

Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Despacho económico ambiental de unidades de generación térmicas

Trabajo de titulación previo a la obtención del Título de Ingeniero Eléctrico

Autores:

Paúl Patricio Peralta Pesántez

Eddy Manuel Silva Cartuche

Director:

Edgar Antonio Barragán Escandón

Cuenca – Ecuador 2012

RESUMEN

En el desarrollo del presente trabajo lo que pretende es estudiar a nivel teórico el despacho económico ambiental de unidades térmicas de generación de energía eléctrica, para lo cual se detalla aspectos básicos acerca de las leyes vigentes y tecnologías para disminuir las emisiones en el país, así como también la reglamentación vigente para el despacho económico. Se sustenta la base teórica del problema de despacho económico con sus respectivas ecuaciones y restricciones, también se analiza las diferentes curvas características que representan a las unidades de generación como función de entrada salida, función de costos, costos marginales.

En base a bibliografía analizada, se propone un modelo de despacho económico ambiental, en el cual se pueda incluir tanto los costos del combustible, como la cantidad de emisiones.

Con los resultados obtenidos de los cálculos realizados en el modelo de despacho propuesto, se presentan gráficas a fin de comparar las características particulares del despacho económico convencional y el despacho económico con restricción de emisiones.

Palabras clave: Emisiones de gases contaminantes en centrales térmicas, gestión ambiental en centrales térmicas, despacho económico ambiental, despacho económico convencional, restricción de emisiones, despacho económico sin pérdidas, control de contaminantes.

ABSTRACT

In the development of the following work, in which the object is to solely study in a theoretical manner the economic environmental dispatch of the thermal power generating units, for which some basic aspects are detailed about current laws, the technology that is used to reduce emissions in the country, as well as current regulations for the economic dispatch, the basic theory of the problem with economic dispatch and its respective equations and restrictions is maintained, and the different curves representing the generating units as input function, function costs, and marginal costs are analyzed.

Based the literature reviewed, we propose a model of environmental economic dispatch, which can have fuel costs, and amount of emissions

Based on the results of the calculations in the proposed dispatch model, graphs are presented to compare the characteristics of each case.

Keywords: Emissions of pollutant gases in power plants, environmental management in thermal power plants, environmental economic dispatch, conventional economic dispatch, emissions restrictions, lossless economic dispatch, control of pollutants.

CONTENIDO

2.3.1. Restricciones	24
2.3.2. Ecuación de Lagrange	25
2.3.3. Despacho económico con límites de generación	26
2.4. MÉTODOS DE SOLUCIÓN	27
2.4.1. Método iterativo lambda	28
2.4.2. Método del gradiente	28
2.4.3. Método de Newton	28
2.4.4. Programación dinámica	28
2.5. COSTOS DE GENERACIÓN	29
2.5.1. Costos fijos	29
2.5.2. Costos variables	30
CAPÍTULO III	31
DESPACHO ECONÓMICO CON RESTRICCIONES AMBIENTALES EN	
SISTEMAS TÉRMICOS	31
3.1. INTRODUCCIÓN	31
3.2. MODELOS DE DESPACHO ECONÓMICO CON RESTRICCIONI	ΞS
AMBIENTALES	32
3.2.1. Mínima emisión satisfaciendo la demanda del sistema, sin	
considerar las pérdidas de transmisión	
3.2.2. Mínimo de la suma ponderada de costos y emisiones	
3.3. CURVAS TRADE-OFF	
3.4. VALORACIÓN DE LA EXTERNALIDAD AMBIENTAL	38
CAPÍTULO IV	40
SIMULACIÓN Y COMPARACIÓN DE RESULTADOS ENTRE EL DESPA	СНО
ECONOMICO CONVENCIONAL Y EL DESPACHO ECONÓMICO	
AMBIENTAL	40
4.1. INTRODUCCIÓN	40
4.2. SISTEMA DE SEIS UNIDADES	40
4.3. CÁLCULO DEL DESPACHO ECONÓMICO SIN CONSIDERAR	
PÉRDIDAS	42
4.4. CÁLCULO DEL DESPACHO ECONÓMICO AMBIENTAL SIN	
CONSIDERAR PÉRDIDAS	44
CAPÍTULO V	52
CONCLUSIONES Y RECOMENDACIONES	52
5.1. CONCLUSIONES	52
5.2. RECOMENDACIONES	
BIBLIOGRAFÍA	
ANEXO 1	58

ÍNDICE DE FIGURAS

Figura 1.1. Partes de un colector inercial	14
Figura 1.2. Precipitador electrostático (7)	14
Figura 2.1. Curva característica entrada-salida de unidades térmicas (14)	22
Figura 2.2. Curva característica de costo incremental de combustible (14)	23
Figura 2.3. Representación aproximada de la curva de calor incremental (14)	23
Figura 2.4. N unidades térmicas para servir la carga (14)	24
Figura 2.5. Interpretación esquemática del costo incremental (λ) (14)	26
Figura 2.6. Interpretación esquemática del costo incremental (λ) con límites de	
generación (14)	27
Figura 3. 1. Curva Trade-off. Efectos de la variación de δ en los costos d	е
emisiones. (25)	37
Figura 4. 1 Sistema de 6 unidades satisfaciendo la carga	40
Figura 4. 2. Costos marginales de las unidades	44
Figura 4. 3. Matriz para solución de despacho económico ambiental	44
Figura 4. 4. Costos marginales de las unidades	47
Figura 4. 5. Costos de producción en función de δ	48
Figura 4. 6. Emisiones en función de δ	48
Figura 4. 7. Costo vs. Emisiones	49
Figura 4. 8. Costos de combustible y costos emisiones en función de δ	50
Figura 4. 9. Distribución de potencia para despacho económico y despacho	
ambiental	50

ÍNDICE DE TABLAS

Tabla 4. 1. Parámetros de las unidades	41
Tabla 4. 2. Límites de generación	41
Tabla 4. 3. Parámetros de la función de emisiones	42
Tabla 4. 4. Potencias para despacho económico	43
Tabla 4. 5. Costos de combustible para operación.	43
Tabla 4. 6. Cálculos con δ=1	45
Tabla 4. 7. Cálculos con δ=0	45
Tabla 4. 8. Potencias de operación con δ=0	46
Tabla 4. 9. Costos de combustible para operación	46
Tabla 4.10. Resultados de despacho económico y despacho con restricciones	
ambientales	47

Yo, Paúl Patricio Peralta Pesántez, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Ingeniero Eléctrico. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Paúl Patricio Peralta Pesántez, certifica que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Paúl Patricio Peralta Pesántez 010485424-5

Yo, Eddy Manuel Silva Cartuche, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Ingeniero Eléctrico. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Eddy Manuel Silva Cartuche, certifica que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

7.

Eddy Manuel Silva Cartuche 110422125-2

CAPÍTULO I

INTRODUCCIÓN

1.1. ANTECEDENTES

La generación de energía eléctrica a partir de combustibles fósiles, produce emisiones de gases contaminantes hacia la atmosfera, los cuales contribuyen a fenómenos perjudiciales como la alteración del agua y el suelo que puede perjudicar a la vegetación y a la fauna. El perjuicio al ser humano de gases contaminantes, puede producir afecciones de los órganos respiratorios. Además la quema de combustibles fósiles contribuye al efecto invernadero produciendo un cambio climático global. Esto ha llevado a darle importancia al cuidado del medio ambiente, tomándose ciertas restricciones en cuanto a la "operación y expansión de sistemas eléctricos de potencia." (1)

Si bien, existen en la actualidad normas y reglamentos que involucran a las actividades eléctricas en un contexto de prevención y mitigación de impactos ambientales negativos; en el despacho de unidades térmicas del sistema nacional interconectado no se toma en cuenta el componente ambiental, ya que se tiene como prioridad el despacho económico, es decir tiene la finalidad de reducir los costos totales de generación al realizar un despacho económico óptimo; pero, en vista de la creciente importancia que se le da al aspecto ambiental en la actualidad, es necesario realizar este tipo de análisis. Por ello, este estudio considera restricciones ambientales en el despacho económico. (2)

1.2. OBJETIVOS

1.2.1. Objetivo general

Plantear una metodología de despacho económico con consideraciones ambientales para un sistema puramente térmico a nivel teórico.

1.2.2. Objetivos específicos

Investigar las consecuencias de las emisiones en las personas y medioambiente, las leyes vigentes, tecnologías de control de emisiones en Ecuador.

Analizar las externalidades en el costo de generación, incluyendo los costos sociales debido a la contaminación.

Realizar la comparación de un sistema de despacho tomando en cuenta solo la reducción de costos de generación y un sistema que incluya los costos debido a la contaminación por emisiones.

Realizar una simulación básica con los sistemas indicados; considerando las emisiones en los costos marginales de generación por tipo de central; esto se lograría incluyendo las funciones de emisiones como restricciones en la modelación del sistema.

1.3. ALCANCE

El presente documento está orientado a un estudio teórico de la influencia que se tiene al considerar los costos de los efectos ambientales en la operación de unidades térmica de generación de energía eléctrica.

Se tendrá en cuenta una modelación del sistema de despacho con una repartición de unidades generadoras que satisfagan la demanda de energía de tal forma de minimizar el costo total de operación, sumado a restricciones de emisión de gases contaminantes limitando la cantidad de toneladas de gases que emiten el conjunto de unidades térmicas generadoras.

1.4. CONTAMINANTES ATMOSFÉRICOS

A continuación se describen los contaminantes atmosféricos indicando sus principales características y las fuentes que las generan (3).

Monóxido de carbono (CO).- Gas incoloro, inodoro y tóxico producto de la combustión incompleta de combustibles fósiles.

Material particulado (PM).- Está constituido por material sólido o líquido en forma de partículas, con excepción del agua no combinada, presente en la atmósfera. Se designa como PM2,5 al material particulado cuyo diámetro aerodinámico es menor a 2,5 micrones. Se designa como PM10 al material particulado de diámetro aerodinámico menor a 10 micrones.

Dióxido de azufre (SO₂).- Gas incoloro e irritante formado principalmente por la combustión de combustibles fósiles.

Dióxido de nitrógeno (NO₂).- Gas de color pardo rojizo, altamente tóxico, que se forma debido a la oxidación del nitrógeno atmosférico que se utiliza en los procesos de combustión en los vehículos y fábricas.

Partículas Sedimentables.- Material particulado, sólido o líquido, en

general de tamaño mayor a 10 micrones; por su peso tienden a precipitarse con facilidad, razón por lo cual pueden permanecer en suspensión temporal en el aire ambiente. (3)

1.5. TÉCNICAS PARA EL CONTROL DE LA CONTAMINACIÓN ATMOSFÉRICA

La idea principal de la protección medio ambiental debe ser la prevención, enfocada a minimizar las emisiones de sustancias contaminantes hacia la atmosfera, en lugar de tomar acciones cuando estas ya se han producido. (4)

Para ello se debe trabajar sobre el origen de las emisiones, evitando que se produzcan; haciendo un uso racional de los recursos y tomando las medidas necesarias a fin de conseguir un resultando más ventajoso, como las evaluaciones de impacto ambiental y tecnologías de baja emisión de gases y residuos que utilizan procesos para evitar la contaminación de éstos en su origen (4).

Estas medidas de prevención deben abarcar un entendimiento amplio de la problemática ambiental y sus causas, así como aspectos de carácter económico que permitan hacer viable dichas medidas; también aspectos dirigidos a la sociedad como la concientización y promoviendo legislaciones que se ajusten a la problemática ambiental (5).

Al momento de afrontar el tema del control de la contaminación atmosférica se debe tener en cuenta los condicionamientos ambientales y las consideraciones económicas (5).

Cuando no es posible aplicar acciones preventivas por razones técnicas o económicas, se recurren a acciones correctivas como:

- Tratar los contaminantes con equipos de depuración teniendo en cuenta su tratamiento posterior.
- ➤ Utilizar chimeneas altas, para reducir los efectos locales que producen los contaminantes emitidos en el ambiente (5).

1.5.1. Técnicas para eliminación de gases contaminantes

1.5.1.1. Proceso de absorción

Como los gases residuales se componen de mezclas de sustancias en fase gaseosa; el proceso de absorción se realiza sobre dichos componentes que son solubles en fase líquida, disolviéndolos al ponerlos en contacto con un líquido. El proceso de contacto del gas con el líquido se realiza en lavadores

húmedos o en sistemas de absorción en seco (5).

1.5.1.2. Proceso de adsorción

Se trata de adsorción de los contaminantes sobre sólidos. Donde los gases y líquidos se retienen sobre una superficie sólida que gracias a la acción química y de fuerzas superficiales se produce una difusión de las moléculas de gas dentro de los poros de sólido seguida de la adsorción propia de dichas moléculas en el sólido (5).

Para una buena adsorción se requieren sólidos de grandes relaciones superficie-volumen o elevada porosidad y área superficial. Así mismo es necesario renovar este material o regenerarlo para que su desempeño se mantenga (5).

1.5.1.3. Proceso de combustión

Este método elimina los compuestos orgánicos y ciertos inorgánicos al transformarlos en dióxido de carbono y vapor de agua.

1.5.1.3.1. Combustión espontánea

Cuando se eliminan gases tóxicos con olores pestilentes en una combustión a alta temperatura con tiempo de retención controlado.

1.5.1.3.2. Procesos catalíticos

La combustión se realiza en presencia de un catalizador que ayuda a un proceso a temperatura más baja, el catalizador suele ser un metal de transición depositado en una matriz de alúmina. Un problema que presenta la combustión catalítica es la del envenenamiento del catalizador por algunas sustancias en forma de partículas. (6)

1.5.2. Técnicas para captación de partículas

1.5.2.1. Colectores inerciales. Ciclones

Está formado por un cilindro vertical donde se ingresa tangencialmente el gas con partículas que por efecto centrifugo se posicionan al exterior del cilindro formando un camino espiral descendente; la corriente de gas cambia de dirección al llegar al fondo del recipiente y sube hacia un conducto situado en el eje, quedando las partículas pesadas en la parte inferior (5). En la Figura 1.1, se presenta el esquema de un colector inercial.

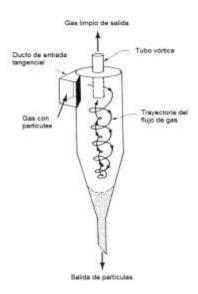


Figura 1.1. Partes de un colector inercial¹

1.5.2.2. Precipitadores electrostáticos

Se basan en el hecho de cargar eléctricamente las partículas, para que una vez cargadas someterlas a la acción de un campo eléctrico que las atrae hacia los electrodos que crean el campo, colocándose sobre ellos.

El precipitador electrostático de la Figura 1.2 está formado por un alambre hacia abajo, en el centro de un ducto con sus paredes conectadas a tierra. Con una diferencia de potencial elevada, el alambre se mantiene a un potencial eléctrico negativo respecto a las paredes, así que el campo eléctrico está dirigido hacia el alambre. El aire que hay que limpiar entra al ducto y se mueve cerca del cable, dejando en la parte inferior gran cantidad de partículas (7).

Figura 1.2. Precipitador electrostático (7).

¹ Fuente: http://solucionesindustrialesmetal.blogspot.com/2010/11/ciclones-colectores-departiculas.html

1.5.2.3. Filtros industriales

El gas cargado de partículas de polvo se pasa a través de un medio poroso en donde quedan atrapadas las partículas.

1.5.2.4. Lavadores y absorbedores húmedos

Son equipos en los que se transfiere la materia suspendida en un gas portador a un líquido absolvedor en la fase mezcla gas-líquido, debido a la colisión entre las partículas de polvo y las gotas de líquido en suspensión en el gas. (5)

1.5.3. Combustión en lecho fluidizado

Se trata de una técnica de uso limpio de combustible como carbón, biomasa o basura. El lecho fluido² está formado por el combustible y el propio lecho.

Por la limitación de temperatura a 850°C, no se funde el lecho, el cual sustenta el combustible sólido mientras se bombea aire durante la combustión, favoreciendo la mezcla del gas combustible.

Es posible quemar carbones con alto contenido en azufre consiguiendo niveles de emisión de dióxido de azufre (SO₂) por debajo de los límites impuestos por la legislación ambiental, sin la necesidad de utilizar equipos adicionales de desulfuración. También se puede añadir al lecho un material absorbente, como la caliza, que permite fijar el azufre del combustible en el proceso de combustión. (5)

1.5.4. Depuración de los gases de chimenea

La producción de energía eléctrica en centrales térmicas produce gases que contienen contaminantes, que pueden ocasionar daños serios al ambiente por tener algunos de ellos propiedades ácidas. Por ello se busca disminuir la emisión de óxidos de nitrógeno (NO_x) y óxidos de azufre (SO_x) producidos. (6)

1.5.4.1. Desulfuración de los gases de combustión

Existen diferentes acciones para llevar acabo la desulfuración de estos gases, los cuales se mencionan a continuación:

-

² Fluidización: proceso de contacto que ocurre entre un sólido y un gas, en el cual el lecho formado por partículas sólidas divididas se levanta y se agita por medio de una corriente ascendente de fluido.

Con la aplicación de absorbedores húmedos, en los que se transfiere de la fase de gas contamínate a fase acuosa.

Se utiliza también el método de la caliza húmeda, en donde se convierte el SO₂ del contaminante que sale por la chimenea en yeso.

Otra tecnología es aplicar un proceso biológico de desulfuración mediante el cual, el SO₂ de los contaminantes a la salida de la chimenea se convierten en azufre puro. (5)

1.5.4.2. Reducción de los NOX con NH3

Se aplican técnicas de control primarias, ya que se actúa sobre el quemador o cámara de combustión, reduciendo la formación de NOx mediante la disminución de la temperatura de combustión.

Se utilizan tratamientos secundarios eficientes que reducen el NOx utilizando como agente reductor amoniaco o urea, en presencia de un catalizador adecuado. Reduciendo los NOx, se obtiene nitrógeno y agua en el proceso final. (5)

1.6. MITIGACIÓN DE EMISIONES DE LA CENTRAL EL DESCANSO

En la central termoeléctrica El Descanso de propiedad de la Empresa Electro generadora del austro (ELECAUSTRO) se ha venido realizando un control de las emisiones siguiendo un programa de Mitigación de Impactos por emisiones, que se restringe a la aplicación de las normas de los Reglamentos para la Prevención y Control de la Contaminación Ambiental originada por las emisiones gaseosas, siguiendo acciones con el objeto de obtener el mejor desempeño energético y ambiental.

Así, se realiza el mantenimiento a los motores generadores tomando en cuenta:

- Una entrada apropiada del flujo de aire a la cámara modificando las características térmicas.
- Chequeo de inyectores y filtros de las máquinas en la Central.
- ➤ Se mantiene un control de la cantidad de azufre del combustible suministrado por el proveedor. (8)

1.7. DESPACHO ECÓNOMICO COMO GESTION AMBIENTAL EN CENTRALES TÉRMICAS

Para considerar el despacho económico como un método para garantizar la protección del medio ambiente, se presentan observaciones que apoyan esta idea:

La gestión ambiental se entiende como la acción encaminada a lograr la máxima racionalidad en el proceso de decisión relativo a la conservación, defensa, protección del medio ambiente, el despacho económico puede ser incluido en ésta definición cuando se consideran condiciones adicionales a más de las condiciones técnicas y económicas típicas (9).

Además el marco legal referente al medio ambiente, que rige en el Ecuador se presenta de manera que se prevengan, controlen y mitiguen los impactos negativos al medio ambiente por parte del sector eléctrico.

1.8. REGLAMENTACIÓN VIGENTE

En los reglamentos vigentes se mencionan las legislaciones para el cumplimiento de la normativa ambiental y técnica aplicable a nivel nacional, que hacen referencia y respaldan el cuidado al medio ambiente en los siguientes apartados:

En la Constitución de la República del Ecuador³ se presentan disposiciones a nivel nacional que conceptualizan a la naturaleza como sujeto de derechos y regulan la protección de la población, según los siguientes artículos:

El numeral 7 del artículo 3 de la Constitución de la República del Ecuador, señala como deber primordial del Estado proteger el patrimonio natural del país; (3)

El artículo 14 de la Constitución de la República del Ecuador, reconoce el derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay y declara de interés público la preservación del ambiente, la conservación de los ecosistemas, la prevención del daño ambiental y la recuperación de los espacios naturales degradados; (3)

El numeral 27 del artículo 66 de la Constitución de la República del Ecuador, reconoce y garantiza a las personas el derecho a vivir en un ambiente

-

³ Reglamento Publicado en el Registro Oficial 464 de 7 de junio del 2011.

sano, ecológicamente equilibrado, libre de contaminación y en armonía con la naturaleza; (3)

El numeral 4 del artículo 276 de la Constitución de la República del Ecuador señala como uno de los objetivos del régimen de desarrollo, el recuperar y conservar la naturaleza y mantener un ambiente sano y sustentable que garantice a las personas y colectividades el acceso equitativo, permanente y de calidad al agua, aire y suelo, y a los beneficios de los recursos del subsuelo y del patrimonio natural; (3)

En la Codificación de la Ley de Prevención y Control de la Contaminación Ambiental⁴ se establece los límites máximos permisibles de contaminantes en el recurso aire, suelo, agua, flora y fauna.

Capítulo I: De la Prevención y Control de la Contaminación del Aire.

Art. 1. Prohibición de descargas atmosféricas.

Art. 3. Sujetos a control (10).

En la Ley de Régimen del Sector Eléctrico y todas sus Leyes Reformatorias se establece las bases sobre las cuales se rigen todas las acciones relacionadas a la energía eléctrica y modifica sustancialmente el esquema de las instituciones públicas y privadas que ejecutan obras de construcción en el sector eléctrico a nivel nacional. Previo a la ejecución de la obra, proyectos de generación, transmisión y distribución de energía eléctrica, se deberán cumplir las normas de prevención de contaminación al medio ambiente, existentes en el país, para lo que deberá contar con un estudio independiente de evaluación del impacto ambiental. (11)

La Ley Orgánica de Salud Establece que, en conjunto, la autoridad sanitaria nacional, el Ministerio del Ambiente (MAE) y los organismos competentes dictarán normas pertinentes para la prevención y control de las acciones que podrían afectar la salud pública. (11)

En el artículo 107 del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente, Reglamento a la Ley de Gestión Ambiental para la Prevención y Control de la Contaminación Ambiental⁵, establece que las normas técnicas de calidad ambiental y de emisión y descargas, serán dictadas por acto administrativo de la autoridad ambiental competente.

⁴ Reglamento Publicado en el Registro Oficial 418 de 10 de septiembre del 2004.

⁵ Reglamento Publicado en el Registro Oficial 464 de 7 de junio del 2011.

Esta ley menciona las normas generales para concentraciones de contaminantes criterio en el ambiente⁶, las cuales se tienen a continuación:

Partículas sedimentables.- La máxima concentración de una muestra, colectada durante 30 días de forma continua, será de un miligramo por centímetro cuadrado (1mg/cm² x 30 d). (3)

Material particulado menor a 10 micrones (PM10).- El promedio de la concentración de PM10 de todas las muestras en un año no deberá exceder de cincuenta microgramos por metro cúbico (50 g/m³). El promedio de monitoreo continuo durante 24horas, no deberá exceder de cien microgramos por metro cúbico (100 g/m³). (3)

Material particulado menor a 2,5 micrones (PM2,5).- El promedio de la concentración de PM2,5 de todas las muestras en un año no deberá exceder de quince microgramos por metro cúbico (15 g/m³). El promedio de monitoreo continuo durante 24horas, no deberá exceder de cincuenta microgramos por metro cúbico (50 g/m³). (3)

Dióxido de azufre (SO₂).-La concentración SO₂ en 24 horas no deberá exceder ciento veinticinco microgramos por metro cúbico (125 g/m³). El promedio de la concentración de SO₂ de todas las muestras en un año no deberá exceder de sesenta microgramos por metro cúbico (60 g/m³). (3)

Monóxido de carbono (CO).- La concentración máxima en una hora de monóxido de carbono no deberá exceder treinta mil microgramos por metro cúbico (30 000 g/m³) no más de una vez al año. (3)

Ozono.- La máxima concentración de ozono, obtenida mediante muestra continua en un período de ocho horas, no deberá exceder de cien microgramos por metro cúbico (100 g/m³), más de una vez en un año. (3)

Dióxido de nitrógeno (NO₂).- El promedio de la concentración de Dióxido de nitrógeno, determinado en todas las muestras en un año, no deberá exceder de cuarenta microgramos por metro cúbico (40 g/m³).

La concentración máxima en una hora no deberá exceder doscientos microgramos por metro cúbico (200 g/m³).⁷ (3)

-

⁶Contaminantes criterio del aire.- Cualquier contaminante del aire para los cuales, en esta norma, se especifica un valor máximo de concentración permitida a nivel de suelo en el aire de ambiente, y por lo tanto afecta a los receptores ya sean personas, animales, vegetación o materiales para diferentes períodos de tiempo.

⁷ Nota: Los valores de concentración de contaminantes criterio del aire, establecidos en esta norma, están sujetos a las condiciones de referencia de 25° C y 760 mm Hg.

El Reglamento Ambiental para Actividades Eléctricas establece el ámbito de aplicación y define la terminología utilizada, seguida de las atribuciones administrativas ambientales en el sector eléctrico. Determina la normativa aplicable a la protección ambiental, establece los instrumentos de control ambiental y los procedimientos para obtener concesiones, permisos y licencias promoviendo que las actividades de operación del un sistema eléctrico de potencia se realicen de manera que se prevengan, controlen y mitiguen los impactos negativos al medio ambiente. (11)

1.9. LIMITES MÁXIMOS PERMISIBLES DE EMISIÓN DE CONTAMINANTES AL AIRE EN CENTRALES TERMOELÉCTRICAS

La aplicación obligatoria de límites de emisiones contaminantes en las centrales de generación termoeléctricas en el territorio nacional viene dada en: Las Normas Técnicas Ambientales para la Prevención y Control de la Contaminación Ambiental para los Sectores de Infraestructura: Eléctrico, Telecomunicaciones y Transporte Puertos y Aeropuertos⁸.

Esta normativa establece los límites máximos permisibles de emisión para centrales termoeléctricas que utilizan tecnologías de calderos generadores de vapor, turbinas a gas y motores de combustión interna. Se establecen además los requerimientos para el monitoreo y reporte de emisiones. Cabe mencionar que estos límites y métodos se establecen en los siguientes ámbitos (12):

- Límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con calderos generadores de vapor. (Referencia (12), Tabla 1 y 2)
- Límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con turbinas a gas. (Referencia (12), Tabla 4 y 5)
- Límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con motores de combustión interna. (Referencia (12), Tabla 6 y 7)
- Métodos y equipos de medición de emisiones desde fuentes fijas de combustión en centrales termoeléctricas. (Referencia (12), Tabla 8)

-

⁸ Reglamento Publicado en el Registro Oficial 41 de 14 de Marzo de 2007.

CAPÍTULO II

DESPACHO ECONÓMICO CONVENCIONAL EN SISTEMAS TÉRMICOS

2.1. INTRODUCCIÓN

El objetivo fundamental del despacho económico es, distribuir la demanda de la carga entre todas las unidades de generación disponibles, buscando que el costo de operación de dichas unidades sea el mínimo, para ello hay que hacer respetar ciertos límites de calidad, confiabilidad y seguridad del sistema, otro aspecto muy importante que también hay que tomar en cuenta es, el incremento de la demanda o dicho de otro modo el comportamiento de la carga en el tiempo (13).

Como las características mismas que presentan, tanto el sistema eléctrico de potencia (SEP) como la demanda, es necesario buscar la manera más adecuada para satisfacer la demanda con los costos de producción más bajos, lo cual implica una programación a corto, mediano y largo plazo, esto se realiza para predecir un incremento en los costos de los combustibles. Para conseguir esto es necesario conocer la operación y funcionamiento de las diferentes unidades de generación que conforman el parque generador disponible, y para lograr este función se emplean diferentes curvas ya sea que hayan sido proporcionadas por el fabricante, o realizadas con datos reales de pruebas hechas a las maquinas mismas, con estos datos se puede encontrar parámetros importantes que envuelve a la operación económica de las unidades generadoras, estas curvas muestran el costo de producción de energía, para unidades térmicas \$/MWh, y para una hidroeléctrica el volumen de agua que se necesita turbinar para generar un MWh, es decir m^3 / MWh (13).

Puesto que el SEP está compuesto de un cierto número de unidades hidroeléctricas, térmicas, eólicas, se emplean herramientas computacionales, para llegar a un despacho óptimo de los recursos con los que se cuenta. En el desarrollo de este trabajo se tratara acerca de las curvas características de las unidades térmicas, como también se realizara el planteamiento matemático para el despacho de unidades puramente térmico, y también los métodos de solución u optimización más empleados como referencia para lograr un entendimiento del problema de despacho económico (13).

2.2. CURVAS CARACTERÍSTICAS DE UNIDADES TÉRMICAS

Para la realización del análisis del problema de despacho económico es necesario conocer algunos de los parámetros del SEP, dentro de estos la más importante es la curva entrada-salida de los generadores, en este numeral se presenta su forma teórica, las unidades más empleadas y forma de usarlas (14)

Dentro de los parámetros más importantes en la operación económica del SEP es el que tiene que ver con la curva característica de la unidad térmica, ya que como se dijo anteriormente en ella se indica cuánto cuesta producir cierta cantidad de energía, a continuación se definirá algunos términos que se usaran para definir las unidades térmicas:

H, es la entrada de energía en forma de calor, y es medida en MBtu/h

f, es el costo de producción de un MBtu, medido en \$/MBtu

F, es el costo total, viene dada en \$/h

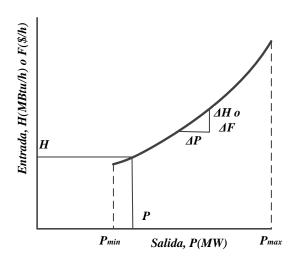


Figura 2.1. Curva característica entrada-salida de unidades térmicas (14)

En la Figura 2.1 se muestra la curva característica de una unidad de generación térmica a vapor, nótese en esta que la unidad de generación tiene límites de potencia máxima y mínima.

Otra curva importante es la del costo incremental la cual es la derivada de la curva de entrada-salida cuyo resultado se expresa en Btu/kWh o en \$/kWh, esta curva es empleada en el despacho económico de la unidad véase la Figura 2.2 (13).

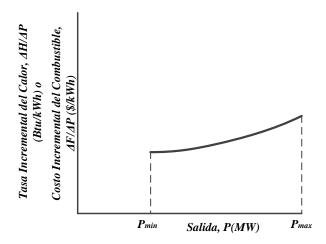


Figura 2.2. Curva característica de costo incremental de combustible (14)

La curva del costo incremental representa las variaciones de la entrada con relación a la salida de la unidad.

A causa de los diferentes diseños de unidades de generación y a las diferentes formas de obtener las curvas características, las curvas entradasalida son representadas aproximadamente por una forma polinomial, para la mayoría de casos una función cuadrática es una muy buena aproximación. También se puede emplear una representación por medio de segmentos lineales, pero esta presenta el inconveniente de afectar directamente a la función de costo incremental. En la Figura 2.3 se muestra la diferencia entre una función entrada-salida representada por una función cuadrática, y la otra representada por segmentos lineales (13).

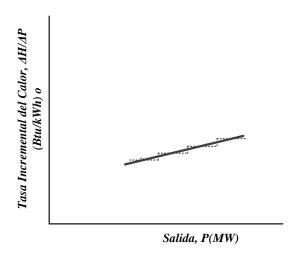


Figura 2.3. Representación aproximada de la curva de calor incremental (14)

2.3. FUNCIÓN OBJETIVO DE UN SISTEMA TÉRMICO

El siguiente modelo considera un SEP con solo unidades térmicas sin transmisión ver figura 1.4, el problema es determinar los niveles de potencia que deben operar cada una de las unidades para satisfacer la demanda al mínimo costo.

La función de costos está dada por:

$$F_{T}(\$/h) = F_{1}(P_{1}) + F_{2}(P_{2}) + \dots + F_{n}(P_{n})$$

$$= \sum_{i=1}^{N} F_{i}(P_{i})$$
Ec. 2. 1

donde:

 F_{T} , es el costo total de generación del sistema

 F_i , es el costo de generación de la unidad i

N , es el número de unidades de generación en el sistema.

La función de costos de cada unidad i es tradicionalmente aproximada a una función cuadrática, la cual está dada de la siguiente forma:

$$F_i(P_i) = a_i + b_i \cdot P_i + c_i \cdot P_i^2$$
 [\$\frac{1}{h}\$] Ec. 2. 2

donde

 a_i,b_i,c_i , son los coeficientes de los costos de combustible de la unidad i, y se supone que $c_i > 0$ (15).

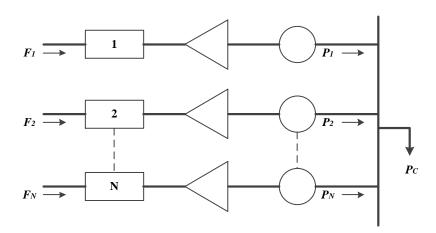


Figura 2.4. N unidades térmicas para servir la carga (14)

2.3.1. Restricciones

La restricción principal en la operación del sistema es que la sumatoria de

las potencias generadas sea igual a la potencia de la carga más las pérdidas, en la ecuación siguiente se expresa lo dicho anteriormente, cabe indicar que para el análisis a desarrollar no se consideran las pérdidas.

$$\varphi = 0 = P_C - \sum_{i=1}^{N} P_i$$
 Ec. 2. 3

donde:

 P_{C} , es la potencia de la carga

 P_i , es la potencia de la unidad i

 φ , es la función de restricción

También dentro de las restricciones se deben imponer los límites máximo y mínimo de cada unidad, lo cual quiere decir que, la solución debe estar dentro del rango de potencias de cada unidad, esto se expresan en la siguiente formula.

$$P_{i,\min} \leq P_i \leq P_{i,\max}$$

Ya definidas las ecuaciones y las restricciones anteriores se puede plantear el problema de despacho económico de la siguiente manera:

Minimizar F_{τ}

Sujeto a
$$\varphi = 0 = P_C - \sum_{i=1}^n P_i$$

$$P_{i,\min} \leq P_i \leq P_{i,\max} \qquad i = 1,...,N$$

2.3.2. Ecuación de Lagrange

En primer lugar se conforma la ecuación de Lagrange, para lo cual se suma el término $\lambda \varphi$ a la función de costos, esta ecuación se resuelve por el método de los multiplicadores de Lagrange en la cual λ es el multiplicador de Lagrange y representa el costo incremental del combustible, la ecuación queda de la siguiente manera:

$$L = F_T + \lambda \varphi$$
 Ec. 2. 4

Ahora bien considerando el caso sin pérdidas y sin límites de potencia, la ecuación queda definida de la siguiente manera:

$$L = \sum_{i=1}^{N} F_i(P_i) + \lambda \left(P_C - \sum_{i=1}^{N} P_i \right)$$
 Ec. 2. 5

Para hallar el mínimo de esta función se debe aplicar derivadas parciales con respecto a cada uno de los términos que constan en esta ecuación, o más precisamente derivar con respecto a cada una de las potencias y al costo incremental λ , lo cual se expresa como sigue:

$$\frac{\partial L}{\partial P_i} = \frac{dF_i}{dP_i} - \lambda = 0 \quad \Rightarrow \quad \frac{dF_i}{dP_i} = \lambda$$
 Ec. 2. 6

$$\frac{\partial L}{\partial \lambda} = -\sum_{i=1}^{n} P_i + P_C = \varphi = 0$$
 Ec. 2. 7

Por lo tanto el despacho económico se consigue resolviendo las dos ecuaciones anteriores, nótese que el término dF_i/dP_i es el costo incremental de cada una de las unidades involucradas para el despacho.

En este análisis nótese que el multiplicador de Lagrange es el valor común de los costos marginales, y este es el precio al que se deberá remunerar a los generadores para satisfacer la demanda especificada.

En la Figura 2.5 se puede observar que, para un mismo valor λ , los generadores aportan potencias distintas, esto es el precio de generación que es el mismo para todas las unidades incluidas en el despacho (13).

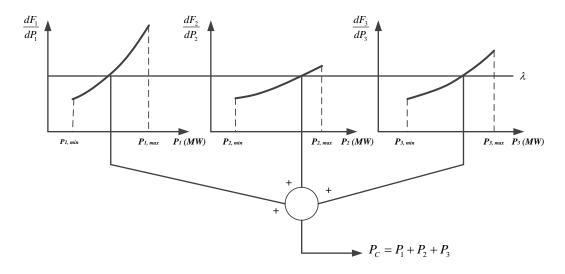


Figura 2.5. Interpretación esquemática del costo incremental (λ) (14)

2.3.3. Despacho económico con límites de generación

En este caso se requiere introducir límites de potencia, por lo tanto la

solución se presenta de la siguiente manera:

$$\begin{split} \frac{dF_i}{dP_i} &= \lambda & Si & P_{i,\min} \leq P \leq P_{i,\max} \\ \frac{dF_i}{dP_i} &\leq \lambda & Si & P_i = P_{i,\max} \\ \frac{dF_i}{dP_i} &\geq \lambda & Si & P_i = P_{i,\min} \\ \end{split}$$
 Ec. 2. 8

La solución presentada en las ecuaciones anteriores para esta condición de despacho económico se encuentra a través de las condiciones de Kuhn-Tucker, estas ecuaciones pueden ser interpretadas como sigue (13):

- Las unidades que trabajen con potencias dentro de los límites de generación poseen costos incrementales similares.
- \triangleright El costo incremental de la unidad a la que se le asigna su valor máximo de potencia, debe ser menor o igual que el costo λ de las otras unidades con las que se resolvió el despacho económico. (15)
- \triangleright El costo incremental de la unidad a la que se asignó su valor mínimo de potencia, debe ser mayor que el costo λ de las otras unidades con las que se resolvió el despacho económico. (15)

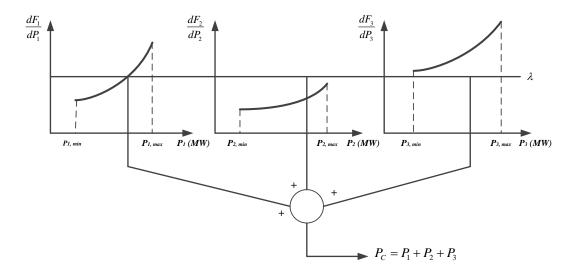


Figura 2.6. Interpretación esquemática del costo incremental (λ) con límites de generación (14)

2.4. MÉTODOS DE SOLUCIÓN

Para resolver el problema de despacho, económico existen algunos métodos, entro los principales tenemos:

Método iterativo lambda

- Método del gradiente
- Método de Newton
- Programación dinámica

2.4.1. Método iterativo lambda

Este método como su nombre mismo lo indica es iterativo, en el cual se propone un valor inicial de λ , y con este valor se calcula las potencias a las cuales van a trabajar las unidades, una vez calculadas estas potencias y verificadas que estén dentro de los límites de operación se suman todas y el resultado se compara con la demanda de la carga, el error es la diferencia existente entre estas dos, si el error es mayor que la tolerancia establecida se vuelve a encontrar el nuevo lambda y se repite la operación hasta que el error este dentro del límite propuesto.

Debe tenerse en cuenta que "la primera estimación de λ no será la correcta y se tendrá un error, por lo que se tendrá que asumir un nuevo valor de λ incrementando su valor o disminuyendo el mismo dependiendo de si el error obtenido es negativo o positivo" (16).

2.4.2. Método del gradiente

En este método lo que se hace es, aplicar la técnica del gradiente a la función de Lagrange. Para iniciar el proceso de despacho económico por medio de este método se necesitan valores iniciales de $\lambda, P_1, P_2, ..., P_i$ para hallar el gradiente de L, para luego encontrar los nuevos valores de $\lambda, P_1, P_2, ..., P_i$, en la aplicación de este método se debe incluir un escalar α la cual garantice que el proceso converja, este proceso converge cuando ΔL llega a ser cero, lo cual indica que se ha llegado al valor óptimo de despacho (13).

2.4.3. Método de Newton

El problema del método del gradiente descrito anteriormente es que no se logra conseguir una garantía fiable puesto que el gradiente de la ecuación de Lagrange no llega ser cero, para lo cual el método de Newton puede reformular el problema y poder encontrar la corrección que lleve al gradiente del vector a cero. Para comenzar el proceso de despacho por medio de este método es necesario valores iniciales de P_i y a partir de este se calcula λ para cada valor (17).

2.4.4. Programación dinámica

Este método es aplicable para dar solución a cualquier problema de despacho económico, su ventaja más importante es que se puede abordar problemas en los cuales se desconoce las curvas características y solo se

cuenta con datos específicos de costos, o también cuando las curvas características no son convexas ni continúas.

Este método evita calcular dos veces la misma información, manteniendo una tabla de resultados conocidos, la cual se va llenando a medida que se resuelven los casos parciales. Es una técnica ascendente que normalmente, empieza por los subcasos más pequeños y más sencillos. Combinando sus soluciones, obtenemos las respuestas para los subcasos cada vez mayores, hasta que llegamos a la solución del caso original. (18)

La programación dinámica se presta bastante bien para la optimización de procesos de múltiples etapas como es el caso del despacho económico, pero presenta el problema de dimensionalidad lo cual limita su desempeño para sistemas con muchas unidades de generación, puesto que se requerirá una gran cantidad de memoria y tiempos de cálculos bastantes prolongados (17).

2.5. COSTOS DE GENERACIÓN

De acuerdo a la regulación 003/03 del CONELEC, la cual hace referencia al artículo 13 literal a) del Reglamento para el funcionamiento de mercado Eléctrico Mayorista el cual establece que: "el costo de generación en operación normal, estará determinado por el costo variable de producción de la unidad marginal, para el caso de plantas térmicas e hidráulicas de pasada" (19)

Los costos de la generación están compuestos por los costos fijos y los costos variables, estos se presentan relacionados en la siguiente ecuación.

$$CT = CF + CV(Q)$$

 $Costos de Generación = Costos Fijos + Costos Variables$ Ec. 2. 9

2.5.1. Costos fijos

Son los costos necesarios para la instalación y operación de un determinado equipo, independiente de la actividad de producción.

Dentro de estos costos se pueden considerar los siguientes:

- Sueldos de los operadores
- Sueldos del personal de mantenimiento
- Amortización de capital
- Intereses sobre préstamos
- Seguros sobre los equipos
- Impuestos de los bienes inmuebles y las utilidades (19)

2.5.2. Costos variables

Estos costos son dependientes de la producción misma puesto que son gastos que se incluyen para satisfacer una determinada demanda.

Costo Variable de Producción es aquel necesario para operar y mantener la unidad o planta generadora y que cambia en función de la energía producida.

Los componentes del Costo Variable de Producción son:

- Combustibles.
- > Transporte de combustible
- Lubricantes, productos químicos y otros insumos para operación
- Agua potable
- > Energía eléctrica para servicios auxiliares
- Mantenimientos programados (preventivos y correctivos), durante el ciclo operativo, entre dos mantenimientos mayores, que consideran el valor de los repuestos y otros insumos a utilizarse, así como la mano de obra adicional para la ejecución de dichos mantenimientos.
- ➤ Costos variables de Operación y mantenimiento de los equipos e instalaciones usados para el control y mitigación de impacto ambiental.

No se considerarán aquellos costos correspondientes a mantenimientos destinados a repotenciar las unidades o a prolongar la vida útil original de las unidades generadoras. (19)

CAPÍTULO III

DESPACHO ECONÓMICO CON RESTRICCIONES AMBIENTALES EN SISTEMAS TÉRMICOS

3.1. INTRODUCCIÓN

Como se mencionó en el Capítulo anterior, el objetivo fundamental del despacho económico es, distribuir la demanda de la carga entre todas las unidades de generación disponibles, buscando que el costo de operación de dichas unidades sea el mínimo, también se ha considerado pertinente recalcar el artículo 8 del *reglamento de despacho y operación del sistema nacional interconectado*⁹ el cual dice que:

"El CENACE, mediante un modelo aprobado por el CONELEC, calculará el despacho económico horario de los recursos de generación sujetos a despacho central y las transferencias de energía por interconexiones internacionales, de tal forma que se atienda la demanda horaria y se minimicen los costos de operación, considerando (20):

- a) La predicción de demanda horaria;
- b) Los Costos Variables de las Unidades de Generación;
- c) Las restricciones técnicas que se impongan sobre todo el sistema o una parte de él, incluyendo la generación obligada por criterios de calidad de servicio, seguridad eléctrica o por inflexibilidades en la operación;
- d) El programa de mantenimiento de las unidades de generación sujetas a despacho central;
- e) Las proyecciones de importación y exportación de electricidad a través de las interconexiones internacionales;
- f) El margen de reserva de generación de acuerdo a los criterios de confiabilidad y calidad de servicio establecidos en los Procedimientos de Despacho y Operación; y,
- g) Otros aspectos particulares a indicarse en los Procedimientos de Despacho y Operación.

Paúl Peralta, Eddy Silva

⁹ Reglamento Publicado en el Registro Oficial 407 de 29 de noviembre de 2006.

En lo que se refiere al literal c), el CENACE deberá asegurar que la solución técnica adoptada para levantar la restricción es la más económica, desde el punto de vista de minimizar el costo total de operación del sistema." (20)

Como puede notarse en el artículo citado anteriormente, en el despacho económico no se considera el aspecto de las emisiones vertidas a la atmósfera por la operación del parque térmico que ingresa al despacho económico. En este Capítulo se describirán algunos métodos propuestos por la bibliografía para incluir la variable de emisiones en el despacho de centrales térmicas. Una vez identificados los métodos se utilizará uno de ellos para el desarrollo de un caso particular. El método adecuado de despacho con restricciones ambientales a seguir, será planteado en forma teórica con el fin de explicar los resultados obtenidos con el mismo, esto permitirá entender con claridad las consecuencias que conllevan el incluir las restricciones de emisiones en el despacho económico convencional.

3.2. MODELOS DE DESPACHO ECONÓMICO CON RESTRICCIONES AMBIENTALES

Puesto que el despacho económico con restricciones ambientales es una particularidad del despacho económico convencional, lo que se pretende es introducir restricciones ambientales del tipo de contaminante que se requiera disminuir, considerando constantes y características propias del mismo, dentro de estos contaminantes pueden estar: óxidos de azufre (SO_x), óxidos de nitrógeno (NO_x), dióxido de carbono (CO₂) y material particulado (PM). (21)¹⁰

Dentro de la bibliografía analizada en cuanto al tema, los autores del documento titulado, *A summary of environmental/economic dispatch algorithms*, mencionan que: "Las emisiones de contaminantes pueden ser reducidos por tres métodos, como son:

- a) Sistemas de limpieza post-combustión como los que se menciona en el capítulo 1, tales como precipitadores electrostáticos, requieren de un considerable tiempo de diseño y costo de inversión.
- b) Cambio a combustibles con bajos niveles de emisiones. Sin embargo este cambio también supone un cambio en cuanto a costos a pagar y disponibilidad en el mercado.
- c) Despachar con el nivel de potencia que permita minimiza las emisiones.

De estos métodos se puede mencionar:

¹⁰ Se tiene una descripción de estos contaminantes en la sección 1.4.

- Dentro del primer método, se requiere del diseño e instalación de equipo nuevo.
- Para el segundo método se requiere modificar el equipo existente y forma de control.
- ➤ El tercer método resulta ser la alternativa más rentable puesto que solo requiere del cambio de la programación del despacho, para incluir las consideraciones ambientales.

Entre las estrategias que se mencionan, se puede encontrar algunas que dependen exclusivamente de las ecuaciones de emisiones de contaminantes, mientras que otras están estrechamente relacionadas con modelos de difusión:

- Mínima emisión satisfaciendo la demanda del sistema, sin considerar las pérdidas de transmisión.
- Mínimo de la suma ponderada de costos y emisiones.
- Mínima emisión con restricción de costos.
- Mínimo costo con emisiones controladas.
- Mínima concentración al nivel del suelo.
- Mínimo costo con restricción en la concentración.

Existen una gran cantidad de modelos para el despacho económico ambiental, pero para este análisis se lo realizara mediante un modelo lineal en el cual las emisiones serán consideradas por medio de una función de emisiones, esta función de emisiones es proporcional a las fuentes emitidas, y el costo social que estas producen. " (22)

Para el análisis se tomará en cuenta los primeros dos métodos enumerados.

3.2.1. Mínima emisión satisfaciendo la demanda del sistema, sin considerar las pérdidas de transmisión.

Este método considera una función objetivo la cual está en función de las emisiones de contaminantes, la formulación presentada es la siguiente: (23)

$$E = \sum_{i=1}^{N} E_i(P_i)$$
 Ec. 3.1

donde:

E, , es la función de emisiones de la unidad i [kg/h]

N, es el número total de generadores

Si no se tomaran en cuenta las perdidas por transmisión, el balance de potencias queda de la siguiente forma (24):

$$P_C - \sum_{i=1}^N P_i = 0$$

Ec. 3. 2

$$P_i^{\min} \le P_i \le P_i^{\max}$$
 $i = 1, ..., N$

donde:

 P_{c} , es la demanda total del sistema [MW]

 P_i , es la potencia generada por la unidad i [MW]

 $P_{i,\mathrm{min}}$, es la potencia mínima que puede generar la unidad i [MW]

 $P_{i,\text{max}}$, es la potencia máxima que puede generar la unidad i [MW]

La solución de la ecuación 3.1 es similar a la solución para el costo incremental del despacho económico convencional. La condición para una E mínima viene dada por:

$$\frac{dE_i}{dP_i} = \lambda_e \qquad \text{Ec. 3. 3}$$

donde:

 λ_{a} , es la emisión incremental

De la ecuación 3.3 se puede concluir que el despacho económico ambiental se obtiene cuando todas las unidades de generación trabajan a la misma emisión incremental. (24) (25)

La forma del modelo de la función de emisiones depende del tipo de contaminante. Para el SO₂, es generalmente aceptado que las función de emisiones será de la misma forma que la función de costo de combustible. La función de emisiones para el NOx, es menos sencilla de representar, ya que es no lineal en P y depende en gran medida del tipo de caldero (23). Dicha formulación de la función objetivo para el NOx es de la siguiente forma exponencial: (26)

$$E(P) = \sum_{i=1}^{N} \alpha_i + \beta_i \cdot P_i + \gamma_i \cdot P_i^2 + \eta_i \cdot e^{\omega_i P_i}$$
 Ec. 3. 4

donde

E(P), es la función de emisiones [kg/h]

 α_i , es el coeficiente de emisiones en [ton/h]

 β_i , es el coeficiente de emisiones en [ton/MWh]

 γ_i , es el coeficiente de emisiones en [ton/MW²h]

 η_i , es el coeficiente de emisiones en [ton/h]

ω, es la constante para cada unidad de generación en [1/MW]

La función de emisiones de SO₂ se determina multiplicando a la función consumo de combustible H (MBtu/h), por una constante r (ton/MBtu), quedando la función de emisiones de la siguiente forma (24):

$$E_i(P_i) = r_i \cdot H_i(P_i)$$
 Ec. 3. 5

0

$$E_i(P_i) = d_i + e_i \cdot P_i + f_i \cdot P_i^2$$
 Ec. 3. 6

dónde:

 d_i , e_i , f_i , son los coeficientes de emisión de la unidad i para un determinado contaminante, y suponiendo que $f_i > 0$. (23)

De esta manera obtendremos una función de mínimas emisiones si encontramos su derivada, la cual será parte de la función del despacho económico ambiental.

$$\frac{dE_i}{dP_i} = e_i + 2 \cdot f_i \cdot P_i$$
 Ec. 3. 7

3.2.2. Mínimo de la suma ponderada de costos y emisiones

Este método incluye los objetivos tanto del despacho económico como del despacho ambiental, para ello se suma, las funciones de emisiones a la función de costos de las unidades de generación. Entonces se considera una función objetivo que asigna pesos a cada función: (23) (24)

Minimizar:
$$C = \delta \sum_{i=1}^{N} F_i(P_i) + (1 - \delta) \cdot k_i \sum_{i=1}^{N} E_i(P_i)$$
 Ec. 3. 8

Sujeto a:
$$P_C - \sum_{i=1}^{N} P_i = 0$$

$$P_i^{\min} \le P_i \le P_i^{\max}$$
 $i = 1, ..., N$

donde:

C, es la función de costos total [\$/h]

 F_i , es la función de costos de combustible de la unidad i [\$/h]

E, , es la función de costos de emisiones de la unidad i [Ton/h]

 k_i , es un factor de conversión que ajusta las emisiones en unidades monetarias [\$/Kg] 11

 δ , es el peso de ponderación, valores entre 0 y 1 (23)

La función E puede ser considerada como la suma de todos los tipos de emisiones, con diferente peso cada una, y está representada como:

$$E = \alpha_{SO_{c}} E_{SO_{c}} + \alpha_{NO_{c}} E_{NO_{c}} + \alpha_{PM} E_{PM} + \alpha_{t} E_{t}$$
 Ec. 3. 9

$$E = \alpha_{SO_x} \sum_{i=1}^{N} E_{SO_x} + \alpha_{NO_x} \sum_{i=1}^{N} E_{NO_x} + \alpha_{PM} \sum_{i=1}^{N} E_{PM} + \alpha_t \sum_{i=1}^{N} E_t$$
 Ec. 3. 10

donde:

E, es la función total de emisiones de la unidad i

 E_{SO_x} , es el factor de emisión de SO_x de la unidad i [kg/MWh]

 E_{NO_x} , es el factor de emisión de NO_x de la unidad i [kg/MWh]

 E_{PM} , es el factor de emisión de PM₁₀ de la unidad i [kg/MWh]

 E_t , es el factor de emisión de emisiones térmicas como partículas o CO₂ de la unidad i [kg/MWh]

 $lpha_{{\scriptscriptstyle SO}_{\scriptscriptstyle x}}, lpha_{{\scriptscriptstyle NO}_{\scriptscriptstyle x}}, lpha_{{\scriptscriptstyle PM}} \ \ y \ lpha_{{\scriptscriptstyle t}}$, son los pesos de cada tipo de contaminante.

De acuerdo a la ecuación 3.7, para encontrar la solución para cada unidad se considera encontrar el mínimo de esta función:

$$\frac{dC}{dP} = \delta \cdot \frac{dF}{dP} + (1 - \delta) \cdot k_i \cdot \frac{dE}{dP}$$
 Ec. 3. 11

Luego, se tendrá un sistema de ecuaciones si se realiza esta operación para cada unidad:

¹¹ Se tomará a *ki*=1 en el ejemplo para apreciar la relación entre costos y emisiones.

$$\frac{dC_i}{dP_i} = \delta \cdot \left(b_i + 2 \cdot c_i \cdot P_i\right) + \left(1 - \delta\right) \cdot k_i \cdot \left(e_i + 2 \cdot f_i \cdot P_i\right) = \lambda ce$$
 Ec. 3. 12
$$P_C - \sum_{i=1}^N P_i = 0$$
 Ec. 3. 13

Tendremos entonces un sistema de N+1 ecuaciones con N+1 incógnitas para cada valor de δ entre 0 y 1. (24)

Se ha incluido este factor de ponderación δ , que se varía para representar los distintos escenarios. Así, si δ es nulo, lo que se minimizará será el despacho económico clásico. Por el contrario, con δ =1, se minimizará las emisiones producidas por las unidades generadoras. (27)

3.3. CURVAS TRADE-OFF

El concepto trade-off es un método de amplia utilización cuando se busca el equilibrio entre factores contrapuestos de costo y servicio en condiciones tecnológicas continuamente variables. (28)

Para representar las decisiones que involucran costos y beneficios, y cuando se analizan dos posibilidades, en este caso el despacho económico y ambiental, se deben balancear los costos y beneficios de una de ellas, versus los costos y beneficios de la otra. Estos balances de costos y beneficios determinan un "trade-off", si se desea un despacho económico clásico, se tendrá mínimas prestaciones ambientales, y viceversa. No se puede tener el máximo beneficio en ambos. (29)

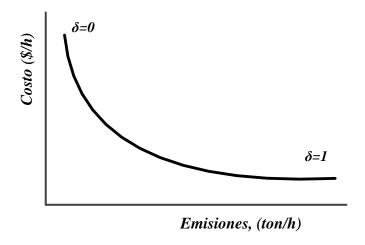


Figura 3. 1. Curva Trade-off. Efectos de la variación de δ en los costos de emisiones. (25)

El uso de curvas trade-off permitirá representar el comportamiento de la función de costos y la de emisiones al variar δ en cada caso, de esta manera, luego se determinará gráficamente la compensación entre el costo y las emisiones.

3.4. VALORACIÓN DE LA EXTERNALIDAD AMBIENTAL

Una aproximación del valor que significa reducir el impacto sobre la vida humana y el ambiente producto de la producción de energía lo constituye la valorización de la externalidad ambiental, la cual generalmente se encuentra en \$/kg de emisiones. El costo social completo es comúnmente establecido como el costo/Kwh generado. (27)

Cuatro enfoques básicos para la valorización de la externalidad ambiental:

- Estimación de la potencia física, química o toxicológica de varios pululantes.
- Opinión de expertos en el campo de interés.
- ➤ La valorización y contribución de cada uno de los efectos medio ambientales causados por los pululantes.
- ➤ Determinación del valor social implícito de reducción del contaminante, a partir del máximo costo que la sociedad ha considerado pagar para reducir las emisiones. (27) (25)

Los impactos sociales que las centrales térmicas producen no siempre son valorados ya que son representadas por externalidades, éstas tienen una difícil interpretación ya que son costos o beneficios intangibles.

Las externalidades deben incluirse como variables ambientales, de la misma manera que las variables económicas y técnicas, en el análisis, diseño y construcción del proyecto. Para esto, se deben identificar y analizar los posibles impactos positivos o negativos que pueden provocar la actividad. (30)

Para alcanzar un desarrollo sostenible, sin olvidar la equidad social, el crecimiento económico, la gobernabilidad y compatibilidad con el ambiente, se debe seguir compromisos ambientales internacionales tales como:

- 1) Reducir la dependencia energética de fuentes importadas por medio del aumento de la oferta de fuentes renovables de energía.
- 2) Incorporar nuevas tecnologías y fuentes de energía menos contaminantes.

- 3) Mitigar los efectos del uso y producción de energía sobre el ambiente.
- 4) Desarrollar proyectos energéticos con recursos naturales compatibles con el ambiente y con los asentamientos humanos.

Incorporar las externalidades ambientales incide directamente en la promoción de fuentes de energía que reducen las emisiones de contaminantes al medio ambiente y en la introducción de tecnologías de control de la contaminación mediante normas ambientales que limiten las emisiones y con ello catalicen la modernización del parque eléctrico. Además de las normas técnicas sobre límites de emisión, existen instrumentos económicos que pueden lograr los objetivos referidos. Al no estar incorporadas actualmente las externalidades en el precio de los combustibles o de la electricidad, se genera una sobredemanda de fuentes de generación con amplios impactos sobre el medio ambiente. (31)

Las externalidades ambientales no han sido incorporadas al precio de la electricidad por dos razones fundamentales: (31)

- 1) La complejidad de su estimación, y
- 2) El impacto económico que se derivaría.

Existen metodologías que permiten sistematizar la información sobre los impactos y realizar estimados, que permiten identificar daños y asociarlos con distintas tecnologías en magnitudes dependientes de parámetros técnicos y económicos. Por la relevancia que ha tomado el cambio climático en el ámbito internacional, diversas estimaciones sobre el impacto de las emisiones de gases de efecto invernadero se encuentran ya disponibles a nivel internacional. Sin embargo, pocos estudios han analizado de forma integrada los impactos de los contaminantes locales y regionales en países en desarrollo. A fin de lograr un desarrollo sustentable y equilibrado es preciso avanzar en la discusión de dichos impactos en los territorios nacionales y su relación con las decisiones tecnológicas. (31)

CAPÍTULO IV

SIMULACIÓN Y COMPARACIÓN DE RESULTADOS ENTRE EL DESPACHO ECONOMICO CONVENCIONAL Y EL DESPACHO ECONÓMICO AMBIENTAL

4.1. INTRODUCCIÓN

Con el planteamiento realizado en el Capítulo precedente, se procederá a resolver el problema del despacho económico tanto convencional como el despacho económico con restricción de emisiones, se modelará un sistema de seis unidades de generación térmica y se detallarán los cálculos ha realizarse en forma analítica para lograr una mayor comprensión del problema de despacho, también se graficará los resultados obtenidos para lograr una interpretación apropiada.

4.2. SISTEMA DE SEIS UNIDADES

El sistema considerado para resolver el problema de despacho económico ambiental consta de seis unidades térmicas, las cuales están conectadas a una sola barra y satisfacen la demanda de una carga en particular.

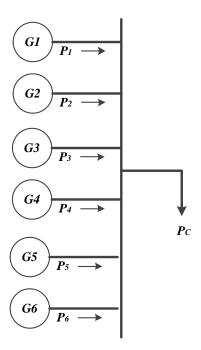


Figura 4. 1 Sistema de 6 unidades satisfaciendo la carga

La forma del modelo de función de emisión depende del tipo de emisión y como se menciona en el Capitulo III para el SO₂, la función es de la misma forma que la de la función de costos de combustible. El ejemplo que se va a

desarrollar esta citado de (23). En este se toma en consideración un tipo particular de caldera¹² con combustión en lecho fluidizado circulante. Lo que se busca es reducir el dióxido de azufre (SO₂) formado durante la combustión permitiendo también utilizar una función polinómica de segundo orden para la función de emisión de NOx, contaminante que se tomará en cuenta de ahora en adelante para el desarrollo del ejemplo. (23)¹³

Los parámetros de la función de costos y los valores de los límites de generación de cada unidad se presentan en la Tabla 4.1 y 4.2 respectivamente. (23)

 b_{i} C_i **UNIDAD** a_i 756,799 38.540 0,152 2 451,325 46,159 0,106 40,397 0,028 3 1049,325 4 1243,531 38,306 0,035 5 1658,570 36,328 0,021 1356,659 0,018 38,270 6 **DEMANDA (MW):** 900

Tabla 4. 1. Parámetros de las unidades.

Tabla 4. 2. Límites de generación.

UNIDAD	P_i^{\min}	P_i^{\max}
1	10	125
2	10	150
3	40	250
4	35	210
5	130	325
6	125	315

Los parámetros que permitirán definir la función de emisiones de las unidades se presentan en la Tabla 4.3.

_

¹² La función de emisión de NOx es no lineal en P y depende en gran medida del tipo de caldero.

¹³ La combustión en lecho fluidizado es una alternativa a las instalaciones de combustión de carbón y ha surgido como una alternativa viable, presenta ventajas significativas como la posibilidad de reducir el contenido de azufre en el combustible mediante la adición de un material absorbente tal como piedra caliza (CaCO₃).

UNIDAD	d_{i}	e_i	f_{i}
1	13,8593	0,3277	0,0042
2	13,8593	0,3277	0,0049
3	40,2669	-0,5455	0,0068
4	40,2669	-0,5455	0,0068
5	42,8955	-0,5112	0,0046
6	42,8955	-0,5112	0,0046
DEMANDA (MW):		900	

Tabla 4. 3. Parámetros de la función de emisiones.

4.3. CÁLCULO DEL DESPACHO ECONÓMICO SIN CONSIDERAR PÉRDIDAS.

Como el ejemplo busca demostrar las diferencias entre un despacho económico convencional y un despacho económico con restricciones ambientales, el procedimiento de cálculo se lo realiza utilizando el software utilitario Excel¹⁴, a fin de que resulten visibles las deducciones, procedimientos y resultados conseguidos.

La carga a satisfacer será $P_{\rm C}=900MW$, para ello se emplea la Ecuación 2.2 para cada unidad utilizando la Tabla 4.1:

$$F_i(P_i) = a_i + b_i \cdot P_i + c_i \cdot P_i^2$$
 [\$/h] Ec. 2. 2

Para determinar el costo marginal λ se procede de la siguiente manera:

$$\frac{dF_i}{dP_i} = b_i + 2 \cdot c_i \cdot P_i = \lambda$$
 Ec. 4. 1

$$b_i + 2 \cdot c_i \cdot P_i = \lambda$$
 Ec. 4. 2

Dividiendo para $2 \cdot c_i$:

$$\frac{b_i}{2 \cdot c_i} + \frac{P_i}{2 \cdot c_i} = \frac{\lambda}{2 \cdot c_i}$$
 Ec. 4. 3

Para el caso sin perdidas:

$$\sum_{i=1}^{N} P_{i} = P_{C}$$
 Ec. 4. 4

¹⁴ Las hojas de cálculos se muestran en el Anexo 1.

Realizando operaciones se tiene:

$$\lambda = \frac{P_C + \sum_{i=1}^{N} \frac{b_i}{2 \cdot c_i}}{\sum_{i=1}^{N} \frac{1}{2 \cdot c_i}}$$
 Ec. 4. 5

Evaluando para cada unidad i, resulta un costo marginal incremental λ =48,449 \$/MWh y las potencias como se resumen en la Tabla 4.4.

Tabla 4. 4. Potencias para despacho económico.

POTENCIAS [MW]				
P_1	32,497			
P_2	10,816			
P ₃ 143,64				
P ₄ 143,032				
P ₅ 287,104				
P ₆ 282,905				

Para determinar los costos de operación se evalúan las potencias en la función de costos, resultando:

Tabla 4. 5. Costos de combustible para operación.

COSTOS DE COMBUSTIBLE [\$/h]					
$F_1(P_1)$	2.170,238				
$F_2(P_2)$	962,969				
$F_3(P_3)$	7.430,504				
$F_4(P_4)$	7.447,884				
$F_5(P_5)$	13.828,495				
$F_6(P_6)$ 13.623,401					
FT	45.463,492				

A continuación se presenta en la Figura 4.2 los costos marginales (CM) de las unidades para el despacho económico, que según la Figura 2.5 se explicó que los generadores incluidos en el despacho aportan potencias distintas para un mismo valor de λ (13). Entonces se observa que las unidades trabajan con potencias dentro de los límites de generación y poseen el mismo costo λ . Por ejemplo, la unidad uno trabaja a 32,497MW, la misma que tiene un costo incremental marginal (CM1) de 48,449 \$/MWh. Así mismo se nota que el costo marginal general (CMG) define el nivel de potencia a la que trabajaran las unidades.

Figura 4. 2. Costos marginales de las unidades.

4.4. CÁLCULO DEL DESPACHO ECONÓMICO AMBIENTAL SIN CONSIDERAR PÉRDIDAS.

Con los datos de la Tabla 4.3 se definen las funciones de emisiones de las unidades de generación según:

$$E_i(P_i) = d_i + e_i \cdot P_i + f_i \cdot P_i^2$$
 [kg/h] Ec. 4. 6.

Para la determinación del costo incremental de emisiones *\lambda ce* y las potencias de operación, se emplea la Ec. 3.12:

$$\frac{dC_i}{dP_i} = \delta \cdot (b_i + 2 \cdot c_i \cdot P_i) + (1 - \delta) \cdot (e_i + 2 \cdot f_i \cdot P_i) = \lambda ce$$
 Ec. 3.12

Resolviendo la Ec. 3.12 para cada unidad junto con la Ec. 3.13, se tiene un sistema de N+1 ecuaciones con N+1 incógnitas, que permitirá encontrar la solución al problema de despacho. Se forma una matriz con estas ecuaciones resultando:

						7	1 F
0,008	0	0	0	0	0	-1 $ P_1 $	-0,328
0	0,010	0	0	0	0	-1 P ₂	-0,328
0	0	0,014	0	0	0	-1 P ₃	0,546
0	0	0	0,014	0	0	-1 P ₄	= 0,546
0	0	0	0	0,009	0	-1 P ₅	0,511
0	0	0	0	0	0,009	-1 $\left \begin{array}{c} P_6 \end{array} \right $	0,511
1	1	1	1	1	1	$0 \mid \frac{1}{\lambda}$	900,000

Figura 4. 3. Matriz para solución de despacho económico ambiental.

Como cada ecuación contiene los mínimos de las funciones de costo y emisiones además del ponderador δ , el mismo se varía desde 0 a 1 para conseguir los resultados del despacho ambiental y económico respectivamente.

Asimismo el problema se puede resolver analíticamente en la hoja de cálculo de Excel para apreciar mejor los resultados cuando δ =1, obteniendo un despacho económico convencional, teniendo los resultados que se muestran en la Tabla 4.6.

Unidad	$\delta\!\cdot\! b_{_i}$	$2 \cdot \delta \cdot c_i$	$(1-\delta)e_i$	$2(1-\delta)f_i$	$\delta b_i + (1 - \delta) e_i$	$2\delta c_i + 2(1-\delta)f_i$
1	38,540	0,305	0,000	0,000	38,540	0,305
2	46,159	0,212	0,000	0,000	46,159	0,212
3	40,397	0,056	0,000	0,000	40,397	0,056
4	38,306	0,071	0,000	0,000	38,306	0,071
5	36,328	0,042	0,000	0,000	36,328	0,042
6	38.270	0.036	0.000	0.000	38.270	0.036

Tabla 4. 6. Cálculos con δ =1.

Aplicando la ecuación 4.8 a continuación:

$$\lambda = \frac{P_C + \sum_{i=1}^{N} \frac{\delta b_i + (1 - \delta) e_i}{2\delta c_i + 2(1 - \delta) f_i}}{\sum_{i=1}^{N} \frac{1}{2\delta c_i + 2(1 - \delta) f_i}}$$
 Ec. 4. 7.

El costo marginal incremental es 48,449 \$/MWh.

Con potencias de operación iguales a las de la Tabla 4.4

Se tiene el despacho con restricciones ambientales cuando δ = 0, teniendo los resultados que se muestran en la Tabla 4.7.

Unidad	$\delta\!\cdot\! b_{_i}$	$2 \cdot \delta \cdot c_i$	$(1-\delta)e_i$	$2(1-\delta)f_i$	$\delta b_i + (1 - \delta)e_i$	$2\delta c_i + 2(1-\delta)f_i$
1	0,000	0,000	0,328	0,008	0,328	0,008
2	0,000	0,000	0,328	0,010	0,328	0,010
3	0,000	0,000	-0,546	0,014	-0,546	0,014
4	0,000	0,000	-0,546	0,014	-0,546	0,014
5	0,000	0,000	-0,511	0,009	-0,511	0,009
6	0,000	0,000	-0,511	0,009	-0,511	0,009

Tabla 4. 7. Cálculos con δ=0

Según la Ec. 4.7 se tiene un λ_e marginal de emisiones de 1,337 kg/MWh. Al multiplicar este valor por el factor de conversión ki=47,8224 \$/kg (23), se obtiene el costo marginal del despacho ambiental $\lambda_e=63,938$ \$/kg.

Con potencias de operación que se presentan en la Tabla 4.8.

 $P_{\scriptscriptstyle 4}$

 P_5

 P_6

 $\begin{array}{c|c} \textbf{POTENCIAS [MW]} \\ \hline P_1 & 120,452 \\ \hline P_2 & 102,999 \\ \hline P_3 & 137,816 \\ \hline \end{array}$

Tabla 4. 8. Potencias de operación con δ =0

Y con costos de operación de cada unidad presentados en la Tabla 4.9.

137,816

200,458

200,458

COSTOS DE						
COMBUST	TBLE [\$/h]					
$F_1(P_1)$	7611,159					
$F_2(P_2)$	6328,834					
$F_3(P_3)$	7149,014					
$F_4(P_4)$	7196,164					
$F_5(P_5)$	9789,037					
$F_6(P_6)$ 9751,162						
FT	47825,370					

Tabla 4. 9. Costos de combustible para operación.

A continuación se presentan en la Figura 4.4 las gráficas de costos marginales ambientales (CMA) de las unidades para el despacho ambiental. Se observa que el despacho económico ambiental se da cuando todas las unidades trabajan al mismo costo marginal ambiental general (CMAG), notando que los niveles de potencias de las unidades 1 y 2 se incrementan, mientras que para las unidades 3, 4, 5 y 6 se disminuyen. Esto se evidencia cuando se compara con la Figura 4.2 perteneciente al despacho económico convencional, la cual posee un costo marginal menor.

Figura 4. 4. Costos marginales de las unidades.

En la Tabla 4.10 se presenta el resumen de resultados de la aplicación del método del mínimo de la suma ponderada de costos y emisiones.

Tabla 4.10. Resultados de despacho económico y despacho con restricciones
ambientales.

		DESPACHO ECONÓMICO (δ=1)	DESPACHO AMBIENTAL (δ=0)
Costo Marginal [\$/MWh] λ		48,449	1,337
	P_1	32,497	120,452
	P_2	10,816	102,999
DOTENICIAC IMAM	P_3	143,646	137,816
POTENCIAS [MW]	$P_{_4}$	143,032	137,816
	$P_{\scriptscriptstyle 5}$	287,104	200,458
	P_6	282,905	200,458
COSTO TOTAL DE COMBUSTIBLE	[\$/h]	45463,492	47825,370
EMISIONES TOTALES	[kg/h]	795,102	654,684

Se ha acotado la solución con estrategias de mínimos costos y mínimas emisiones con lo que se obtienen valores máximos y mínimos de costos y emisiones del contaminante SO₂. Según el procedimiento seguido se entiende que existe una relación entre lo económico y lo ambiental, siendo la evaluación monetaria de la contaminación una razón de peso además de las externalidades para tomar en cuenta las emisiones en el despacho convencional. (21)

A continuación se analizan las relaciones mediante curvas, que indican el comportamiento entre lo económico y ambiental. En la Figura 4.5 se muestra el comportamiento de los costos totales y en la Figura 4.6 el de las emisiones.

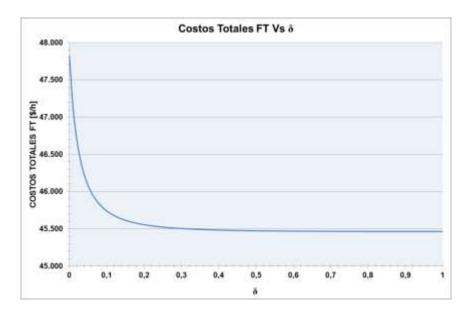


Figura 4. 5. Costos de producción en función de δ .

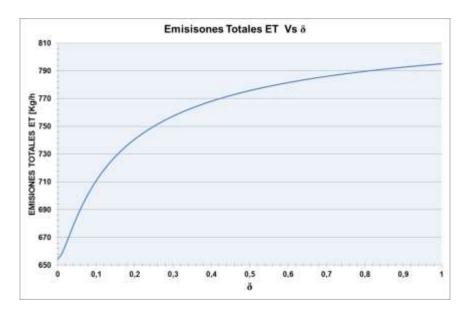


Figura 4. 6. Emisiones en función de δ .

En las figuras se puede notar que, a medida que el valor de δ se incrementa hasta 1, el costo total de generación disminuye y en cambio las emisiones totales aumentan, esto significa que si se quiere tener emisiones al mínimo nivel, lo que sería la solución correcta desde el punto de vista ambiental; se tendrán costos más elevados, lo que resultaría inapropiado económicamente y viceversa. En los casos extremos de las curvas cuando δ =0

se considera solo el despacho con restricciones de emisiones, mientras que con δ =1 se tiene el despacho económico convencional. (24)

Para representar las decisiones que involucran el despacho económico y ambiental, se hace uso de la curva "trade-off", la cual combina las dos figuras anteriores en la Figura 4.7 a fin de visualizar el equilibrio existente entre los costos y emisiones en el despacho de generación. (29)

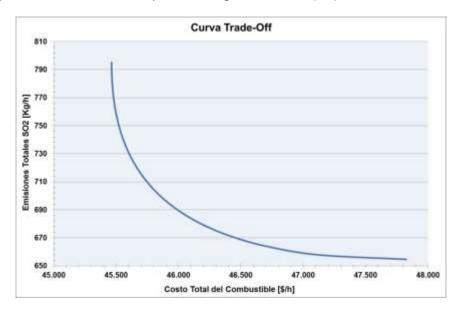


Figura 4. 7. Costo vs. Emisiones.

La solución de despacho puede encontrarse en cualquiera de los puntos que forman la curva de la Figura 4.7, la cual está en función de los costos que se desean asumir y del nivel de emisiones que se desea emitir. (24)

Las diferencias de los valores de costos y emisiones para los casos de despachos económico y ambiental en el ejemplo presentado son relativamente considerables. Ya que como se puede apreciar en la Tabla 4.10 en donde el valor del costo total aumenta en el despacho ambiental a 47825,37 \$/h mientras que las emisiones disminuyen a 654,58 kg/h en comparación del despacho económico. Estos valores pueden variar al considerar más unidades o un contaminante diferente. (21)

Una apreciación similar se puede notar en la Figura 4.8, en la cual se ha combinado las Figuras 4.5 y 4.6, que están en función de δ ; en este caso la curva de emisiones se ha multiplicado por un factor de conversión ki =47,8224 \$/kg utilizado en el ejemplo citado (23), que transforma en unidades monetarias las emisiones y poder así comparar las curvas, las mismas que, si se observan las escalas, no se pueden cruzar debido a que el precio de las emisiones no alcanza al valor del precio del combustible. En la figura solamente se ha

sobrepuesto las curvas para indicar que se puede hallar un punto de cruce cuando el valor de ki llegue a ser mayor, igualándose de esta manera ambas escalas.

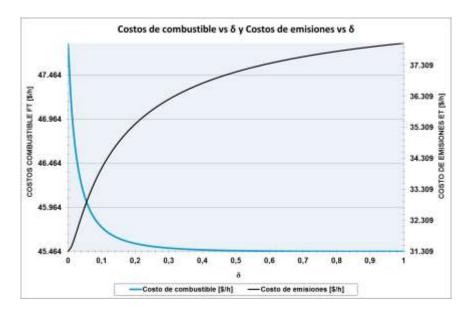


Figura 4. 8. Costos de combustible y costos emisiones en función de δ.

Existe una distribución de potencia diferente entre las unidades generación para cada valor de δ , que siempre satisface la potencia de la carga P_{c} =900MW.

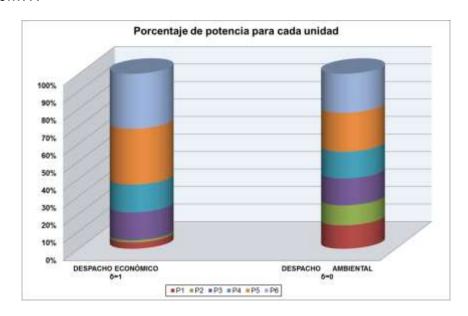


Figura 4. 9. Distribución de potencia para despacho económico y despacho ambiental.

En la Figura 4.9 se muestra estos porcentajes de distribución de potencias para los casos de despacho económico convencional (δ =1), en donde las potencias están asignadas a cada unidad están de acuerdo a su

eficiencia económica; en cambio para el despacho económico con restricción de emisiones (δ =0), las potencias están definidas según sea lo ambientalmente apropiado. Por ejemplo la unidad 1 aporta en el despacho económico convencional el 4% del total de la carga mientras que en el despacho económico ambiental se requiere que supla con el 14%; lo contrario sucede con la unidad 6, que se requiere que genere el 31% del total de la carga en el primer caso y se reduzca al 22% para el despacho ambiental.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

En el desarrollo del presente trabajo, en base a la bibliografía utilizada, se consideró un planteamiento y solución a nivel teórico del despacho económico ambiental, con el propósito de observar las variaciones en los costos de generación, al considerar las restricciones ambientales dentro del despacho económico convencional.

En la legislación del país se plantean de manera general métodos y limitantes para contrarrestar o disminuir las emisiones atmosféricas a fin de preservar un medio ambiente sostenible; sin embargo, en base al reglamento de despacho y operación del SNI, se manifiesta que se omiten las restricciones para las emisiones vertidas a la atmósfera por parte de las unidades térmicas de generación eléctrica, es decir que no se tiene un control sobre la cantidad de emisiones de contaminantes emitidas por la generación térmica, por esta razón se trabaja sobre un método que relaciona lo económicamente rentable y lo ambientalmente eficiente a fin de encontrar un equilibrio entre estos aspectos o enfocarse a uno solo según sean los requerimientos y prioridades del caso.

Los modelos a seguir para la formulación del despacho económico ambiental tienen mucho que ver con el tipo de contaminante que se quiere restringir, puesto que la función de emisiones depende de aspectos importantes como: el tipo de combustible con el que trabajan las unidades, el tipo de caldero para el caso de las unidades a vapor, etc., en el análisis desarrollado en este trabajo se formuló la curva de emisiones como cuadrática para restricciones de NOx, ya que se considera un tipo particular de caldero.

Mediante la inclusión del ponderador δ en la función de costos y en la función de emisiones, se analiza la influencia de δ al resolver el problema de despacho económico ambiental, pues mediante este ponderador se puede tener un panorama más general de las variaciones de costos en la producción de energía eléctrica al considerar las restricciones ambientales.

Cuando el valor de δ =0, se tiene el despacho ambiental en donde el costo de operación aumenta pero la cantidad de emisiones disminuye, en tanto que en el otro extremo, cuando δ =1 se tiene el despacho económico, en este punto el costo de operación de las unidades es menor mientras que la cantidad de emisiones se incrementa.

En la curva Trade-off presentada en la Figura 4.7, se observa la estrecha relación existente entre costos y emisiones, ya que a medida que se incrementan el costo total, las emisiones disminuyen, por otra parte si se requiere disminuir los costos se tendrá un incremento de emisiones.

De acuerdo a la gráfica de distribución de potencias (Figura 4.9), se puede observar que el 100% de la potencia de la demanda está distribuida en una forma no homogénea para el caso del despacho económico (δ =1), mientras que existe una mejor distribución de la potencia en las unidades para el caso del despacho económico ambiental (δ =0), por ejemplo, las unidades U3, U4, U5 y U6 a pesar de que sus niveles de potencias son adecuadas para el despacho económico, no lo son para el caso del despacho económico ambiental y por tanto tienen que disminuir su aporte de potencia, caso contrario sucede con las unidades: U1, U2 las cuales tienen que incrementar su aporte de potencia para el despacho económico ambiental.

En la Figura 4.8 se sobrepuso las curvas de costos y emisiones a fin de indicar que puede existir un punto de equilibrio entre ambos aspectos, éste punto se puede lograr con una constante de ajuste (ki), la cual permite convertir la cantidad de contaminante en unidades monetarias y ésta deberá tener un nivel representativo para que pueda encontrarse dicho punto.

En el desarrollo del despacho económico convencional se nota que las unidades trabajan al mismo costo marginal, esto solamente es útil para el caso de un estudio teórico, ya que para cuestiones prácticas se debe tomar en cuenta que la operación del SEP debe cumplir las características de: seguridad, confiabilidad y calidad.

Finalmente se concluye que la manera analítica con la que se ha desarrollado ayudó a tener una mejor apreciación del efecto de incluir restricciones de emisiones de gases contaminantes en el despacho convencional. Como resultado del despacho ambiental se tuvo una reducción efectiva de los contaminantes, pero ocasionó que aumentara el costo marginal, incrementando el costo de operación, lo que resulta una solución ecónomamente no rentable.

5.2. RECOMENDACIONES

Como recomendación se sugiere que el análisis se realice con la ayuda de un software, incluyendo una opción para restringir una determinada cantidad de contaminante, puesto que en la operación de las centrales termoeléctricas siempre se tendrá una cantidad de emisiones debido su operación.

En el desarrollo del documento no se toman en cuenta las pérdidas por transmisión, es por eso que sería adecuado que se prosiga con la investigación considerando estas pérdidas, para que se tenga una formulación más acorde a la situación práctica o dicho de otra forma se deben considerar otros parámetros adicionales que se incluyen en la formulación del despacho económico.

Un aspecto muy importante que se debería tomar en cuenta en la formulación del despacho económico ambiental son las externalidades; debido a que son difíciles de cuantificar o darles un valor monetario, se debe realizar un estudio minucioso de éstas para luego poder incluirlas en el despacho, de esta manera, se adicionaría su efecto social dándole cada vez mayor importancia a la reducción de emisiones de gases contaminantes.

BIBLIOGRAFÍA

- Alzamora, Patricio. Desarrollo de una aplicación en JAVA para resolver el problema de despacho económico con restricciones de emisiónes de gases contaminantes. Quito: CENACE.
- 2. **CONELEC.** Reglamento de Despacho y Operación del Sistema Nacional Interconectado. *Normativa*. s.l.: Registro Oficial No. 407, 29 de Noviembre de 2004.
- 3. Texto Unificado de Legislación Secundaria del Ministerio del Ambiente. Norma de Calidad del Aire Ambiente. s.l.: Registro Oficial Nº 464, 7 de Junio del 2011. Anexo 4 del Libro VI.
- 4. **Ambientum.** Control de la contaminación atmosférica. [En línea] http://www.ambientum.com/documents/temas/74/temas.htm.
- 5. Martín Estevez, Nerea, Melón Vega, Mónica y Sanchez Albiz, Pili. Depuración de emisiones atmosféricas industriales. [En línea] http://www.sc.ehu.es/iawfemaf/archivos/materia/industrial/libro-13a.pdf.
- 6. **Miliarium. com, Ingenieria civil y medio ambiente.** Miliarium. *Tecnologías para el control de la contaminación atmosférica*. [En línea] Madrid, España, 2004.

http://www.miliarium.com/prontuario/MedioAmbiente/Atmosfera/TecnoDescontaminacionAire.htm.

- 7. **Serway, Raymond A.** Electricidad y Magnetismo.
- 8. **Espinoza Mejía, Ivan D.** Construcción De Un Prototipo Para El Tratamiento De Lodos de Aceite De Una Central Termoeléctrica (Elecaustro). Guayaquil : Escuela Superior Politécnica del Litoral, 2006.
- 9. **Ayuntamiento de las Palmas de gran Canaria.** Eduambiental. *Qué entendemos por gestión ambiental.* [En línea] España. http://www.eduambiental.org/index.php?option=com_content&task=view&id=13 &Itemid=190.
- 10. Ley de la prevención y control de la contaminación ambiental. s.l. : Registro Oficial Suplemento 418, 2004.
- 11. Greenleaf ambiental company cia.ltda, Servicios de consultoria ambiental. Transelectric. Estudio de Impacto Ambiental Definitivo (EIAD) para la Construcción y Operación de la Subestación El Inga 500/230/138 kV. Capítulo 2, Análisis del marco de referencia legal e institucional. [En línea] Ecuador.

http://www.transelectric.com.ec/transelectric_portal/files/capitulo%20ii%20-%20marco%20legal%20e%20institucional%20se%20el%20inga.pdf.

- 12. Normas Técnicas Ambientales para la Prevención y Control de la Contaminación Ambiental para los Sectores de Infraestructura: Eléctrico, Telecomunicaciones y Transporte (Puertos y Aereopuertos). *Norma de emisiones al aire desde centrales termoeléctricas.* s.l.: Registro Oficial Nro. 41, 14 de Marzo de 2007. Anexo 3A.
- 13. **Granada Gerardo, Martínez Roberto, Zaldívar Mario.** Análisis del despacho del sistema de generación de El Salvador. San Salvador: Universidad Centroamericana Jose Simeon Cañas, 2004.
- 14. **Wood, A.J. y Wollenberg, B.F.** *Power Generation Operation and Contro.* N. York: J.Wiley&Sons, 1996.
- 15. **León Piedra, Raúl Ing, Msc.** Operación económica del SEP. "Operación y Control de SEP". Cuenca: s.n., 2010.
- 16. Marcos Karina, Torres Washington, Vizhñay Gisella. Operación económica de los sistemas eléctricos de potencia utilizando programación dinámica. Guayaquil: Espol, 1999.
- 17. **Universidad Politécnica Salesiana.** Repositorio digital de la Universidad Politécnica Salesiana. [Online] http://dspace.ups.edu.ec/handle/123456789/1896.
- 18. **Universidad Nacional de Colombia Sede Manizales.** Análisis y diseño de algoritmos. [En línea] [Citado el: 08 de Septiembre de 2012.] http://www.virtual.unal.edu.co/cursos/sedes/manizales/4060024/Lecciones/Capi tulo%20III/pdinamica.htm.
- 19. **CONELEC.** Regulación No. CONELEC 003/03. *Declaración de Costos Variables de Producción.* 13 de agosto de 2003.
- 20. —. Reglamento de Despacho y Operación del Sistema Nacional Interconectado. *Normativa*. s.l. : Registro Oficial No. 407, 29 de noviembre de 2006.
- 21. **Sepúlveda, Leslie y Rudnick, Hugh.** Despacho Económico Ambiental en Sistemas Eléctricos. Santiago de Chile: Pontificia Universidad Católica de Chile, 1998.
- 22. **Salgado, F.** Un Modelo Multi-Horario de Despacho Estocástico de Carga de Corto Plazo, Regulado por un Sistema de Permisos Transables de NOx. Argentina: Escuela de Graduados Universidad de Concepción, Agosto de

2003.

- 23. Bayón, Luis; Grau, José M; Ruíz, María M; Suárez, Pedro M. The Exact Solution of the Environmental/Economic Dispatch Problem. *IEEE Transactions on power systems.* Mayo 2012. Vol. 27.
- 24. **Barragán, A.** Inclusión de la variable contaminación atmosférica den el despacho económico de centrales térmicas en el Ecuador. *Tesis previa a la obtención del Título de Especialista en Tecnología y Gestión Ambiental. Escuela Politécnica Nacional.* Quito, Ecuador: s.n., 2004.
- 25. **Talaq, J.H.** A Summary Of Environmental/Economic Dispatch Algorithms. *IEEE Transactions On Power Systems.* Agosto, 1994. Vol. 9, 3.
- 26. **Cepin, Marko.** Assessment of Power System Reliability. *Methods and Applications*. Slovenia: Spinger, 2011. 978-0-85729-687-0.
- 27. **Pizarro, P.** Modelos de Despacho Eléctrico Económico Ambiental. *Tesis para el título de INgeniero en Informática*. Mendoza, Argentina : Universidad de Mendoza, Julio, 2006.
- 28. **Trade off capitulo estudiantil CSCMP.** Trade off . [En línea] [Citado el: 13 de Septiembre de 2012.] http://www.azc.uam.mx/alumnos/tradeoff/secundarias/nombre.htm.
- 29. **El blog de Duralex.** Población y desarrollo 2: Causas y efectos. [En línea] 8 de diciembre de 2009. [Citado el: 13 de Septiembre de 2012.] http://blogsdelagente.com/duralex/tag/ingreso/.
- 30. **Alberto Jaime P. y R.O. Tinoco–López.** Métodos de valuación de externalidades ambientales provocadas por obras de ingeniería. [En línea] México, 2006. [Citado el: 12 de Septiembre de 2012.] http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432006000200004.
- 31. **Octaviano, C.** Análisis General De Las Externalidades Ambientales Derivadas De La Utilización De Combustibles Fósiles En La Industria Eléctrica Centroamericana. *Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México.* México : s.n., Agosto, 2011.

ANEXO 1

CÁLCULO DEL DESPACHO ECONÓMICO SIN CONSIDERAR PERDIDAS EN LA TRANSMISIÓN

LIMITES DE GENERACIÓN

UNIDAD	P_i^{\min}	P_i^{\max}
1	10	125
2	10	150
3	40	250
4	35	210
5	130	325
6	125	315

FUNCION DE COSTOS DE CADA UNIDAD

$$F_i(P_i) = f_i \cdot H(P_i)$$

$$F_i(P_i) = a_i + b_i \cdot P_i + c_i \cdot P_i^2 \quad [\$/h]$$

UNIDAD	a_i	b_{i}	c_{i}	$b_i / 2c_i$	$1/2c_i$
1	756,799	38,540	0,152	126,385	3,279
2	451,325	46,159	0,106	217,999	4,723
3	1049,325	40,397	0,028	720,595	17,838
4	1243,531	38,306	0,035	540,123	14,100
5	1658,570	36,328	0,021	860,441	23,685
6	1356,659	38,270	0,018	1063,658	27,793
DEMANDA (MW):		900			

DETERMINACIÓN DE AY POTENCIAS

$$\frac{dF_i}{dP_i} = b_i + 2 \cdot c_i \cdot P_i = \lambda$$

$$b_i + 2 \cdot c_i \cdot P_i = \lambda$$

Dividiendo para $2 \cdot c_i$:

$$\frac{b_i}{2 \cdot c_i} + \frac{P_i}{2 \cdot c_i} = \frac{\lambda}{2 \cdot c_i}$$

Para el caso sin perdidas:

$$\sum_{i=1}^{N} P_i = P_C$$

Re alizando operaciones se tiene:

$$\lambda = \frac{P_C + \sum_{i=1}^{N} \frac{b_i}{2 \cdot c_i}}{\sum_{i=1}^{N} \frac{1}{2 \cdot c_i}}$$

λ	48,449
POTE	NCIAS
P_1	32,497
P_2	10,816
P_3	143,646
P_4	143,032
P_5	287,104
P_6	282,905

DETERMINACIÓN DE COSTOS

COST	COSTOS [\$/h]										
$F_1(P_1)$	2 170,238										
$F_2(P_2)$	962,969										
$F_3(P_3)$	7 430,504										
$F_4(P_4)$	7 447,884										
$F_5(P_5)$	13 828,495										
$F_6(P_6)$	13 623,401										
FT	45 463,492										

CÁLCULO DEL DESPACHO ECONÓMICO AMBIENTAL SIN CONSIDERAR PERDIDAS EN LA TRANSMISIÓN

FUNCION DE EMISIONES DE CADA UNIDAD:

$$E_i(P_i) = d_i + e_i \cdot P_i + f_i \cdot P_i^2 \qquad [kg/h]$$

PARAMETROS PARA CADA UNA DE LA UNIDADES

UNIDAD	d_{i}	e_{i}	f_{i}
1	13,8593	0,3277	0,0042
2	13,8593	0,3277	0,0049
3	40,2669	-0,5455	0,0068
4	40,2669	-0,5455	0,0068
5	42,8955	-0,5112	0,0046
6	42,8955	-0,5112	0,0046
DEMANDA (M	W):	900	

LIMITES DE GENERACIÓN

UNIDAD	$P_i^{ m min}$	P_i^{\max}
1	10	125
2	10	150
3	40	250
4	35	210
5	130	325
6	125	315

DESCRIPCIÓN DE PROCEDIMIENTO PARA DETERMINAR λ , POTENCIAS Y COSTOS PARA UN VALOR DE δ

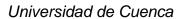
$$\frac{dC_i}{dP_i} = \delta \cdot (b_i + 2 \cdot c_i \cdot P_i) + (1 - \delta) \cdot (e_i + 2 \cdot f_i \cdot P_i) = \lambda ce$$

$\delta = 0$	Despacho Ambiental
δ = 1	Despacho Económico
SELECCIONAL	R EL VALOR DE δ0ο1
δ = 1	
$k_i = 1$	[\$/kg]

Unidad	$\delta\!\cdot\! b_{\scriptscriptstyle i}$	$2 \cdot \delta \cdot c_i$	$(1-\delta)e_i$	$2(1-\delta)f_i$	$\delta b_i + (1 - \delta)e_i$	$2\delta c_i + 2(1-\delta)f_i$	$\frac{\delta b_i + (1 - \delta)e_i}{2\delta c_i + 2(1 - \delta)f_i}$	$\frac{1}{2\delta c_i + 2(1-\delta)f_i}$
1	38,540	0,305	0,000	0,000	38,540	0,305	126,385	3,279
2	46,159	0,212	0,000	0,000	46,159	0,212	217,999	4,723
3	40,397	0,056	0,000	0,000	40,397	0,056	720,595	17,838
4	38,306	0,071	0,000	0,000	38,306	0,071	540,123	14,100
5	36,328	0,042	0,000	0,000	36,328	0,042	860,441	23,685
6	38,270	0,036	0,000	0,000	38,270	0,036	1063,658	27,793

SISTEMA DE N+1 ECUACIONES

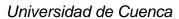
$$\begin{bmatrix} 0,305 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0,212 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0,056 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0,071 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0,042 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0,042 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ \lambda \end{bmatrix} = \begin{bmatrix} -38,540 \\ -46,159 \\ -40,397 \\ -38,306 \\ -36,328 \\ -38,270 \\ 900,000 \end{bmatrix}$$



RESOLUCION DEL PROBLEMA YA SEA PARA DESPACHO ECONOMICO CONVENCIONAL (δ=1) O DESPACHO AMBIENTAL (δ=0)

		DESPACHO ECONÓMICO	DESPACHO AMBIENTAL	COSTOS DE COMBUSTIBLE [\$/h]	EMISIONES [kg/h]
Costo Marginal [\$/MV	Vh] λ	48,449	-		
	P_1	32,497	-	2170,238	_
	P_2	10,816	-	962,969	-
POTENCIAS [MW]	P_3	143,646	-	7430,504	-
POTENCIAS [IVIVV]	$P_{_{4}}$	143,032	-	7447,884	-
	P_5	287,104	-	13828,495	-
	P_6	282,905	-	13623,401	-
Costo total de combustible	[\$/h]	45463,492		45463,492	
Emisiones totales	[kg/h]		-		-

TABLA DE RESUMEN PARA COMPARAR COSTOS DE COMBUSTIBLE TOTAL CON EMISIONES TOTALES


		DESPACHO	DESPACHO	COSTOS DE	EMISIONES
		ECONÓMICO δ=1	AMBIENTAL δ=0	COMBUSTIBLE [\$/h]	[kg/h]
$ \begin{array}{c c} \textbf{Costo Marginal [\$/MWh]} & \lambda \\ \hline & P_1 \\ \hline & P_2 \\ \hline & P_3 \\ \hline & P_4 \\ \hline & P_5 \\ \hline & P_6 \\ \hline \end{array} $		48,449	1,337		
	P_1	32,497	120,452	2170,238	114,120
	P_2	10,816	102,999	962,969	99,592
DOTENCIAS IMMA	P_3	143,646	137,816	7430,504	94,811
POTENCIAS [IVIVV]	$P_{\scriptscriptstyle 4}$	143,032	137,816	7447,884	94,811
	P_5	287,104	200,458	13828,495	125,675
	P_6	282,905	200,458	13623,401	125,675
Costo total de combustible	[\$/h]			45463,492	47825,370
Emisiones totales	[kg/h]			795,102	654,684

							CÁLCUL	OS DE CC	STOS Y E	MISIONES	PARA VA	LORES DE	δ DESD	E 0 HASTA	1 EN PAS	SOS DE 0,	01					
δ	λ	P_1	P_2	P_3	P_4	P_5	P_6	$F_1(P_1)$	$F_{2}(P_{2})$	$F_3(P_3)$	$F_4(P_4)$	$F_5(P_5)$	$F_6(P_6)$	FT	$E_{\rm I}(P_{\rm I})$	$E_2(P_2)$	$E_3(P_3)$	$E_4(P_4)$	$E_5(P_5)$	$E_{6}(P_{6})$	ET	$ET \times k_i$
0	1,337	120,452	102,999	137,816	137,816	200,458	200,458	7611,159	6328,834	7149,014	7196,164	9789,037	9751,162	47825,370	114,120	99,592	94,811	94,811	125,675	125,675	654,684	31308,565
0,01	1,871	102,312	91,764	142,479	142,461	210,822	210,162	6295,908	5578,588	7373,999	7420,218	10255,547	10194,207	47118,467	91,244	85,189	101,194	101,168	140,028	139,083	657,906	31462,667
0.02	2,386	90,395	82,469	145,591	145,493	218,619	217,433	5486,464	4978,057	7524,862	7567,366	10609,438	10528,411	46694,599	77,717	74,207	105,620	105,479	151,477	149,700	664,199	31763,594
0,03	2,889	81,906	74,818	147,760	147,555	224,788	223,172	4936,271	4497,516	7630,283	7667,778	10891,329		46416,744	68,806	65,804	108,781	108,481	160,935	158,424	671,232	32099,918
0.04	3,385	75,525	68,467	149,308	148,988	229,844	227,868	4537,186	4107,989	7705,747	7737,728	11123,500	÷	46223,510	62,506	59,264	111,079	110,601	168,947	165,787	678,184	32432,370
0,05	3,875	70,541	63,132	150,430	149,993	234,093	231,811	4234,104	3787,401	7760,479	7786,879	11319,477		46083,223	57,823	54,075	112,763	112,105	175,862	172,128	684,757	32746,713
0,06	4,362	66,533	58,598	151,246	150,697	237,735	235,190	3995,913	3519,672	7800,359	7821,349	11488,057	11352,598	45977,948	54,208	49,885	114,000	113,167	181,923	177,675	690,858	33038,496
0.08	4,845	63,238	54,702	151,839	151,184	240,905	238,133	3803,684	3293,110	7829,312	7845,195	11635,260	11490,270	45896,831 45832.957	51,336	46,446	114,903	113,905	187,297	182,592	696,479	33307,293
0.09	5,326 5.805	60,477	51,321	152,263 152,559	151,510	243,700	240,729	3645,225	3099,112	7850,061	7861,203 7871,344	11765,372	÷		49,001	43,582	115,552	114,401	192,112 196,461	186,996 190,976	701,644 706.392	33554,317
0,09	6.283	58,130	48,361 45,749	152,559	151,717	246,189	243,044	3512,318	2931,255	7864,551		11881,541 11986,147		45781,737 45740.024	47,065	41,166	116,007	114,717	200,461	190,976		33781,372 33990.394
0,1	6,759	56,109 54,350	45,749	152,756	151,833 151,880	248,426 250,450	245,127 247,016	3399,220 3301,794	2784,669 2655,602	7874,204 7880,078	7877,043 7879,348		11818,742	45740,024 45705,597	45,435 44,045	39,106 37,331	116,311 116,496	114,894	200,418	194,599	710,763 714,796	
0,11		52,804	43,428	152,876		252,295						12167,608			42,845		1	114,966	-			34183,244
0,12	7,235 7,709		39,484	152,935	151,874 151,827	252,295	248,740 250,323	3216,983 3142,479	2541,124 2438,916	7882,978 7883,521	7879,045 7876.731		11989,115	45676,853 45652,607	42,845	35,788 34,436	116,587 116,604	114,957	207,372 210.452	200,978 203,810	718,526 721.985	34361,628 34527,075
0,13	~~~~~	51,435	<u> </u>		·		••••••						·				·		}	}		
0,14	8,183 8.656	50,214	37,795	152,919 152,861	151,748	255,541	251,783	3076,504	2347,123	7882,190	7872,862	12320,314	12132,977	45631,971	40,878	33,243	116,562	114,764 114,606	213,311 215,975	206,444	725,203 728,203	34680,936
		49,119	36,260		151,644	256,979	253,136	3017,670	2264,240	7879,363	7867,793	12388,138		45614,265	40,063	32,183	116,473		<u> </u>	208,902		34824,399
0,16 0.17	9,129	48,129	34,859	152,779	151,522	258,315	254,396	2964,874	2189,039	7875,341	7861,800	12451,169	12256,741	45598,965	39,336	31,236	116,347	114,420	218,464	211,204	731,007	34958,507
0,17	9,601 10,072	47,232	33,576 32,396	152,678 152,560	151,386 151,238	259,558 260,720	255,571 256,672	2917,229 2874,015	2120,505 2057,794	7870,363 7864,624	7855,102 7847,871	12509,946 12564,920	12312,511	45585,657 45574,014	38,683 38,094	30,385 29,617	116,190	114,212 113,988	220,798 222,991	213,367 215,404	733,635 736,103	35084,173 35202,199
		46,413	<u> </u>				·•				·		<u> </u>		***************************************		116,010		}	;		
0,19	10,544	45,665 44.977	31,307	152,431	151,083	261,809	257,706	2834,640	2000,196	7858,282	7840,245	12616,482	12413,930	45563,774 45554,723	37,559	28,920	115,810	113,751	225,057 227,008	217,328	738,426 740.617	35313,291 35418.071
	11,015		30,299	152,291	150,921	262,832	258,680	2798,612	1947,114	7851,463	7832,333		12460,239		37,073	28,286	115,596	113,506	}	219,148		
0,21	11,485	44,342	29,364	152,144	150,756	263,795	259,599	2765,522	1898,038	7844,274	7824,222		12503,981	45546,690	36,627	27,706	115,371	113,256	228,853	220,874	742,687	35517,088
0,22	11,956	43,755	28,494	151,992	150,588	264,703	260,468	2735,024	1852,533	7836,800	7815,984	12753,803	12545,385	45539,529	36,218	27,174	115,137	113,001	230,603	222,514	744,647	35610,830
0,23	12,426	43,211	27,682	151,835	150,418	265,563	261,292	2706,824	1810,225	7829,112	7807,675	12794,634	12584,653	45533,123	35,842	26,685	114,897	112,745	232,264	224,074	746,506	35699,729
0,24	12,896	42,704	26,923	151,674	150,248	266,377	262,074	2680,671	1770,788	7821,270	7799,341		12621,962	45527,372	35,493	26,233	114,652	112,488	233,844	225,562	748,272	35784,174
0,25	13,366	42,232	26,211	151,512	150,078	267,149	262,819	2656,349	1733,940	7813,321	7791,018	12870,096	12657,468	45522,193	35,171	25,814	114,404	112,232	235,349	226,983	749,952	35864,509
0,26	13,835	41,790	25,543	151,348	149,909	267,883	263,528	2633,674	1699,436	7805,306	7782,737	12905,052	12691,312	45517,516	34,870	25,426	114,154	111,978	236,784	228,340	751,552	35941,044
0,27	14,305	41,377	24,914	151,183	149,741	268,582	264,204	2612,481	1667,059	7797,258	7774,520	12938,345	12723,616	45513,280	34,591	25,064	113,904	111,726	238,155	229,640	753,079	36014,058
0,28	14,774	40,988	24,322	151,018	149,574	269,248	264,850	2592,631	1636,619	7789,206	7766,386	12970,098	12754,492	45509,434	34,329	24,727	113,653	111,477	239,465	230,886	754,538	36083,802
0,29	15,243	40,623	23,762	150,854	149,410	269,883	265,468	2574,000	1607,947	7781,172	7758,351	13000,422	12784,042	45505,933	34,085	24,412	113,404	111,231	240,720	232,081	755,932	36150,505
0,3	15,712	40,278	23,233	150,690	149,248	270,490	266,060	2556,478	1580,894	7773,175	7750,425	13029,414	12812,354	45502,741	33,855	24,117	113,156	110,989	241,923	233,228	757,268	36214,372
0,31	16,181	39,953	22,732	150,527	149,088	271,072	266,627	2539,970	1555,326	7765,231	7742,618	13057,166	12839,511	45499,823	33,639	23,840	112,910	110,750	243,076	234,332	758,548	36275,591
0,32	16,650	39,646	22,257	150,366	148,931	271,628	267,172	2524,389	1531,126	7757,353	7734,937	13083,759	12865,587	45497,151	33,436	23,580	112,667	110,516	244,184	235,394	759,776	36334,332
0,33	17,119	39,355	21,805	150,206	148,777	272,162	267,695	2509,659	1508,185	7749,552	7727,386	13109,268	12890,650	45494,700	33,244	23,334	112,426	110,286	245,249	236,417	760,956	36390,751
0,34	17,588	39,078	21,376	150,048	148,625	272,674	268,199	2495,713	1486,409	7741,836	7719,969	13133,760	12914,762	45492,448	33,063	23,103	112,188	110,061	246,274	237,403	762,090	36444,992
0,35	18,056	38,816	20,967	149,892	148,476	273,166	268,683	2482,489	1465,710	7734,212	7712,687	13157,298	12937,979	45490,375	32,891	22,884	111,953	109,839	247,260	238,354	763,182	36497,184
0,36	18,525	38,567	20,578	149,738	148,329	273,639	269,150	2469,933	1446,012	7726,685	7705,544	13179,938	12960,353	45488,465	32,729	22,677	111,722	109,623	248,210	239,273	764,233	36547,448
0,37	18,993	38,329	20,206	149,586	148,186	274,094	269,600	2457,995	1427,243	7719,261	7698,538	13201,733	12981,933	45486,702	32,574	22,481	111,493	109,410	249,127	240,160	765,246	36595,894
0,38	19,461	38,103	19,851	149,436	148,045	274,532	270,034	2446,631	1409,339	7711,942	7691,670	13222,730	13002,761	45485,073	32,428	22,295	111,269	109,202	250,011	241,018	766,223	36642,625
0,39	19,930	37,887	19,511	149,288	147,907	274,954	270,453	2435,800	1392,242	7704,731	7684,938	13242,976	13022,880	45483,566	32,288	22,118	111,048	108,999	250,865	241,848	767,166	36687,734
0,4	20,398	37,680	19,186	149,142	147,772	275,362	270,858	2425,465	1375,898	7697,630	7678,343	13262,509	13042,326	45482,170	32,155	21,950	110,830	108,800	251,691	242,652	768,078	36731,310
0,41	20,866	37,483	18,874	148,999	147,640	275,755	271,250	2415,594	1360,259	7690,639	7671,881	13281,370	13061,134	45480,876	32,028	21,789	110,617	108,605	252,489	243,431	768,958	36773,432
0,42	21,334	37,294	18,575	148,858	147,510	276,135	271,629	2406,155	1345,280	7683,759	7665,551	13299,593	13079,337	45479,675	31,907	21,637	110,407	108,414	253,261	244,185	769,810	36814,176
0,43	21,803	37,113	18,289	148,719	147,383	276,502	271,995	2397,121	1330,920	7676,991	7659,352	13317,210	13096,965	45478,559	31,791	21,491	110,200	108,227	254,009	244,917	770,635	36853,611
0,44	22,271	36,939	18,013	148,582	147,258	276,857	272,351	2388,466	1317,142	7670,335	7653,280	13334,253		45477,521	31,680	21,352	109,997	108,044	254,733	245,627	771,434	36891,804
0,45	22,739	36,772	17,748	148,448	147,136	277,200	272,695	2380,167	1303,911	7663,789	7647,334	13350,749	1	45476,556	31,574	21,218	109,798	107,866	255,434	246,317	772,207	36928,813
0,46	23,207	36,612	17,493	148,316	147,017	277,533	273,029	2372,202	1291,195	7657,353	7641,510	13366,726	13146,671	45475,657	31,473	21,091	109,602	107,691	256,115	246,986	772,958	36964,697
0,47	23,675	36,458	17,248	148,186	146,900	277,855	273,354	2364,551	1278,964	7651,026	7635,807	13382,208	13162,262	45474,820	31,375	20,969	109,410	107,520	256,775	247,637	773,686	36999,507
0,48	24,142	36,310	17,011	148,058	146,785	278,167	273,668	2357,197	1267,192	7644,808	7630,222	13397,219		45474,039	31,281	20,851	109,221	107,352	257,416	248,270	774,392	37033,293
0,49	24,610	36,167	16,783	147,932	146,673	278,470	273,974	2350,122	1255,853	7638,695	7624,752	13411,780	13192,108	45473,310	31,191	20,739	109,036	107,188	258,038	248,885	775,078	37066,102

Paúl Peralta, Eddy Silva

				T			T											1				
0,5	25,078	36,030	16,563	147,809	146,563	278,764	274,271	2343,311	1244,924	7632,688	7619,394	13425,911			31,105	20,631	108,854	107,028	258,643	249,484	775,745	37097,978
0,51	25,546	35,897	16,351	147,688	146,455	279,049	274,559	2336,749	1234,382	7626,785	7614,145	13439,632	13220,302	45471,995	31,021	20,527	108,676	106,871	259,231	250,067	776,393	37128,961
0,52	26,014	35,769	16,146	147,569	146,349	279,326	274,840	2330,423	1224,208	7620,983	7609,004	13452,961	13233,823	45471,401	30,941	20,427	108,500	106,718	259,802	250,635	777,023	37159,089
0,53	26,481	35,646	15,948	147,451	146,246	279,596	275,113	2324,320	1214,382	7615,281	7603,967	13465,915	13246,981	45470,847	30,863	20,331	108,328	106,567	260,358	251,188	777,636	37188,400
0,54	26,949	35,527	15,756	147,336	146,144	279,857	275,379	2318,428	1204,888	7609,679	7599,032	13478,509	13259,792	45470,328	30,789	20,238	108,159	106,420	260,899	251,726	778,232	37216,926
0,55	27,417	35,411	15,570	147,223	146,045	280,112	275,638	2312,737	1195,708	7604,173	7594,197	13490,759	13272,270	45469,843	30,717	20,149	107,993	106,276	261,426	252,252	778,813	37244,701
0,56	27,885	35,300	15,391	147,112	145,948	280,359	275,891	2307,237	1186,827	7598,761	7589,458	13502,679	13284,427	45469,389	30,647	20,063	107,830	106,135	261,939	252,764	779,379	37271,755
0,57	28,352	35,192	15,217	147,003	145,852	280,600	276,136	2301,919	1178,231	7593,444	7584,813	13514,282	13296,276	45468,965	30,580	19,980	107,670	105,997	262,439	253,264	779,930	37298,116
0,58	28,820	35,088	15,048	146,895	145,759	280,835	276,376	2296,772	1169,906	7588,217	7580,261	13525,582	13307,830	45468,568	30,515	19,900	107,513	105,861	262,926	253,752	780,467	37323,812
0,59	29,288	34,986	14,885	146,789	145,667	281,063	276,610	2291,790	1161,840	7583,080	7575,798	13536,589	13319,099	45468,196	30,452	19,822	107,359	105,729	263,401	254,229	780,991	37348,868
0,6	29,755	34,888	14,726	146,686	145,577	281,286	276,838	2286,965	1154,021	7578,031	7571,422	13547,316	13330,094	45467,848	30,391	19,747	107,207	105,599	263,864	254,694	781,502	37373,309
0,61	30,223	34,793	14,572	146,584	145,489	281,502	277,060	2282,288	1146,438	7573,068	7567,131	13557,773	13340,825	45467,523	30,332	19,675	107,059	105,472	264,316	255,148	782,001	37397,159
0,62	30,690	34,701	14,423	146,483	145,402	281,714	277,277	2277,754	1139,079	7568,189	7562,923	13567,970	13351,302	45467,218	30,275	19,604	106,912	105,347	264,757	255,592	782,488	37420,438
0,63	31,158	34,611	14,277	146,384	145,317	281,920	277,490	2273,356	1131,936	7563,392	7558,796	13577,918	13361,534	45466,933	30,220	19,536	106,769	105,225	265,187	256,026	782,963	37443,168
0,64	31,625	34,524	14,136	146,287	145,234	282,121	277,697	2269,087	1124,999	7558,677	7554,748	13587,624	13371,530	45466,666	30,166	19,471	106,628	105,105	265,608	256,450	783,427	37465,368
0,65	32,093	34,440	13,999	146,192	145,152	282,318	277,899	2264,943	1118,260	7554,040	7550,776	13597,099	13381,298	45466,416	30,114	19,407	106,489	104,987	266,018	256,865	783,881	37487,058
0,66	32,560	34,358	13,866	146,098	145,072	282,510	278,097	2260,918	1111,709	7549,480	7546,879	13606,351	13390,846	45466,182	30,063	19,345	106,353	104,872	266,420	257,271	784,324	37508,256
0,67	33,028	34,278	13,736	146,006	144,993	282,697	278,290	2257,007	1105,339	7544,997	7543,054	13615,386	13400,181	45465,964	30,014	19,285	106,219	104,759	266,812	257,668	784,757	37528,978
0,68	33,495	34,200	13,610	145,915	144,916	282,880	278,479	2253,205	1099,143	7540,587	7539,301	13624,214	13409,311	45465,760	29,967	19,226	106,088	104,648	267,195	258,057	785,181	37549,240
0,69	33,963	34,125	13,487	145,826	144,840	283,058	278,664	2249,507	1093,113	7536,250	7535,616	13632,841	13418,243	45465,570	29,920	19,170	105,959	104,540	267,570	258,437	785,595	37569,059
0,7	34,430	34,051	13,367	145,738	144,766	283,233	278,845	2245,910	1087,243	7531,984	7531,999	13641,273	13426,982	45465,392	29,875	19,115	105,832	104,433	267,937	258,810	786,001	37588,449
0,71	34,898	33,980	13,250	145,652	144,693	283,404	279,022	2242,409	1081,528	7527,787	7528,447	13649,519	13435,536	45465,225	29,831	19,061	105,707	104,328	268,296	259,175	786,398	37607,425
0,72	35,365	33,910	13,136	145,567	144,621	283,571	279,196	2239,000	1075,960	7523,658	7524,960	13657,583	13443,910	45465,071	29,789	19,009	105,584	104,225	268,647	259,532	786,786	37625,999
0,73	35,832	33,842	13,026	145,483	144,550	283,734	279,365	2235,680	1070,534	7519,596	7521,534	13665,472	13452,110	45464,926	29,747	18,959	105,463	104,125	268,990	259,882	787,166	37644,185
0,74	36,300	33,776	12,917	145,401	144,481	283,894	279,531	2232,446	1065,245	7515,599	7518,170	13673,191	13460,142	45464,792	29,707	18,910	105,345	104,026	269,327	260,226	787,539	37661,995
0,75	36,767	33,711	12,812	145,320	144,413	284,050	279,694	2229,294	1060,087	7511,665	7514,865	13680,747	13468,010	45464,667	29,667	18,862	105,228	103,928	269,656	260,562	787,904	37679,441
0,76	37,235	33,648	12,709	145,240	144,346	284,203	279,854	2226,220	1055,056	7507,793	7511,618	13688,143	13475,720	45464,551	29,629	18,815	105,113	103,833	269,979	260,892	788,261	37696,534
0,77	37,702	33,587	12,608	145,161	144,280	284,353	280,010	2223,223	1050,148	7503,983	7508,427	13695,386	13483,277	45464,444	29,591	18,770	105,000	103,739	270,295	261,216	788,611	37713,285
0,78	38,169	33,527	12,510	145,084	144,216	284,500	280,163	2220,300	1045,357	7500,232	7505,291	13702,480	13490,684	45464,344	29,555	18,725	104,889	103,647	270,605	261,533	788,955	37729,705
0,79	38,637	33,468	12,414	145,008	144,152	284,644	280,313	2217,447	1040,680	7496,539	7502,209	13709,429	13497,948	45464,252	29,519	18,682	104,780	103,557	270,909	261,844	789,291	37745,803
0,8	39,104	33,411	12,321	144,933	144,090	284,785	280,461	2214,662	1036,112	7492,904	7499,179	13716,239	13505,071	45464,167	29,485	18,640	104,673	103,468	271,206	262,150	789,621	37761,589
0,81	39,571	33,355	12,229	144,859	144,028	284,923	280,605	2211,943	1031,651	7489,324	7496,200	13722,913	13512,058	45464,088	29,451	18,599	104,567	103,381	271,498	262,450	789,945	37777,073
0,82	40,039	33,301	12,140	144,787	143,968	285,058	280,747	2209,287	1027,291	7485,799	7493,272	13729,455	13518,913	45464,016	29,418	18,559	104,463	103,295	271,785	262,744	790,263	37792,262
0,83	40,506	33,248	12,052	144,715	143,909	285,190	280,886	2206,693	1023,030	7482,327	7490,392	13735,869	13525,639	45463,950	29,385	18,520	104,360	103,210	272,065	263,033	790,574	37807,166
0,84	40,973	33,195	11,967	144,644	143,850	285,320	281,022	2204,157	1018,864	7478,908	7487,559	13742,160	13532,241	45463,889	29,354	18,482	104,259	103,128	272,341	263,317	790,880	37821,793
0,85	41,441	33,145	11,883	144,575	143,793	285,448	281,156	2201,679	1014,791	7475,540	7484,773	13748,329	13538,722	45463,834	29,323	18,445	104,160	103,046	272,611	263,595	791,180	37836,150
0,86	41,908	33,095	11,801	144,507	143,736	285,573	281,288	2199,256	1010,807	7472,222	7482,032	13754,382	13545,085	45463,784	29,293	18,409	104,062	102,966	272,877	263,869	791,475	37850,245
0,87	42,375	33,046	11,721	144,439	143,681	285,696	281,417	2196,887	1006,909	7468,954	7479,336	13760,321	13551,333	45463,739	29,263	18,373	103,966	102,887	273,137	264,138	791,765	37864,085
0,88	42,842	32,998	11,643	144,373	143,626	285,816	281,544	2194,569	1003,094	7465,733	7476,683	13766,150	13557,469	45463,699	29,234	18,338	103,871	102,810	273,393	264,402	792,049	37877,678
0,89	43,310	32,952	11,566	144,307	143,572	285,935	281,668	2192,301	999,361	7462,560	7474,072	13771,872	13563,497	45463,662	29,206	18,305	103,778	102,733	273,644	264,662	792,328	37891,029
0,9	43,777	32,906	11,491	144,243	143,519	286,051	281,791	2190,081	995,705	7459,433	7471,502	13777,488	13569,420	45463,630	29,179	18,271	103,686	102,658	273,891	264,917	792,602	37904,146
0,91	44,244	32,861	11,417	144,179	143,467	286,165	281,911	2187,908	992,126	7456,351	7468,973	13783,004	13575,239	45463,602	29,152	18,239	103,595	102,585	274,133	265,168	792,872	37917,035
0,92	44,712	32,817	11,345	144,117	143,416	286,276	282,029	2185,781	988,620	7453,314	7466,483	13788,420	13580,958	45463,577	29,125	18,207	103,506	102,512	274,371	265,415	793,137	37929,702
0,93	45,179	32,774	11,274	144,055	143,365	286,386	282,145	2183,697	985,186	7450,320	7464,032	13793,741	13586,580	45463,556	29,099	18,176	103,418	102,440	274,605	265,657	793,397	37942,152
0,94	45,646	32,732	11,205	143,994	143,315	286,494	282,259	2181,657	981,820	7447,368	7461,619	13798,968	13592,107	45463,538	29,074	18,146	103,332	102,370	274,835	265,896	793,653	37954,391
0,95	46,113	32,691	11,137	143,934	143,266	286,600	282,372	2179,657	978,522	7444,458	7459,242	13804,103	13597,541	45463,524	29,049	18,116	103,247	102,301	275,061	266,131	793,905	37966,424
0,96	46,580	32,651	11,070	143,875	143,218	286,705	282,482	2177,698	975,289	7441,589	7456,902	13809,150	13602,885	45463,512	29,025	18,087	103,162	102,233	275,283	266,362	794,152	37978,258
0,97	47,048	32,611	11,005	143,816	143,170	286,807	282,590	2175,777	972,118	7438,760	7454,596	13814,111	13608,141	45463,503	29,001	18,059	103,080	102,166	275,502	266,589	794,395	37989,896
0,98	47,515	32,572	10,941	143,759	143,123	286,908	282,697	2173,895	969,010	7435,970	7452,325	13818,987	13613,311	45463,497	28,978	18,031	102,998	102,100	275,716	266,812	794,635	38001,344
0,99	47,982	32,534	10,878	143,702	143,077	287,007	282,802	2172,049	965,960	7433,218	7450,088	13823,781	13618,397	45463,493	28,955	18,003	102,917	102,034	275,928	267,032	794,870	38012,606
1	48,449	32,497	10,816	143,646	143,032	287,104	282,905	2170,238	962,969	7430,504	7447,884	13828,495	13623,401	45463,492	28,932	17,977	102,838	101,970	276,135	267,249	795,102	38023,687

Paúl Peralta, Eddy Silva