ,			
25	Χ	Х	Х	Х	Χ													ŀ					
30																		ľ					
35																		ľ					
40																		Ī					
45																							
50																							
55																							
60																							
65																		ļ					
70																		ļ					
75																		ļ					
80												4						-					
85												-						-					
90				_								-										-	
95 100																		-				1	<u> </u>
100								[J		Į				L			[<u> </u>	
ſ	٦	ОТА	L	2	25		7	ГОТА	L		4		1	ГОТА	 L	!	5		7	ОТА	L	1	2
	POR	CEN	ГАЈЕ	54	1%		POR	CEN	TAJE	9	%		POR	CEN	ГАЈЕ	11	۱%		POR	CEN	ГАЈЕ	26	6%
ļ										001) F F	\ / /	10101	IFC		66							
ŀ	۸۱۸۵	or on	la ba	nda	ما ہ		nior	40 10 4					ACION stá mu			lomá	ío on	. Io	form	agión			
ŀ							s matr		oma	μυι	que	es	old IIIL	ıy Süz	ive ac	١٢١١٤	15 EN	ı Id	10111	acion			
ŀ	ias a	3a3 S	e que	uaii	CII	ıas	ıılalı	1000															
ŀ																							

														1		The same of						
			MUE:	STF	RA N	o:				abc	d			A N I		Ι Δ	1					
			FI	ECH	IA:				17-	-may	/-10		1	HIN	DIN	IA-						
	T.	AMAÍ	ÑO DI	E L/	۱M ا	JΕ	STR/	۸:		100)											
I										\	/AR	IΑ	BLES									
ſ	TE	EMPE	RAT	JRA	`			HUN	1EDA	D			С	ANT.	ARC	ILLA			TAI	ИAÑС)	
Ī		1	50					2	21,5					5	55%				GR	ANDE	Ξ	
										[DEF	EC	CTOS									
Ī								AGRI	ETAL	00				CANT	IDAD	DE						
		FORI\	//ACIO	<u>NČ</u>			9	SUPE	RFIC	IAL				RE	BABA	١		С	<u>ONSI</u>	STEN	ICIA	
	Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х			Χ	Χ	Χ			Χ	Χ	Χ	Χ	
	Χ																					
)																						
	•													•								

		FURI		אוכ			DUFE	KLIC	IAL			ΓL	DADA	١		U	ONO	OIEN	ICIA	
5	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х		Χ	Χ	Χ			Χ	Χ	Χ	Х	Х
10	Χ																			
15																				
20																				
25																				
30																				
35																				
40																				
45																				
50																				
55																				
60																				
65																				
70																				
75																				
80																	·			
85																	·			
90																				
95																				
100																				

TOTAL	6		TOTAL		4		TOTAL	3	TOTAL	5
PORCENTAJE	33%		PORCENTA	AJE	22%		PORCENTAJE	17%	PORCENTAJE	28%
TOTAL AS	SAS BU	ΙEΙ	NAS					87		
				(OBSER\	//	CIONES			
La temperatura	y la dur	ez	a son la prin	icipa	l causa	de	mejora en la fori	mación		


AUTOR:

PAUL ROJAS PACURUCU

								1100			0,0	,,,			00								
			MUE	STR		0:			31.	1 -may	y-10									7			
	т	Λ Ι Λ Ι Λ Ι	ÑO D			ıE	STD/	۸.	31	100								Δ1	ND]	ΙΝΙΔ	11		
	- 1	AIVIAI	NO D	<u> </u>	1 IVIC	<u> </u>	SIN	٦.				1.0	BLES	,				-11	נעוי.	шчл			
	TI		RAT	I ID A					ЛЕDA		VAR			ANT.	ADC	II I A		П		ΤΛ.	MAÑ		
	- 11		100	UKA	'	ŀ		ПОІ	19	עע					10%	ILLP	١				QUEÑ		
			100						19		<u> </u>	Ц)TO		10%					PEG	ZUEN	0	
								400			DEF	E	CTOS	CANT	10.40								
			MACIO	_			(SUPE	IETAI RFIC	IAL				RE	BABA	١					STE		_
5	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		Χ	Χ	Х	Х	Χ
10	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ
15	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Χ	Χ
20	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Χ	Χ
25				$oldsymbol{ol}}}}}}}}}}}}}}}}}$			Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Χ	Χ
30							Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Х	Χ
35							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Χ	Χ
40							Χ	Χ	Х	Χ	Х								Χ	Χ	Χ	Χ	Χ
45							Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Χ	Χ
50							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Χ	Χ
55							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ
60							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ
65							Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Χ	Χ
70							Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Х	Χ
75							Χ	Χ	Χ	Χ	Χ								Χ	Χ	Χ	Χ	Χ
80							Χ	Χ	Χ	Χ	Χ												
85																							
90																							
95																							
100																							
																							_
		ΓΟΤΑ			20			ГОТА			80	Щ		ΓΟΤΑ			0			ГОТА			5
	POR		TAJE					CEN	TAJE	43	3%		POR	CEN	ГАЈЕ		%		POR	CEN	TAJE	41	1 %
		TOT	TAL A	SAS	3 BU	Εľ	NAS									0							
										OBS	SER	V٨	CIO	NES									

Experimentos 3

HOJA DE REGISTRO DE DATOS

OBSERVACIONES

AUTOR:

PAUL ROJAS PACURUCU

TOTAL ASAS BUENAS

0

1											_									
			MUE): 		0.4	b	40						A		Things.		
		- ^ ^ ^ ^ ^		ECH		ГОТГ	١٨.	01	l-jun		-					A N I E	NINT.			
	- 1	AMAI	ע טא	L LP	A IVIU	ESIF	KA:		100		 ABLE	<u> </u>			<u> </u>	ANI)IIN <i>E</i>	J.m		
	т	EMPE	ΕΝΤ	ΙΙDΛ			шп	MEDA		VARI		<u>S</u> CANT	۸۵۵	ΠΙΛ			Τ.	MAÑ		
	- 1		100	UKA	`			21,5	עו		-		10%	ILLA				QUEÑ		
			100					21,0		DEF	ECTO		10 /0				<u> </u>	QULI	<u></u>	
		FORM	MACIO	ÓМ			_	RIETAI	00			CAN	ΓΙDAD EBAΒ				CONS	SISTE	NCIA	
5	Х	X	X	X	Х	X	X	X	X	Х	Х	X	X	X	Х	X	X	X	X	X
10	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
15	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х	Х
25	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ						Χ	Χ	Χ	Χ	Х
30	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ						Χ	Χ	Χ	Χ	Х
35	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Χ	Χ						Χ	Χ	Χ	Χ	Х
40						Х	Χ	Χ	Χ	Χ						Χ	Χ	Χ	Χ	Х
45						Х	Х	Х	Χ	Χ						Х	Χ	Χ	Х	Х
50						Х	Х	X	X	X						X	Х	X	Х	Х
55						Х	X	X	X	Х						Х	Х	Х	Х	Χ
60						X	X	X	Х	Х	-									+
65					\vdash	Х	X	Х											 	
70 75																			 	\vdash
80																				┼
85																				+-
90										\Box					\vdash				 	
95					\Box															\Box
100																				\Box
		ΓΟΤΑ		_	5		TOTA		6			TOTA		1	-		TOTA		5	_
	POF	CEN					RCEN	TAJE	37	′%	POI	RCEN	TAJE	10	%	POI	RCEN	TAJĒ	32	%
		TOT	AL A	SAS	BUI	ENAS				<u> </u>	c:-			0						
,									OB	SER\	/ACIC	NES								
																				\dashv

							Н	OJA	DE R	EGI	SIF	ΚÛ	DE L	JATO	S					inc.			
			MUE	STR	A N	0:				С											-		
			F	ECH	IA:				16-	may	/-10							4					
	Т	AMAI	ÑΟ D	E LA	\ ML	JES1	ΓRA	۸:		100							<i>F</i>	N	DIN	۱A	/m/ -		
											VAR	lΑ	BLES										
	TI		RAT	URA	١				1EDA	D			C	ANT.		ILLA	١				ΛΑÑΩ		
			100						19						55%				P	EQ	UEÑ	<u> </u>	
ļ											DEF	E(CTOS										
			4401	ÁΝΙ					ETAL				(CANT					001	101	OTEN	1014	
5	Χ	X	MACIO X	X	Х	٠,	X I	X	RFIC X	X	Х	Ш	X	X	BABA	1		X			STEN X	X	X
10	X	X	X	X	^ X		^ X	X	^	^	^	۱ ا		^				X			X	X	X
15	X	X	X	X	X	<u> </u>	^					1						X			X		_
20	X	X	X	 ^	^							1					\vdash	 ^	+	`			H
25		- ^`	 ^`									1					\square						H
30				1								1					\Box						
35																							
40																							
45																							
50																							
55																							
60																						<u> </u>	
65												4											
70												4											
75						_						1										<u> </u>	
80 85						-						1						-	_	_		 	
90												1								_		\vdash	
95												$\left\{ \ \right\}$					H	-		-			\vdash
100												1						-				 	
		<u> </u>		1	<u> </u>					<u> </u>	<u> </u>	1 !		I	I								<u> </u>
	٦	ГОТА	L	1	8		Т	OTA			7		٦	ГОТА	L		2		1			1	3
	POR		TAJE					CEN	ГАЈЕ	18	3%		POR	CEN	ГАЈЕ		%	PC	RCE	NT	AJE	33	3%
ļ		TOT	AL A	SAS	BU	ENA	S									72							
,										OBS	SER	VA	CIO	NES									
ŀ																							
																						—	
L																							

										\ -			KU DI									
			MUE	STR	A N	o:				d			1				1					
				ECH		<u> </u>			31	-may	/-10		1				ANI	Νľ	Δ III —			
	T.	AMAI	ÑO D	E L/	۱M ا	JES	STR/	\ :		100						1	M VL	711 11	1			
											VAR	RI/	ABLES									
	TE	EMPE		URA	١.				/IEDA	D			(. ARC	ILLA				MAÑC		
			100						19			Ļ			10%				<u>GR</u>	AND	<u> </u>	
								AGRI			DEF	Ė	CTOS		ΓΙDΑΓ	ר ר	<u> </u>	I				_
	ı	FORN	ΛΔΩΙ	ÓΝ				SUPE							EBAB,			ر ا	ONSI	STEN	JCΙΔ	
5	Х	X	X	X	Х	+	Х	X	X	X	Х		Х	X	X	X	Х	X	X	X	X	Χ
10	X	X	X	X	Х		X	X	X	Х	Х		X	X	X	X	X	X	X	X	X	Х
15	Χ	Χ	Х	Х	Χ		Χ	Х	Х	Χ	Χ		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
20	Χ	Χ	Х	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Х	Х	Х	Χ	Х	Х
25	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Х	Х	Χ	Х	Χ	Х	Χ	Х	Χ
30	Χ	Χ	Χ	Х	Χ		Χ	Χ	Х	Χ	Χ							Χ	Х	Х	Х	Χ
35	X	X	X	X	X		X	X	X	X	Х							X	X	X	Х	X
40 45	X	X	X	X	X		X	X	X	X	X							X	X	X	X	X
50	X	X	X	X	X	┞	X	X	X	X	X							X	X	X	X	X
55	X	X	X	X	X		X	X	X	X	Х							X	X	X	X	X
60	X	X	X	X	Х	l	X	X	X									X	X	X	X	X
65																		Х	Х	Х	Х	Х
70																						
75																						
80																			Ļ		\sqcup	
85																					\vdash	
90 95						-													 		\vdash	
100																			 		+	-
100						L						J								<u> </u>	<u> </u>	
		ОТА			0	Ц		ОТА			8			ГОТА		2			TOTAI		6	
	POR	CEN			9%			CEN	TAJE	28	8%		POR	CEN	TAJE	12	.%	POF	RCENT	ΓΑJΕ	31	%
		101	AL A	SAS	BU	'LI	IAS		<u> </u>	OR	SER	٧/	ACIO	NES		0						\dashv
										00		. v .	, (010	IVLU								\dashv

	T.			ECH	A:	o: JESTR/	A :	01	ab -jun 100)					Αľ	1DIN	(Al			
	TE	EMPE	RATU	JRA				MEDA 21,5		VARI	ABLE	CANT	. ARC 10%	ILLA	4			MAÑC UEÑ		
				<u> </u>			AGR	IETAI	00	DEFI	ECTO	S CAN1	ΓIDΑC							
5 10	X	ORN X X	X	X	X	X	X	RFIC X X	X	X	X	X	X X	X	X	X	X X	X	X	X
15 20 25	XX	X X X	X X X	X X	X X X	X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X	X X X	X X X	X X X	X X X
30 35 40						X X X	X X X	X X X	X X X	X X X						X X X	X X X	X X X	X X X	X X X
45 50						X	X	X	X	X						X	X	X	X	X
55 60 65						X X X	X X X	X X X	X X X	X X X						X	X	X	X	X
70 75 80						X X	X X X	X	X	X										
85 90 95																				
100																				
		OTAI CENT TOT	TAJE	13 SAS	%		CEN		41			TOTAI RCENT			25 3%		TOTA RCEN		32	
						-		1	OB:	SER\	/ACIO	NES								

_			
A 10	ac	lo:	MUESTRA N
Aľ	16-may-10		FECHA:
	100	JESTRA:	TAMAÑO DE LA MU
BLES	VARIA		
CANT.	MEDAD	HUN	TEMPERATURA
5.	10		150

					17 1.					ma	,						_						
	Т	AMAI	ÑO D	E L/	A MI	JE	STRA	A :		100)		-										
										'	/AR	IΑ	BLES	;									
	T	EMPE	RAT	UR/	١			HUN	ЛEDA	D			С	ANT.	ARC	ILLA	١			TAI	MAÑC	5	
		•	150			ן ו			19					Ę	55%					PEC	(UEÑ	0	
											DEF	EΩ	CTOS										
								AGR	ETA	00			(CANT	IDAD	DE							
		FORM	ласі(ИČ			(SUPE	RFIC	IAL				RE	BABA	4			С	ONSI	STEN	ICIA	
5	Х	Х	Х	Х	Χ		Χ	Χ	Х	Х	Χ		Χ	Х	Х	Х	Х		Χ	Χ	Х	Х	Χ
10						ן ו	Х						Χ	Χ					Χ	Χ	Χ	Х	Χ
15						ן ו																	
20						1 [
25						ן ו																	
30						1 [
35						1 [
40						1																	
45						1																	
50						1																	
55						1																	
60						1																	
65						1																	
70						ĺľ						i											
75						1																	
80						1				1		1											
85						1						1										†	
90						1						1										T	
95						1						1										T	
	1	1	1	1	1	1		1	1	1	1	1	\vdash	1	1	1		ı				+	

TOTAL	5		TOTAL		6		TOTAL	7	TOTAL	10
PORCENTAJE	18%		PORCENTAJI	Ξ	21%		PORCENTAJE	25%	PORCENTAJE	36%
TOTAL A	SAS BU	ΙE						79		
				(OBSER'	VA	ACIONES			

100

							Н	IOJA	DE R	REGI	STR	80	DE L	DATO	S								
			MUE	STR	RA N	0:				ad										D.			
			F	ECH	IA:				31-	-may	/-10						,	. T.	TEST.	N T A			
	T.	IAMA	<u> O O</u>	E L/	M A	JΕ	STRA	۱:		100							<i>F</i>	Αľ	NDI	IΝΑ	<i></i>		
											/AR	IΑ	BLES					_					
	TE	EMPE		URA	١	ļ			1EDA	.D				ANT.		ILLA	١	ŀ			MAÑC		
		1	150						19				<u> </u>		10%					GR	ANDE	<u> </u>	
								A C D	ETA		JEF	E	CTOS	CANT	IDAD	DE	1	1					
	ı	FORN	//ACIO	ИČ					RFIC				·		BABA				C	ONSI	STEN	1CIA	
5	Χ	Χ	Χ	Χ			Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Χ
10	Χ	Χ	Х	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Х	Χ	Х		Χ	Χ	Χ	Χ	Χ
15	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Х	L	Χ	Χ	Χ	Χ	Χ
20	Х	Х	Х	Х	Х		Χ	Χ	Х	Х	Х		Χ	Х	Х	Х	Х	Ļ	Χ	Χ	Χ	Χ	Χ
25	X	X	X	Х	X	ļ	Х	X	X	Х	X		X	X	X	X	Х	ŀ	Х	Χ	X	Х	X
30	X	X	X	Х	Х	ŀ	X	X	Х	Х	X		X	X	X	Х	X	ŀ	X	X	X	Х	X
35	X	X	X	X	X	ŀ	X	X	X	Х	X		X	X	X	X	X	ŀ	X	X	X	Х	X
40 45	X	X	X	X	X	ŀ	X	X	X	X	X		X	X	X	X	X	ŀ	X	X	X	X	X
50	X	X	X	X	X	ŀ	X	X	X	X	X		X	X	X	X	X	ŀ	Х	X	X	Х	X
55	X	X	X	X	X	ŀ	X	X	X	X	X		X	X	X	X	X	ŀ	^ X	X	X	^ X	X
60	X	X	X	X	X	ŀ	X	X	X	X	X		X	X	X	X	X	ŀ		^	_^_	<u> </u>	\vdash
65						ŀ	X	X	X	Х	Х					^		ŀ					
70							X	X	X	Х	Х							f					
75						ľ	X	X	X	Х	Χ							f					
80						ľ	Х	Х	Х	Х	Χ							ı					
85						ı																	
90						ĺ																	
95																							
100																							
I	Т	ОТА	<u> </u>	I 6	0	1	т	ОТА	<u> </u>	Ω	0		- T	ОТА	<u> </u>	6	60 I	1	—	OTAI		5:	5
		CEN					POR			31				CEN			1%	+		CENT		22	
	. 5.0		AL A			Εľ		<u> </u>	., <u>., ., .</u>		, ,		ı. <u>U.</u> (<u> </u>	.,	0	. , .		. 5.0	<u> </u>			, ,
			<u> </u>	<u> </u>					ı	OBS	SER'	VA	ACION	NES									\neg
														_									
		_					_		_					_	_					_			

							Н	IOJA	DE R	!EGI	SIR	O	DE L	DATO	S							
ſ			MUE	STF	A N	o:				bc									3	Paris,		
Ī				ECH					16-	-May	<i>/</i> -10											
	Т	AMA	ÑO D	E L/	۱ ML	JES	STRA	۸:		100							_A	ND	IN/	<i>₹</i> ₩_		
											/AR	IΑ	BLES									
	TI		RAT	UR/	١.	L			ЛEDA	. <u>D</u>			С		ARC	ILLA				MAÑC		
			100					2	21,5			Ц			55%				PEG	UEÑ	<u> </u>	
ŀ								A O D) <u>E</u> F	F(CTOS		<u> </u>	<u> </u>	ı	1				
		FORI	MACIO	ИĊ					IETAE RFIC				(IDAD BABA			С	ONSI	STEN	1CIA	
5	Χ	Х	Х	Х			Χ	Χ	Χ	Х			Χ	Χ	Χ			Х	Χ	Χ	Х	Х
10	Χ	Χ	Х	Х	Х													Χ	Χ	Х	Χ	Χ
15	Χ	Χ				L												Χ	Χ			
20						L			<u> </u>	Ш		ļ									└	Ш
25						L			<u> </u>	Ш		ŀ									<u> </u>	Щ
30					<u> </u>	F				\longmapsto		ŀ										\vdash
35						ŀ				+		1									├	Ш
40 45						H			 	+		1									₩	H
50						F				\vdash		ŀ									-	++
55						H				\vdash		ŀ										\vdash
60						F				\vdash		-									<u> </u>	
65										\Box		ŀ										
70																						
75																						
80																						
85						L			<u> </u>	Ш											<u> </u>	Ш
90						L			<u> </u>	igspace								<u> </u>				
95						F				igwdapprox											┡	Ш
100						L						L									<u> </u>	
Ī	7	ГОТА	l I	1	2	1	Т	ОТА			1			ГОТА	l	3		1 -	ГОТА	l	1	2
}			TAJE			\dashv		CEN		13				CEN		10%	6		CEN			9%
ľ			TAL A											<u> </u>		80	- 1	1	<u> </u>			
										OBS	SER'	V٨	CIO	NES								
[-											
,																						
}																						
L																						

							HOJA	DE F	KEGI	31K	(U	DE L	JATO	3								
			MUE			0:			bd										3	The same of the sa		
				ECH				01	-Jur								٨	NIC	TNTA			
	T	IAMA	<u> O O</u>	E LA	<u>\ MU</u>	JESTF	RA:		100								A	ND	IINA			
					 _	_		.== .		<u>VAR</u>	IΑ	BLES				r	_			~		
	11	EMPE		URA	<u> </u>			MEDA	עט			C	ANT.		ILL/	١	ŀ			MAÑC		
		1	100					21,5				CTOS		10%					GR	ANDE	<u> </u>	
							۸GP	IETAI		DEF			CANT	חאח	DE		Т					
		FORN	ЛАСІ	ИČ			SUPE		_			`	_	BABA				С	ONSI	STEN	1CIA	
5	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х		Χ	Х	Х	Χ	Х		Χ	Χ	Χ	Х	Х
10	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ		Χ	Χ	Χ	Χ	Х		Χ	Χ	Χ	Χ	Χ
15	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ		Χ	Χ	Х	Χ	Х	L	Χ	Χ	Х	Χ	Χ
20	X	Х	Х	Х	X	X	X	X	Х	Χ		Х	Х	Х	Х	Х	L	Χ	X	X	X	Χ
25	X	X	X	X	X	X	X	X	X	Х		X	X	X	X	X	ŀ	X	X	X	X	X
30 35	X	X	X	X	X	X	X	X	X	X	ŀ	Χ	Χ	Х	Х	Χ	ŀ	X	X	X	X	X
40	X	X	Х	X	<u>^</u>	X	X	X	X	X	ŀ						ŀ	X	X	X	X	X
45	X	X	X	X	X	X	X	X	X	X	ŀ						H	<u>^</u>	X	X	X	X
50	X	X	X	X	X	X	X	X	X	Х							-	X	X	X	X	X
55	X	X	X	X	Х	X	X	X	X	Х	l						F	X	X	X	X	X
60						X	Х	Х									ı					
65																						
70																						
75																						
80																	L					
85																	ŀ					
90 95								1	-								ŀ				\vdash	$\vdash\vdash$
100				-				+		\vdash							H				$\vdash \vdash$	$\vdash \vdash$
100]	<u> </u>	<u> </u>				1	1	<u> </u>	l]	<u> </u>			L				<u> </u>	
		ГОТА			5		TOTA			8			ГОТА			80			OTAI		5	
	POR	CEN					RCEN	TAJE	29	9%		POR	CEN	TAJE		5%		POR	CENT	ΓAJE	28	%
		TOT	AL A	SAS	BUI	ENAS			000	,		0101	IFC		0							
									OR	>⊨K\	V /	CION	NES									
																						\dashv
																						=

							пОЈ	A L)E K	EGI	SIF	ŧ0	, DE L	JATO	3								
			MUE	STR	A N	0:				cd]							f.			
			F	ECH	IA:				15-	Мау	/-10								_ 4			N.	
	Т	AMAI	ÑO D	E LA	A ML	JEST	RA:			100)							_A	N	DIN	۱A۳	<i>!</i>	
											√AR	<u>IIA</u>	BLES					_,_					
	TI	EMPE		URA	١		Η		EDA	D			C	CANT.		ILLA	١.				MAÑ(
			100					1	9			L			55%					GR	AND	Ē	
							^ ^	<u> </u>	- T A F		DEF	E(CTOS		10 4 0								
		FORN	/ACI	ÓМ					TAD				'	CANT	BAB/				C	ONS	ISTEI	VCIA	
5	Х	X	X	X	Х	X		_	X	X	Х		Х	X	X	X	Χ		X	X	X	X	X
10	Х	X	Х	Х	Χ	X			Χ				X	X	Х	Χ	Х		Χ	Х	Х	Х	Х
15	Χ	Χ	Х	Х	Χ								Х	Х	Х	Х	Х		Χ	Χ	Х	Х	Х
20	Χ	Χ	Χ	Χ	Χ								Χ	Χ					Χ	Χ	Х	Х	Χ
25	Χ	Χ	Χ	Χ	Χ														Χ	Χ	Χ	Χ	Χ
30	Χ	Χ	Χ	Х	Χ														Χ	Χ	Χ	Х	Χ
35	Χ	Χ	Х	Х	Χ			_			<u> </u>							_	Χ	Х	Х	↓	
40	X	X	X	X	X			_			<u> </u>					<u> </u>		-				—	
45	X	X	X	X	X			-										\vdash				+	
50 55	X	X	X	X	X			+				-						-				-	
60	X	X	X	X	X			+				1						\vdash				+-	
65				^	^			+				1						H				+	\vdash
70												1										+	
75								1				1										1	
80																							
85																							
90																							
95								\perp			_	1											
100													<u> </u>										
	_	ГОТА		6	0		TOT	· A I			<u> </u>	1	-	ГОТА		1	7			ОТА	1	T 2	33
		CEN				PC	DRCE		4.JF		<u>5</u> %	-		CEN			/ 1%	F			L TAJE		3%
			AL A					Ť	.0_	<u>'</u>	, 0	1	1. 01	<u> </u>	.,	20	. 70	1.	<u> </u>	<u> </u>	.,.		
										OBS	SER	V/	ACIO	NES.									
		,				·	·							·	,					·			

MUESTRA No:	abc
FECHA:	16-may-10
TAMAÑO DE LA MUESTRA:	100

									\	/AR	ΙAΙ	BLES									
	TI	EMPE	RAT	JRA	١		HUN	ЛEDA	D			С	ANT.	ARC	ILLA	١			ΜAÑ		
		1	50				2	21,5					5	55%				PEC)UEÑ	0	
									[DEF	EC	CTOS									
				_				IETA				(IDAD							
		FORN		_				RFIC	IAL					BABA				ONS		_	
5	Χ	Χ	Χ	Χ		Χ	Χ					Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	
10																					
15																					
20																					
25																					
30																					
35																					
40																					
45																					
50																					
55																					
60																					
65																					
70																					
75																					
80																					
85																					
90																					
95																					
100																					

TOTAL	4		TOTAL		2		TOTAL	4	TOTAL	4
PORCENTAJE	29%		PORCENTA	AJE	14%		PORCENTAJE	29%	PORCENTAJE	29%
TOTAL A	SAS BU	JΕ	NAS					89		
				(OBSER'	V٨	ACIONES			

							•	OJA	DL N	LGI	311			<i>,</i> ,,,,,	3								
	TA		MUE: FI NO D	ECH	IA:		STRA	\ :	01	ab d -jun 100	-10)						A	NI	OII	VA)		
	TE		RATI	URA	1	<u> </u>		2	1EDA 21,5	D I			CTOS	ANT.	10%						MAÑC ANDE		
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	X X X X X X X X X X X	X X X X X X X X X X OTAL	ГАЈЕ	X X X X X X X X X X X X 2 2 2 3 3 3 3 3	'%		X X X X X X X X X X X X	AGRI SUPE X X X X X X X X X X X X X COTAL	X X X X X X X X X X X	X X X X X X X X X X X X	X X X X X X X X X X X O		X X X X X X	CANT RE X X X X X X X X X COTA	X X X X X X X	X	X X X X X X X X		X X X X X X X X X X X X X X X X T	ONSI X X X X X X X X X X COTAL	X X X X X X X X	X X X X X X X X X X X X 2 2 3	X X X X X X X X
		ТОТ	AL A	SAS	BU	EN	AS			OBS	SER	VA	CION	NES		0							

							п	OJA	DE K	EGI	311	ŧ0	, DE L	JATO	3											
			MUE	STR	A N	0:				acd	l								A		a and					
				ECH					15-	may	/-10															
	Т	AMA	<u>ÑO D</u>	E LA	۱ ML	JES	STRA	۸:		100								Α	NI)IN	ΑIJ					
											VAR	lΑ	BLES													
	T	EMPE		<u>URA</u>	١.	-			1EDA	D				CANT.		ILLA	١	╽┟	TAMAÑO							
			150						19		<u> </u>	L	0.7.0.0		55%			Ш	GRANDE							
								4 O D I	ETAD		DEF	. F(CTOS	CANT	IDAD	DE		П								
		FORM	ИАСІО	ИČ					RFIC				· '		BABA				CONSISTENCIA							
5	Х	Х	Х	Х		Χ	Χ	Χ	Χ	Χ		Х	Х	Х	Х	Х	T	Χ	Χ	Х	Х	Х				
10	Х	Χ	Х	Х	Х		Χ	Χ	Χ	Χ	Χ		Х	Х	Х	Χ	Х		Χ	Χ	Х	Х	Х			
15	Χ	Χ											Χ	Χ	Χ				Χ	Χ						
20																										
25				ــــــ		L												╽┟					Щ			
30				ـــــ																						
35				—														╽┟								
40				₩		-						4														
45 50				₩		-						-						-								
55				+-		-						-						┞								
60				+		-						1						-								
65				+								1						▐								
70				+								1										1				
75				1								1						lf								
80												1														
85				1																						
90																										
95																		֡֓֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞֞֞֞֞֞֞֓֡֓֡֡֡֡֡								
100				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$																						
		TOT 4		Τ_4				-OT 4	ı		^	1	_		i	1 4	2			-OT 4	1	1 4				
		TOTA CEN			2	1		OTAI			0 %	-		TOTA CEN			3 3%	${\mathbb H}$		OTA CEN			2			
	01		AL A					OLIN	7.00		/0	1	11 01	CLIN	17 WL	65	, /0	<u> </u>		OLIV	. / WL		, ,0			
				<u> </u>			· . •			OBS	SER	V	ACIO	NES												
														_												

							-	IOJA	DE K	EGI	311	χŪ	DEL	JATO	3										
			MUE	STR	RA N	o:				bcc	t									- mar					
			F	ECH	IA:				15-	May	y-10)													
	T	AMAI	<u> </u>	E L/	A MU	JΕ	STRA	۹:		100			ANDINA"												
											VAR	RIA	BLES												
	TI	EMPE		URA	١				1EDA	D		4	C	ANT.		ILLA	١	TAMAÑO							
			100					2	21,5			L	0.7.0.0		55%			GRANDE							
								A O D I			DEF	- F(CTOS	S CANT	IDAD	DE									
		FORM	/ACI	Ń						ETADO RFICIAL					BABA			CONSISTENCIA							
5	Х	X	X	X	Χ		X	X	X	Х		Х	XX		X		X	X	X	X	Х				
10	Х	X	Х	Х	Χ	ľ				Х		1						X	X	X	Х	Х			
15	Χ	Χ	Х	Х	Х													Χ	Х	Х	Х	Х			
20	Χ	Χ	Χ	Х	Χ													Χ	Χ	Х	Х	Χ			
25	Χ	Χ	Χ	Х	Χ																				
30	Χ	Χ	Χ	Х	Χ																				
35	Χ	Χ	Х	Х	Χ																	Ш			
40	Х	Χ	Х	Х	Χ							-													
45												-									<u> </u>	1			
50 55												-						-			<u> </u>	\vdash			
60						-						1									 				
65						1						1										H			
70						ŀ						1													
75												1										\Box			
80						ľ						1													
85																									
90																									
95																									
100																									
		-O-T-A						-O-T-A	•					-O-T-A	•	ı		T -							
		CEN ⁻			.0 3%	Н		CEN			5 %	\vdash		CEN			4 %		CEN ⁻		29	0.00			
	FUR		AL A					CEIN	AJE 	_ /	/0		FUR	CEIN	AJE	51	/0	IFUR	CEN	i AJE	_ 29	70			
		101	/\L /\	المراد	, 60	<u></u> 1	1/10		<u> </u>	ORS	SER	V	ACIO	NES		<u> </u>						\dashv			
										<u> </u>	<u> </u>	/	.5.51									\dashv			
		·					·	·						·											

							П	IOJA	DE K	EG	1017	RU	DE L	AIU	3					77							
	MUESTRA No: abcd																										
				ECH					15	-Ма	y-10																
	Т	AMA	D OÑ	E L/	<u>۱ ML</u>	JES [®]	TRA	4 :		100						_ANDINA											
											VAR	IAI	BLES					~									
	T		RATI	UR/	١.	-			/EDA	D		┦╏	С	ANT.	ARC 55%	ILLA				MAÑC							
			150						21,5		5	Ц	X = 0.0	GRANDE													
						-		4 O D	IETAI		DEF	EC	TOS	CANT	IDAD	<u> </u>											
		FORM		5	SUPE	RFIC					RE	BABA	١		CONSISTENCIA												
5	Χ	Χ	Χ	Χ	Х		Χ	Χ	Х			┇	Χ	Χ	Χ	Χ	Х	Х	Х	Х	X	Х					
10	Χ	Х	Χ									┦╏						Х	Χ	Х	₩						
15												┨╏									-	\square					
20 25												┨╏									-	\vdash					
30											+	┨╏									+-	\vdash					
35												┪╏									+-	\vdash					
40												┪╏									+	\vdash					
45												1															
50												1															
55												1															
60] [
65] [
70]									<u> </u>						
75												┦╏									—	Ш					
80												┨╏									-	<u> </u>					
85											+	┨╏									+	\vdash					
90 95		-	-			\vdash					1	┨╏							-		+-	H					
100		1	1		\vdash						+	┪╏							1		\vdash	H					
100		1	1			L		<u> </u>				J L		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>							
	TOTAL 8 TOTAL 3													ОТА			5		ГОТА			3					
	PORCENTAJE 33% PORCENTAJE 13%													CEN		21	%	POF	CEN	TAJE	33	3%					
		TOT	AL A	SAS	BU	EN/	۱S									84											
										OB:	SER	VΑ	CION	NES													
																						\dashv					
																						\dashv					

								HOJ	A DE	RE	GIS	TF	RO DE	DAT	os											
ı			N 41 15	OTE) A A I																					
			MUE	STR ECH		0:			24	1 -May	, 10															
		Λ Ν Λ Λ Ι				10	STRA	١.	31.	100			ANDINA													
	1.	AIVIAI	ע טוי	<u>∟ ∟</u>	1 IVIC	<i>J</i>	SIRA	٦.				ΙΔ	BLES				<i>I</i>	71	ועוי	LIL						
	TF	EMPE	RAT	URA				HUN	/IEDA		V / \i \			ANT.	ARC	ПΙΑ		Т	TAMAÑO							
			100	<u> </u>					19						10%	,	•	┢	PEQUEÑO							
							<u> </u>				DEF	E	CTOS				<u> </u>									
								AGRI	ETADO				(CANT	IDAD	DE										
	l	FORM	MACIO	<u>NČ</u>			9	SUPE	RFICIAL					RE	BABA	١			CONSISTENC				ı			
5	Χ	Χ	Χ	Х	-		Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х	L	Χ	Χ	Χ	Х	Χ			
10	Χ	Χ	Χ	Х	Х		Χ	Χ	Χ	Х	Х		X	Χ	Χ	Х	Х	L	Χ	Χ	Χ	Х	Χ			
15	X	Х	Х	Х	X		X	X	Х	X	X		Х	X	X	Х	Χ	Ļ	Х	X	Х	X	X			
20	X	X	X	X	X		X	X	X	X	X		X	Х	Х			ŀ	Х	X	X	Х	X			
25	Χ	Χ	Х	Х	Х	ŀ	X	X	X	X	X							F	X	X	X	X	X			
30 35							X	X	X	X	X							ŀ	X	X	X	X	X			
40					\vdash	ŀ	X	X	X	X	X							ŀ	X	X	X	X	X			
45					\vdash		X	X	X	X	X							┢	X	X	X	Х	X			
50					\Box	l	X	X	X	X	X								X	X	X	Х	X			
55							Х	Χ	Х	Х	Х							ľ	Х	Χ	X	Х	Χ			
60							Χ	Χ	Χ	Х	Х								Χ	Χ	Χ	Х	Χ			
65							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ			
70							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ			
75							Χ	Χ	Χ	Х	Χ								Χ	Χ	Χ	Х	Χ			
80																		L	Χ	Χ	Χ					
85																		ŀ								
90 95					\vdash	ŀ												ŀ	\longrightarrow		<u> </u>	\longmapsto				
100					\vdash	ŀ												ŀ				\vdash				
100					ш				<u> </u>]						L				<u> </u>				
	1	ГОТА	L	2	25		Т	ОТА	L	7	' 5		1 7	ОТА		1	8		т	OTAI		7	8			
			TAJE		3%		POR				3%			CEN			%	T	POR			40				
		TOT	AL A			Εľ	NAS					_				0										
										OBS	SER	V/	ACIO	NES												
																							_			
																							\dashv			

Bibliografía:

Libros:

- 1 HODSON William K, Maynard, Manual del Ingeniero Industrial, editorial Mcgrawhill, IV Edición México 1998.
- 4 GUTIÉRREZ, Pulido Humberto, Análisis y Diseño de Experimentos, Editorial Mc Graw Hill, I Edición, México 2004.
- 7 MOLINA, Mario, Proyectos Industriales, 2005

Documentos:

- 10 Revista financiera "EKOS"
- 9 Auditoria a la empresa Cerámica Andina por la Empresa PETROCHECK,
 2009

Sitios web:

- 2 http://es.wikipedia.org/wiki/Extrusi%C3%B3n
- 3 http://materias.fcyt.umss.edu.bo/tecno-II/PDF/cap-323.pdf
- 5 http://www.uclm.es/users/higueras/yymm/arcillas.htm
- 6 www.arcillex.com/expansion%20por%humedaddepiezasceramicas
- 8 www.bce.fin.ec

AUTOR: