

Fundada en 1867

RESUMEN

Para realizar un estudio de ingeniería de transito, es importante enfocarse en sus elementos básicos, ya que estos forman parte fundamental del comportamiento del transito, así una buena señalización, un buen diseño geométrico de las vías, acompañado con la concientización de los conductores, aportan para que el comportamiento del transito tenga mejores condiciones.

Las intersecciones son puntos críticos cuando se habla del transito, existen varias dispositivos de control que se utilizan para brindar un mejor servicio, todos estos dispositivos deben estar respaldados por un estudio de transito. La jerarquización de las vías es importante ya que con ello se puede determinar una prioridad de forma que el dispositivo de control este de acuerdo a esta clasificación.

El dispositivo de control mas común es el semáforo, tiene la función de regular y controlar el flujo del transito en las intersecciones, en la actualidad los sistemas de los semáforos trabajan en tiempo real, adaptándose así a las condiciones del transito y se encuentran conectados a una central, la que recibe la información enviada de cada uno de los semáforos de la red, donde el operador o el sistema pueden realizar cambios para mejorar las condiciones.

En la ciudad de Cuenca se encuentra en funcionamiento un sistema adaptativo, la red que esta regulada por este sistema abarca todo el centro histórico y varias vías perimetrales por donde circulan altos volúmenes de tránsito, se analizo la eficiencia de este sistema determinando la capacidad y nivel de servicio en las intersecciones de la Avenida Huayna-Cápac.

PALABRAS CLAVE: Transito, señalización, intersecciones, vehículos, capacidad vial, nivel de servicio, semáforo, vialidad, SCATS, dispositivos de control, Huayna Cápac, demoras, volúmenes de transito.

Fundada en 1867

Contenido

CAPITUL	.O I	8
ELEMEN	ITOS BÁSICOS DE LA INGENIERÍA DE TRÁNSITO	18
1.1	Conductor	18
1.1.1	Calles y Carreteras	18
1.1.2	2. Características Críticas y Habilidades Físicas	18
1.1.3	3. Tiempos de Reacción	19
1.1.4	4. Factores que afectan las Características Humanas	19
1.2 \	/ehículos	20
1.2.1	Diseño de los vehículos: dimensiones básicas	20
1.2.2	2 Desempeño de aceleración	20
1.2.3	B Desempeño de frenado	21
1.2.4	Distancia de parada	21
1.3	Características Geométricas de la Vía	21
1.3.1	Alineamiento Horizontal	22
1.3.2	2 Alineamiento Vertical	23
1.3.3	3 Otros Elementos Geométricos	23
1.4	Dispositivos de control del transito	25
1.4.1	Señalamiento vertical	26
1.4.2	2 Señalamiento horizontal	30
1.4.3	3 Semáforos	32
1.5 F	Flujo de Tránsito y Parámetros	34
1.5.1	Volumen y Flujo	34
1.5.2	2 Velocidad y Tiempos de Viaje	36
1.5.3	B Densidad	36
CAPITUL	.0	38
NTERSE	ECCIONES	38
2.1 J	Jerarquía en Intersecciones	38
2.2	Señalización en Intersecciones	39
2.3	Capacidad Vial y Nivel de Servicio	40
2.4 <i>A</i>	Análisis de intersecciones no Semaforizadas	42

Fundada en 1867

	2.4	l.1	Letreros de preferencia de paso	.42
	2.4	1.2	Letreros de Pare	.42
	2.4	1.3	Trazo de carriles en una Intersección	.44
2	2.5	Aná	álisis de intersecciones Semaforizadas	.45
2	2.6	Eje	mplo de cálculo	.47
CA	PIT	JLO	III	.60
SE	MÁF	OR	OS	.60
3	3.1	Def	inición y generalidades	.60
	3.1	.1	Objetivos	.61
	3.1	.2	Ventajas y desventajas	.61
3	3.2	Cla	sificación	.62
3	3.3	Red	quisitos básicos para la instalación de semáforos	.63
	3.3	3.1	Semáforos de tiempo fijo	.63
3	3.4	Par	tes constitutivas de los semáforos	.66
3	3.5	Cod	ordinación de semáforos	.67
3	3.6	Ser	náforos peatonales	.69
	3.6	6.1	Requisitos para el uso de semáforos peatonales	.70
CA	PIT	JLO	IV	.72
SE	MAF	ORI	ZACIÓN EN CUENCA	.72
4	1.1	Sist	tema de Semaforización Actual	.72
-	I.2 Fraffi		ncionamiento del sistema SCATS (Sydney Coordinated Adaptive stem)	.72
	4.2	2.1	Modos de Funcionamiento	.73
	4.2	2.2	Detectores	.74
CA	PIT	JLO	V	.75
AN	ÁLIS	SIS E	DE LA SEMAFORIZACIÓN DE LA AVENIDA HUAYNA CÁPAC	.75
5	5.1	Red	colección de Información y Procesamiento de datos	.75
_	5.2 ntero		mparación de volúmenes de tráfico por apertura del niador	.80
_	5.3 Aven		culo de la capacidad y Nivel de servicio de las Intersecciones en Huayna Cápac	
	5.3	3.1	Avenida Huayna Cápac intersección con la Mariscal Sucre	.82
6	CC	NCI	LUSIONES	.93
7	BIE	3LIO	GRAFÍA	.95

Fundada en 1867

9	ANEX	OS	96
	9.1 Re	sultados de los cálculos de las intersecciones	96
	9.1.1	Ave. Huayna Cápac intersección con 12 de Abril	96
	9.1.2	Ave. Huayna Cápac intersección con Calle Larga	100
	9.1.3	Ave. Huayna Cápac intersección con Calle Honorato Vásque	z105
	9.1.4	Ave. Huayna Cápac intersección con Calle Juan Jaramillo	109
	9.1.5	Ave. Huayna Cápac intersección con Calle Presidente Córdo	va 113
	9.1.6	Avenida Huayna Cápac intersección con Calle Simón Bolívar	·118
	9.1.7	Avenida Huayna Cápac intersección con Calle Gran Colombi	a123
	9.1.8	Avenida Huayna Cápac intersección con Calle Mariscal Lama	ar .127

Fundada en 1867

Índice de ilustraciones

Ilustración 1 Sección transversal de una vía rural	23
Ilustración 2 Sección transversal de una vía urbana	24
Ilustración 3 Proximidad de intersecciones	26
Ilustración 4 Colocación de señal Ceda el Paso	43
Ilustración 5 Letreros de PARE	43
Ilustración 6 Trazo en una intersección	44
llustración 7 Intersección a ser analizada	
llustración 8 Partes del semáforo	67
Ilustración 9 Semáforos peatonales	
Ilustración 10 Intersecciones semaforizadas en Cuenca	72
Ilustración 11 Interface del sistema SCATS	73
Ilustración 12 Cámaras del sistema SCATS Centro Histórico - Cuenca	
Ilustración 13 Cuarto de hora de máxima demanda	81
Ilustración 14 Cuarto de hora de máxima demanda	
Ilustración 15 Avenida Huayna Cápac - Mariscal Sucre	

Fundada en 1867

Índice de fotos

Foto 1 Proximidad a redondel	26
Foto 2 Señal preventiva Escuela Luis Cordero - Cuenca	27
Foto 3 No virar en U	28
Foto 4 No estacionar	28
Foto 5 Señal de PARE	28
Foto 6 Ceda el paso	28
Foto 7 No virar izquierda	29
Foto 8 Señal de servicios, parada de bus	29
Foto 9 Señal informativa en la Ave. De las Américas	30
Foto 10 Paso Cebra	31
Foto 11 Maniobras permitidas, giro a la derecha	31
Foto 12 Maniobras permitidas, sentido y giro	31
Foto 13 Tachas reflectivas	32
Foto 14 Bahía de giro en una intersección	44

Fundada en 1867

Índice de tablas

Tabla 1 Dimensiones Básicas del Vehículo para el diseño Geométrico	21
Tabla 2 Fase del semáforo del ejemplo	49
Tabla 3 Modulo de ajustes de volúmenes	50
Tabla 4 Factores de ajuste para el flujo de saturación	51
Tabla 5 Resumen del cálculo del flujo de saturación para los accesos	54
Tabla 6 Resumen del cálculo de capacidad para los accesos	55
Tabla 7 Datos para el cálculo del nivel de servicio	55
Tabla 8 Resumen de cálculo del nivel de servicio	59
Tabla 9 Volumen mínimo de vehículos (requisito 1)	64
Tabla 10 Volumen mínimo de vehículos (requisito 2)	64
Tabla 11 Conteo vehicular en las horas de máxima demanda	76
Tabla 12 Resumen de máxima demanda por intersección	76
Tabla 13 Conteo en las aproximaciones de cada intersección	77
Tabla 14 Datos geométricos de la Avenida Huayna-Cápac	78
Tabla 15 Porcentaje de vehículos pesados, y porcentaje de giros	79
Tabla 16 Longitudes de aproximaciones transversales	80
Tabla 17 Ajuste de volúmenes, Ave. Huayna-Cápac inter. calle M. Sucre	84
Tabla 18 Datos para obtener el flujo de saturación base	85
Tabla 19 Flujo de saturación, Ave. Huayna-Cápac inter. calle M. Sucre	86
Tabla 20 Flujo de saturación ajustado Ave. Huayna-Cápac inter. M. Sucre	87
Tabla 21 Análisis de capacidad, Ave. Huayna-Cápac inter. calle M. Sucre	88
Tabla 22 Numero de vehículos según el porcentaje de ocupación para la Ave	e.
Huayna-Cápac intersección con calle Mariscal Sucre	89
Tabla 23 Nivel de servicio, cola inicial = 0 para la Ave. Huayna-Cápac	
intersección con calle Mariscal Sucre	89
Tabla 24 Nivel de servicio, cola inicial = 25% de ocupación para la Ave.	
Huayna-Cápac intersección con calle Mariscal Sucre	90
Tabla 25 Nivel de servicio, cola inicial = 50% de ocupación para la Ave.	
Huayna-Cápac intersección con calle Mariscal Sucre	91
Tabla 26 Nivel de servicio, cola inicial = 100% de ocupación para la Ave.	
Huayna-Cápac intersección con calle Mariscal Sucre	91

Fundada en 1867

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, Mauricio Alejandro Amoroso Farfán, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Mauricio Alejandro Amoroso Farfán 0301841326

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

Fundada en 1867

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, Mauricio Alejandro Amoroso Farfán, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de <u>ingeniero Civil</u>. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Mauricio Alejandro Amoroso Farfán 0301841326

Fundada en 1867

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, PEDRO ANDRÉS HERMIDA COELLO, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Ingeniero Civil. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

PEDRO ANDRÉS HERMIDA COELLO 010389556-1

Fundada en 1867

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, PEDRO ANDRÉS HERMIDA COELLO, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

PEDRO ANDRÉS HERMIDA COELLO 010389556-1

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

Fundada en 1867

UNIVERSIDAD DE CUENCA

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

"ANÁLISIS DE LAS INTERSECCIONES SEMAFORIZADAS DE LA AVENIDA HUAYNA-CÁPAC ENTRE AVENIDA DOCE DE ABRIL Y CALLE MARISCAL LAMAR"

> MONOGRAFÍA PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

AUTOR: AMOROSO FARFÁN MAURICIO ALEJANDRO

HERMIDA COELLO PEDRO ANDRÉS

TUTOR: ING. JAIME GUZMÁN C.

CUENCA – ECUADOR 2012

Fundada en 1867

DEDICATORIA

"A mis Padres por su apoyo incondicional durante esta etapa de mi vida, son guía y ejemplo, estuvieron en todo momento alentándome para alcanzar mis metas"

"A mis hermanos que siempre estuvieron a mi lado y han sido mis amigos con quienes he podido contar en todo momento"

Mauricio Alejandro Amoroso Farfán

Fundada en 1867

DEDICATORIA

"A mi padre que tanto en su presencia como en su ausencia fue y será mi ejemplo de vida, honradez y dedicación"

"A mi madre y a mis hermanos, que con su apoyo e interés me han ensenado ha superarme, y han formado una parte fundamental del desarrollo y culminación de este proceso universitario"

Pedro Andrés Hermida Coello

Fundada en 1867

AGRADECIMIENTOS

Agradezco a Dios pues por él es posible que este aquí cumpliendo las metas que me he planteado en mi vida.

A mis padres los primeros maestros en mi vida de ellos aprendí la constancia y perseverancia y que todo en la vida es posible si se desea de corazón.

A mi familia que siempre supieron apoyarme en cada paso que di y en todo momento de mi vida.

Al Ingeniero Jaime Guzmán, por su apoyo y dirección durante la elaboración de este documento, supo darnos las pautas para realizar con éxito este trabajo.

Mauricio Alejandro Amoroso Farfán

Fundada en 1867

AGRADECIMIENTOS

A mi familia por su interés y apoyo, sin ellos no hubiera sido posible realizar con éxito este trabajo.

A nuestro tutor, Ing. Jaime Guzmán, quien supo transmitir sus conocimientos en el proceso de pregrado y además nos guio, con gran sabiduría, en la realización de a monografía.

A la facultad de Ingeniería, donde adquirí muchos conocimientos que los aplicare tanto en mi vida personal como en mi vida profesional.

Pedro Andrés Hermida Coello

Fundada en 1867

INTRODUCCIÓN

En la ciudad de Cuenca el problema de congestionamiento aumenta a medida que la ciudad crece, cada vez se observa mayor cantidad de vehículos en las calles lo que provoca una sobre saturación de las vías, afectando directamente su nivel de servicio.

Los dispositivos de control son sistemas que regulan y controlan los flujos de transito, ayudando a mantener un nivel de servicio aceptable, en las intersecciones a nivel los semáforos son los elementos utilizados para cumplir con este objetivo, es así que en la Avenida Huayna – Cápac se cuenta con una red de semáforos que trabaja para mejorar las condiciones del transito.

Hemos visto conveniente realizar un análisis del funcionamiento del sistema de semaforización de la Avenida Huayna – Cápac, para determinar la capacidad vial de las intersecciones, además de su nivel de servicio para distintos escenarios de saturación en las vías.

ANTECEDENTES

La congestión generada en el centro histórico afecta directamente a la Avenida Huayna – Cápac, por ser una vía perimetral al mismo, desencadenando un problema de transito en las intersecciones de esta vía.

La implementación de semáforos en las intersecciones de la ciudad de Cuenca ha sido la forma de solucionar la congestión del transito, con el pasar de los años hemos visto como nuevas tecnologías han sido requeridas, de forma que se pueda llegar a tener sistemas que trabajen en tiempo real, es el caso de la Avenida Huayna – Cápac, la cual esta dentro de la red de semáforos que trabajan con el sistema SCATS manejado por la Unidad Municipal de Transito y Transporte (UMT).

OBJETIVOS

OBJETIVO GENERAL

El objetivo general de la presente monografía, es llegar a determinar si el sistema de semaforización utilizado en la Avenida Huayna–Cápac trabaja de una forma adecuada y representa un solución al transito en las horas de mayor demanda.

OBJETIVOS ESPECÍFICOS

- Determinar los elementos básicos en la Ingeniería de Transito
- Determinar la capacidad de las intersecciones de la Ave. Huayna-Cápac.
- Determinar el nivel de servicio para distintos porcentajes de ocupación.
- Desarrollar un documento que sirva como material bibliográfico, fuente de información, apoyo metodológico y apoyo a la docencia.

TOMS VITA CURRENT PRODUCTS UNIVERSIDAD DE DEDECA

UNIVERSIDAD DE CUENCA

Fundada en 1867

CAPITULO I

ELEMENTOS BÁSICOS DE LA INGENIERÍA DE TRÁNSITO

En todo estudio de Ingeniería de transito es importante el establecer los parámetros que influyen en el diseño, operación y control de las vías, es por ello que en el presente capitulo se establecen los elementos básicos de la Ingeniería de Transito.

En una intersección es importante considerar estos elementos para establecer las soluciones que satisfagan a todos los usuarios de las intersecciones.

1.1 Conductor

El conductor es uno de los componentes básicos en la Ingeniería de Transito, pues tiene relación directa en las consideraciones de diseño y operación de las instalaciones de carreteras, además se debe tomar en cuenta que las características en cuanto a habilidad y percepción son variables. Es importante definir y tener claro la variabilidad que presentan las personas para oír, ver, evaluar y reaccionar a la información que se le presenta durante la conducción, todas esta habilidades pueden variar dependiendo de las condiciones propias del conductor así como de condiciones externas.

1.1.1. Calles y Carreteras

Una Calle o Carretera es una franja de terreno acondicionada para el transito de vehículos, las carreteras son parte del sistema vial que sirven como medio de comunicación entre las ciudades, mientras que las calles son parte del sistema vial en el medio urbano. La forma de conducir es diferente en calles y carreteras, esto debido al medio en el que se desarrolla y por la función que desempeña.

1.1.2. Características Críticas y Habilidades Físicas

Las características y habilidades que tiene un conductor son uno de los factores que genera mayor incertidumbre para los ingenieros de transporte y transito durante el diseño. La respuesta que tienen los conductores para reaccionar ante cualquier circunstancia provine de ciertos estímulos que ven o escuchan. La mayor parte de la información que perciben es captada por el conductor de manera visual, es por ello que la capacidad visual es de suma importancia al momento de conducir.

 Percepción Visual: Las principales características del ojo son la agudeza visual, la visión periférica, la visión de los colores, visión de deslumbramiento y recuperación y la percepción de la profundidad.

Fundada en 1867

 Percepción Auditiva: es la capacidad de recibir estímulos sonoros por medio del oído y es importante al momento que sea necesario detectar sonidos de advertencia de vehículos de emergencia

1.1.3. Tiempos de Reacción

Al hablar de reacción se pueden considerar dos tipos, la condicionada y la psicológica.

La reacción condicionada es la que se forma a partir de los hábitos de los conductores, es decir cuando reiteradamente se realiza una acción que se vuelve una costumbre.

La reacción psicológica es un proceso intelectual que termina en un juicio, esta se da por los estímulos percibidos que son enviados al cerebro y por medio de un proceso de estimulación envía la señal a los músculos apropiados, los cuales actúan inmediatamente.

1.1.4. Factores que afectan las Características Humanas

Existen varios factores que afectan las características humanas, pueden ser propias del individuo o ajenas al individuo (externas).

Características propias del Individuo

- Enfermedades que de alguna manera pueden disminuir la capacidad del ser humano para percibir y reacciona frente a los estímulos
- El estado emocional afecta la concentración y se podría decir que disminuye nuestros sentidos.
- Deficiencias fiscas que alteran nuestra capacidad de conducción.

Características externas

- El cansancio o fatiga disminuye notablemente la capacidad del ser humano para realizar cualquier actividad, y durante la conducción retrasa los tiempos de reacción.
- El encontrase bajo los efectos del alcohol o sustancias psicotrópicas reduce la capacidad para percibir los estímulos y es una de las principales causa de accidentes el las calles.
- El clima puede dificultar notablemente la conducción ya que modifica las condiciones del medio y producto de ello se torna más difícil la percepción de las señales y/o peligros en la vía.
- No es lo mismo conducir durante el día que durante la noche ya que sus entornos son diferentes, durante el día la luminosidad es alta y se puede apreciar de mejor manera las señales y cualquier objeto en la carretera, en cambio durante la noche si no tenemos una buena iluminación no podremos percibir los objetos y señales que encontremos en la carretera.

Fundada en 1867

Además de estas existen ciertas condiciones que podrían alterar las características humanas, por ejemplo la colocación de alguna señal en la carretera a la que el usuario no este acostumbrado, es por ello que es importante mantener uniformidad en las señales tanto en forma como en color y tamaño.

Todo cambio debe ser introducido paulatinamente en el ambiente para que el usuario vaya familiarizándose.

1.2 Vehículos

Los vehículos forman parte de los elementos primordiales del transito, la evolución que ha tenido este componente es influyente en la situación actual del transito en la vías tanto urbanas como rurales.

1.2.1 Diseño de los vehículos: dimensiones básicas

En la ciudad de Cuenca existe una gran variedad de vehículos que circulan por las vías, se puede apreciar que el automóvil es el vehículo más utilizado, aun que esto no controla el diseño de una vía, esto sucederá solo en el caso de que una vía este diseñada única y exclusivamente para vehículos livianos.

Las características de los vehículos infieren en el diseño de las vías en lo siguientes aspectos:

- El ancho del vehículo de diseño incide en el ancho del carril y de las bermas.
- La distancia entre ejes influye en los radios mínimos tanto internos como externos de los carriles.
- El peso bruto del vehículo interfiere con la máxima pendiente admisible en las vías.

Debido a que no se pudo conocer ninguna información que cuente con el aval del Ministerio de Transporte y Obras Publicas sobre las dimensiones generales de los vehículos en el Ecuador, a continuación se presenta la Tabla 1 con las dimensiones generales de los vehículos que se usan para el diseño geométrico de vías.

1.2.2 Desempeño de aceleración

La aceleración esta influenciada directamente por las características mecánicas y físicas que posee el vehículo, el desempeño de la aceleración que poseen los vehículos es un factor determinante en las maniobras que se ejecuten durante la conducción, dependiendo del tipo de intersección la aceleración influenciara en el desempeño o facilidad al cruzar, por ejemplo en una intersección sin semáforos dependerá de las habilidades del conductor y las características del vehículo para poder realizar la maniobra de paso.

Fundada en 1867

TIPO DE VEHÍCULO	NOMENCLA- TURA	ALTO TOTAL	ANCHO TOTAL	LARGO TOTAL	LONGITUD ENTRE EJES	RADIO MÍNIMO RUEDA EXTERNA DELANTERA	RADIO MÍNIMO RUEDA INTERNA TRASERA
VEHÍCULO LIGERO	VL	1,30	2,10	5,80	3,40	7,30	4,20
OMNIBUS DE DOS EJES	B2	4,10	2,60	9,10	6,10	12,80	8,50
OMNIBUS DE TRES EJES	B3	4,10	2,60	12,10	7,60	12,80	7,40
CAMION SIMPLE 2 EJES	C2	4,10	2,60	9,10	6,10	12,80	8,50
CAMION SIMPLE 3 EJES O MAS	C3 / C4	4,10	2,60	12,20	7.6	12,80	7,40
COMBINACION DE CAMIONES							
SEMIREMOLQUE TANDEM	T2S1/2/3	4,10 *	2,60	15,20	4,00 / 7,00	12,20	5,80
SEMIREMOLQUE TANDEM	T3S1/2/3	4,10	2,60	16,70	4,90 / 7,90	13,70	5,90
REMOLQUE 2 EJES + 1 DOBLE (TANDEM)	C2 - R2 / 3	4,10	2,60	19,90	3,80 / 6,10 / 6,40	13,70	6,80
REMOLQUE 3 EJES + 1 DOBLE (TANDEM)	C3 - R2 / 3 / 4	4,10	2,60	19,90	3,80 / 6,10 /6,40	13,70	6,80

Tabla 1 Dimensiones Básicas del Vehículo para el diseño Geométrico Fuente: Ministerio de Transporte y Comunicaciones del Perú

1.2.3 Desempeño de frenado

El desempeño de frenado es un factor de gran importancia durante la conducción y al aproximarse a una intersección, el funcionamiento adecuado del vehículo disminuirá la probabilidad de ocurrencia de accidentes en las intersecciones.

1.2.4 Distancia de parada

Dependiendo del tipo de intersección se puede determinar la distancia de parada, en una intersección semaforizada la distancia de parada se compone de la distancia que se recorre desde el momento que el semáforo cambia de color hasta el momento en que el vehículo se detiene completamente, y en una intersección no semaforizada comprendería la distancia desde el momento en el que el conductor observa la señal hasta que este se detiene por completo.

1.3 Características Geométricas de la Vía

Las vías tienen el propósito de permitir la circulación de los vehículos de manera continua, segura y cómoda, en cualquier proyecto vial es parte fundamental el diseño geométrico que establece la configuración geométrica tridimensional con el propósito de que la vía sea funcional, cómoda, estética, económica y compatible con el medio ambiente.

La funcionalidad de la vía se consigue cuando ofrece una adecuada movilidad a través de su superficie, con una adecuada velocidad, con un diseño simple y uniforme.

La comodidad estará de acuerdo a las variaciones de la aceleración de los vehículos a lo largo de la vía.

Fundada en 1867

Al conseguir que la carretera se adapte con el paisaje y la forma natural del terreno se logra que la vía sea estética.

La vía será económica cuando cumpla con los objetivos mencionados anteriormente y que para su construcción ofrezca el menor costo.

Por ultimo la vía debe ser compatible con el medio ambiente adoptándola en lo posible con el medio natural, usos del suelo y valor de la tierra procurando minimizar los impactos producidos por la construcción y operación de la misma.

Existen factores que se deben tener en cuenta para el diseño los cuales se dividen en:

- Factores Externos: Relaciona todos los aspectos del lugar en el cual se emplazara la vía, es decir: Topografía, geología, geomorfología, hidrología, transito actual y futuro, parámetros socioeconómicos del área y la estructura de las propiedades.
- Factores Internos: Se contemplan las velocidades que se tomaran en cuenta durante el diseño y la seguridad que se exigirá para su funcionamiento.

1.3.1 Alineamiento Horizontal

El alineamiento horizontal es la proyección en planta de la vía sobre un eje espacial, dicho eje esta constituido por una serie de tramos rectos denominados tangentes que se unen entre si mediante curvas.

Los elementos que definen el alineamiento horizontal son los siguientes:

- Las tangentes son las proyecciones rectas sobre un plano horizontal que unen a las curvas circulares y deben cumplir con la longitud mínima especificada, la longitud máxima no tiene limite, sin embargo cuando estas son muy largas pueden resultar peligrosas por que provocan somnolencia en el conductor, esto se evita con longitudes de tangentes menores uniéndolas mediante curvas suaves.
- Las curvas son proyecciones sobre un plano horizontal de arcos de círculo o la combinación de uno o más arcos de círculo. La longitud de una curva circular está determinada desde el principio de una curva hasta el principio de la tangente o el final de la misma curva, deben elegirse de manera que se ajusten de mejor forma al terreno y que el movimiento de tierras sea mínimo.
- El alineamiento debe tener una consistencia con la topografía del terreno evitando mucho corte o terraplén.

Fundada en 1867

Es importante en el diseño de una intersección debido a que en esta parte del proyecto se establecen los radios de giro de las intersecciones, con esto se regulariza los vehículos que pueden transitar por dicha vía.

1.3.2 Alineamiento Vertical

Es la proyección del eje real de la vía sobre una superficie vertical paralela al mismo, dicha proyección muestra la longitud real de la vía.

Los elementos que definen el alineamiento vertical son los siguientes:

- Se conforma por una serie de tangente enlazadas entre si por medio de curvas verticales, esta alineación esta directamente relacionada con la topografía del terreno natural. Las curvas generan una transición entre la tangente de entrada y la de salida, esta transición da como resultado un camino seguro y confortable y manteniendo un sistema de drenaje adecuado
- Curvas Verticales. Son las que enlazan dos tangentes consecutivas del alineamiento vertical, para generar un paso gradual de una tangente de manera segura y confortable, con apariencia agradable y que permita un drenaje adecuado.

El alineamiento vertical es importante en una intersección ya que tiene que garantizar una transición cómoda entre las vías a intersectarse cuando la topografía es irregular, además de esta dependerá el normal funcionamiento de los sistemas de drenaje.

1.3.3 Otros Elementos Geométricos

Un elemento geométrico importante en la constitución de una vía es el alineamiento transversal sobre el cual se define la disposición y dimensiones de los elementos que forman la carretera, según donde se encuentra la vía se presentaran diferentes tipos de secciones transversales (ver ilustraciones 1 y 2).

Los elementos que conforman dicha estructura son los siguientes:

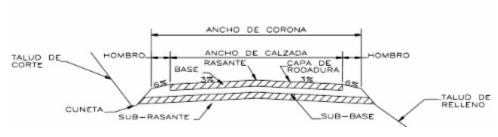


Ilustración 1 Sección transversal de una vía rural

Fundada en 1867

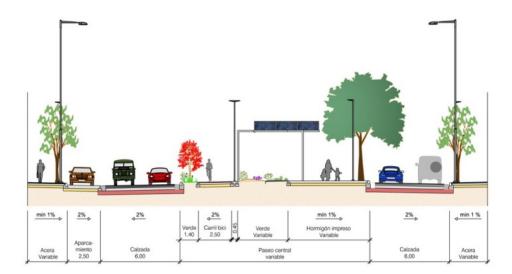


Ilustración 2 Sección transversal de una vía urbana

Ancho de corona.- es la superficie de la carretera, que queda comprendida entre las aristas del terreno y los interiores de las cunetas. Los elementos que definen el ancho de corona son; la rasante, ancho de calzada, pendiente transversal y los hombros.

Rasante.- es la línea que se obtiene al proyectar sobre un plano vertical, el desarrollo de la corona en la parte superior del pavimento. Este elemento es fundamental para el diseño ya que señala el nivel final de la carretera.

Ancho de calzada.- el ancho de calzada, es la parte del ancho de corona, destinada a la circulación de vehículos, constituido por uno o más carriles.

Hombros.- el hombro, es el área o superficie adyacente a ambos lados de la calzada, que se diseña para obtener ventajas tales como, la conservación del pavimento, la protección contra humedad y posibles erosiones en la calzada, proporcionando al mismo tiempo seguridad al usuario al poder disponer de un espacio adicional fuera del ancho de calzada.

Cunetas.- son obras de drenaje que pertenecen a la sección típica, son canales o conductos abiertos para la conducción de lagua, construidas paralelamente al eje de la carretera para drenar el agua de lluvia.

Pendiente transversal.-es la pendiente que se le da a la corona en el eje perpendicular al de la carretera.

El alineamiento transversal es importante en el diseño de una intersección debido principalmente a que debe generarse una transición entre las vías que se cruzan.

Fundada en 1867

1.4 Dispositivos de control del transito

Para que todos estos elementos que componen el transporte funcionen de una manera efectiva, y brinden seguridad a cada uno de los usuarios, es necesario que exista la información básica en las vías a través de señales de transito, las mismas que deben estar estandarizadas de modo que los usuarios capten esta información que se les presenta y no estén sujetos a confusiones, que podrían desenlazarse en accidentes en las vías, en una intersección no debe faltar las señales que brinden seguridad e información al usuario ya sea peatón o conductor.

Los dispositivos de control de transito se clasifican en:

- 1. Señales Verticales
 - a. Preventivas.
 - b. Restrictivas.
 - c. Informativas.
 - d. Turísticas y de servicios.
 - e. Señales diversas.
- 2. Señales horizontales
 - a. Rayas.
 - b. Marcas.
 - c. Tachas reflectivas.
- 3. Dispositivos para protección de obras
 - Señales horizontales.
 - b. Señales verticales.
 - c. Barreras móviles.
 - d. Barreras fijas.
 - e. Conos.
 - f. Tambos.
 - g. Dispositivos luminosos.
 - h. Señales manuales.
- 4. Semáforos
 - a. Vehiculares
 - b. Peatonales
 - c. Especiales.

Cualquiera de estos dispositivos de señalización del transito deben cumplir con los siguientes requisitos:

- a. Satisfacer una necesidad.
- b. Llamar la atención.
- c. Transmitir un mensaje simple y claro.
- d. Imponer respeto a los usuarios de las calles y carreteras.
- e. Estar en el lugar apropiado con el fin de dar un tiempo de reacción.

Fundada en 1867

1.4.1 Señalamiento vertical

1.4.1.1 Señales preventivas

Este tipo de señales tienen como objetivo dar un aviso anticipado al conductor, y así prevenirlo de un peligro potencial, la señal debe alertar al conductor para que este tome las medidas del caso, sea reducir la velocidad o estar alerta a realizar una maniobra que pueda evitar cualquier tipo de accidente.

El letrero de las señales preventivas es de forma cuadrada pero se lo coloca girándolo 45 grados de forma que tome la forma de un rombo, el color del fondo será amarillo reflectivo y el símbolo de color negro, en caso de requerirse una explicación adicional se debe colocar un letrero adicional de forma rectangular, (ver foto 1).

Las señales que se encuentran comúnmente en una intersección o próxima a ella son las siguientes (ver ilustración 3):

Ilustración 3 Proximidad de intersecciones

Foto 1 Proximidad a redondel

Estas señales se colocan en las vías de aproximación a la intersección para indicar el tipo de intersección que se encuentra cerca y así el conductor tome las debidas precauciones para salvar la intersección.

Si cerca de una intersección se encontrase algún centro educativo se debe colocar en la intersección una señal que indique que es una zona de cruce de estudiantes y personas, (ver foto 2).

Fundada en 1867

Foto 2 Señal preventiva Escuela Luis Cordero - Cuenca

1.4.1.2 Señales restrictivas

Este tipo de señales como su nombre lo indica buscan restringir o recordar al usuario de cualquier tipo de prohibición en maniobras o en ciertas limitaciones que son impuestas por ley.

El letrero para las señales restrictivas será de forma rectangular, con un fondo blanco reflectivo mientras que el anillo y la franja diagonal (de requerirse) serán rojas, y el símbolo, letra, o número en negro.

En este tipo de señales existen ciertas excepciones, la señal de "PARE" Y "CEDA EL PASO", tienen diferentes geometrías, para la señal de "PARE" se usa un letrero octogonal con fondo rojo reflectivo y letras blancas, y para la señal de "CEDA EL PASO" se usa un letrero triangular invertido con un fondo blanco reflectivo, anillo rojo y letras negras.

Las señales restrictivas se clasifican en:

- a. De derecho de paso o de vía.
- b. De inspección.
- c. De velocidad.
- d. De circulación o dirección.
- e. De mandato por restricciones y prohibiciones.
- f. De estacionamiento.

En una intersección las señales que se utilizan comúnmente son las siguientes:

 No virar en U.- esta señal se puede encontrar en cualquier tipo de intersección y se las coloca debido al volumen de vehículos que transitan por la vía ya que este tipo de maniobras podría generar congestión y accidentes. Otro de los parámetros que se debe considerar para colocar esta señal es las dimensiones geométricas de la vía (ver foto 3).

Fundada en 1867

- No estacionar.- en cualquier tipo de intersección se prohíbe estacionar a las salidas y entradas de las intersecciones ya que esto podría generar accidentes al disminuir la visión en la intersección y genera molestias al realizar las maniobras de giro (ver foto 4).
- Pare.- se los utiliza en intersecciones en las cuales el volumen de transito es bajo, además de que con esta señal se establece la jerarquía de la vía con la preferencia de paso (ver foto 5).
- Ceda el paso.- Comúnmente se utiliza en intersecciones tipo redondel para establecer la preferencia de paso, así también se las encuentra en las entradas a la vía en intersecciones a desnivel (ver foto 6).
- No virar a la Izquierda.- Esta señal se las coloca cuando el volumen de transito es elevado y las condiciones geómetras de la vía no permiten establecer una zona segura para los vehículos que realizan esta maniobra (ver foto 7).

Foto 3 No virar en U

Foto 4 No estacionar

Foto 5 Señal de PARE

Foto 6 Ceda el paso

Fundada en 1867

Foto 7 No virar izquierda

1.4.1.3 Señales informativas

Este tipo de señales tienen como objetivo guiar al conductor o a los usuarios de las vías a lo largo del uso de las mismas, presenta información sobre lugares turísticos, servicios, kilometrajes, hospedaje, comida, así también como nombres de poblados y sus ubicaciones.

Los colores a utilizar en este tipo de señales varia según su clasificación, para las de identificación se utilizan un fondo blanco con letras, números o flechas en negro al igual que para los de recomendación e información general. Para los de destino se utiliza un fondo verde con letras y símbolos en blanco (ver foto 9). Para los de servicios y/o turísticos se usa un fondo azul con letras y símbología en blanco (ver foto 8).

Las señales informativas se clasifican según la información que nos presentan en:

- a. De identificación.
- b. De destino.
- c. De recomendación e información general.
- d. De servicios y/o turísticas.

Foto 8 Señal de servicios, parada de bus

Fundada en 1867

Foto 9 Señal informativa en la Ave. De las Américas

1.4.2 Señalamiento horizontal

Mas conocido como marcas en el pavimento, este tipo de señalización comprende todo tipo de rayas, símbolos y letras que se puedan pintar sobre el pavimento o en caso de ser necesario en las veredas o estructuras que formen parte del entorno en el cual el usuario va a circular.

En una intersección las marcas que se encuentran comúnmente son:

- El paso Cebra.- Se coloca comúnmente en todas las intersecciones para establecer la zona segura para cruce peatonal, (ver foto 10).
- Maniobras Permitidas.- estas marcas sobre el pavimento establecen los giros y maniobras que se pueden realizar por el carril en el cual se esta transitando, (ver foto 11 y 12).
- Tachas reflectivas.- Son de gran utilidad para los conductores en la noche o situaciones climáticas adversas ya que estas reflejan el haz de luz de los faros de los vehículos hacia el conductor, (ver foto 13).
- Pare.- Aun que no es muy común en nuestras ciudad se suele pintar esta señal al llegar a la intersección.

Fundada en 1867

Foto 10 Paso Cebra

Foto 11 Maniobras permitidas, giro a la derecha

Foto 12 Maniobras permitidas, sentido y giro

Fundada en 1867

Foto 13 Tachas reflectivas

1.4.3 Semáforos

Los semáforos son dispositivos que se utilizan generalmente en las intersecciones con el objetivo de ordenar y regular el flujo de los vehículos y de los peatones en las vías. Para cumplir con este objetivo los semáforos presentan luces de tres colores que son rojo, amarillo y verde, estos dispositivos son operados por una unidad de control.

Se clasifican según su mecanismo de operación en:

- 1. Semáforos para el control del transito de vehículos.
 - a. No accionados por el transito.
 - b. Accionados por el transito.
 - c. Totalmente accionados por el transito.
 - d. Parcialmente accionados por el transito.
- 2. Semáforos para pasos peatonales.
 - a. En zonas de alto volumen peatonal.
 - b. En zonas escolares.
- 3. Semáforos especiales.
 - a. De destello.
 - b. Para regular el uso de carriles.
 - c. Para puente elevadizos.
 - d. Para maniobras de vehículos de emergencia.
 - e. Con barreras para indicar el cruce de trenes.

Las interpretaciones que se deben dar a cada uno de los colores se detallan a continuación:

Fundada en 1867

a) Rojo fijo

Los conductores al observar esta señal deberán detener sus vehículos antes de la línea de parada. Y para el caso de peatones no podrán cruzar la calzada, podrán hacerlo solo en el caso de que algún otro semáforo les de la autorización de paso.

b) Amarillo fijo

Este señal informa a los conductores de dos situaciones, la primera es que la luz roja esta muy próxima a encenderse, y la segunda es que el transito que esta siendo regulado por la luz verde esta próximo a detenerse. Para el caso de los peatones les alerta de que no disponen de tiempo suficiente para cruzar la calzada, pero como en el caso anterior, de existir un semáforo que autorice su paso lo podrán hacer.

c) Verde fijo

Los conductores de los vehículos al observar esta señal saben que tienen derecho a circular, pueden avanzar de frente o realizar giros si es que no existen señales que los restrinjan. Además los peatones podrán cruzar la calzada, siempre que no exista otro semáforo que lo prohíba.

d) Rojo intermitente

Esta señal indica que el conductor del vehículo debe detenerse antes de la línea de parada. Esto se usa generalmente en el ingreso a vías principales.

e) Amarillo intermitente

Este señal obliga a los conductores a reducir la velocidad de forma que realicen un cruce con precaución, este señal se presenta en la vía principal y se complementa con el rojo intermitente en las vía secundaria.

f) Verde intermitente

Cuando una señal emita un verde intermitente advierte a los conductores que próximamente el ciclo de la luz verde terminara.

Los semáforos son sumamente importantes dentro del control y regulación del transito por lo que se ha visto conveniente que sean tratados con mayor profundidad dentro del capitulo número tres.

Fundada en 1867

1.5 Flujo de Tránsito y Parámetros

1.5.1 Volumen y Flujo

El volumen se define como el número de vehículos que pasan en un determinado punto durante un intervalo de tiempo determinado. Su unidad se establece como "vehículos por unidad de tiempo".

Un intervalo común de tiempo para el volumen es un día aun que pueden ser también expresados en semanas, meses y anos. Los volúmenes diarios frecuentemente son usados como base para la planificación de las carreteras.

Tasa de flujo es la frecuencia a la cual pasan personas o vehículos, durante un tiempo específico, igual o menor a una hora. La Tasa de flujo se define como el número de vehículos N que pasan durante un intervalo de tiempo específico T y se expresa en Veh/min o veh/seg.

La diferencia entre estos dos conceptos es el intervalo de tiempo en el cual se realiza el conteo y la toma de datos.

1.5.1.1 Volúmenes de tránsito absolutos o totales

Se tiene los siguientes volúmenes de transito absolutos o Totales

- Tránsito Anual (TA).- Es el número total de vehículos que pasan durante un ano.
- Tránsito Mensual (TM).- Es e numero Total de vehículos que pasan durante un mes.
- Tránsito Semanal (TS).- Es el número total de vehículos que pasan durante una semana.
- Tránsito Diario (TD).- Es el número total de vehículos que pasan durante un día.
- Tránsito Horario (TH).- Es el número total de vehículos que pasan durante una hora.
- Tránsito en un periodo inferior a una Hora.- Es el número total de vehículos que pasan durante un periodo inferior a una hora.

1.5.1.2 Volúmenes de Transito Promedio Diarios

Es el número de vehículos que pasan durante un periodo dado igual o menor a un año y mayor a un día, dividido para el número de días del periodo, se expresa de manera general de la siguiente forma:

Fundada en 1867

Donde:

Mauricio Alejandro Amoroso Farfán Pedro Andrés Hermida Coello

Fundada en 1867

1.5.2 Velocidad y Tiempos de Viaje

La Velocidad.- Se define como la razón de movimiento, se expresa en distancia por unidad de tiempo.

Velocidad de Punto.- Es la velocidad que posee un vehículo al pasar por un determinado punto en una carretera.

Velocidad Instantánea.- Es la velocidad cuando se encuentra circulando a lo largo de un tramo de una carretera en un instante dado.

La velocidad promedio de viaje.- Es el tiempo promedio que le toma a un vehículo recorrer una sección de una vía determinada, incluye todas las demoras por paradas.

La velocidad Promedio de Marcha.- Es el tiempo promedio que le toma a un vehículo recorrer una sección de una vía determinada, solamente cuando el vehículo de encuentra en movimiento.

Velocidad Media Espacial.- Es la velocidad promedio de todos los vehículos ocupando una sección dada en la carretera sobre un periodo específico de tiempo.

Velocidad Media Temporal.- Velocidad promedio de todos los vehículos, pasando por un punto de la carretera en un periodo específico de tiempo.

Velocidad de flujo libre.- Es la velocidad que se determina en condiciones de volumen bajo, cuando los vehículos pueden transitar libremente por la carretera sin restricciones ni demoras.

Velocidad Percentil.- Es la velocidad a la que viajan una cierta cantidad de vehículos bajo un porcentaje determinado.

Velocidad de Diseño.- Es la velocidad máxima a la que puede circular un vehículo con seguridad sobre una sección especifica de una vía, cuando las condiciones de la atmosféricas y del transito son favorables.

1.5.3 Densidad

Es el numero de vehículos que ocupan cierta tramo de carretera, se expresa en vehículos por kilometro.

Se puede calcular utilizando la siguiente expresión

Fundada en 1867

Donde:

Fundada en 1867

CAPITULO II

INTERSECCIONES

2.1 Jerarquía en Intersecciones

La jerarquía es una forma de clasificar las vías según su función, tomando en cuenta su accesibilidad, continuidad, importancia y volumen de usuarios que utilicen la vía.

La jerarquía que se maneja en el entorno urbano parte de la clasificación del MTOP en el cual se establece que todas las vías del entorno urbano son de Cuarto Orden, y se expresa de la siguiente manera:

Vías de Cuarto Orden y Senderos: Dentro de esta clasificación tenemos las vías que soportan un tráfico menor y que cumplen la función de locales dentro del territorio cantonal, además dentro de esta clasificación se ha incluido a los caminos vecinales y peatonales.

Según la clasificación desarrollada por la Unidad Ejecutora de la Ilustre Municipalidad para la obtención del Crédito C.A.F18., la vialidad de la ciudad de Cuenca se encuentra definida por las siguientes jerarquías: vías expresas, vías arteriales, vías colectoras y vías locales.

Vías Expresas. Son vías que conectan los centros de actividad principal en el área urbana y su área de influencia inmediata, sirviendo como corredores con altos volúmenes de tráfico vehicular, principalmente para viajes de larga distancia. Las vías expresas soportan una alta demanda de viajes de entrada y salida del área urbana, éstas permiten altas velocidades y escasas desviaciones para conectarse a vías de jerarquía menor.

De acuerdo a los datos proporcionados por la Unidad Ejecutora de la llustre Municipalidad de Cuenca, las siguientes vías han sido categorizadas dentro de esta jerarquía:

- Avenida de las Américas;
- Avenida Panamericana Sur:
- Avenida Panamericana Norte:
- Autopista Cuenca Azogues;
- Interconexión Avenida de las Américas Autopista.
- Circunvalación Sur.

Fundada en 1867

Vías Arteriales. Las vías arteriales se interconectan con las vías expresas para complementar y atender la demanda de viajes de duración moderada con velocidades menores. Las vías de ésta categoría distribuyen el tránsito diario de ida y vuelta con los diferentes centros comerciales, el centro de la ciudad y los barrios locales. Proveen acceso a los asentamientos más próximos a la ciudad.

Vías Colectoras. Las vías colectoras ingresan a los barrios locales y distribuyen el tránsito de las vías arteriales dentro del área a sus destinos finales.

De igual manera, las vías colectoras reciben el tránsito motorizado de las vías locales y lo canalizan a las vías arteriales.

En el Centro Histórico las vías forman un patrón de malla y pueden ser definidas como colectoras ya que distribuyen viajes desde las vías arteriales que se encuentran en el límite del área.

Vías Locales. Las vías locales proveen acceso directo a los predios y se enlazan a las vías colectores. Las velocidades de viaje en estas vías son las menores y generalmente no son utilizadas para la circulación del transporte público, en estas vías es posible el estacionamiento de vehículos, cuando su sección transversal lo permite.

2.2 Señalización en Intersecciones

La señalización comprende el conjunto de elementos destinados a proveer información útil para los usuarios de las vías, todos estas señales se las denomina como dispositivos de control ya que por medio de estas se puede regular el flujo de transito y permitir mayor movilidad en la intersección.

En la intersecciones a desnivel existen estructuras que facilitan el flujo a lo largo vía, sin interrupciones ni demoras, este tipo de intersecciones se utilizan comúnmente cuando existen un alto volumen de transito,

En las intersecciones a nivel se utilizan varios tipos de sistemas o dispositivos de control para mejorar la fluidez, disminuir las demoras y accidentes y aumentar la capacidad de la vía. Estos dispositivos de Control de Transito dotan al conductor del derecho al paso y facilitan el movimiento de manera ordenada. El control se puede realizar mediante el uso de semáforos, señales verticales y horizontales que regulan, guían y advierten a los usuarios.

El tipo de señal que se use dependerá principalmente de la complejidad de la maniobra que deba realizarse, entre más compleja sea, mejor sistema de control deberá proporcionarse en la intersección.

Fundada en 1867

Un sistema de control para que sea eficiente debe:

- Satisfacer una necesidad
- Llamar la atención
- Transmitir un mensaje claro y simple
- Causar el respeto de los usuarios del camino
- Dar un tiempo apropiado para la respuesta adecuada

Para que cumpla estas disposiciones se recomienda que los ingenieros consideren los siguientes factores:

- Diseño.- Debe ser capaz de trasmitir por medio de la forma, color y tamaño un mensaje claro y que llame la atención del conductor.
- Ubicación.- Debe encontrarse ubicado de tal manera que no exista ningún objeto que imposibilite una visión clara sobre la señalización.
- Operación.- Debe usarse de manera que asegure la observancia de los requerimientos de transito en forma uniforme y consistente.
- Mantenimiento. Esto es importante para que el sistema mantenga legibilidad para el conductor.
- Uniformidad.- Se debe tener uniformidad en los sistemas para no causar conflicto ni confusión, manteniendo características geométricas y de transito semejantes.

2.3 Capacidad Vial y Nivel de Servicio

Capacidad vial. En todo proyecto ya sea de planeamiento, estudio, mantenimiento de calles y carreteras se debe contar con una valor estimado de la demanda de transito que circulara por esta vía, la capacidad de la carretera es una medida de la eficiencia con la que trabaja la vía.

La capacidad en una intersección, se define como la tasa máxima de flujo que puede circular o atravesar dicha intersección por cada uno de los grupos de carriles, se debe considerar los carriles con giro y sin giro. La capacidad esta expresada en vehículos por hora (veh/hora), pero el análisis se lo realiza en un periodo pico de quince minutos ya que se considera que este es el periodo mas corto de tiempo en el que se puede considerar un "flujo estable".

Es importante mencionar que no se considera la capacidad de toda la intersección, únicamente se realiza el estudio de los movimientos o accesos principales de la intersección, ya que un movimiento o acceso que se usa

Fundada en 1867

casualmente representara un capacidad muy baja y este no estará en relación a la verdadera capacidad de la intersección.

La capacidad de un acceso o de un grupo de carriles esta dada por:

Fundada en 1867

d. Nivel de servicio D (35<D≤55 segundos)

Operación con demoras entre 35 y 55 segundos por vehículo. Las demoras pueden deberse a la mala progresión del transito o llegadas de la fase roja, longitudes de ciclo amplias. Muchos vehículos se de tienen y se hacen mas notables los ciclos congestionados.

e. Nivel de servicio E (55<D≤80 segundos)

Operación con demoras entre 55 y 80 segundos por vehículo. Se considera como el límite aceptable de demoras. Las demoras son causadas por progresiones pobres del flujo vehicular, ciclos muy largos.

f. Nivel de servicio F (>80 segundos)

Operación con demoras superiores a los 80 segundos por vehículo. Los flujos de llegada a la intersección exceden la capacidad de los accesos a la intersección, lo que ocasiona un alto congestionamiento y una difícil operación de los vehículos.

2.4 Análisis de intersecciones no Semaforizadas

Este tipo de intersecciones cuentan con sistemas de control mediante el uso de señales que priorizan una de las vías o carreteras que se intersecta, a continuación describiremos los sistemas que se utilizan para este tipo de intersecciones.

2.4.1 Letreros de preferencia de paso

Este tipo de letreros es una señal restrictiva ya que el usuario de la vía secundaria debe al momento de visualizar la señal disminuir la velocidad y si es necesario detenerse para que el conductor que se aproxima en la vía principal pase libremente.

Este tipo de señales se utilizan cuando el volumen de transito no es muy elevado y cuando las características de la vía lo permiten y en redondeles donde la preferencia de paso la tiene el conductor que se aproxima por la izquierda, (ver ilustración 4).

2.4.2 Letreros de Pare

Este tipo de señal se utiliza cuando se requiere que el conductor se detenga por completo al llegar a una intersección, esto debido a que las características de la vía lo requieren, ya que no presenta un amplio rango de visualización.

Este tipo de letreros se pueden utilizar en vías secundarias cuando se cruzan con una vía principal, no se deben usar en intersecciones señalizadas o en autopistas o vías rápidas, (ver ilustración 5).

Fundada en 1867

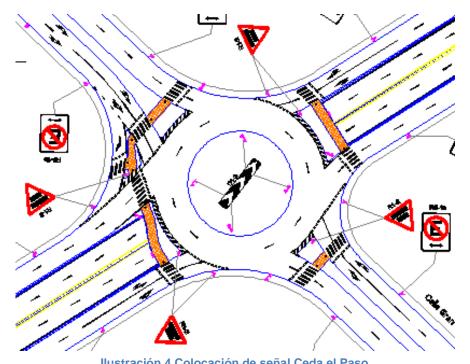
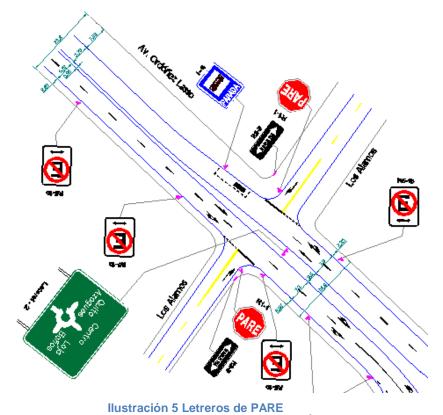



Ilustración 4 Colocación de señal Ceda el Paso (Intersección Ave. Américas – Ave. Gran Colombia)

(Intersección Ave. Ordoñez Lasso – Calle Los Álamos)

Fundada en 1867

2.4.3 Trazo de carriles en una Intersección

Este sistema se utiliza para separar los carriles y facilitar el cruce de una intersección, estas intersecciones constan de líneas blancas continuas o barreras levantadas que encausan el flujo vehicular.

Las líneas para el uso de los carriles incluyen, (ver ilustración 6):

- Trazado de carril para permitir el flujo natural y conveniente del transito.
- Evitar la confusión mediante el uso de alguna isla bien ubicada.
- Selección de ancho de carril y de curvatura en función del vehículo más común.

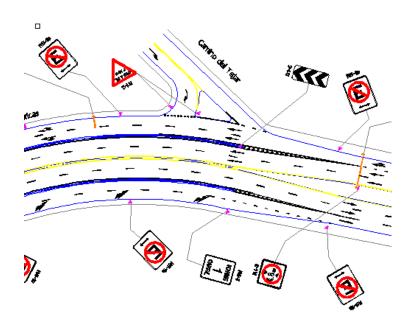


Ilustración 6 Trazo en una intersección (Intersección Ave. De Las Américas - Calle del Tejar)

Foto 14 Bahía de giro en una intersección

Fundada en 1867

2.5 Análisis de intersecciones Semaforizadas

El análisis operacional de un intersección nos ayuda a determinar la capacidad y el nivel de servicio tanto de la intersección en forma global como de un grupo de carriles o acceso, para llegar a determinar es necesario cierta información básica entre lo que se puede nombrar las condiciones geométricas, de transito, y de semaforización.

La metodología del análisis operacional de intersecciones cuenta con los siguientes pasos²:

1. Parámetros de entrada

<u>Condiciones geométricas</u>.- La información que se recopila aquí es sobre la configuración física que presenta la intersección, como por ejemplo numero de carriles, ancho de carriles, pendiente de la vía, zonas de estacionamiento, giros posibles, giros restringidos.

Condiciones del transito.- Se requiere información de conteos de trafico para cada uno de los movimientos posibles en la intersección, y además de una clasificación del transito en livianos, buses y camiones. Otro aspecto a tomar en cuenta es los buses que realizan paradas antes o después de la intersección, los que no realicen se consideran directamente como vehículo pesado.

Además se debe contar con un conteo de flujo peatonal y de bicicletas que tengan conflictos con los giros a la derecha.

<u>Condiciones de los semáforos</u>.- Se refiere a la información que tiene que ver con la operación de los semáforos y su planificación, tiempo de verde, longitud de ciclo, intervalos de cambio y despeje.

2. Agrupación de carriles

Un grupo de carriles es aquel que esta conformado por un conjunto de flujos vehiculares, generalmente se crean grupos de carriles separados cuando existen carriles exclusivos para realizar giros o cuando disponen de bahías, de no ser así se consideran como un grupo simple de carriles.

_

² Ingeniería de Transito Fundamentos y Aplicaciones, Rafael Cal y Mayor; James Cárdenas, 8 edición, Capitulo 12, Pág. 411

Fundada en 1867

3. Determinación de la tasa de flujo

Es necesario trabajar con tasas de flujo durante 15 minutos, para conseguir esto se usa el factor de la hora de máxima demanda.

Como es de suponer no todos los volúmenes máximos de movimientos en la intersección coincidirán con el mismo intervalo de 15 minutos, se aconseja observar directamente los periodos y seleccionar el más crítico. Es muy conservador el caso de considerar los periodos máximos para cada movimiento.

4. Determinación de la tasa de flujo de saturación

Es la tasa máxima de flujo que circula por un acceso o un grupo de carriles, considerando que el tiempo disponible de verde efectivo es del 100%, además se toma en cuenta las condiciones del transito y de la calle.

Las condiciones prevalecientes del transito hacen referencia a los volúmenes por cada movimiento (izquierda, recto o derecha), la composición del trafico (livianos, buses, pesados), maniobras de estacionamiento, paradas de buses, conflictos con peatones o ciclistas. Las condiciones de la calle consisten en las características geométricas de la vía.

También se considera la operación de los semáforos ya que esto tan influencia directamente sobre la tasa de flujo de saturación.

5. Determinación de la capacidad y la relación volumen a capacidad La capacidad como se definió anteriormente es la tasa máxima de flujo que puede circular o atravesar la intersección por cada uno de los grupos de carriles bajo las condiciones prevalecientes del transito, la calle y el semáforo.

La relación volumen a capacidad o conocida también como grado de saturación se calcula mediante le siguiente expresión

Fundada en 1867

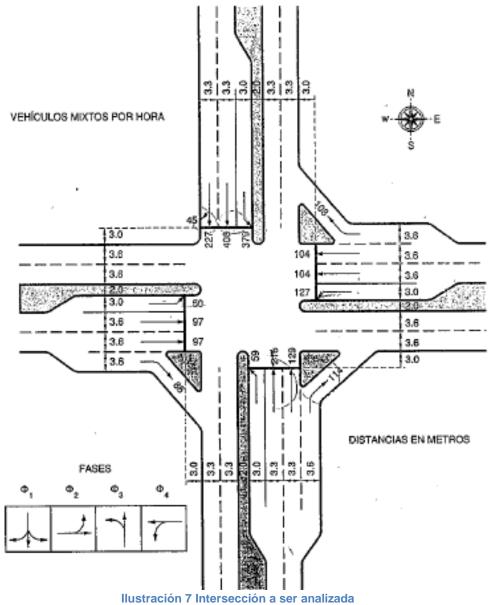
Donde:

- d = Demora media por control (seg./veh)
- d₁ = Demora uniforme (seg/veh), suponiendo llegadas uniformes
- PF = Factor de ajuste por coordinación, tiene en cuenta el efecto de la coordinación que existe entre los semáforos
- d₂ = Demora incremental (seg/veh), considera el efecto de colas sobresaturadas y también de llegadas aleatorias
- d₃ = Demora por cola inicial (seg/veh), considera las demoras por cola inicial antes del periodo de análisis
- 7. Determinación del nivel de servicio

Luego de haber obtenido las demoras se puede determinar el nivel de servicio que como se explico anteriormente esta relacionado directamente con el tiempo de demora, para esto se debe consultar la tabla a continuación.

2.6 Ejemplo de cálculo

Tomo como fuente el ejemplo de cálculo del libro Ingeniería de Transito, Fundamentos y Aplicaciones de Rafael Cal y Mayor y James Cárdenas se explicara la metodología para determinar la Capacidad y Nivel de Servicio de una intersección.


En la llustración 7 se muestra una intersección con la siguiente información:

- Volúmenes máximos horarios en vehículos mixtos
- Ancho de carril en metros
- Movimientos protegidos en cada una de las cuatro fases bajo la cual opera la intersección
- Cuatro fases a la que funciona la intersección
- El porcentaje de buses: 6% acceso norte, 9% acceso sur, 11% acceso este y oeste, no se permite paso de camiones
- El factor de hora de máxima demanda es 0.85 para todos los accesos
- Debido a la disponibilidad de carril con bahías especiales de vuelta a la derecha en los acceso sur, este y oeste m los vehículos realizan esta maniobra sin la influencia del semáforo; excepto el acceso norte en donde el movimiento es compartido con el movimiento de frente
- Las pendientes en los accesos: norte y sur 0% Este +2% y oeste -2%
- Los vehículos llegan a la intersección en forma aleatoria

Fundada en 1867

- No existen estacionamientos ni paradas de autobuses en las cercanías e la intersección
- No existe conflictos peatonales en los accesos de la intersección
- No hay presencia de bicicletas
- El tiempo perdido por movimiento en el arranque es de 4 segundos
- El semáforo funciona en ciclo prefijado de 120 segundos y se detalla en la tabla 2.

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

Fundada en 1867

Face Nº	Acceso	Tiempo (segundos)					
Fase N°		Verde	Amarillo	Rojo			
1	Norte	52	3	65			
2	Sur	21	3	96			
3	Este	17	3	100			
4	Oeste	10	3	107			

Tabla 2 Fase del semáforo del ejemplo

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

Modulo de Ajuste de Volúmenes

Mediante este modulo se convierte los volúmenes horarios (V) dados en tasas de flujo (vp) utilizando el factor de hora de máxima demanda (FHMD), y se establecen grupos de carriles asociados con las tasas de flujo y la proporción de giro.

El factor de hora de máxima demanda se calcula con la siguiente formula:

Fundada en 1867

LT: Movimiento de vuelta a la izquierda

TH: movimiento de frente o directo RT: movimiento de vuelta a la derecha

Para el acceso norte se a establecido dos grupos de carriles, el uno es un carril para vuelta exclusiva a la izquierda (L) y el otro para vuelta a la derecha y movimiento de frente (TR), cada uno de los accesos este, oeste y sur, se conforman con dos grupos de carriles, el uno es para vuelta exclusiva a la izquierda (L) y el otro para movimiento de frente (T).

Accesos	OESTE		ESTE		SUR			NORTE				
Sentido Del flujo vehicular	EB		WB		NB			SB				
Movimientos	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Volúmenes: V (veh/h)	50	194		127	208		59	345		379	635	45
FHMD	0.85	0.85		0.85	0.85		0.85	0.85		0.85	0.85	0.85
Flujo ajustado: Vp (veh/h)	59	228		149	245		69	406		446	747	53
Grupo de Carriles	L	Т		L	Т		L	Т		L	ΤH	
Numero de Carriles: N	1	2		1	2		1	2		1	2	
Flujo del grupo: Vi (veh/h)	59	228		149	245		69	406		446	800	
Proporción de vueltas: Plt o Prt	1	0		1	0		1	0		1	0.07	

Tabla 3 Modulo de ajustes de volúmenes

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

Modulo del flujo de Saturación

Mediante este modulo se calcula el flujo de saturación mediante condiciones prevalecientes para cada uno de los grupos de carriles prestablecidos, a partir del flujo de saturación base o en condiciones ideales, el cual es ajustado mediante factores que se detallan en la tabla 4. Para este ejemplo, se supone un flujo de saturación base de 1900 vehículos ligeros por hora de luz verde por carril.

Fundada en 1867

Factor Fórmula L		Definición de variables	Notas		
Ancho de carril	no de carril $f_w = 1 + \frac{(W-12)}{30}$ $W = \text{ancho de carril (pies)}$		$W \ge 8.0$ Si $W > 16$, puede considerarse un análisis de dos carriles		
t =		% <i>VP</i> = porcentaje de vehículos pesados para el volumen del grupo de carriles	$E_T = 2.0 \text{ pc/}HV$		
Pendiente	$f_g = 1 - \frac{\%G}{200}$	% $G =$ porcentaje de la pendiente para un acceso de un grupo de carriles	$-6 \le \% \ G \le +10$ Negativo es cuesta abajo		
Estacionamiento $f_p = \frac{N - 0.1 - \frac{18N_m}{3600}}{N}$		$N=$ número de carriles en el grupo de carriles $N_m=$ número de maniobras de estacionamiento/hora	$0 \le N_m \le 180$ $f_p = \ge 0.050$ $f_p = 1.000$ cuando no hay estacionamiento		
Obstrucción de autobuses	$f_{bb} = \frac{N - \frac{14.4N_B}{3.600}}{N}$	$N =$ número de carriles en el grupo de carriles $N_B =$ número de autobuses que paran/hora	$0 \le N_B \le 250$ $f_{bb} = \ge 0.050$		
Tipo de área	$f_a = 0.900$ en área comercial $f_a = 1.000$ para todas las demás	áreas			
Utilización de carriles	$f_{LU} = v_g / (v_{g1} N)$	v_g = flujo de demanda sin ajuste para el grupo de carriles, vehículos/hora v_{g1} = flujo de demanda sin ajuste para el carril individual, en el grupo de carriles con el mayor volumen N = número de carriles en el grupo de carriles			
Vueltas a Fase protegida: carril exclusivo: $F_{LT} = 0.95$ Carril compartido: $f_{LT} = \frac{1}{1.0 + 0.05 P_{LT}}$		$P_{LT}=$ proporción de vueltas a la izquierda en el grupo de carriles	Véanse las páginas 428 a 441 para las alternativas de fases no protegidas		
Vueltas a la derecha	Carril exclusivo: $f_{RT} = 0.85$ Carril compartido: $f_{RT} = 1.0 - (0.15)P_{RT}$ Carril individual: $f_{RT} = 1.0 - (0.135)P_{RT}$	$P_{RT}=$ proporción de vueltas a la derecha en el grupo de carriles	$f_{RT} = \ge 0.050$		
Obstrucción de peatones- bicicletas	Ajuste por vta. a la izq.: $f_{Lpb} = 1.0 - P_{LT}(1 - A_{pbT})$ $(1 - P_{LTA})$ Ajuste por vuelta a la derecha: $f_{Rpb} = 1.0 - P_{RT}(1 - A_{pbT})$ $(1 - P_{RTA})$	P_{LT} = proporción de vueltas a la izquierda en el grupo de carriles A_{pbT} = ajuste de la fase permitida P_{LTA} = proporción del verde para el giro a la izquierda protegido, entre el total del verde para dar vuelta a la izquierda P_{RT} = proporción de vueltas a la derecha en el grupo de carriles P_{RTA} = proporción de luz verde para giro a la derecha protegido, entre el total de luz verde para dar vuelta a la derecha	Véanse las páginas 442 a 446 para el procedimiento paso por paso		

Tabla 4 Factores de ajuste para el flujo de saturación Fuente: Ingeniería de transito y carreteras, 3 edición, N. Garber – L. Hoel

Fundada en 1867

En la Tabla 5 se muestra los resultados de cálculo de los flujos de saturación para cada uno de los grupos de carriles, para el grupo de dos carriles (TR) del acceso norte para los movimientos de frente y derecha tenemos:

Fundada en 1867

Fundada en 1867

En la segunda columna del acceso norte (Tabla 5) se muestran los resultados del cálculo.

Este procedimiento se sigue para cada uno de los grupos de carriles y se obtiene los siguientes resultados:

Accesos		OESTE		ESTE		SUR		NORTE	
Sentido Del flujo vehicular		EB		WB		NB		SB	
Grupo de Carriles	L	Т	L	Т	L	Т	L	TR	
Numero de carriles: N	1	2	1	2	1	2	1	2	
Flujo de Saturación Base: So	1900	1900	1900	1900	1900	1900	1900	1900	
Factor de Ajuste por ancho de Carril: fw	0.93	1	0.93	1	0.93	0.97	0.93	0.97	
Factor de Ajuste de Vehículo Pesado: fhv	0.9	0.9	0.9	0.9	0.92	0.92	0.94	0.94	
Factor de Ajuste por pendiente de acceso: fg	1.01	1.01	0.99	0.99	1	1	1	1	
Factor de Ajuste por estacionamiento: fp	1	1	1	1	1	1	1	1	
Factor de Ajuste por Bloque de Buses: fbb	1	1	1	1	1	1	1	1	
Factor de Ajuste por Tipo de Área: Fa	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
Factor de Ajuste por Utilización de Carriles: flu	1	1	1	1	1	1	1	0.83	
Factor de Ajuste por Vuelta a la Izquierda: fl	0.95	1	0.95	1	0.95	1	0.95	0.99	
Factor de Ajuste por Vuelta a la derecha: fD	1	1	1	1	1	1	1	1	
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1	1	1	1	1	1	1	
Factor de Ajuste Derecho Peatones y Ciclistas	1	1	1	1	1	1	1	1	
Flujo de Saturación Ajustado: Si	1360	3078	1360	3078	1390	3052	1420	2562	

Tabla 5 Resumen del cálculo del flujo de saturación para los accesos

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

Modulo de Análisis de Capacidad

En este grupo se calcula para cada grupo de carriles ci y la relación volumen a capacidad (v/c)i, lo mismo que el grado de saturación critico de la intersección Xc, la tabla 6 se presenta el calculo de estos elemento donde ese a tomado un tiempo de verde efectivo gi, equivalente al tiempo de verde actual menos un segundo (4 segundos perdidos en el arranque, menos 3 segundos de amarillos ganados al final). De nuevo, en le acceso Norte, para el grupo de carriles (TR), según la siguientes ecuación.

Fundada en 1867

El grado de saturación critico de la intersección, se calcula de la siguiente manera:

Fundada en 1867

En base a los datos expuestos determinaremos las demoras en el acceso norte para el grupo de carril TR:

Demora Uniforme

La demora uniforme d1 es la que ocurrirá si los vehículos llegaran uniformemente distribuidos, tal que no exista saturación durante ningún ciclo. Se determina mediante la siguiente expresión:

Fundada en 1867

Fundada en 1867

Demora en el Acceso

La demora en el acceso es la suma de las demoras calculadas anteriormente y se calcula mediante:

Fundada en 1867

La demora en la intersección igualmente se determina como un promedio de las demoras en todos los accesos de la intersección y se determina según la siguiente formula:

Fundada en 1867

CAPITULO III

SEMÁFOROS

3.1 Definición y generalidades

Se conoce como semáforos a los dispositivos que se encuentran regulando el transito de vehículos y peatones en las redes viales, estos son accionados mediante corriente eléctrica, la misma que acciona indicaciones visuales que son aceptadas universalmente. Así un semáforo es un elemento de la red vial que asigna de forma alternada el derecho de paso a los distintos movimientos o grupos de movimientos que se pueden presentar en una intersección, generalmente el movimiento que predomina en la intersección es el que conlleva mayores preferencias en cuanto al tiempo.

La función principal del semáforo es lograr que los diferentes grupos de vehículos y/o peatones consigan pasar a través de la intersección de una manera rápida, ordena y segura. Para cumplir con esta función es necesario que los semáforos estén colocados en lugares donde el usuario no pueda evitar visualizarlo y además que del tiempo necesario para que se pueda realizar una maniobra.

Las normas universales para las señales que emite un semáforo son las siguientes:

Luz roja.- Significa prohibición de pasar y los vehículos deben detenerse antes de la línea de parada en caso de que esta exista. En ciertas ocasiones se presenta la luz roja de manera intermitente, esto informa a los usuarios que se deben detener en la línea de parada y se puede cruzar la intersección siempre que este se encuentre despejada.

Luz amarilla.- Es una señal de alerta, advierte a los usuarios que existirá un cambio de luces, además de informar que la intersección debe ser desalojada por los vehículos que se encuentre en ella. Al igual que la luz roja, la luz amarilla se presenta también en forma intermitente, cuando este es el caso los usuarios tienen la autorización de pasar con precaución, disminución de velocidad y observar que no exista ningún peligro.

Luz verde.- Significa paso libre, los usuarios tiene la preferencia.

Fundada en 1867

3.1.1 Objetivos

Los objetivos planteados al momento de diseñar una intersección controlada por un sistema de semaforización son los siguientes.

- Reducir y prevenir ciertos tipos de accidentes en la intersección y en intersecciones aledañas.
- Reducir las demoras que experimentan los peatones y vehículos al intentar cruzar la intersección, y al mismo tiempo evitar las colas largas que podrían generar un obstrucción o congestionamiento en intersecciones anteriores.
- Generar un ahorro de combustible de los vehículos que circulan la intersección, y además disminuir la emisión de gases contaminantes.

3.1.2 Ventajas y desventajas

Los semáforos son una herramienta muy útil al momento de agilitar el transito, siempre y cuando la instalación y operación sean las adecuadas, están deben estar debidamente fundamentadas con estudios y análisis de forma que el semáforo cumpla con su función y no sean entorpecedores del transito.

Cuando un semáforo o un sistema de semaforización operan de manera satisfactoria, se pueden establecer las siguientes **ventajas**.

- Ordena la circulación del transito y, en muchos casos, mediante una asignación apropiada del derecho al uso de la intersección, optimiza la capacidad de las calles.
- Reduce la frecuencia de cierto tipo de accidentes.
- Con espaciamientos favorables se pueden sincronizar para mantener una circulación continua, o casi continua, a una velocidad constante en una ruta determinada. En algunos casos, esa velocidad constante es conveniente reducirla para fines de seguridad.
- Permiten interrumpir periódicamente los volúmenes de transito intensos de una arteria, para conceder el paso de vehículos y peatones de las vías transversales. Así, en zonas escolares, ayudan a los estudiantes a cruzar con mayor seguridad.
- En la mayoría de los casos representan una economía considerable por mayor habilidad en el control del transito con respecto a la utilización de otras formas de control, como por ejemplo señales o policías de transito.

En el caso de que el semáforo o el sistema de semaforización se ha utilizado sin un criterio y sin un estudio previo, o bien en cantidades exageradas para

Fundada en 1867

intentar resolver los inconvenientes que se presentan, existen varias **desventajas** que se pueden presentar, tales como:

- Se incurre en gasto no justificado para soluciones que podían haberse resuelto solamente con señales o en otra forma más económica.
- Causan demoras injustificadas a cierto numero de usuarios, especialmente tratándose de volúmenes de transito pequeños, al causar retardos molestos por excesiva duración de la luz roja o del tiempo total del ciclo.
- Producen reacción desfavorable en el público, con la consiguiente falta de respeto hacia ellos o hacia autoridades.
- Incremento en el número de accidentes del tipo alcance, por cambios sorpresivos de color.
- Ocasionan perdidas innecesarias de tiempo en las horas del día, cuando se presentan escasos volúmenes de transito que no requieren control de semáforos.
- Aumentan la frecuencia o gravedad de ciertos accidentes cuando la conservación es deficiente, especialmente en casos de focos fundidos o interrupciones del servicio eléctrico.
- En intersecciones rurales, la aparición intempestiva de un semáforo ocasiona accidentes cuando no hay avisos previos adecuados.
- Cuando son operados por los agentes de transito, causan mayores demoras en los accesos y enojo en los conductores.

3.2 Clasificación

Los principales tipos de semáforos que se encuentran en funcionamiento para regular el transito urbano o rural, se pueden clasificar según su tipo de funcionamiento en:

No accionados por el transito o, Semáforos de tiempo fijo

En este tipo de semáforos se tiene pre-establecido un programa que regula la duración y secuencia de los intervalos, es importante mencionar que en este tipo de semáforos se puede emplear un control de dos, tres o cuatro programas, esto con el objetivo de activarlos a distintas horas del día y así adaptarse con mayor flexibilidad a las condiciones del transito que se presentan en la intersección, para establecer los programas es necesario que se realicen los estudios y análisis correspondientes.

• Semáforos semi-accionados por el transito.

El sistema de control semi-accionado es empleado en vías donde el volumen de transito es relativamente alto y con altas velocidades, por esto el derecho de

Fundada en 1867

paso corresponde usualmente a la arteria principal y se transfiere a las vías transversales solamente como resultado de los vehículos o peatones que se encuentran en las calles transversales, estos son registrados mediante detectores que se encuentran instalados en los accesos.

• Semáforos totalmente accionados por el transito.

El sistema de control totalmente accionado por el transito dispone, al igual que el anterior, de detectores que registran la actividad en la intersección, la información generada por estos detectores es utilizada para ya sea suprimir, disminuir o prolongar la duración de cierta fase, esto según el transito en la intersección. Existen casos en los que no es suficiente con dos fases, ya sea por condiciones físicas o por giros que generen conflictos, se pueden emplear tres o hasta cuatro fases que funcionen como se describió anteriormente.

Una de las ventajas de este sistema de control en semáforos es que es muy flexible y se adapta fácilmente a las fluctuaciones del transito vehicular.

• Sistemas computarizados de semáforos

Actualmente la tendencia mundial esta enfocada en la instalación de semáforos que son controlados por sistemas computarizados, estos están constituidos por una red de semáforos interconectados que poseen detectores. Estos detectores ya no interfieren directamente en el control de la intersección, si no que estos recogen información y la envían a la central en donde el sistema recibe información de todas las intersecciones, ya con esta información en la central el sistema procede a analizar los datos, y basándose en parámetros o en programaciones previas, el sistema toma una decisión que va de acuerdo con el programa mas adecuado para los patrones de transito en ese momento.

Gracias a estos sistemas se puede tener una interfaz grafica de la situación en la red de semáforos, así podemos saber exactamente que es lo que esta sucediendo en una intersección, tiempo de ciclo, duración de las fases, grado de saturación.

3.3 Requisitos básicos para la instalación de semáforos

3.3.1 Semáforos de tiempo fijo

Los requisitos que deben cumplir los semáforos de tiempo fijo para poder ser instalados son los siguientes:

a) Volumen mínimo de vehículos

Este requisito se aplica cuando la transito en la intersección es el factor principal a ser considerado. Se cumple con este requisito cuando, en un

Fundada en 1867

periodo de 8 horas de un día promedio, se iguala o sobrepasa los valores mínimos presentados en la tabla 9.

Numero de carriles de circulacion por acceso		calle p	oor hora en la rincipal nbos accesos)	Vehiculos por hora en el acceso de mayor volumen de la calle secundaria (un solo sentido)			
Calle principal	Calle secundaria	Urbano	Rural	Urbano	Rural		
1	1	500	350	150	105		
2 ó mas	1	600 420		150	105		
2 ó mas	2 ó mas	600	420	200	140		
1	2 ó mas	500	350	200	140		

Tabla 9 Volumen mínimo de vehículos (requisito 1)

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

b) Interrupción del transito continuo

Este requisito se aplica cuando las condiciones de la vía principal dificultan o hasta imposibilitan el acceso de los vehículos provenientes de la vía secundaria, provocando un cierto riesgo y demoras excesivas en la vía secundaria al cruzar o querer acceder a la vía principal.

El requisito se considera como satisfecho cuando en cada una de cualquiera de las ocho horas de un día representativo, en la vía principal, y en el acceso de mayor volumen de la vía secundaria, se tienen los volúmenes mínimos presentados en la tabla 10.

Numero de carriles de circulacion por acceso		calle p	oor hora en la orincipal nbos accesos)	Vehiculos por hora en el acceso de mayor volumen de la calle secundaria (un solo sentido)		
Calle principal	Calle secundaria	Urbano Rural		Urbano	Rural	
1	1	750	525	75	53	
2 ó mas	1	900	630	75	53	
2 ó mas	2 ó mas	900	630	100	70	
1	2 ó mas	750	525	100	70	

Tabla 10 Volumen mínimo de vehículos (requisito 2)

Fuente: Ingeniería de transito fundamentos y aplicaciones. Rafael Cal y Mayor, James Cárdenas

Los volúmenes en las vías principal y secundaria corresponden a las mismas ocho horas, se debe mencionar que para la vía secundaria el sentido de circulación de mayor volumen, puede ser un sentido por unas horas, y el contrario en el resto.

Fundada en 1867

c) Volumen mínimo de peatones

Se cumple con este requisito cuando en la intersección en análisis se tienen los siguientes volúmenes, 600 o mas vehículos por hora en ambos sentidos en la calle principal y además un flujo de 150 peatones por hora en el paso peatonal de mayor uso. Si el paso peatonal cuenta con una isla, parterre o refugio de seguridad para el cruce, el flujo vehicular deberá ser de 100 vehículos por hora como mínimo.

Estos valores deben ser los registrados en las ocho horas de mayor demanda en un día promedio.

d) Circulación progresiva

Con este requisito se quiere favorecer al movimiento progresivo de los vehículos, esto a veces obliga a instalar semáforos en intersección donde en otras condiciones no seria necesario. Pero el objetivo es de regular y controlar las velocidades de los grupos de vehículos.

Así este requisito se satisface en vías aisladas de un sentido también, cuando dos semáforos están muy distantes entre si y no permiten conservar los vehículos agrupados y a una velocidad deseada, y además si los semáforos inmediatos en una vía de doble circulación no permiten el grado necesario de control.

e) Antecedentes acerca de los accidentes

Este requisito debe ir relacionado con uno de los anteriores, ya que por si solo no justifica la instalación de semáforos. En muchos casos sucede que luego de la instalación de los semáforos se producen mas accidentes que antes. Por esto los semáforos no deben instalarse únicamente en base a un accidente o a la opinión pública. El requisito de accidentes se satisface cuando:

- Si otros procedimientos menos restrictivos, que se han experimentado satisfactoriamente en otros casos (cambios de geometría, señalización), no han reducido la frecuencia de accidentes.
- Si existen volúmenes de peatones y vehículos, no menores del 80% de los que se especifican para los requisitos de volúmenes mínimos.
- Si la instalación del semáforo no desorganiza la circulación progresiva del transito.

Fundada en 1867

f) Combinaciones de requisitos

En el caso en que ninguno de los otros requisitos se cumpla en un 100%, y que dos o más de estos e cumplan en un 80% se justifica la instalación de semáforos en una intersección. Sin embargo las decisiones para estos casos deben estar correctamente justificadas con análisis profundos de los factores que intervienen.

Además se debe tomar como prueba experiencias que se han tenido en otras intersecciones de características similares en las que se han usados métodos distintos que generen menos demoras al transito.

3.4 Partes constitutivas de los semáforos

El semáforo esta formado por los siguientes componentes, ver llustración 8:

- Cabeza: Es la armadura que contiene las partes visibles del semáforo.
 Cada cabeza contiene un número determinado de caras orientadas en diferentes direcciones.
- **Soportes:** Los soportes son las estructuras que se utilizan para sujetarla cabeza de los semáforos de forma que les permitan algunos ajustes angulares, verticales y horizontales.
- Cara: Son las distintas luces de las cuales están formados los semáforos. En cada cara puede haber desde dos luces hasta más de tres, siendo la de tres luces las caras más usuales.
- Lente: Es la parte de la unidad óptica que por refracción dirige la luz proveniente de la lámpara y de su reflector en la dirección deseada. Este elemento desaparece en los nuevos semáforos de LEDs.
- Visera: Es un elemento que se coloca encima o alrededor de cada una de las unidades ópticas, para evitar que, a determinadas horas, los rayos del sol incidan sobre éstas y den la impresión de estar iluminadas, así como también para impedir que la señal emitida por el semáforo sea vista desde otros lugares distintos hacia el cual está enfocado. Como el caso de las lentes, esta parte esta desapareciendo ya que los nuevos semáforos de LEDs iluminan de mejor forma que los antiguos.
- Placa de contraste: Elemento utilizado para incrementar la visibilidad del semáforo y evitar que otras fuentes lumínicas confundan al conductor.

Fundada en 1867

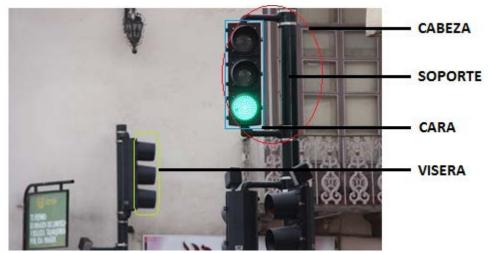


Ilustración 8 Partes del semáforo

3.5 Coordinación de semáforos

La coordinación de semáforos es una herramienta muy importante al momento de aliviar la congestión a lo largo de una vía, ya que es muy eficiente cuando se quiere reducir demoras, consumo de combustibles, contaminación y accidentes.

La coordinación de semáforos consiste en la sincronización de la programación de los tiempos de los semáforos, de forma que los grupos de vehículos consigan avanzar a lo largo de la vía con una velocidad adecuada para las características de esta, y además reduciendo al mínimo las demoras y las detenciones. Para conseguir este objetivo es importante que las duraciones de los ciclos sean las mismas y además que las distancias entre intersecciones sean semejantes.

Existen cuatro sistemas de coordinación para semáforos de tiempo fijo, los cuales se detallan a continuación:

Sistema simultaneo

Todos los semáforos muestran la misma indicación aproximadamente al mismo tiempo, útil para coordinar intersecciones muy cercanas. Este sistema puede dar resultados mas óptimos que el sistema progresivo cuando el transito es muy intenso.

Las duraciones de los ciclos se rigen a una o dos intersección de la red de semáforos, las más importantes, lo que puede generar serios problemas en las demás intersecciones.

Fundada en 1867

La relación entre la velocidad, ciclo y distancia, puede expresarse así:

Fundada en 1867

este sistema son realizados mediante tanteo, por lo que deben estar controlados o supervisados por un control maestro para su correcto funcionamiento.

Sistema progresivo flexible

En este sistema cada intersección puede ser alterada en varios aspectos con respecto a las adyacentes. Se permite cambiar los desfasamientos con cualquier frecuencia. Es posible establecer programaciones para dar preferencia en horas de máxima demanda en sentidos específicos. No obstante todo el sistema es regulado por un ciclo común, la duración y su subdivisión son variables considerando el cambio en el volumen de vehículos.

Basándose en los volúmenes del transito y la selección de una velocidad adecuada se puede obtener un movimiento continuo a lo largo de una arteria.

Para obtener la máxima flexibilidad del sistema es necesario realizar conteos periódicamente, cada seis meses. Este sistema es el de mejores resultados cuando existen intersecciones que se encuentran a distancias variables.

La programación más usual para el sector urbano consta de tres programaciones, que son:

- 1. Prioridad para el flujo de entrada a la zona comercial, en la mañana.
- 2. Equilibrio entre ambas direcciones de movimiento, excepto de las horas de máxima demanda.
- 3. Prioridad para el flujo de salida de la zona comercial, en la tardenoche.

3.6 Semáforos peatonales

Los sistemas de semaforización para peatones, son aquellos que cuentan con señales luminosas, que se encuentran instaladas con el objetivo de dar el derecho de vía a los peatones que necesitan cruzar las intersecciones, haciéndolo de una manera controlada y segura.

Las señales son muy variables según la región en la que se encuentren, se puede encontrar leyendas de PASE o CRUCE, así como de NO CRUCE o ALTO, o también simbología que hacen referencia a una persona caminando para informar que se puede cruzar, o un mano que informa ALTO, (ver ilustración 9).

Fundada en 1867

SEÑAL DE ALTO

SEÑAL DE CRUCE

Ilustración 9 Semáforos peatonales

No es recomendado el uso de semáforos peatonales en zonas que no sean intersecciones ya que son consideradas de alto riesgo, sin embargo, cuando es necesario la instalación de un dispositivo se debe emplear un semáforo peatonal que sea accionado por el peatón, y además se debe colocar la debida señalización para brindar seguridad tanto a conductores como a peatones.

3.6.1 Requisitos para el uso de semáforos peatonales

Los semáforos peatonales generalmente se encuentran en conjunto con los semáforos que controlan el transito vehicular, para que se justifique un semáforo peatonal primero se debe cumplir con uno de los requisitos de los semáforos vehiculares, y además si cumple con una o mas de los siguientes requisitos.

- Cuando se instala un semáforo vehicular justificado por el volumen de peatones.
- Cuando los peatones y vehículos circulan durante la misma fase y se necesitan intervalos de despeje de peatones debidamente ajustados para reducir al mínimo la interferencia de vehículos y peatones.
- Cuando se proporciona una fase exclusiva para el movimiento de peatones en una o mas direcciones, deteniéndose todos los vehículos.
- Cuando los movimientos de giro de un alto volumen de transito exigen una fase semi-exclusiva de peatones para brindarles protección a conveniencia.
- Cuando el movimiento de peatones es permitido en un lado de una intersección mientras que se detiene el transito continuo para proteger los movimientos de giro de otros vehículos en el otro lado de la intersección.

Fundada en 1867

- Cuando una intersección es tan amplia o complicada, o una calle tan anche que los semáforos para los vehículos no brindan el tiempo necesario a los peatones para realizar el movimiento.
- Cuando la sincronización de las fases de los semáforos tienden a confundir a los peatones, si estos se guían solamente por las indicaciones de los vehículos.
- Cuando los peatones cruzan solamente parte de una calle, hasta una isla o desde una isla, durante una fase particular.

Fundada en 1867

CAPITULO IV

SEMAFORIZACIÓN EN CUENCA

4.1 Sistema de Semaforización Actual

En la ciudad de Cuenca existen varios sistemas que integran la red de semaforización y ha ido evolucionando hasta llegar al sistema actual que aun que no se encuentra operando en toda la cuidad abarca zonas importante donde se genera grandes flujos de transito.

Las zonas que se encuentran controladas por este sistema son:

Las calles del Centro Histórico, además de la avenida Huayna Cápac, Av. Doce de abril, Av. Solano, Av. Remigio Crespo, Av. España, y Av. De las Américas, ver Ilustración 10).

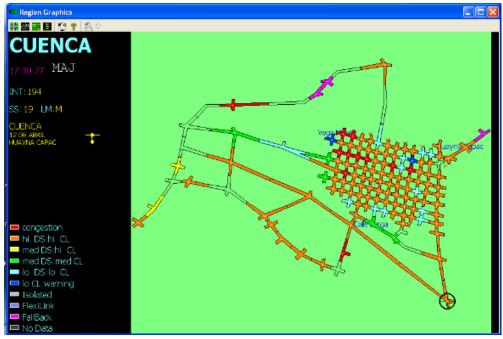


Ilustración 10 Intersecciones semaforizadas en Cuenca, interface del Sistema SCATS

4.2 Funcionamiento del sistema SCATS (Sydney Coordinated Adaptive Traffic System)

El sistema es el denominado SCATS que significa Sistema Coordinado de Trafico Adaptativo, es un software que opera en tiempo real, se ajusta a las variaciones del tráfico, demanda y la capacidad del sistema.

Fundada en 1867



Ilustración 11 Interface del sistema SCATS

A diferencia de los sistemas de semáforos de tiempo fijo este sistema no requiere de un pre-calculo de tiempos, mediante un sistema de señal compuesta, mediante lógica y algoritmos del sistema de controladores y computadoras analiza en tiempo real los datos de tráfico mediante detectores de vehículos para establecer los tiempos adecuados para las condiciones de tráfico actual.

Debido a que las condiciones de tráfico son muy cambiantes los sistemas de tiempo fijo se vuelven inadecuados.

4.2.1 Modos de Funcionamiento

EL sistema SCATS tiene cuatro sistemas de modo de funcionamiento:

- Masterlink
- Flexilink
- Aislado
- Amarillo Intermitente

Master Link.- Es el sistema integrado de operación, es el modo adaptativo, el sistema determina la secuencia de etapas y la duración máxima de cada estado.

Flexilink.- De existir una falla en un ordenador o alguna zona, el sistema vuelve a una forma de coordinación basado en un tiempo conocido.

Fundada en 1867

Aislado.- El sistema entra en funcionamiento el momento que cualquier vehículo transite en la intersección.

Amarillo Intermitente.- La señal normal es sustituida por un parpadeo de las luces, en la vía principal el parpadeo será de color amarillo y el las secundarias será un rojo intermitente.

En la ilustración 12 se puede apreciar el sistema de cámaras que maneja SCATS con el cual se puede monitorear el estado del transito en muchas de las intersección de la ciudad en tiempo real, brindando sin duda un gran aporte al momento de tomar decisiones sobre ciertos cambios en la programación semafórica.

Ilustración 12 Cámaras del sistema SCATS Centro Histórico - Cuenca

4.2.2 Detectores

Todos los detectores se encuentran en o cerca de la línea de parada, colocándose uno en cada sentido, los detectores deben tener una longitud suficiente de enfoque en dirección del flujo de tráfico.

Los detectores deben colocarse en puntos estratégicos con el fin de permitir la medición y utilización del tiempo de verde en el puente en el cual el trafico esta controlado por la señal.

Fundada en 1867

CAPITULO V

ANÁLISIS DE LA SEMAFORIZACIÓN DE LA AVENIDA HUAYNA CÁPAC

El presente capitulo se realizara un análisis del sistema de semaforización de la avenida Huayna Cápac, estableciendo la capacidad y nivel de servicio de cada una de las intersecciones que cuentan con semáforo partiendo de la intersección de la intersección con la Lamar hasta llegar a la avenida 12 de Abril.

5.1 Recolección de Información y Procesamiento de datos

Mediante la Unidad Municipal de Transito y Trasporte Terrestre a través del área de semaforización se nos brindo las facilidades para realizar la recolección de los datos se requerirán para dicho análisis.

El sistema de semaforización que se encuentra actualmente funcionando en la avenida Huayna Cápac es el denominado SCATS, que cuenta con cámaras de teledetección, realiza el conteo de los vehículos que pasan a través de los sensores y guarda esta información en un servidor.

Mediante información de los conteos realizados en la semana del 3 al 9 de septiembre, con estos datos se determino la intersección con la hora de máxima demanda de todo la avenida, en base a ello se pidió los datos de la semana del 17 al 23 de septiembre y se realizo un video en la intersección de máxima demanda para establecer el porcentaje de vehículos pesados y la porción de giros tanto a la izquierda como a la derecha. En la tabla 11 se muestra el resumen de la hora de máxima demanda por día de cada intersección

Fundada en 1867

	HORA PICO DE TRANSITO												
Avenida Huay	na Cánac	DÍA											
intersecci		LUNES MARTES		MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO					
42 DE ADDU	Volumen	2996	3045	2893	2920	2948	2008	1712					
12 DE ABRIL	Hora	07.45-08.45	18.15-19.15	12.30-13.30	17.45-18.45	07.45+08.45	12.45-13.45	10.30-11.30					
CALLE	Volumen	3348	3082	3126	3209	3297	2814	1799					
LARGA	Hora	12.30-13.30	17.30-18.30	07.45-08.45	12.30-13.30	12.30-13.30	10.30-11.30	11.00-12.00					
HONORATO	Volumen	3364	3212	3149	3182	3312	2871	1621					
VASQUEZ	Hora	07.45-08.45	07.45-08.45	12.00-13.00	16.30-17.30	15.15-13.15	11.45-12.45	18.45-19.45					
JUAN	Volumen	3396	3117	3163	3176	3282	2673	1754					
JARAMILLO	Hora	12.30-13.30	18.00-19.00	12.30-13.30	12.15-13.15	12.15-13.15	11.45-12.45	18.15-19.15					
PRESIDENTE	Volumen	3744	3583	3638	3572	3755	3200	1737					
CORDOVA	Hora	16.30-17.30	16.15-17.15	15.30-16.30	16.15-17.15	12.15-13.15	12.15-13.15	11.30-12.30					
SUCRE	Volumen	3694	3456	3471	3536	3658	3228	1699					
SUCKE	Hora	11.45-12.45	17.45-18.45	12.30-13.30	12.30-13.30	12.30-13.30	11.45-12.45	11.00-12.00					
BOLIVAR	Volumen	3606	3422	3351	3376	3490	3138	1820					
BULIVAR	Hora	15.00-16.00	14.45-15.45	16.00-17.00	12.15-13.15	12.15-13.15	12.00-13.00	11.00-12.00					
GRAN	Volumen	3593	3455	3393	3437	3599	3256	2031					
COLOMBIA	Hora	12.00-13.00	07.45-08.45	12.00-13.00	12.30-13.30	12.30-13.30	11.15-12.15	11.45-12.45					
LAMAR	Volumen	3742	3647	3515	3554	3619	3358	1920					
LAWAK	Hora	15.00-16.00	07.45-08.45	07.45-08.45	17.15-18.15	17.15-18.45	11.00-12.00	11.00-12.00					

Tabla 11 Conteo vehicular en las horas de máxima demanda

Fuente Unidad Municipal de Tránsito y Transporte Elaborado por: Grupo de trabajo

Se determino para cada intersección el volumen máximo en la semana, así como la hora y el día en el cual se da este volumen. En la tabla12 se puede observar estos datos.

	Intersección	Volumen de vehículos	Hora de máxima demanda	Día	15 minutos de máxima demanda
ÓN	12 de abril	3045	18.15-19.15	MARTES	860
ÁP/	Calle larga	3348	12.30-13.30	LUNES	880
INTERSECCIÓI AYNA-CÁPAC N:	H Vásquez	3364	07.45-08.45	LUNES	883
H	J Jaramillo	3396	12.30-13.30	LUNES	891
OR IN HUA) CON:	P Córdova	3755	12.15-13.15	VIERNES	981
F. F.	M Sucre	3694	11.45-12.45	LUNES	939
AOS P	S Bolívar	3606	15.00-16.00	LUNES	923
MÁXIMOS POR INTERSECCIÓN DE LA AVE. HUAYNA-CÁPAC CON:	G Colombia	3599	12.30-13.30	VIERNES	937
MÁ) DE	M Lamar	3742	15.00-16.00	LUNES	966

Tabla 12 Resumen de máxima demanda por intersección

Fuente Unidad Municipal de Tránsito y Transporte Elaborado por: Grupo de trabajo

Fundada en 1867

Mediante los datos extraídos en base a la tabla anterior se estableció el volumen de vehículos que pasan a través de cada una de las aproximaciones para cada intersección y los 15 minutos de máxima demanda en la hora de máxima demanda. En la tabla 13 se detalla esta información.

	Pre.	Huayna Cápac	Huayna
Lamar	Rocafuerte	N-S	Cápac S-N
	703	1392	1647
G COLOMBIA	Huayna Cápac N-S	Huayna Cápac N-S	G Colombia
	1559	1452	588
BOLÍVAR	La Republica	Huayna Cápac S-N	Huayna Cápac N-S
	601	1501	1504
SUCRE	Sucre	Huayna Cápac S-N	Huayna Cápac N-S
	738	1493	1463
P. CÓRDOVA	Eloy Alfaro	Huayna Cápac N-S	Huayna Cápac S-N
	631	1703	1421
J. JARAMILLO	Juan Jaramillo	Huayna Cápac N-S	Huayna Cápac S-N
	509	1526	1361
H. VÁSQUEZ	Honorato V	Huayna Cápac N-S	Huayna Cápac S-N
	544	1434	1386
CALLE LARGA	Calle Larga	Huayna Cápac N-S	Huayna Cápac S-N
	1132	642	1574
12 DE ABRIL	12 de abril E-O	12 de Abril O - E	Huayna Cápac S-N
Table 40 Care	751	827	1467

Tabla 13 Conteo en las aproximaciones de cada intersección Fuente Unidad Municipal de Tránsito y Transporte

Elaborado por: Grupo de trabajo

Mediante el video que se realizo en las intersecciones de la avenida Huayna Cápac con la Mariscal Sucre y la Avenida Huayna Cápac con la Simón Bolívar se estableció el porcentaje de vehículos pesados y la porción de giros a la derecha e izquierda. Obteniendo los resultados que se muestran en la tabla 15.

Al no contar con datos para cada intersección se estableció dos modelos para relacionar con las intercesiones en las cuales los datos obtenidos no son suficientes. La intersección de la Avenida Huayna Cápac con la Calle Sucre que posee un alto volumen trafico y por la cual existe presencia de transporte publico se relaciono con calles en la cuales las condiciones son similares, estas

Fundada en 1867

son: la intersección de la Avenida Huayna Cápac con la Calle Mariscal Lamar, Calle Presidente Córdova, Calle Larga, Avenida 12 de Abril.

Para las intersecciones en las cuales no existe presencia de vehículos de Transporte Publico, se considero los datos obtenidos de la intersección de la Avenida Huayna Cápac con la Calle Simón Bolívar, las intersecciones con las cuales se relaciono esta información son: la Avenida Huayna Cápac intersección con la calle Honorato Vásquez, calle Juan Jaramillo, calle Gran Colombia.

Se estableció que para toda la avenida Huayna Cápac se darán solo los giros a la derecha y movimiento de frente y para todas las calles trasversales se darán los giros a la izquierda, derecha y movimiento de frente.

Las condiciones geométricas son un factor que tiene gran influencia en la capacidad de una intersección, estos datos se obtuvieron mediante un levantamiento planímetro realizado en campo, se tomo el largo de cada cuadra y el ancho de la vía en cada intersección. Para obtener así el ancho de cada carril para cada una de las intersecciones.

En la Tabla 14 se detallan las dimensiones obtenidas para la avenida Huayna Cápac.

Avenida	Interseccion	Tramo	Longitud de la Cuadra sentido N - S	Tramo	Longitud de la Cuadra sentido S- N	Ancho de la Via en la interseccion	Ancho del Carril
	Huayna Capac - Mariscal Sucre	Redondel Chola Cuencana - Mariscal	109.60	Mariscal Lamar - Gran Colombia	95.53	13.86	3.5
	Huayna Capac - Gran Colombia	Mariscal Lamar - Gran	95.53	Gran Colombia - Simon Bolivar	77.91	13.63	3.4
	Huayna Capac- Simon Bolivar	Gran Colombia - Simon Bolivar	77.91	Simon Bolivar - Mariscal Sucre	89.18	12.81	3.2
	Huayna Capac - Mariscal Sucre		89.18	Mariscal Sucre - Presidente Cordova	103.00	12.83	3.2
Huayna Capac	Huayna Capac - Presidente Cordova	Mariscal Sucre - Presidente Cordova	103.00	Presidente Cordova - Juan Jaramillo	88.29	12.89	3.2
	Huayna Capac - Juan Jaramillo	Presidente Cordova - Juan Jaramillo	88.29	Juan Jaramillo - Honorato Vasquez	103.6	13.03	3.3
	Huayna Capac - Honorato Vasquez	Juan Jaramillo - Honorato Vasquez	103.6	Honorato Vasquez - Calle Larga	87.65	12.99	3.2
	Huayna Capac - Calle Larga	Honorato Vasquez - Calle Larga	87.65	Calle Larga - 12 de Abril	508.95	14.14	3.5
	Huayna Capac - 12 de abril	Calle Larga - 12 de Abril	508.95			12.00	3.0

Tabla 144 Datos geométricos de la Avenida Huayna-Cápac

Elaborado por: Grupo de trabajo

Fundada en 1867

		C	ONTE	O DE 17:	05:35	A 17:0	05:14 EN	LA IN	TERSE	CCIO	N DE L	A AVE	HUAY	/NA CAPA	AC Y N	1ARISC	CAL SU	JCRE				
		Vehi	iculos	Huayna	a Capac N	I-S			Huayna	a Capac S	3-N						Mari	scal Sucre				
Periodo (h:m:s)	Total de veh. (veh)	#	%	Total vehiculos		iculos ados	Total vehiculos		culos ados	Giros [Derecha	S	i-N	Total vehiculos		culos ados	Giros E)erecha	Giros Iz	quierda	0)-E
				verliculos	#	%	verliculos	#	%	#	7.	#	7.	verliculos	#	%	#	%	#	7.	#	7.
17:05:35 17:07:31	130	7	5%	58	4	7%	72	3	4%	16	22%	56	78%									
17:07:33 17:08:30	29	3	10%											29	3	10%	6	21%	5	17%	18	62%
17:08:32 17:10:04	123	5	4%	61	2	3%	62	3	5%	13	21%	49	79%									
17:10:06 17:11:07	22	1	5%											22	1	5%	5	23%	5	23%	12	55%
17:11:09 17:12:50	123	5	4%	58	3	5%	65	2	3%	15	23%	50	77%									
17:12:52 17:13:53	28	1	4%											28	1	4%	8	29%	9	32%	11	39%
17:13:55 17:15:36	120	7	6%	57	1	2%	63	6	10%	17	27%	46	73%									
17:15:38 17:16:38	29	0	0%											29	0	0%	7	24%	7	24%	15	52%
17:16:40 17:18:26	129	10	8%	60	7	12%	69	3	4%	20	29%	49	71%									
17:18:28 17:19:31	28	2	7%											28	2	7%	8	29%	8	29%	12	43%
17:19:33 17:21:13	129	7	5%	66	3	5%	63	4	6%	9	14%	54	86%									
17:21:15 17:22:16	19	2	11%											19	2	11%	6	32%	6	32%	7	37%
17:22:18 17:24:14	113	4	4%	46	3	7%	67	1	1%	11	16%	56	84%									
17:24:16 17:25:14	31	2	6%											31	2	6%	9	29%	9	29%	13	42%
TOTAL	1053	56	5.32%	406	23	5.67%	461	22	4.77%	101	21.91%	360	78.09%	186	11	5.91%	49	26.34%	49	26.34%	88	47.31%

	CONTEO DE 17:30:00 A 17:45:00 EN LA INTERSECCION DE LA AVE HUAYNA CAPAC Y BOLIVAR																							
				Vehi	iculos	Huayna	a Capac S	:-N			Huayna	a Capac N	I-S						R(epublica				
Perio	do (h:i	m:s)	Total de veh. (veh)	#	×	Total vehiculos		culos ados	Total vehiculos		culos ados	Giros ()erecha	N	I-S	Total vehiculos	Vehi pesa		Giros [Derecha	Giros Iz	:quierda	E	-0
						Termounos	#	%	•ermounos	#	%	#	7.	#	%	.cr.iioaios	#	' .	#	7.	#	7.	#	7.
17:30:0	10 17	45:00	691	26	4%	353	11	3%	338	15	4%	47	14%	291	86%									
11.50.0	,0	43.00	96	1	1%											96	1	1%	13	14%	33	34%	50	52%
T	OTAL		787	27	3.43%	353	11	3.12%	338	15	4.44%	47	13.91%	291	86.09%	96	1	1.04%	13	13.54%	33	34.38%	50	52.08%

Tabla 155 Porcentaje de vehículos pesados, y porcentaje de giros Elaborado por: Grupo de trabajo

Fundada en 1867

En la Tabla 16 se detalla las dimensiones obtenidas para las calles trasversales a la Avenida Huayna Cápac.

Calle	Aproximacion	Tramo	Sentido	Longitud de la Cuadra	Ancho de la Via en la interseccion	Ancho del Carril
Mariscal Lamar	Pte. Rocafurte	Jose Joaquin de Olmedo - Huayna Capac	E -O	100.63	7.3	3.7
Gran Colombia	Gran Colombia	Manuel Vega - Huayna Capac	O - E	120.45	7.25	3.6
Simon Bolivar	La Republica	Gonzalo Zaldumbide	E -O	186.43	7.36	3.7
Mariscal Sucre	Mariscal Sucre	Manuel Vega - Huayna Capac	O - E	147.91	7.28	3.6
Presidente Cordova	Eloy Alfaro	Juan Leon Mera - Huyana Capac	E -O	105.22	7.3	3.7
Juan Jaramillo	Juan Jaramillo	Miguel Angel Estrella - Huayna Capac	O - E	82.8	7.35	3.7
Honorato Vasquez	Viracochabamb a	Intinia - Huyana Capac	E -O	113.14	7.29	3.6
Calle Larga	Calle Larga	Jesus Arriga - Huayna Capac	O - E	118.89	7.2	3.6
12 de Abril	12 de Abril	12 de abril	Ambos Sentidos	160.79	7.89	3.9

Tabla 16 Longitudes de aproximaciones transversales

Elaborado por: Grupo de trabajo

Se considero una pendiente promedio de 1% para todas las intersecciones.

5.2 Comparación de volúmenes de tráfico por apertura del intercambiador

En la etapa de recolección de información se obtuvieron datos de una semana antes y una semana después, de la apertura de distribuidor de transito de la Avenida de las Américas y Ordoñez Lasso, por lo que se creyó oportuno realizar un análisis en la variación de volúmenes que se presentan en la Avenida Huayna Cápac por el motivo citado anteriormente.

El primer conteo se realizo en la semana del 3 al 9 de septiembre de 2012, y el segundo conteo en la semana del 17 al 23 de Septiembre de 2012.

A continuación se presentan ilustraciones que muestran estas variaciones (ver ilustración 13 y 14):

Fundada en 1867

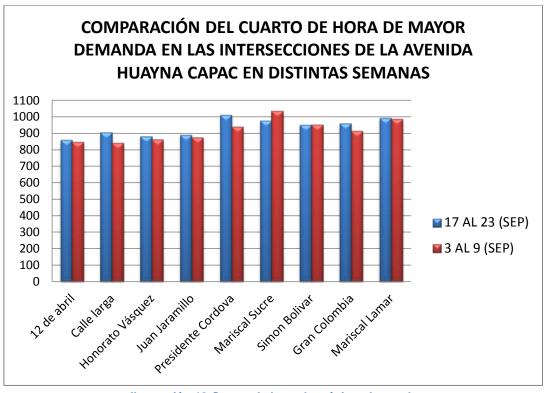


Ilustración 13 Cuarto de hora de máxima demanda Fuente Unidad Municipal de Tránsito y Transporte Elaborado por: Grupo de trabajo

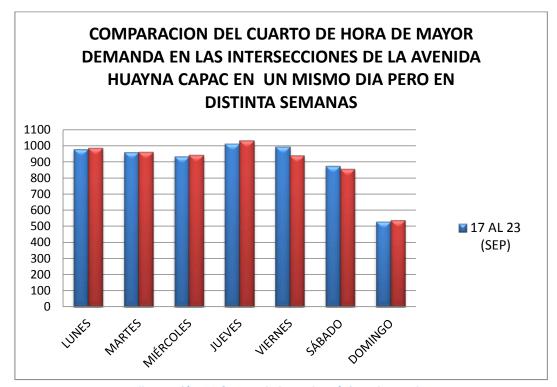


Ilustración 14 Cuarto de hora de máxima demanda Fuente Unidad Municipal de Tránsito y Transporte Elaborado por: Grupo de trabajo

Fundada en 1867

Se puede ver que los volúmenes no sufren un cambio considerable, las razones que justifican este hecho, son que:

Durante la semana de la apertura del distribuidor los centros educativos iniciaron el periodo escolar atrayendo altos volúmenes de transito a la Avenida Huayna Cápac ya que en esta zona se encuentran varios centros educativos y además al ser esta avenida un vía arterial que comunica varias zonas importantes de la ciudad, por ejemplo el sector de Totoracocha que se comunica a través de la Avenida Hurtado de Mendoza a la Avenida Huayna Cápac.

5.3 Calculo de la capacidad y Nivel de servicio de las Intersecciones en la Avenida Huayna Cápac

5.3.1 Avenida Huayna Cápac intersección con la Mariscal Sucre

Se detallara el cálculo y las consideraciones tomadas para la determinación de la capacidad y nivel de servicio en la intersección de la Avenida Huayna Cápac y Calle Mariscal Sucre.

El procedimiento a seguir es el mismo elaborado en el ejercicio desarrollado en el capitulo 2 y se aplicara para cada una de las intersecciones.

La Simbología utilizada para esta intersección es la siguiente:

Simbología

Simbología
MN: Acceso Sur sentido Norte
MS: Acceso Norte Sentido Sur
ME: Acceso Oeste Sentido Este
MO: Acceso Este Sentido Oeste

Movimientos
D: Giro a la Derecha
I: Giro a la Izquierda
F:Movimiento de Frente o Directo

Grupo De Carriles
FD: Movimiento de Frente y Derecho
FID: Movimiento de Frente, Derecho, Izquierdo

Fundada en 1867

FHMD: Factor de Hora de Máxima demanda	
VHMD: Volumen horario de máxima demanda	
Q115: volumen máximo durante 15 minutos	

Av. Huayna Cápac	Norte - Sur
Sucre	Este - Oeste

El sistema SCATS nos presenta la siguiente interface, en donde podemos observar claramente como esta dispuesta la intersección, así como los movimientos que están permitidos. Ver ilustración 15.

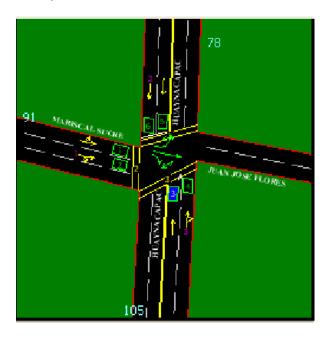


Ilustración 15 Avenida Huayna Cápac - Mariscal Sucre Fuente Unidad Municipal de Tránsito y Transporte

Modulo de Ajuste de Volúmenes

Mediante este modulo se convierte los volúmenes horarios (V) dados en tasas de flujo (vp) utilizando el factor de hora de máxima demanda (FHMD), y se establecen grupos de carriles asociados con las tasas de flujo y la proporción de giro.

Se calculo el factor de hora de máxima demanda mediante los datos de la tabla 13, para ello se aplicó la siguiente formulación:

Fundada en 1867

Donde:

FHMD: Factor de hora de máxima demanda

VHMD: Volumen Horario de Máxima demanda

Q15max: Volumen máximo durante 15 minutos

El valor obtenido es el siguiente:

FHMD	0.98

Este valor es el mismo para cada uno de los accesos y nos sirve para determinar el Flujo ajustado de vehículos por cada aproximación.

El flujo ajustado se calcula mediante la formula:

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F,D		F,D,I
Volumenes: V (Veh/h)	1463	1493		738
FHMD	0.98	0.98		0.98
Flujo Ajustado: Vp (Veh/h)	1488	1519		751
Grupo de Carriles	FD	FD		FDI
Numero de Carriles: N	2	2		2
Flujo del Grupo: vi (Veh/h)	1488	1519		751

Fundada en 1867

HASTA 4 VEH (7MO (s)	10MO (s)	SUMA (s)	# VEH	SEG/VEH
8	8		16	7	2.29
11	7		18	7	2.58
9	7		16	7	2.29
10	7		17	7	2.43
9		13	22	10	2.20
10		12	22	10	2.20

Tabla 18 Datos para obtener el flujo de saturación base Elaborado por: Grupo de trabajo

Se determino el promedio de segundo que se necesitan para que atraviese un vehículo la línea de pare con sus dos ejes y este es:

Fundada en 1867

MODULO DE FLUJO DE SATURACION

Acceso	Norte	Sur	Este	0este	
Ancho de Carril	W	3.2	3.2		3.6
Porcentaje de Vehiculos Pesado	%VP	5.67%	4.77%		5.91%
Pendiente del Acceso	%G	1%	1%		1%
Numero de Carriles del Grupo	N	2	2		2
Numero de Maniobras de estacionamiento	Nm	0	0		0
Numero de Buses que paran por Hora	Nb	0	0		0
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0.00%	0.00%		26.34%
Proporcion de vueltas a la derecha en el grupo de carril	PD	0.00%	21.91%		26.34%

Tabla 19 Flujo de saturación para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre Elaborado por: Grupo de trabajo

En función a estos parámetros se determino el flujo de saturación ajustado aplicando la siguiente formula:

Fundada en 1867

Para el calculo de estos parámetros se utilizan las formulas descritas en la Tabla 4 del capitulo 2, sección 6.

Habiendo determinado cada uno de los factores se realiza el cálculo y se obtiene los siguientes resultados para cada uno de los acceso. Ver tabla 20.

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de Carriles	2	2		2
Flujo de Saturacion Base: So	1544	1544		1300
Factor de Ajuste por ancho de Carril: fw	1	1		1
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00		1.00
Factor de Ajuste por pendiente de acceso: fg	1.00	1.00		1.00
Factor de Ajsute por estacionamiento: fp	1	1		1
Factor de Ajuste por Bloque de Buses: fbb	1	1		1
Factor de Ajuste por Tipo de Area: Fa	1	1		1
Factor de Ajuste por Utilizacion de Carriles: flu	1.00	1.00		1.00
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1		1
Factor de Ajuste por Vuelta a la derecha: fD	1	0.97		0.96
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1		1
Factor de Ajuste Derecho Peatones y Ciclistas	1	1		1
Flujo de Saturacion Ajustado: Si	2951	2854		2474

Tabla 20 Flujo de saturación ajustado para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Modulo de Análisis de Capacidad

En este modulo procedemos a calcular la capacidad que tiene la intersección ci y la relación volumen a capacidad (v/c)i, al igual que el grado de saturación de la intersección X. Se realizara el cálculo para el acceso norte de la intersección con el objetivo de mostrar el procedimiento de cálculo.

Para determinar la capacidad en el acceso se utiliza la siguiente formula:

Fundada en 1867

MODULO DE ANALISIS DE CAPACIDAD					
Ciclo del Semaforo		C	164		

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de Carriles	2	2		2
Tipo de Fase P=Prefijada, A= Acondicionada	A	Α		Α
Tasa de Flujo asociada del Grupo: Vi	1488	1519		751
Fujo de Saturacion Ajustado: Si	2951	2854		2474
Tiempo Verde Efectivo: gi	100	100		58
Realacion de Verde: gi/C	0.61	0.61		0.35
Capacidad Del Grupo de Carril: Ci	1799	1740		875
Relacion Volumen a Capacidad: Xi	0.83	0.87		0.86
Relacion de Flujo: vi/si	0.50	0.53		0.30
Grupo de Carriles Critico por Fase				

Fundada en 1867

Se utilizo un vehículo con un largo de 5.8 metros, considerando una distancia de seguridad entre vehículos de 0.8 metros y con esto se determino la cantidad de vehículos que caben dentro del acceso para cada intersección, en la tabla 22 se muestran los valores para la intersección que se realiza el calculo.

Avenida Huayna Capac								
Tramo	Longitud de la Cuadra sentido	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%	
Simon Bolivar - Mariscal Sucre	89.18	14	28	0	7	14	28	
Mariscal Sucre - Presidente Cordova	103.00	16	32	0	8	16	32	

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Mariscal Sucre	147.91	23	46	0	12	23	46

Tabla 22 Numero de vehículos según el porcentaje de ocupación para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Las demoras obtenidas para cada porcentaje de ocupación son las siguientes:

Para una cola Inicial Qb=0, los resultados se muestran en la Tabla 23.

MODULO DE NI	VEL DE SERVI	CIO			
Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164		164
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.41	0.41		0.41
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	0	0	0	0
Duracion de la Demanda Insatisfecha	t	0.000	0.000		0.000
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1488	1519		751		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1799.2	1740.3		874.9		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.86		
Demora Uniforme: d1	25	27		49		
Demora Incremental: d2	1.2	1.8		3.1		
Demora por Cola Inicial: d3	0.0	0.0		0.0		
Demora en el Acceso dA	26.4	28.5		52.3		
Nivel de servicio Por acceso	С	С		D		
Demora en toda la interseccion: di		32.40				
Nivel de servicio Global de la Intersecion		С				

Tabla 23 Nivel de servicio, cola inicial = 0 para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Fundada en 1867

Para una cola Inicial Qb con un 25 % de porcentaje de ocupación, los resultados se muestran en la Tabla 24.

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164		164
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.41	0.41		0.41
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	7	8	0	12
Duracion de la Demanda Insatisfecha	t	0.022	0.036		0.097
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1488	1519		751		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1799.2	1740.3		874.9		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.86		
Demora Uniforme: d1	25	27		49		
Demora Incremental: d2	1.2	1.8		3.1		
Demora por Cola Inicial: d3	1.3	2.4		19.1		
Demora en el Acceso dA	27.7	30.9		71.4		
Nivel de servicio Por acceso	С	С		E		
Demora en toda la interseccion: di		37.69				
Nivel de servicio Global de la Intersecion		D		·		

Tabla 24 Nivel de servicio, cola inicial = 25% de ocupación para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Para una cola Inicial Qb con un 50 % de porcentaje de ocupación, los resultados se muestran en la Tabla 25.

Acceso	Acceso		Sur	Este	0este
Ciclo del semaforo	С	164	164		164
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.41	0.41		0.41
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	14	16	0	23
Duracion de la Demanda Insatisfecha	t	0.045	0.072		0.186
Parametro de demora	u	1	1		1

Fundada en 1867

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1488	1519		751		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1799.2	1740.3		874.9		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.86		
Demora Uniforme: d1	25	27		49		
Demora Incremental: d2	1.2	1.8		3.1		
Demora por Cola Inicial: d3	5.0	9.6		70.3		
Demora en el Acceso dA	31.4	38.0		122.5		
Nivel de servicio Por acceso	С	D		F		
Demora en toda la interseccion: di		52.31				
Nivel de servicio Global de la Intersecion		D				

Tabla 25 Nivel de servicio, cola inicial = 50% de ocupación para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Para una cola Inicial Qb con un 100 % de porcentaje de ocupación, los resultados se muestran en la Tabla 26.

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164		164
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.41	0.41		0.41
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	28	32	0	46
Duracion de la Demanda Insatisfecha	t	0.090	0.145		0.250
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	МО	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1488	1519		751		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1799.2	1740.3		874.9		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.86		
Demora Uniforme: d1	25	27		49		
Demora Incremental: d2	1.2	1.8		3.1		
Demora por Cola Inicial: d3	20.2	38.3		189.3		
Demora en el Acceso dA	46.6	66.8		241.5		
Nivel de servicio Por acceso	D	E		F		
Demora en toda la interseccion: di		93.69				
Nivel de servicio Global de la Intersecion		F				

Tabla 26 Nivel de servicio, cola inicial = 100% de ocupación para la Ave. Huayna-Cápac intersección con calle Mariscal Sucre

Elaborado por: Grupo de trabajo

Se puede observar que la demora generada por cola inicial tiene influencia directa sobre el nivel de servicio del acceso, ya que se relaciona directamente con la capacidad de dicho acceso. Si la cola inicial aumenta el nivel de servicio disminuirá.

Fundada en 1867

Si la capacidad del acceso es baja, las colas en el acceso generaran demoras elevadas.

El calculo y procedimiento realizado para esta intersección se realizara de igual manera para todas las intersecciones semaforizadas con la avenida Huayna Cápac. Los resultados de cada una de ella se muestran en el Anexo 1.

Fundada en 1867

CONCLUSIONES

- Todos los elementos que componen la ingeniería de transito, deben trabajar conjuntamente para cumplir con el objetivo de satisfacer una necesidad común, como es la movilidad. El usuario por su parte debe cumplir con las reglamentaciones establecidas por las entidades de control, de forma que exista una armonía entre el conductor y la vía. Así mismo las entidades que regulan y administran la infraestructura, deberán proveer un sistema vial seguro, que cumpla con los estándares de calidad.
- Es importante establecer la jerarquía de las vías para instaurar un plan de desarrollo vial, con el fin de que mediante un análisis de transito a futuro, se logre establecer posibles puntos conflictivos, en los que se deberán emplear sistemas de control que lleven a una mejor movilidad evitando las congestiones en las vías e intersecciones.
- En toda intersección semaforizada o no semaforizada, se debe mantener en buen estado la señalización, tanto horizontal como vertical, ya que esta brinda la información necesaria para que el flujo de vehículos que operan en la intersección se direccione correctamente sin generar conflictos que conlleven a la congestión y mal estar en el usuario.
- La ciudad de Cuenca cuenta con un sistema computarizado que trabaja conjuntamente con los volúmenes del transito, ya que se acopla a las condiciones en tiempo real, cambiando los ciclos para liberar la congestión que se presenta una intersección especifica. Es importante mencionar que aunque el sistema sea capaz de trabajar independientemente, el factor humano debe estar presente, ya que posee un criterio técnico y además conoce el comportamiento del transito, lo que le permite tomar en cuenta factores puntuales que el sistema no reconoce.
- Los volúmenes que transitan la Avenida Huayna Cápac son considerablemente altos, comparados con los de las calles transversales. En base a esta diferencia podríamos considerarle como una vía arterial.

Fundada en 1867

- Los tiempos de verde para la Avenida Huayna Cápac superan el 60% del ciclo de los semáforos, lo que se justifica por su mayor jerarquía considerando a las vías transversales como colectoras.
- El nivel de servicio se ve afectado directamente por las demoras que se generan en una intersección semaforizada, a medida que la demora crece, el nivel de servicio disminuye.
- Habiendo realizado el análisis del nivel de servicio en la Avenida Huayna Cápac, en cual se estableció cuatro diferentes escenarios de ocupación por cola en las aproximaciones, podemos concluir que la demora generada por la cola inicial, tiene gran influencia ya que los vehículos que llegan de la intersección anterior sienten una demora adicional generada por los vehículos residuales que no lograron atravesar la intersección.
- En base al video obtenido y al análisis realizado con diferentes porcentajes de ocupación, podemos concluir que las aproximaciones tiene un porcentaje de ocupación del 50%, lo que conlleva a que la Avenida Huayna Cápac cuenta con un nivel de servicio D.
- Mediante el análisis realizado en las intersecciones de la Avenida Huayna Cápac pudimos constatar que el sistema SCATS que actualmente funciona, dota de fluidez al tráfico durante el periodo de mayor demanda, con demoras aceptables hasta con un 50 % de ocupación de las aproximaciones de las intersecciones.

Fundada en 1867

BIBLIOGRAFÍA

- Cal y Mayor, Rafael, y Cárdenas, James; Ingeniería de Transito, Fundamentos y Aplicaciones, 8a Ed. Alfaomega, 2006
- Garber, Nicholas J; Hoel, and Lester A., Traffic and Highway Engineering. 3a Ed; 2001.
- Plan de Ordenamiento Territorial de Cuenca
- CÁRDENAS G. James, "Diseño Geométrico de Carreteras" Reimpresión: Bogotá, D.C., Octubre de 2008. Editorial Kimpres Ltda.
- PALMA ÁLVAREZ, Raúl Iván Aplicación del manual de capacidad de carreteras (HCM) versión 2,000, para la evaluación del nivel de servicio de carreteras de dos carriles", Guatemala, 2006, Universidad de San Carlos de Guatemala.
- TEPG Australia, SCATS Version 6 Booklet, Octubre 2001
- http://www.mtc.gob.pe
- Semáforo, http://es.wikipedia.org/wiki/Semaforos

Fundada en 1867

ANEXOS

- 9.1 Resultados de los cálculos de las intersecciones.
- 9.1.1 Avenida Huayna Cápac intersección con la 12 de Abril

Modulo de Ajuste de Volúmenes

FHMD	0.89
------	------

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1467		827	751
FHMD	0.89		0.89	0.89
Flujo Ajustado: Vp (Veh/h)	1658		935	849
Grupo de Carriles	FDI		FD	FD
Numero de Carriles: N	2		2	2
Flujo del Grupo: vi (Veh/h)	1658		935	849

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	Oeste
Ancho de Carril	W	3.0		3.9	3.9
Porcentaje de Vehiculos Pesado	%VP	5.67%		5.67%	5.67%
Pendiente del Acceso	%G	1%		1%	1%
Numero de Carriles del Grupo	N	2		2	2
Numero de Maniobras de estacionamiento	Nm	0		0	0
Numero de Buses que paran por Hora	Nb	0		0	0
oporcion de vueltas a la Izquierda en el grupo de car	PI	26.34%		0.00%	0.00%
roporcion de vueltas a la derecha en el grupo de carr	PD	21.91%		21.91%	21.91%

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FDI	0	FD	FD
Numero de Carriles	2		2	2
Flujo de Saturacion Base: So	1544		1544	1544
Factor de Ajuste por ancho de Carril: fw	1		1	1
Factor de Ajuste de Vehiculo Pesado: fhv	1.00		1.00	1.00
Factor de Ajuste por pendiente de acceso: fg	1		1	1
Factor de Ajsute por estacionamiento: fp	1		1	1
Factor de Ajuste por Bloque de Buses: fbb	1		1	1
Factor de Ajuste por Tipo de Area: Fa	1		1	1
Factor de Ajuste por Utilizacion de Carriles: flu	0.95		0.95	0.95
Factor de Ajuste por Vuelta a la Izquierda: fl	1		1	1
Factor de Ajuste por Vuelta a la derecha: fD	0.97		0.97	0.97
Factor de Ajuste Izquierdo Peatones y Ciclistas	1		1	1
Factor de Ajuste Derecho Peatones y Ciclistas	1		1	1
Flujo de Saturacion Ajustado: Si	2617		2950	2950

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD	
Ciclo del Semaforo C	167

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FDI	0	FD	FD
Numero de la fase	2		2	2
Tipo de Fase P=Prefijada, A= Acondicionada	A		Α	Α
Tasa de Flujo asociada del Grupo: Vi	1658		935	849
Fujo de Saturacion Ajustado: Si	2617		2950	2950
Tiempo Verde Efectivo: gi	100		67	67
Realacion de Verde: gi/C	0.60		0.40	0.40
Capacidad Del Grupo de Carril: Ci	1570.31		1179.98	1179.98
Relacion Volumen a Capacidad: Xi	1.06		0.79	0.72
Relacion de Flujo: vi/si	0.63		0.32	0.29

Fundada en 1867

Modulo de Nivel de Servicio

Avenida Huayna Capac							
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Calle Larga - 12 de Abril	508.95	78	156	0	39	78	78

Calles Transversales								
Calle		Vehiculo en ambos carriles	0%	25%	50%	100%		
12 de Abril	160.79	25	50	0	12.5	25	25	

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	167		167	167
Duracion del Periodo de analisis	T	0.25		0.25	0.25
Factor de demora Incremental	k	0.45		0.45	0.45
Factor de Ajuste por entradas de la interseccion Corr	L	0.314		0.314	0.314
Cola Inicial al principio del periodo T	Qb	0		0	0
Duracion de la Demanda Insatisfecha	t	0.25		0.00	0.000
Parametro de demora	u	1		1	1

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FDI	0	FD	FD			
Tasa del flujo ajustado del grupo: Vi	1658		935	849			
Realacion de verde: gi/C	0.6		0.4	0.4			
Capacidad del grupo de Carriles: ci	1570.3		1180.0	1180.0			
Relacion Volumne a Capacidad: Xi=Vi/ci	1.06		0.79	0.72			
Demora Uniforme: d1	33		44	42			
Demora Incremental: d2	30.2		1.6	1.1			
Demora por Cola Inicial: d3	0.0		0.0	0.0			
Demora en el Acceso dA	63.6		45.6	43.3			
Nivel de servicio Por acceso	E		D	D			
Demora en toda la interseccion: di	53.72						
Nivel de servicio Global de la Intersecion	D						

Qb = 25% de porcentaje de ocupación

Fundada en 1867

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	167		167	167
Duracion del Periodo de analisis	T	0.25		0.25	0.25
Factor de demora Incremental	k	0.45		0.45	0.45
Factor de Ajuste por entradas de la interseccion Corr	L	0.314		0.314	0.314
Cola Inicial al principio del periodo T	Qb	16		13	13
Duracion de la Demanda Insatisfecha	t	0.25		0.05	0.039
Parametro de demora	u	1		1	1

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FDI	0	FD	FD			
Tasa del flujo ajustado del grupo: Vi	1658		935	849			
Realacion de verde: gi/C	0.6		0.4	0.4			
Capacidad del grupo de Carriles: ci	1570.3		1180.0	1180.0			
Relacion Volumne a Capacidad: Xi=Vi/ci	1.06		0.79	0.72			
Demora Uniforme: d1	33		44	42			
Demora Incremental: d2	30.2		1.6	1.1			
Demora por Cola Inicial: d3	36.7		8.4	6.2			
Demora en el Acceso dA	100.3		54.0	49.5			
Nivel de servicio Por acceso	F		D	D			
Demora en toda la interseccion: di		75.22					
Nivel de servicio Global de la Intersecion		Е					

Qb = 50% de porcentaje de ocupación

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	167		167	167
Duracion del Periodo de analisis	Т	0.25		0.25	0.25
Factor de demora Incremental	k	0.45		0.45	0.45
Factor de Ajuste por entradas de la interseccion Corr	I.	0.314		0.314	0.314
Cola Inicial al principio del periodo T	Qb	31		25	25
Duracion de la Demanda Insatisfecha	t	0.25		0.10	0.076
Parametro de demora	u	1		1	1

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	MO	ME			
Grupo de Carriles	FDI	0	FD	FD			
Tasa del flujo ajustado del grupo: Vi	1658		935	849			
Realacion de verde: gi/C	0.6		0.4	0.4			
Capacidad del grupo de Carriles: ci	1570.3		1180.0	1180.0			
Relacion Volumne a Capacidad: Xi=Vi/ci	1.06		0.79	0.72			
Demora Uniforme: d1	33		44	42			
Demora Incremental: d2	30.2		1.6	1.1			
Demora por Cola Inicial: d3	71.1		31.1	23.0			
Demora en el Acceso dA	134.7		76.8	66.3			
Nivel de servicio Por acceso	F		E	E			
Demora en toda la interseccion: di			102.10				
Nivel de servicio Global de la Intersecion		F					

Fundada en 1867

Qb = 100% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO							
Acceso Norte Sur Este Oeste							
Ciclo del semaforo	С	167		167	167		
Duracion del Periodo de analisis	Т	0.25		0.25	0.25		
Factor de demora Incremental	k	0.45		0.45	0.45		
Factor de Ajuste por entradas de la interseccion Corr	I	0.314		0.314	0.314		
Cola Inicial al principio del periodo T	Qb	62		50	50		
Duracion de la Demanda Insatisfecha	t	0.25		0.20	0.151		
Parametro de demora	u	1		1	1		

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FDI	0	FD	FD			
Tasa del flujo ajustado del grupo: Vi	1658		935	849			
Realacion de verde: gi/C	0.6		0.4	0.4			
Capacidad del grupo de Carriles: ci	1570.3		1180.0	1180.0			
Relacion Volumne a Capacidad: Xi=Vi/ci	1.06		0.79	0.72			
Demora Uniforme: d1	33		44	42			
Demora Incremental: d2	30.2		1.6	1.1			
Demora por Cola Inicial: d3	142.1		124.5	92.2			
Demora en el Acceso dA	205.8		170.2	135.5			
Nivel de servicio Por acceso	F		F	F			
Demora en toda la interseccion: di			178.76				
Nivel de servicio Global de la Intersecion		F					

9.1.2 Avenida Huayna Cápac intersección con la Calle Larga

Fundada en 1867

Modulo de Ajuste de Volúmenes

FHMD	0.95

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F,D	F	F,D
Volumenes: V (Veh/h)	1574	642		1132
FHMD	0.95	0.95		0.95
Flujo Ajustado: Vp (Veh/h)	1655	675		1191
Grupo de Carriles	FD	FD		FDI
Numero de Carriles: N	2	3		2
Flujo del Grupo: vi (Veh/h)	1655	675		1191

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	0este
Ancho de Carril	W	3.5	3.5		3.6
Porcentaje de Vehiculos Pesado	%VP	5.67%	4.77%		5.91%
Pendiente del Acceso	%G	1%	1%		1%
Numero de Carriles del Grupo	N	2	2		2
Numero de Maniobras de estacionamiento	Nm	0	0		0
Numero de Buses que paran por Hora	Nb	0	0		0
Proporcion de vueltas a la Izquierda en el grupo	PI	0.00%	0.00%		26.34%
Proporcion de vueltas a la derecha en el grupo o	PD	0.00%	21.91%		26.34%

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de Carriles	2	2		2
Flujo de Saturacion Base: So	1544	1544		1544
Factor de Ajuste por ancho de Carril: fw	1	1		1
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00		1.00
Factor de Ajuste por pendiente de acceso: fg	1	1		1
Factor de Ajsute por estacionamiento: fp	1	1		1
Factor de Ajuste por Bloque de Buses: fbb	1	1		1
Factor de Ajuste por Tipo de Area: Fa	1	1		1
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95		0.95
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1		1
Factor de Ajuste por Vuelta a la derecha: fD	1	0.97		0.96
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1		1
Factor de Ajuste Derecho Peatones y Ciclistas	1	1		1
Flujo de Saturacion Ajustado: Si	2916	2821		2785

Fundada en 1867

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD						
Ciclo del Semaforo		С	170			

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de la fase	2	2	2	2
Tipo de Fase P=Prefijada, A= Acondicionada	Α	Α		Α
Tasa de Flujo asociada del Grupo: Vi	1655	675		1191
Fujo de Saturacion Ajustado: Si	2916	2821		2785
Tiempo Verde Efectivo: gi	92	92		72
Realacion de Verde: gi/C	0.54	0.54		0.42
Capacidad Del Grupo de Carril: Ci	1578.27	1526.60		1179.43
Relacion Volumen a Capacidad: Xi	1.05	0.44		1.01
Relacion de Flujo: vi/si	0.57	0.24		0.43

Modulo de Nivel de Servicio

Avenida Huayna Capac								
Tramo	Cuadra sentido	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%	
Honorato Vasquez - Calle Larga	87.65	14	28	0	7	14	14	
Calle Larga - 12 de Abril	508.95	78	156	0	39	78	156	

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Calle Larga	118.89	19	38	0	9.5	19	38

Qb = 0, no existe cola inicial

Accesos	•	Norte	Sur	Este	0este
Ciclo del semaforo	С	170	170		170
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	0	0		0
Duracion de la Demanda Insatisfecha	t	0.250	0.250		0.25
Parametro de demora	u	1	1		1

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1655	675		1191		
Realacion de verde: gi/C	0.5	0.5		0.4		
Capacidad del grupo de Carriles: ci	1578.3	1526.6		1179.4		
Relacion Volumne a Capacidad: Xi=Vi/ci	1.05	0.44		1.01		
Demora Uniforme: d1	39	24		49		
Demora Incremental: d2	27.4	0.3		16.4		
Demora por Cola Inicial: d3	0.0	0.0		0.0		
Demora en el Acceso dA	66.4	23.8		65.4		
Nivel de servicio Por acceso	E	С		E		
Demora en toda la interseccion: di	57.90					
Nivel de servicio Global de la Intersecion	E					

Qb = 25% de porcentaje de ocupación

Accesos		Norte	Sur	Este	0este
Ciclo del semaforo	С	170	170		170
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	7	39		10
Duracion de la Demanda Insatisfecha	t	0.250	0.250		0.25
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	MO	ME			
Grupo de Carriles	FD	FD	0	FDI			
Tasa del flujo ajustado del grupo: Vi	1655	675		1191			
Realacion de verde: gi/C	0.5	0.5		0.4			
Capacidad del grupo de Carriles: ci	1578.3	1526.6		1179.4			
Relacion Volumne a Capacidad: Xi=Vi/ci	1.05	0.44		1.01			
Demora Uniforme: d1	39	24		49			
Demora Incremental: d2	27.4	0.3		16.4			
Demora por Cola Inicial: d3	16.0	92.0		30.5			
Demora en el Acceso dA	82.4	115.8		95.9			
Nivel de servicio Por acceso	F	F		F			
Demora en toda la interseccion: di	93.36						
Nivel de servicio Global de la Intersecion	F						

Fundada en 1867

Qb = 50% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO

Accesos		Norte	Sur	Este	0este
Ciclo del semaforo	С	170	170		170
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	14	78		19
Duracion de la Demanda Insatisfecha	t	0.250	0.250		0.25
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1655	675		1191		
Realacion de verde: gi/C	0.5	0.5		0.4		
Capacidad del grupo de Carriles: ci	1578.3	1526.6		1179.4		
Relacion Volumne a Capacidad: Xi=Vi/ci	1.05	0.44		1.01		
Demora Uniforme: d1	39	24		49		
Demora Incremental: d2	27.4	0.3		16.4		
Demora por Cola Inicial: d3	31.9	183.9		58.0		
Demora en el Acceso dA	98.4	207.7		123.4		
Nivel de servicio Por acceso	F	F		F		
Demora en toda la interseccion: di	127.79					
Nivel de servicio Global de la Intersecion	F					

Qb = 100% de porcentaje de ocupación

Accesos		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	170	170		170
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	28	156		38
Duracion de la Demanda Insatisfecha	t	0.250	0.250		0.25
Parametro de demora	u	1	1		1

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	МО	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1655	675		1191		
Realacion de verde: gi/C	0.5	0.5		0.4		
Capacidad del grupo de Carriles: ci	1578.3	1526.6		1179.4		
Relacion Volumne a Capacidad: Xi=Vi/ci	1.05	0.44		1.01		
Demora Uniforme: d1	39	24		49		
Demora Incremental: d2	27.4	0.3		16.4		
Demora por Cola Inicial: d3	63.9	367.9		116.0		
Demora en el Acceso dA	130.3	391.7		181.4		
Nivel de servicio Por acceso	F	F		F		
Demora en toda la interseccion: di	197.67					
Nivel de servicio Global de la Intersecion	F					

9.1.3 Avenida Huayna Cápac intersección con la Calle Honorato Vásquez

Modulo de Ajuste de Volúmenes

FHMD	0.95
1111110	0.55

MODULO D	E AJUSTE DE VOLUMENES			
Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	МО	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1434	1386	544	
FHMD	0.95	0.95	0.95	
Flujo Ajustado: Vp (Veh/h)	1506	1456	572	
Grupo de Carriles	FD	FD	FDI	
Numero de Carriles: N	2	3	2	
Flujo del Grupo: vi (Veh/h)	1506	1456	572	

Fundada en 1867

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	0este
Ancho de Carril	W	3.2	3.2	3.6	
Porcentaje de Vehiculos Pesado	%VP	4.44%	3.12%	1.04%	
Pendiente del Acceso	%G	1%	1%	1%	
Numero de Carriles del Grupo	N	2	2	2	
Numero de Maniobras de estacionamiento	Nm	0	0	0	
Numero de Buses que paran por Hora	Nb	0	0	0	
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0%	0%	34%	
Proporcion de vueltas a la derecha en el grupo de carril	PD	14%	0%	14%	

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de Carriles	2	2	2	
Flujo de Saturacion Base: So	1544	1544	1300	
Factor de Ajuste por ancho de Carril: fw	1	1	1	
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00	1.00	
Factor de Ajuste por pendiente de acceso: fg	1	1	1	
Factor de Ajsute por estacionamiento: fp	1	1	1	
Factor de Ajuste por Bloque de Buses: fbb	1	1	1	
Factor de Ajuste por Tipo de Area: Fa	1	1	1	
Factor de Ajuste por Utilizacion de Carriles: flu	0.952	0.952	0.952	
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1	1	
Factor de Ajuste por Vuelta a la derecha: fD	0.979135	1	0.97969	
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1	1	
Factor de Ajuste Derecho Peatones y Ciclistas	1	1	1	
Flujo de Saturacion Ajustado: Si	2764	2823	2396	

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD		
Ciclo del Semaforo	С	164

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de la fase	2	3	2	
Tipo de Fase P=Prefijada, A= Acondicionada	Α	Α	Α	
Tasa de Flujo asociada del Grupo: Vi	1506	1456	572	
Fujo de Saturacion Ajustado: Si	2764	2823	2396	
Tiempo Verde Efectivo: gi	100	100	58	
Realacion de Verde: gi/C	0.61	0.61	0.35	
Capacidad Del Grupo de Carril: Ci	1685.19	1721.42	847.24	
Relacion Volumen a Capacidad: Xi	0.89	0.85	0.68	
Relacion de Flujo: vi/si	0.54	0.52	0.24	

Fundada en 1867

Modulo de Nivel de Servicio

Avenida Huayna Capac							
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Juan Jaramillo - Honorato Vasquez	103.6	16	32	0	8	16	32
Honorato Vasquez - Calle Larga	87.65	14	28	0	7	14	28

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Honorato Vasquez	113.14	18	36	0	9	18	36

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	Т	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	0	0	0	
Duracion de la Demanda Insatisfecha	t	0.00	0.00	0.00	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	МО	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1506	1456	572			
Realacion de verde: gi/C	0.6	0.6	0.4			
Capacidad del grupo de Carriles: ci	1685.2	1721.4	847.2			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.89	0.85	0.68			
Demora Uniforme: d1	27	26	45			
Demora Incremental: d2	2.4	1.6	1.2			
Demora por Cola Inicial: d3	0.0	0.0	0.0			
Demora en el Acceso dA	29.9	27.4	46.2			
Nivel de servicio Por acceso	С	С	D			
Demora en toda la interseccion: di		31.48				
Nivel de servicio Global de la Intersecion	С					

Qb = 25% de porcentaje de ocupación

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	8	7	9	
Duracion de la Demanda Insatisfecha	t	0.04	0.03	0.03	
Parametro de demora	u	1	1	1	

Fundada en 1867

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1506	1456	572			
Realacion de verde: gi/C	0.6	0.6 0.6 0.4				
Capacidad del grupo de Carriles: ci	1685.2	1685.2 1721.4 84				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.89	0.85	0.68			
Demora Uniforme: d1	27	27 26 45				
Demora Incremental: d2	2.4	1.6	1.2			
Demora por Cola Inicial: d3	3.1	1.5	5.0			
Demora en el Acceso dA	32.9	28.9	51.2			
Nivel de servicio Por acceso	С	С	D			
Demora en toda la interseccion: di		34.23				
Nivel de servicio Global de la Intersecion		С				

Qb = 50% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	16	14	18	
Duracion de la Demanda Insatisfecha	t	0.09	0.05	0.07	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1506	1456	572			
Realacion de verde: gi/C	0.6	0.6	0.4			
Capacidad del grupo de Carriles: ci	1685.2	1721.4	847.2			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.89	0.85	0.68			
Demora Uniforme: d1	27	26	45			
Demora Incremental: d2	2.4	1.6	1.2			
Demora por Cola Inicial: d3	12.2	6.2	20.0			
Demora en el Acceso dA	42.1 33.5 66		66.2			
Nivel de servicio Por acceso	С	С	E			
Demora en toda la interseccion: di	42.47					
Nivel de servicio Global de la Intersecion	С					

Qb = 100% de porcentaje de ocupación

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	32	28	36	
Duracion de la Demanda Insatisfecha	t	0.18	0.11	0.13	
Parametro de demora	u	1	1	1	

Fundada en 1867

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1506	1456	572			
Realacion de verde: gi/C	0.6	0.6	0.4			
Capacidad del grupo de Carriles: ci	1685.2	1721.4	847.2			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.89	0.85	0.68			
Demora Uniforme: d1	27	26	45			
Demora Incremental: d2	2.4	1.6	1.2			
Demora por Cola Inicial: d3	48.8	24.7	80.0			
Demora en el Acceso dA	78.7	52.1	126.3			
Nivel de servicio Por acceso	E	D	F			
Demora en toda la interseccion: di	75.43					
Nivel de servicio Global de la Intersecion	E					

9.1.4 Avenida Huayna Cápac intersección con la Calle Juan Jaramillo

Modulo de Ajuste de Volúmenes

FHMD	0.95
------	------

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1526	1361		509
FHMD	0.95	0.95		0.95
Flujo Ajustado: Vp (Veh/h)	1602	1429		535
Grupo de Carriles	FD	FD		FDI
Numero de Carriles: N	2	2		2
Flujo del Grupo: vi (Veh/h)	1602	1429		535

Fundada en 1867

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	Oeste
Ancho de Carril	W	3.3	3.3		3.7
Porcentaje de Vehiculos Pesado	%VP	4.44%	3.12%		1.04%
Pendiente del Acceso	%G	1%	1%		1%
Numero de Carriles del Grupo	N	2	2		2
Numero de Maniobras de estacionamiento	Nm	0	0		(
Numero de Buses que paran por Hora	Nb	0	0		(
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0%	0%		34%
Proporcion de vueltas a la derecha en el grupo de carril	PD	14%	0%		14%

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de Carriles	2	2	2	2
Flujo de Saturacion Base: So	1544	1544		1300
Factor de Ajuste por ancho de Carril: fw	1	1		1
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00		1.00
Factor de Ajuste por pendiente de acceso: fg	1	1		1
Factor de Ajsute por estacionamiento: fp	1	1		1
Factor de Ajuste por Bloque de Buses: fbb	1	1		1
Factor de Ajuste por Tipo de Area: Fa	1	1		1
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95		0.95
Factor de Ajuste por Vuelta a la Izquierda: fl	1.00	1		0.98
Factor de Ajuste por Vuelta a la derecha: fD	0.98	1		0.98
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1		1
Factor de Ajuste Derecho Peatones y Ciclistas	1	1		1
Flujo de Saturacion Ajustado: Si	2767.32	2826.81		2403.59

Modulo de Análisis de Capacidad

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de la fase	2	3		2
Tipo de Fase P=Prefijada, A= Acondicionada	A	Α		Α
Tasa de Flujo asociada del Grupo: Vi	1602	1429		535
Fujo de Saturacion Ajustado: Si	2767	2827		2404
Tiempo Verde Efectivo: gi	100	100		58
Realacion de Verde: gi/C	0.61	0.61		0.35
Capacidad Del Grupo de Carril: Ci	1687.39	1723.66		850.05
Relacion Volumen a Capacidad: Xi	0.95	0.83		0.63
Relacion de Flujo: vi/si	0.58	0.51		0.22

Fundada en 1867

Modulo de Nivel de Servicio

Avenida Huayna Capac								
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%	
Presidente Cordova - Juan Jaramillo	88.29	14	28	0	7	14	28	
Juan Jaramillo - Honorato Vasquez	103.6	16	32	0	8	16	32	

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Juan Jaramillo	82.8	13	26	0	6.5	13	26

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO							
Acceso Norte Sur Este Oe:							
Ciclo del semaforo	С	164	164	164	164		
Duracion del Periodo de analisis	Т	0.25	0.25		0.25		
Factor de demora Incremental	k	0.45	0.45		0.45		
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314		
Cola Inicial al principio del periodo T	Qb	0	0		0		
Duracion de la Demanda Insatisfecha	t	0.00	0.00		0.00		
Parametro de demora	u	1	1		1		

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	МО	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1602	1429		535		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1687.4	1723.7		850.0		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.95	0.83		0.63		
Demora Uniforme: d1	30	25		44		
Demora Incremental: d2	4.7	1.4		1.0		
Demora por Cola Inicial: d3	0.0	0.0		0.0		
Demora en el Acceso dA	34.3	26.7		45.1		
Nivel de servicio Por acceso	С	С		D		
Demora en toda la interseccion: di		32.88				
Nivel de servicio Global de la Intersecion		С				

Qb = 25% de porcentaje de ocupación

Fundada en 1867

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	7	8		7
Duracion de la Demanda Insatisfecha	t	0.08	0.03		0.02
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1602	1429		535		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1687.4	1723.7		850.0		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.95	0.83		0.63		
Demora Uniforme: d1	30	25		44		
Demora Incremental: d2	4.7	1.4		1.0		
Demora por Cola Inicial: d3	4.9	1.8		2.6		
Demora en el Acceso dA	39.2	28.5		47.7		
Nivel de servicio Por acceso	С	С		D		
Demora en toda la interseccion: di		36.20				
Nivel de servicio Global de la Intersecion		D				

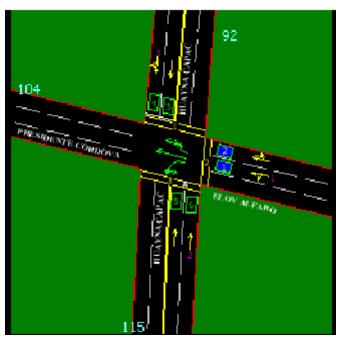
Qb = 50% de porcentaje de ocupación

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	Т	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	L	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	14	16		13
Duracion de la Demanda Insatisfecha	t	0.16	0.05		0.04
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1602	1429		535		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1687.4	1723.7		850.0		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.95	0.83		0.63		
Demora Uniforme: d1	30	25		44		
Demora Incremental: d2	4.7	1.4		1.0		
Demora por Cola Inicial: d3	19.6	7.3		9.1		
Demora en el Acceso dA	53.9	33.9		54.2		
Nivel de servicio Por acceso	D	D		D		
Demora en toda la interseccion: di		45.95				
Nivel de servicio Global de la Intersecion		D				

Fundada en 1867

Qb = 100% de porcentaje de ocupación


Duracion de la Demanda Insatisfecha

Parametro de demora

MODULO DE NIVEL DE SERVICIO								
Acceso		Norte	Sur	Este	Oeste			
Ciclo del semaforo	С	164	164	164	164			
Duracion del Periodo de analisis	Т	0.25	0.25		0.25			
Factor de demora Incremental	k	0.45	0.45		0.45			
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314			
Cola Inicial al principio del periodo T	Qb	28	32		26			

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	МО	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1602	1429		535		
Realacion de verde: gi/C	0.6	0.6		0.4		
Capacidad del grupo de Carriles: ci	1687.4	1723.7		850.0		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.95	0.83		0.63		
Demora Uniforme: d1	30	25		44		
Demora Incremental: d2	4.7	1.4		1.0		
Demora por Cola Inicial: d3	59.7	29.0		36.3		
Demora en el Acceso dA	94.1	55.7		81.4		
Nivel de servicio Por acceso	F	E		E		
Demora en toda la interseccion: di		76.80				
Nivel de servicio Global de la Intersecion		E				

9.1.5 Avenida Huayna Cápac intersección con la Calle Presidente Córdova

0.08

Fundada en 1867

Modulo de Ajuste de Volúmenes

FHMD	0.96
1111416	0.00

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1703	1421	631	
FHMD	0.96	0.96	0.96	
Flujo Ajustado: Vp (Veh/h)	1780	1485	660	
Grupo de Carriles	FD	FD	FDI	
Numero de Carriles: N	2	2	2	
Flujo del Grupo: vi (Veh/h)	1780	1485	660	

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso			Sur	Este	Oeste
Ancho de Carril	W	3.2	3.2	3.7	
Porcentaje de Vehiculos Pesado	%VP	4.44%	3.12%	1.04%	
Pendiente del Acceso	%G	1%	1%	1%	
Numero de Carriles del Grupo	N	2	2	2	
Numero de Maniobras de estacionamiento	Nm	0	0	0	
Numero de Buses que paran por Hora	Nb	0	0	0	
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0%	0%	34%	
Proporcion de vueltas a la derecha en el grupo de carril	PD	14%	0%	14%	

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de Carriles	2	2	2	
Flujo de Saturacion Base: So	1544	1544	1300	
Factor de Ajuste por ancho de Carril: fw	1	1	1	
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00	1.00	
Factor de Ajuste por pendiente de acceso: fg	1	1	1	
Factor de Ajsute por estacionamiento: fp	1	1	1	
Factor de Ajuste por Bloque de Buses: fbb	1	1	1	
Factor de Ajuste por Tipo de Area: Fa	1	1	1	
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95	0.95	
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1	1	
Factor de Ajuste por Vuelta a la derecha: fD	0.98	1	0.98	
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1	1	
Factor de Ajuste Derecho Peatones y Ciclistas	1	1	1	
Flujo de Saturacion Ajustado: Si	2756	2815	2397	

Fundada en 1867

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD		
Ciclo del Semaforo	С	164

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de la fase	2	3	2	
Tipo de Fase P=Prefijada, A= Acondicionada	Α	Α	Α	
Tasa de Flujo asociada del Grupo: Vi	1780	1485	660	
Fujo de Saturacion Ajustado: Si	2756	2815	2397	
Tiempo Verde Efectivo: gi	107	107	51	
Realacion de Verde: gi/C	0.65	0.65	0.31	
Capacidad Del Grupo de Carril: Ci	1798.21	1836.86	745.40	
Relacion Volumen a Capacidad: Xi	0.99	0.81	0.89	
Relacion de Flujo: vi/si	0.65	0.53	0.28	
Grupo de Carriles Critico por Fase				

Modulo de Nivel de Servicio

Avenida Huayna Capac								
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%	
Mariscal Sucre - Presidente Cordova	103.00	16	32	0	8	16	32	
Presidente Cordova - Juan Jaramillo	88.29	14	28	0	7	14	28	

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Presidente Cordova	105.22	16	32	0	8	16	32

Qb = 0, no existe cola inicial

Accesos		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	Т	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	0	0	0	
Duracion de la Demanda Insatisfecha	t	0.00	0.00	0.00	
Parametro de demora	u	1	1	1	·

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1780	1485	660			
Realacion de verde: gi/C	0.7	0.7	0.3			
Capacidad del grupo de Carriles: ci	1798.2	1836.9	745.4			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.99	0.81	0.89			
Demora Uniforme: d1	28	21	54			
Demora Incremental: d2	9.2	1.2	4.8			
Demora por Cola Inicial: d3	0.0	0.0	0.0			
Demora en el Acceso dA	37.1	22.1	58.5			
Nivel de servicio Por acceso	D	С	E			
Demora en toda la interseccion: di		35.06				
Nivel de servicio Global de la Intersecion		D				

Qb = 25% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO

Accesos		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	8	7	8	
Duracion de la Demanda Insatisfecha	t	0.25	0.02	0.09	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1780	1485	660			
Realacion de verde: gi/C	0.7	0.7	0.3			
Capacidad del grupo de Carriles: ci	1798.2	1836.9	745.4			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.99	0.81	0.89			
Demora Uniforme: d1	28	21	54			
Demora Incremental: d2	9.2	1.2	4.8			
Demora por Cola Inicial: d3	16.0	1.1	14.5			
Demora en el Acceso dA	53.2	23.2	73.0			
Nivel de servicio Por acceso	D	С	E			
Demora en toda la interseccion: di		45.17				
Nivel de servicio Global de la Intersecion		D				

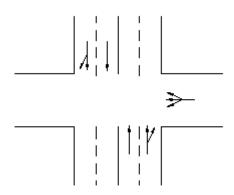
Qb = 50% de porcentaje de ocupación

Accesos		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	16	14	16	
Duracion de la Demanda Insatisfecha	t	0.25	0.04	0.19	
Parametro de demora	u	1	1	1	

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1780	1485	660			
Realacion de verde: gi/C	0.7	0.7	0.3			
Capacidad del grupo de Carriles: ci	1798.2	1836.9	745.4			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.99	0.81	0.89			
Demora Uniforme: d1	28	21	54			
Demora Incremental: d2	9.2	1.2	4.8			
Demora por Cola Inicial: d3	32.0	4.4	57.9			
Demora en el Acceso dA	69.2	26.5	116.5			
Nivel de servicio Por acceso	Е	С	F			
Demora en toda la interseccion: di	60.97					
Nivel de servicio Global de la Intersecion		E				

Qb = 100% de porcentaje de ocupación


Accesos		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	32	28	32	
Duracion de la Demanda Insatisfecha	t	0.25	0.08	0.25	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1780	1485	660			
Realacion de verde: gi/C	0.7	0.7	0.3			
Capacidad del grupo de Carriles: ci	1798.2	1836.9	745.4			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.99	0.81	0.89			
Demora Uniforme: d1	28	21	54			
Demora Incremental: d2	9.2	1.2	4.8			
Demora por Cola Inicial: d3	64.1	17.5	154.5			
Demora en el Acceso dA	101.2	39.6	213.1			
Nivel de servicio Por acceso	F	D	F			
Demora en toda la interseccion: di	96.71					
Nivel de servicio Global de la Intersecion		F				

Fundada en 1867

9.1.6 Avenida Huayna Cápac intersección con la Calle Simón Bolívar

Modulo de Ajuste de Volúmenes

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1504	1501	601	
FHMD	0.98	0.98	0.98	
Flujo Ajustado: Vp (Veh/h)	1540	1537	616	
Grupo de Carriles	FD	FD	FDI	
Numero de Carriles: N	2	2	2	
Flujo del Grupo: vi (Veh/h)	1540	1537	616	

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	Oeste
Ancho de Carril	w	3.2	3.2	3.7	
Porcentaje de Vehiculos Pesado	%VP	4.44%	3.12%	1.04%	
Pendiente del Acceso	%G	1%	1%	1%	
Numero de Carriles del Grupo	N	2	2	2	
Numero de Maniobras de estacionamiento	Nm	0	0	0	
Numero de Buses que paran por Hora	Nb	0	0	0	
Proporcion de vueltas a la Izquierda en el grupo d	PI	0%	0%	34%	
Proporcion de vueltas a la derecha en el grupo de	PD	14%	0%	14%	

Fundada en 1867

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de Carriles	2	2	2	
Flujo de Saturacion Base: So	1544	1544	1300	
Factor de Ajuste por ancho de Carril: fw	1	1	1	
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00	1.00	
Factor de Ajuste por pendiente de acceso: fg	1	1	1	
Factor de Ajsute por estacionamiento: fp	1	1	1.00	
Factor de Ajuste por Bloque de Buses: fbb	1	1	1	
Factor de Ajuste por Tipo de Area: Fa	1	1	1	
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95	0.95	
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1	1	
Factor de Ajuste por Vuelta a la derecha: fD	0.98	1	0.98	
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1	1	
Factor de Ajuste Derecho Peatones y Ciclistas	1	1	1	
Flujo de Saturacion Ajustado: Si	2749	2808	2405	

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD		
Ciclo del Semaforo	С	170

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de la fase	2	3	2	
Tipo de Fase P=Prefijada, A= Acondicionada	Α	Α	Α	
Tasa de Flujo asociada del Grupo: Vi	1540	1537	616	
Fujo de Saturacion Ajustado: Si	2749	2808	2405	
Tiempo Verde Efectivo: gi	106	106	56	
Realacion de Verde: gi/C	0.62	0.62	0.33	
Capacidad Del Grupo de Carril: Ci	1714.29	1751.15	792.21	
Relacion Volumen a Capacidad: Xi	0.90	0.88	0.78	
Relacion de Flujo: vi/si	0.56	0.55	0.26	

Fundada en 1867

Modulo de Nivel de Servicio

Avenida Huayna Capac							
Tramo	Cuadra sentido N -	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Gran Colombia - Simon Bolivar	77.91	12	24	0	6	12	24
Simon Bolivar - Mariscal Sucre	89.18	14	28	0	7	14	28

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Simon Bolivar	186.43	29	58	0	15	29	58

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	170	170	170	170
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.41	0.41	0.41	
Factor de Ajuste por entradas de la interseccion (I .	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	0	0	0	
Duracion de la Demanda Insatisfecha	t	0.000	0.000	0.000	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1540	1537	616			
Realacion de verde: gi/C	0.6	0.6	0.3			
Capacidad del grupo de Carriles: ci	1714.3	1751.1	792.2			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.90	0.88	0.78			
Demora Uniforme: d1	27	27	51			
Demora Incremental: d2	2.3	1.8	2.0			
Demora por Cola Inicial: d3	0.0	0.0	0.0			
Demora en el Acceso dA	29.7	28.4	53.4			
Nivel de servicio Por acceso	С	С	D			
Demora en toda la interseccion: di		33.1	2			
Nivel de servicio Global de la Intersecion	С					

Qb = 25% de porcentaje de ocupación

Fundada en 1867

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	170	170	170	170
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.41	0.41	0.41	
Factor de Ajuste por entradas de la interseccion C	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	6	7	15	
Duracion de la Demanda Insatisfecha	t	0.034	0.033	0.085	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1540	1537	616			
Realacion de verde: gi/C	0.6	0.6	0.3			
Capacidad del grupo de Carriles: ci	1714.3	1751.1	792.2			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.90	0.88	0.78			
Demora Uniforme: d1	27	27	51			
Demora Incremental: d2	2.3	1.8	2.0			
Demora por Cola Inicial: d3	1.7	1.9	23.2			
Demora en el Acceso dA	31.4	30.3	76.6			
Nivel de servicio Por acceso	С	С	E			
Demora en toda la interseccion: di	38.49					
Nivel de servicio Global de la Intersecion	D					

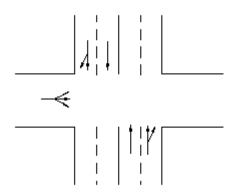
Qb = 50% de porcentaje de ocupación

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	170	170	170	170
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.41	0.41	0.41	
Factor de Ajuste por entradas de la interseccion C	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	12	14	29	
Duracion de la Demanda Insatisfecha	t	0.069	0.065	0.165	
Parametro de demora	u	1	1	1	

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FD	FD	FDI	0			
Tasa del flujo ajustado del grupo: Vi	1540	1537	616				
Realacion de verde: gi/C	0.6	0.6	0.3				
Capacidad del grupo de Carriles: ci	1714.3	1751.1	792.2				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.90	0.88	0.78				
Demora Uniforme: d1	27	27	51				
Demora Incremental: d2	2.3	1.8	2.0				
Demora por Cola Inicial: d3	6.9	7.5	86.8				
Demora en el Acceso dA	36.6	36.0	140.1				
Nivel de servicio Por acceso	D	D	F				
Demora en toda la interseccion: di		53.61					
Nivel de servicio Global de la Intersecion	D						

Qb = 100% de porcentaje de ocupación


Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	170	170	170	170
Duracion del Periodo de analisis	Т	0.25	0.25	0.25	
Factor de demora Incremental	k	0.41	0.41	0.41	
Factor de Ajuste por entradas de la interseccion (I.	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	24	28	58	
Duracion de la Demanda Insatisfecha	t	0.138	0.131	0.250	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	Oeste			
Sentido el Flujo Vehicular	MS	MN	MO	ME			
Grupo de Carriles	FD	FD	FDI	0			
Tasa del flujo ajustado del grupo: Vi	1540	1537	616				
Realacion de verde: gi/C	0.6	0.6	0.3				
Capacidad del grupo de Carriles: ci	1714.3	1751.1	792.2				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.90	0.88	0.78				
Demora Uniforme: d1	27	27	51				
Demora Incremental: d2	2.3	1.8	2.0				
Demora por Cola Inicial: d3	27.8	30.1	263.6				
Demora en el Acceso dA	57.4	58.6	317.0				
Nivel de servicio Por acceso	E	E	F				
Demora en toda la interseccion: di		101.19					
Nivel de servicio Global de la Intersecion		F					

Fundada en 1867

9.1.7 Avenida Huayna Cápac intersección con la Calle Gran Colombia

Modulo de Ajuste de Volúmenes

FHMD	0.96
------	------

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	F,D	F	F,D	F,D
Volumenes: V (Veh/h)	1452	1559		588
FHMD	0.96	0.96		0.96
Flujo Ajustado: Vp (Veh/h)	1513	1624		613
Grupo de Carriles	FD	FD		FDI
Numero de Carriles: N	2	2		2
Flujo del Grupo: vi (Veh/h)	1513	1624		613

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso	Acceso		Sur	Este	Oeste
Ancho de Carril	W	3.4	3.4		3.6
Porcentaje de Vehiculos Pesado	%VP	4.44%	3.12%		20%
Pendiente del Acceso	%G	1%	1%		1%
Numero de Carriles del Grupo	N	2	2		2
Numero de Maniobras de estacionamiento	Nm	0	0		0
Numero de Buses que paran por Hora	Nb	0	0		0
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0%	0%		0%
Proporcion de vueltas a la derecha en el grupo de carril	PD	14%	0%		30%

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de Carriles	2	2		2
Flujo de Saturacion Base: So	1544	1544		1300
Factor de Ajuste por ancho de Carril: fw	1	1		1
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00		1.00
Factor de Ajuste por pendiente de acceso: fg	1	1		1
Factor de Ajsute por estacionamiento: fp	1	1		1
Factor de Ajuste por Bloque de Buses: fbb	1	1		1
Factor de Ajuste por Tipo de Area: Fa	1	1		1
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95		0.95
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1		1
Factor de Ajuste por Vuelta a la derecha: fD	0.98	1		0.96
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1		1
Factor de Ajuste Derecho Peatones y Ciclistas	1	1		1
Flujo de Saturacion Ajustado: Si	2815	2876		2364

Modulo de Análisis de Capacidad

	MODULO DE ANALISIS DE CAPACIDAD		
Ciclo del Semaforo		C	167

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	0	FDI
Numero de la fase	2	3		2
Tipo de Fase P=Prefijada, A= Acondicionada	Α	Α		Α
Tasa de Flujo asociada del Grupo: Vi	1513	1624		613
Fujo de Saturacion Ajustado: Si	2815	2876		2364
Tiempo Verde Efectivo: gi	108	108		55
Realacion de Verde: gi/C	0.65	0.65		0.33
Capacidad Del Grupo de Carril: Ci	1820.65	1859.79		778.52
Relacion Volumen a Capacidad: Xi	0.83	0.87		0.79
Relacion de Flujo: vi/si	0.54	0.56		0.26

Modulo de Nivel de Servicio

Avenida Huayna Capac							
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Mariscal Lamar - Gran Colombia	95.53	15	30	0	8	15	30
Gran Colombia - Simon Bolivar	77.91	12	24	0	6	12	24

Calles Transversales							
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Gran Colombia	120.45	19	38	0	10	19	38

Fundada en 1867

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	167	167		167
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	0	0		0
Duracion de la Demanda Insatisfecha	t	0.000	0.000		0.000
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1513	1624		613		
Realacion de verde: gi/C	0.6	0.6		0.3		
Capacidad del grupo de Carriles: ci	1820.6	1859.8		778.5		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.79		
Demora Uniforme: d1	23	24		51		
Demora Incremental: d2	1.4	1.8		2.4		
Demora por Cola Inicial: d3	0.0	0.0		0.0		
Demora en el Acceso dA	23.9	25.8		53.1		
Nivel de servicio Por acceso	С	С		D		
Demora en toda la interseccion: di		29.47				
Nivel de servicio Global de la Intersecion		С				

Qb = 25% de porcentaje de ocupación

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	167	167		167
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	8	6		10
Duracion de la Demanda Insatisfecha	t	0.026	0.025		0.060
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1513	1624		613		
Realacion de verde: gi/C	0.6	0.6		0.3		
Capacidad del grupo de Carriles: ci	1820.6	1859.8		778.5		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.79		
Demora Uniforme: d1	23	24		51		
Demora Incremental: d2	1.4	1.8		2.4		
Demora por Cola Inicial: d3	1.6	1.2		11.2		
Demora en el Acceso dA	25.5	27.0		64.2		
Nivel de servicio Por acceso	С	С		Е		
Demora en toda la interseccion: di	32.47					
Nivel de servicio Global de la Intersecion	С					

Fundada en 1867

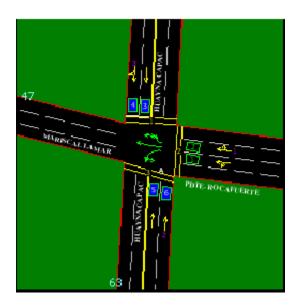
Qb = 50% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	167	167		167
Duracion del Periodo de analisis	T	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	15	12		19
Duracion de la Demanda Insatisfecha	t	0.049	0.051		0.115
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1513	1624		613		
Realacion de verde: gi/C	0.6	0.6		0.3		
Capacidad del grupo de Carriles: ci	1820.6	1859.8		778.5		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.79		
Demora Uniforme: d1	23	24		51		
Demora Incremental: d2	1.4	1.8		2.4		
Demora por Cola Inicial: d3	5.8	4.7		40.3		
Demora en el Acceso dA	29.7	30.5		93.4		
Nivel de servicio Por acceso	С	С		F		
Demora en toda la interseccion: di		40.4	5			
Nivel de servicio Global de la Intersecion		D				

Qb = 100% de porcentaje de ocupación


Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	167	167		167
Duracion del Periodo de analisis	Т	0.25	0.25		0.25
Factor de demora Incremental	k	0.45	0.45		0.45
Factor de Ajuste por entradas de la interseccion Corriente Arriba	I	0.314	0.314		0.314
Cola Inicial al principio del periodo T	Qb	30	24		38
Duracion de la Demanda Insatisfecha	t	0.098	0.102		0.230
Parametro de demora	u	1	1		1

Accesos	Norte	Sur	Este	Oeste		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	0	FDI		
Tasa del flujo ajustado del grupo: Vi	1513	1624		613		
Realacion de verde: gi/C	0.6	0.6		0.3		
Capacidad del grupo de Carriles: ci	1820.6	1859.8		778.5		
Relacion Volumne a Capacidad: Xi=Vi/ci	0.83	0.87		0.79		
Demora Uniforme: d1	23	24		51		
Demora Incremental: d2	1.4	1.8		2.4		
Demora por Cola Inicial: d3	23.1	18.9		161.4		
Demora en el Acceso dA	47.0	44.7		214.4		
Nivel de servicio Por acceso	С	С		F		
Demora en toda la interseccion: di		73.3	7			
Nivel de servicio Global de la Intersecion		D				

Fundada en 1867

9.1.8 Avenida Huayna Cápac intersección con la Calle Mariscal Lamar

Modulo de Ajuste de Volúmenes

FHMD	0.97

MODULO DE AJUSTE DE VOLUMENES

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	MO	ME
Movimientos	FD	F	F,D	F,D
Volumenes: V (Veh/h)	1392	1647	703	
FHMD	0.97	0.97	0.97	
Flujo Ajustado: Vp (Veh/h)	1438	1701	726	
Grupo de Carriles	FD	FD	FDI	
Numero de Carriles: N	2	3	2	
Flujo del Grupo: vi (Veh/h)	1438	1701	726	

Modulo del flujo de Saturación

MODULO DE FLUJO DE SATURACION

Acceso		Norte	Sur	Este	0este
Ancho de Carril	W	3.5	3.5	3.7	
Porcentaje de Vehiculos Pesado	%VP	5.67%	4.77%	5.91%	
Pendiente del Acceso	%G	1%	1%	1%	
Numero de Carriles del Grupo	N	2	1	2	
Numero de Maniobras de estacionamiento	Nm	0	0	0	
Numero de Buses que paran por Hora	Nb	0	0	0	
Proporcion de vueltas a la Izquierda en el grupo de carril	PI	0.00%	0.00%	26.34%	
Proporcion de vueltas a la derecha en el grupo de carril	PD	0.00%	21.91%	26.34%	

Fundada en 1867

Accesos	Norte	Sur	Este	Oeste
Sentido el Flujo Vehicular	MS	MN	MO	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de Carriles	2	2	2	
Flujo de Saturacion Base: So	1544	1544	1300	
Factor de Ajuste por ancho de Carril: fw	1	1	1	
Factor de Ajuste de Vehiculo Pesado: fhv	1.00	1.00	1.00	
Factor de Ajuste por pendiente de acceso: fg	1	1	1	
Factor de Ajsute por estacionamiento: fp	1	1	1	
Factor de Ajuste por Bloque de Buses: fbb	1	1	1	
Factor de Ajuste por Tipo de Area: Fa	1	1	1	
Factor de Ajuste por Utilizacion de Carriles: flu	0.95	0.95	0.95	
Factor de Ajuste por Vuelta a la Izquierda: fl	1	1	1	
Factor de Ajuste por Vuelta a la derecha: fD	1	0.97	0.96	
Factor de Ajuste Izquierdo Peatones y Ciclistas	1	1	1	
Factor de Ajuste Derecho Peatones y Ciclistas	1	1	1	
Flujo de Saturacion Ajustado: Si	2894	2799	2358	

Modulo de Análisis de Capacidad

MODULO DE ANALISIS DE CAPACIDAD		
Ciclo del Semaforo	С	164

Accesos	Norte	Sur	Este	0este
Sentido el Flujo Vehicular	MS	MN	МО	ME
Grupo de Carriles	FD	FD	FDI	0
Numero de la fase	2	3	2	
Tipo de Fase P=Prefijada, A= Acondicionada	A	Α	Α	
Tasa de Flujo asociada del Grupo: Vi	1438	1701	726	
Fujo de Saturacion Ajustado: Si	2894	2799	2358	
Tiempo Verde Efectivo: gi	100	100	58	
Realacion de Verde: gi/C	0.61	0.61	0.35	
Capacidad Del Grupo de Carril: Ci	1764.35	1706.58	833.82	
Relacion Volumen a Capacidad: Xi	0.82	1.00	0.87	
Relacion de Flujo: vi/si	0.50	0.61	0.31	
Grupo de Carriles Critico por Fase				

Modulo de Nivel de Servicio

Avenida Huayna Capac							
Tramo	Longitud de la Cuadra sentido N - S	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%
Redondel Chola Cuencana - Mariscal Lamar	109.60	17	34	0	9	17	34
Mariscal Lamar - Gran Colombia	95.53	15	30	0	8	15	30

Calles Transversales								
Calle	Longitud de la Cuadra	Vehiculos por carril	Vehiculo en ambos carriles	0%	25%	50%	100%	
Mariscal Lamar	100.63	16	32	0	8	16	32	

Fundada en 1867

Qb = 0, no existe cola inicial

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arril	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	0	0	0	
Duracion de la Demanda Insatisfecha	t	0.000	0.000	0.000	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FD	FD	FDI	0			
Tasa del flujo ajustado del grupo: Vi	1438	1701	726				
Realacion de verde: gi/C	0.6	0.6	0.4				
Capacidad del grupo de Carriles: ci	1764.3	1706.6	833.8				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.82	1.00	0.87				
Demora Uniforme: d1	25	32	49				
Demora Incremental: d2	1.3	10.9	3.9				
Demora por Cola Inicial: d3	0.0	0.0	0.0				
Demora en el Acceso dA	26.1	42.7	53.4				
Nivel de servicio Por acceso	С	D	D				
Demora en toda la interseccion: di		38.51					
Nivel de servicio Global de la Intersecion		D					

Qb = 25% de porcentaje de ocupación

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arril	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	9	8	8	
Duracion de la Demanda Insatisfecha	t	0.028	0.250	0.074	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FD	FD	FDI	0			
Tasa del flujo ajustado del grupo: Vi	1438	1701	726				
Realacion de verde: gi/C	0.6	0.6	0.4				
Capacidad del grupo de Carriles: ci	1764.3	1706.6	833.8				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.82	1.00	0.87				
Demora Uniforme: d1	25	32	49				
Demora Incremental: d2	1.3	10.9	3.9				
Demora por Cola Inicial: d3	2.0	16.9	10.3				
Demora en el Acceso dA	28.1	59.6	63.6				
Nivel de servicio Por acceso	С	E	D				
Demora en toda la interseccion: di		48.62					
Nivel de servicio Global de la Intersecion		D					

Fundada en 1867

Qb = 50% de porcentaje de ocupación

MODULO DE NIVEL DE SERVICIO

Acceso		Norte	Sur	Este	0este
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arril	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	17	15	16	
Duracion de la Demanda Insatisfecha	t	0.052	0.250	0.148	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este			
Sentido el Flujo Vehicular	MS	MN	МО	ME			
Grupo de Carriles	FD	FD	FDI	0			
Tasa del flujo ajustado del grupo: Vi	1438	1701	726				
Realacion de verde: gi/C	0.6	0.6	0.4				
Capacidad del grupo de Carriles: ci	1764.3	1706.6	833.8				
Relacion Volumne a Capacidad: Xi=Vi/ci	0.82	1.00	0.87				
Demora Uniforme: d1	25	32	49				
Demora Incremental: d2	1.3	10.9	3.9				
Demora por Cola Inicial: d3	7.2	31.6	41.0				
Demora en el Acceso dA	33.3	74.3	94.4				
Nivel de servicio Por acceso	С	E	E				
Demora en toda la interseccion: di		62.83					
Nivel de servicio Global de la Intersecion		E					

Qb = 100% de porcentaje de ocupación

Acceso		Norte	Sur	Este	Oeste
Ciclo del semaforo	С	164	164	164	164
Duracion del Periodo de analisis	T	0.25	0.25	0.25	
Factor de demora Incremental	k	0.45	0.45	0.45	
Factor de Ajuste por entradas de la interseccion Corriente Arrib	I	0.314	0.314	0.314	
Cola Inicial al principio del periodo T	Qb	34	30	32	
Duracion de la Demanda Insatisfecha	t	0.104	0.250	0.250	
Parametro de demora	u	1	1	1	

Accesos	Norte	Sur	Este	0este		
Sentido el Flujo Vehicular	MS	MN	MO	ME		
Grupo de Carriles	FD	FD	FDI	0		
Tasa del flujo ajustado del grupo: Vi	1438	1701	726			
Realacion de verde: gi/C	0.6	0.6	0.4			
Capacidad del grupo de Carriles: ci	1764.3	1706.6	833.8			
Relacion Volumne a Capacidad: Xi=Vi/ci	0.82	1.00	0.87			
Demora Uniforme: d1	25	32	49			
Demora Incremental: d2	1.3	10.9	3.9			
Demora por Cola Inicial: d3	28.9	63.3	138.2			
Demora en el Acceso dA	55.0	106.0	191.5			
Nivel de servicio Por acceso	D	F	Е			
Demora en toda la interseccion: di	103.07					
Nivel de servicio Global de la Intersecion	F					