

UNIVERSIDAD DE CUENCA FACULTAD DE CIENCIAS QUÍMICAS ESCUELA DE INGENIERÍA QUÍMICA

TESIS PREVIO A LA
OBTENCIÓN DEL TÍTULO DE
INGENIERA QUÍMICA

TEMA:

"EVALUACIÓN DE LA INFLUENCIA FÍSICO – QUÍMICA EN LA APLICACIÓN DE UN ABONO ORGÁNICO – MINERAL DE LIBERACIÓN CONTROLADA EN EL DESEMPEÑO PRODUCTIVO DE UNA MEZCLA FORRAJERA"

AUTORA:

ANA KARINA SUIN ARÉVALO

DIRECTORA:

ING. SANDRA CATALINA PEÑAHERRERA PALACIOS

ASESORES:

ING. PEDRO DIONICIO GUERRERO ORTIZ DR. JUAN PABLO GARZÓN PRADO

> Cuenca – Ecuador 2014

RESUMEN

El objetivo de la presente tesis fue introducir una alternativa de fertilización, a base de un abono orgánico, pollinaza y uno mineral, zeolita; y evaluar la influencia físico – química en el suelo. Fue desarrollada en la provincia del Azuay, Comunidad de Soldados, Sector Pumamaqui, y se llevó a cabo bajo una investigación dirigida por el Instituto Autónomo de Investigación Agropecuaria (INIAP). El diseño experimental fue completamente aleatorizado con 12 tratamientos por experimento y tres repeticiones por parcela. Se trabajó en un potrero establecido con mezcla forrajera de *rye grass anual, rye grass perenne*, trébol rojo y trébol blanco, en una relación de 80% gramíneas y 20% de leguminosas. Los resultados agronómicos y físico - químicos obtenidos, fueron procesados según el Programa Estadístico SPSS versión 22.0 mediante la prueba de Tukey al 5%, para luego ser analizados y discutidos. Los valores obtenidos indican que al utilizar pollinaza junto con zeolita se logró obtener mejores respuestas de rendimiento en materia seca, parámetros físicos - químicos finales del suelo y costos de producción.

PALABRAS CLAVES: suelo, zeolita, pollinaza, influencia físico – química.

ABSTRACT

The goal of this thesis was to introduce an alternative fertilizer, based on an organic fertilizer, manure and a mineral one, zeolite, and evaluate the physical chemical influence on the soil. It took place in Azuay's Province, Soldados' Community, Pumamaqui's Sector, and was directed by the Independent Institute for Agricultural Research (INIAP). The experimental design was completely randomized with 12 treatments per experiment and three replicates per plot. Work was done on a pasture forage mixture established with *annual rye grass*, *perennial rye grass*, red clover and white clover, in a ratio of 80 % grasses and 20% legumes. Agronomic and physical - chemical results were processed according to the Statistical Program SPSS 22.0 version, using the Tukey test at 5%, to later be analyzed and discussed. The obtained values point out that using manure with zeolite acquired better responses in dry matter yield, final physical - chemical soil's parameters and production costs.

KEY WORDS: soil, zeolite, manure, influence physical – chemical.

ÍNDICE GENERAL

RESUMEN	1
ABSTRACT	2
DEDICATORIA	. 17
AGRADECIMIENTO	. 18
INTRODUCCIÓN	
JUSTIFICACIÓN	. 21
OBJETIVOS	
FORMULACIÓN DE LA HIPÓTESIS	
CAPÍTULO I	
1 MARCO TEÓRICO	
1.1 Abono orgánico	. 24
1.1.1 Pollinaza	. 24
1.1.1.1 Concepto	. 24
1.1.1.2 Composición Física	. 24
1.1.1.3 Composición Química	. 24
1.1.1.4 Uso agrícola de la pollinaza	. 25
1.2 Zeolita	. 26
1.2.1 Aluminosilicatos	. 26
1.2.2 Fórmula de la zeolita	. 27
1.2.3 Estructura de la zeolita	. 27
1.2.4 Clinoptilolita	. 29
1.2.5 Zeolita en la agricultura	. 30
1.2.5.1 Fertilizante de liberación controlada	. 30
1.3 Suelo agrícola	. 30
1.3.1 Fases del suelo	. 30
1.3.1.1 Fase sólida	. 31
1.3.1.2 Fase líquida	. 33
1.3.1.3 Fase gaseosa	. 33
1.3.2 Arcillas	. 33
1.3.2.1 Coloides	. 34
1.3.2.2 Dinámica de los cambios iónicos	. 35
1.3.3 Parámetros físicos y químicos del suelo	. 35

1.3.3.1 Capacidad de Intercambio Catiónico (C.I.C.)	. 35
1.3.3.1.1 Saturación de Bases	. 37
1.3.3.2 Materia Orgánica (M.O.)	. 38
1.3.3.2.1 Relación C/N	. 39
1.3.3.3 Acidez Actual o Activa (pH del suelo)	. 41
1.3.3.3.1 Importancia agrícola del pH del suelo	. 42
1.3.3.4 Acidez Potencial o de Cambio	. 44
1.3.3.5 Conductividad Eléctrica (C.E.)	. 45
1.3.3.6 Nitrógeno (N ₂)	. 45
1.3.3.6.1 Dinámica del nitrógeno en el suelo	. 45
1.3.3.7 Funciones y síntomas de deficiencia de los nutrientes	. 48
1.4 Definiciones básicas en el diseño experimental	. 49
1.4.1 Diseño Experimental	. 50
1.4.2 Factor.	. 50
1.4.3 Variable dependiente	. 50
1.4.4 Tratamientos	. 50
1.4.5 Unidad Experimental	. 50
1.4.6 Bloques	. 50
1.4.7 Diseño de Bloques Completos al Azar (DBCA)	. 50
1.4.8 Aleatorización	. 50
1.4.9 Arreglo factorial	. 51
1.4.10 Repetición	. 51
1.4.11 Análisis de varianza ANOVA	. 51
1.4.12 Prueba de Tukey	. 51
1.4.13 Prueba de hipótesis	. 51
1.4.14 Significancia Estadística	. 52
1.4.15 Error experimental	. 52
1.4.16 Varianza	. 52
1.4.17 Coeficiente de variación (CV)	. 52
1.4.18 Prueba multivariante	. 52
1.4.19 Estadístico F	. 53
1.4.20 Prueba de esfericidad de Mauchly	. 53
1.4.20.1 Estadístico W de Mauchly	. 53

1.4.20.2 Chi - cuadrado	53
1.4.20.3 Grados de libertad (G.L.)	54
1.4.21 Prueba unilateral (de una cola) de la media	54
CAPÍTULO II	57
2 MATERIALES Y MÉTODOS	57
2.1 Características del lugar del ensayo y forma de trabajo del productor	57
2.1.1 Generalidades	57
2.1.2 Producción de pastos y manejo del ganado bovino en el sector	57
2.1.3 Localización	58
2.1.3.1 Ubicación geográfica	58
2.1.3.2 Características climáticas	59
2.1.3.3 Características edáficas	59
2.1.3.3.1 Características físicas	59
2.1.3.3.2 Características químicas	59
2.2 Recursos	60
2.2.1 Recursos materiales	60
2.2.1.1 Fase Agronómica	60
2.2.1.2 Fase Físico - Química	61
2.2.2 Costos de fertilizantes	61
2.3.1 Selección del potrero	62
2.3.2 Características y delimitación de la unidad experimental	62
2.3.3 Dosificación de tratamientos	64
2.3.4 Preparación del suelo	67
2.3.5 Aplicación de los Tratamientos	67
2.3.6 Riego del cultivo	68
2.3.7 Labores culturales	68
2.3.8 Controles de productividad	70
2.3.9 Cosecha	70
2.3.10 Variables Agronómicas	70
2.3.10.1 Producción de Materia Verde (MV)	71
2.3.10.2 Producción de Materia Seca (MS) o Disponibilidad forrajera (DF)	71
2.3.10.2.1 Disponibilidad Forrajera Real (DFR)	72
2.3.10.2.2 Disponibilidad Forrajera anual (DFA)	72

	2.3.10.2.3 Carga Animal (CA)	72
	2.3.10.2.4 Tasa de Crecimiento (TC)	73
	2.4 Metodología del análisis de laboratorio	73
	2.4.1 Análisis de suelo	73
	2.4.2 Toma de muestras	73
	2.4.4 Variables Físico – Químicas	77
	2.5 Procedimientos Estadísticos	77
	2.5.1 Fase Agronómica	77
	2.5.2 Fase Físico - Química	79
CA	PÍTULO III	80
3	DETERMINACIONES Y RESULTADOS	80
	3.1 Variables	80
	3.1.1 Variables Agronómicas	80
	3.1.1.1 Producción de Materia Verde (MV)	80
	3.1.1.2 Producción de Materia Seca (MS) o Disponibilidad Forrajera (DF)	82
	3.1.2 Variables Físico – Químicas	83
	3.1.2.1 Materia Orgánica	84
	3.1.2.2 pH del suelo	84
	3.1.2.3 Capacidad de Intercambio Catiónico	85
	3.1.2.4 Sumatoria de Bases	85
	3.1.2.4.1 Saturación de Bases	86
	3.1.2.5 Conductividad Eléctrica	86
	3.1.2.6 Nutrientes del suelo	87
	3.1.2.6.1 Nitrógeno	87
	3.1.2.6.2 Fósforo	87
	3.1.2.6.3 Potasio	88
	3.1.2.6.4 Calcio	88
	3.1.2.6.5 Magnesio	89
	3.1.2.6.6 Hierro	89
	3.1.2.6.7 Cobre	90
	3.1.2.6.8 Zinc	90
	3.1.2.6.9 Manganeso	91
	3.2 Costos de producción	91

3.3 Importancia en términos de comparación entre tratamientos	92
3.3.1 Porcentaje de importancia para los parámetros en estudio	93
CAPÍTULO IV	97
4 RESULTADOS Y ANÁLISIS DE RESULTADOS	97
4.1 Variables	97
4.1.1 Variables Agronómicas	97
4.1.1.1 Análisis de Producción de Materia Verde (MV)	97
4.1.1.2 Análisis de Producción de Materia Seca (MS)	100
4.1.2 Variables Físico – Químicas	101
4.1.2.1 Análisis de Materia Orgánica (%)	101
4.1.2.2 Análisis de pH del suelo	103
4.1.2.3 Análisis de Capacidad de Intercambio Catiónico (meq/100g)	106
4.1.2.3.1 Análisis de Sumatoria de Bases	108
4.1.2.3.2 Análisis de Saturación de Bases	110
4.1.2.4 Análisis de Conductividad Eléctrica (mmhos/cm)	111
4.1.2.5 Nutrientes del suelo	113
4.1.2.5.1 Análisis de Nitrógeno (ppm)	113
4.1.2.5.2 Análisis de Fósforo (ppm)	115
4.1.2.5.3 Análisis de Potasio (meq/100ml)	116
4.1.2.5.4 Análisis de Calcio (meq/100ml)	117
4.1.2.5.5 Análisis de Magnesio (meq/100ml)	119
4.1.2.5.6 Análisis de Hierro (meq/100ml)	120
4.1.2.5.7 Análisis de Cobre (ppm)	121
4.1.2.5.8 Análisis de Zinc (ppm)	123
4.1.2.5.9 Análisis de Manganeso (ppm)	124
4.2 Análisis de costos de producción	125
4.3 Análisis de importancia en términos de comparación entre tratamientos.	126
CAPÍTULO V	127
5 CONCLUSIONES Y RECOMENDACIONES	127
5.1 CONCLUSIONES:	127
5.2 RECOMENDACIONES:	130
ANEXOS	131
ANEXO 1. Metodología de análisis de suelo del INIAP.	132

ANEXO 2. Análisis bro	matológico	150
ANEXO 3. Análisis de s	suelo	151
·	oducción de cada tratamiento de una pa	
ANEXO 5. Análisis de i	mportancia de variables	239
ANEXO 6. Listado de a	acrónimos utilizados	245
ANEXO 7. Definicione	s/Glosario	246
BIBLIOGRAFÍA		248

ÍNDICE DE GRÁFICOS

Gráfico 3.1. Rendimiento de materia verde de los 12 tratamientos con respecto
al tiempo81
Gráfico 4.1. Medias marginales estimadas de la producción de materia verde.
98
Gráfico 4.2. Promedio de la materia verde de los 12 tratamientos con respecto
al tiempo100
Gráfico 4.3. Medias marginales estimadas de la materia orgánica 102
Gráfico 4.4. Porcentaje de materia orgánica de los 12 tratamientos con relación
al tiempo103
Gráfico 4.5. Medias marginales estimadas de pH
Gráfico 4.6. pH de los 12 tratamientos con relación al tiempo
Gráfico 4.7. Capacidad de Intercambio Catiónico y Sumatoria de Bases de los
12 tratamientos con relación al tiempo
Gráfico 4.8. Porcentaje de Saturación de bases de los 12 tratamientos con
relación al tiempo111
Gráfico 4.9. Conductividad Eléctrica de los 12 tratamientos con relación al
tiempo
Gráfico 4.10. Nitrógeno de los 12 tratamientos con relación al tiempo 114
Gráfico 4.11. Fósforo de los 12 tratamientos con relación al tiempo 116
Gráfico 4.12. Potasio de los 12 tratamientos con relación al tiempo 117
Gráfico 4.13. Calcio de los 12 tratamientos con relación al tiempo118
Gráfico 4.14. Magnesio de los 12 tratamientos con relación al tiempo 120
Gráfico 4.15. Hierro de los 12 tratamientos con relación al tiempo
Gráfico 4.16. Cobre de los 12 tratamientos con relación al tiempo
Gráfico 4.17. Zinc de los 12 tratamientos con relación al tiempo
Gráfico 4.18. Manganeso de los 12 tratamientos con relación al tiempo 125

INDICE DE FIGURAS

Figura 1.1. Efectos de los residuales avícolas en el ambiente	26
Figura 1.2. Estructura de un aluminosilicato	26
Figura 1.3. Estructuras de algunas zeolitas típicas.	29
Figura 1.4. Estructura básica de una zeolita	28
Figura 1.5. Fases y componentes fundamentales del suelo	31
Figura 1.6. Gráfico triangular para determinar la textura del suelo	32
Figura 1.7. Cargas negativas del humus	34
Figura 1.8. Cambio iónico en la solución del suelo	34
Figura 1.9. Diagrama de la capacidad de intercambio catiónico	36
Figura 1.10. Esquema de la evolución de la materia orgánica del suelo	38
Figura 1.11. Evolución característica del suelo durante el proceso	de
compostaje	39
Figura 1.12. Relación C/N a lo largo de la descomposición de los residuos	40
Figura 1.13. Disponibilidad de nutrientes en relación con el pH del suelo	43
Figura 1.14. Diferencias entre acidez de cambio y acidez real	44
Figura 1.15. El ciclo del nitrógeno. Las líneas gruesas indican el ciclo princi	pal
de mineralización e inmovilización	48
Figura 1.16. Prueba unilateral de la media	55
Figura 2.1. Esquema de la distribución de los tratamientos del ensayo	63
Figura 2.2. Trazo en zigzag para muestrear	74

INDICE DE FOTOGRAFÍAS

Fotografía 2.1. Selección del potrero.	. 62
Fotografía 2.2. Trazado de lote experimental y colocación de letreros	. 64
Fotografía 2.3. Aplicación de los abonos.	. 67
Fotografía 2.4. Riego del cultivo	. 68
Fotografía 2.5. Pastoreo con cerca eléctrica en lote experimental	. 68
Fotografía 2.6. Cosecha del pasto en lote experimental	. 70
Fotografía 2.7. Uso del cuadrante para pesaje	. 71
Fotografía 2.8. Superficie limpia del suelo a muestrear	. 74
Fotografía 2.9. Uso de barreno y toma de muestras en lote experimental	. 75
Fotografía 2.10. Recolección de las muestras en un balde plástico	. 75
Fotografía 2.11. Análisis Físico - Químico de muestras recolectadas	. 76

INDICE DE TABLAS

Tabla 1.1. Composición química de la pollinaza (pollo de engorde) (base seca)
Tabla 1.2. Composición Química de la Clinoptilolita. 29
Tabla 1.3. Clasificación por tamaños de las partículas del suelo
Tabla 1.4. Características del suelo según su textura. 32
Tabla 1.5. Valoración de la C.I.C.
Tabla 1.6. Clasificación de suelos según el valor del pH
Tabla 1.7. Comportamiento de los nutrientes en el suelo en función del valo
del pH4
Tabla 1.8. Resumen de las funciones y síntomas de deficiencia de los
nutrientes inorgánicos en las plantas
Tabla 2.1. Características físicas del suelo. 59
Tabla 2.2. Características químicas iniciales del suelo*. 60
Tabla 2.3. Inversión en insumos agrícolas para las áreas netas experimentales
de estudio6
Tabla 2.4. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en los
tratamientos T2, T3 y T4 65
Tabla 2.5. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en lo
tratamientos T5 y T969
Tabla 2.6. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en los
tratamientos T6, T7, T8, T10, T11 y T12
Tabla 2.7. Cantidad a aplicar de pollinaza y zeolita en kg/parcela/año en los 12
tratamientos
Tabla 2.8. Cronograma de actividades en la fase experimental y de campo 69
Tabla 2.9. Métodos utilizados para determinar las variables Físico - Químicas
Tabla 2.10. Arreglo factorial 3x4 entre pollinaza (P) y zeolita (Z)
Tabla 2.11. Esquema del Análisis de Varianza
Tabla 3.1. Rendimiento forrajero por cuadrante en función de la Materia Verde
de los 12 tratamientos

Tabla 3.2. Rendimiento forrajero por hectárea en función de la Materia Verde
de los 12 tratamientos81
Tabla 3.3. Rendimiento forrajero por hectárea en función de la Materia Seca de
los 12 tratamientos
Tabla 3.4. Variables agronómicas de los 12 tratamientos. 83
Tabla 3.5. Materia orgánica de los 12 tratamientos en porcentaje (%) 84
Tabla 3.6. pH del suelo de los 12 tratamientos
Tabla 3.7. Capacidad de Intercambio Catiónico de los 12 tratamientos en
meq/100g85
Tabla 3.8. Sumatoria de Bases de los 12 tratamientos en meq/100ml 85
Tabla 3.9. Porcentaje de Saturación de Bases de los 12 tratamientos 86
Tabla 3.10. Conductividad eléctrica de los 12 tratamientos en mmhos/cm 86
Tabla 3.11. Nitrógeno de los 12 tratamientos en ppm 87
Tabla 3.12. Fósforo de los distintos tratamientos en ppm
Tabla 3.13. Potasio de los 12 tratamientos en meq/100ml
Tabla 3.14. Calcio de los 12 tratamientos en meq/100ml 88
Tabla 3.15. Magnesio de los 12 tratamientos en meq/100ml 89
Tabla 3.16. Hierro de los 12 tratamientos en meq/100ml 89
Tabla 3.17. Cobre de los 12 tratamientos en meq/100ml 90
Tabla 3.18. Zinc de los 12 tratamientos en meq/100ml90
Tabla 3.19. Manganeso de los 12 tratamientos en meq/100ml
Tabla 3.20. Costo de un kilogramo de materia seca de pasto por cada
tratamiento.*
Tabla 3.21. Porcentaje de importancia para los 15 parámetros
Tabla 3.22. Importancia del tratamiento T1 en comparación con el resto 94
Tabla 3.23. Importancia en términos de comparación entre tratamientos 96
Tabla 4.1. Contrastes multivariados para la producción de materia verde 97
Tabla 4.2. Prueba de esfericidad de Mauchly para la producción de materia
verde
Tabla 4.3. Subconjuntos homogéneos con Tukey al 5%. 99
Tabla 4.4. Contrastes multivariados para materia orgánica

Tabla 4.5. Prueba de esfericidad de Mauchly para materia orgánica.	101
Tabla 4.6. Contrastes multivariados para pH.	104
Tabla 4.7. Prueba de esfericidad de Mauchly para pH	104

Yo, ANA KARINA SUIN ARÉVALO, autora de la tesis "EVALUACIÓN DE LA INFLUENCIA FÍSICO – QUÍMICA EN LA APLICACIÓN DE UN ABONO ORGÁNICO – MINERAL DE LIBERACIÓN CONTROLADA EN EL DESEMPEÑO PRODUCTIVO DE UNA MEZCLA FORRAJERA", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de INGENIERA QUÍMICA. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autora.

Cuenca, 22 de Mayo del 2014.

Ana Karina Suin Arévalo

C.I. 0105602650

Yo, ANA KARINA SUIN ARÉVALO, autora de la tesis "EVALUACIÓN DE LA INFLUENCIA FÍSICO – QUÍMICA EN LA APLICACIÓN DE UN ABONO ORGÁNICO – MINERAL DE LIBERACIÓN CONTROLADA EN EL DESEMPEÑO PRODUCTIVO DE UNA MEZCLA FORRAJERA", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 22 de Mayo de 2014.

Ana Karina Suin Arévalo

C.I. 0105602650

DEDICATORIA

Mi tesis la dedico con todo mi amor y mi cariño.

Principalmente a Dios quién me dio la oportunidad de vivir con la maravillosa familia que tengo, por haber guiado mi camino y por darme salud para lograr mis objetivos.

A mis padres por su comprensión y amor en los momentos más difíciles de mi carrera, por ser ejemplos dignos para mí y por darme las fuerzas para llegar hasta el final.

A mis hermanos por sus deseos de superación, por su amor y por su compañía.

A mi novio por estar siempre conmigo. T.A.

A todas las personas que pusieron un granito de arena para que pudiera cumplir mi sueño.

Ana Karina Suin Arévalo

AGRADECIMIENTO

El presente trabajo primeramente quiero agradecerle a Dios porque con su bendición logré concluir un objetivo más en mi vida.

A la Universidad de Cuenca porque en sus aulas, recibí todo el conocimiento para desarrollarme como una profesional.

Al INIAP por darme la oportunidad de ejecutar el presente ensayo; y de una manera especial al Ing. Pedro Guerrero y al Dr. Juan Pablo Garzón quienes fueron mis asesores durante este proyecto, y con sus experiencias me hicieron crecer profesionalmente y personalmente; de igual manera al Ing. Luis Minchala le debo un agradecimiento singular quién me ayudó en la parte estadística.

A mi directora de tesis, Ing. Catalina Peñaherrera, quien ha corregido minuciosamente toda mi labor científica.

A mi padre Amador, cabeza de mi hogar, quién me enseñó que para conseguir algo tengo que luchar todos los días y sobre todo por darme ánimos y motivarme cuando sentía que el camino se terminaba, muchas gracias papá.

A mi madre Carmen, por apoyarme en todo momento, por haberme formado como una mujer de bien y sobre todo por brindarme ese cariño ilimitado. No hay palabras para agradecerle todo lo que ha hecho por mí, le amo mamá.

A mis hermanos Mayra y Walter por apoyarme y brindarme su amor incondicional.

A mi novio quién me alentó diariamente a terminar este proyecto, por haber creído en mi cuando yo no lo hacía. Infinitamente gracias.

Y finalmente agradezco a todas aquellas personas que, de alguna forma, fueron parte de esta culminación.

Ana Karina Suin Arévalo

INTRODUCCIÓN

La ganadería en la provincia del Azuay, en el segmento de pequeños y medianos productores, hace uso de grandes cantidades de pollinaza, entre 800 a 1000 sacos que representan 20000 a 25000 kg/ha/año (Garzón, 2013), que siendo un abono orgánico, químicamente se conoce su repercusión en la acidificación del suelo (Fuentes Yagüe, 1999) y su contaminación ambiental por los gases nocivos, siendo el amoniaco el más perjudicial y causante de los malos olores (Simpson, 1991). La producción y uso de fertilizantes orgánicominerales puede ser una solución alternativa para disminuir estos efectos negativos y cubrir las necesidades de nutrimentos de los cultivos, así como de materia orgánica para los suelos; los bajos costos de producción y su elevada efectividad agronómica hacen que los fertilizantes órgano — minerales de liberación controlada, sean productos atractivos para los productores. Uno de estos minerales constituye la zeolita que, entre otros usos, es considerada como un bio - fertilizante que existe de forma natural (Casals Corella, 1988).

Las zeolitas son aluminosilicatos de origen sedimentario volcánico, por tanto 100% natural. Su interior está formado por cavernas y canales que lo convierten en un cristal hueco con un gran porcentaje de su capacidad volumétrica para almacenar agua, la cual por procesos de intercambio catiónico, cederá racionadamente a las plantas; posee además, polaridad negativa que le permite atraer todo tipo de cationes, existiendo especial selectividad por K⁺, NH₄⁺, Ca⁺², Mg⁺², y otros esenciales en la nutrición de los cultivos (Haro Álvarez, 2011). Dentro de este grupo de minerales, que comprende unas 50 clases, la Clinoptilolita que se utilizó en este estudio, es un tipo de zeolita que posee una alta capacidad de intercambio catiónico del orden de los 64,9 meq/100g, y la propiedad de hidratarse y deshidratarse en forma reversible (Casals Corella, 1988).

En esta consideración se realizó un monitoreo a través de la evaluación de los impactos e influencias entre la fertilización orgánica – mineral y el suelo cuyo estudio se resume en cinco capítulos. El primer capítulo detalla el marco teórico. El segundo capítulo indica los materiales y métodos utilizados para llevar a cabo este trabajo. En el tercer capítulo se encuentran los resultados obtenidos en este proyecto los mismos que fueron analizados y discutidos estadísticamente en el cuarto capítulo. En el quinto capítulo se indica las conclusiones y recomendaciones de todo el ensayo y se menciona el tratamiento que presentó las mejores condiciones agronómicas y químicas.

JUSTIFICACIÓN

La pollinaza, excretas de aves de engorde, ocasiona, en primera instancia saturación del suelo, disminuyendo la capacidad de drenaje del terreno; posteriormente comienza una degradación estructural a causa de la acumulación progresiva de sales y nutrientes; y finalmente se genera una acción biológica que consiste en el desarrollo de microorganismos potencialmente patógenos, para los animales y el hombre (USAID, 2011).

La utilización de aluminosilicatos, como la zeolita, en la fertilización orgánica – mineral, es una alternativa importante para disminuir los impactos negativos ocasionados por el uso excesivo de residuos o compuestos orgánicos, sobre todo aquellos aplicados en pleno proceso de descomposición, que entre otros factores, degradan, acidifican y alteran la disponibilidad de nutrientes esenciales en el suelo (López Salcedo & Pauta Placencia, 2012). Dado que la actividad ganadera en la provincia del Azuay, difícilmente va a dejar de utilizar abonos orgánicos como la pollinaza, es importante realizar una investigación que permita conocer desde el punto de vista químico y la evaluación agronómica de los pastizales, los beneficios de minimizar estos impactos negativos mediante el uso de un fertilizante orgánico - mineral (pollinaza + zeolita).

Actualmente el INIAP (Instituto Nacional Autónomo de Investigaciones Agropecuarias) y ETAPA (Empresa de Telecomunicaciones Agua Potable, Alcantarillado y Saneamiento de Cuenca) mantienen un convenio de cooperación interinstitucional para transferir tecnologías apropiadas a medianos ganaderos de la cuenca hidrográfica que abastece de agua a la ciudad de Cuenca; a su vez ETAPA a través del Programa MICPA (Manejo Integrado de Cuencas y Páramos), está en constante trabajo para mejorar la calidad de este suministro para las diferentes plantas procesadoras, por lo cual en el biocorredor de la cuenca del río Yanuncay se ejecuta un proyecto piloto denominado AMAs (Acuerdo Mutuo por el Agua) cuya finalidad es garantizar el

abastecimiento de agua potable, en cantidad y calidad, para la población de Cuenca; reduciendo el uso exagerado de pollinaza, utilizando alternativas de fertilización orgánico - mineral, recuperando las áreas de bosque protectores, como los bosques de ribera (filtros biológicos), bosques nativos y páramos; para lo cual se está estableciendo modelos de manejo de ganadería sostenible con buenas prácticas ganaderas: establecimiento de silvopasturas, establecimiento de estercoleros, disminución de la utilización de pollinaza, técnicas de manejo y producción de pastos con bio - fertilizantes, utilización de fertilizantes minerales en forma eficiente (ETAPA, 2014).

Impacto Científico

Desde la química de suelos determinar la influencia entre un residuo orgánico (pollinaza) y un aluminosilicato (zeolita) en el suelo, permitirá a los profesionales y productores agropecuarios contar con una base científica de lo que químicamente ocurre en el suelo y su interacción con los abonos orgánicos - minerales de liberación controlada, basados en un ensayo del desempeño productivo en un lote de pastizal.

Impacto Ecológico

La descomposición de pollinaza a la intemperie y sin sistema de retención de los lixiviados, puede generar contaminación no únicamente al suelo, sino también a los mantos acuíferos de la zona y también de ríos. De igual forma, una mala disposición favorece la generación de malos olores y vectores de plagas y enfermedades, debido a la formación de amoniaco en la fase de volatilización y a la desnitrificación, en donde se producen óxidos nítricos y nitrosos que en su conjunto son parte de los gases del efecto invernadero y repercuten en el calentamiento global.

Impacto Económico

La utilización de un fertilizante orgánico - mineral favorece las prácticas agrícolas amigables con el medio ambiente y evita gastos de remediación de

los suelos por pérdida de fertilidad, disponibilidad de nutrientes y estructura, por tanto se disminuyen los costos de producción y se incrementa la productividad.

Impacto Social

El uso y manejo de una fertilización orgánico - mineral de liberación controlada, mejora las prácticas agrícolas y por ende la calidad de vida de los pequeños y medianos productores ganaderos, además reduce costos de producción que lleva a un incremento en los ingresos económicos.

OBJETIVOS

Objetivo General:

Evaluar la influencia físico – química en el suelo de la aplicación de abonos orgánicos - minerales constituidos por pollinaza y zeolita en el comportamiento agronómico de una mezcla forrajera.

Objetivos Específicos:

- Evaluar los procesos químicos que suceden en el suelo con la influencia de los 12 tratamientos.
- Determinar el rendimiento en materia seca del pasto de los 12 tratamientos en estudio.
- Analizar las condiciones físico químicas finales del suelo.
- Evaluar económicamente los tratamientos en estudio.

FORMULACIÓN DE LA HIPÓTESIS

H₁: La fertilización orgánico – mineral (pollinaza y zeolita) reduce los efectos negativos de la aplicación inadecuada de los abonos orgánicos y mejora la C.I.C. (Capacidad de Intercambio Catiónico de los suelos).

H₀: La fertilización orgánico – mineral (pollinaza y zeolita) no reduce los efectos negativos de la aplicación inadecuada de los abonos orgánicos y no mejora la C.I.C.

CAPÍTULO I

1 MARCO TEÓRICO

1.1 Abono orgánico

"El abono orgánico es el conjunto de materia orgánica producida por animales y plantas que se puede descomponer (biodegradable), rico en bacterias nitrificantes y microorganismos activos que permiten una mayor disponibilidad de macronutrientes como nitrógeno, fósforo y potasio y micronutrientes, garantizando la fertilidad de los cultivo. Tiene como objetivo principal el mejoramiento de las condiciones físico - químicas y biológicas del suelo" (Orozco, Cantero, & Rodríguez, 1992).

1.1.1 Pollinaza

1.1.1.1 Concepto

Son excretas de aves de engorde en etapas de cría o desarrollo, solas o mezcladas con otros materiales, que puede ser utilizada en la industria ganadera como fertilizante (AGROCALIDAD, 2010).

1.1.1.2 Composición Física

La FAO (Food and Agriculture Organization) en 1997 señala que la composición física de la pollinaza es de 62% de heces, 31% de camada, 3% de alimento desperdiciado, 2% plumas y 2% de materia extraña con relación a materia fresca.

1.1.1.3 Composición Química

En 1996 Murillo analizó químicamente varias muestras de pollinaza cuyos resultados obtenidos se muestran en la **tabla 1.1**.

Tabla 1.1. Composición química de la pollinaza (pollo de engorde) (base seca).

MUESTRA	%					ppm				%	
	N	Р	Ca	Mg	K	S	Fe	Cu	Zn	Mn	Humedad
1	3,67	1,10	2,63	0,58	2,18	1,79	113	57	340	304	20,7
2	3,53	1,11	3,21	0,62	2,12	1,60	626	63	360	334	21,3
3	5,25	1,19	2,70	0,53	0,60	1,90	80	45	300	309	18,7
4	3,57	1,25	3,34	0,57	2,27	1,94	146	46	330	319	18,0
5	4,20	1,14	3,28	0,56	2,28	1,90	345	44	320	317	16,9
6	4,72	1,25	2,98	0,58	2,22	1,94	114	48	320	303	16,0
7	5,07	1,20	3,01	0,51	2,05	1,85	108	45	280	314	16,4
8	5,05	2,17	2,70	0,48	1,74		530	31	357	268	
9	3,98	2,10	4,35	0,56	2,58		1200	55	430	345	16,4
10	4,37	2,22	3,76	0,61	2,45	0,30	860	40	344	323	16,4
X	4,34	1,47	3,20	0,56	2,05	1,65	412	47	338	314	17,9

Fuente: (Murillo, 1996).

Elaboración: La Autora.

1.1.1.4 Uso agrícola de la pollinaza

La pollinaza se usa muy frecuentemente como fertilizante para mejorar las condiciones físicas y químicas del suelo, siempre y cuando sea tratada previo a su uso agrícola, es decir, pasar por un proceso de compostaje, caso contrario la pollinaza puede servir de sustrato a la cría de moscas y generar malos olores debido a su alto contenido de nitrógeno (ver tabla 1.1) (Rodríguez Suppo, 1989; Murillo, 1996).

La cantidad de pollinaza a esparcir en un cultivo se limita por la capacidad de las plantas para extraer del terreno los minerales que aportan las excretas, por lo tanto el exceso de aporte ante las necesidades provoca una contaminación ambiental (González & García, 1999).

En la publicación de Rodríguez hecha en 1999 dividió en tres bloques la contaminación por los residuos avícolas (ver figura 1.1).

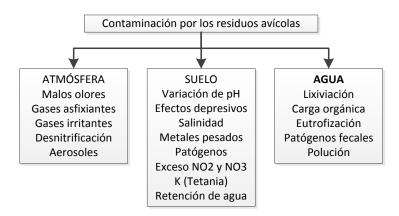


Figura 1.1. Efectos de los residuales avícolas en el ambiente.

Fuente: (Rodríguez Jiménez, 1999)

1.2 Zeolita

Las zeolitas son una familia de alrededor de 40 minerales de aluminosilicatos, siendo la Clinoptilolita el mineral de mayor utilidad que se encuentra de forma mayoritaria en las rocas zeolíticas, esta es una zeolita natural formada por la desvitrificación de ceniza volcánica en lagos o aguas marinas hace millones de años (Casals Corella, 1988).

1.2.1 Aluminosilicatos

"Son abundantes en la naturaleza, ciertos compuestos de estructura afín a los silicatos en los que iones Al⁺³ reemplazan a algunos de los iones Si⁺⁴ en los tetraedros SiO₄⁻⁴. El reemplazo de Si por Al sin cambio de la estructura fundamental se denomina *sustitución isomorfa* y es posible porque la diferencia de tamaños de ambos iones es pequeña con relación al tamaño de los iones O⁻²." (Odetti & Bottani, 2006) (ver figura 1.2).

Figura 1.2. Estructura de un aluminosilicato.

Fuente: http://commons.wikimedia.org/wiki/File:Red_sialato.jpg

1.2.2 Fórmula de la zeolita

En 1985 Gottardi & Galli presentaron la fórmula general de la zeolita:

 $M_{2/n}O.Al_2O_3.xSiO_2.yH_2O$

Dónde:

M = cualquier catión alcalino o alcalino - térreo que generalmente es Na⁺, K⁺ ó Ca⁺²

n = la valencia del catión

x = un número de 2 a 10

y = número de 2 a 7.

1.2.3 Estructura de la zeolita

"En la **figura 1.4** se explica la estructura básica de una zeolita, donde se observan a los átomos de silicio rodeados por 4 átomos de oxígeno; el Al⁺³ está reemplazando al Si⁺⁴, creando una deficiencia de cargas positivas o un aumento de cargas negativas que están siendo compensadas por los cationes de intercambio Ca⁺², Mg⁺², K⁺, y Na⁺, para mantener el equilibrio de la red de la zeolita. También se observa en el interior de la red el agua zeolítica. Los cationes intercambiables pueden desprenderse fácilmente e intercambiarse con cationes selectivos de su entorno" (Morante Carballo, 2004), sus estructuras internas permiten que actúen como tamices moleculares que pueden retener y liberar selectivamente las moléculas por adsorción según su tamaño (Berrezueta Alvarado & Domínguez Cuesta, 2010).

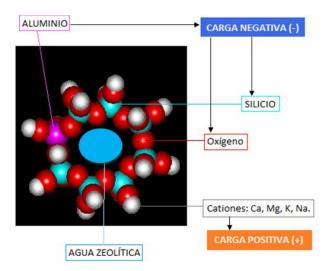


Figura 1.4. Estructura básica de una zeolita.

Fuente: http://www.relag.mx/RLQ/cuba/zeolita.html

La capacidad de intercambio iónico de la zeolita es una de sus notables propiedades que han contribuido a la difusión de su empleo, el mismo que está dado por "poseer una geometría molecular bien definida, con poros generalmente llenos de agua y cuyos enlaces forman canales y cavidades que le permiten ganar y perder agua reversiblemente e intercambiar los cationes de su estructura, sin que ésta se altere" (Casals Corella, 1988), además su unidad estructural son tetraedros de Si⁺⁴, que al ser sustituidos de forma isomórfica por Al⁺³, le permiten obtener una alta capacidad de intercambio catiónico (Inglezakis, Loizidou, & Grigoropoulou, 2004).

"Las zeolitas actúan como intercambiadores de iones pues al colocar una zeolita que contiene cierto catión, en una solución que contiene otro catión se establece un equilibrio en el cual cada catión se distribuye entre la solución y la zeolita. Este equilibrio se alcanza rápidamente porque la estructura de la zeolita es abierta y permite una relativamente fácil circulación de los iones. Si uno de los iones tiene mayor afinidad por la zeolita que el otro, entonces se logrará concentrar dicho ion en la zeolita." (Odetti & Bottani, 2006).

Las zeolitas sirven como tamiz molecular, debido a que presenta una enorme área en su interior dándole una estructura cavernosa (ver figura 1.3), pero solo

moléculas con un tamaño determinado pueden pasar a través del tamiz (Casals Corella, 1988).

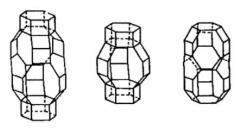


Figura 1.3. Estructuras de algunas zeolitas típicas.

Fuente: (Odetti & Bottani, 2006).

1.2.4 Clinoptilolita

Es el mineral que se encuentra de forma mayoritariamente en las rocas zeolíticas. La Clinoptilolita es una zeolita rica en silicio, con una relación de sílice – alúmina (SiO₂ / Al₂O₃) que fluctúa entre 4,25 y 5,25; con porcentaje de sodio y potasio mayor que el porcentaje de calcio (Na y K >> Ca) (Obregon Guerra, 2005). A continuación se muestra una tabla que indica la composición química de la Clinoptilolita:

Tabla 1.2. Composición Química de la Clinoptilolita.

Elementos	%
SiO ₂	62,36
Al_2O_3	13,14
CaO	2,72
Na ₂ O	3,99
K ₂ O	1,20
Fe_2O_3	1,63
MgO	0,92
MnO	0,02
TiO ₂	0,39
Otros	13,63

Fuente: (Obregon Guerra, 2005).

Elaboración: La Autora.

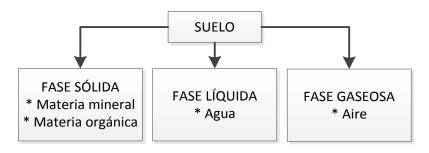
1.2.5 Zeolita en la agricultura

La zeolita es muy utilizada en la agricultura porque actúa como una esponja que recubre a los fertilizantes y absorbe todos los nutrientes que están expuestos a pérdidas como lixiviación, volatilización y amonificación; además mejora el aprovechamiento de los cultivos y evita asimismo los problemas por contaminación de suelo, agua y atmósfera (Sánchez Nava, 2007; Haro Álvarez, 2011).

Aunque ha sido ampliamente estudiado su uso en relación a la fertilización nitrogenada, no ha sido muy difundido el estudio de las clinoptilolitas naturales como correctores y/o fertilizantes básicos (Millán, et al.).

1.2.5.1 Fertilizante de liberación controlada

Los fertilizantes orgánicos – minerales pueden entregar los nutrientes al suelo de forma controlada, cubriendo los requerimientos nutricionales que la planta demanda (Velázquez Garrido, Febles, Alonso Pérez, & Montejo Serrano, 2005). La zeolita tiene un poder de adsorción de NH₄⁺ y agua, mediante el intercambio iónico que ésta puede realizar (Morante Carballo, 2004), y gracias a su estructura puede actuar como un fertilizante de liberación controlada (Notario del Pino, Arteaga Padron, González Martin, & García Hernandez, 1994).


1.3 Suelo agrícola

El suelo agrícola es aquel que proporciona un medio adecuado para la germinación de las semillas y el desarrollo de las raíces (Fuentes Yagüe, 1999).

1.3.1 Fases del suelo

Existen tres fases en el suelo y son:

Figura 1.5. Fases y componentes fundamentales del suelo.

Fuente: (Navarro, 2003)

1.3.1.1 Fase sólida

La fase sólida del suelo está constituida por materia mineral y materia orgánica y se detalla a continuación.

a) La fase sólida mineral es una mezcla de materiales que se diferencian por su tamaño (ver tabla 1.3) cuya determinación se la realiza por un análisis granulométrico (Navarro, 2003).

Tabla 1.3. Clasificación por tamaños de las partículas del suelo.

GRANULOMETRÍA (USDA)					
Denominación	Diámetro (µm)				
Arena muy gruesa	2000 > Ø > 1000				
Arena gruesa	1000 > Ø > 500				
Arena media	500 > Ø > 250				
Arena fina	250 > Ø > 100				
Arena muy fina	100 > Ø > 50				
Limo	50 > Ø > 2				
Arcilla	2 > Ø				

Elaboración: La Autora.

Fuente: (Navarro, 2003)

El establecimiento mediante el análisis mecánico de las distintas fracciones que constituyen el suelo permite conocer su **textura** que expresa la proporción relativa de arena, limo y arcilla que contiene un suelo (Navarro, 2003).

El Departamento de Agricultura de los EE.UU. (USDA) ha establecido un método de clasificación que se muestra en el gráfico a continuación:



Figura 1.6. Gráfico triangular para determinar la textura del suelo.

Fuente: (Flóres Serrano, 2009).

En la **tabla 1.4** se muestran las características del suelo en relación al contenido de arena, limo y arcilla.

Tabla 1.4. Características del suelo según su textura.

Características	Arena	Limo	Arcilla				
Compacidad	Baja	Media	Alta				
Permeabilidad del agua	Alta	Media - Baja	Baja				
Retención del agua	Poca	Media	Mucha				
Aireación	Buena	Media	Poca				
Fertilidad	Baja	Media	Alta				
Riesgo de erosión	Alta	Alta	Baja				

Fuente: (Fuentes Yagüe, 1999).

Elaboración: La Autora.

Un suelo franco es aquel que contiene una mezcla equilibrada de arena, limo y arcilla, de tal forma que presenta las buenas cualidades de las tres fracciones (Fuentes Yagüe, 1999), por lo tanto se le considera la textura ideal.

b) La fase sólida que contiene materia orgánica representa un bajo porcentaje en el suelo, su función es mejorar las propiedades físicas y químicas del suelo. La materia orgánica comprende la fracción del suelo sumamente descompuesta, oscura y de naturaleza coloidal conocida como humus, y otros materiales como raíces y partes de aéreas de las plantas que se depositan en el suelo (Navarro, 2003).

1.3.1.2 Fase líquida

La fase líquida del suelo está constituida por el agua que queda retenida dentro de los poros e interviene en la formación estructural del suelo.

1.3.1.3 Fase gaseosa

La fase gaseosa está compuesta por el aire del suelo que es indispensable para la respiración de las raíces de las plantas.

1.3.2 Arcillas

Las arcillas son partículas principales que forman la parte nutritiva del suelo. Ellas existen dentro del suelo mezcladas físicamente con compuestos orgánicos y con otras partículas más grandes que son la arena y el limo. Las arcillas se caracterizan por tener cargas negativas en su superficie y por ello van a poder retener los cationes del suelo (Arias Jiménez, 2001). "Además entran a formar parte del complejo arcillo – húmico que es el que estabiliza el suelo. Para conocer la calidad de las arcillas debe medirse la superficie interna. La estructura de una arcilla es comparable a un libro, en el que las hojas, son capas minerales en las arcillas. Cuando mayor sea la superficie de las hojas o de las capas, mejor puede retener la arcilla los cationes y el agua." (Flóres Serrano, 2009).

1.3.2.1 Coloides

La arcilla y el humus son coloides, sustancias que cuando entran en contacto con el agua quedan en suspensión, sin precipitarse en el fondo ni subir a la superficie (Guerrero, 2000). El humus es un coloide que presenta cargas eléctricas negativas en su superficie (ver figura 1.7) (García Fernández & García de Caz, 1982), y puede combinarse con las bases del suelo para formar sales del ácido húmico o humatos (Guerrero, 2000).

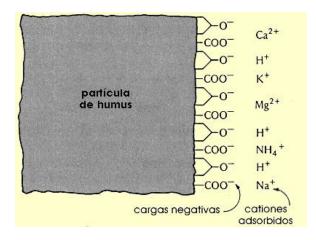


Figura 1.7. Cargas negativas del humus.

Fuente: http://www.miliarium.com/Proyectos/SuelosContaminados/Anejos/Humus.gif

La carga eléctrica superficial de los coloides les permite adherirse a cuerpos con electricidad de signo contrario lo que promueve cambios iónicos (ver figura 1.8) con la solución del suelo, donde un ion fijado por el coloide pasa al extracto acuoso del terreno, mientras otro ion de la solución se adhiere al coloide, en sustitución del anterior (García Fernández & García de Caz, 1982).

Figura 1.8. Cambio iónico en la solución del suelo.

Fuente: http://edafologia.ugr.es/introeda/tema05/imagenes/catiadso.gif

"Cuando se adicionan abonos al suelo, las partículas coloidales del terreno retienen aniones y cationes de los fertilizantes, impidiendo que filtren con el agua de lluvia o riego, para dejarlos pasar después a la solución del suelo en forma gradual, de donde son absorbidos por las raíces." (García Fernández & García de Caz, 1982).

1.3.2.2 Dinámica de los cambios iónicos

Los iones en el suelo se encuentran en diferentes maneras:

- En la saturación acuosa del suelo: donde son fácilmente asimilados por la planta. La solución del suelo es el principal proveedor de iones.
- En los coloides que forma el suelo: los iones se encuentran absorbidos allí por las atracciones eléctricas de los coloides y las cargas de los distintos iones.
- En la estructura cristalina de los coloides: donde se encuentran fuertemente integrados.

Las plantas utilizan los iones que se hallan en la solución acuosa del suelo y los absorbidos en la superficie de las partículas coloidales, y aprovechan con mayor facilidad los iones de las soluciones edáficas, los absorbidos en los coloides serán más difíciles de un aprovechamiento directo, siendo intercambiables con la solución del suelo.

Las sales nutritivas en el suelo al entrar en la solución tienden a disociarse en sus partes conformantes: los aniones de carga negativa y los cationes de carga positiva (Rodríguez Suppo, 1989).

1.3.3 Parámetros físicos y químicos del suelo

1.3.3.1 Capacidad de Intercambio Catiónico (C.I.C.)

La Capacidad de Intercambio Catiónico es la capacidad que tienen las arcillas (constituyentes del suelo), de adsorber y desadsorber cationes que se encuentran disponibles en la solución del suelo (Fuentes Yagüe, 1999). Se

expresa en meq/100g de suelo seco (Navarro, 2003) y en $cmol_{(+)}/kg$ (1meq/100g = 1cmol₍₊₎/kg) (Navarro García & Navarro García, 2013).

El intercambio de cationes se realiza en la superficie de la partícula donde se encuentran las cargas negativas (ver figura 1.9). Los iones solubles que no están adsorbidos por las partículas de arcilla o por las partículas orgánicas se encuentran libres en la solución del suelo.

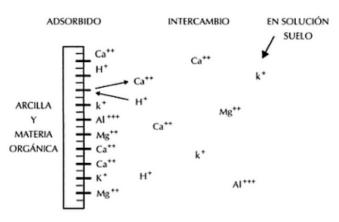


Figura 1.9. Diagrama de la capacidad de intercambio catiónico.

Fuente: (Arias Jiménez, 2001).

Los iones adsorbidos en la superficie de la partícula tienden a estar en equilibrio con los iones libres de la solución del suelo esto es, si en la solución suelo existen muchos iones de calcio libres también habrá muchos iones de calcio adsorbidos.

Los suelos ácidos, propios de los trópicos, se caracterizan por tener altos contenidos de hidróxido de AI y Fe, los cuales poseen cargas positivas en su superficie, contrario a las arcillas y, de esa manera, son capaces de adsorber y retener aniones como nitratos, cloruros, fosfatos, mientras que los cationes como calcio, magnesio, potasio quedan libre en la solución del suelo y son susceptibles de ser lavados (Arias Jiménez, 2001).

La **tabla 1.5** indica la valoración que se da a la C.I.C. según su contenido en el suelo:

Tabla 1.5. Valoración de la C.I.C.

C.I.C. (cmol ₍₊₎ /kg)	Valoración
< 6	Muy débil
6 – 10	Débil
10 – 20	Normal
20 – 30	Elevada
> 30	Muy elevada

Fuente: (Oliveira Prendes, Afif Khouri, & Mayor López, 2006).

Elaboración: La Autora.

"Los valores por debajo de 6 cmol₍₊₎/kg indican un suelo poco fértil. Los valores por encima de 30 cmol₍₊₎/kg indican un suelo excesivamente arcilloso o con gran contenido de humus. En este caso se requiere un nivel muy alto de elementos nutritivos para conseguir una correcta nutrición de cultivos." (Oliveira Prendes, Afif Khouri, & Mayor López, 2006).

1.3.3.1.1 Saturación de Bases

El porcentaje de saturación de bases es una medida de la proporción relativa de cationes básicos (Ca, Mg, K, Na) que ocupan los sitios de intercambio. Entre más ácido sea un suelo menor será el porcentaje de saturación de bases, ya que un número creciente de los sitios de intercambio son ocupados por iones de Al⁺³ y H⁺, debido a la pérdida de Ca, Mg, K y Na del sistema (Salinas & Valencia, 1984).

Un alto porcentaje de saturación de bases significa una alta disponibilidad de cationes para las plantas y la ausencia de iones ácidos; por el contrario, cuando este valor es bajo, el suelo tiene abundancia de Al⁺³ y H⁺ intercambiables y poca capacidad para suministrar nutrimentos como K, Ca y Mg (Salinas & Valencia, 1984; Oliveira Prendes, Afif Khouri, & Mayor López, 2006)

1.3.3.2 Materia Orgánica (M.O.)

Es el conjunto de residuos vegetales y animales, sometido a un proceso de descomposición y transformación por la acción de los microorganismos (Domínguez Vivancos, 1992) y según sus características pueden seguir dos procesos de producción:

- Mineralización: una parte de los residuos orgánicos se descomponen con rapidez en compuestos minerales, tales como CO₂, H₂O, nitratos, fosfatos, sulfatos, etc.
- Humificación: la fracción que no se mineraliza se somete a un proceso de descomposición, degradación y síntesis de nuevos compuestos, es decir, se convierte en humus (materia orgánica estable), y posteriormente el humus se mineraliza muy lentamente obteniendo productos simples (Fuentes Yagüe, 1999).

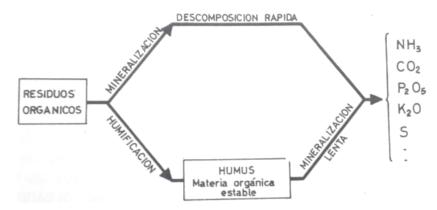
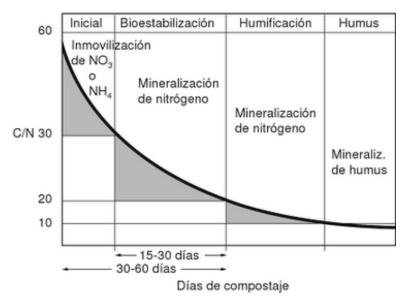


Figura 1.10 Esquema de la evolución de la materia orgánica del suelo.

Fuente: (Domínguez Vivancos, 1992).

La materia orgánica trabaja para el productor agrícola suministrando en abundancia partículas con carga negativa de tamaño coloidal (humus: que es una sustancia de color café existente en suelos biológicamente activos) capaces de retener e intercambias cationes nutritivos (Suguilanda V., 1996).



1.3.3.2.1 Relación C/N

La rapidez con la que se descompone la materia orgánica depende de la relación C/N (Fuentes Yagüe, 1999), el carbono (C) en mayor proporción y el nitrógeno (N) en menor proporción, son los elementos que definen la materia orgánica, así cuando:

- Relación C/N > 30, los microorganismos no tienen suficiente nitrógeno y utilizan todo el que se produce en el suelo para su desarrollo (inmovilización del nitrógeno).
- Relación C/N 15 30, los microorganismos tienen aproximadamente la cantidad de nitrógeno que necesitan para su desarrollo, no hay liberación de nitrógeno.
- Relación C/N < 15, hay liberación de nitrógeno.
- Relación C/N ≈ 10, la materia orgánica se ha descompuesto totalmente, es decir, se ha convertido en humus.

La representación gráfica de la relación C/N con respecto al tiempo se ilustran en la **figura 1.11.**

Figura 1.11. Evolución característica del suelo durante el proceso de compostaje.

Fuente: (Moreno Casco, 2008).

En general, a medida que la materia orgánica es atacada y descompuesta por los microrganismos va descendiendo la relación C/N. (Domínguez Vivancos, 1992). Por eso cuando el análisis de suelos da una relación C/N alta está indicando que hay mucha M.O. sin descomponer y, en consecuencia, la capacidad de producción de nitratos, es baja (Perdomo, Barbazán, & Durán Manzoni).

En la **figura 1.12** se puede observar la variación de la relación C/N de la materia orgánica una vez incorporada al suelo, y según el tiempo.

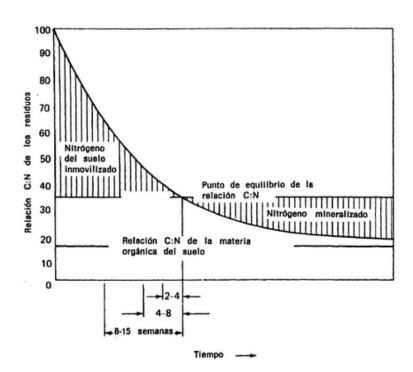


Figura 1.12. Relación C/N a lo largo de la descomposición de los residuos.

"Diagrama esquemático que muestra el efecto de la relación C:N sobre la inmovilización o la mineralización del nitrógeno. La escala de tiempo en la parte inferior indica el período que debe transcurrir para que, si no se utiliza fertilizante nitrogenado, se descompongan los residuos antes de la siembra del cultivo siguiente."

Fuente: (Thomson & Troeh, 1988).

1.3.3.3 Acidez Actual o Activa (pH del suelo)

El pH es importante para analizar su efecto en el suelo **(ver tabla 1.6)** y está determinado por la presencia de protones (H⁺) en la solución del suelo, se expresa con la notación pH (potencial de hidrógeno), que es el exponente, cambiado de signo, a que habría que elevar 10 para obtener la concentración molar de H⁺ en una disolución determinada (Fuentes Yagüe, 1999), ej.:

Concentración de H⁺
(en gramos por litro de solución)
$$10^{-3} = 0,001 \qquad 3$$

$$10^{-4} = 0,0001 \qquad 4$$

$$10^{-5} = 0,00001 \qquad 5$$

Por lo tanto,

pH = 7, solución neutra

pH < 7, solución ácida

pH > 7, solución básica

Sórensen en 1909, definió al pH como el logaritmo negativo de la concentración de iones hidrógeno (ecuación 1.1), es decir:

$$pH = -\log[H^+] \tag{1.1}$$

Dónde:

pH: potencial de Hidrógeno.

log: logaritmo base 10.

[H⁺]: concentración de iones Hidrógeno.

Fuente: (Brown & Sallee, 1967)

Tabla 1.6. Clasificación de suelos según el valor del pH.

рН	EVALUACIÓN	EFECTOS
< 4,5	Extremadamente ácido	Condiciones muy desfavorables
4,5 – 5	Muy fuertemente ácido	Posible toxicidad en las plantas por aluminio (Al ⁺³) y manganeso (Mn ⁺²).
5,1 – 5,5	Fuertemente ácido	Exceso de cobalto (Co), cobre (Cu), hierro (Fe), manganeso (Mn) y zinc (Zn). Deficiencia de calcio (Ca), potasio (K), nitrógeno (N), magnesio (Mg), molibdeno (Mo), fósforo (P) y azufre (S). Son suelos sin carbonato cálcico y con escasa actividad microbiana.
5,6 – 6	Medianamente ácido	Intervalo adecuado para la mayoría de los cultivos.
6,1 – 6,5	Ligeramente ácido	Intervalo adecuado para la mayoría de los cultivos: Máxima disponibilidad de nutrientes.
6,6 – 7,3		Intervalo adecuado para la mayoría de los cultivos, con efectos tóxicos mínimos. A pH inferiores a 7, el carbonato cálcico no es estable en el suelo.
7,4 – 7,8	Medianamente básico	Intervalo adecuado para la mayoría de los cultivos. Presencia en el suelo de carbonato cálcico.
7,9 – 8,4	Básico	Disminuye la disponibilidad de fósforo (P) y boro (B). Deficiencia creciente de cobalto (Co), cobre (Cu), hierro (Fe), manganeso (Mn) y zinc (Zn).
8,5 – 9	Ligeramente alcalino	En suelos con carbonatos, estos pH altos pueden deberse al carbonato de magnesio, si no hay sodio intercambiable.
9,1 – 10	Alcalino	Presencia de carbonato sódico.
> 10	Fuertemente alcalino	Elevado porcentaje de sodio intercambiable. Toxicidad por sodio (Na) y boro (B). Actividad microbiana escasa. Micronutrientes poco disponibles, excepto el molibdeno (Mo).

Fuente: (Casas Flores, 2011).

Elaboración: La Autora.

1.3.3.3.1 Importancia agrícola del pH del suelo

Su importancia radica en la disponibilidad de nutrientes con respecto al pH del suelo. En la **figura 1.13** se puede observar que los elementos que se entrecruzan forman compuestos insolubles a ese pH, reduciendo la asimilación del fósforo (Fuentes Yagüe, 1999).

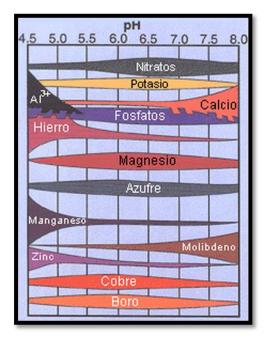


Figura 1.13. Disponibilidad de nutrientes en relación con el pH del suelo.

Fuente: http://af2.wikispaces.com/-+pH+y+prop.+del+suelo

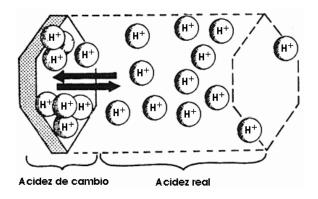
Tabla 1.7. Comportamiento de los nutrientes en el suelo en función del valor del pH.

Nutriente	Comportamiento (ver figura 1.13)					
Nitrógeno	No se produce ningún problema en su disponibilidad para					
Millogeno	las plantas para valores de pH entre 5,5 y 8.					
	Si pH<6,5, precipita con hierro y aluminio.					
Fósforo	Si pH>7,5, precipita con calcio.					
	Si pH>8,5, se solubiliza con sodio.					
Potasio	La solubilidad del potasio es alta en suelos de pH					
Fulasiu	normales a pH > 8, se produce antagonismo con el calcio.					
Calcio	La solubilidad del calcio crece con los valores de pH. En					
Calcio	suelos de pH ácidos, hay carencia de calcio.					
Hierro, magnesio, cobre, zinc y aluminio	Cuanto menor es el pH, mayor es la solubilidad de estos elementos, con lo cual se puede producir problemas de toxicidad.					
Boro	A pH elevados, se produce carencia de boro.					
Molibdeno	A pH ácidos, se producen carencias de molibdeno.					

Fuente: (Casas Flores, 2011).

Elaboración: La Autora.

1.3.3.4 Acidez Potencial o de Cambio


Está determinada por la presencia de iones (H⁺) en el complejo de cambio (Fuentes Yagüe, 1999), y resulta de la hidrólisis de iones aluminio (ver reacción 1.1).

$$Al^{+3} + H_2O \rightarrow Al(OH)^{+2} + H^+$$

 $Al(OH)^{+2} + H_2O \rightarrow Al(OH)_2^+ + H^+$
 $Al(OH)_2^+ + H_2O \rightarrow Al(OH)_3 + H^+$ (1.1)

Fuente: (INPOFOS, 2003).

Los iones Al⁺³ desplazados de los minerales arcillosos por otros cationes se hidrolizan (reaccionan con una molécula de agua) para formar complejos. Cada una de estas reacciones libera H⁺ y contribuye a la acidez del suelo, por lo tanto el incremento de acidez promueve la presencia de más Al⁺³ que está listo para reaccionar nuevamente (INPOFOS, 2003).

La acidez potencial se neutraliza cuando los cationes ácidos (Al⁺³, H⁺) son intercambiados por cationes básicos contenidos en la solución del suelo, los mismos que deben estar en exceso para lograr la neutralización de la acidez debido a que los cationes (Al⁺³, H⁺) son retenidos fuertemente por el complejo. (Fuentes Yagüe, 1999).

(Zona de atracción coloidal) (Disolución del suelo)

Figura 1.14. Diferencias entre acidez de cambio y acidez real.

Fuente: http://edafologia.ugr.es/introeda/tema05/ph.htm

1.3.3.5 Conductividad Eléctrica (C.E.)

La conductividad eléctrica es una medida indirecta de la cantidad de sales que contiene un suelo, así un suelo con elevada C.E. impide el buen desarrollo de la planta por su elevado contenido de sales. Se expresa en: mmhos/cm o dS/cm y en µmhos/cm (Garrido Valero, 1994).

A continuación se menciona la influencia de la C.E. sobre el desarrollo de los cultivos.

C.E. < 0,5 mmhos/cm buen desarrollo.

C.E. 0,5 – 1 mmhos/cm problemas en algunos cultivos.

C.E. > 1 mmhos/cm dificultades en muchos cultivos.

1.3.3.6 Nitrógeno (N₂)

El nitrógeno procede de diversos materiales como: estiércol, restos de cultivos, fertilizantes comerciales, además se puede obtener nitratos por presencia de lluvias, y también ciertos microorganismos pueden captar el nitrógeno atmosférico (Navarro, 2003).

El Nitrógeno participa en la composición de las más importantes sustancias orgánicas, tales como clorofila, aminoácidos, proteínas, ácidos nucleicos, responsables del crecimiento y desarrollo de la planta (Domínguez Vivancos, 1992).

1.3.3.6.1 Dinámica del nitrógeno en el suelo

El ciclo del nitrógeno está constituido por las siguientes fases:

a) Fijación

Es la conversión del nitrógeno atmosférico a una forma disponible para las plantas (ver reacción 1.2).

$$N_2 \longrightarrow NH_3 \longrightarrow R - NH_2$$
 (1.2)
Nitrógeno Amoníaco Nitrógeno orgánico

b) Mineralización

Es la parte del ciclo en que los microorganismos descomponen el nitrógeno orgánico a partir de estiércol y se libera iones inorgánicos (ver reacción 1.3).

$$R-NH_2 \longrightarrow NH_3 \longrightarrow NH_4^+$$
 (1.3)
Nitrógeno orgánico Amoníaco Amonio

c) Nitrificación

Es el proceso por el cual los microorganismos convierten el amonio a nitrato para obtener energía (ver reacción 1.4), dónde se liberan iones H⁺ que conducen a una acidificación en el suelo cuando se utilizan reiteradamente abonos amoniacales. El nitrato es la forma de nitrógeno más disponible para la planta, pero también es altamente susceptible a ser perdido por lixiviación (Johnson, Albrecht, Ketterings, Beckman, & Stockin, 2005).

$$NH_4^+ \longrightarrow NO_2^- \longrightarrow NO_3^-$$
 (1.4)

Amonio Nitrito Nitrato

d) Desnitrificación

Es la devolución del nitrógeno a la atmósfera como N₂. La desnitrificación ocurre cuando hay mucho nitrógeno amoniacal y el suelo no puede fijarlo. Esto ocurre cuando el suelo está saturado y las bacterias utilizan el nitrato como fuente de oxígeno, es decir, lo reducen, formando nitrógeno molecular y otros gases intermedios como N₂O y NO (ver reacción 1.5), que se pierden en la atmósfera (Stevenson & Cole, 1999). La reducción de estos nitratos se lleva a cabo de la siguiente manera:

$$(+5) \qquad (+3) \qquad (+2) \qquad (+1) \qquad (0)$$

$$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$$

$$Nitrato \qquad Nitrito \qquad \acute{O}xido \ n\'{t}rico \qquad \acute{O}xido \ n\'{t}roso \qquad Nitr\'{o}geno \ gaseoso$$

$$(1.5)$$

e) Volatilización

Es la pérdida de nitrógeno a través de la conversión de amonio en amoniaco gaseoso, que es liberado a la atmósfera (ver reacción 1.6) (Johnson, Albrecht, Ketterings, Beckman, & Stockin, 2005) y se da cuando hay aportaciones de materia orgánica fácilmente descomponibles y ricas en nitrógeno (relación C/N

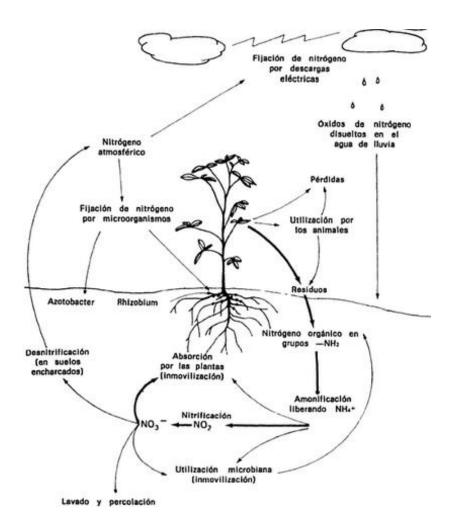
inferior a 15), se intensifica la volatilización si la humedad y la temperatura son elevadas (Navarro, 2003).

$$NH_4^+ + OH^- + H_2O \longrightarrow NH_3 + 2H_2O$$
 (1.6)
Amonio Hidroxilo Agua Amoniaco Agua

1f) Inmovilización

Es el proceso inverso de la mineralización en el que los iones inorgánicos se convierten en formas orgánicas (ver reacción 1.7). "La inmovilización por los microorganismos ocurre porque éstos necesitan nitrógeno para construir sus propias proteínas. Si no existe suficiente cantidad de este elemento en el materia orgánico que está descomponiendo, utilizarán el NO_3^- o NH_4^+ del suelo" (Thomson & Troeh, 1988) y para que se liberen estos iones es necesario que la relación C/N sea inferior a 20 (Oliveira Prendes, Afif Khouri, & Mayor López, 2006).

$$NH_4^+$$
 y/o $NO_3^ \longrightarrow$ $R-NH_2$ (1.7)


Amonio Nitrato Nitrógeno Orgánico

Nitrógeno Inorgánico

g) Lixiviación

La lixiviación es la pérdida de nitrógeno que puede contaminar el agua. Las partículas del suelo no retienen el nitrato muy bien debido a que ambos están cargados negativamente y como resultado el nitrato se mueve fácilmente con el agua en el suelo. El potencial de lixiviación de los nitratos depende del drenaje del suelo, la precipitación, la cantidad de nitrato presentes en el suelo, y la absorción del cultivo (Johnson, Albrecht, Ketterings, Beckman, & Stockin, 2005).

Figura 1.15. El ciclo del nitrógeno. Las líneas gruesas indican el ciclo principal de mineralización e inmovilización.

Fuente: (Thomson & Troeh, 1988).

1.3.3.7 Funciones y síntomas de deficiencia de los nutrientes

A continuación se menciona un resumen de las funciones y síntomas de deficiencia de los nutrientes inorgánicos en las plantas (ver tabla 1.8).

Tabla 1.8. Resumen de las funciones y síntomas de deficiencia de los nutrientes inorgánicos en las plantas.

ELEMENTO	FUNCIONES PRINCIPALES	SÍTOMAS DE DEFICIENCIA
	Macronutrier	ntes
	Formación de órganos	Amarillamiento de hojas.
	vegetativos y reproductivos.	Hojas nuevas pequeñas.
Nitrógeno (N)	Fomenta el crecimiento rápido.	Caída de hojas.
	Determina el contenido de	Crecimiento lento.
	proteínas.	Disminución de flores.
		Crecimiento lento.
	Producción de energía.	Hojas de color verde azuloso o púrpura.
	Formación de la raíz.	Hojas pequeñas.
Fósforo (P)	Formación y maduración de	Caída de hojas.
	frutos.	Disminución de la floración.
	Formación de semillas.	Quemazón en los bordes de las hojas.
		Diminución en la formación de frutos.
	Resistencia a sequía.	Bordes amarillos en hojas.
Potasio (K)	Formación de azúcares,	Enroscamientode hoja.
	almidones y aceites.	Secamiento de puntas.
	Formación de tallos.	Secamiento de plantas.
	Resistencia a ataque de hongos.	Secamento de planta.
	Crecimiento de la raíz y del tallo.	Hojas pequeñas y deformes, con puntas
Calcio (Ca)	Favorece la absorción de	curvas hacia abajo o arriba.
Carcio (Ca)	nutrientes del suelo.	Áreas muertas en hojas.
	nutrentes del suelo.	Raíces poco desarrolladas.
		Amarillamiento de hojas entre las
	Formación de aceites.	venas o nervaduras.
Magnesio (Mg)	Principal elemento de la	Secamiento de hojas entre las
	clorofila.	nevaduras.
		Caída de hojas sin marchitar.
	Micronutrier	
Hierro (Fe)	Síntesis de clorofila.	Las hojas jóvenes son blancas o
		amarillas.
_ , , , ,		Clorosis en las puntas de las hojas más
Cobre (Cu)	Activador de ciertas enzimas.	jóvenes y muerte de los puntos de
		crecimiento.
Zinc (Zn)	Activador de muchas enzimas.	Tamaño reducido de las hojas y follaje
ļ , ,		escaso.
Manganeso (Mn)	Activador de ciertas enzimas.	Las hojas más jóvenes aparecen pálidas
	alting 9 Murraghan 2002	con nervaduras verdes.

Fuente: (Stocking & Murnaghan, 2003; Palomino Aguirre, 2004; Purves &

Sadava, 2009).

Elaboración: La Autora.

1.4 Definiciones básicas en el diseño experimental

A continuación se cita ciertas definiciones utilizadas en el diseño experimental.

1.4.1 Diseño Experimental

Metodología estadística destinada a la planificación y análisis de un experimento (FUNDIBEQ, 2014).

1.4.2 Factor

Es la variable independiente o controlable que manipula el investigador, para estudiar sus efectos sobre la variable dependiente.

1.4.3 Variable dependiente

Es la variable en estudio, aquella cuyos cambios se desean estudiar.

1.4.4 Tratamientos

Los tratamientos son el conjunto de condiciones experimentales que serán impuestas a una unidad experimental en un diseño elegido.

1.4.5 Unidad Experimental

La unidad experimental es la parte más pequeña de material experimental expuesta al tratamiento, llamada también parcela, independientemente de otras unidades.

1.4.6 Bloques

Los bloques son el un conjunto de unidades experimentales homogéneos dentro de sí y heterogéneos entre sí. En los bloques están representados todos los tratamientos (González Manteiga & Pérez de Vargas Luque, 2012).

1.4.7 Diseño de Bloques Completos al Azar (DBCA)

Los tratamientos se asignan aleatoriamente, el mismo número de veces, a un grupo de unidades experimentales denominado bloque o repetición y se aplica cuando el material a distribuir en el tratamiento es heterogéneo (Manejo y Analisis de Datos de Investigacion, 1983).

1.4.8 Aleatorización

Consiste en aplicar en forma aleatoria los tratamientos a las unidades experimentales (UNLU, 2014).

1.4.9 Arreglo factorial

El arreglo factorial es la constitución de los tratamientos que se quieren comparar, así dos factores, A con a niveles y B con b niveles, se dice que se tiene ab tratamientos (IUMA, 2014).

1.4.10 Repetición

Es un medio para estimar la variancia del error experimental (UNLU, 2014).

1.4.11 Análisis de varianza ANOVA

Se utiliza para comparar dos o más medias y contrastar la hipótesis nula de que las medias de distintas poblaciones coinciden (Terrádez & Juan).

1.4.12 Prueba de Tukey

El método más conocido para comparar las medias entre tratamientos, es Tukey (Mongay Fernández, 2011). Este método consiste en, si se rechaza la hipótesis nula de igualdad de todas las medias, llevar a cabo todos los *tests* posibles para comparar todas las parejas de medias entre sí (Delgado de la Torre, 2004). Se aplica cuando se quieren comparar todos los pares de medias de todos los tratamientos o niveles del factor (Mate Jiménez, 1995). La única exigencia es que el número de repeticiones sea constante en todos los tratamientos (Milena Quiroga, 2012).

1.4.13 Prueba de hipótesis

La prueba de hipótesis permite determinar la significancia estadística de los datos recopilados, es decir, se puede saber si los resultados obtenidos fueron producto del azar o del tratamiento experimental aplicado por el investigador. El nivel de significancia especifica qué tanto riesgo se quiere correr para que las conclusiones sean erróneas. Valores sig=0,05 ó 5% son las más utilizadas y significa que de 95 de cada 100 veces, reflejará el valor verdadero de la población. Existen dos tipos de prueba (Moncada Jiménez, 2005):

 Hipótesis Nula (H₀): Indica que no existe relación entre las variables (las medias poblacionales son iguales), es decir, que la relación ocurre al azar.

 Hipótesis Alternativa (H₁): Indica que existe una relación natural verdadera (al menos dos medias poblacionales son distintas); es la hipótesis de la investigación.

1.4.14 Significancia Estadística

El grado de significancia "sig" es la probabilidad de error al rechazar la hipótesis nula. Cuanto más pequeño sea su valor más probable será que la hipótesis nula sea falsa (UNIOVI, 2014).

1.4.15 Error experimental

Son las variables no controlables por el experimentador (UGR, 2014).

1.4.16 Varianza

"La varianza muestra el grado de homogeneidad o heterogeneidad de una población o muestras provenientes de ella. Muestra que tan dispersos están los datos de la media (a mayor dispersión o varianza de los datos, menor será el grado de homogeneidad)" (Spenta Mexico, 2014).

1.4.17 Coeficiente de variación (CV)

Se expresa en porcentaje y mide la dispersión de los datos con respecto a la media (Berenson, Levine, & Krehbiel, 2006). Un coeficiente de variación de más del 30% indica que la muestra es muy variable y no es representativa del conjunto de datos (Acuna, 2014). Se calcula con la **ecuación 1.2.**

$$CV(\%) = \frac{\sqrt{CMErr}}{\bar{x}} * 100$$
 (1.2)

Dónde:

CMErr: Media Cuadrática del error.

x: Media muestral.

1.4.18 Prueba multivariante

Esta prueba nos sirve para verificar si la variable independiente afecta a las variables dependientes de forma conjunta (URV, 2014). El programa SPSS

proporciona 4 posibles estadísticos de contraste (Traza de Pillai, Lambda de Wilks, Traza de Hotelling, Raíz mayor de Roy) para ver si se rechaza la hipótesis nula de igualdad de medias (sig≤0,05) (Mongay Fernández, 2011).

1.4.19 Estadístico F

"El estadístico F del análisis de la varianza sirve para contrastar la igualdad de varias muestras. Solo puede tomar valores positivos o cero. Es cero sólo cuando todas las medias muestrales son idénticas, se hace mayor a medida que las medias muestrales están separadas entre sí. Los valores F grandes constituyen una buena evidencia en contra la de hipótesis nula H₀ de que todas las medias poblacionales son iguales." (Moore, 2005).

1.4.20 Prueba de esfericidad de Mauchly

Requiere que las varianzas de las diferencias entre cada par de medias de medidas repetidas sean constantes (Balluerka Lasa & Vergara Iraeta, 2002). En análisis de la varianza de medidas repetidas se supone que si se calculan las diferencias entre todas las parejas de valores del factor, las varianzas de las diferencias son iguales. Esto implica que la matriz de varianza define una esfera. La hipótesis es que es una esfera y la alternativa que no lo es (Álvarez Cáceres, 2007).

1.4.20.1 Estadístico W de Mauchly

Son las comparaciones entre cada par de medias y nos permitirá asumir o rechazar la hipótesis de esfericidad. Si este valor crítico es mayor que 0,05 aceptamos la esfericidad; si el valor crítico es menor que 0,05 no podemos asumir la esfericidad de la matriz de varianzas (García Legazpe, 2008).

1.4.20.2 Chi - cuadrado

La prueba del Chi - cuadrado, indica si existe dependencia o relación entre las variables, pero no indica el porcentaje de influencia de una variable sobre la otra o la variable que causa la influencia (SPSS Free, 2014). Si este valor es mayor a cero indica que existe relación entre las variables y entre mayor sea,

mayor será su dependencia (Salafranca Cosialls, Sierra Olivera, Núñez Peña, Solanas Pérez, & Leiva Ureña, 2005).

1.4.20.3 Grados de libertad (G.L.)

Número de variables linealmente independientes utilizadas para describir una dispersión (UC3M, 2014). Los *grados de libertad* de un estadístico calculado sobre *n* datos se refieren al número de cantidades independientes que se necesitan en su cálculo, menos el número de restricciones que ligan a las observaciones y el estadístico (ver ecuación 1.3) (UMA, 2014).

$$G.L. = n - 1$$
 (1.3)

Dónde:

G.L.: Grados de libertad

n: Tamaño de la muestra

Cuanto mayor sea el tamaño de la muestra mayor será el número de grados de libertad y, por tanto, mayor será la potencia (probabilidad que tiene la prueba estadística para rechazar una hipótesis nula).

1.4.21 Prueba unilateral (de una cola) de la media

Si la hipótesis alternativa en un test de hipótesis apunta sólo en una dirección, indicando la superioridad de un grupo frente al otro, se tratará de un test de hipótesis unilateriral (Martínez González, 2013). La prueba unilateral, plantea si los dos grupos estudiados son diferentes, dónde la hipótesis nula es que no hay diferencias, y la hipótesis alternativa es que si hay diferencias. El grado de significación estadística será ≈ 0.05 ó 5% (Icart Isern, Fuentelsaz Gallego, & Pulpón Segura, 2006).

Figura 1.16. Prueba unilateral de la media.

Fuente: (Manejo y Analisis de Datos de Investigacion, 1983).

Hipótesis:

Consiste en probar una hipótesis respecto a la media, μ , se selecciona una muestra de la población y se verifica o rechaza la hipótesis (Manejo y Analisis de Datos de Investigacion, 1983).

Hipótesis Nula $H_0: \mu \leq \mu_0$ Si es cierta, indica que toda la

variabilidad observada es por el azar.

Hipótesis Alternativa $H_1: \mu > \mu_0$ Si es cierta, indica que toda la

variabilidad observada no es totalmente

al azar.

Fuente: (Martínez González, 2013).

Estadístico de Prueba:

Un test estadístico t es un procedimiento para, a partir de una muestra aleatoria y significativa, extraer conclusiones que permitan aceptar o rechazar una hipótesis previamente emitida sobre el valor de un parámetro desconocido de esa población (ver ecuación 1.4). Indica si la población es normalmente distribuida o la muestra ha sido extraída al azar.

$$t_{observada} = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} \tag{1.4}$$

Dónde:

 \bar{x} : media muestral

μ₀: valor inicial de comparación

S: desviación estándar muestral

n: tamaño de la muestra

Región de Rechazo

Se debe establecer la región rechazo o región crítica y si el resultado de la prueba estadística se encuentra en la región crítica se rechazará la hipótesis nula aceptando la alternativa, en caso contrario la hipótesis será aceptada.

$$t_{tabulada} (\propto = 0.05)(G.L.)$$

Dónde:

G.L.: grados de libertad (n-1)

n: tamaño de la muestra

Se debe hallar el valor tabular para ∝=0,05 y n-1 grados de libertad y la región crítica será (Manejo y Analisis de Datos de Investigacion, 1983):

 $t_{observada} > t_{tabulada}$

Decisión

Si $t_{observada}$ > $t_{tabulada}$, se acepta la hipótesis alternativa H_1 , es decir existe diferencias estadísticamente significativas entre las medias (Icart Isern, Fuentelsaz Gallego, & Pulpón Segura, 2006).

CAPÍTULO II

2 MATERIALES Y MÉTODOS

2.1 Características del lugar del ensayo y forma de trabajo del productor

2.1.1 Generalidades

En la actualidad ETAPA con su programa MICPA, en articulación con instituciones encargadas del fomento e investigación agroproductivo como MAGAP (Ministerio de Agricultura, Ganadería, Acuacultura y Pesca) e INIAP, desarrolla el programa denominado AMAs, con un enfoque de mantener una ganadería de leche sostenible y minimizar los impactos de contaminación en el biocorredor de la cuenca del río Yanuncay para garantizar un abastecimiento de agua potable a través de su planta de tratamiento ubicado en el sector Sustag - Parroquia San Joaquín (ETAPA, 2014).

El presente estudio pretende mitigar los impactos negativos que la ganadería manejada de forma tradicional, genera en el medio ambiente ocasionado por el uso excesivo de pollinaza, para la cual y con la asistencia técnica del Núcleo de Transferencia de la Estación Experimental del Austro se implementará en una finca ganadera en el sector de Soldados un ensayo que nos permitirá evaluar la influencia físico – química en la aplicación de un abono orgánico – mineral de liberación controlada en el desempeño productivo de una mezcla forrajera, con el objetivo de proponer una alternativa de fertilización innovadora en la cual utilice pollinaza en cantidades significativamente menores en comparación a las actuales, debido a que por sus costos y manejo, difícilmente va dejar de ser utilizada totalmente en la zona.

2.1.2 Producción de pastos y manejo del ganado bovino en el sector

Las fincas ganaderas que se asientan en el biocorredor de la cuenca del rio Yanuncay han mantenido una práctica convencional fertilizando los pastos con pollinaza en dosis entre 800 a 1000 sacos que representan 20000 a 25000 kg/ha/año, produciendo acidez en los suelos (Garzón, 2013).

THE NAME OF CHARGE

UNIVERSIDAD DE CUENCA

El manejo convencional de los pequeños y medianos ganaderos consiste en aplicar fertilizaciones esporádicas a base de urea (46%N) y pollinaza, sin ninguna indicación técnica, ni análisis de suelo previo, esto provoca que los suelos se acidifiquen e incremente el contenido de sales.

Seguido de la práctica de fertilización, vienen las denominadas "labores culturales" de los potreros, que consiste en la dispersión de heces después de cada pastoreo, resiembra con mezclas de *rye grass* y trébol. Rara vez se implementa el riego, sólo en épocas secas como son los meses de agosto, septiembre y octubre, ya que el promedio de precipitación anual oscila entre 1000 a 1100 mm/año y un cultivo de pasto requiere de 1825 mm/año (Estrada, 2012).

En el manejo de la ganadería lechera de los pequeños y medianos ganaderos se realizan dos ordeños diarios, pastoreo al sogueo o con uso de cerca eléctrica, llevan un calendario sanitario basado en la desparasitación cada seis meses para animales adultos y cada tres meses para animales pequeños y medianos, además realizan vacunación para prevenir enfermedades propias de las vacas.

2.1.3 Localización

El ensayo se realizó en la Provincia del Azuay, Cantón Cuenca, Parroquia San Joaquín, en la Comunidad de Soldados, Sector Pumamaqui, propiedad del Señor Carlos Díaz, socio de la Asociación de Productores Ganaderos del Río Yanuncay.

2.1.3.1 Ubicación geográfica

Coordenadas:

✓ Latitud: 2°56'00" Sur

✓ Longitud: 79°14'00" Oeste

Altitud de 3190 m.

Fuente: (UTT - AZUAY - INIAP y ETAPA - MICPA, 2013).

2.1.3.2 Características climáticas

El clima del lugar tiene los siguientes valores promedio:

• Temperatura media: 12°C.

Pluviosidad media: 1074 mm/anual.

Humedad relativa media: de 70 – 76%

Fuente: (UTT - AZUAY - INIAP - ETAPA, 2013).

2.1.3.3 Características edáficas

El suelo del lugar presenta las siguientes características:

2.1.3.3.1 Características físicas

Las características físicas del suelo se detallan en la tabla 2.1.

Tabla 2.1. Características físicas del suelo.

Control 2011 Canadian Cara Haraga				
Textura	Franco - arenoso			
Estructura	Granular			
Pendiente	5%			
Drenaje	Bueno			
pН	5,80			
Uso anterior	Pasto			

Fuente: Laboratorio de suelos, (INIAP - EEA, 2013).

Elaboración: La Autora.

2.1.3.3.2 Características químicas

Las características químicas iniciales del suelo de la investigación, se muestran en la **tabla 2.2.**

Tabla 2.2. Características químicas iniciales del suelo*.

PARÁMETROS	UNIDADES	VALORES	INTERPRETACIÓN	
рН	-	5,8	Medianamente Ácido	
Clase Textural	%arena, %arcilla, %limo	66, 16, 18	Franco - Arenoso	
Materia	%	31,98	Alto	
Orgánica	76	31,90	Ailu	
Nitrógeno	ppm	14,79	Alto	
Fósforo	ppm	69,14	Alto	
Potasio	meq/100ml	0,6	Alto	
Calcio	meq/100ml	12,04	Alto	
Magnesio	meq/100ml	0,85	Medio	
Hierro	lierro ppm 95,8		Alto	
Cobre	ppm	3,50	Medio	
Zinc	ppm	3,070	Medio	
Manganeso	ppm	3,60	Bajo	
C.E.**	mmhos/cm	0,27	No Salino	
C.I.C.***	meq/100g de suelo	60,75	Alto	

Fuente: Laboratorio de suelos, (INIAP - EEA, 2013).

Elaboración: La Autora.

2.2 Recursos

2.2.1 Recursos materiales

2.2.1.1 Fase Agronómica

- Balanza
- Barreno
- Cámara fotográfica
- · Cinta masking
- Computadora
- Cuadrante
- Estacas
- Flexómetro
- Fundas plásticas

GPS

^{*}Ver anexo 3 (análisis de suelo).

^{**}Conductividad Eléctrica.

^{***}Capacidad de Intercambio Catiónico.

- Letreros
- Libro de Campo
- Marcador permanente
- Martillo
- Materiales de Oficina
- Oz
- Palas
- Piolas
- Proyector
- Recipientes plásticos
- Sogas
- Transporte
- Vehículo

2.2.1.2 Fase Físico - Química

La metodología de análisis de suelos agrícolas aplicada, se basa en las marchas analíticas que sigue el laboratorio de la Estación Experimental del Austro del INIAP, detalladas en el anexo 1 (metodología de análisis de suelo del INIAP) y dichos análisis fueron realizados en sus instalaciones.

2.2.2 Costos de fertilizantes

La tabla 2.3 detalla el costo de los fertilizantes utilizados en el ensayo.

Tabla 2.3. Inversión en insumos agrícolas para las áreas netas experimentales de estudio.

	l los de el					PARA	EL	ENSAYO
Concepto	Unidad (kg)	USI	D/saco	US	SD/kg	Total (kg)*		osto Total SD/Ensayo)
Zeolita	50	\$	8,50	\$	0,17	67,5	\$	11,48
Pollinaza	25	\$	1,40	\$	0,06	900	\$	54,00
						TOTAL	\$	65.48

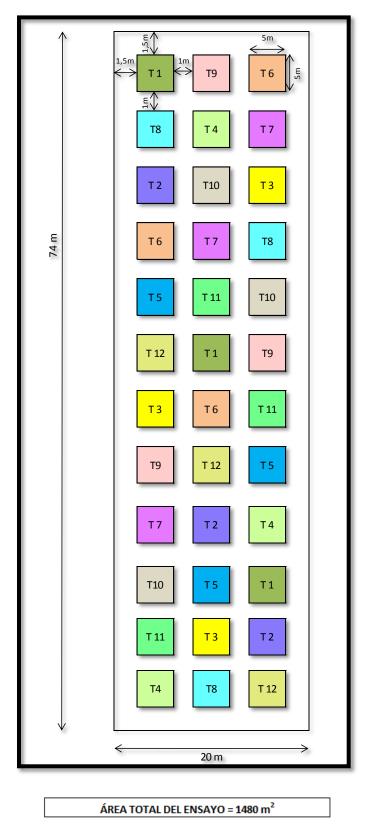
Fuente: La Autora.

*Ver tabla 2.7.

2.3 Metodología de la fase experimental y de campo

2.3.1 Selección del potrero

El lugar del presente ensayo fue escogido en base a las siguientes consideraciones: primero, que su pendiente sea homogénea, comprendido entre 0% – 8 % (0° - 7°), con el objetivo de garantizar las mismas condiciones para todos los tratamientos, debido a que pendientes mayores al 30% provocan pérdidas por lixiviación de nutrientes. Segundo, que disponga de riego para que el cultivo funcione adecuadamente.


Fotografía 2.1. Selección del potrero.

Fuente: La Autora.

2.3.2 Características y delimitación de la unidad experimental

El ensayo se realizó en un terreno de 20 m de ancho por 74 m de largo, con un área total de 1480 m², cuyas unidades experimentales fueron de 5 m por 5 m, con un total de 25 m², separadas por 1 metro entre parcela y parcela (ver figura 2.1); debidamente identificadas y delimitadas (ver fotografía 2.2), expuestas al manejo en condiciones normales y habituales de pastoreo.

Figura 2.1. Esquema de la distribución de los tratamientos del ensayo. **Elaboración:** La Autora.

Fotografía 2.2. Trazado de lote experimental y colocación de letreros.

Fuente: La Autora.

2.3.3 Dosificación de tratamientos

Se aplicó mezclas entre un fertilizante orgánico (pollinaza) y uno mineral (zeolita malla 60) en diferentes dosis para observar su comportamiento, los mismos que se detallan a continuación:

Estudios hechos por Díaz Coronel, et al. (2009) y Haro Álvarez (2011) recomiendan el uso de aproximadamente 1000 kg/ha/año de zeolita para incrementar la C.I.C. del suelo y por ende la productividad de los cultivos. Estas son recomendaciones bibliográficas y en esta tesis se considera encontrar un punto óptimo, por lo que utilizaremos valores de ± 500kg/ha con respecto a los 1000 kg/ha/año como se detalla en la **tabla 2.4**, un rango apropiado de acuerdo a la referencia indicada.

Tabla 2.4. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en los tratamientos T2, T3 y T4.

	Pollinaz	a/ha/año	Zeolita/ha/año		
Tratamiento	sacos (25 kg)	Total (kg)	sacos (50 kg)	Total (kg)	
T2	0	0	10	500	
Т3	0	0	20	1000	
T4	0	0	30	1500	

Elaboración: La Autora.

La Estación Experimental del Austro (EEA) a través del Núcleo de Transferencia y Comunicación (NTC - EEA) indica que la cantidad promedio de pollinaza que el productor local incorpora a un potrero es de 20000 kg/ha/año como un tipo de fertilización empírica correspondiente al tratamiento T9. En consideración de que la premisa en este ensayo es evitar el uso excesivo de éste abono orgánico, se aplicó el 50% de pollinaza (10000 kg/ha/año) que corresponde al tratamiento T5 (ver tabla 2.5).

Tabla 2.5. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en los tratamientos T5 y T9.

	Pollinaz	za/ha/año	Zeolita/ha/año		
Tratamiento	Sacos (25 kg)	Total Sacos To (kg) (50 kg) (kg			
T5	400	10000	0	0	
T9	800	20000	0	0	

Elaboración: La Autora.

Teniendo como referencia lo citado se manejaron seis dosificaciones de mezcla entre pollinaza y zeolita (ver tabla 2.6).

Tabla 2.6. Cantidad a aplicar de pollinaza y zeolita en kg/hectárea/año en los tratamientos T6, T7, T8, T10, T11 y T12.

	Pollinaz	a/ha/año	Zeolita/ha/año		
Tratamiento	Sacos (25 kg)			Total (kg)	
T6	400	10000	10	500	
T7	400	10000	20	1000	
T8	400	10000	30	1500	
T10	800	20000	10	500	
T11	800	20000	20	1000	
T12	800	20000	30	1500	

Elaboración: La Autora.

A continuación se muestra un esquema de las cantidades a aplicar en cada tratamiento según la dimensión de la parcela, considerando que el testigo absoluto corresponde al tratamiento T1 (ver tabla 2.7).

Tabla 2.7. Cantidad a aplicar de pollinaza y zeolita en kg/parcela/año en los 12 tratamientos.

Tratamiento	Pollinaza (kg/parcela*)	Zeolita (kg/parcela*)
T1	0	0
T2	0	1,25
T3	0	2,5
T4	0	3,75
T5	25	0
T6	25	1,25
T7	25	2,5
T8	25	3,75
Т9	50	0
T10	50	1,25
T11	50	2,5
T12	50	3,75
TOTAL	300	22,5
TOTAL (3 REPETICIONES)	900	67,5

Elaboración: La Autora.

*Parcela de 25m².

2.3.4 Preparación del suelo

En este ensayo experimental no se hizo preparación del suelo, debido a que el objetivo fue trabajar en pastizales ya establecidos, con mezclas forrajera de *rye grass anual* (Pichincha, Duo), *rye grass perenne* (Bisón, Tetralite 2, Power), trébol rojo y trébol blanco (Ladino gigante), en una relación de 80% gramíneas y 20% de leguminosas (Barrera, León-Valarde, Grijalva, & Chamorro, 2004).

2.3.5 Aplicación de los Tratamientos

Se utilizó el método al voleo debido a su relativa facilidad, donde una persona tira aleatoriamente el fertilizante a medida que avanza por el campo (Castro Ramírez, 2002), además se hizo uso de un rastrillo para garantizar la homogeneidad del fertilizante en la parcela (ver fotografía 2.3).

Fotografía 2.3. Aplicación de los abonos.

Fuente: La Autora.

2.3.6 Riego del cultivo

La parcela demandó de riego de aspersión en los meses de escasa lluvia como son los meses de agosto, septiembre y octubre.

Un cultivo de pasto requiere 5 mm de agua por día (1825 mm de agua por año) porque no toda el agua que cae está disponible para las plantas siempre se producen pérdidas por escurrimiento, filtración y evaporación (Estrada, 2012).

Fotografía 2.4. Riego del cultivo.

Fuente: La Autora.

2.3.7 Labores culturales

En el manejo del lote experimental se usó cerca eléctrica para delimitar el área de pastoreo de los animales (ver fotografía 2.5), y se realizó los siguientes trabajos de manejo luego del pastoreo: dispersión de heces, cortes de igualación y resiembras, cuyas fechas de ejecución se muestran en la tabla 2.8.

Fotografía 2.5. Pastoreo con cerca eléctrica en lote experimental.

Fuente: La Autora.

Tabla 2.8. Cronograma de actividades en la fase experimental y de campo.

FECHA				201	13				2014
ACTIVIDAD	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE
1 Delimitación de parcela									
experimental: rotulación, división de	12								
tratamientos en las tres repeticiones.									
2 Análisis de suelo del lote	15								
experimental.									
3 Evaluación previo primer corte	20								
(Pesaje MV y MS)									
4 Análisis bromatológico de la	22								
parcela experimental	25								
5 Primer pastoreo de la parcela	al								
experimental (sin tratamientos).	28								
6 Prácticas de Labores Culturales.	29								
7 Aplicación de mezcla de un abono	27								
orgánico-mineral en los tratamientos	29								
del lote experimental.									
8 Evaluación previo segundo corte									
(Pesaje MV y MS)			18						
9 Segundo pastoreo de la parcela			20						
experimental.*			al						
			23						
10 Prácticas de Labores Culturales.			24						
11 Análisis de suelo de las parcelas					1				
experimentales.					_				
12 Evaluación previo tercer corte					12				
(Pesaje MV y MS).									
13 Tercer pastoreo de la parcela					14				
experimental.*					al 17				
14 Prácticas de Labores Culturales.					18				
15 Evaluación previo cuarto corte									
(Pesaje MV y MS).							18		
16 Cuarto pastoreo de la parcela							20		
experimental.*							al		
17 Prácticas de Labores Culturales.							23		
							24		
18 Análisis de suelo de las parcelas experimentales.								20	
19 Evaluación previo quinto corte									12
(Pesaje MV y MS).									12
20 Quinto pastoreo de la parcela									14
experimental.*									al
									17

Elaboración: La Autora.

^{*}Se realizó el pastoreo de 20 vacas en producción de leche.

2.3.8 Controles de productividad

Antes de cada pastoreo se evaluó la producción de materia verde (MV), cuya metodología se detalla en el punto **2.2.10.1**, y materia seca (MS), indicado en el punto **2.2.10.2**.

2.3.9 Cosecha

Se realizó mediante el pastoreo, con la utilización de cerca eléctrica, dando de comer 4 veces/día a las vacas. El período de descanso del potrero (PD) fue de 52 días y el período de ocupación del potrero (PO) o pastoreo de las vacas fue de 4 días (ver tabla 2.8).

Fotografía 2.6. Cosecha del pasto en lote experimental.

Fuente: La Autora.

2.3.10 Variables Agronómicas

En el presente ensayo se ha considerado de acuerdo a recomendaciones de NTC - EEA (2013), estimar algunos indicadores para determinar la productividad del pasto versus los ensayos de fertilización, citados a continuación.

2.3.10.1 Producción de Materia Verde (MV)

La evaluación del rendimiento forrajero se hizo 2 días antes de que ingresen los animales al potrero con el uso de un cuadrante (ver fotografía 2.7) de 0,5 metros por 0,5 metros (0,25 m²), el mismo que se lanzó aleatoriamente dentro de la parcela y se procedió a cortar el pasto que se encontró dentro del mismo, se pesó y se realizó la conversión a hectárea para estimar la producción de materia verde (MV). En cada parcela se pesó dos muestras, se promedió y este dato fue registrado.

Fotografía 2.7. Uso del cuadrante para pesaje.

Fuente: La Autora.

2.3.10.2 Producción de Materia Seca (MS) o Disponibilidad forrajera (DF)

Es la cantidad de biomasa disponible para ser usada como alimento para los animales, se expresa como kilogramos de materia seca por hectárea (Franco Q., Calero Q., & Durán C., 2006). Para su cálculo (ver ecuación 2.1) se utilizó el porcentaje de humedad del lote experimental reportado por el laboratorio (ver anexo 2, análisis bromatológico).

$$kg (MS) = kg (MV) * (100\% - \%Humedad) [kg MS/ha]$$
 (2.1)

Una vez obtenida la Disponibilidad Forrajera (DF) se calculó los siguientes parámetros: Disponibilidad Forrajera Real (DFR), Disponibilidad Forrajera Anual (DFA), Capacidad Receptiva Anual (CRA) y Tasa de Crecimiento (TC).

2.3.10.2.1 Disponibilidad Forrajera Real (DFR)

El forraje disponible (DF) sufre pérdidas por pisoteo, que llegan hasta un 30%, lo que significa, que sólo un 70% es aprovechable (Rodríguez Alza, 2011).

2.3.10.2.2 Disponibilidad Forrajera anual (DFA)

Es la cantidad de pasto u oferta forrajera al año (ver ecuación 2.3).

DFA = DFR *
$$N^{\circ} cortes/a\tilde{n}_0$$
 [kg MS/ha/a \tilde{n}_0] (2.3)

El número de cortes se obtiene de la siguiente manera (ver ecuación 2.4):

$$N^{\circ} \frac{\text{cortes}}{a\tilde{n}_0} = \frac{365 \text{dias}}{PD}$$
 (2.4)

Dónde:

PD: período de descanso del potrero o intervalo entre corte y corte.

2.3.10.2.3 Carga Animal (CA)

Es el número de animales por hectárea que puede sostener un potrero (Lobo Di Palma & Díaz Sánchez, 2001), cuando esta carga excede la capacidad del potrero y no se permite el rebrote de las plantas a través del tiempo, ocurre una pérdida de las especies deseables, siendo sustituidas por otras de menor valor forrajero y menos palatables (Franco Q., Calero Q., & Durán C., 2006).

$$CA = \frac{DFA}{Consumo diario de un bovino en MS*365} \left[\frac{UBA}{ha} \right]$$
 (2.5)

Dónde:

UBA: Unidad Bobina Adulta.

Se considera que un animal adulto consume materia seca en una cantidad equivalente al 3% de su peso vivo por día (Barrera, León-Valarde, Grijalva, & Chamorro, 2004), por lo tanto:

Consumo diario de un bovino en
$$MS = 3\% * Peso de animal en kg$$
 (2.6)

2.3.10.2.4 Tasa de Crecimiento (TC)

Nos permite evaluar el crecimiento diario en cuanto a cantidad de forraje; tasas de crecimiento por debajo de 20 kilogramos de materia seca por día se consideran deficientes y por arriba de 45 kilogramos de materia seca por día, son consideradas buenas y responden a buenas prácticas en el manejo de la pastura (Barrera, León-Valarde, Grijalva, & Chamorro, 2004). Se calcula de la siguiente manera:

$$TC = \frac{DFA}{365} \quad \left[\frac{Kg_{MS}}{dia} \right] \tag{2.7}$$

2.4 Metodología del análisis de laboratorio

2.4.1 Análisis de suelo

El suelo se analiza con el objetivo de determinar sus propiedades y diagnosticar los problemas sobre nutrición mineral que podría presentar (Arauz, 1989), cuyo resultado nos da una estimación de su fertilidad (Oliveira Prendes, Afif Khouri, & Mayor López, 2006). El análisis de suelo comprende las siguientes etapas:

2.4.2 Toma de muestras

La muestra debe ser representativa, es decir, presentar características similares en toda su extensión, color relieve, textura, manejo del terreno, entre otros (CORPOICA); además debe estar formada por 10 – 15 submuestras por hectárea o tomas localizadas en diversos puntos elegidos al azar siguiendo un zigzagueo por la parcela. Se debe usar un barreno, el mismo que debe penetrar hasta una profundidad de 10 cm porque es la zona de máximo desarrollo radical, en el caso de praderas permanentes (Oliveira Prendes, Afif

Khouri, & Mayor López, 2006). Se debe tomar las muestras después del corte (Estrada Álvarez, 2002).

Estrada en el 2002 indica que no se debe tomar muestras de:

- Antiguos canales o sitios de mal drenaje
- Antiguas carreteras o caminos
- Sitios donde se haya colocado estiércol o cal
- Sitios de quemas
- En las orillas de las cercas
- Debajo de los árboles

Instrucciones de muestreo

1. Señalizar los puntos a muestrear haciendo un trazo en zig - zag.

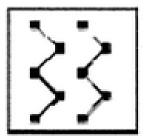


Figura 2.2. Trazo en zigzag para muestrear

Fuente: La Autora.

 Raspar aproximadamente 3 cm de la superficie del terreno en cada punto con el fin de limpiar y eliminar los residuos frescos de materia orgánica, polvo de la carretera u otros contaminantes artificiales como se muestra en la fotografía 2.8, (CORPOICA).

Fotografía 2.8. Superficie limpia del suelo a muestrear

Fuente: La Autora.

- 3. Tomar la muestra con barreno:
 - a. Enterrar el barreno haciéndolo girar (ver fotografía 2.9).

Fotografía 2.9. Uso de barreno y toma de muestras en lote experimental.

Fuente: La Autora.

 b. Depositar la muestra de suelo en un balde plástico limpio (ver fotografía 2.10).

Fotografía 2.10. Recolección de las muestras en un balde plástico.

Fuente: La Autora.

- c. Repetir esta operación para cada uno de los puntos del zig zag.
- d. Mezclar bien el suelo extraído.

- 4. La cantidad de muestra recolectada debe ser de 1 kg.
- Las submuestras tomadas se introducen en una bolsa de plástico, se mezclan homogéneamente y se identifica la muestra (Oliveira Prendes, Afif Khouri, & Mayor López, 2006).

2.4.3 Estudio Físico - Químico

Las muestras recolectadas fueron enviadas al INIAP - EEA (Gualaceo - Ecuador) para sus respectivos análisis, los mismos que fueron estudiados en tres períodos, antes de comenzar la ejecución del ensayo (1 análisis), a los 3 meses de aplicada la fertilización (36 análisis, 12 tratamientos por 3 repeticiones) y a los 6 meses el mismo número de análisis.

Fotografía 2.11. Análisis Físico - Químico de muestras recolectadas en el laboratorio de suelos (INIAP - EEA).

Fuente: La Autora.

2.4.4 Variables Físico - Químicas

Se determinó mediante los métodos que se detallan en la tabla 2.9, cuya metodología se encuentra en el anexo 1 (metodología de análisis de suelo del INIAP).

Tabla 2.9. Métodos utilizados para determinar las variables Físico - Químicas.

Parámetro	Unidad	Método
Capacidad de Intercambio Catiónico	meq/100g	Acetato de Amonio pH 7
Conductividad Eléctrica	mmhos/cm	Conductimétrico Pasta Saturada
Materia Orgánica	%	Método de Walkley y Black
рН	-	Potenciométrico. Solución Suelo:Agua (1:2,5)
Nitrógeno	ppm	Colorimétrico Olsen modificado
Fósforo	ppm	Colorimétrico Olsen modificado
Potasio	meq/100ml	Absorción Atómica Olsen modificado
Calcio	meq/100ml	Absorción Atómica Olsen modificado
Magnesio	meq/100ml	Absorción Atómica Olsen modificado
Hierro	meq/100ml	Absorción Atómica Olsen modificado
Cobre	ppm	Absorción Atómica Olsen modificado
Zinc	ppm	Absorción Atómica Olsen modificado
Manganeso	ppm	Absorción Atómica Olsen modificado

Fuente: Laboratorio de suelos, (INIAP - EEA, 2013).

Elaboración: La Autora.

2.5 Procedimientos Estadísticos

2.5.1 Fase Agronómica

En el presente estudio se analizó el comportamiento de 12 ensayos de nutrición orgánico – mineral en distintas concentraciones, donde se evaluaron

los tratamientos en tres repeticiones. Se utilizó el diseño experimental de Bloques Completos al Azar en arreglo factorial de 3x4 con 3 repeticiones (ver tabla 2.10).

Tabla 2.10. Arreglo factorial 3x4 entre pollinaza (P) y zeolita (Z).

Z_1P_1	Z_1P_2	Z_1P_3
Z_2P_1	Z_2P_2	Z_2P_3
Z_3P_1	Z_3P_2	Z_3P_3
Z ₄ P ₁	Z_4P_2	Z_4P_3

Elaboración: La Autora.

Toda la información obtenida fue ingresada en el programa Microsoft Office Excel 2010 para luego ser llevada al software estadístico SPSS (Statistical Package for the Social Sciences) versión 22.0, en el que se analizó únicamente la significancia, la misma que se aceptó cuando es menor a 0,05 y se rechazó cuando es mayor.

Esquema del análisis de varianza

Este análisis está conformado por las siguientes fuentes de variación: repetición (r); 2 tratamientos: pollinaza (p) y zeolita (z); interacciones entre ambos factores y el error experimental como se detalla en la **tabla 2.11**.

Tabla 2.11. Esquema del Análisis de Varianza

Fuentes de Variación	Fórmula	G.L.
Repetición	r-1	2
Pollinaza	p-1	2
Zeolita	z-1	3
Pollinaza*Zeolita	(p-1)*(z-1)	6
Error	(r-1)*(p*z-1)	22
Total	(r*p*z)-1	35

Fuente: (Klein & Pérez, 2000).

Elaboración: La Autora.

Para realizar la prueba de significación de la diferencia de medios se procedió a realizar la prueba de Tukey al 5%.

2.5.2 Fase Físico - Química

El análisis estadístico para las variables físico - químicas de Materia Orgánica y pH, fue a través del Modelo Lineal General para Medidas Repetidas, cuyos valores se tomaron a los 0, 95 y 205 días.

En cambio para analizar estadísticamente las variables de Capacidad de Intercambio Catiónico, Conductividad Eléctrica y los nutrientes (Nitrógeno, Fósforo, Potasio, Calcio, Magnesio, Hierro, Cobre, Zinc y Manganeso) se empleó la prueba de t, mediante la prueba unilateral (de una cola) de la media, para determinar si se acepta o debe rechazarse la hipótesis nula, los valores para estos parámetros se tomaron a los 0 y 205 días, además se calculó el coeficiente de variación CV(%) (ver ecuación 1.2, capítulo I) para evaluar la homogeneidad de las variable en estudio.

CAPÍTULO III

3 DETERMINACIONES Y RESULTADOS

3.1 Variables

3.1.1 Variables Agronómicas

A continuación se citan los resultados de las variables que se consideraron para el diagnóstico estructural en la parte agronómica.

3.1.1.1 Producción de Materia Verde (MV)

La producción de materia verde se indica en la **tabla 3.1**, donde se puede observar los valores obtenidos en los 4 cortes que se hicieron durante el ensayo y su promedio. Además cabe mencionar que antes de llevar a cabo el ensayo, el lote experimental contó con un rendimiento de 0,44 kg MV/0,25m²/corte que equivale a 17600 kg MV /ha/corte.

Cada corte se realizó con un intervalo promedio de 58 días, lo que equivale a tener 6 cortes al año en una hectárea, esto es un dato referencial para la obtención de la disponibilidad forrajera anual (DFA) en materia seca.

Tabla 3.1. Rendimiento forrajero por cuadrante en función de la Materia Verde de los 12 tratamientos.

MATERIA VERDE (Kg/cuadrante*/corte)					
Tratamiento	52 días	108 días	164 días	231 días	Promedio
T1	0,36	0,37	0,42	0,31	0,36
T2	0,36	0,51	0,46	0,45	0,44
Т3	0,38	0,50	0,50	0,50	0,47
T4	0,47	0,46	0,51	0,53	0,49
T5	0,37	0,48	0,56	0,40	0,45
T6	0,49	0,55	0,49	0,53	0,52
T7	0,49	0,62	0,55	0,53	0,55
T8	0,53	0,60	0,63	0,57	0,58
Т9	0,44	0,57	0,53	0,46	0,50
T10	0,44	0,62	0,52	0,47	0,51
T11	0,55	0,67	0,58	0,53	0,58
T12	0,54	0,66	0,66	0,60	0,61

Elaboración: La Autora. *Cuadrante de 0,25 m².

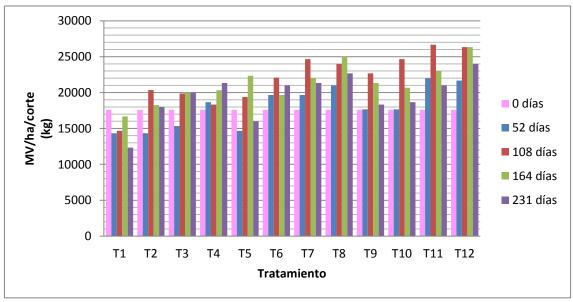

Se ha tomado el pesaje obtenido en la **tabla 3.1** y luego se ha proyectado a hectárea para una mejor apreciación **(ver tabla 3.2).**

Tabla 3.2. Rendimiento forrajero por hectárea en función de la Materia Verde de los 12 tratamientos.

MATERIA VERDE (Kg/ha/corte)					
Tratamiento	52 días	108 días	164 días	231 días	Promedio
T1	14333	14667	16667	12333	14500
T2	14333	20367	18267	18000	17742
Т3	15333	19867	20000	20000	18800
T4	18667	18333	20333	21333	19667
T5	14667	19367	22333	16000	18092
T6	19667	22067	19667	21000	20600
T7	19667	24667	22000	21333	21917
T8	21000	24000	25000	22667	23167
Т9	17667	22667	21333	18333	20000
T10	17667	24667	20667	18667	20417
T11	22000	26667	23000	21000	23167
T12	21667	26333	26333	24000	24583

Elaboración: La Autora.

La representación gráfica de la materia verde (Kg/ha/corte) de la **tabla 3.2** se muestra en el **gráfico 3.1.**

Gráfico 3.1. Rendimiento de materia verde de los 12 tratamientos con respecto al tiempo.

Elaboración: La Autora.

3.1.1.2 Producción de Materia Seca (MS) o Disponibilidad Forrajera (DF)

De acuerdo a los datos proporcionados por el laboratorio, la humedad de la pastura del lote experimental fue del 85,62% (anexo 2, análisis bromatológico), por lo tanto el porcentaje referencial de materia seca sería del 14,38%, dato utilizado para obtener la tabla 3.3 con la fórmula señalada en la ecuación 2.1 (capítulo II).

Tabla 3.3. Rendimiento forrajero por hectárea en función de la Materia Seca de los 12 tratamientos.

MATERIA SECA (Kg/ha/corte)						
Tratamiento	52 días	108 días	164 días	231 días	Promedio	
T1	2061	2109	2397	1774	2085	
T2	2061	2929	2627	2588	2551	
Т3	2205	2857	2876	2876	2703	
T4	2684	2636	2924	3068	2828	
T5	2109	2785	3212	2301	2602	
T6	2828	3173	2828	3020	2962	
T7	2828	3547	3164	3068	3152	
Т8	3020	3451	3595	3259	3331	
Т9	2540	3259	3068	2636	2876	
T10	2540	3547	2972	2684	2936	
T11	3164	3835	3307	3020	3331	
T12	3116	3787	3787	3451	3535	

Elaboración: La Autora.

Con el promedio de la materia seca (ver tabla 3.3) se obtuvo el resto de variables agronómicas (ver tabla 3.4), para lo cual se ha utilizado las fórmulas citadas en el punto 2.3.10.2 (capítulo II). Para el cálculo de la carga animal (CA) se tomó como peso referencial 500kg de peso vivo de animal (INIAP, 2013).

Tabla 3.4. Variables agronómicas de los 12 tratamientos.

	MATERIA VERDE				MATERIA S	ECA	
Tratamiento	Kg/ha/corte*	Kg/ha/año	DF** Kg/ha	DFR Kg/ha	DFA Kg/ha/año	CA UBA/ha	TCD Kg/día
T1	14500	87000	2085	1460	8757	1,6	24
T2	17742	106450	2551	1786	10715	2,0	29
Т3	18800	112800	2703	1892	11354	2,1	31
T4	19667	118000	2828	1980	11878	2,2	33
T5	18092	108550	2602	1821	10927	2,0	30
Т6	20600	123600	2962	2074	12442	2,3	34
T7	22350	134100	3214	2250	13499	2,5	37
Т8	23167	139000	3331	2332	13992	2,6	38
Т9	20000	120000	2876	2013	12079	2,2	33
T10	20417	122500	2936	2055	12331	2,3	34
T11	23167	139000	3331	2332	13992	2,6	38
T12	24583	147500	3535	2475	14847	2,7	41
Inicial***	17600	105600	2531	1772	10630	1,9	29

Elaboración: La Autora.

3.1.2 Variables Físico - Químicas

En cuanto a las evaluaciones físico - químicas realizadas, se hizo un promedio de los datos proporcionados por el laboratorio (ver anexo 3, análisis de suelo) para luego ser reportadas en las tablas que se mencionan a continuación.

^{*}Ver tabla 3.2.

^{**}Ver tabla 3.3.

^{***}Rendimiento del lote experimental antes de empezar el ensayo.

3.1.2.1 Materia Orgánica

Tabla 3.5. Materia orgánica de los 12 tratamientos en porcentaje (%).

Tratamiento	0 días	95 días	205 días
T1	31,98	25,83	25,62
T2	31,98	26,95	26,88
Т3	31,98	26,73	28,36
T4	31,98	27,87	26,56
T5	31,98	27,68	25,79
T6	31,98	27,72	29,17
T7	31,98	26,08	25,59
T8	31,98	27,00	26,86
Т9	31,98	23,96	25,76
T10	31,98	25,32	25,19
T11	31,98	25,88	24,94
T12	31,98	26,36	24,15

Elaboración: La Autora.

3.1.2.2 pH del suelo

Tabla 3.6. pH del suelo de los 12 tratamientos.

Tratamiento	0 días	95 días	205 días
T1	5,8	5,56	5,27
T2	5,8	5,71	5,54
Т3	5,8	5,95	5,70
T4	5,8	5,68	5,66
T5	5,8	5,78	5,47
T6	5,8	5,84	5,82
T7	5,8	5,80	5,87
T8	5,8	6,05	5,91
Т9	5,8	5,51	5,89
T10	5,8	5,65	5,91
T11	5,8	5,62	5,53
T12	5,8	5,68	5,40

Elaboración: La Autora.

3.1.2.3 Capacidad de Intercambio Catiónico

Tabla 3.7. Capacidad de Intercambio Catiónico de los 12 tratamientos en meq/100g.

Tratamiento	C.I.C.		
Tratamiento	0 días	205 días	
T1	60,75	60,76	
T2	60,75	56,83	
Т3	60,75	64,64	
T4	60,75	58,80	
T5	60,75	60,71	
T6	60,75	58,73	
T7	60,75	56,82	
Т8	60,75	60,75	
Т9	60,75	58,79	
T10	60,75	58,73	
T11	60,75	60,74	
T12	60,75	64,62	

Elaboración: La Autora.

3.1.2.4 Sumatoria de Bases

Tabla 3.8. Sumatoria de Bases de los 12 tratamientos en meq/100ml.

Tratamiento	Σ	BASES
Tratamiento	0 días	205 días
T1	31,2	33,86
T2	31,2	31,57
T3	31,2	34,51
T4	31,2	36,03
T5	31,2	44,63
T6	31,2	45,44
T7	31,2	44,96
T8	31,2	45,77
T9	31,2	45,05
T10	31,2	30,87
T11	31,2	68,95
T12	31,2	71,41

Elaboración: La Autora.

3.1.2.4.1 Saturación de Bases

El porcentaje de saturación de bases se calculó mediante la **ecuación 3.1**, cuyos valores obtenidos se muestran en la **tabla 3.9.**

$$\% Sat = \frac{\Sigma \text{ Bases}}{C.I.C}$$
 (3.1)

Tabla 3.9. Porcentaje de Saturación de Bases de los 12 tratamientos.

Tratamiento	% SA	T. BASES
Tratamiento	0 días	205 días
T1	51	55,73
T2	51	55,55
T3	51	53,38
T4	51	61,27
T5	51	73,52
T6	51	77,37
T7	51	79,13
T8	51	75,34
T9	51	76,63
T10	51	52,56
T11	51	Saturado
T12	51	Saturado

Elaboración: La Autora.

3.1.2.5 Conductividad Eléctrica

Tabla 3.10. Conductividad eléctrica de los 12 tratamientos en mmhos/cm.

Tratamiento	0 días	205 días
T1	0,27	0,38
T2	0,27	0,30
T3	0,27	0,34
T4	0,27	0,34
T5	0,27	0,27
T6	0,27	0,36
T7	0,27	0,31
T8	0,27	0,22
T9	0,27	0,42
T10	0,27	0,37
T11	0,27	0,48
T12	0,27	0,41

Elaboración: La Autora.

3.1.2.6 Nutrientes del suelo

3.1.2.6.1 Nitrógeno

Tabla 3.11. Nitrógeno de los 12 tratamientos en ppm.

Tratamiento	0 día	as	205 d	ías
T1	14,8	В	23,74	В
T2	14,8	В	35,66	М
Т3	14,8	В	37,98	M
T4	14,8	В	31,01	М
T5	14,8	В	44,81	M
T6	14,8	В	47,46	M
T7	14,8	В	55,63	M
T8	14,8	В	60,60	Α
Т9	14,8	В	41,72	M
T10	14,8	В	50,34	М
T11	14,8	В	51,99	М
T12	14,8	В	45,70	М

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.2 Fósforo

Tabla 3.12. Fósforo de los distintos tratamientos en ppm.

Tratamiento	0 día	as	205 d	ías
T1	69,1	Α	51,54	Α
T2	69,1	Α	50,38	Α
Т3	69,1	Α	55,19	Α
T4	69,1	Α	55,00	Α
T5	69,1	Α	57,12	Α
T6	69,1	Α	63,31	Α
T7	69,1	Α	67,07	Α
T8	69,1	Α	66,89	Α
T9	69,1	Α	67,58	Α
T10	69,1	Α	93,52	Α
T11	69,1	Α	95,23	Α
T12	69,1	Α	85,16	Α

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.3 Potasio

Tabla 3.13. Potasio de los 12 tratamientos en meq/100ml.

Tratamiento	0 d	0 días		lías
T1	0,6	Α	0,63	Α
T2	0,6	Α	0,66	Α
Т3	0,6	Α	0,62	Α
T4	0,6	Α	0,74	Α
T5	0,6	Α	0,56	Α
Т6	0,6	Α	0,59	Α
T7	0,6	Α	0,84	Α
Т8	0,6	Α	0,52	Α
Т9	0,6	Α	0,90	Α
T10	0,6	Α	0,95	Α
T11	0,6	Α	0,98	Α
T12	0,6	Α	0,87	Α

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.4 Calcio

Tabla 3.14. Calcio de los 12 tratamientos en meq/100ml.

Tratamiento	0 d	lías	205 di	ías
T1	12	Α	11,49	Α
T2	12	Α	13,40	Α
Т3	12	Α	15,87	Α
T4	12	Α	13,84	Α
T5	12	Α	14,93	Α
T6	12	Α	15,93	Α
T7	12	Α	14,82	Α
T8	12	Α	16,07	Α
T9	12	Α	15,90	Α
T10	12	Α	14,76	Α
T11	12	Α	14,77	Α
T12	12	Α	17,10	Α

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.5 Magnesio

Tabla 3.15. Magnesio de los 12 tratamientos en meq/100ml.

Tratamiento	0 días		205 c	lías
T1	0,9	М	0,68	М
T2	0,9	М	0,85	М
Т3	0,9	М	0,84	М
T4	0,9	М	0,83	М
T5	0,9	М	0,81	М
T6	0,9	М	0,81	М
T7	0,9	М	0,86	М
T8	0,9	М	0,89	М
T9	0,9	Μ	0,86	М
T10	0,9	М	0,94	М
T11	0,9	М	0,92	М
T12	0,9	M	0,97	М

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.6 Hierro

Tabla 3.16. Hierro de los 12 tratamientos en meq/100ml.

Tratamiento	0 días		205 día	ıs
T1	95,8	Α	109,45	Α
T2	95,8	Α	109,90	Α
Т3	95,8	Α	109,75	Α
T4	95,8	Α	114,20	Α
T5	95,8	Α	353,54	Α
Т6	95,8	Α	357,72	Α
T7	95,8	Α	357,28	Α
Т8	95,8	Α	351,45	Α
Т9	95,8	Α	373,67	Α
T10	95,8	Α	385,44	Α
T11	95,8	Ā	374,99	Α
T12	95,8	A	366,63	A

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.7 Cobre

Tabla 3.17. Cobre de los 12 tratamientos en meq/100ml.

Tratamiento	0 d	0 días		lías
T1	3,5	Α	3,75	М
T2	3,5	Α	4,00	Α
Т3	3,5	Α	3,75	М
T4	3,5	Α	3,85	M
T5	3,5	Α	3,55	M
T6	3,5	Α	4,05	Α
T7	3,5	Α	4,30	Α
Т8	3,5	Α	4,65	Α
Т9	3,5	Α	4,05	Α
T10	3,5	Α	4,25	Α
T11	3,5	Α	4,33	Α
T12	3,5	Α	4,15	Α

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.8 Zinc

Tabla 3.18. Zinc de los 12 tratamientos en meq/100ml.

Tratamiento	0 d	ías	205 c	lías
T1	3,1	М	3,21	М
T2	3,1	М	3,73	М
Т3	3,1	М	3,65	М
T4	3,1	М	3,67	М
T5	3,1	M	4,07	М
T6	3,1	М	4,61	М
T7	3,1	М	4,10	М
T8	3,1	M	4,65	М
Т9	3,1	М	5,14	М
T10	3,1	М	5,39	М
T11	3,1	М	6,13	М
T12	3,1	М	4,27	М

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo.

3.1.2.6.9 Manganeso

Tabla 3.19. Manganeso de los 12 tratamientos en meg/100ml.

Tratamiento	0 días		205 d	ías
T1	3,6	В	5,10	М
T2	3,6	В	5,85	М
Т3	3,6	В	4,05	В
T4	3,6	В	5,80	М
T5	3,6	В	6,95	М
T6	3,6	В	9,45	М
T7	3,6	В	10,25	М
Т8	3,6	В	11,05	М
T9	3,6	В	9,50	М
T10	3,6	В	11,00	М
T11	3,6	В	11,85	М
T12	3,6	В	10,20	М

Elaboración: La Autora.

A: Alto; M: Medio; B: Bajo

3.2 Costos de producción

Para realizar el análisis de costos de producción de una mezcla forrajera por cada tratamiento en función de la materia seca (DFA, kg/ha/año), se ha considerado: mano de obra para realizar las labores culturales, cortes de igualación, resiembra y aplicación de fertilizantes; análisis de suelo que por recomendación técnica se la debería hacer una vez al año para evaluar la fertilidad del suelo; insumos agrícolas que se ha utilizado en cada tratamiento entre los cuales está la mezcla forrajera, zeolita y pollinaza; y el alquiler de la maquinaria (ver anexo 4, costo de producción de cada tratamiento de una pastura cero labranza). Además se ha tomado el tratamiento con el mayor contenido de disponibilidad forrajera anual (DFA, kg/ha/año) al T12 con el cual se referenciaran los 11 tratamientos restantes incluyendo los costos de materia seca que nos permitirá evaluar ventajas comparativas entre los mismos tanto de producción como de costos. El resumen de los costos de producción se encuentra en la tabla 3.20, pudiéndose observar que incrementan por factores de trabajo.

Tabla 3.20. Costo de un kilogramo de materia seca de pasto por cada tratamiento.*

Trotomionto	DFA**		Costo de producción	Costo Mate	eria Seca
Tratamiento	kg/ha/año	%	(\$)	(\$/kg)	%
T1	8757	59	323	0,04	29
T2	10715	72	418	0,04	31
Т3	11354	76	513	0,05	36
T4	11878	80	608	0,05	40
T5	10927	74	963	0,09	69
T6	12442	84	1058	0,09	67
T7	13499	91	1153	0,09	67
T8	13992	94	1248	0,09	70
Т9	12079	81	1603	0,13	104
T10	12331	83	1698	0,14	108
T11	13992	94	1793	0,13	101
T12	14847	100	1888	0,13	100

Elaboración: La Autora.

3.3 Importancia en términos de comparación entre tratamientos

Finalmente se ha analizado todos los tratamientos (anexo 5, análisis de importancia de variables) según el orden de importancia desde la influencia físico - química que era el objetivo principal, entendiéndose que al ser una comparación entre tratamientos la importancia asignada es por el rango en el que se mueven cada uno de los parámetros y referidos al objetivo general de este ensayo que es el de monitorear la influencia físico química, más no la significancia de cada uno de los parámetros desde el punto de vista agronómico.

^{*}Ver anexo 4 (costo de producción de cada tratamiento de una pastura cero labranza).

^{**}Ver tabla 3.4.

3.3.1 Porcentaje de importancia para los parámetros en estudio

Según datos recomendados por los técnicos del INIAP, expertos en el tema, se ha asignado el 30% de nivel de importancia al rendimiento forrajero (kg MV/ha/año), porque se debe dar una alternativa tecnológica al pequeño y mediano productor ante el uso indiscriminado de la pollinaza sin que su rendimiento se vea afectado.

La materia orgánica es muy significativa para el cultivo de pasto, por lo que se le ha asignado un porcentaje de importancia del 20%.

La importancia que le damos al pH en esta comparación entre tratamientos es por cuanto el incremento de la acidificación, así resulte en porcentajes pequeños, es significativa por los impactos negativos en la disponibilidad de nutrientes, por lo que se le ha dado un porcentaje de importancia del 20%.

Para la C.I.C. en este estudio se le asignó un porcentaje de importancia de 2,5 % el cual es bajo en razón en que el ensayo está localizado con buena capacidad de intercambio.

Todos los macro y micro nutrientes son esenciales e indispensables para los cultivos, sin embargo, en este estudio se realiza una comparación entre tratamientos, más no que significa cada uno de estos elementos dentro del cultivo, por lo que se les ha colocado un porcentaje de importancia del 2% a cada uno, a excepción del hierro al que se le ha colocado un valor del 0,5% en razón a su reacción formando sales insolubles con el fósforo en suelos ácidos; y del nitrógeno al que se le ha asignado un valor del 5% debido a su importancia con el uso de zeolita. En este mismo contexto se colocó el orden de importancia para el resto de parámetros, resumidos en la **tabla 3.21.**

Tabla 3.21. Porcentaje de importancia para los 15 parámetros.

	Parámetros	% Importancia
1	Rendimiento materia verde (kg/ha/año)	30
2	M.O. (%)	20
3	рН	20
4	C.I.C. (meq/100gr)	2,5
5	Σ Bases (meq/100gr)	2,5
6	C.E. (mmhos/cm)	5
7	N (ppm)	5
8	P (ppm)	2
9	K (meq/100ml)	2
10	Ca (meq/100ml)	2
11	Mg (meq/100ml)	2
12	Fe (ppm)	0,5
13	Cu (ppm)	2
14	Zn (ppm)	2
15	Mn (ppm)	2
	TOTAL	100

Elaboración: La Autora.

Fuente: (INIAP, 2013).

La **tabla 3.22** que se cita a continuación, es un ejemplo de cómo se obtiene la importancia para el tratamiento T1 (10,56).

Tabla 3.22. Importancia del tratamiento T1 en comparación con el resto.

1	2	3	4	5	6	7
T1	205 días	Promedio	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)		14500	12	30%	3,6	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	25,62	-	8	20%	1,6	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,27	-	12	20%	2,4	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,76	-	3	2,5%	0,075	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	33,86	-	10	2,5%	0,25	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,38	-	9	5%	0,45	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	23,74	-	12	5%	0,6	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	51,54	-	11	2%	0,22	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,63	-	8	2%	0,16	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	11,49	-	12	2%	0,24	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,68	-	12	2%	0,24	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	109,45	-	12	0,5%	0,06	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,75	-	10	2%	0,2	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,21	-	12	2%	0,24	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	5,10	-	11	2%	0,22	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
		Total	154	100%	10,56	

Elaboración: La Autora.

Pudiéndose observar que:

- En la primera columna están los 15 parámetros analizados y en la segunda, se encuentran los resultados obtenidos a los 205 días para el tratamiento T1.
- En la tercera, está el promedio del rendimiento forrajero en los 4 cortes, porque sus valores fueron similares.
- En la cuarta, se encuentra el orden de importancia. Como cada uno de estos parámetros tiene unidades diferentes se asignó un "Orden de Importancia" que va del 1 al 12, de mayor a menor importancia, es decir, el tratamiento con el valor más alto ocupó el orden de importancia número 1, a excepción de la conductividad eléctrica que se ordenó de menor a mayor, es decir, el valor más bajo ocupó el orden de importancia número 1, porque mientras más bajo mejor influencia tendrá en el suelo. El ordenamiento de mayor a menor importancia de todos los tratamientos se refleja en la séptima columna.

Por ejemplo, el rendimiento forrajero del tratamiento T1 presentó el valor más bajo en comparación con el resto, por lo tanto, ocupa el puesto número 12 (ver tabla 3.22).

- En la quinta, está el porcentaje de importancia, que en el caso del rendimiento forrajero fue del 30% (ver tabla 3.21).
- En la sexta, se indica el total, este dato se obtuvo al multiplicar el "Orden de importancia" por el "% de importancia", es decir, 12 x 30%, para obtener el "Total" de 3,6 (ver tabla 3.22); este mismo procedimiento se utilizó para el resto de parámetros, y al sumarlos se obtuvo un total de 10,56.

En el anexo 5 (análisis de importancia de variables) se muestran los cálculos para el resto de tratamientos. Los resultados obtenidos están resumidos en la tabla 3.23, así mientras más bajo sea este valor, más importante será en comparación con el resto de tratamientos porque los datos estuvieron ordenamos de mayor a menor importancia.

Tabla 3.23. Importancia en términos de comparación entre tratamientos.*

Tratamiento	Total
T1	10,56
T2	8,01
T3	6,61
T4	7,35
T5	8,27
T6	4,63
T7	5,30
T8	2,54
T9	6,05
T10	5,84
T11	6,18
T12	6,30

Elaboración: La Autora.

^{*}Ver anexo 5 (análisis de importancia de variables).

CAPÍTULO IV

4 RESULTADOS Y ANÁLISIS DE RESULTADOS

4.1 Variables

4.1.1 Variables Agronómicas

4.1.1.1 Análisis de Producción de Materia Verde (MV)

La **tabla 4.1** muestra cuatro estadísticos multivariados, los cuales indican que los valores de significancia (*Sig.=0,000*) son menores a 0,05, por lo que podemos rechazar la hipótesis nula de igualdad de medias, es decir, la producción de materia verde no es la misma en los cuatro niveles definidos por el factor *Tiempo*.

Tabla 4.1. Contrastes multivariados para la producción de materia verde.

Pruebas multivariante.

Efecto		Valor	F	Sig.
Tiempo	Traza de Pillai	,596	10,821	,000
	Lambda de Wilks	,404	10,821	,000
	Traza de Hotelling	1,476	10,821	,000
	Raíz mayor de Roy	1,476	10,821	,000

Fuente: SPSS 22.0

Elaboración: La Autora.

El procedimiento de medidas repetidas mediante la prueba de esfericidad de Mauchly se indican en la **tabla 4.2**, donde su significancia W(Sig.=0,649) es mayor a 0,05, por lo tanto, se cumple el supuesto de esfericidad que nos indica que hay homogeneidad de las varianzas calculadas.

Tabla 4.2. Prueba de esfericidad de Mauchly para la producción de materia verde.

Prueba de esfericidad de Mauchly

Medida: MEASURE 1

Efecto inter sujetos	W de Mauchly	Aprox. Chi- cuadrado	G.L.	Sig.
Tiempo	,863	3,336	5	,649

Fuente: SPSS 22.0

Elaboración: La Autora.

A continuación se indica el gráfico que se solicitó al programa SPSS (ver gráfico 4.1), pudiéndose evidenciar que el tratamiento T12 es el más alto a comparación del tratamiento T1.

Las medias marginales estimadas son las medias calculadas de una variable dependiente (m.o.) en un nivel de un factor (tiempo).



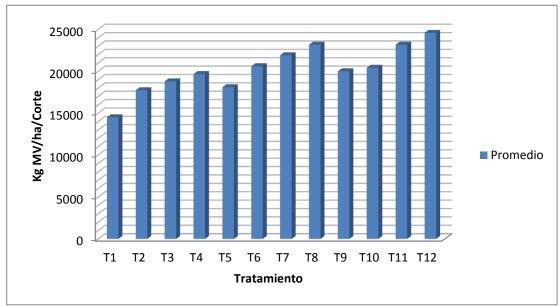
Gráfico 4.1. Medias marginales estimadas de la producción de materia verde.

Fuente: SPSS 22.0

Elaboración: La Autora.

De acuerdo al procedimiento Tukey al 5%, en la **tabla 4.3** se han agrupado los tratamientos en un mismo subconjunto cuando sus medias no difieren entre sí, notándose que el subconjunto 5 (T6, T7, T11, T8 y T12), presenta una alta significancia (*Sig.=0,056*) con respecto al resto de tratamientos lo que indica que fueron los mejores tratamientos en cuanto a producción de materia verde (MV).

Tabla 4.3. Subconjuntos homogéneos con Tukey al 5%. MEASURE_1


Tratamiento		NI.		nto			
Tratamiento		N	1	2	3	4	5
HSD Tukey	1	3	,3650				
	2	3	,4450	,4450			
	5	3	,4550	,4550	,4550		
	3	3		,4725	,4725		
	4	3		,4933	,4933	,4933	
	9	3		,5025	,5025	,5025	
	10	3		,5133	,5133	,5133	
	6	3		,5167	,5167	,5167	,5167
	7	3			,5492	,5492	,5492
	11	3				,5808	,5808
	8	3				,5817	,5817
	12	3					,6183
	Sig.		,128	,381	,096	,143	,056

Fuente: SPSS 22.0

Elaboración: La Autora.

Graficando los datos de la **tabla 3.2** (capítulo III), se observa que el tratamiento con mejor rendimiento forrajero es el T12, seguido por el T8, los mismos que tienen la mayor cantidad de zeolita en su dosificación, pudiéndose apreciar en el **gráfico 4.2.**

Gráfico 4.2. Promedio de la materia verde de los 12 tratamientos con respecto al tiempo.

Elaboración: La Autora.

4.1.1.2 Análisis de Producción de Materia Seca (MS)

En la **tabla 3.4** (capítulo III), se indica que la mejor disponibilidad forrajera anual (DFA) en materia seca es el T12 (14847 kg/ha/año) seguido por el T8 (13992 kg/ha/año) y T11 (13992 kg/ha/año) los mismos que superan al testigo del productor T9 (12079 kg/ha/año) y al testigo absoluto T1 (8757 kg/ha/año). La DFA del T12 fue del 23% superior al T9 y 70% al T1; y la DFA del T8 y T11, fueron 16% superiores al T9 y 60% al T1.

En cuanto a los valores de carga animal (CA) y tasa de crecimiento día (TCD) incrementaron conforme aumenta la DFA, así la mejor carga animal (CA) corresponde al tratamiento T12 con un valor de 2,7 UBA/ha, seguido por los tratamientos T8 (2,6 UBA/ha) y T11 (2,6 UBA/ha); igual comportamiento ocurre con la tasa de crecimiento donde el mejor valor corresponde al T12 (41 kg/día) seguido por el T8 (38 kg/día) y T11 (38 kg/día); cuyos datos son favorables según indican Barrera, León-Valverde, Grijalva & Chamorro en el 2004 de acuerdo al marco teórico.

4.1.2 Variables Físico – Químicas

4.1.2.1 Análisis de Materia Orgánica (%)

La **tabla 4.4** muestra cuatro estadísticos multivariados, los cuales indican que los valores de significancia (Sig.=0,000) son menores a 0,05, por lo que podemos rechazar la hipótesis nula de igualdad de medias, es decir, la materia orgánica no es la misma en los cuatro niveles definidas por el factor *Tiempo*.

Tabla 4.4. Contrastes multivariados para materia orgánica.

Pruebas multivariante

Efecto		Valor	F	Sig.
Tiempo	Traza de Pillai	,956	241,762	,000
	Lambda de Wilks	,044	241,762	,000
	Traza de Hotelling	21,978	241,762	,000
	Raíz mayor de Roy	21,978	241,762	,000

Fuente: SPSS 22.0

Elaboración: La Autora.

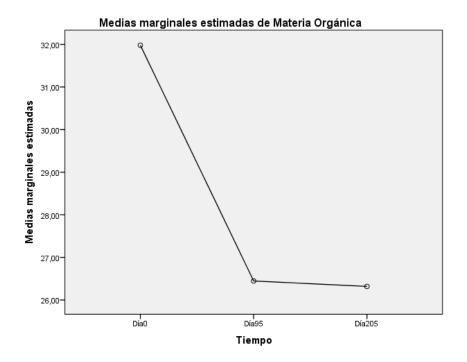
El procedimiento de medidas repetidas mediante la prueba de esfericidad de Mauchly se indican en la **tabla 4.5**, donde su significancia W(Sig.=0,580) es mayor a 0,05, por lo tanto, se cumple el supuesto de esfericidad que nos indica que hay homogeneidad de las varianzas calculadas.

Tabla 4.5. Prueba de esfericidad de Mauchly para materia orgánica.

Prueba de esfericidad de Mauchly

Medida: MEASURE_1

Efecto inter sujetos	W de Mauchly	Aprox. Chi- cuadrado	G.L.	Sig.
Tiempo	,952	1,089	2	,580

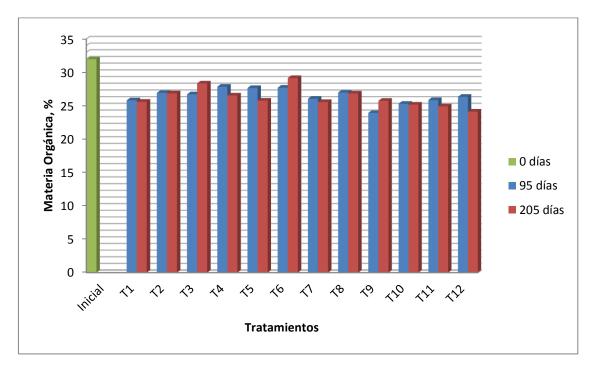

Fuente: SPSS 22.0

Elaboración: La Autora.

A continuación se indica el gráfico obtenido con el programa SPSS 22.0 (ver gráfico 4.3), observándose que existe una tendencia decreciente de materia orgánica conforme avance el tiempo, pero se observa que a partir de los 95

días esta tendencia disminuye drásticamente, posiblemente debido a que la materia orgánica se sigue descomponiendo pero muy lentamente mediante el proceso de humificación para luego ser mineralizada.

Gráfico 4.3. Medias marginales estimadas de la materia orgánica.


Fuente: SPSS 22.0

Elaboración: La Autora.

Los datos obtenidos en la **tabla 3.5** (capítulo III), se los puede apreciar en el **gráfico 4.4**; en donde la materia orgánica de inicio tenía un valor de 31,98%, observándose que la disminución de su contenido por la práctica agronómica fue menor en el tratamiento T6 con un 29,17% y cuya dosificación es una mezcla entre pollinaza y zeolita (los menores rangos considerados para tales insumos, es decir 10000 y 500 kg respectivamente) seguido por los tratamientos T3 y T2 con un 28,36 y 26,88% respectivamente los mismos que contienen 1000 y 500 kg de zeolita en su orden y finalmente en cuarto lugar está el tratamiento T8 con un valor del 26,86% que contiene una mezcla entre pollinaza y zeolita (10000 y 1500 kg, respectivamente).

Los tratamientos que tuvieron mucha pollinaza en su dosificación contarán con materia orgánica residual la misma que con el tiempo pasará por un proceso de descomposición y transformación por acción de los microorganismos hasta obtener productos inorgánicos (Domínguez Vivancos, 1992).

Gráfico 4.4. Porcentaje de materia orgánica de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

4.1.2.2 Análisis de pH del suelo

La **tabla 4.6** muestra cuatro estadísticos multivariados, los cuales indican que los valores de significancia (Sig.=0,037) son menores a 0,05, por lo que podemos rechazar la hipótesis nula de igualdad de medias, es decir, el pH no es el mismo en los cuatro niveles definidas por el factor *Tiempo*.

Tabla 4.6. Contrastes multivariados para pH.

Pruebas multivariante

Efecto		Valor	F	Sig.
Tiempo	Traza de Pillai	,249	3,811	,037
	Lambda de Wilks	,751	3,811	,037
	Traza de Hotelling	,331	3,811	,037
	Raíz mayor de Roy	,331	3,811	,037

Fuente: SPSS 22.0

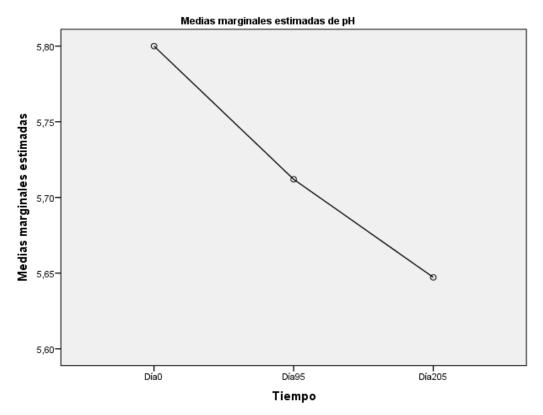
Elaboración: La Autora.

El procedimiento de medidas repetidas mediante la prueba de esfericidad de Mauchly se indican en la **tabla 4.7**, donde su significancia W(Sig.=0,782) es mayor a 0,05, por lo tanto, se cumple el supuesto de esfericidad que nos indica que hay homogeneidad de las varianzas calculadas.

Tabla 4.7. Prueba de esfericidad de Mauchly para pH.

Prueba de esfericidad de Mauchly

Medida: MEASURE 1


Efecto inter sujetos	W de Mauchly	Aprox. Chi- cuadrado	G.L.	Sig.
Tiempo	,979	,492	2	,782

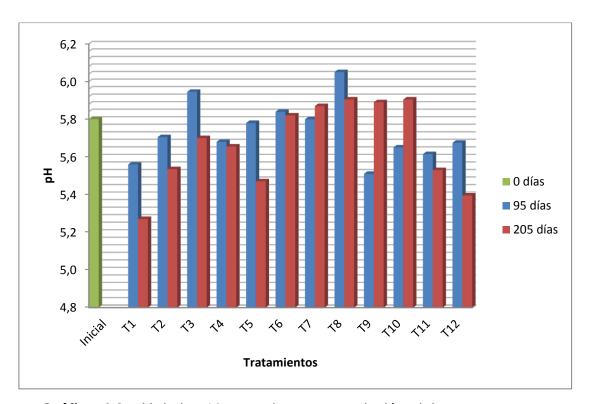
Fuente: SPSS 22.0

Elaboración: La Autora.

A continuación se indica el gráfico obtenido con el programa SPSS (ver gráfico 4.5), observándose que existe una tendencia decreciente de pH conforme avance el tiempo.

Gráfico 4.5. Medias marginales estimadas de pH.

Fuente: SPSS 22.0


Elaboración: La Autora.

El **gráfico 4.6** indica que el pH más bajo que se presentó en este ensayo fue el del testigo absoluto T1 con un pH de 5,27 (ver tabla 3.6, capítulo III) considerado ácido, rango en el cual existen aluminios y hierros altamente solubilizados capaces de formar sales insolubles con el fósforo (ver figura 1.13, capítulo I), disminuyendo la disponibilidad de este macronutriente. Situación que desde el punto de vista de la química del suelo puede ser interpretado como el proceso dinámico de mineralización de materia orgánica incorporada al suelo antes de la aplicación de los tratamientos.

Seguido del T1 se encuentran el tratamiento T12 con un pH de 5,40 que por su alto contenido de pollinaza en su dosificación acidificó el suelo, producto de las reacciones que liberaron muchos iones hidrógeno (H⁺) según indica Fuentes en 1999.

El pH más alto fue el del tratamiento T8 con un valor de 5,91 (ver tabla 3.6, capítulo III), cuyo tratamiento en su dosificación presentaba una mezcla entre zeolita y pollinaza, lo que explica que la estructura del aluminosilicato formado por canales y cavidades que le permite ganar y perder agua reversiblemente e intercambiar los cationes de su estructura sin que ésta se altere (Casals Corella, 1988), posiblemente logró disminuir la acidez del suelo al intercambiar los iones de aluminio (Al⁺³) e hidrógeno (H⁺) por cationes básicos.

Gráfico 4.6. pH de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

4.1.2.3 Análisis de Capacidad de Intercambio Catiónico (meq/100g)

Hipótesis:

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.7** se obtuvo:

Hipótesis Nula H_0 : $\mu \le 60,75$

Hipótesis Alternativa H_1 : $\mu > 60,75$

Estadístico de Prueba:

$$t_{observada} = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{60,08 - 60,75}{\frac{2,55}{\sqrt{12}}} = -0,91$$
 (4.1)

Dónde:

 \bar{x} : media muestral

μ₀: valor inicial de comparación

S: desviación estándar muestral

n: tamaño de la muestra

Región de Rechazo

$$t_{tabulada} (\approx 0.05)(G.L. = 11) = 1.796$$
 (4.2)

Dónde:

G.L.: grados de libertad (n-1)

n: tamaño de la muestra

Decisión

Como $t_{observada}$ (-0,91) es menor a $t_{tabulada}$ (1,796), se acepta la hipótesis nula H_0 de igualdad de las medias, es decir, no existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

La prueba unilateral (de una cola) para la comparación de medias para C.I.C. muestra que no ha habido variación entre la muestra a los 0 días y la muestra a los 205 días, sin embargo muy posiblemente este dato no incrementó porque se trabajó en un suelo de alta capacidad de intercambio catiónico (60 meq/100g), el mismo que para mantener el equilibrio del sistema del complejo de intercambio necesita una alta aportación de cationes (Oliveira Prendes, Afif Khouri, & Mayor López, 2006) lo que se refleja en la sumatoria de bases.

4.1.2.3.1 Análisis de Sumatoria de Bases

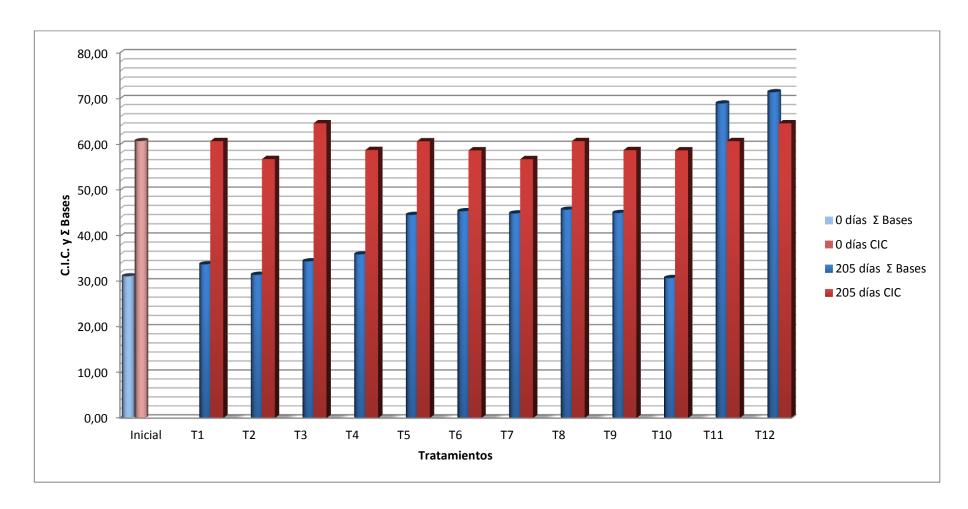
Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.8** se obtuvo:

 $\bar{x} = 44,42$ \rightarrow Media muestral

 $\mu_0 = 31,24$ \rightarrow Valor inicial de comparación

S = 13,36 \rightarrow Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra


 $t_{observada}=3{,}42$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (3,42) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

La tabla 3.8 (capítulo III) nos indica que el mayor contenido de Sumatoria de Bases se da en el tratamiento T12 con un valor de 71,41 meq/100ml, seguido por los tratamientos T11, T8 y T6 con valores de 68,95; 45,77 y 45,44 meq/100ml respectivamente (ver gráfico 4.7), los mismos que presentaron los mejores rendimientos (ver tabla 3.2, capítulo III) y en su dosificación disponían de mezclas entre zeolita y pollinaza, es decir, que los nutrientes del suelo con aporte de zeolita se hicieron más disponibles en comparación de los tratamientos que no la contenían, muy posiblemente debido a lo mencionado por Odetti & Bottani en el 2006 y a Notario del Pino, Arteaga Padron, González Martin, & García Hernandez en 1944, donde señalan que este mineral presenta una enorme área en su interior que le da una estructura globular y cavernosa para encapsular los nutrientes, pudiendo actuar como un fertilizante de liberación controlada.

Gráfico 4.7. Capacidad de Intercambio Catiónico y Sumatoria de Bases de los 12 tratamientos con relación al tiempo. **Elaboración:** La Autora.

4.1.2.3.2 Análisis de Saturación de Bases

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.9** se obtuvo:

 $\bar{x} = 74$ \rightarrow Media muestral

 $\mu_0 = 51$ \rightarrow Valor inicial de comparación

S = 0.21 — Desviación estándar muestral

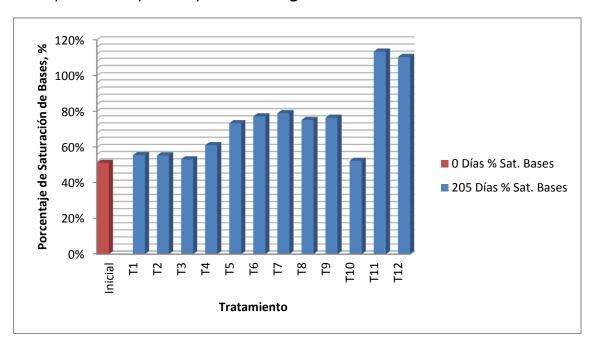
n = 12 \rightarrow Tamaño de la muestra

 $t_{observada} = 3,82$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (3,82) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Los tratamientos T11 y T12 muestran una sobresaturación de bases (ver tabla 3.9, capítulo III), lo que significa una alta disponibilidad de cationes básicos (Ca, Mg, K, Na), debido a que el aluminosilicato (zeolita) almacenó un exceso de nutrientes (proporcionados por la pollinaza) y conforme avance el tiempo los irá liberando.


Los tratamientos T8, T7 y T6, con mezclas entre zeolita y pollinaza, presentan también altos porcentajes de saturación de bases de 75,34%; 79,13% y 77,37% (ver tabla 3.9, capítulo III) respectivamente, es decir, dichos tratamientos disponen de más cationes disponibles en el complejo de intercambio.

Los tratamientos T1, T2, T3 y T10 presentaron los valores más bajos de saturación de bases, esto me indica que, un número creciente de los sitios de intercambio fueron ocupados por Al⁺³ y H⁺; y que existe pérdida de Ca, Mg, K y Na del sistema (Salinas & Valencia, 1984). Los tratamientos T2, T3 contenían únicamente zeolita en su dosificación y su saturación de bases no fue alta

seguramente porque no disponían de cationes (proporcionados por la pollinaza) para poder realizar el intercambio.

Lo expresado se puede apreciar en el gráfico 4.8.

Gráfico 4.8. Porcentaje de Saturación de bases de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

4.1.2.4 Análisis de Conductividad Eléctrica (mmhos/cm)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.10** se obtuvo:

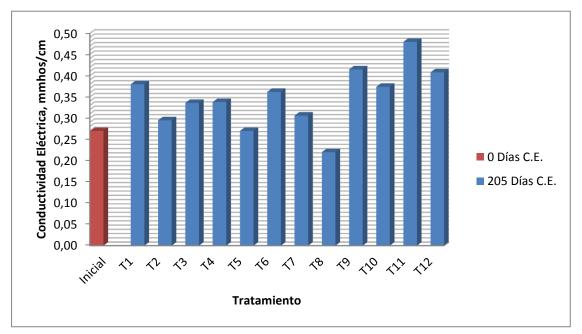
 $\bar{x} = 0.35$ \rightarrow Media muestral

 $\mu_0 = 0.27$ \rightarrow Valor inicial de comparación

S = 0.07 — Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra

 $t_{observada}=3{,}86$


 $t_{tabulada} = 1,796$

Como $t_{observada}$ (3,86) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Los datos obtenidos en la **tabla 3.10** (Conductividad eléctrica de los distintos tratamientos en mmhos/cm) (capítulo III), proyectados en el **gráfico 4.9** muestran que los tratamientos con mayor contenido de sales son los que contienen 20000 kilogramos por hectárea de pollinaza en su dosificación, seguidos por el testigo absoluto T1.

El tratamiento con el menor contenido de sales es el T8 con una conductividad eléctrica de 0,22 mmhos/cm cuya dosificación es una mezcla entre zeolita y pollinaza, lo que hace prever que lo indicado sobre la estructura de la zeolita, ayudará a la retención de sales, evitando lixiviados.

Gráfico 4.9. Conductividad Eléctrica de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

4.1.2.5 Nutrientes del suelo

4.1.2.5.1 Análisis de Nitrógeno (ppm)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.11** (capítulo III), se obtuvo:

 $\bar{x} = 44,30$ \rightarrow Media muestral

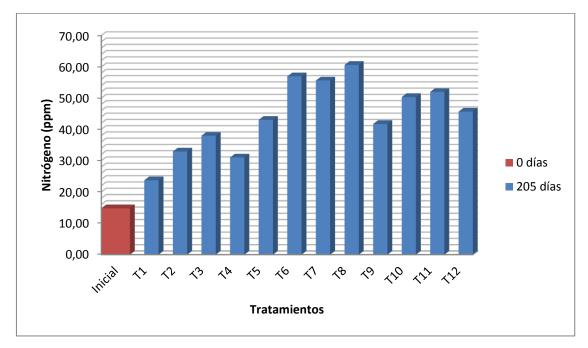
 $\mu_0 = 14,80$ \longrightarrow Valor inicial de comparación

S = 12,30 \rightarrow Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra

 $t_{observada} = 8.31$

 $t_{tabulada} = 1,796$


Como $t_{observada}$ (8,31) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

En el **gráfico 4.10** se ha graficado los datos obtenidos en la **tabla 3.11** (capítulo III), recibiendo como resultado la influencia de la zeolita con respecto al nitrógeno, y comprobando lo que Morante Carballo en el 2005 manifestó el poder de adsorción de la zeolita por el NH₄⁺; así los tratamientos T2, T3 y T4 con valores de 35,66; 37,98 y 31,01 ppm de Nitrógeno respectivamente y cuya dosificación fue únicamente zeolita, presentan un mayor contenido con respecto al testigo absoluto T1 que contiene solo el 23,74 ppm de Nitrógeno. Al comparar los tratamientos T6, T7 y T8 (Zeolita + Pollinaza) con respecto al T5 (Pollinaza) vemos el incremento de nitrógeno e igualmente al comparar el T10, T11 y T12 (Zeolita + Pollinaza) con respecto al T9 (Pollinaza) se puede llegar a la misma observación.

El tratamiento con menor contenido de nitrógeno fue el del testigo absoluto T1 (23,74 ppm) y el tratamiento con mayor contenido de nitrógeno fue el T8 (60,60 ppm) lo que explica ser el tratamiento con el segundo mejor rendimiento con respecto al resto.

Se valida la hipótesis señalada en la presente tesis al decir que la zeolita evitó la pérdida de nitrógeno de la pollinaza, elemento que pudo ser lixiviado en forma de nitrato por drenaje, por ende se remediarán los problemas de contaminación de suelo, agua y atmósfera como menciona Sánchez Nava en el 2007. Se evitó la desnitrificación y la volatilización del nitrógeno, muy posiblemente debido a que la zeolita fijó un mayor contenido de este elemento para luego ser absorbido en mayores cantidades por las plantas superiores, esto se vio reflejado en rendimiento, el mismo que fue mayor en los tratamientos que contenían zeolita.

Gráfico 4.10. Nitrógeno de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 24,69% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.2 Análisis de Fósforo (ppm)

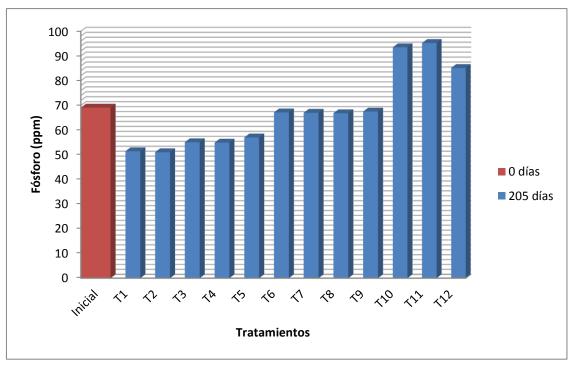
Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.12** (capítulo III) se obtuvo:

 $\bar{x} = 67,50$ \rightarrow Media muestral

 $\mu_0 = 69,14$ \rightarrow Valor inicial de comparación

S = 16,20 \rightarrow Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra


 $t_{observada} = -0.35$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (-0,35) es menor a $t_{tabulada}$ (1,796), se acepta la hipótesis nula H_0 de igualdad de las medias, es decir, no existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Aunque no haya significancia estadística se puede observar que hay una diferencia numérica sobre todo en los últimos tratamientos T11, T10 y T12 los cuales presentan el mayor contenido de Fósforo, con valores de 95,23; 93,52 y 85,16 ppm respectivamente (ver tabla 3.12, capítulo III), proyectados en el gráfico 4.11, cuya dosificación son mezclas entre zeolita y pollinaza. Los tratamientos con menor contenido de zeolita son los tratamientos T2 y T1 con valores de 51,54 y 50,38 ppm de fósforo respectivamente.

Gráfico 4.11. Fósforo de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 20,89% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.3 Análisis de Potasio (meg/100ml)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.13** (capítulo III) se obtuvo:

 $\bar{x} = 0.75$

→ Media muestral

 $\mu_0 = 0.60$

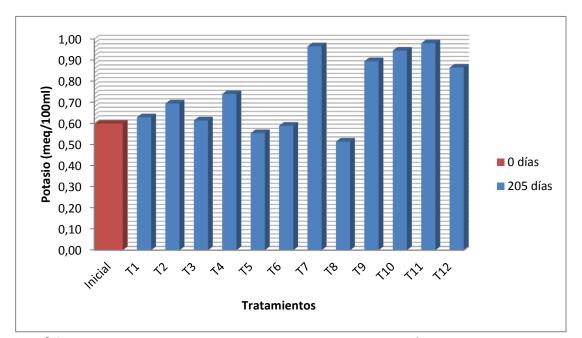
→ Valor inicial de comparación

S = 0.22

→ Desviación estándar muestral

n = 12

→ Tamaño de la muestra


 $t_{observada} = 2{,}39\,$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (2,39) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Los datos obtenidos en la **tabla 3.13** (capítulo III), proyectados en el **gráfico 4.12**, indican que el tratamiento con mayor contenido de potasio fue el tratamiento T11 con 0,98 meq/100ml, seguido por los tratamientos T7, T10 con valores de 0,97 y 0,95 meq/100ml respectivamente, los cuales contenían una mezcla entre zeolita y pollinaza.

Gráfico 4.12. Potasio de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 24,37% lo que nos indica que hubo homogeneidad entre las variables en estudio.

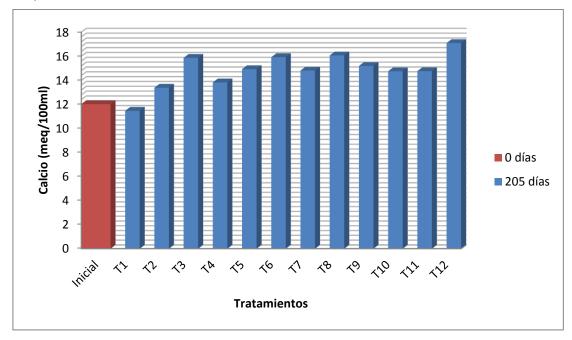
4.1.2.5.4 Análisis de Calcio (meq/100ml)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.14** (capítulo III) se obtuvo:

 $\bar{x} = 15.01$ \rightarrow Media muestral

 $\mu_0 = 12,04$ \rightarrow Valor inicial de comparación

S = 1,94 \rightarrow Desviación estándar muestral


n = 12 \rightarrow Tamaño de la muestra

 $t_{observada} = 5,31$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (5,31) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.14** (capítulo III), proyectados en el **gráfico 4.13**, muestran que el tratamiento con mayor contenido de calcio es el T12 (pollinaza + zeolita) con un valor de 17,10 meq/100ml y el tratamiento con el menor contenido fue el T1 (testigo absoluto) con un valor de 11,49 meq/100ml.

Gráfico 4.13. Calcio de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 20,95% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.5 Análisis de Magnesio (meq/100ml)

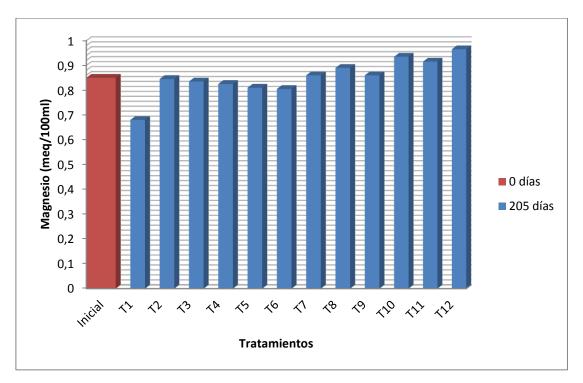
Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.15** (capítulo III) se obtuvo:

 $\bar{x} = 0.88$ \rightarrow Media muestral

 $\mu_0 = 0.85$ \rightarrow Valor inicial de comparación

S = 0.07 \rightarrow Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra


 $t_{observada} = 1,41$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (1,41) es menor a $t_{tabulada}$ (1,796), se acepta la hipótesis nula H_0 de igualdad de las medias, es decir, no existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.15** (capítulo III), proyectados en el **gráfico 4.14**, muestran que el tratamiento con mayor contenido de magnesio es el T12 (pollinaza + zeolita) con un valor de 0,97 meq/100ml y el tratamiento con menor contenido es el T1 con un valor de 0,68 meg/100ml.

Gráfico 4.14. Magnesio de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 20,41% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.6 Análisis de Hierro (meg/100ml)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.16** (capítulo III) se obtuvo:

 $\bar{x} = 279,89$

→ Media muestral

 $\mu_0 = 95,80$

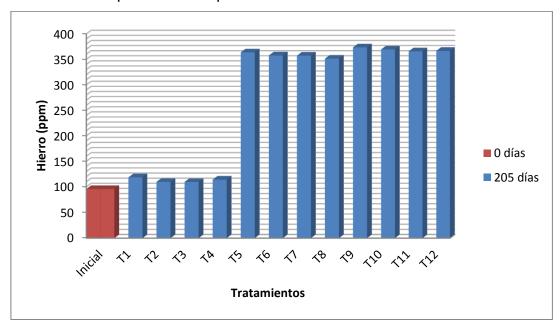
→ Valor inicial de comparación

S = 120,81

→ Desviación estándar muestral

n = 12

→ Tamaño de la muestra


 $t_{observada} = 5,28$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (5,28) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.16** (capítulo III), proyectados en el **gráfico 4.15**, muestran que los tratamientos con mayor contenido de hierro son únicamente los que contienen pollinaza en su dosificación.

Gráfico 4.15. Hierro de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 16,05% lo que nos indica que hubo homogeneidad entre las variables en estudio.

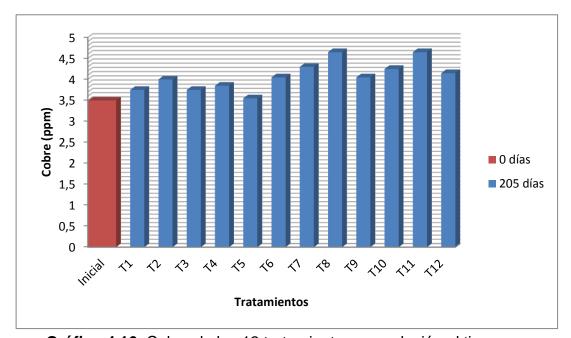
4.1.2.5.7 Análisis de Cobre (ppm)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.17** (capítulo III) se obtuvo:

 $\bar{x} = 4.08$ \rightarrow Media muestral

 $\mu_0 = 4,50$ \rightarrow Valor inicial de comparación

S = 0.46 \rightarrow Desviación estándar muestral


$$n = 12$$
 \rightarrow Tamaño de la muestra

$$t_{observada} = 4,44$$

$$t_{tabulada} = 1,796$$

Como $t_{observada}$ (4,44) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.17** (capítulo III), proyectados en el **gráfico 4.16**, muestran que el tratamiento con mayor contenido de cobre es el tratamiento T8 con un valor de 4,65 ppm y el tratamiento con menor contenido es el T5 con un valor de 3,55 ppm.

Gráfico 4.16. Cobre de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 16,69% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.8 Análisis de Zinc (ppm)

Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.18** (capítulo III) se obtuvo:

 $\bar{x} = 4.50$

→ Media muestral

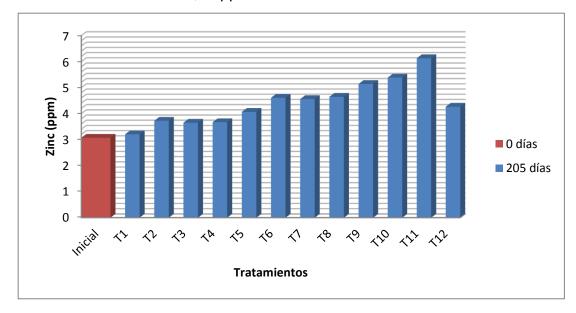
 $\mu_0 = 3.07$

→ Valor inicial de comparación

S = 0.91

→ Desviación estándar muestral

n = 12


→ Tamaño de la muestra

 $t_{observada} = 5,45$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (5,45) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.18** (capítulo III), proyectados en el **gráfico 4.17**, muestran que el tratamiento con mayor contenido de zinc es el tratamiento T11 con un valor de 6,13 ppm y el tratamiento con menor contenido es el T1 con un valor de 3,21 ppm.

Gráfico 4.17. Zinc de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 14,97% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.1.2.5.9 Análisis de Manganeso (ppm)

Hipótesis:

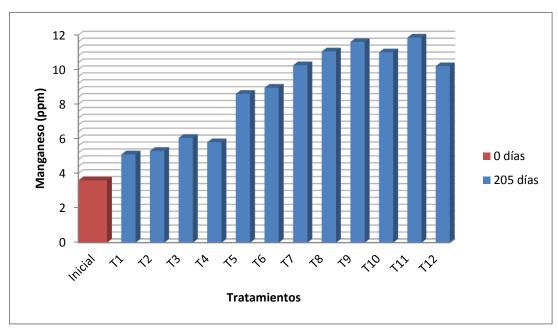
Aplicando la prueba unilateral (de una cola) para la comparación de medias en la **tabla 3.19** (capítulo III) se obtuvo:

 $\bar{x} = 8.81$ \rightarrow Media muestral

 $\mu_0 = 3,60$ \rightarrow Valor inicial de comparación

S = 2,66 \rightarrow Desviación estándar muestral

n = 12 \rightarrow Tamaño de la muestra


 $t_{observada} = 6,79$

 $t_{tabulada} = 1,796$

Como $t_{observada}$ (6,79) es mayor a $t_{tabulada}$ (1,796), se acepta la hipótesis alternativa H_1 , es decir, existe diferencia estadísticamente significativa entre las dos muestras tomadas a los 0 días y a los 205 días.

Al graficar los datos obtenidos en la **tabla 3.19** (capítulo III), proyectados en el **gráfico 4.18**, muestran que el tratamiento con mayor contenido de manganeso es el tratamiento T11 con un valor de 11,85 ppm y el tratamiento con menor contenido es el T1 con un valor de 5,10 ppm. Además se puede observar que los tratamientos con mayor contenido de manganeso son los que contienen pollinaza en su dosificación.

Gráfico 4.18. Manganeso de los 12 tratamientos con relación al tiempo.

Elaboración: La Autora.

Se determinó el coeficiente de variación CV (%) cuyo dato obtenido fue de 20,56% lo que nos indica que hubo homogeneidad entre las variables en estudio.

4.2 Análisis de costos de producción.

Se ha analizado los costos de producción en función del rendimiento forrajero en materia seca **(ver tabla 3.3, capítulo III)** indicando que los tratamientos con los costos más altos son el T10, T9, T11 y T12 con valores de 0,14; 0,13; 0,13 y 0,13 centavos por kilogramo en materia seca y el tratamiento con el costo más bajo es el T1 con 0,04 centavos por kilogramo en materia seca.

El tratamiento T8 representa un 94% de DFA con respecto al T12, que sumado al hecho de que el costo por kilogramos en materia seca es de un 70% con respecto a la misma referencia (ver tabla 3.20, capítulo III), da como resultado que a este tratamiento se lo considere el de mayor rentabilidad y mejores

ventajas comparativas incluyendo la influencia físico – química con respecto al resto de tratamientos.

4.3 Análisis de importancia en términos de comparación entre tratamientos.

En la **tabla 3.21** (capítulo III) se observa que el tratamiento T8 obtuvo los mejores resultados al compararlos con el resto de tratamientos, cuyo dato justifica porque se obtuvo el mejor pH y resultó el segundo mejor rendimiento (94%) con respecto al T12 (mayor rendimiento forrajero) y además como se indica en el párrafo anterior es económicamente viable.

CAPÍTULO V

5 CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES:

- Las prácticas ganaderas diarias que son, riego, dispersión de heces, cortes de igualación y rotación de ganado no fueron interrumpidas en ningún momento lo que pudo interferir en la obtención de los diferentes parámetros físicos y químicos.
- Al finalizar con esta investigación se cumplió satisfactoriamente con los objetivos tanto general y específicos propuestos al inicio de este ensayo, y se acepta la hipótesis verdadera (H₁); la Capacidad de Intercambio Catiónico del suelo a los 205 días no fue significativa con respecto al valor tomado a los 0 días (60,80 meq/100g) ya que por ser muy alta ésta demandó de una alta aportación de cationes para mantener el equilibrio del sistema del complejo de intercambio, pero fue reflejado en la Sumatoria de Bases cuyos valores incrementaron con el aporte de zeolita en los distintos tratamientos, que por su estructura posiblemente logró encapsular los nutrientes para luego irlos liberando de manera controlada.
- Los tratamientos con aporte de zeolita obtuvieron una mayor concentración de Nitrógeno en el suelo, evitando que este se lixivie y que posiblemente contamine el suelo, agua y atmósfera, por lo tanto la fertilización orgánico mineral (pollinaza y zeolita) redujo los efectos negativos de la aplicación inadecuada de los abonos orgánicos.
- El pH inicial del lote experimental fue de 5,80 y a los 205 días bajó a 5,40 en el tratamiento T12 y a 5,27 en el testigo absoluto T1; por lo que se puede concluir que la presencia de zeolita evitó una mayor acidificación.

- Se consiguió mejores condiciones físico químicas del suelo con el tratamiento T8, lo que lleva a utilizar un fertilizante orgánico mineral en dosis de 10000 kg pollinaza con 1500 kg zeolita por hectárea al año, debiendo aclarar que esta conclusión se aplica en el esquema de tratamientos para este tipo de suelo, con el manejo dado por el productor, piso altitudinal, clima y condiciones atmosféricas.
- Al comparar costos de producción y rendimiento en materia seca, el mejor tratamiento es el T8 (10000 kg pollinaza + 1500 kg zeolita por hectárea) dándonos un rendimiento de 13992 kg/ha/año con un costo de 0,09 centavos por kilogramo en materia seca, lo que le hace muy rentable ya que el testigo del productor presenta 12079 kg/ha/año con un costo de 0,13 centavos por kilogramos en materia seca. Igualmente se obtiene una mejora en carga animal (CA) y tasa de crecimiento por día (TCD).
- La práctica recurrente de los productores de la zona es la aplicación de 20000 kg por hectárea de pollinaza (T9) se ve reflejada en un incremento de las sales solubles en el suelo lo cual ocasionaría que terminen contaminando los lechos acuíferos debido a la lixiviación.
- En referencia a lo anterior y si bien para la mayoría de cultivos la conductividad máxima no debe ser superior a 1 mmhos/cm, en la práctica y en cultivos bajo invernadero o en donde existe fertirriego éstos resultan más altos, afectando la presión osmótica y dispersión de los suelos o sustratos. En el caso puntual de los tratamientos T9, T10, T11 y T12 donde el valor de pollinaza es el máximo (20000 kilogramos por hectárea) sus valores de conductividad eléctrica a los 205 días de ensayo son de 0,42; 0,37; 0,48 y 0,41 mmhos/cm respectivamente, siendo los valores más altos con respecto al resto de tratamientos, que no presenta riesgos de salinidad, pero progresivamente con el uso de estas prácticas pueden terminar afectando por infiltración, presión osmótica y dispersión de los suelos.

- El tratamiento T1 (testigo absoluto) reflejó las condiciones menos favorables en orden de importancia tanto de rendimiento forrajero como manejo sustentable del suelo.
- El uso excesivo de pollinaza conduce a un gran incremento del contenido de hierro que puede llevar a producir toxicidad en el suelo en especial a los que contienen pH bajo.

5.2 RECOMENDACIONES:

Se les ha realizado en base a las conclusiones.

- Realizar investigaciones similares en otras zonas ganaderas, pero para ello se debe tomar en consideración el manejo dado por el productor, y las condiciones geográficas tales como piso altitudinal, clima y condiciones atmosféricas porque pueden interferir en la obtención de los resultados.
- En los rangos de dosificación de 500 a 1500 kg de zeolita y con 10000 a 20000 kg de pollinaza se tiene un buen comportamiento físico – químico, por lo que se debería ampliar el estudio y buscar la diminución del aporte de pollinaza con alternativas como compostaje.
- Utilizar el tratamiento T8 como sustitución del testigo del productor, lo que muy posiblemente va a contribuir en un pastoreo adicional como consecuencia del incremento en la disponibilidad forrajera.
- Continuar con la investigación realizando un estudio comparativo entre el T8
 y los fertilizantes químicos, sería aconsejable además hacer un estudio
 similar pero analizando tiempos de corte.

ANEXOS

ANEXO 1. Metodología de análisis de suelo del INIAP.

1. PREPARACIÓN DE LA MUESTRA

Principio

Todos los resultados de un análisis de suelo se reportan en base a la fracción del mismo menor a 2 mm, a menos que se especifique de otra manera. De ahí la importancia de la preparación de la muestra.

Procedimiento

- Esparcir la muestra de terreno en una bandeja de plástico (papel periódico).
- Disgregar manualmente los terrones eliminando los residuos grandes de plantas.
- Secar al aire.
- Una vez seca, moler la muestra y tamizarla a través de un tamiz de 2 mm.
 La fracción menor a 2 mm se homogeniza y constituye la muestra que se somete a los procedimientos analíticos usuales.

2. DETERMINACIÓN DE TEXTURA-MÉTODO DE BOUYOUCOS MODIFICADO

Objetivo

Consiste en la determinación de los porcentajes de arena, limo y arcilla presentes en la fracción mineral del suelo. Estos porcentajes se obtienen mediante la separación de las partículas en grados clasificados de acuerdo a su diámetro.

Principio

Análisis granulométrico por densimetría con hidrómetro de Bouyoucos. En la suspensión de suelo colocada en una probeta de sedimentación, la densidad a una profundidad determinada va disminuyendo a medida que se sedimentan las partículas. Como éstas sedimentan a velocidades proporcionales a su

tamaño, seleccionando los tiempos, una lectura de la densidad puede servir de medida del contenido limo más arcilla o de arcilla.

Reactivos

Hidróxido de sodio 0.1 N

- Pesar 4 gramos de hidróxido de sodio, disolver y aforar a un litro.

Procedimiento

- Pesar 50 gramos de suelo seco y molido en vasos de precipitación plásticos.
- Añadir 40 ml de defloculante (hidróxido de sodio 0.1 N).
- Dejar en reposo por 24 horas.
- Terminado el reposo licuar la muestra durante 10 minutos, trasvasar la muestra a una probeta de 1000 ml procurando que no quede en el frasco restos de suelo y aforar.
- Agitar 20 segundos y seguidamente colocar el densímetro en la probeta.
- Realizar la primera lectura a los 40 segundos.
- Dejar reposar 2 horas y tomar la segunda lectura con densímetro sin agitación después de 40 segundos de colocado.

Cálculos

% de Arena = 100 – (1ra. Lectura x 2)

% de Arcilla = 2da. Lectura x 2

% de Limo = 100 - (%Arena + %Arcilla)

3. DETERMINACIÓN DE pH

Objetivo

La determinación del pH sirve de pauta para interpretar algunas características de los suelos relacionadas especialmente con sus propiedades y el funcionamiento general en cuanto a la utilización y solubilidad de los nutrientes del suelo se refiere.

Principio

Mezcla de un suelo con agua destilada, agitación, reposo 30 minutos y medida del potencial de hidrógeno utilizando un potenciómetro (electrodo de vidrio). La dilución utilizada es (1:2.5) el líquido puede ser agua (pH-H2O); KCl 1M (pH-KCl) o CaCl2 0.01 M (pH-CaCl2).

EQUIPO

Potenciómetro

Reactivos

Solución buffer pH 4, pH 7 y pH 9

Procedimiento

Tomar 20 ml de suelo y agregar 50 ml de agua destilada, agitar por 5 minutos a 400 rpm, dejar en reposo por 30 minutos, luego leer en el potenciómetro previamente estandarizado.

Interpretación

pH - H2O

5.5 Ácido

5.6 a 6.4 Ligeramente ácido

6.5 a 7.5 Prácticamente neutro

7.6 a 8.0 Ligeramente alcalino

8.1 Alcalino

Estos niveles son válidos cuando el pH se ha determinado en una suspensión de relación (suelo: agua) (1:2.5).

Nota: Para determinar pH en materiales orgánicos se usa 20 g de muestra y 100 ml de agua.

4. DETERMINACIÓN DE MATERIA ORGANICA MÉTODO DE WALKLEY Y BLACK

Objetivo

Obtener la concentración de carbón orgánico, para sacar la relación carbónnitrógeno a fin de determinar el grado de formación, la evolución de un suelo y la disponibilidad del nitrógeno para las plantas y los microorganismos. El carbono orgánico tiene también, a través de la materia orgánica, una acción en la estabilidad estructural, la capacidad de intercambio, el desarrollo de los microorganismos, etc.

Principio

Oxidación en frío del carbono por un exceso de dicromato de potasio en medio sulfúrico, y dosificación del exceso de dicromato de potasio con la sal de Morh.

Equipo y materiales

- Balanza analítica, 1/10 mg
- Erlenmeyers de 250 ml
- Buretas de precisión de 25 ml
- Pipetas de diferentes volúmenes
- Probetas
- Vasos
- Cronómetro

Reactivos

Ácido sulfúrico concentrado

Acido orto-fosfórico concentrado

Solución de dicromato de potasio 1 N

 Para un litro de solución pesar 49.04 g de dicromato de potasio (K2Cr2O7) conservado en un desecador, disolver y aforar a 1 litro con agua destilada.

Difenilamina

 Disolver 0.5 g de difenilamina en 100 ml de ácido sulfúrico concentrado y verter en 20 ml de agua destilada, conservar en frasco oscuro (trabajar bajo campana).

Solución de sulfato ferroso (Sal de Mohr) 0.5 N

 Pesar 139,01 g de sulfato ferroso heptahidratado y agregar alrededor de 500 ml de agua destilada. Añadir 15 ml de ácido sulfúrico concentrado, mezclar y completar con agua destilada hasta 1000 ml.

Para determinar la normalidad; medir 5 ml de dicromato de potasio 1 N, añadir 100 ml de agua destilada, 5 ml de ácido fosfórico, 5 gotas de difenilamina, y titular con la solución de sulfato ferroso y calcular el factor de corrección de la normalidad.

Procedimiento

- La muestra de suelo debe estar molida y libre de raicillas y restos de materia orgánica grandes para el efecto la muestra deberá ser tamizada sobre papel encerado (tamiz de 0.25 mm).
- Pesar de 0.1 g de suelo cuando existe mucha materia orgánica y 0.5 g cuando el suelo tiene poca materia orgánica.
- Agregar 5 ml de dicromato de potasio 1 normal por muestra y añadir 10 ml de ácido sulfúrico concentrado al 97% por muestra.
- Agitar muy suavemente durante un minuto a fin de homogenizar, evitando que la muestra se adhiera a las paredes.
- Dejar en reposo durante 30 minutos. Luego de este tiempo agregar en el siguiente orden: 100 ml de agua destilada, 5 ml de ácido fosfórico al 85% y 5 gotas de difenilamina.
- Titular el exceso de dicromato por medio de la solución de sal de Morh de concentración 0.5 normal.
- El viraje de color se hace del azul hasta verde, anotar el volumen consumido.

Siempre se analizará un blanco siguiendo el mismo procedimiento que con la muestra.

Cálculos

 $MO(\%) = (Vo - V) \times N \times 0.39 \times 1.72 \times 1.1/PM$

<u>Dónde:</u>

- Vo = Volumen gastado en la titulación del blanco
- V = Volumen gastado en la titulación de la muestra
- N = Normalidad exacta del sulfato del hierro
- 0.39 = Peso químico equivalente del carbono
- 1.72 = Constante de conversión de C a MO sobre la hipótesis de que la materia orgánica contiene 58% de C en la generalidad de suelos encontrados en el Ecuador.
- 1.1 = Error de conversión de C a MO (10%)
- PM = Peso de la muestra de suelo
- 0.39 = 3 x 1.3/100 (3 responde al peso equivalente del carbono y 1.3 es un factor de compensación por la combustión incompleta de la materia orgánica en este procedimiento).

Nota: El contenido de materia orgánica en residuos vegetales o abonos orgánicos es analizado a través del método de calcinación (a 550 o C por 4 horas).

5. DETERMINACIÓN DE CONDUCTIVIDAD ELÉCTRICA

Objetivo

Determinar el contenido de sales solubles presentes en el suelo, cuyo resultad es muy importante para proyectos de riego y sobre todo para establecer la factibilidad de utilización del mismo en la agricultura, u otros usos.

Principio

La medición se basa en el principio de que las sales disueltas conducen la corriente eléctrica en proporción a la concentración de las sales o

constituyentes ionizados. La conductividad equivalente se define como la conductividad de una cantidad de dilución que contenga un equivalente gramo del electrolito, colocada entre los electrodos separados 1 cm y dispuestos de modo que cubran los lados opuestos del volumen de la solución. Los datos se expresan en dS/m; considerando las siguientes equivalencias:

1 S/cm = 1 mhos/cm

1 dS/m = 1 mmhos/cm = 1mS/cm

Reactivos

Solución de cloruro de potasio 0.01 M

 Pesar 0.7470 g de KCI previamente seco 105°C por 2 horas y disolver en un litro de agua desionizada y destilada de buena calidad. Esta solución da una conductividad de 1.412 mS/cm a 25°C.

Equipos y materiales

- Vasos de 250 ml plástico
- Embudo Buchner
- Puente de conductancia (conductímetro)
- Papel filtro cualitativo
- Bomba de vacío
- Tubos de ensayo
- Varillas

Procedimiento

- Calibrar el conductímetro con la solución de cloruro de potasio 0.01M
- Obtener el extracto de saturación
- Medir la resistencia eléctrica de la solución en las escalas dadas por el equipo.

6. DETERMINACIÓN DE NITRÓGENO AMONIACAL

Objetivo

Cuantificar el nitrógeno amoniacal disponible para las plantas en el suelo.

Principio

El compuesto de azul indofenol se obtiene en la reacción a pH alto del amonio e hipoclorito. El calcio y el magnesio se complejan con el citrato para evitar interferencias.

Equipos y materiales

Fotocolorímetro

Balanza Analítica

Agitador Automático axial

Dispensador de volumen

Bandejas porta vasos

Carros para transporte de bandejas

Medidor de suelos de capacidad 2.5ml

Reactivos

Fenol

Hidróxido de Sodio

Hipoclorito de Sodio (Cloretol)

Agua destilada

Cloruro de Amonio

Preparación de "Fenol básico"

 Disolver 100 g de NaOH en 500 ml de agua destilada, dejar enfriar y añadir 138 g de fenol en cristales o 130 ml de fenol líquido al 92% y llevar a volumen de 1 litro.

Solución de hipoclorito de sodio

- Mezclar 1 volumen de NaClO4 con un volumen de agua destilada

Solución patrón de Nitrógeno

- Pesar 3.876 g de NH4Cl y disolver en agua destilada hasta un volumen de 1 litro, de esta solución que tiene una concentración de 1000 μg/ml, tomar 10 ml y llevar a un volumen de 1 litro con la solución extractante para obtener una concentración final de 10 μg/ml.

Procedimiento

- Medir 2.5 ml de suelo, agregar 25 ml de solución extractante (Olsen Modificado pH 8.5), agitar 10 minutos y filtrar utilizando papel filtro Whatman qualitativo #1 o equivalente.
- Tomar 1 ml del filtrado, agregar 4 ml de fenol básico y 5 ml de solución de hipoclorito. Dejar reposar por 1 hora en oscuridad.
- Leer absorbancia a una longitud de onda de 630 nm.
- Preparar una curva de calibración usando como punto alto una solución patrón de N de 10 ppm y como blanco la solución extractante, proceder como se muestra en la Ilustración 4.
- A 1 ml de cada solución estándar resultante (0, 2.5, 5, 7.5 y 10 ppm) añadir 4 ml de fenol básico y 5 ml de solución de hipoclorito. Dejar reposar por 1 hora en oscuridad y leer absorbancia a una longitud de onda de 630 nm.
- Construir la curva de calibración utilizando las siguientes concentraciones:
 0-25- 50-75-100 ppm N-NH4 +.
- Interpolar los datos de absorbancia de las muestras en la curva de calibración antes construida y reportar directamente en mg de N por 1000 ml de suelo (ppm).

Cálculos

N-NH4 + (ppm) = LR;

Dónde:

LR: Interpolación del valor de concentración en base a la absorbancia de la muestra dentro de la curva de regresión

7. DETERMINACIÓN DE FÓSFORO

Objetivo

Cuantificar el fósforo disponible para las plantas en el suelo.

Principio

Se basa en la medición de la intensidad de color producido por el complejo azul de fosfomolibdato. Este complejo que es heteropoliácido se forma por la reacción del ion ortofosfato con el ion molibdato en medio ácido. El ácido ascórbico reduce parcialmente el complejo formado y genera el color azul.

Materiales y equipos

Fotocolorímetro

Bandejas de extracción y dilución

Diluidores

Pipetas volumétricas

Fosfato Monobásico

Reactivos

Tartrato de Potasio y Antimonio Ácido sulfúrico concentrado Molibdato de Amonio Goma de Acacia Q.P.2 Ácido Ascórbico

Solución "A" reactivo concentrado

- Disolver 1 g de tartrato de potasio y antimonio en 400 ml de agua destilada en un frasco volumétrico de un litro.
- Añadir despacio mientras se mezcla, 165 ml de H2SO4 concentrado, dejar enfriar.
- Disolver 7.5 g de molibdato de amonio [(NH4)6Mo7O24.4H2O)] en aproximadamente 300 ml de agua destilada.

 Cuando la solución de ácido de antimonio se ha enfriado añadir la solución de molibdato de amonio y llevar a un volumen de 1 litro con agua destilada.

Nota: La solución "A" debe ser guardada en refrigeración para que se mantenga sin descomponerse (es sensitiva al calor y a la luz).

Solución "B" reactivo de color para fósforo

 Diluir 1g de goma de acacia y 1 g de ácido ascórbico por litro, mezclar estas dos soluciones, añadir 150 ml de solución "A" y llevar a un volumen de un litro con agua destilada.

NOTA: La goma se debe disolver en agua caliente y debe ser preparada el día que se va a utilizar.

Solución patrón de fósforo

- Pesar 4.39 g de KH2PO4 y disolver en agua destilada hasta un volumen de un litro, esta solución contiene 1000 µg/ml, de P de esta solución tomar una alícuota de 12 ml y llevar a un volumen de un litro con la misma solución extractante para obtener una concentración final de 12 µg P/ml.

Procedimiento

- Colocar 2.5 ml de suelo y 25 ml de la solución extractante (Olsen Modificado pH 8.5), agitar por 10 minutos a una velocidad de 400 rpm y filtrar utilizando papel filtro Whatman qualitativo # 1 o equivalente.
- Tomar 1 ml del filtrado, añadir 4 ml de agua destilada y 5 ml del reactivo de color B de molibdato de amonio. Dejar reposar 1 hora.
- Leer la absorbancia en el fotocolorímetro a una longitud de onda de 680 nm.
- Preparar una curva de calibración usando como punto alto una solución patrón de fósforo de 12 ppm y como blanco la solución extractante, proceder como se muestra en la Ilustración 6.

- Tomar 1 ml de cada solución estándar resultante (0, 3, 6, 9 y 12 ppm) y continuar igual que las muestras (numerales 2 y 3).
- Construir la curva de calibración utilizando las siguientes concentraciones: 0 –30 60 90 y 120 ppm de P.
- Interpolar los datos de absorbancia de las muestras en la curva de calibración antes construida y reportar directamente en mg de P por 1000 ml de suelo (ppm)

Cálculos

P(ppm) = LR;

Dónde:

LR: Interpolación del valor de concentración en base a la absorbancia de la muestra dentro de la curva de regresión

8. DETERMINACIÓN DE POTASIO, CALCIO Y MAGNESIO

Objetivo

Determinar la cantidad de potasio, calcio y magnesio extraído por la solución Olsen Modificado (pH 8.5).

Principio

Los elementos potasio, calcio, magnesio en solución son atomizados en la llama aire-acetileno lo que permite que se absorba la radiación proveniente de una lámpara del mismo elemento en forma proporcional a la cantidad de átomos presentes. La adición de óxido de lantano se hace con el fin de eliminar la interferencia de carácter químico.

Equipos y materiales

Espectrofotómetro de absorción atómica

Bandejas de extracción y dilución

Diluidores

Cuchareta calibrada

Pipetas volumétricas

Reactivos

Solución de óxido de lantano 1%

 Mojar 50.01 g de óxido de lantano (La2O3) con aproximadamente 50 ml de agua destilada, despacio y cuidadosamente agregar 100 ml de HCl concentrado al 37% y luego llevar a volumen de 5 litros con agua destilada.

Solución patrón: 5000 µg/ml de K, 12500 µg/ml de Ca, 5000 µg/ml de Mg

- Pesar 9.53 g de KCl, 31.2125 g de CaCO3 y 5.6850 g de Mg metálico y disolver por separado a un volumen de un litro para obtener soluciones madres de las anteriores concentraciones. De dichas soluciones madres tomar 10 ml (K), 20 ml (Ca), y 6 ml (Mg) y llevar a 1 litro con la solución extractante para obtener las concentraciones finales de 50 μg/ml de K, 250 μg/ml de Ca, y 30 μg/ml de Mg.

Solución Olsen modificado pH 8.5

Procedimiento

- Tomar 2.5 ml de suelo y adicionar 25 ml de la solución extractante (Olsen Modificado pH 8.5), agitar 10 minutos y filtrar utilizando papel filtro Whatman qualitativo # 1 o equivalente.
- Tomar 1 ml del filtrado, agregar 20 ml de agua destilada y añadir 4 ml de solución de lantano.
- Preparar una curva de calibración usando como punto alto una solución patrón de 50-250-30 μg/ml de K, Ca y Mg; respectivamente, y como blanco la solución extractante, proceder como se muestra en la llustración 9.
- Tomar 1 ml de cada solución estándar resultante y continuar igual que las muestras (numeral 2).
- Realizar las lecturas en el espectrofotómetro de absorción atómica utilizando las condiciones y concentraciones indicadas en la Tabla 1

Tabla 1. Condiciones para la lectura de K, Ca y Mg en el espectrofotómetro de absorción atómica

Elemento	longitud de onda (nm)	Ancho Rendija (nm)	Tipo de Ilama			de Cal neq/100	ibracić Oml)	n
K	766,5	0,5	Aire- Acetileno	0	0,321	0,641	0,962	1,282
Ca	422,7	0,5	Aire- Acetileno	0	3,122	6,25	9,375	12,5
Mg	285,2	0,5	Aire- Acetileno	0	0,625	1,25	1,875	2,5

9. DETERMINACIÓN DE CAPACIDAD DE INTERCAMBIO CATIÓNICO-MÉTODO DEL ACETATO DE AMONIO pH 7

Objetivo

Utilizar una sola extracción para determinar los cationes de cambio y la capacidad de intercambio, además permite trabajar sobre una sola muestra favoreciendo así una homogeneización de los datos, y lo que no es despreciable, un ahorro de los reactivos.

Principio

Desplazamiento de los cationes de cambio del complejo de absorción por el amonio de una solución salina a pH neutro (acetato de amonio uno normal). Determinación efectuada por espectrofotometría de absorción atómica. Lavado del suelo residual con alcohol para eliminar el exceso de amonio. Destilación en medio básico y titulación de la solución recogida por medio de ácido sulfúrico.

Reactivos

Acetato de amonio 1 N pH 7

 Disolver 77.08 g de acetato de amonio (NH4CH3COO) en agua destilada y llevar a un litro. Controlar el pH con hidróxido de amonio si sube el pH y con ácido acético si baja.

Etanol 95% (v/v)

- Diluir 480 ml de etanol C2H5OH al 99% y llevar a 500 ml con agua destilada.

Cloruro de sodio o cloruro de potasio al 10%

 Disolver 100 g de NaCl en agua destilada y llevar a un litro. Después de usar este reactivo en el dispensador, se deberá lavar con HCl 0.1 N y luego con suficiente agua destilada.

Fenoftaleina como indicador al 1%

Hidróxido de sodio 10 N

 Pesar 800 g de NaOH, añadir 1 litro de agua y agitar hasta que se disuelva. Dejar que la solución se enfríe, el frasco debe estar tapado para evitar la absorción de CO2 atmosférico, aforar a 2 litros con agua desmineralizada.

Ácido clorhídrico concentrado

 Diluir 1.10 ml. de ácido clorhídrico concentrado en 2 litros con agua destilada.

Estandarizar con Na2CO3 seco en la estufa a 110° C.

Estandarización del ácido sulfúrico

Procedimiento

Paso 1: Primera extracción

- En un tubo de centrífuga pesar 6 g de suelo seco al aire, molido y tamizado a 2 mm.
- Agregar 20 ml de acetato de amonio y agitar 30 minutos.
- Centrifugar a 3500 rpm durante 10 minutos, y filtrar utilizando papel filtro
 Whatman qualitativo # 1 o equivalente.

- Repetir los procedimientos de extracción 2, 3, 4 dos veces más (total 3) sumando 60 ml de sobrenadante (tiempo de agitación 1.5 horas más 30 minutos de centrifugación, total 2 horas).
- Analizar el sobrenadante por absorción atómica (potasio, calcio, magnesio y sodio), mediante la dilución (1:15:8) (extracto:solución de óxido de lantano:agua).
- Preparar una curva de calibración usando como punto alto una solución patrón de 50-50-10-250 μg/ml de K, Mg, Na y Ca; respectivamente, y como blanco la solución de acetato de amonio.
- Tomar 1 ml de cada solución estándar resultante y continuar igual que las muestras (numeral 5).
- Realizar las lecturas en el espectrofotómetro de absorción atómica utilizando las concentraciones indicadas en la Tabla 2.

Tabla 2. Concentraciones para I curva de calibración

Elemento			Calibrac	ión (me	q/100 g de
Liomonio	suel	၁)			
K	0	0,32	0,64	0,96	1,28
Na	0	0,109	0,217	0,326	0,435
Ca	0	3,125	6,25	9,375	12,5
Mg	0	1,03	2,056	3,084	4,11

Paso 2: Lavado

- Añadir 10 ml de etanol y agitar manualmente hasta que se mezcle bien el suelo con el etanol por un minuto aproximadamente.
- Centrifugar el tubo por 10 minutos a 3500 rpm.
- Desechar la alícuota, repetir 3 veces en total (tiempo total 40 minutos, 30 ml de etanol utilizados).

NOTA: En el último lavado medir la CE, si ésta es mayor a (0.05 – 0.040) dS/m, realizar un nuevo lavado.

Paso 3: Segunda extracción

- Agregar 20 ml de cloruro de sodio al 10% y agitar por 30 minutos.
- Centrifugar por 10 minutos a 3500 rpm.
- Recoger el sobrenadante en un frasco, para la determinación de C.I.C. para lo cual tomamos 2.5 ml de muestra y le agregamos fenoftaleina y procedemos a titular con NaOH al 0.05 N (cambio de color de tomate a rosa).

Cálculos

C.I.C. (meg/100 g suelo) = N x (S - B) x 100 x 60 / a x b

Dónde:

C.I.C. = Capacidad de intercambio catiónico

N = Normalidad exacta del NaOH

B = Volumen de sosa gastado en la titulación del blanco

S = Volumen de sosa gastado en la titulación de la muestra

a = Peso de muestra en gramos

b = Volumen de extracto de CINa al 10%

100 = Factor de porcentaje

60 = Volumen total del extracto 2 (60 ml)

Saturación de Bases (%) = $[Ca] + [Mg] + [Na] + [K] \times 100$;

Dónde:

[Ca] = Concentración de calcio (meq/100 g suelo)

[Mg] = Concentración de magnesio (meg/100 g suelo)

[Na] = Concentración de sodio (meg/100 g suelo)

[K] = Concentración de potasio (meq/100 g suelo)

PREPARACIÓN DE SOLUCION EXTRACTANTE PARA ANALISIS DE MACRO Y MICROELEMENTOS-MÉTODO OLSEN MODIFICADO pH 8.5

Objetivo

El objetivo de la solución extractora es remover solamente ciertas formas de nutrientes de interés para la predicción de disponibilidad de los elementos

Principio

La muestra se extrae con una solución de bicarbonato de sodio a pH 8.5. Este método es adecuado para suelos calcáreos, alcalinos o neutros que contienen fosfatos de calcio en solución disminuida por precipitación de CaCO3 como resultado; la concentración de fósforo puede aumentar. El procedimiento también puede ser aplicado a suelos ácidos porque el carbonato transformado disminuye la solubilidad de Al y Fe y así aumenta la concentración de fosfato.

Reactivos

- 1. Bicarbonato de Sodio (NaHCO3)
- 2. Sal disódica del ácido etilendiaminotetracético (EDTA)
- 3. Superfloc 127
- 4. Hidróxido de sodio (NaOH)

Procedimiento

- a. Disolver 420 g de NaHCO3 en agua destilada.
- b. Disolver 37.2 g de EDTA en agua destilada.
- c. Disolver 1 g de Superfloc 127 en 800 ml de agua destilada.
- d. Mezclar las tres soluciones y llevar a un volumen de 10 litros con agua destilada.
- e. Controlar el pH de la solución a 8.5 (con NaOH 10 N o HCl 1 N).

ANEXO 2. Análisis bromatológico.

Parámetro	%
Humedad	85,62
Cenizas Ω	10,44
E.E. Ω	2,88
Proteína Ω	17,15
Fibra Ω	24,11
E.L.N. Ω	45,42

Los ensayos marcados con Ω se reportan en base seca. **EE.**: Extracto Etéreo o Grasa Bruta; **E.L.N.**: Sustancias Extractivas Libres de Nitrógeno.

Fuente: Laboratorio de servicio de análisis e investigación en alimentos,

(INIAP-Estación Experimental Santa Catalina, 2013).

Elaboración: La Autora.

ANEXO 3. Análisis de suelo

							AUDINO	S AGROPE			
	RE	PC	DRTE	DE	ANALI	ISIS D	E SU	ELOS			
№ Muestra Laboratorio:	1716					DATOS G	ENERALES DE L	_A MUESTRA	MUESTRA / CODIGO		T2B1
Propietario:	Ur		a. Karin sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados:	16/1/20/3						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,35		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)		X									
Materia Orgánica %	26,23		AL	то							
				RANGOS PARA	INTERPRETA	ACION	1	PARAMETROS COI	MPLEMENTARIOS PAR	A USO EN RIE	GO (En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTL	IRAL)	
Nitrógeno (ppm)	_		< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		_
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hi / h.)	dráulica a la Satu	ıración (cm	-
Potasio (meq/100ml)	-		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	/cm3)		
Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de Ba			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)			<1	1 a 4	>4			Agua Disponible			
Zinc (ppm)			<3 <5	3 a 7	>7			Porcentaje de Hu	medad (%)		

Propietario: Universidad de Cuenca Ubicación:	T3B1 ector / Finca maqui / Soldado
Propietario: Universidad de Cuenca Ubicación: Azuay Cuenca San Joaquín Pumai	ector / Finca
Fecha entrega de resultados: 16/23/2013 Azuay Cuenca San Joaquín Pumai	naqui / Soldado
p.H. 5,94 Muy Ácido (0 < 5) Ácido (5 - Median. Ácido (5 - 5,5) Median. Ácido (5 - 5,5) (2 - 6 - 6,5) (2 - 6 - 6,5) (2 - 6 - 6,5) (2 - 7,5 - 8)	
Clase Textural (%	
Materia Orgánica % 26,48 ALTO	
RANGOS PARA INTERPRETACION PARAMETROS COMPLEMENTARIOS PARA USO EN RII TEXTURAL)	GO (En funcion de la
BAJO MEDIO ALTO TÓXICO	
Nitrógeno (ppm) <- 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3)	
Conductividad Hidráulica a la Saturación (cn / h.)	-
Fósforo (ppm)	
Potasio (meq/100ml) < < <	
Calcio (meq/100ml) Densidad Aparente (gr./cm3)	
Magnesio (meg/100ml)	
20 20 30 40 > 40	
Hierro (ppm) <20 20 a40 > 40 Agua Disponible (cm3/cm3)	
Hierro (npm) <20 20 a 40 > 40	

	RE	PO	RTE	DE	ANALI	SIS D	E SUE	LOS			
№ Muestra Laboratorio:		1					ENERALES DE LA		MUESTRA / CODIGO		T4B1
Propietario:	Un		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca	
Fecha entrega de resultados:	16/10/2013						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	5,46		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-	ALTO									
Materia Orgánica %	27,26		3,000			1401011	1		MPLEMENTARIOS PAR	A LISO EN RIF	GO (En función de la
			BAJO	RANGOS PAR.	ALTO	TÓXICO	-	PARAMETROSCO	TEXT	URAL)	
Nitrógeno (ppm)		1	< 30	30 a 60	> 60				ampo (cm3/cm3)		-
Fósforo (ppm)			< 10	10 a 20	> 20			/ h.)	lidráulica a la Sat	uración (cm	
Potasio (meq/100ml)		***	< 0,2	0,2 a 0,38	> 0,38		-	Saturación (cm Saturación de B			
Calcio (meq/100ml)			< 2	2 a 5	>5		-	Densidad Apare			
Magnesio (meq/100ml)	-		< 0,5	0,5 a 1,5	> 1,5		-	Punto Marchité			_
Hierro (ppm)			< 20	20 a 40	>40			Agua Disponible	The state of the s		
Cobre (ppm)			<1	1a4 3a7	>7			Porcentaje de H			
Zinc (ppm)	-		<3	3 a 7	>15				0		
Manganeso (ppm) SIGLAS: Bajo (B); Medio (M); Alto (A); T	-		< 5	2412	1 713		_		///	/	

	RF	PO	RTE	DE	ANALI	SIS D	E SUE	ELOS			
№ Muestra Laboratorio							ENERALES DE LA		MUESTRA / CODIGO		T5B1
Propietario	Un		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados	16/49/20/3					Obligacioni	Azuay	Cuenca	San Joaquín	Puman	naqui / Soldados
	RESULTADOS	ĺ				Cultivo/Uso:					
p.H.	5,57		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-	-							
Materia Orgánica %	28,32		AL	то]						
			1	RANGOS PAR				PARAMETROS CO	MPLEMENTARIOS PAR	RA USO EN RIEG URAL)	GO (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO	-			0,10,10,	
Nitrógeno (ppm)			< 30	30 a 60	> 60			Capacidad de Ca	ampo (cm3/cm3)		
The state of the s			< 10	10 a 20	> 20			Conductividad H	lidráulica a la Sat	turación (cm	-
Fósforo (ppm)	-		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm	3/cm3)		i
Potasio (meq/100ml)	-		< 2	2 a 5	> 5			Saturación de B			
Calcio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare	ente (gr./cm3)		-
Magnesio (meq/100ml)		-	< 20	20 a 40	> 40			Punto Marchité	z (cm3/cm3)		
Hierro (ppm)	N COLUMN TO THE REAL PROPERTY.		<1	1a4	>4			Agua Disponible	e (cm3/cm3)		
Cobre (ppm)			<3	3 a 7	>7	No. of the last of		Porcentaje de H	lumedad (%)		-
Zinc (ppm)		-	<5	5 a 15	> 15				/		
Manganeso (ppm)	óxico (T)	***	4.5	3813	7.23				6	,	

№ Muestra Laboratorio:	Telesco		KIL	DE		The state of the s					
	1720						ENERALES DE L		MUESTRA / CODIGO		T6B1
Propietario:		1000	. Karina idad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca	
Fecha entrega de resultados:	16/#6/2023					Obicación	Azuay	Cuenca	San Joaquín	Pumama	qui / Soldados
	RESULTADOS					Cultivo/Uso:					
p.H.	5,48		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)				-							
Materia Orgánica %	27,25			RANGOS PARA	LINITEDDDET	ACION	1	PARAMETROS CO	MPLEMENTARIOS PAR	RA USO EN RIEGO	(En función de la C
			BAJO	MEDIO	ALTO	TÓXICO		PAINIETHOS	TEXT	URAL)	
itrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Ca	impo (cm3/cm3)		-
itrogeno (ppm)			< 10	10 a 20	> 20			Conductividad H	lidráulica a la Sat	uración (cm	-
ósforo (ppm)			.02	0,2 a 0,38	> 0,38			Saturación (cm	3/cm3)		
otasio (meq/100ml)			< 0,2	2 a 5	>5			Saturación de B			
alcio (meq/100ml)		-	< 0,5	0,5 a 1,5	>1,5	The state of the s	1	Densidad Apare			
lagnesio (meq/100ml)			< 20	20 a 40	> 40			Punto Marchité	z (cm3/cm3)		-
ierro (ppm)		-	<1	1a4	>4	200000000000000000000000000000000000000		Agua Disponible	e (cm3/cm3)		-
obre (ppm)				200900				Porcentaje de H	lumedad (%)		
inc (ppm)		3	< 3	3a7	>7						

	RE	PO	RTE	DE	ANALI	SIS D	E SUE	LOS			
№ Muestra Laboratorio:	1721					DATOS GI	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T7B1
Propietario:	Un		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	16/70/2013						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	5,90		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)			-								
Materia Orgánica %	26,07		AL	то							
				RANGOS PARA	A INTERPRET			PARAMETROS CO	MPLEMENTARIOS PAR	RA USO EN RIEG URAL)	GO (En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXT	ORALI	
Nitrógeno (ppm)			< 30	30 a 60	> 60			Capacidad de Ca	impo (cm3/cm3)		
			< 10	10 a 20	> 20			Conductividad H / h.)	lidráulica a la Sat	uración (cm	-
Fósforo (ppm) Potasio (meg/100ml)		-	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm:	ACCORDING TO THE REAL PROPERTY.		-
Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de B			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchité Agua Disponible			
Cobre (ppm)			<1	1 a 4	>4		-	Porcentaje de H			
Zinc (ppm)	-		< 3	3 a 7	>7		-	Porcentaje de P	iumeuau (/oj		
Manganeso (ppm)			< 5	5 a 15	> 15		_		1	,	

	RE	PO	RTE	DE	ANALI	SIS D	GACIONES AUSTRO	LOS			
№ Muestra Laboratorio:	4-60						ENERALES DE LA		MUESTRA / CODIGO		T8B1
Propietario:	Un		. Karina idad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca	
Fecha entrega de resultados:	16/80/2043	T					Azuay	Cuenca	San Joaquín	Pumam	naqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	6,08		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-	_									
Materia Orgánica %	26,92		AL								
				RANGOS PAR				PARAMETROS CO	MPLEMENTARIOS PAR TEXT	ta uso en rieg Ural)	3O (En función de la
		T	8AJO < 30	MEDIO 30 a 60	> 60	TÓXICO		Capacidad de Ca	ampo (cm3/cm3)		
Nitrógeno (ppm)			< 10	10 a 20	> 20			Conductividad H / h.)	lidráulica a la Sat	uración (cm	
Fósforo (ppm)		-	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm			
Potasio (meq/100ml) Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de B			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare			
Hierro (ppm)	-		< 20	20 a 40	> 40			Punto Marchité			
Cobre (ppm)			<1	1a4	> 4			Agua Disponible Porcentaje de F			
Zinc (ppm)			< 3	3 a 7	>7		-	Porcentaje de F	iumeuau (70)		
Manganeso (ppm)			< 5	5 a 15	> 15		_		h		

	RE	PO	RTE	DE	ANALI	SIS D	E SUE	S AGROPE			
№ Muestra Laboratorio							ENERALES DE L		MUESTRA / CODIGO		T9B1
Propietario	Un		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca	
Fecha entrega de resultados	16/90/2003					Obloadion	Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldados
	RESULTADOS	1				Cultivo/Uso:			<u> </u>		
p.H.	5,82		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)		_									
Materia Orgánica %	26,83		AL								
				RANGOS PARA				PARAMETROS CO	MPLEMENTARIOS PAR	IA USO EN RIEG URAL)	6O (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO	-				
Nitrógeno (ppm)		-	< 30	30 a 60	> 60				mpo (cm3/cm3)		
			< 10	10 a 20	> 20			Conductividad H	lidráulica a la Sat	uración (cm	-
Fósforo (ppm)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm	3/cm3)		
Potasio (meq/100ml) Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de B	the state of the s		
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchité	CONTRACTOR OF THE PARTY OF THE		
Cobre (ppm)	·		<1	1 a 4	>4			Agua Disponible			
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de l	lumedad (%)		
Manganeso (ppm)	200		< 5	5 a 15	> 15				1		

	RE			ESTACIO	M EVECTOR	E INVESTIG				dorna	A CONTINUENCE DE LA ACTION
№ Muestra Laboratorio:	1724					DATOS GE	ENERALES DE LA	A MUESTRA	MUESTRA / CODIGO		T10B1
Propietario:	Un	ALCOHOLD SE	. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca
Fecha entrega de resultados:	16/£d/20@k	T					Azuay	Cuenca	San Joaquín	Pumama	aqui / Soldados
	RESULTADOS	Ī				Cultivo/Uso:					
p.H.	5,98		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		_								
Materia Orgánica %	25,63		AL	то							
				RANGOS PARA	-			PARAMETROS CO	MPLEMENTARIOS PAR	A USO EN RIEGO URAL)	O (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO					
Nitrógeno (ppm)	_		< 30	30 a 60	> 60			Capacidad de Ca	impo (cm3/cm3)		=
			< 10	10 a 20	> 20			Conductividad F / h.)	lidráulica a la Sat	uración (cm	
Fósforo (ppm)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm			
Potasio (meq/100ml) Calcio (meq/100ml)			< 2	2 a 5	> 5	January Marie		Saturación de B	The second secon		
Magnesio (meq/100ml)	-		< 0,5	0,5 a 1,5	> 1,5			Densidad Apare	The second secon		
Hierro (ppm)	-		< 20	20 a 40	> 40			Punto Marchité			
Cobre (ppm)			<1	1a4	>4			Agua Disponible			- 10
Zinc (ppm)	(a)		< 3	3 a 7	>7			Porcentaje de F	lumedad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15				1		
SIGLAS: Bajo (B); Medio (M); Alto (A); To	óxico (T)		TO ESO Y IS						///	1	
				Ligeramente					1		2 2
			No Salino	Ligeramente (Salino	(Salino 4 a 8)	(Muy Salino (>8)		-	Hogon		2 INTER

	11				OF THE RESIDENCE OF	SIS D					
№ Muestra Laboratorio:	1725	1				DATOS GE	ENERALES DE L		MUESTRA / CODIGO	Т	11B1
Propietario:	Ur		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sect	tor / Finca
Fecha entrega de resultados:	16/40/2013	T				Opicación	Azuay	Cuenca	San Joaquín	Pumama	qui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	5,82		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)			-								
Materia Orgánica %	25,70		AL.	то							
			F	RANGOS PARA	INTERPRET	ACION		PARAMETROS CO	MPLEMENTARIOS PAR	RA USO EN RIEGO	(En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXT	URALI	
				Fortist Charles and			District of the	Capacidad de Ca	mpo (cm3/cm3)		
Nitrógeno (ppm)	-	-	< 30	30 a 60	> 60				- 1- 6-4	unación (cm	
Nitrógeno (ppm)		-	< 30	30 a 60 10 a 20	> 60 > 20			Conductividad H	idráulica a la Sat	uración (cm	-
Fósforo (ppm)			< 10	10 a 20	> 20					uración (cm	
Fósforo (ppm) Potasio (meq/100ml)			< 10	10 a 20 0,2 a 0,38	> 20 > 0,38			Conductividad H	3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml)			< 10 < 0,2 < 2	10 a 20 0,2 a 0,38 2 a 5	> 20 > 0,38 > 5			Conductividad H / h.) Saturación (cm:	3/cm3) ases	turación (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml)		 	< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5	> 20 > 0,38			Conductividad H / h.) Saturación (cm: Saturación de B	3/cm3) ases nte (gr./cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml) Hierro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de Ba Densidad Apare	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml) Hierro (ppm) Cobre (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
										100	
ósforo (ppm) otasio (meq/100ml) alcio (meq/100ml)		 	< 10 < 0,2 < 2	10 a 20 0,2 a 0,38 2 a 5	> 20 > 0,38 > 5 > 1,5			Conductividad H / h.) Saturación (cm: Saturación de Ba Densidad Apare	3/cm3) ases nte (gr./cm3)	uración (cm	- - -
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml)			< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5	> 20 > 0,38 > 5 > 1,5			Conductividad H / h.) Saturación (cm: Saturación de Ba Densidad Apare	3/cm3) ases nte (gr./cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml)			< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5	> 20 > 0,38 > 5 > 1,5			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml)			< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml) Hierro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
Fósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml) Hierro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
rósforo (ppm) Potasio (meq/100ml) Calcio (meq/100ml) Magnesio (meq/100ml) Hierro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
ósforo (ppm) otasio (meq/100ml) alcio (meq/100ml) Aggnesio (meq/100ml) lierro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	turación (cm	
ósforo (ppm) otasio (meq/100ml) alcio (meq/100ml) flagnesio (meq/100ml) lierro (ppm) obre (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
sforo (ppm) tasio (meq/100ml) lcio (meq/100ml) agnesio (meq/100ml) erro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	turación (cm	
oro (ppm) sio (meq/100ml) io (meq/100ml) gnesio (meq/100ml) ro (ppm) re (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
osforo (ppm) otasio (meq/100ml) alcio (meq/100ml) lagnesio (meq/100ml) ierro (ppm) obre (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
osforo (ppm) otasio (meq/100ml) olicio (meq/100ml) olagnesio (meq/100ml) erro (ppm) obre (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	turación (cm	
sforo (ppm) tasio (meq/100ml) lcio (meq/100ml) agnesio (meq/100ml) erro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20 < 1	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40 1 a 4	> 20 > 0,38 > 5 > 1,5 > 40 > 4			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
osforo (ppm) otasio (meq/100ml) olicio (meq/100ml) agnesio (meq/100ml) erro (ppm)			< 10 < 0,2 < 2 < 0,5 < 20	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5 20 a 40	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité: Agua Disponible	B/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
sforo (ppm) tasio (meq/100ml) Icio (meq/100ml) agnesio (meq/100ml)			< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5	> 20 > 0,38 > 5 > 1,5 > 40			Conductividad H / h.) Saturación (cm: Saturación de B: Densidad Apare Punto Marchité:	8/cm3) ases nte (gr./cm3) z (cm3/cm3)	uración (cm	
ósforo (ppm) otasio (meq/100ml) alcio (meq/100ml)			< 10 < 0,2 < 2 < 0,5	10 a 20 0,2 a 0,38 2 a 5 0,5 a 1,5	> 20 > 0,38 > 5 > 1,5			Conductividad H / h.) Saturación (cm: Saturación de Ba Densidad Apare	3/cm3) ases nte (gr./cm3)	uración (cm	
osforo (ppm) otasio (meq/100ml) alcio (meq/100ml)			< 10 < 0,2 < 2	10 a 20 0,2 a 0,38 2 a 5	> 20 > 0,38 > 5			Conductividad H / h.) Saturación (cm: Saturación de Ba Densidad Apare	3/cm3) ases nte (gr./cm3)	turación (cm	
isforo (ppm) otasio (meq/100ml)			< 10 < 0,2 < 2	10 a 20 0,2 a 0,38 2 a 5	> 20 > 0,38 > 5			Conductividad H / h.) Saturación (cm: Saturación de B	3/cm3) ases	turación (cm	
ósforo (ppm) otasio (meq/100ml)			< 10	10 a 20 0,2 a 0,38	> 20 > 0,38			Conductividad H / h.) Saturación (cm:	3/cm3)	uración (cm	
ósforo (ppm)			< 10	10 a 20 0,2 a 0,38	> 20 > 0,38			Conductividad H / h.) Saturación (cm:	3/cm3)	uración (cm	
ósforo (ppm)			< 10	10 a 20	> 20			Conductividad H		uración (cm	-
ósforo (ppm)			< 10	10 a 20	> 20			Conductividad H		uración (cm	
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad H		uración (cm	
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad H		uración (cm	
		-		10 a 20	> 20			Conductividad H		uración (cm	
		-						Conductividad H	idráulica a la Sat	uración (cm	-
itrógeno (ppm)	-	-	< 30	30 a 60	> 60						
			< 30	30 a 60	> 60	The state of the s		The second secon			
										18	
		-	BAJO	MEDIO	ALTO	TOXICO		Capacidad de Ca	mpo (cm3/cm3)		-
								FARAINE I ROS CO	TEXT	URAL)	
Materia Organica %	25,70 ALTO RANGOS PARA INTERPRETACION					ACION	1	PARAMETROS CO	MPLEMENTARIOS PAR	RA USO EN RIEGO	(En función de la (
	25,70		AL	ТО							
	-		-								
					Х						
p.H.	5,82				(>5,5-6)						
		_								Alcalino	
	RESULTADOS	Ī				Cultivo/Uso:			-		
Fecha entrega de resultados:	16/9/2013						Azuay	Cuenca	San Joaquín	Pumama	qui / Soldado
Propietario:	Ur					Ubicación:	Provincia	Cantón	Parroquia		
M2 Muestra Laboratorio.	1120										
№ Muestra Laboratorio:	1725					DATOS GE	NERALES DE L	A MUESTRA		J	11B1

	PF	PO	RTF	DE	ANALI	SIS D	E SUI	SAGROPE				
№ Muestra Laboratorio:	1726						ENERALES DE L		MUESTRA / CODIGO	Т	12B1	
Propietario:	Ur		. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sect	tor / Finca	
Fecha entrega de resultados:	16/64/2002					Obicación.	Azuay	Cuenca	San Joaquín	Pumama	qui / Soldados	
	RESULTADOS					Cultivo/Uso:						
p.H.	5,68		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)		
Clase Textural (% arena, % arcilla, % limo)	25,10				X							
Materia Orgánica %	25,10			RANGOS PARA	INTERPRET	ACION	1	PARAMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En función de la				
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)		
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Ca		uración (cm	-	
			< 10	10 a 20	> 20			Conductividad F / h.)	ildraulica a la sati	aracion (cin	-	
Fósforo (ppm) Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm:				
Calcio (meq/100ml)		-	<2	2 a 5	>5			Saturación de B				
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare				
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchité				
Cobre (ppm)	_		<1	1 a 4	>4			Agua Disponible				
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de H	umedad (%)			
Manganeso (ppm)			< 5	5 a 15	> 15		The second		1			

№ Muestra Laboratorio	1727										
Propietario						DATOS GI	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T1B2
	Ur		a. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca
Fecha entrega de resultados	16//0//20//3						Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	5,52		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		_								
Materia Orgánica %	27,46		AL	то							
				RANGOS PARA				PARAMETROS CO	MPLEMENTARIOS PAR TEXT	A USO EN RIEGO	O (En función de la 0
			BAJO	MEDIO	ALTO	TÓXICO				JRAL)	
Nitrógeno (ppm)			< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		-
Fósforo (ppm)		_	< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Sati	uración (cm	Marie — s
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38	No. of the last		Saturación (cm3			
Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de Ba			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéa			
Cobre (ppm)			<1	1 a 4	>4			Agua Disponible			
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de H	umedad (%)		
			< 5	5 a 15	> 15				1		
Manganeso (ppm)		2	1 ,3	3013	- 13		_				

№ Muestra Laboratorio:	4700							ELOS		2011/2011	
	1728					DATOS GE	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T2B2
Propietario	Ur		a. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	16/30/2013						Azuay	Cuenca	San Joaquín	Pumar	maqui / Soldados
	RESULTADOS					Cultivo/Uso:					
p.H.	6,06		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			-							
Materia Orgánica %	27,67			.TO							
				RANGOS PAR				PARAMETROS CO	MPLEMENTARIOS PAR TEXTL		GO (En función de la C
		_	BAJO	MEDIO	ALTO	TÓXICO				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
litrógeno (ppm)	_	-	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		
ósforo (ppm)	<u></u>	_	< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Sati	uración (cm	-
otasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3			
alcio (meq/100ml)			< 2	2 a 5	>5			Saturación de Ba			1
/lagnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5		-	Densidad Aparel			
lierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz Agua Disponible			
Cobre (ppm)			<1	1 a 4	>4					V	
linc (ppm)	-		< 3	3 a 7	>7			Porcentaje de H	umedad (%)		
Aanganeso (ppm)			< 5	5 a 15							

1729 Ur 16/40/2013 RESULTADOS		a. Karina sidad de	a Suin e Cuenca		DATOS GI Ubicación:	Provincia Azuay	Cantón Cuenca	MUESTRA / CODIGO Parroquia San Joaquín	Sec	T3B2
16/(0/2013					Ubicación:					tor / Finca
RESULTADOS					_ Ubicación:	Azuay	Cuenca	San Joaquín		
								oun oouquiii	Pumama	aqui / Soldados
5,95	Muy Ácido Ácido (5-									
		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (>8 - 8,5)	Alcalino (> 8,5)	
-		-								
26,98						,				
						-	PARAMETROS CO	MPLEMENTARIOS PAR TEXTI	A USO EN RIEGO URAL)	(En funcion de la CL
		BAJO	MEDIO	ALTO	TOXICO					
		< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		-
		< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Sat	uración (cm	-
		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)		
- / ·		< 2	2 a 5	> 5				OTHER COLUMN TO A STATE OF THE		
		< 0,5	0,5 a 1,5	> 1,5			1-7			
		< 20	20 a 40	> 40						
		<1	1 a 4	>4						
		< 3	3 a 7	>7			Porcentaje de H	umedad (%)		
	O.X	< 5	5 a 15	> 15						
								6		
		26,98	26,98 AL BAJO < 30 < 10 < 0,2 < 0,5 < 20 < 1	26,98 ALTO RANGOS PAR. BAJO MEDIO < 30 30 a 60 < 10 10 a 20 < 0,2 0,2 a 0,38 < 2 2 a 5 < 0,5 0,5 a 1,5 < 20 20 a 40 < 1 1 a 4	26,98 ALTO RANGOS PARA INTERPRET BAJO MEDIO ALTO < 30 30 a 60 > 60 < 10 10 a 20 > 20 < 0,2 0,2 a 0,38 > 0,38 < 2 2 a 5 > 5 < 0,5 0,5 a 1,5 > 1,5 < 20 20 a 40 > 40 < 1 1 a 4 > 4	26,98 ALTO RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO < 30 30 a 60 > 60 < 10 10 a 20 > 20 < 0,2 0,2 a 0,38 > 0,38 < 2 2 a 5 > 5 < 0,5 0,5 a 1,5 > 1,5 < 20 20 a 40 > 40 < 1 1 a 4 > 4	26,98 ALTO RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO < 30 30 a 60 > 60 < 10 10 a 20 > 20 < 0,2 0,2 a 0,38 > 0,38 < 2 2 a 5 > 5 < 0,5 0,5 a 1,5 > 1,5 < 20 20 a 40 > 40 < 1 1 a 4 > 4	RANGOS PARA INTERPRETACION PARAMETROS CO	RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO	RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO

	RE	PO	RTE	DE	ANAL	E INVESTIG	E SUI	ELOS			
№ Muestra Laboratorio:	1730					DATOS GI	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T4B2
Propietario:	Ur	1000000	a. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	tor / Finca
Fecha entrega de resultados:	16/80/2013						Azuay	Cuenca	San Joaquín	Pumama	aqui / Soldados
	RESULTADOS					Cultivo/Uso:					
p.H.	5,73		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		_								
Materia Orgánica %	28,47		AL	то							
				RANGOS PARA	INTERPRET			PARAMETROS CO	MPLEMENTARIOS PAR		(En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXT	JKALJ	
Nitrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		-
			< 10	10 a 20	> 20			Conductividad H	idráulica a la Sat	uración (cm	
Fósforo (ppm)							-	/ h.) Saturación (cm3	(/cm3)		_
Potasio (meq/100ml)			< 0,2	0,2 a 0,38 2 a 5	> 0,38			Saturación de Ba			-
Calcio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Apare			<u> </u>
Magnesio (meq/100ml)		-	< 20	20 a 40	> 40		1	Punto Marchité:			
Hierro (ppm)			<1	1 a 4	>4			Agua Disponible	(cm3/cm3)		
Cobre (ppm) Zinc (ppm)			<3	3 a 7	>7			Porcentaje de H	umedad (%)		
Manganeso (ppm)		-	<5	5 a 15	> 15				/		

						WENTAL DEL	AUSTRO	S AGROPE			ACINON ENPERIMENTAL BEL AUTORIUS
4 Y	RI	= P (ORTE	DE	ANAL	ISIS D	E SU	ELOS			The second secon
Nº Muestra Laboratorio	1731					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T5B2
Propietario	U		ta. Karin rsidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ctor / Finca
Fecha entrega de resultados	: 16/49/20#3						Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	6,14		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	_	29,77 ALTO									
Materia Orgánica %	29,77		AL	ТО							
				RANGOS PARA	INTERPRETA	ACION		PARAMETROS CON	PLEMENTARIOS PARA	LISO EN DIEGO	/En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU		(En funcion de la
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid / h.)	fráulica a la Satu	ración (cm	_
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm3)		
Calcio (meq/100ml) Magnesio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Bas	es	100	
Hierro (ppm)	_		< 0,5 < 20	0,5 a 1,5	> 1,5	100		Densidad Aparent			
Cobre (ppm)		-	<1	20 a 40	> 40			Punto Marchitéz			-
Zinc (ppm)		-	<3	3a7	>4			Agua Disponible (4	
Manganeso (ppm)		-	<5	5 a 15	> 7			Porcentaje de Hur	nedad (%)		
SIGLAS: Bajo (B); Medio (M); Alto (A); To		-	13	2 9 12	> 15				h		

						IMENTAL DEL	AUSTRO	S AGROPE			ETINTAP STREET SATINGSTA BES AUTHO
	RI	EP (DRTE	DE	ANAL	ISIS D	E SU	ELOS			
№ Muestra Laboratorio:	1732	3				DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T6B2
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	Sector / Finca
Fecha entrega de resultados:	16/10/20/3						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldade
	RESULTADOS					Cultivo/Uso:					
p.H.	5,74		Muy Ácida (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)					X						
Materia Orgánica %	26,69	26,69 ALTO									
				RANGOS PARA	A INTERPRETA	ACION		DARAMETROS CON	MDI FARFAITADIOS DAD		
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS COI	MPLEMENTARIOS PARA TEXTU		GO (En función de la (
Nitrógeno (ppm)			< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		
Fósforo (ppm)	_		< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	ıración (cm	-
Potasio (meq/100ml) Calcio (meq/100ml)	-		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	/cm3)		
Magnesio (meq/100ml)			< 2	2 a 5 0,5 a 1,5	>5			Saturación de Bas			
Hierro (ppm)			< 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparen	10 1		
Cobre (ppm)		1	<1	1a4	>40			Punto Marchitéz			
Zinc (ppm)		-	<3	3a7	>7			Agua Disponible Porcentaje de Hu			
Manganeso (ppm)			< 5	5 a 15	> 15			Porcentaje de Hu	medad (%)		
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóx	ico (T)	_							1		

№ Muestra Laboratorio		EP (ORTE	DE	ANAL	ISIS D	E SII	FLOS		-	CITICADA COMUNICADA DEL AUTURO
№ Muestra Laboratorio	Francis Bloom										
Propietaria							ENERALES DE		MUESTRA / CODIGO		T8B2
riopietano	o: U		ta. Karin rsidad d	a Suin e Cuenca			Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados	16/10/2013					Ubicación:	Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	6,02		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	(>6-6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			-		Х					
Materia Orgánica %	25,68		AL	.TO							
		JAN.		RANGOS PARA	INTERPRETA	ACION		DADAMETROS CON			
			BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS CON	PLEMENTARIOS PARA TEXTU		O (En función de la (
Nitrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Can			
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	//		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm3)		
Calcio (meq/100ml)	- 7		< 2	2 a 5	>5		Track dinays	Saturación de Bas			_
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)			<1	1 a 4	>4			Agua Disponible (cm3/cm3)	OK B	
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hun	nedad (%)		
Manganeso (ppm) BGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; To			< 5	5 a 15	> 15				/		

		A CONTRACTOR			with more many	INCHIAL DEL	LAUSTRO	S AGROPE		1	CHITICAGH EAPREMENTAL BEL ANGURUS
	RI	E P (DRTE	DE	ANAL	ISIS D	E SU	ELOS			The state of the s
№ Muestra Laboratorio:	1735					DATOS G	SENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T9B2
Propietario:	U		a. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	S	ector / Finca
Fecha entrega de resultados:	16/10/2013					obicación.	Azuay	Cuenca	San Joaquín	Pumar	maqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,72		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-		X				- 3		
Materia Orgánica %	25,83	25,83 ALTO									
			F	RANGOS PARA	INTERPRETA	ACION	1	DARAMETROS COM	ADJ FAAFAITA DIOS DAD A DA		
			BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS COM	MPLEMENTARIOS PARA TEXTU		iO (En función de la
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		1
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad His	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	-		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	'cm3)		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Bas			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	<u> </u>		< 20	20 a 40	> 40			Punto Marchitéz			_
Cobre (ppm)	-		<1	1 a 4	>4			Agua Disponible			
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hui			
Manganeso (ppm)	cico (T)		< 5	5 a 15	> 15						

	D 1					IMENTAL DEL	AUSTRO	S AGROPE		1	MINIAP MINIAP
	RI	EP (ORTE	DE	ANAL	ISIS D	E SU	ELOS			Page 1 and 1
№ Muestra Laboratorio:	1736					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T10B2
Propietario:	U		ta. Karin rsidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia		Sector / Finca
Fecha entrega de resultados:	16/10/2013					obicación.	Azuay	Cuenca	San Joaquín	Puma	amaqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	5,32		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)				X]
Materia Orgánica %	25,01		AL								
			BAJO	RANGOS PARA MEDIO				PARAMETROS CON			GO (En función de la CL
Nitrógeno (ppm)			< 30	30 a 60	> 60	TÓXICO		Capacidad de Can	TEXTU	RAL)	
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid		ración (cm	
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	'cm3)		
Calcio (meq/100ml) Magnesio (meq/100ml)		-	<2	2 a 5	>5			Saturación de Bas	es	2	
Hierro (ppm)			< 0,5 < 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparent			
Cobre (ppm)			<1	1 a 4	> 40			Punto Marchitéz			-
Zinc (ppm)		-	<3	3a7	>7			Agua Disponible		AUSTR	
Manganeso (ppm)			< 5	5 a 15	> 15			Porcentaje de Hur	medad (%)		-

							- MODINO	ES AGROPE		11	COTTONIA CAPATRACISCA DEL AUCTRO	
	RI	EP	ORTE	DE	ANAL	ISIS D	E SU	ELOS				
№ Muestra Laboratorio:	1737											
Nº Muestra Laboratorio.	1/3/					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T11B2	
Propietario:	U		ta. Karin rsidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	Sector / Finca	
Fecha entrega de resultados:	16/10/20/3					- Obligación.	Azuay	Cuenca	San Joaquín	Pumai		
	RESULTADOS					Cultivo/Uso:						
p.H.	5,41		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido	Práctic. Neutro (> 6,5 - 7,5)		Medianam. Alcalino	Alcalino (> 8,5)		
				Х	(23,3-0)	(>0-0,5)	(>0,5-7,5)	(>7,5-8)	(>8-8,5)			
Clase Textural (% arena, % arcilla, % limo)	-		-									
Materia Orgánica %	26,05		AL.	то								
		None in	F	RANGOS PARA	INTERPRETA	ACION						
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	IPLEMENTARIOS PARA TEXTUR		O (En función de la	
Nitrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)			
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid	Iráulica a la Satur	ación (cm		
Potasio (meq/100ml)	Name and State of		< 0.2	0,2 a 0,38	> 0,38			/ h.)				
Calcio (meq/100ml)	- B		<2	2 a 5	> 5			Saturación (cm3/				
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Saturación de Bas				
Hierro (ppm)			< 20	20 a 40	> 40			Densidad Aparent Punto Marchitéz				
Cobre (ppm)			<1	1a4	>4			Agua Disponible (
Zinc (ppm)	4		<3	3 a 7	>7							
Manganeso (ppm)			< 5	5 a 15	>15			Porcentaje de Hun	nedad (%)			

REPORTE DE ANALISIS DE SUELOS Nº Muestra Laboratorio: Srta. Karina Suin Universidad de Cuenca Propietario: RESULTADOS DATOS GENERALES DE LA MUESTRA Provincia Cantón Ubicación: Azuay Cuenca Cultivo/Uso: Cultivo/Uso: Clase Textural arena, % arcilla, % limo) CRESULTADOS CINTERNA AUTÓNOMO DE INVESTIGACIONES AGROPE ESTACIÓN EXPERIMENTAL DEL AUSTRO DATOS GENERALES DE LA MUESTRA Provincia Cantón Ubicación: Azuay Cuenca Cultivo/Uso: Cultivo/Uso: Clase Textural (% arena, % arcilla, % limo)	MUESTRA / CODIGO Parroquia San Joaquín	Puma Alcalino	T12B2 Sector / Finca amaqui / Soldado	
Propietario: Srta. Karina Suin Universidad de Cuenca 16/10/20/3 RESULTADOS Provincia Azuay Cuenca Cultivo/Uso: Cultivo/Uso: Cultivo/Uso: Clase Textural (% arena, % arcilla, % limo) Srta. Karina Suin Universidad de Cuenca Azuay Cuenca Ligerament. Acido (>6.55.5) Median. Acido (>6.6.5) X Clase Textural (% arena, % arcilla, % limo)	CODIGO Parroquia San Joaquín Medianam. Alcalina	n Puma	Sector / Finca	
Fecha entrega de resultados: 16/10/2013	San Joaquín	n Puma		
RESULTADOS Cultivo/Uso: Azuay Cuenca	no Medianam. Alcalina	Alcalino	amaqui / Soldado	
P.H. 6,17 Muy Acido (0 < 5) Acido (5 - 5,5) Median. Acido (>6 -6,5) Ugerament. Acido (>6 -6,5) X Ugeram. Alcalino (>7,5 - 8) Clase Textural (% arena, % arcilla, % limo)	o Medianam. Alcalino			
6,17 (0<5) 5,5) Median. Acido (2) Gerament. Acido (>6-6,5) (>6,5-7,5) (27,5-8) Clase Textural (% arena, % arcilla, % limo)				
Clase Textural (% arena, % arcilla, % limo)		(>8,3)		
			•	
Materia Orgánica % 27,62 ALTO				
RANGOS PARA INTERPRETACION PARAMETROS CO	OMPLEMENTARIOS PAI	DA USO EN DIE		
BAJO MEDIO ALTO TÓXICO	TEXT	TURAL)	GO (En función de la C	
Nitrógeno (ppm) <- 30 30 a 60 > 60 Capacidad de Car	Campo (cm3/cm3)			
Fósforo (ppm) < 10 10 a 20 > 20 Conductividad Hi	Hidráulica a la Sat	dráulica a la Saturación (cm		
Potacio (men/100ml)	2/21			
Calcio (meq/100ml)			-	
Magnesio (meq/100ml) < 0,5 0,5 a 1,5 > 1,5 Densidad Anarem				
Hierro (ppm) < <20 20 a 40 > 40 Punto Marchitéz				
Cobre (ppm) <- 1 1a4 >4 Agua Disponible				
Zinc (ppm) <- <3 3 3 a 7 > 7 Porcentaje de Hu				
Manganeso (ppm) <5 5 a 15 > 15				
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóxico (T)	X			

		E D	ODTE					S AGROPE			The state of the s
	RI	EP	JRIE	DE	ANAL	ISIS D	E SU	ELOS			
Nº Muestra Laboratorio:	1739					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T1B3
Propietario:	U	1000000	ta. Karin rsidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ctor / Finca
Fecha entrega de resultados:	16/20/2013					- Obligation.	Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,60		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-	2			^						
Materia Orgánica %	27,42		AL	то							
				RANGOS PARA	INTERPRETA	ACION		PARAMETROS CON	MPLEMENTARIOS PARA	A LISO EN PIEGO	/En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	RAL)	(Lin runcion de la
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid			
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm3)		
Calcio (meq/100ml)	36-16-1		< 2	2 a 5	>5			Saturación de Bas			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)			<1	1 a 4	>4			Agua Disponible (cm3/cm3)		
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hur	medad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15			The second second			

INIA							- AGO ING			CHESCON CONTRACTOR	CBEL NESSHIP
	RE	EP (DRTE	DE	ANAL	ISIS D	E SU	ELOS			Section of the sectio
№ Muestra Laboratorio:	1740					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO	T2B	3
Propietario	Uı		a. Karin rsidad d	a Suin e Cuenca			Provincia	Cantón	Parroquia	Sector / F	inca
Fecha entrega de resultados:	16/10/2013					Ubicación:	Azuay	Cuenca	San Joaquín	Pumamaqui /	Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,54		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	_		-		^						
Materia Orgánica %	25,93		AL	то							
				RANGOS PARA	INTERPRETA	ACION		PARAMETROS COM	IDI EMENTADIOS DADA	USO EN RIEGO (En func	
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	RAL)	on de la
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Can	po (cm3/cm3)		
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hid	Iráulica a la Satu	ración (cm	
Potasio (meq/100ml)	REPORT AND SHOW		< 0,2	0,2 a 0,38	> 0.38			/ h.)	21		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación (cm3/c Saturación de Base			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	1 m		< 20	20 a 40	> 40			Punto Marchitéz (
Cobre (ppm)			<1	1 a 4	>4			Agua Disponible (-		
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hun			
Manganeso (ppm)			< 5	5 a 15	> 15				1/4/		

Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Provincia Cantón Parroquia Sector Ubicación:					ESTAC	IÓN EXPER	IMENTAL DEL	AUSTRO			1	MINIAP	
Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Provincia Cantón Parroquia Sector		RI	EP	ORTE	DE	ANAL	ISIS D	E SU	ELOS			A STATE OF THE STA	
Provincia Cantón Parroquia Sector		1741					DATOS G	ENERALES DE	LA MUESTRA			T3B3	
Parametros complementarios Parametros complementarios Parametros complementarios Parametros complementarios Parametros Para	Propietario:	U					Uhigagián	Provincia	Cantón	Parroquia	s	Sector / Finca	
P.H. S,16	Fecha entrega de resultados:	16/10/2013					obicación.	Azuay	Cuenca	San Joaquín	Puma	Pumamaqui / Soldados	
S,16 (0<5) 5,5) Median. Acido Ugerament. Acido (>6.5.5) Práctic. Neutro (>8.5.5) Medianam. Alcalino (>8.5.5)		RESULTADOS					Cultivo/Uso:			-			
X Clase Textural (% arena, % arcilla, % limo)	p.H.	5,16				Median. Ácido							
RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO	arena, % arcilla, % limo)			-	-								
BAJO MEDIO ALTO TÓXICO						A INTERPRET	ACION 1						
Nitrógeno (ppm) < <- 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Potasio (meq/100ml) < <- 2 2 a 5 > 5 Magnesio (meq/100ml) < <- 20 20 a 40 > 40 Pierro (ppm) < <- 1 1 a 4 > 4 Zinc (ppm) < <- 3 3 a 3 7 > 7 Manganeso (ppm) < <- 5 5 a 1,5 > 1,5 Manganeso (ppm) < <- 5 5 a 1,5 > 1,5 Manganeso (ppm) < <- 5 5 a 1,5 > 1,5 Manganeso (ppm) < <- 5 5 a 1,5 > 1,5 Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación (cm3/cm3) Saturación (cm3/cm3) Punto Marchitéz (cm3/cm3) Punto Marchitéz (cm3/cm3) Punto Marchitéz (cm3/cm3) Punto Marchitéz (cm3/cm3) Porcentaje de Humedad (%)					_				PARAMETROS CON	MPLEMENTARIOS PARA	A USO EN RIEG	GO (En función de la C	
Calcio (meq/100ml)	Nitrógeno (ppm)			< 30	30 a 60		- TOXIIIO		Capacidad de Can		, KAL)		
Calcio (meq/100ml)			-	- 110						dráulica a la Satu	ración (cm		
Magnesio (meq/100ml) <0,5			-										
Hierro (ppm)	1 8		-										
Cobre (ppm) <- 1 1 a 4 > 4 Punto Marchitez (cm3/cm3) Zinc (ppm) <- 3 3 a 7 > 7 Manganeso (ppm) <- 5 5 a 15 > 15	Hierro (ppm)												
Zinc (ppm) <- 3 3 a 7 > 7 Manganeso (ppm) <- 5 5 a 15 > 15	Cobre (ppm)			<1	1a4							- 85	
Manganeso (ppm) <- 5 5 a 15 > 15				<3	3 a 7	>7						-	
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóxico (T)				< 5	5 a 15	> 15			. Steemaje de Hui				
No Salino (SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi	co (T)		No Salino (Salino (Muy Salino		/	1	Los	04	

	DI	- 0	DIE	DE	ANIAL	CIC D	F 011	S AGROPE				
	R		KIE	DE	ANAL	ISIS D	E 50	ELUS				
№ Muestra Laboratorio:	1742					DATOS G	ENERALES DE L	LA MUESTRA	MUESTRA / CODIGO		T4B3	
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca	
Fecha entrega de resultados:	16/10/2013						Azuay	Cuenca	San Joaquín	Pumama	maqui / Soldados	
	RESULTADOS					Cultivo/Uso:						
p.H.	5,63		Muy Ácido (0<5)	Ácido (5 - 5,5)	(>5,5-6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)		
Clase Textural (% arena, % arcilla, % limo)					X							
Materia Orgánica %	24,87		AL	то								
				RANGOS PARA	A INTERPRETA	ACION	1	PARAMETROS CON	MPLEMENTARIOS PAR	A USO EN RIEGO	(En función de la	
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU			
Nitrógeno (ppm)			< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		-	
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hi / h.)	dráulica a la Satu	uración (cm		
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,				
Calcio (meq/100ml)			< 2	2 a 5	>5			Saturación de Bas				
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen				
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz				
Cobre (ppm) Zinc (ppm)			<3		> 4			Agua Disponible			-	
Manganeso (ppm)			< 5	3 a 7 5 a 15	> 7			Porcentaje de Hu	medad (%)			

	The state of the s		La de la prope				71001110	S AGROPE			SHI KOTEHADAZA BALAZISHA
	RE	P	DRTE	DE	ANAL	ISIS D	E SU	ELOS			
№ Muestra Laboratorio:	1743					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T5B3
Propietario:	Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca
Fecha entrega de resultados:	16/10/20/3						Azuay	Cuenca	San Joaquín	Pumama	aqui / Soldado
	RESULTADOS					Cultivo/Uso:					
p.H.	6,00		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-								
Materia Orgánica %	27,03		AL	.TO							
				RANGOS PARA	A INTERPRET	ACION		PARAMETROS COI	MPLEMENTARIOS PAR	A USO EN RIEGO	(En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)	
Nitrógeno (ppm)	_		< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		-
Fósforo (ppm)		-	< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	iración (cm	-
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Ba			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen			
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)			<1	1a4	>4			Agua Disponible			
Zinc (ppm) Manganeso (ppm)			<3 <5	3 a 7	>7		SALL DE	Porcentaje de Hu	imedad (%)		
ivialigalieso (ppili)			13	2 9 72	> 12				1		

	DI					MENTAL DEL	AUSTRO	SAGROPE			DATASH REPORTED BY WITH
	RI	EPO	DRTE	DE	ANAL	ISIS D	E SU	ELOS			
№ Muestra Laboratori	o: 1744					DATOS G	ENERALES DE L	LA MUESTRA	MUESTRA / CODIGO		T6B3
Propietari	io: U		a. Karin sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultado	os: 16//0/20/3						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,94		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)			-		^						
Materia Orgánica %	28,19		AL	то							
				RANGOS PARA	INTERPRETA	ACION		PARAMETROS CON	MPLEMENTARIOS PARA	A USO EN RIE	GO (En función de la 0
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU		
litrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
ósforo (ppm)		_	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ración (cm	-
otasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	(cm3)	National Park	
alcio (meq/100ml)	-		< 2	2 a 5	> 5			Saturación de Bas	ses		
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5		September 1	Densidad Aparen	te (gr./cm3)		S
lierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz			
obre (ppm)	_		<1	1a4	>4			Agua Disponible			
inc (ppm) //anganeso (ppm)			<3 <5	3 a 7 5 a 15	>7			Porcentaje de Hu	medad (%)		

	RE	PC	RTE	DE	ANAL	SIS D	E SU	S AGROPE			
№ Muestra Laboratorio:	1745						ENERALES DE L		MUESTRA / CODIGO		T7B3
Propietario:	Ur		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados:	16/1/2013					o zio a di di	Azuay	Cuenca	San Joaquín	Pumai	maqui / Soldado
	RESULTÁDOS					Cultivo/Uso:					
p.H.	5,70		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-		^						
Materia Orgánica %	23,47		AL	.TO							
				RANGOS PARA	INTERPRETA	ACION		PARAMETROS CO	MPLEMENTARIOS PAR	A USO EN RIE	GO (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)	
Nitrógeno (ppm)	-	-	< 30	30 a 60	> 60			Capacidad de Ca	Campo (cm3/cm3)		-
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad H / h.)		uración (cm	
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3			
Calcio (meq/100ml)			<2	2 a 5	>5			Saturación de Ba			
Magnesio (meq/100ml)			< 0,5 < 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparer Punto Marchitéz	10 ,		
Hierro (ppm)		-	<1	1a4	>40			Agua Disponible			
Cobre (ppm) Zinc (ppm)			<3	3a7	>7			Porcentaje de Hu			
Manganeso (ppm)			< 5	5 a 15	> 15			. orcentaje de no			

						E INVESTI				11 111	INCHES CONCERNATIONAL DELL'AUTERNIS
	RE	P	DRTE	DE	ANAL	ISIS D	E SU	ELOS			
Nº Muestra Laboratorio	1746					DATOS C	ENERALES DE I	A MUEOTDA	MUESTRA /		
Nº Muestra Laboratorio	1/40					DATUS	ENERALES DE I	LA MUESTRA	CODIGO		T8B3
Propietario	Uı		a. Karina rsidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados	16/40/2043						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,24		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)			Medianam. Alcalino	Alcalino (> 8,5)	
				X	(>3,3-6)	(>0-0,5)	(>6,5-7,5)	(>7,5-8)	(>8-8,5)		
Clase Textural (% arena, % arcilla, % limo) Materia Orgánica %	27,08										
materia Organica 70	21,00						,				
			BAJO	RANGOS PARA MEDIO	ALTO	TÓXICO		PARAMETROS COI	MPLEMENTARIOS PAR TEXTL		O (En función de la
Nitrógeno (ppm)			< 30	30 a 60	> 60	TOXICO		Capacidad de Car			
Fósforo (ppm)		-	< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	ıración (cm	
Potasio (meq/100ml)	_		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	/cm3)		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Ba		980	
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen	te (gr./cm3)		
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)	-		<1	1a4	>4			Agua Disponible	(cm3/cm3)		_
Zinc (ppm)	-		<3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15				1		

			DIE	DE	ANIAI	ICIC D	F CILI	SAGROPE			CONTRACTOR DEL ACCIONA
Nº Muestra Laboratorio:	1747		KIE	DE	ANAL	DATOS G	ENERALES DE L		MUESTRA /		T9B3
Ne Muestra Laboratorio.	1/4/								CODIGO		1000
Propietario:	Ur		a. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca
Fecha entrega de resultados:	16/{a/20/3						Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldad
	RESULTADOS					Cultivo/Uso:					
p.H.	5,30		Muy Ácido (0 < 5)	Ácido (5 -	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)			_	X							
Materia Orgánica %	22,09		AL	то							
				RANGOS PARA		_		PARAMETROS CO	MPLEMENTARIOS PAR		(En función de la
		1	BAJO	MEDIO	ALTO	TÓXICO			TEXT	URAL)	
Nitrógeno (ppm)	-		< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		-
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad H	idráulica a la Sati	uración (cm	
Potasio (meq/100ml)	-		< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Ba	ses		
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparer	nte (gr./cm3)		
Hierro (ppm)	- A F		< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)	- 25		<1	1a4	>4			Agua Disponible	(cm3/cm3)		
Zinc (ppm)			< 3	3 a 7	>7	MILES PROPERTY.		Porcentaje de Hu	imedad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15				1		

								S AGROPE			
	RE	P	DRTE	DE	ANAL	ISIS D	E SU	ELOS			
№ Muestra Laboratorio:	1748					DATOS G	ENERALES DE I	LA MUESTRA	MUESTRA / CODIGO		T10B3
Propietario:	Ur		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	16//0/20/3						Azuay	Cuenca	San Joaquín	Pumam	naqui / Soldado
	RESULTADOS					Cultivo/Uso:			_		
р.Н.	5,00		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			X							
Materia Orgánica %	24,07		AL	то							
				RANGOS PARA	AINTERPRET	ACION	1	PARAMETROS COI	MPLEMENTARIOS PAR	A USO EN RIEGO	D (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXTL		
Nitrógeno (ppm)		-	< 30	30 a 60	> 60			Capacidad de Car	npo (cm3/cm3)		
Fósforo (ppm)		-	< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	ıración (cm	11 -1
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	/cm3)		·
Calcio (meq/100ml)	mit (it - it is a second		< 2	2 a 5	>5			Saturación de Ba	ses		
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen	te (gr./cm3)		
Hierro (ppm)			< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)			< 1	1 a 4	>4			Agua Disponible	(cm3/cm3)		
Zinc (ppm)	principal Carlo		< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15			No.	h		

	RE	P	DRTE	DE	ANAL	ISIS D	E SU	S AGROPE			STIEGH SPEINANTA DE AUGHE
№ Muestra Laboratorio:	1749					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T11B3
Propietario:	Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	S	Sector / Finca
Fecha entrega de resultados:	16/10/2003						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldado
	RESULTADOS					Cultivo/Uso:			_		
p.H.	5,21		Muy Ácido (0 < 5)	5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		_	X							
Materia Orgánica %	23,50		AL	то							
				RANGOS PARA				PARAMETROS COM	MPLEMENTARIOS PARA		GO (En función de la C
Nitrógeno (ppm)	-	-	< 30	MEDIO 30 a 60	ALTO >60	TÓXICO		Capacidad de Car	npo (cm3/cm3)	IRAL)	
Fósforo (ppm)			< 10	10 a 20	> 20			Conductividad Hi		ración (cm	11-
Potasio (meq/100ml) Calcio (meq/100ml)			< 0,2	0,2 a 0,38 2 a 5	> 0,38			Saturación (cm3,			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	>1,5			Saturación de Bas Densidad Aparen			
Hierro (ppm)		-	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)			<1	1a4	>4			Agua Disponible		7	
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15				4		

								S AGROPE			
	R	EP	ORTE	DE	ANAL	ISIS D	E SU	ELOS			The Control of the Co
№ Muestra Laboratorio:	1750					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO	Tf	12B3
Propietario:	ι		ta. Karin rsidad d	a Suin e Cuenca		1111-1-16	Provincia	Cantón	Parroquia	Secto	or / Finca
Fecha entrega de resultados:	16/32/2013					Ubicación:	Azuay	Cuenca	San Joaquín	Pumamaq	ui / Soldad
	RESULTADOS					Cultivo/Uso:			_		
p.H.	5,18		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)			Medianam. Alcalino	Alcalino (>8,5)	
				Х	(>3,3*6)	(20-0,5)	(>6,5-7,5)	(>7,5-8)	(> 8 - 8,5)		
Clase Textural (% arena, % arcilla, % limo)	-		-								
Materia Orgánica %	23,82		AL.	го							
			F	RANGOS PARA	INTERPRETA	ACION		DARAMETROS CON	ADI FRAFRITA DIOS DADA	USO EN DISCO (S	
			BAJO	MEDIO	ALTO	TÓXICO		PARAINETROS CON	APLEMENTARIOS PARA TEXTU		función de la
Nitrógeno (ppm)	- 44		< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		-
Fósforo (ppm)		-	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ración (cm	_
Potasio (meq/100ml)			< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	'cm3)		
Calcio (meq/100ml)			< 2	2 a 5	> 5			Saturación de Bas			
Magnesio (meq/100ml)			< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent	te (gr./cm3)		_
Hierro (ppm)	_		< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)	-		<1	1 a 4	>4			Agua Disponible	(cm3/cm3)		-
Zinc (ppm)			< 3	3 a 7	>7			Porcentaje de Hui	medad (%)		
Manganeso (ppm)	 co (T)		< 5	5 a 15	> 15	The Manager			11		

**	RI	EP	ORTE	DE	ANAL	ISIS D	E SU	ELOS			LINTAP
№ Muestra Laboratorio	1785					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T1B1
Propietario	o: U		ta. Karin rsidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investiga	ación: Tesis	de Grad	o
p.H.	5,72		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)	_		-	-		NGO					
Materia Orgánica %	25,32		AL	то		M(3-5), A>5					
			F	RANGOS PARA	INTERPRETA	CION					
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	MPLEMENTARIOS PARA TEXTU	USO EN RIEGO	O (En función de la
Nitrógeno (ppm)	22,15	В	< 30	30 a 60	> 60			Capacidad de Cam			
Fósforo (ppm)	54,23	A	< 10	10 a 20	> 20			Conductividad Hid	fráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,84	A	< 0,2	0,2 a 0,38	> 0,38			/ h.) Saturación (cm3/s	em 2)		
Calcio (meq/100ml)	15,41	A	<2	2 a 5	>5			Saturación de Bas			
Magnesio (meq/100ml)	1,02	М	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	106,70	A	< 20	20 a 40	>40			Punto Marchitéz			-
Cobre (ppm)	3,40	М	<1	1a4	>4			Agua Disponible (
Zinc (ppm)	3,23	M	<3	3 a 7	>7	100000000000000000000000000000000000000					
Manganeso (ppm)	5,10	M	< 5	5 a 15	>15			. oreentaje de Hull	11cuau (70)		
anganeso (ppm)	5,10	_			75100			Porcentaje de Hun	nedad (%)		20-11- 1
		М	< 5		75100			. orcentaje de nun	neuau (%)		
IGLAS: Bajo (B); Medio (M); Alto (A); To		-			- 13				/		

REPORTE DE ANALISIS DE SUELOS Nº Muestra Laboratorio: 1786 DATOS GENERALES DE LA MUESTRA CODIGO Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Fecha entrega de resultados: 14/01/2014 RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado Cultivo/Uso: Investigación: Tesis de Grado Cultivo/Uso: Cultivo/Uso: Cultivo/Uso: RESULTADOS Cultivo/Uso: RESULTADOS Cultivo/Uso: RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RANGO RANGO Materia Orgánica % 25,91 ALTO B(0-3), M(3-5), A>5
Fecha entrega de resultados: 14/01/2014 RESULTADOS Dicación: Provincia Cantón Parroquia Sector / File
Azuay Cuenca San Joaquín Pumamaqui / S
p.H. 5,23 Muy Acido (0 < 5) S,5) Median. Acido (2 + 5,5) Median. Acido (2 + 5,5) Median. Acido (2 + 5,5) Median. Acido (2 + 6,5) Media
5,23 (0<5) 5,5) Median. Acido (25,5-6) (26-6,5) (26,5-7,5) (28-8,5
Clase Textural (% arena, % arcilla, % limo)
N-1-1-0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RANGOS PARA INTERPRETACION PARÁMETROS COMPLEMENTA PLOS CONTROLOS C
BAJO MEDIO ALTO TÓXICO PARÁMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En funció
Nitrógeno (ppm) 34,81 M < 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3)
Fósforo (ppm) 71,15 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm /h.)
Potasio (meq/100ml)
Calcio (meq/100ml) 10,78 A <2 2 a 5 >5 Saturación de Bases Magnesio (meq/100ml) 0,93 M <0,5
Densidad Aparente (gr./cm3)
1 125.4U A <70 20 a 40 50
Punto Marchitez (cm3/cm3)
Therro Pim 125,40 A < 20 20 a 40 > 40 Punto Marchitéz (cm3/cm3) Cobre (ppm) 4,10 A < 1 1 a 4 > 4 Agua Disponible (cm3/cm3) Zinc (ppm) 4,52 M < 3 3 a 7 > 7 Porcentaje de Humedad (%)
Dobre (ppm) 4.10 A <1 1.84 >4

The second second			- 00	ANAL	ISIS D	E SU	ES AGROPE			
1787								MUESTRA / CODIGO	T1	В3
): U					111-1	Provincia	Cantón	Parroquia	Sector	/ Finca
14/01/2014					Obicación:	Azuay	Cuenca	San Joaquín	Pumamaqui	/ Soldade
RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado	
5,31		Muy Ácido (0 < 5)	Ácido (5- 5,5)					Medianam. Alcalino	Alcalino (> 8,5)	
			X	PA	NGO			, = 0,0,1		
27,90		AL	_TO							
		E. Land	RANGOS PARA	A INTERPRETA	CION		panéas			
		BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS CON	TEXTU	i USO EN RIEGO (En fu RAL)	inción de la (
25,32	В	< 30	30 a 60	> 60			Capacidad de Cam	ipo (cm3/cm3)		_
48,85	A	< 10	10 a 20	> 20				Iráulica a la Satu	ración (cm	
	A	< 0,2	0,2 a 0,38	> 0,38				cm3)		
	A	< 2	2 a 5	>5						
				> 1,5			Densidad Aparent	e (gr./cm3)		
5,10	M	<5	5 a 15	> 7			Porcentaje de Hun	nedad (%)		
)	27,90 25,32 48,85 0,57 12,19 0,09 112,20 4,10 3,18	27,90 25,32 48,85 0,57 12,19 0,09 8 112,20 4,10 3,18 M	Srta. Karir Universidad of the U	Srta. Karina Suin Universidad de Cuenca 14/01/2014 RESULTADOS 5,31 Muy Ácido (0 < 5)	Srta. Karina Suin Universidad de Cuenca 14/01/2014 RESULTADOS Muy Acido (0 < 5) Acido (5 - Median. Acido (>5,5 - 6) X 27,90 ALTO B(0-3), N RANGOS PARA INTERPETA BAJO MEDIO ALTO 25,32 B < 30 30 a 60 > 60 48,85 A < 10 10 a 20 > 20 48,85 A < 10 10 a 20 > 20 0,57 A < 0,2 0,2 a 0,38 > 0,38 12,19 A < 2 2 a 5 > 5 0,09 B < 0,5 0,5 a 1,5 > 1,5 112,20 A < 20 20 a 40 > 40 4,10 A < 1 1a 4 > 4 3,18 M < 3 3a 7 > 7	Srta. Karina Suin Universidad de Cuenca Ubicación:	Srta. Karina Suin Ubicación:	Srta. Karina Suin Universidad de Cuenca Ubicación: Azuay Cuenca	State Stat	Srta. Karina Suin Universidad de Cuenca Ubicación: Azuay Cuenca San Joaquín Pumamaqui

								S AGROPE		EDITORIS EDITORISMO EST AND
	RE	P	DRTE	DE	ANAL	ISIS D	E SU	ELOS		
№ Muestra Laboratorio:	1788					DATOS G	ENERALES DE I	LA MUESTRA	MUESTRA / CODIGO	T2B1
Propietario:	Ui		a. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Find
Fecha entrega de resultados:	14/01/2014					Oblicación.	Azuay	Cuenca	San Joaquín	Pumamaqui / Sol
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado
p.H.	5,43		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino	Medianam. Alcalino	Alcalino (> 8,5)
Clase Textural (% arena, % arcilla, % limo)	-		-			NGO				
Materia Orgánica %	27,05		AL.			VI(3-5), A>5				
				RANGOS PARA				PARÁMETROS CON		A USO EN RIEGO (En función o
		1	BAJO	MEDIO	ALTO	TÓXICO			TEXTU	RAL)
Nitrógeno (ppm)	41,14	M	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)	_
Fósforo (ppm)	48,85	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ración (cm
Potasio (meq/100ml)	0,52	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	(cm3)	
Calcio (meq/100ml)	8,57	A	<2	2 a 5	>5	TO SOME		Saturación de Bas		
Magnesio (meq/100ml)	0,85	М	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent		
Hierro (ppm)	128,40	A	< 20	20 a 40	> 40			Punto Marchitéz		
Cobre (ppm)	4,20	A	<1	1 a 4	>4			Agua Disponible		
Zinc (ppm)	3,64	M	< 3	3 a 7	>7			Porcentaje de Hui	medad (%)	
Manganeso (ppm)	6,80	M	< 5	5 a 15	> 15					

	RI	EPO	ORTE	DE	ANAI	ISIS D	E GII	ES AGROPE			
№ Muestra Laboratorio:	1789	1			ANAL		ENERALES DE		MUESTRA / CODIGO		T2B2
Propietario:	U		ta. Karin rsidad d	a Suin e Cuenca			Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014					Ubicación:	Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	0
p.H.	5,64		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-					NGO					
Materia Orgánica %	26,71		AL	то		M(3-5), A>5					
				RANGOS PARA							
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	MPLEMENTARIOS PARA TEXTU	A USO EN RIEGI (RAL)	O (En función de la
Nitrógeno (ppm)	29,75	В	< 30	30 a 60	> 60			Capacidad de Can			-
Fósforo (ppm)	51,15	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,79	A	< 0,2	0,2 a 0,38	> 0,38	Halo British		Saturación (cm3/	cm3)		_
Calcio (meq/100ml)	12,86	A	< 2	2 a 5	>5			Saturación de Bas			
Magnesio (meq/100ml)	0,84	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	105,60	A	< 20	20 a 40	> 40			Punto Marchitéz			-
Cobre (ppm)	4,00	M	<1	1 a 4	>4			Agua Disponible (/ /	
Zinc (ppm)	2,95	В	< 3	3 a 7	>7			Porcentaje de Hun	nedad (%)		
Manganeso (ppm)	4,90	В	< 5	5 a 15	> 15						

	PI	E D	DTE	DE		ISIS D		S AGROPE		manda me	PROBLEM SELECTION
	N.		JKIE	DE	ANAL	1515	E SU	ELOS			
№ Muestra Laboratorio:	1790					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO	т:	2B3
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector	r / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumamaqu	ıi / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado	
p.H.	5,57		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			-		NGO					
Materia Orgánica %	30,40		AL	.TO		VI(3-5), A>5					
				RANGOS PARA	INTERPRETA	ACION		DARÁMETROS CON	ADI FRAFAITA DIOS DADA	1150 511 51500 10	
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	APLEMENTARIOS PARA TEXTU		función de la
Nitrógeno (ppm)	36,08	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		-
Fósforo (ppm)	51,15	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ración (cm	_
Potasio (meq/100ml)	0,87	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	'cm3)		
Calcio (meq/100ml)	13,93	A	< 2	2 a 5	> 5			Saturación de Bas			
Magnesio (meq/100ml)	0,96	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent	te (gr./cm3)		
Hierro (ppm)	114,20	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm) Zinc (ppm)	4,00	M	<1	1 a 4	>4			Agua Disponible (
Manganeso (ppm)	3,81 5,70	M	< 3	3 a 7	>7			Porcentaje de Hur	medad (%)		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóx		IVI	< 5	5 a 15	> 15				2/		

	RI	EPO	ORTE	DE	ANAL	ISIS D	F SII	ES AGROPE		1	
№ Muestra Laboratorio:	1791						ENERALES DE		MUESTRA / CODIGO		T3B1
Propietario:	U		a. Karina sidad de	a Suin e Cuenca			Provincia	Cantón	Parroquia	s	Sector / Finca
Fecha entrega de resultados:	14/01/2014		×			Ubicación:	Azuay	Cuenca	San Joaquín	Puma	maqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investiga	ación: Tesis	de Grac	lo
p.H.	5,80		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-	-	X	NGO					
Materia Orgánica %	28,13		ALT	то		/I(3-5), A>5					
			F	RANGOS PARA	INTERPRETA	CION		DADÁMETROS COM	IN FASTAITA DIGG DATA		
	un reynali listi i sast		BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS COIV	IPLEMENTARIOS PARA TEXTU	RAL)	60 (En función de la (
Nitrógeno (ppm)	17,72	В	< 30	30 a 60	> 60	1		Capacidad de Cam	po (cm3/cm3)		_
Fósforo (ppm)	70,77	A	< 10	10 a 20	> 20			Conductividad Hid	ráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,44	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm3)		
Calcio (meq/100ml) Magnesio (meq/100ml)	16,75	A	<2	2 a 5	>5			Saturación de Basi			
Hierro (ppm)	0,85 104,30	M	< 0,5 < 20	0,5 a 1,5	> 1,5			Densidad Aparent	e (gr./cm3)		
Cobre (ppm)				20 a 40	> 40			Punto Marchitéz (
Zinc (ppm)	2,60	M	<1	1a4	>4			Agua Disponible (200000000000000000000000000000000000000		an fish
Manganeso (ppm)	3,76 M <3 3 a 7 > 7 Porcentaie de Numerical (6/1)							nedad (%)			

(INIA	P INSTITU	то	NACIO	NAL AUTO	NOMO E	E INVESTI	GACIONE	SAGROPE	CUARIAS	(INTAP
	RE	P	ORTE	DE	ANAL	ISIS D	E SU	ELOS			CECUMAL EXPERIENCE BELLANDERS
№ Muestra Laboratorio:	1792					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T3B2
Propietario:	Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados:	14/01/2014					obleación.	Azuay	Cuenca	San Joaquín	Puma	maqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grac	lo
p.H.	5,60		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6) X	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)											
Materia Orgánica %	28,59		AL	то		M(3-5), A>5					
				RANGOS PARA	INTERPRETA	ACION		DADÁMETROS COM	ADI ERAFRITA DIOC DA DA		
			BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS COM	VIPLEMENTARIOS PARA TEXTU		O (En función de la
Nitrógeno (ppm)	28,48	В	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
Fósforo (ppm)	58,46	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,79	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	(cm3)		
Calcio (meq/100ml)	14,99	A	< 2	2 a 5	>5			Saturación de Bas		100	
Magnesio (meq/100ml)	0,82	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	115,50	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)	3,50	M	<1	1a4	>4			Agua Disponible	(cm3/cm3)		
Zinc (ppm) Manganeso (ppm)	3,54	M	< 3	3 a 7	>7			Porcentaje de Hui	medad (%)		1. Se
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi	4,40	В	< 5	5 a 15	> 15				1		
Sidens. Bajo (b) , Medio (M) , Aito (A) ; Toxii	10 (1)		No Salino (Ligeramente Salino (Salino (Muy Salino			pages its	-	
			<2)	2 a 4)	4 a 8)	(>8)		- 1 x/c	eda 170.	0	

№ Muestra Laboratorio						ISIS D					
						DATOS G	ENERALES DE		MUESTRA / CODIGO		T3B3
Propietario	·: U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Pumai	maqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	lo
p.H.	5,41		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)											
Materia Orgánica %	28,83		AL	то		N G O M(3-5), A>5					
			to a la se u	RANGOS PARA				DADÁMETROS CON			
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	MPLEMENTARIOS PARA TEXTU	(USO EN RIEG RAL)	iO (En función de la C
Nitrógeno (ppm)	47,47	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		-
Fósforo (ppm)	51,92	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	Iráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,40	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm3)		
Calcio (meq/100ml)	9,30	A	< 2	2 a 5	> 5			Saturación de Bas			
Magnesio (meq/100ml)	0,76	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent	e (gr./cm3)		
Hierro (ppm)	132,00	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		. Per
Cobre (ppm) Zinc (ppm)	4,00	M	<1	1a4	>4			Agua Disponible (cm3/cm3)		
	4,68	M	<3 <5	3 a 7 5 a 15	> 7 > 15			Porcentaje de Hur	nedad (%)		
Vlanganeso (ppm)	7,70	M									

(INTA	RI	EPO	DRTE	DE	ANAL	ISIS D	E SU	ELOS		8	LINTAP
№ Muestra Laboratorio:	1794						ENERALES DE L		MUESTRA / CODIGO		T4B1
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grade	0
p.H.	5,28		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)											
Materia Orgánica %	25,88		AL	ТО		N G O W(3-5), A>5					
				RANGOS PARA							
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	MPLEMENTARIOS PARA TEXTU		O (En función de la
Nitrógeno (ppm)	26,58	В	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		B-6
Fósforo (ppm)	40,77	A	< 10	10 a 20	> 20			Conductividad His	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,28	M	< 0,2	0,2 a 0,38	> 0,38			/ h.)			
Calcio (meq/100ml)	13,04	A	<2	2 a 5	> 5			Saturación (cm3/			
Magnesio (meq/100ml)	0,83	M	< 0,5	0,5 a 1,5	> 1,5	Maria Carallana		Saturación de Bas Densidad Aparent			
Hierro (ppm)	112,50	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)	3,90	М	<1	1a4	>4			Agua Disponible			The State of the S
Zinc (ppm)	2,69	В	< 3	3a7	>7			Porcentaje de Hui			
Manganeso (ppm)	5,70	М	< 5	5 a 15	>15			Porcentaje de Hui	nedad (%)		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxio	:o (T)			Ligeramente					1	1	

	K	EP(ORTE	DE	ANAL	E INVESTI	E SU	ELOS			
№ Muestra Laboratorio	1795					DATOS G	ENERALES DE I	A MUESTRA	MUESTRA / CODIGO		T4B2
Propietario			ta. Karin rsidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sc	ector / Finca
Fecha entrega de resultados	: 14/01/2014						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	0
р.Н.	5,60		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)			-	-		NGO					
Materia Orgánica %	27,23		AL.	то		VI(3-5), A>5					
			F	RANGOS PARA	INTERPRETA	CION		P. P. C.			
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	MPLEMENTARIOS PARA TEXTU	USO EN RIEG RAL)	O (En función de la
Nitrógeno (ppm)	26,58	В	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		-
Fósforo (ppm)	53,85	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satur	ración (cm	
Potasio (meq/100ml)	0,70	A	< 0,2	0,2 a 0,38	> 0,38			/ h.) Saturación (cm3/	(cm 2)		
Calcio (meq/100ml)	13,43	A	<2	2 a 5	>5	The party of the same of the s		Saturación (cm3/ Saturación de Bas			
Magnesio (meq/100ml)	0,82	М	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
Hierro (ppm)	115,90	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)	3,70	M	<1	1a4	>4			Agua Disponible (
Zinc (ppm)	3,33	M	< 3	3 a 7	>7			Porcentaje de Hur			
Manganeso (ppm)	5,80	M	< 5	5 a 15	> 15				110000 (70)		
SIGLAS: Bajo (B); Medio (M); Alto (A); To	xico (T)	On a							1		
		1		Ligeramente					/// -/		

Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Provincia Cantón Parroquia Sector / Firesta entrega de resultados: 14/01/2014 RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado Parroquia Cantón Parroquia Sector / Firesta entrega de resultados: 14/01/2014 Cuenca San Joaquín Pumamaqui / Scotor / Firesta entrega de resultados: 14/01/2014 Cultivo/Uso: Investigación: Tesis de Grado	Ne Muestra Laboratorio: 1796
Fecha entrega de resultados: 14/01/2014 RESULTADOS Discription Provincia Cantón Parroquia Sector / Final Final Provincia Cantón Parroquia Sector / Final Provincia Cantón Parroquia Pumamaqui / Sector / Final Provincia Provincia Cantón Parroquia Pumamaqui / Sector / Final Provincia Provincia Parroquia Pumamaqui / Sector / Final Pumamaqui / Sector / Fi	Fecha entrega de resultados: 14/01/2014 RESULTADOS Universidad de Cuenca Ubicación: Azuay Cuenca San Joaquín Pumamaqui / S Cultivo/Uso: Investigación: Tesis de Grado
Azuay Cuenca San Joaquín Pumamaqui / Scotte	Fecha entrega de resultados: 14/01/2014 RESULTADOS Azuay Cuenca San Joaquín Pumamaqui / S Cultivo/Uso: Investigación: Tesis de Grado
p.H. 5,71 Muy Acido (0 < 5) Acido (5 - 5,5) Median. Acido (2 5,5 - 6) X Wedian. Acido (3 < 5,5 - 6) X X Wedian. Acido (3 < 5,5 - 6) X X Wedian. Acido (3 < 5,5 - 8) (3 < 5,5 - 8) (3 < 5,5 - 8) (4 < 5,5 - 8) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5) (5 < 6,5 - 7,5)	D.H. Muy Ácido Ácido (5-
5,71 (0<5) 5,5) Median. Aicido Ligerament. Acido (>5,5-6) (>6,5-7,5) (>6,5-7,5) (>7,5-8) (>8,5) (>8,	
Clase Textural (%	5,71 (0<5) 5,5) Median. Aicido Ligerament. Aicido Práctic. Neutro Ligeram. Alcalino (>8,5) (>6,5-6) (>6-6,5) (>6-6,5) (>7,5-8) (>8-8,5)
RANGO	Clase Textural (% arena, % arcilla, % limo)
Materia Orgánica % 26,15 ALTO B(0-3), M(3-5), A>5	Materia Octobra N
PANCOS PADA INTERPRETACION	
BAJO MEDIO ALTO TÓXICO PARAMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En función TEXTURAL)	RANGOS PARA INTERPRETACION
itrógeno (ppm) 35,44 M < 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3)	FARAMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En funció
ósforo (ppm) 56,15 A <10 10 a 20 >20 Conductividad Hidráulica a la Saturación (cm	BAJO MEDIO ALTO TÓXICO Nitrógeno (ppm) 35.44 M < 30 30.860 > 60 Considerate Source (ppm)
otasio (meq/100ml) 0,78 A < 0,2 0,2 a 0,38 > 0,38 Saturación (cm3/cm3)	BAJO MEDIO ALTO TÓXICO TEXTURAL)
alcio (meq/100ml) 14,24 A <2 2 a 5 >5 Saturación de Bases —	BAJO MEDIO ALTO TÓXICO TÓXICO TEXTURAL)
	BAJO MEDIO ALTO TÓXICO TÓXICO TEXTURAL)
Densidad Aparente (gr./cm3)	BAJO MEDIO ALTO TÓXICO
ierro (ppm) 122,40 A < 20 20 a 40 > 40 Punto Marchitéz (cm3/cm3)	BAJO MEDIO ALTO TÓXICO TÓXICO
lerro (ppm) 122,40	BAJO MEDIO ALTO TÓXICO TÓXICO TÓXICO TEXTURAL) Nitrógeno (ppm) 35,44 M <30 30 a 60 > 60
ósforo (ppm) 56,15 A <10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm /h.) otasio (meq/100ml) 0,78 A <0,2	BAJO MEDIO ALTO TÓXICO TEXTURAL)
Densidad Aparente (gr./cm3)	BAJO MEDIO ALTO TÓXICO TÓXICO TÓXICO TEXTURAL)
ierro (nnm) 123.40 A 30 20 40 Densidad Aparente (gr./cms)	BAJO MEDIO ALTO TÓXICO TÉXTURAL)
ierro (ppm) 122,40 A < 20 20 a 40 > 40 Punto Marchitéz (cm3/cm3)	BAJO MEDIO ALTO TÓXICO TÉXTURAL) Nitrógeno (ppm) 35,44 M <30 30 a 60 > 60
ierro (ppm)	BAJO MEDIO ALTO TÓXICO TÉXTURAL) Nitrógeno (ppm) 35,44 M <30 30 a 60 >60
ierro (ppm)	BAJO MEDIO ALTO TÓXICO TÉXTURAL) Nitrógeno (ppm) 35,44 M <30 30 a 60 > 60
ierro (ppm) 122,40	BAJO MEDIO ALTO TÓXICO TÓXICO TÓXICO TEXTIRAL) Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad Aparente (gr./cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad Aparente (gr./cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Saturación (de Bases Capacidad de Campo (cm3/cm3) Saturación (de Bases Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm /h.) Saturación (de Bases Capacidad de Campo (cm3/cm3) Saturaci

Nº Muestra Laboratorio	R	EPO	DRTE	DE	ANAL	ISIS D	E CIL	FLOC		
	1797					0.0	L 30	ELUS		
						DATOS G	ENERALES DE L	.A MUESTRA	MUESTRA / CODIGO	T5B1
Propietario	·		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca
Fecha entrega de resultados	14/01/2014					Obligation.	Azuay	Cuenca	San Joaquín	Pumamaqui / Soldae
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado
p.H.	5,23		Muy Ácido (0 < 5)	Ácido (5 - 5,5)		Ligerament. Ácido	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino	Alcalino (>8,5)
Clase Textural (% arena, % arcilla, % limo) Materia Orgánica %	 25,51			X		NGO W(3-5), A>5				
				RANGOS PARA						
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CON	VIPLEMENTARIOS PARA TEXTU	A USO EN RIEGO (En función de la RAL)
Nitrógeno (ppm)	42,38	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)	
Fósforo (ppm)	57,58	A	< 10	10 a 20	> 20			Conductividad Hi		ración (cm
Potasio (meq/100ml) Calcio (meq/100ml)	0,41 10,91	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3)		-
Magnesio (meq/100ml)	0,98	A	< 0,5	2 a 5 0,5 a 1,5	>5			Saturación de Bas Densidad Aparen		
Hierro (ppm)	373,12	A	< 20	20 a 40	> 40		7077	Punto Marchitéz		
Cobre (ppm)	4,70	A	<1	1a4	>4			Agua Disponible		
Zinc (ppm)	4,15	M	< 3	3 a 7	>7			Porcentaje de Hu	· · · · · · · · · · · · · · · · · · ·	
Manganeso (ppm)	9,90	М	< 5	5 a 15	> 15				6	
	óxico (T)									

		- D	DTE	DE				S AGROPE			
	RI	= P (JKIE	DE	ANAL	ISIS D	E SU	ELOS			
№ Muestra Laboratorio	1798					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T5B2
Propietario	: Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Pumar	maqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	o
p.H.	5,68		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			-		NGO					
Materia Orgánica %	28,67		AL	то		VI(3-5), A>5					
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS CON	MPI EMENTARIOS PAR	A LISO EN DIEG	O (En función do la
			BAJO	MEDIO	ALTO	TÓXICO		744411211103 001			o (Eli iulicioli de la
Nitrógeno (ppm)	48,34	М	< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		
Fósforo (ppm)	49,49	A	< 10	10 a 20	> 20			Conductividad Hi			-
Potasio (meq/100ml)	0,83	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	Campo (cm3/cm3) d Hidráulica a la Saturación (c		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Calcio (meq/100ml)	15,91	A	<2	2 a 5	> 5			Saturación de Bas	ses		
Magnesio (meq/100ml)	0,84	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen		THE WAY	
Hierro (ppm)	352,66	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm) Zinc (ppm)	3,90 3,98	M	<1	1a4	>4			Agua Disponible			
Manganeso (ppm)	7,30	M	< 5	3 a 7 5 a 15	>7			Porcentaje de Hu	medad (%)		
SIGLAS: Bajo (B); Medio (M); Alto (A); Tó		IVI	(3	2912	>15				1		
	AICO (I)									1	

	RE	EP (ORTE	DE	ANAL	ISIS D	E SU	ELOS		ar	ADDRESS CONTRACTOR AND ADDRESS CONTRACTOR AND ADDRESS CONTRACTOR AND ADDRESS CONTRACTOR A
№ Muestra Laboratorio:	1799					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA / CODIGO		T5B3
Propietario:	Uı		ta. Karin rsidad d	a Suin le Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumam	naqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grade	0
p.H.	5,71		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			_		NGO					
Materia Orgánica %	28,02		AL	то		VI(3-5), A>5					
				RANGOS PARA	A INTERPRETA	ACION		DADÁMETROS CON	MPLEMENTARIOS PARA	A LICO EN DIFOGO	
			BAJO	MEDIO	ALTO	TÓXICO	4 5 12 5	PARAMETROS CON	TEXTU		(En funcion de la C
Nitrógeno (ppm)	43,71	М	< 30	30 a 60	> 60			Capacidad de Can			-
Fósforo (ppm)	56,66	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	iración (cm	
Potasio (meq/100ml)	0,70	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	(cm3)		
Calcio (meq/100ml)	17,97	A	< 2	2 a 5	>5			Saturación de Bas			
Magnesio (meq/100ml)	0,78	M	< 0,5	0,5 a 1,5	> 1,5	The Paris of the Paris		Densidad Aparen	te (gr./cm3)	3	
Hierro (ppm)	354,42	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		- E
Cobre (ppm) Zinc (ppm)	3,20	M	<1	1a4	>4			Agua Disponible			
Manganeso (ppm)	4,78 6,60	M	< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi		I M	< 5	5 a 15	>15				h	1	

				ESTACI	ÓN EXPERI	MENTAL DEL	AUSTRO	SAGROPE			INTAP
	RE	PC	RTE	DE	ANAL	SIS D	E SUI	ELOS			
№ Muestra Laboratorio:	1800					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T6B1
Propietario:	Ur		a. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investiga	ación: Tesis	de Grad	o
p.H.	5,35		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)			-	-	RA	NGO					
Materia Orgánica %	28,37		AL	то		VI(3-5), A>5					
				RANGOS PARA				PARÁMETROS CON	MPLEMENTARIOS PAR		60 (En función de la 0
			BAJO	MEDIO	ALTO	TÓXICO			TEXTL	URAL)	
Nitrógeno (ppm)	53,64	M	< 30	30 a 60	> 60			Capacidad de Car			
Fósforo (ppm)	70,31	A	< 10	10 a 20	> 20			Conductividad Hi	draulica a la Sati	uración (cm	-
Potasio (meq/100ml)	0,61	А	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3)	/cm3)		75 - 15 16
Calcio (meq/100ml)	12,54	A	< 2	2 a 5	>5		Water State of the last of the	Saturación de Bas			
Magnesio (meq/100ml)	0,95	М	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen			
Hierro (ppm)	374,44	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)	4,20	A	<1	1a4	>4		BARRIE I	Agua Disponible			-
Zinc (ppm)	5,12	M	< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm)	9,70	M	< 5	5 a 15	> 15				h		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóx	tico (T)			Ligeramente		Muy Salino	1		ladaid	1	

INTA							AUSTRO			entesi	HIS EXPERIMENTAL THE AMETERS		
	RI	EPO	DRTE	DE	ANAL	ISIS D	E SU	ELOS					
№ Muestra Laboratorio	1801					DATOS G	ENERALES DE	LA MUESTRA	MUESTRA /		T6B2		
	Filtra Warra State Contract								CODIGO		TODE		
Propietario	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	tor / Finca		
Fecha entrega de resultados	14/01/2014					obicación.	Azuay	Cuenca	San Joaquín	Pumama	qui / Soldad		
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado			
p.H.	5,72		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)			
Clase Textural (% arena, % arcilla, % limo)	-		-	-		NGO							
Materia Orgánica %	26,74		AL	то		VI(3-5), A>5							
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS CON	APLEMENTARIOS PARA	A USO EN RIEGO (SO EN RIEGO (En función de la CL		
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU		en rancion de la		
Nitrógeno (ppm)	60,26	A	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)				
Fósforo (ppm)	64,16	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ración (cm			
Potasio (meq/100ml)	0,57	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	cm31				
Calcio (meq/100ml)	16,47	A	< 2	2 a 5	>5			Saturación de Bas					
Magnesio (meq/100ml)	0,81	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent					
Hierro (ppm)	362,56	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)				
Cobre (ppm)	3,90	M	<1	1 a 4	>4			Agua Disponible	cm3/cm3)	7 1 1			
Zinc (ppm)	5,90	M	<3	3 a 7	>7			Porcentaje de Hur	medad (%)				
Manganeso (ppm)	9,20	M	< 5	5 a 15	> 15				/				

						ISIS D		S AGROPE			COLUMN SANDARDON ECO, ANGENOS
№ Muestra Laboratorio:	1802					DATOS G	ENERALES DE L	.A MUESTRA	MUESTRA / CODIGO		T6B3
Propietario:	Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	lo
p.H.	5,92		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)			-	-		NGO					
Materia Orgánica %	29,96		AL	то		VI(3-5), A>5					
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS CON	MPLEMENTARIOS PAR.	A USO EN RIEG	GO (En función de la
	RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO PARÁMETROS COMPLEMENTARIOS PARA TEXTU										
Nitrógeno (ppm)	28,48	В	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		_
			< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	uración (cm	
Fósforo (ppm) Potasio (meg/100ml)	62,46	A						/ h.)			
Calcio (meq/100ml)	1,51	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/			
Magnesio (meq/100ml)	15,38 0,80	A M	< 0,5	2 a 5 0,5 a 1,5	> 5 > 1.5			Saturación de Bas			
Hierro (ppm)	352,88	A	< 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparen			
Cobre (ppm)	2,90		<1	1 a 4	>40			Punto Marchitéz			
Zinc (ppm)		M						Agua Disponible	P. C. LOUIS BOLD SOURCE		
Manganeso (ppm)		-						Porcentaje de Hu	medad (%)		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi		4,10 M <3 3 a 7 > 7 8,70 M <5 5 a 15 > 15 (T) Ugeramente Salino (Salino (Ala 8) (> 8) (> 8)						1			

. **	RE	PC	RTE	DE	ANAL	ISIS D	E SUI	ELOS			
№ Muestra Laboratorio:	1803					DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T7B1
Propietario:	Ui		a. Karin sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ctor / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumam	naqui / Soldade
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado	0
p.H.	5,90		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-	RANGO									
Materia Orgánica %	25,82		AL	то		M(3-5), A>5					
				RANGOS PARA	AINTERPRETA	ACION		DADÁMETROS CO	MPLEMENTARIOS PAR	A LICO EN DIECO	O (En función do la
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS CO	TEXTL		o (En función de la
Nitrógeno (ppm)	31,79	М	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		
Fósforo (ppm)	60,75	A	< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Satu	uración (cm	
Potasio (meq/100ml)	0,90	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3			-
Calcio (meq/100ml)	16,27	A	< 2	2 a 5	>5			Saturación de Ba			_
Magnesio (meq/100ml)	0,74	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparer			
Hierro (ppm)	347,16	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm) Zinc (ppm)	3,40 4,13	M	<1	1a4 3a7	>4			Agua Disponible			-
Manganeso (ppm)	6,40	M	<5	5 a 15	>15			Porcentaje de Hu	illedad (%)		
SIGLAS: Bajo (B); Medio (M); Alto (A); Tó:		IVI	< 5	5815	>15				h		

	I I	= P (DRTE	DE	ANAL	E INVESTI	E SU	FLOS			The second secon
№ Muestra Laboratorio	3000 000 200						ENERALES DE L		MUESTRA / CODIGO		T7B2
Propietario	: U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	tor / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Pumama	aqui / Soldad
	RESULTADOS					Cultivo/Uso:		Investiga	ación: Tesis	de Grado	
p.H.	5,45		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (>7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)		RANGO									
Materia Orgánica %	25,35										
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS CON	VIPLEMENTARIOS PAR	A LISO EN DISCO	(Fa formalés de la
			BAJO	MEDIO	ALTO	TÓXICO		TANAMETROS CON	TEXTL		(En funcion de la
litrógeno (ppm)	60,26	A	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
ósforo (ppm)	66,55	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ıración (cm	
otasio (meq/100ml)	0,77	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	/cm3)		
alcio (meq/100ml)	10,52	А	<2	2 a 5	>5	(1)		Saturación de Bas			
/lagnesio (meq/100ml)	0,92	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent			
lierro (ppm)	386,98	А	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
obre (ppm)	4,80	A	<1	1 a 4	>4		r restorming	Agua Disponible ((cm3/cm3)		
inc (ppm)	4,99 10,30	M	<3	3 a 7	>7			Porcentaje de Hur	medad (%)		-
Manganeso (ppm)		M	< 5	5 a 15	> 15						

				ESTACI	ON EXPERI	MENTAL DEL	AUSTRO	S AGROPE		INTRE
	RI	EPO	DRTE	DE	ANAL	ISIS D	E SU	ELOS		
№ Muestra Laboratorio	1805					DATOS G	ENERALES DE I	LA MUESTRA	MUESTRA / CODIGO	T7B3
Propietario			a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Pumamaqui / Sold
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis o	le Grado
p.H.	5,84		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)
Clase Textural (% arena, % arcilla, % limo)	-					NGO				
Materia Orgánica %	25,34		AL	TO OT		VI(3-5), A>5				
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS CON	MPI EMENTARIOS PARA	USO EN RIEGO (En función de
			BAJO	MEDIO	ALTO	TÓXICO			TEXTUR	
Nitrógeno (ppm)	50,99	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)	-
Fósforo (ppm)	67,58	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satur	ación (cm
Potasio (meq/100ml)	1,03	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	/cm3)	
Calcio (meq/100ml)	13,37	A	< 2	2 a 5	>5			Saturación de Bas		
Magnesio (meq/100ml)	0,80	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent		
Hierro (ppm)	367,40	A	< 20	20 a 40	>40			Punto Marchitéz		
Cobre (ppm) Zinc (ppm)	3,80 4,07	M	<1	1a4	>4		Sey Julianist	Agua Disponible		
Manganeso (ppm)	10,20	M	<3 <5	3 a 7	>7		a comprehensive	Porcentaje de Hu	medad (%)	-
SIGLAS: Bajo (B); Medio (M); Alto (A); Tó		IVI	< 5	5 a 15	> 15				1	
									/ //	

	RE	PC	RTE	DE	ANAL	SIS D	E SUI	S AGROPE				
№ Muestra Laboratorio:	1806	1				DATOS G	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T8B1	
Propietario:	Ur		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ctor / Finca	
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldado	
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grade)	
p.H.	6,05		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)		
Clase Textural (% arena, % arcilla, % limo)				-	RA	NGO						
Materia Orgánica %	26,17		AL	.TO	B(0-3),	M(3-5), A>5						
				RANGOS PARA	A INTERPRET	ACION		PARÁMETROS CO		RA USO EN RIEGO (En función de la C		
			BAJO	MEDIO	ALTO	TÓXICO			TEXT	URAL)		
Nitrógeno (ppm)	38,41	М	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		-	
Fósforo (ppm)	51,19	A	< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Sati	uración (cm	-	
Potasio (meq/100ml)	0,46	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)			
Calcio (meq/100ml)	17,66	A	< 2	2 a 5	>5			Saturación de Ba			_	
Magnesio (meq/100ml)	0,71	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparer				
Hierro (ppm)	340,12	A	< 20	20 a 40	> 40			Punto Marchitéz				
Cobre (ppm)	3,40	M	<1	1 a 4	>4			Agua Disponible				
Zinc (ppm)	4,52	M	< 3	3 a 7	>7			Porcentaje de Hu	imedad (%)		- -	
Manganeso (ppm)	8,80	M	< 5	5 a 15	> 15				1			

								SAGROPE		-		
	RI	P	DRTE	DE	ANAL	ISIS D	E SU	ELOS				
№ Muestra Laboratorio:	1807					DATOS G	ENERALES DE I	LA MUESTRA	MUESTRA / CODIGO		T8B2	
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca	
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Puma	maqui / Soldado	
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	lo	
p.H.	5,76		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)		
Clase Textural (% arena, % arcilla, % limo)	-					NGO						
Materia Orgánica %	27,05		AL	TO OT	B(0-3), I	VI(3-5), A>5						
			_	RANGOS PARA	A INTERPRETA	ACION		PARÁMETROS CON	VIPLEMENTARIOS PARA	A USO EN RIE	A USO EN RIEGO (En función de la CL	
		_	BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)		
Nitrógeno (ppm)	58,28	M	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		1	
Fósforo (ppm)	60,07	A	< 10	10 a 20	> 20			Conductividad Hid	dráulica a la Satu	ıración (cm		
Potasio (meq/100ml)	0,57	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	(cm3)	4		
Calcio (meq/100ml)	14,48	A	< 2	2 a 5	> 5			Saturación de Bas	ses	Ly Strick		
Magnesio (meq/100ml)	0,93	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparent	te (gr./cm3)			
Hierro (ppm)	362,78	A	< 20	20 a 40	> 40	Control of		Punto Marchitéz	(cm3/cm3)			
Cobre (ppm)	4,70	A	<1	1 a 4	>4			Agua Disponible	(cm3/cm3)			
Zinc (ppm)	4,41	M	< 3	3 a 7	>7			Porcentaje de Hui	medad (%)			
Manganeso (ppm)	10,20 ico (T)	M	< 5	5 a 15	> 15							

	DI	: D	DTE	DE	ANALI	ISIS D	E CIII	S AGROPE		
№ Muestra Laboratorio			JKIE	DE	ANALI		ENERALES DE L		MUESTRA / CODIGO	T8B3
Propietario	: Uı		a. Karina sidad de	a Suin			Provincia	Cantón	Parroquia	Sector / Finca
Fecha entrega de resultados	: 14/01/2014					Ubicación:	Azuay	Cuenca	San Joaquín	Pumamaqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado
p.H.	5,38		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino	Alcalino (>8,5)
Clase Textural (% arena, % arcilla, % limo)	-		-			NGO				
Materia Orgánica %	27,54		AL			M(3-5), A>5				
				RANGOS PARA				PARÁMETROS COI	MPLEMENTARIOS PARA TEXTU	USO EN RIEGO (En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTO	(AL)
Nitrógeno (ppm)	62,91	A	< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)	_
Fósforo (ppm)	73,72	A	< 10	10 a 20	> 20			Conductividad Hi / h.)	dráulica a la Satu	ración (cm
Potasio (meq/100ml)	0,32	M	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,		
Calcio (meq/100ml)	9,77	A	<2	2a5	>5			Saturación de Ba		
Magnesio (meq/100ml) Hierro (ppm)	0,85 386,54	M	< 0,5	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparen		
Cobre (ppm)	4,60		<1	1a4	>40			Punto Marchitéz Agua Disponible		-
Zinc (ppm)	4,60	A M	<3	3a7	>7			Porcentaje de Hu		
Manganeso (ppm)	11.90	M	<5	5 a 15	>15			Porcentaje de Hu	meuau (70)	Diesember 1863

		EP	DRTE	DE	ANAL	ISIS D	E SU	S AGROPE			
№ Muestra Laboratorio	1809					DATOS G	ENERALES DE I	.A MUESTRA	MUESTRA / CODIGO		T9B1
Propietario	·		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	S	ector / Finca
Fecha entrega de resultados	14/01/2014				P		Azuay	Cuenca	San Joaquín	Pumar	maqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	o
p.H.	6,06		Muy Ácido (0<5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)				-		NGO					
Materia Orgánica %	23,55		AL	то		M(3-5), A>5					
				RANGOS PARA			3-11-3-				
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS COM	MPLEMENTARIOS PARA TEXTU		iO (En función de la C
Nitrógeno (ppm)	39,07	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		
Fósforo (ppm)	54,95	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,96	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	/cm3)		
Calcio (meq/100ml) Magnesio (meq/100ml)	15,87 0,72	A	<2	2 a 5	>5			Saturación de Bas			A
Hierro (ppm)	366,08	M	< 0,5 < 20	0,5 a 1,5 20 a 40	> 1,5 > 40			Densidad Aparent			
Cobre (ppm)	4,00	M	<1	1a4	>40			Punto Marchitéz			-
Zinc (ppm)	5,39	M	<3	3a7	>7			Agua Disponible	Action of the second	2	-
Manganeso (ppm)	10,40	M	< 5	5 a 15	> 15			Porcentaje de Hu	meudu (70)		_
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tó		1		3013	713				h		

P.H. 6,06 Muy Ácido (0 < 5) Ácido (0 < 5) S.5 Median. Ácido (> 5.5) Median. Ácido (> 6.65) Median. Ácido (>	Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Azuay Cuenca San Joaquín Puma Cultivo/Uso: Investigación: Tesis de Gra P.H. 6,06 Muy Ácido (0 < 5) 5,5 } Median. Ácido (2,5,5-6) (2,6-6,5) (2,6-6,5) (2,5-8) (2,5-8) (2,8-8,5) (2,8-8,5)	coDIGO 1982 coDIGO 1982 ncia Cantón Parroquia Sector / Fin ay Cuenca San Joaquín Pumamaqui / So Investigación: Tesis de Grado utro Ligeram. Alcalino Medianam. Alcalino (>8,5)	oquia Sector / Fin oaquín Pumamaqui / So Tesis de Grado Alcalino (>8,5)
Fecha entrega de resultados: 14/01/2014 RESULTADOS 14/01/2014 RESULTADOS Cultivo/Uso: Cultivo/Uso: Investigación: Tesis de ligerament. Ácido (> 6,06 (0 < 5) (> 5,5) (> 5,5) (> 5,5) (> 6,5) (>	Propietario: Universidad de Cuenca Ubicación: Azuay Cuenca San Joaquín Puma Cultivo/Uso: Investigación: Tesis de Gra PARESULTADOS Digerament. Acido (0 < 5) 5,5 } Median. Acido (2,5,5-6) (2,6-6,5) (2,5-7,5) (2,7,5-8) (2,8-8,5) (2,8-8,5) (2,8-8,5) (2,8-8,5) (2,8-8,5) (2,8-8,5)	ay Cuenca San Joaquín Pumamaqui / So Investigación: Tesis de Grado eutro Ligeram. Alcalino Medianam. Alcalino (>8,5)	Doaquín Pumamaqui / So Tesis de Grado Alcalino (>8,5)
RESULTADOS Cultivo/Uso: Investigación: Tesis de	P.H. 6,06 Muy Acido (0 < 5) 5,5 } Median. Acido (2 + 6 - 6,5) (2 + 6 - 5,5 + 8) (2 + 6 - 5,5 + 8) (2 + 6 - 5,5 + 8) (2 + 6 - 5,5 + 8) (2 + 6 - 6,5 + 8	Investigación: Tesis de Grado eutro Ligeram. Alcalino Medianam. Alcalino (28,5)	Tesis de Grado
Práctic. Neutro (>5,5) (5- Median. Acido (>5,5) (5- Median. Acido (>6,6,5) (>6,6,5) (>6,6,5) (>6,6,5) (>7,5-8) (>8-8,5)	p.H. 6,06 Muy Ácido (0 < 5) 5,5 Median. Ácido (25,5-6) (26-6,5) (26-6,5) (27,5-8) (27,5-8) (28-8,5)	eutro Ligeram. Alcalino Medianam. Alcalino (>8,5)	Alcalino 1. Alcalino (>8,5)
Clase Textural (% arena, % arcilla, % limo) R A N G O Materia Orgánica % 25,11 ALTO B(0-3), M(3-5), A>5 RANGOS PARA INTERPRETACION Práctic. Neutro (>6,5 - 7,5) Ugeram. Alcalino (>8 - 8,5) Medianam. Alcalino (>8 - 8,5) (>8 - 8,5)	6,06 (0<5) 5,5) Median. Ácido (>5,5-6) (>6,5-7,5) (>7,5-8) (>7,5-8) (>8,5-7,5) (>7,5-8) (>8,5-7,5) (>8,5-8,5) (>8,5-7,5) (>8,5-8,5)	eutro Ligeram. Alcalino Medianam. Alcalino (>8,5)	n. Alcalino (> 8,5)
Clase Textural (% arena, % arcilla, % limo) R A N G O Materia Orgánica % 25,11 ALTO B(0-3), M(3-5), A>5 RANGOS PARA INTERPRETACION PARÁMETROS COMPLEMENTARIOS PARA INS	A		
Materia Orgánica % 25,11 ALTO B(0-3), M(3-5), A>5 RANGOS PARA INTERPRETACION PARÁMETROS COMPLEMENTARIOS PARA INS	ena, % arcilla, % limo)		
RANGOS PARA INTERPRETACION PARÁMETROS COMPLEMENTARIOS PARA IIS			
PARAMETROS COMPLEMENTARIOS PARA LIS	PANCOS PADA INTERPRETA CION		
BAJO MEDIO ALTO TÓXICO TEXTURAL	PARAMETROS COMPLEMENTARIOS PARA USO EN RIE		
Nitrógeno (ppm) 44,37 M < 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3)		PARÁMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En función TEXTURAL)	IRIOS PARA USO EN RIEGO (En función TEXTURAL)
	(ppm) 44,37 M < 30 30 a 60 > 60 Capacidad de Campo (cm3/cm3)	TEXTURAL)	TEXTURAL)
Potasio (meg/100mi) 1.32 A (0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Capacidad de Campo (cm3/cm3) (npm)	TEXTURAL) Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm	TEXTURAL)
Calcio (meq/100ml) 15,92 A <2 2 a 5 >5 Saturación do Racce	(ppm) 80,20 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm / h.) (meq/100ml) 1,32 A < 0,2 0,2 a 0,38 > 0,38 Saturación (cm 2/cm 2)	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.)	rextural) cm3) a la Saturación (cm
Magnesio (meq/100ml) 0,82 M < 0,5 0,5 a 1,5 > 1,5 Densidad Aparente (gr./cm3)	(ppm) 80,20 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm / h.) (meq/100ml) 1,32 A < 0,2 0,2 a 0,38 > 0,38 Saturación (cm3/cm3) Imeq/100ml) 15,92 A < 2 2 a 5 > 5	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3)	TEXTURAL) cm3) a la Saturación (cm
nierro (ppm) 370,92 A < 20 20 a 40 > 40 Punto Marchitéz (cm3/cm3)	(ppm) 80,20 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm /h.) (meq/100ml) 1,32 A < 0,2	TEXTURAL) Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases	TEXTURAL) cm3) a la Saturación (cm
Cobre (ppm) 4,10 A <1 1 a 4 >4 Agua Disponible (cm3/cm3)	(ppm) 80,20 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm / h.) (meq/100ml) 1,32 A < 0,2	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases Densidad Aparente (gr./cm3)	TEXTURAL) cm3) a la Saturación (cm 3)
Porcentaje de Humedad (%)	(ppm) 80,20 A < 10 10 a 20 > 20 Conductividad Hidráulica a la Saturación (cm / h.) (meq/100ml) 1,32 A < 0,2	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases Densidad Aparente (gr./cm3) Punto Marchitéz (cm3/cm3) Agua Disposiblo (cm3/cm3) Agua Disposiblo (cm3/cm3) Agua Disposiblo (cm3/cm3) Capacidad Agua Disposiblo (cm3/cm3	TEXTURAL) cm3) a la Saturación (cm 3))
Manganeso (ppm) 8,60 M < 5 5 a 15 > 15	Capacidad de Campo (cm3/cm3) Capacidad de Campo (cm3/cm3)	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases Densidad Aparente (gr./cm3) Punto Marchitéz (cm3/cm3) Agua Disponible (cm3/cm3)	TEXTURAL) cm3) a la Saturación (cm 3) 0 1 31 1
	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.)	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases Densidad Aparente (gr./cm3) Punto Marchitéz (cm3/cm3) Agua Disponible (cm3/cm3)	TEXTURAL) cm3) a la Saturación (cm 3) 0 1 31 1
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóxico (T)	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.)	Capacidad de Campo (cm3/cm3) Conductividad Hidráulica a la Saturación (cm / h.) Saturación (cm3/cm3) Saturación de Bases Densidad Aparente (gr./cm3) Punto Marchitéz (cm3/cm3) Agua Disponible (cm3/cm3)	TEXTURAL) cm3) a la Saturación (cm 3) 0 1 31 1

	DI	E D	DIE	DE		1010 0	F 011	S AGROPE			THE PARTY AND ADDRESS OF THE PARTY OF THE PA	
№ Muestra Laboratorio			JKIE	DE	ANAL	ISIS D	ENERALES DE L		MUESTRA /			
Na Muestra Laboratorio	. 1011					DATUS G	ENERALES DE L	A WUESTRA	CODIGO		T9B3	
Propietario	: U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca	
Fecha entrega de resultados	: 14/01/2014						Azuay	Cuenca	San Joaquín	Pumam	naqui / Soldad	
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grade	0	
p.H.	5,72		Muy Ácido (0<5)	Ácido (5 - 5,5)	(>5,5-6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)		
Clase Textural (% arena, % arcilla, % limo)	-				X	NGO						
Materia Orgánica %	26,41		AL	то		M(3-5), A>5						
				RANGOS PARA	A INTERPRETA	ACION		DADÁBAETROS COM	ADI EMENTADIOS DAD	A LICO EN DIFO	0/5 / 1/ 1.1	
			BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS CON	TEXTL		USO EN RIEGO (En función de la CI RAL)	
Nitrógeno (ppm)	68,21	A	< 30	30 a 60	> 60			Capacidad de Can				
Fósforo (ppm)	109,22	A	< 10	10 a 20	> 20			Conductividad His	dráulica a la Satu	uración (cm		
Potasio (meq/100ml)	0,83	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3)	/cm3)			
Calcio (meq/100ml)	14,53	A	< 2	2 a 5	>5			Saturación de Bas				
Magnesio (meq/100ml)	0,90	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen	te (gr./cm3)			
Hierro (ppm)	376,42	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)			
Cobre (ppm)	4,70	A	<1	1a4	>4			Agua Disponible	(cm3/cm3)			
Zinc (ppm)	5,92	M	< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		- I	
Manganeso (ppm) SIGLAS: Bajo (B); Medio (M); Alto (A); Tó	12,80	M	< 5	5 a 15	> 15				6			
ording, pajo (b), ivieuro (ivi); Alto (A); 10	AICO (1)								///	1		

№ Muestra Laboratorio:			JIVIL			ICIC D	E CII	S AGROPE			
	1812				ANAL	DATOS G	ENERALES DE L		MUESTRA / CODIGO		T10B1
Propietario:	Uı		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia		Sector / Finca
Fecha entrega de resultados:	14/01/2014					obicación.	Azuay	Cuenca	San Joaquín	Puma	maqui / Soldados
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	do
p.H.	6,08		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5) X	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)											J
Materia Orgánica %	25,44		AL	то		N G O M(3-5), A>5					
				RANGOS PARA				DADÁMETROS COM	ARI EMENTARIOS RAR	A LICO EN DIF	GO (En función de la CL
			BAJO	MEDIO	ALTO	TÓXICO		PARAIVIETROS COF	TEXTU		GO (En funcion de la CL
Nitrógeno (ppm)	37,09	М	< 30	30 a 60	> 60			Capacidad de Car	npo (cm3/cm3)		
Fósforo (ppm)	52,90	A	< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	ıración (cm	_
Potasio (meq/100ml)	0,72	А	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3/	/cm3)		
Calcio (meq/100ml)	17,33	A	< 2	2 a 5	> 5	THE COURT OF THE		Saturación de Bas			
Magnesio (meq/100ml)	0,69	M	< 0,5	0,5 a 1,5	> 1,5	sant much so		Densidad Aparen	te (gr./cm3)		
Hierro (ppm)	357,94	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		4.00 (1.00 <u>1</u>
Cobre (ppm)	3,60	M	<1	1a4	> 4			Agua Disponible	(cm3/cm3)		
Zinc (ppm)	3,92	M	<3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm) SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxio	7,80	М	< 5	5 a 15	> 15				h		Waller Branch
oracio (b) , iviedio (ivi) , Aito (A) ; Toxio	10(1)	-		Ligeramente					lgoi tro		

№ Muestra Laboratorio:	1813										
	ASSESSMENT IN TAKE IN TAKENDER					DATOS GE	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T10B2
Propietario:	Ur		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Puman	naqui / Soldado
Ī	RESULTADOS	ĺ				Cultivo/Uso:		Investig	ación: Tesis	de Grad	0
p.H.	5,73		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-	_	R.A	NGO					
Materia Orgánica %	24,94		AL	.TO	B(0-3),	M(3-5), A>5					
				RANGOS PARA	A INTERPRET	ACION		PARÁMETROS CO	MPLEMENTARIOS PARA		O (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	IRAL)	
Nitrógeno (ppm)	51,66	М	< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		·
Fósforo (ppm)	92,83	A	< 10	10 a 20	> 20			Conductividad H	idráulica a la Satu	ıración (cm	-
Potasio (meq/100ml)	1,17	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3			
Calcio (meq/100ml)	12,19	A	< 2	2 a 5	>5			Saturación de Ba	matter and a service of		
Magnesio (meq/100ml)	0,95	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparer			
Hierro (ppm)	381,26	A	< 20	20 a 40	> 40			Punto Marchitéz			
Cobre (ppm)	4,90	A	<1	1 a 4	>4			Agua Disponible			
Zinc (ppm)	5,39	M	< 3	3 a 7	>7			Porcentaje de Hu	imedad (%)		
Manganeso (ppm)	10,60	М	< 5	5 a 15	> 15				6		
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi	co (T)			Ligeramente			1		Jagai-	1	

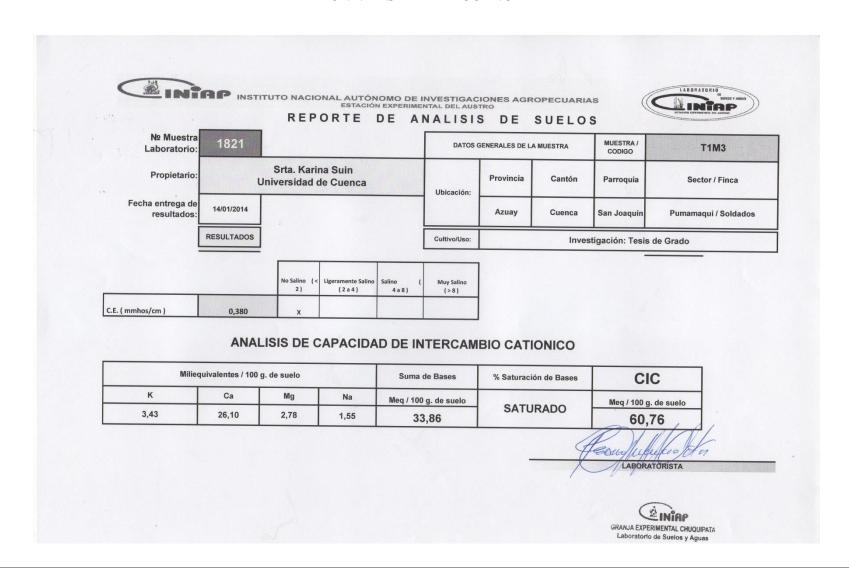
	RI					ISIS D		S AGROPE			The state of the s
№ Muestra Laboratorio:							ENERALES DE L		MUESTRA / CODIGO		T10B3
Propietario:	U		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquin	Puman	naqui / Soldados
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	0
p.H.	5,39		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino	Medianam. Alcalino	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo) Materia Orgánica %	24,31			X		N G O M(3-5), A>5					
				RANGOS PARA				DADÁMITEDOS COM	4D1 54454174 D104 D404		
			BAJO	MEDIO	ALTO	TÓXICO		PARAMETROS COM	MPLEMENTARIOS PARA TEXTU		O (En función de la CL
Nitrógeno (ppm)	49,01	М	< 30	30 a 60	> 60			Capacidad de Can	npo (cm3/cm3)		- 1
Fósforo (ppm)	94,20	A	< 10	10 a 20	> 20			Conductividad Hid / h.)	dráulica a la Satu	ración (cm	7 - 7
Potasio (meq/100ml)	0,43	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,			
Calcio (meq/100ml) Magnesio (meq/100ml)	10,08	A	<2	2 a 5	>5			Saturación de Bas			
Hierro (ppm)	0,92 389,62	M	< 0,5 < 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparen			-
Cobre (ppm)	5,40	A	<1	1 a 4	>40		All All of	Punto Marchitéz Agua Disponible			
Zinc (ppm)	5.38	M	<3	3 a 7	>7			Porcentaje de Hu			
Manganeso (ppm)	11,40	M	<5					. orcentaje de nu	meada (70)		
anganeso (ppm) GLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóx		М	< 5	5 a 15	>15				6		

Nº Muestra Laboratorio:	1815	1									
						DATOS GE	ENERALES DE L	A MUESTRA	MUESTRA / CODIGO		T11B1
Propietario	Un	100000000000000000000000000000000000000	. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	s	ector / Finca
Fecha entrega de resultados	14/01/2014						Azuay	Cuenca	San Joaquín	Pumai	maqui / Soldados
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grad	lo
p.H.	5,84		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo)	-		-		RA	ANGO			7		
Materia Orgánica %	23,77		AL	то		M(3-5), A>5					
				RANGOS PARA	A INTERPRET	ACION		PARÁMETROS CO	MPLEMENTARIOS PAR	A USO EN RIE	GO (En función de la Cl
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)	
litrógeno (ppm)	43,71	М	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)		
			< 10	10 a 20	> 20			Conductividad H	idráulica a la Sati	uración (cm	_
ósforo (ppm)	49,15 0,43	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)	W 1	
Potasio (meq/100ml) Calcio (meq/100ml)	13,83	A	< 2	2 a 5	> 5			Saturación de Ba			NA 1-12 13
Magnesio (meq/100ml)	0,89	M	< 0,5	0,5 a 1,5	> 1,5	San		Densidad Aparer			
Hierro (ppm)	358,82	A	< 20	20 a 40	> 40			Punto Marchitéz	(cm3/cm3)		
Cobre (ppm)	4,80	A	<1	1a4	>4			Agua Disponible	(cm3/cm3)		75 · 2_
Sinc (ppm)	3,80	M	< 3	3 a 7	>7			Porcentaje de Hi	umedad (%)		-
Manganeso (ppm)	8,80	М	< 5	5 a 15	> 15	Market San			6		
IGLAS: Bajo (B); Medio (M); Alto (A); To	óxico (T)								11	/	
			No Salino	Ligeramente (Salino	(Salino	(Muy Salino			Logardi de	000	

	P INSTITU	PC	RTE	DE	ANALI	SIS D	E SUE	LOS		
№ Muestra Laboratorio:	1816					DATOS GE	ENERALES DE LA	A MUESTRA	MUESTRA / CODIGO	T11B2
Propietario:	Ur		a. Karina sidad de	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sector / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumamaqui / Soldado
	RESULTÁDOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado
p.H.	5,22		Muy Ácido (0 < 5)	5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (>7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (> 8,5)
Clase Textural (% arena, % arcilla, % limo)	-		-	_ X	RA	NGO				
Materia Orgánica %	26,11		AL	TO	B(0-3),	M(3-5), A>5				
				RANGOS PARA	A INTERPRETA	ACION		PARÁMETROS CO		A USO EN RIEGO (En función de la
			BAJO	MEDIO	ALTO	TÓXICO			TEXTL	JRAL)
Nitrógeno (ppm)	60,26	A	< 30	30 a 60	> 60			Capacidad de Ca	mpo (cm3/cm3)	
Fósforo (ppm)	109,22	A	< 10	10 a 20	> 20			Conductividad H / h.)	idráulica a la Satu	uración (cm
Potasio (meq/100ml)	1,08	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3	/cm3)	
Calcio (meq/100ml)	13,42	A	< 2	2 a 5	>5			Saturación de Ba		
Magnesio (meq/100ml)	0,94	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparer		-
Hierro (ppm)	377,08	A	< 20	20 a 40	> 40			Punto Marchitéz		-
Cobre (ppm)	4,50	A	< 1	1 a 4	>4			Agua Disponible		- B
Zinc (ppm)	6,36	M	< 3	3 a 7	>7			Porcentaje de Hu	ımedad (%)	-
Manganeso (ppm)	11,80	M	< 5	5 a 15	> 15				6	
SIGLAS: Bajo (B) ; Medio (M) ; Alto (A) ; Tóxi	ico (T)		No Salino	Ligeramente (Salino	(Salino (Muy Salino			Logar	From O
			<2)	2a4)	4a8)	(>8)				

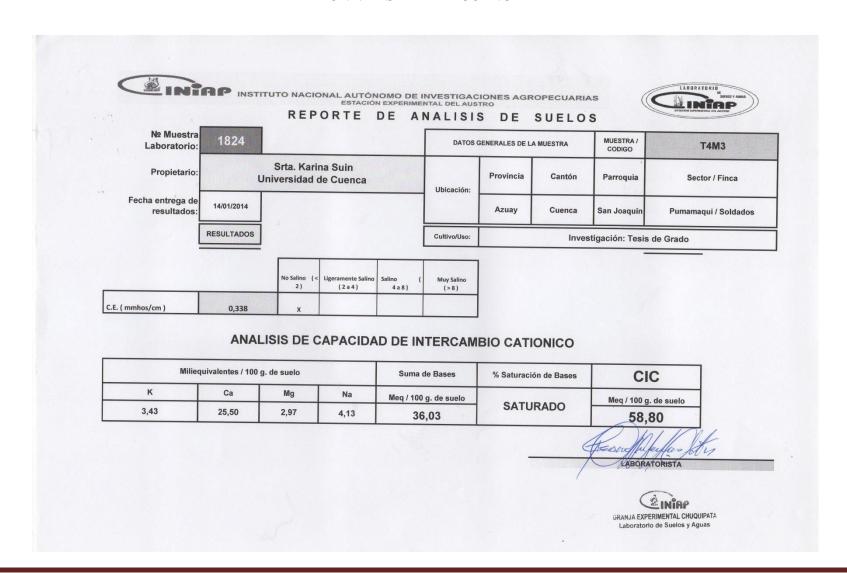
	RE	PC	RTE	DE	ANAL	ISIS D	E SU	S AGROPE			The state of the s
№ Muestra Laboratorio:	1817	1				DATOS GI	ENERALES DE L	LA MUESTRA	MUESTRA / CODIGO		T11B3
Propietario:	Ui		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Sec	ctor / Finca
Fecha entrega de resultados:	14/01/2014					Obicación.	Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado	•
p.H.	5,17		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino	Alcalino (> 8,5)	
Clase Textural (% arena, % arcilla, % limo) Materia Orgánica %	26,58		AL			N G O W(3-5), A>5	ı				
				RANGOS PARA	INTERPRETA	ACION		PARÁMETROS COI	MPLEMENTARIOS PARA	A USO EN RIEGO) (En función de la C
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	JRAL)	
Nitrógeno (ppm)	54,97	M	< 30	30 a 60	> 60			Capacidad de Car	mpo (cm3/cm3)		-
Fósforo (ppm)	81,23	A	< 10	10 a 20	> 20			Conductividad Hi	dráulica a la Satu	ración (cm	
Potasio (meq/100ml)	0,88	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3,	/cm3)		
Calcio (meq/100ml)	15,71	A	< 2	2 a 5	> 5			Saturación de Ba	ses		_
Magnesio (meq/100ml)	0,86	M	< 0,5	0,5 a 1,5	> 1,5			Densidad Aparen	ite (gr./cm3)		
Hierro (ppm)	372,90	A	< 20	20 a 40	> 40		DATE OF THE PARTY	Punto Marchitéz			
Cobre (ppm)	3,70	M	<1	1a4	>4			Agua Disponible			
Zinc (ppm)	5,90 11,90	M	< 3	3 a 7	>7			Porcentaje de Hu	medad (%)		
Manganeso (ppm)			< 5	5 a 15	> 15						

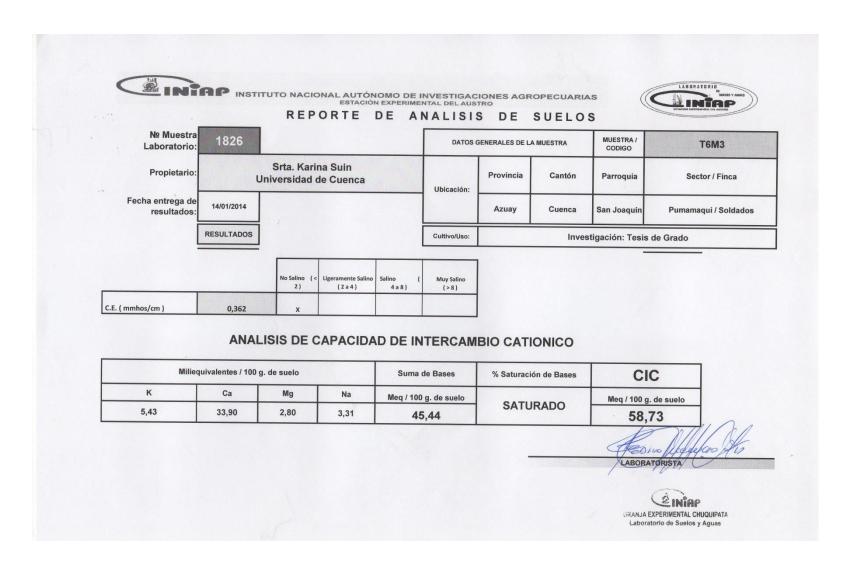
TARREST TO STANKING TO STANKIN
Nº Muestra Laboratorio: 1818 DATOS GENERALES DE LA MUESTRA CODIGO T12B1
Propietario: Srta. Karina Suin Universidad de Cuenca Ubicación: Provincia Cantón Parroquia Sector / Finca
Fecha entrega de resultados: 14/01/2014 Azuay Cuenca San Joaquín Pumamaqui / Solda
RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado
P.H. 4,97 Muy Acido (0 < 5,5) Median. Acido (25,5) (25,5) Median. Acido (25,5)
P.H. 4,97 Muy Acido (0<5) S,5) Median. Acido (>5,5) Median. Acido (>6,5-7,5) Median. Acido (>6,5-7,5) Median. Acido (>8-8,5) X Clase Textural (% arena. % arcilla. % limo)
RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado
P.H. 4,97 Muy Acido (0 < 5), 5) Median. Acido (> 5,5) Median. Acido (> 6,5 - 7,5) Median. Acido (> 6,5 - 7,5) Median. Acido (> 6,5 - 7,5) Median. Acido (> 8 - 8,5) Median. Acido (> 8 -
P.H. 4,97 Muy Acido (0 < 5) (5 - Median. Acido (> 5,5 - 6) Uigerament. Acido (> 6,5 - 7,5) Uigeram. Alcalino (> 8,5 - 8,5) Clase Textural (% arena, % arcilla, % limo) RANGO Materia Orgánica % 24,87 ALTO B(0-3), M(3-5), A>5
P.H. 4,97
P.H. A,97
P.H. 4,97
P.H. A,97
P.H. A,97
RESULTADOS
P.H. 4,97
P.H. 4,97
P.H. A,97
P.H. 4,97 Muy Acido (0 < 5) 5,5) Median. Acido (> 5,5 < 6) Ugerament. Acido (> 6,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram.
P.H. 4,97 Muy Acido (0 < 5) 5,5) Median. Acido (> 5,5 < 6) Ugerament. Acido (> 6,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram.
P.H. 4,97 Muy Acido (0 < 5) 5,5) Median. Acido (> 5,5 < 6) Ugerament. Acido (> 6,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5) Ugeram. Acidio (> 8,5 < 7,5 Ugeram.
RESULTADOS Cuttivo/Uso: Investigación: Tesis de Grado Cuttivo/Uso: Cuttivo/Uso: Investigación: Tesis de Grado Cuttivo/Uso: Cuttivo/Uso: Cuttivo/Uso: Cuttivo/Uso: Investigación: Tesis de Grado Cuttivo/Uso: Cuttivo
RESULTADOS Cuttivo/Uso: Investigación: Tesis de Grado
RESULTADOS Cultivo/Uso:
P.H. 4,97
RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado
P.H. 4,97
RESULTADOS
P.H. A,97
P.H. 4,97
P.H. A,97
RESULTADOS
RESULTADOS
RESULTADOS
RESULTADOS
P.H. 4,97
P.H. 4,97
P.H.
RESULTADOS
P.H. 4,97
RESULTADOS
RESULTADOS
P.H. 4,97
P.H. 4,97 Muy Ácido (0 < 5) 5,5) Median. Acido (> 5,5 < 6) Uigerament. Acido (> 6,5 - 7,5) Uigeram. Alcalino (> 8,8,5) Clase Textural (% arena, % arcilla, % limo) RANGO Práctic. Neutro (> 6,5 - 7,5) N(3-5), A>5 RANGO PARA INTERPRETACION PARÁMETROS COMPLEMENTARIOS PARA USO EN RIEGO (En función de
RESULTADOS Cultivo/Uso: Investigación: Tesis de Grado
P.H. 4,97 Muy Ácido (0 < 5)
P.H. 4,97 Muy Ácido (0 < 5) 5,5) Median. Ácido (> 5,5 - 6) X Median. Ácido (> 6,5 - 7,5) (> 6,5 - 7,5) (> 7,5 - 8) (> 8,5) (> 8,5)
P.H. 4,97 Muy Ácido (0 < 5) Median. Acido (0 < 5,5) Median. Acido (0 <
P.H. Cultivo/Uso: Investigación: Tesis de Grado
Land to a life of Table do Condo
1 oonu onu ogu uo roounuuoon
Durana Maria
Propietario: Universidad de Cuenca Provincia Canton Parroquia Sector Filica
Nº Muestra Laboratorio: 1818 DATOS GENERALES DE LA MUESTRA CODIGO T12B1

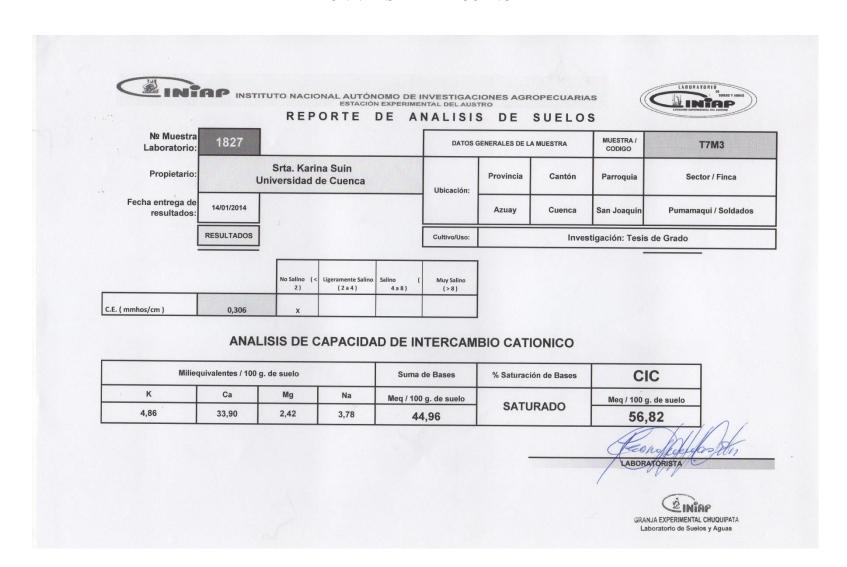


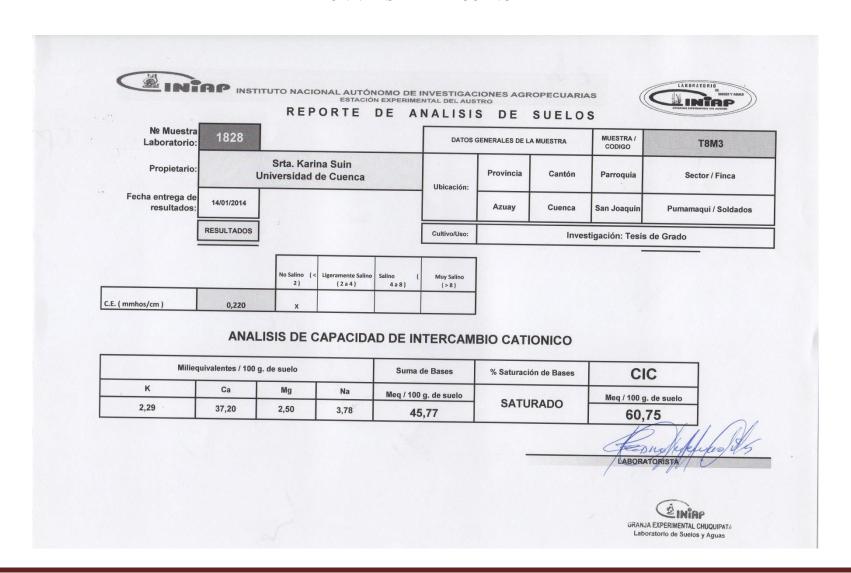
Diliversidad de Cuenca Ubicación: Azuay Cuenc	DE LA MUESTRA cia Cantón y Cuenca	Provincia	RALES DE LA MUE		MUESTRA / CODIGO		T12B2
Provincia Cantón	y Cuenca				Parroquia	Se	ector / Finca
Parametric Par		Azuay	Azuay (Cuenca		The second secon	
p.H. 5,50 Muy Acido (0 < 5) Acido (5 - Median. Acido (> 5,5) Ugerament. Acido (> 6,5 - 7,5) Ugeram. Alcido (> 6,5 -	Inves				San Joaquíi	n Pumam	naqui / Soldad
5,50 (0 < 5) 5,5 Median. Acido Ugerament. Acido (>6 - 6,5) Práctic. Neutro (>6 - 6,5) (>5,5 - 6) (>6 - 5,5) (>6 - 5,7,5) (>7,5 - 8) Clase Textural (% arena, % arcilla, % limo) R A N G O Materia Orgánica % 23,43 ALTO B(0-3), M(3-5), A>5 RANGOS PARA INTERPRETACION BAJO MEDIO ALTO TÓXICO Nitrógeno (ppm) 54,30 M <30 30 a 60 > 60 Capacidad d Conductividi.				Investig	gación: Tesi	is de Grado	o
Clase Textural (% arena, % arcilla, % limo)				Ligeram. Alcalino (> 7,5 - 8)	o Medianam. Alcalii (> 8 - 8,5)	Alcalino ino (>8,5)	
Materia Orgánica % 23,43 ALTO B(0-3), M(3-5), A>5							
BAJO MEDIO ALTO TÓXICO							
Nitrógeno (ppm) 54,30 M <30 30 a 60 >60 Capacidad d	PARÁMETROS		PARA	PARÁMETROS CO	OMPLEMENTARIOS PA	ARA USO EN RIEGO	O (En función de la
<10 10 20 >20 Conductivid:		-			TEX	XTURAL)	
	Capacidad de		Сара	Capacidad de Ca	Campo (cm3/cm3)		-,
7 (ppin) 68,40 A / n.)	Conductivida			Conductividad H	Hidráulica a la Sa	Saturación (cm	_
Potasio (meq/100ml) 1,09 A < 0,2 0,2 a 0,38 > 0,38 Saturación (-			2/2)		
Call I for the				Saturación de Ba			-
	Saturación (d	_	Satur				-
	Saturación (o Saturación de	9		Densidad Aparer			_
	Saturación (o Saturación de Densidad Apa	1	Dens	Densidad Aparer Punto Marchitéz	z (cm3/cm3)		
	Saturación (o Saturación de Densidad Apa Punto March	1	Dens Punto	-			
Manganeso (ppm) 9,30 M < 5 5 a 15 > 15	Saturación (o Saturación de Densidad Apa Punto March Agua Disponi	<u> </u>	Dens Punto Agua	Punto Marchitéz	e (cm3/cm3)		(
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóxico (T)	Saturación (o Saturación de Densidad Apa Punto March Agua Disponi	<u> </u>	Dens Punto Agua	Punto Marchitéz Agua Disponible	e (cm3/cm3)		

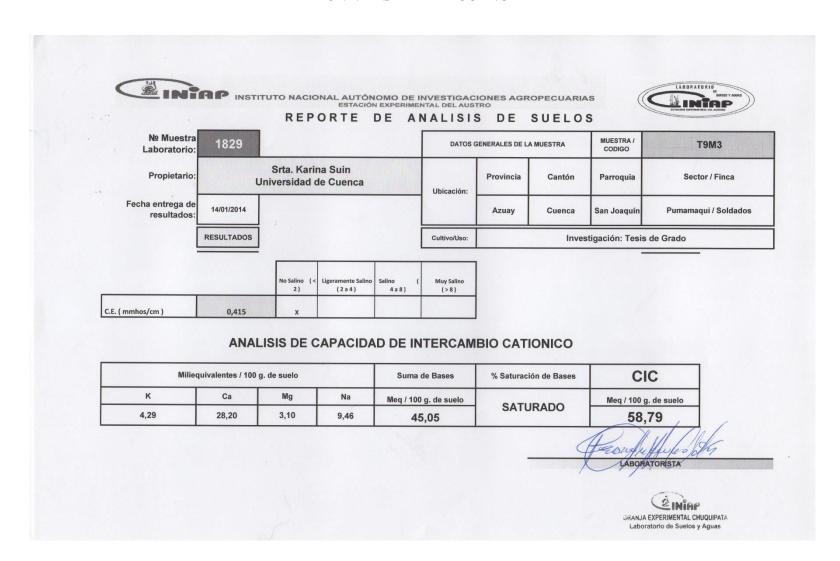
					ANALI	010 0	E SUI				
№ Muestra Laboratorio:	1820					DATOS GE	NERALES DE L	A MUESTRA	MUESTRA / CODIGO		T12B3
Propietario:	Ur		a. Karin sidad d	a Suin e Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ctor / Finca
Fecha entrega de resultados:	14/01/2014						Azuay	Cuenca	San Joaquín	Pumam	aqui / Soldado
	RESULTADOS					Cultivo/Uso:		Investig	ación: Tesis	de Grado)
p.H.	5,29		Muy Ácido (0 < 5)	Ácido (5 - 5,5)	Median. Ácido (> 5,5 - 6)	Ligerament. Ácido (> 6 - 6,5)	Práctic. Neutro (> 6,5 - 7,5)	Ligeram. Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)	-			-	RA	NGO			Z		
Materia Orgánica %	22,97		AL	.TO	B(0-3), I	VI(3-5), A>5					
				RANGOS PARA	A INTERPRETA	ACION		PARÁMETROS COI	MPLEMENTARIOS PARA		O (En función de la G
			BAJO	MEDIO	ALTO	TÓXICO			TEXTU	IRAL)	
Nitrógeno (ppm)	27,15	В	< 30	30 a 60	> 60			Capacidad de Car			-
Fósforo (ppm)	81,91	A	< 10	10 a 20	> 20			Conductividad Hi		ración (cm	+
Potasio (meq/100ml)	0,64	A	< 0,2	0,2 a 0,38	> 0,38			Saturación (cm3			
Calcio (meq/100ml)	17,52	A	< 2	2 a 5	>5			Saturación de Ba			
Magnesio (meq/100ml)	0,72	M	< 0,5 < 20	0,5 a 1,5 20 a 40	> 1,5			Densidad Aparen Punto Marchitéz			
Hierro (ppm)	117,40	A	< 20	1 a 4	>40		Maria Will	Agua Disponible			
Cobre (ppm)	2,40 4,39	M	<3	3a7	>7			Porcentaje de Hu			-
Zinc (ppm) Manganeso (ppm)	6,20	M	< 5	5 a 15	>15			. orectaje de ne	-		
SIGLAS: Bajo (B); Medio (M); Alto (A); Tóx		141		3023					1	,	
Siderio. Dajo (D) , inicalo (III) , ritto (ri) , rox				Ligeramente					Lepaid	-	

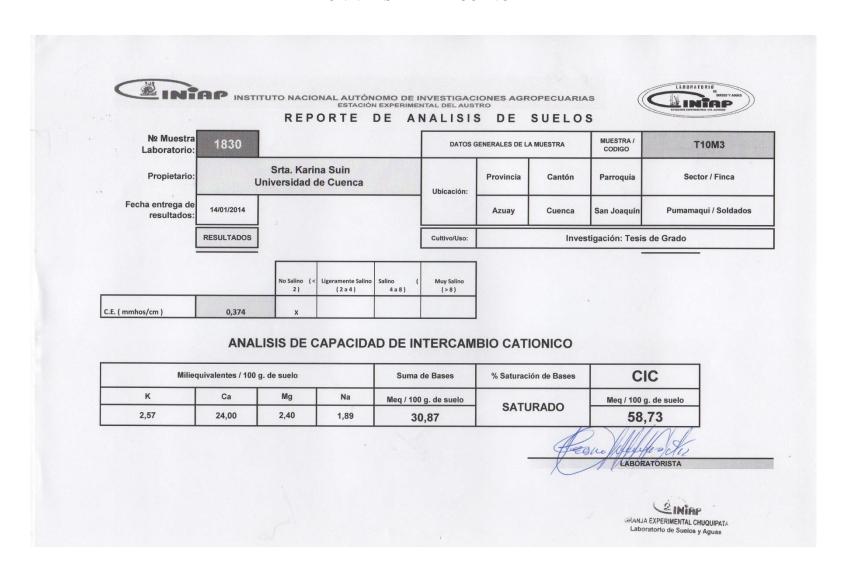


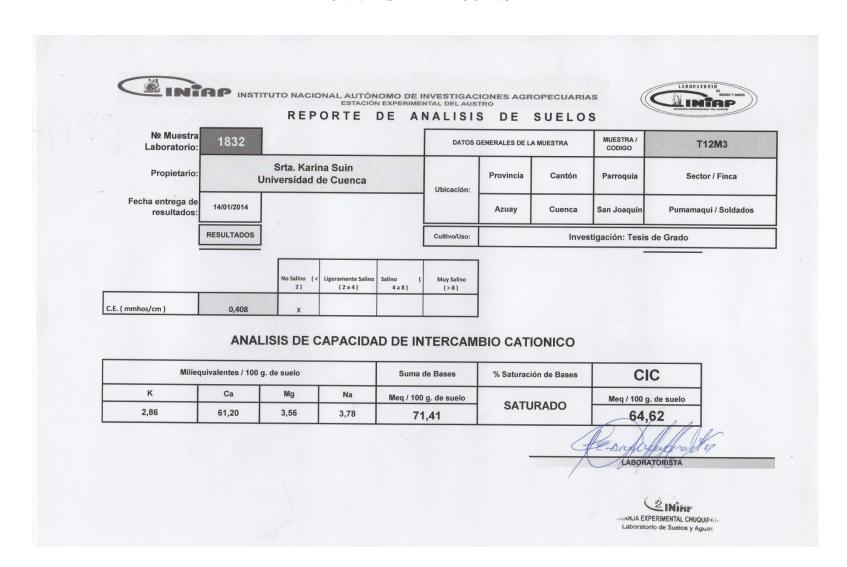












	INSTITUTO REI			DE						ecraptes s	NTAP PRIMADIAL SEL AUZIDO
№ Muestra Laboratorio:	1533					DATOS GEN	IERALES DE L	A MUESTRA	MUESTRA / CODIGO	Ţ	ESIS M-1
Propietario:	Un	200	a. Karina sidad de	Suin Cuenca		Ubicación:	Provincia	Cantón	Parroquia	Se	ector / Finca
Fecha entrega de resultados:	27/05/2013	ya-13	100				Azuay	Cuenca	San Joaquín	Pumar	naqui / Soldados
Con-	RESULTADOS	058				Cultivo/Uso:		Inves	stigación: Tes	sis de Gra	ado
p.H.	5,80	-	Muy Ácido (0 < 5)	Ácido (5-5,5)	Median. Ácido > 5,5 - 6)	Ligerament. (Ácido (>6-6,5)	Práctic. Neutro > 6,5 - 7,5)	Ligeram. (Alcalino (> 7,5 - 8)	Medianam. Alcalino (> 8 - 8,5)	Alcalino (>8,5)	
Clase Textural (% arena, % arcilla, % limo)	66/16/18		FRANCO A	RENOSO	X						
Materia Orgánica %	31,98		ALT	ГО							
The second of the second	247		RAN	IGOS PARA II	NTERPRET	ACION	1	PARAMETE	ROS COMPLEMEN	ITARIOS PA	RA USO EN RIEGO (En
			BAJO	MEDIO	ALTO	TÓXICO			función de la	CLASE TEX	TURAL)
Nitrógeno (ppm)	14,79	В	< 30	30 a 60	> 60				de Campo (cm³/	cm³)	0,21
Fósforo (ppm)	69,14	A	< 10	10 a 20	> 20			Conductivid Saturación	lad Hidráulica (cm / h.)	a la	1,16
Potasio (meq/100ml)	0,60	A	< 0,2	0,2 a 0,38	> 0,38			Saturación	(cm³/cm³)		0,44
Calcio (meq/100ml)	12,04	Α	< 2	2 a 5	> 5			Saturación			
Magnesio (meq/100ml)	0,85	M	< 0,5	0,5 a 1,5	> 1,5				parente (gr./cm	3)	1,44
Hierro (ppm)	95,80	A	< 20	20 a 40	> 40				chitéz (cm³/cm³)		0,11
Cobre (ppm)	3,50	M	<1	1 a 4	>4				onible (cm³/cm³)		0,097
Zinc (ppm)	3,07	M	< 3	3 a 7	>7			Porcentaje	de Humedad (%)	
Manganeso (ppm)	3,60	В	< 5	5 a 15	> 15						

ANEXO 4. Costo de producción de cada tratamiento de una pastura cero labranza (hectárea/año).

T1 (Sin fertilización)

		- (>			
	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Total (\$)
	Disperción de heces	Hora	4	2	8
Mano de obra	Corte de Igualación	Hora	4	2	8
Mano de obra	Resiembra	Hora	4	2	8
				Subtotal	24
T - b 4 4 -	Análisis de Suelo	Muestra	1	34	34
Laboratorio				Subtotal	34
Insumos	Mezcla Forrajera*	Libra	50	4,5	225
Agrícolas				Subtotal	225
Herramientas y	Maquinaria (alquiler)	Día	4	10	40
maquinaria				Subtotal	40
				TOTAL	323

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T2 (500 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot	tal
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
	Aplicación de fertilizante mineral	Hora	5	2	10	
				Subtotal		34
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
т	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos Agrícolas	Zeolita	Kilogramo	500	0,17	85	
Agricolas				Subtotal		310
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
				TOTAL		418

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T3 (1000 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
	Aplicación de fertilizante mineral	Hora	10	2	20	
				Subtotal		44
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
Insumos	Mezcla Forrajera*	Libra	50	4,5	225	
Agrícolas	Zeolita	Kilogramo	1000	0,17	170	
Agriculas				Subtotal		395
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
	·		•	TOTAL		513

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T4 (1500 kg zeolita/ha)

	17(1500 Kg Zconta	1161)			
	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
	Aplicación de fertilizante mineral	Hora	15	2	30	
				Subtotal		54
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
T	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos Agrícolas	Zeolita	Kilogramo	1500	0,17	255	
Agricolas				Subtotal		480
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
				TOTAL		608

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T5 (10000 kg pollinaza/ha)

Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
Disperción de heces	Hora	4	2	8	
Corte de Igualación	Hora	4	2	8	
Resiembra	Hora	4	2	8	
Aplicación de fertilizante orgánico	Kilogramo	10000	0,004	40	
			Subtotal		64
Análisis de Suelo	Muestra	1	34	34	
			Subtotal		34
Mezcla Forrajera*	Libra	50	4,5	225	
Pollinaza	Kilogramo	10000	0,06	600	
			Subtotal		825
Maquinaria (alquiler)	Día	4	10	40	
			Subtotal		40
			TOTAL		963
	Disperción de heces Corte de Igualación Resiembra Aplicación de fertilizante orgánico Análisis de Suelo Mezela Forrajera* Pollinaza	Tecnología del productor Disperción de heces Hora Corte de Igualación Hora Resiembra Aplicación de fertilizante orgánico Análisis de Suelo Muestra Mezcla Forrajera* Libra Pollinaza Kilogramo	Disperción de heces	Tecnología del productor Unidad (\$) Contidad (\$) Disperción de heces Hora 4 2 Corte de Igualación Hora 4 2 Resiembra Hora 4 2 Aplicación de fertilizante orgánico Kilogramo 10000 0,004 Subtotal Análisis de Suelo Muestra 1 34 Subtotal Mezcla Forrajera* Libra 50 4,5 Pollinaza Kilogramo 10000 0,06 Subtotal Maquinaria (alquiler) Día 4 10 Subtotal	Tecnología del productor Unidad Cantidad Costo Unitario (\$) Costo Tot (\$) Disperción de heces Hora 4 2 8 Corte de Igualación Hora 4 2 8 Resiembra Hora 4 2 8 Aplicación de fertilizante orgánico Kilogramo 10000 0,004 40 Subtotal Análisis de Suelo Muestra 1 34 34 Subtotal Mezcla Forrajera* Libra 50 4,5 225 Pollinaza Kilogramo 10000 0,06 600 Subtotal Maquinaria (alquiler) Día 4 10 40

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T6 (10000 kg pollinaza/ha + 500 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	10000	0,004	40	
	Aplicación de fertilizante mineral	Hora	5	2	10	
				Subtotal		74
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos	Pollinaza	Kilogramo	10000	0,06	600	
Agrícolas	Zeolita	Kilogramo	500	0,17	85	
				Subtotal		910
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria		•		Subtotal	•	40
				TOTAL		1058

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T7 (10000 kg pollinaza/ha + 1000 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	10000	0,004	40	
	Aplicación de fertilizante mineral	Hora	10	2	20	
				Subtotal		84
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos	Pollinaza	Kilogramo	10000	0,06	600	
Agrícolas	Zeolita	Kilogramo	1000	0,17	170	
				Subtotal		995
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
				TOTAL		1153

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T8 (10000 kg pollinaza/ha + 1500 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Tot (\$)	al
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
M 11	Resiembra	Hora	4	2	8	
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	10000	0,004	40	
	Aplicación de fertilizante mineral	Hora	15	2	30	
				Subtotal		94
Laboratorio	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos	Pollinaza	Kilogramo	10000	0,06	600	
Agrícolas	Zeolita	Kilogramo	1500	0,17	255	
				Subtotal		1080
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
				TOTAL		1248

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T9 (20000 kg pollinaza/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Total (\$)
	Disperción de heces	Hora	4	2	8
	Corte de Igualación	Hora	4	2	8
Mano de obra	Resiembra	Hora	4	2	8
	Aplicación de fertilizante orgánico	Kilogramo	20000	0,004	80
				Subtotal	104
Laboratorio	Análisis de Suelo	Muestra	1	34	34
Laboratorio				Subtotal	34
Insumos	Mezcla Forrajera*	Libra	50	4,5	225
Agrícolas	Pollinaza	Kilogramo	20000	0,06	1200
Agricolas				Subtotal	1425
Herramientas y	Maquinaria (alquiler)	Día	4	10	40
maquinaria				Subtotal	40
				TOTAL	1603

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T10 (20000 kg pollinaza/ha + 500 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Total (\$)
	Disperción de heces	Hora	4	2	8
	Corte de Igualación	Hora	4	2	8
Mano de obra	Resiembra	Hora	4	2	8
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	20000	0,004	80
	Aplicación de fertilizante mineral	Hora	5	2	10
				Subtotal	114
Laboratorio	Análisis de Suelo	Muestra	1	34	34
Laboratorio				Subtotal	34
	Mezcla Forrajera*	Libra	50	4,5	225
Insumos	Pollinaza	Kilogramo	20000	0,06	1200
Agrícolas	Zeolita	Kilogramo	500	0,17	85
				Subtotal	1510
Herramientas y	Maquinaria (alquiler)	Día	4	10	40
maquinaria				Subtotal	40
				TOTAL	1698

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T11 (20000 kg pollinaza/ha + 1000 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo To (\$)	tal
	Disperción de heces	Hora	4	2	8	
	Corte de Igualación	Hora	4	2	8	
Mano de obra	Resiembra	Hora	4	2	8	
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	20000	0,004	80	
	Aplicación de fertilizante mineral	Hora	10	2	20	
				Subtotal		124
Laboustouls	Análisis de Suelo	Muestra	1	34	34	
Laboratorio				Subtotal		34
	Mezcla Forrajera*	Libra	50	4,5	225	
Insumos	Pollinaza	Kilogramo	20000	0,06	1200	
Agrícolas	Zeolita	Kilogramo	1000	0,17	170	
				Subtotal		1595
Herramientas y	Maquinaria (alquiler)	Día	4	10	40	
maquinaria				Subtotal		40
				TOTAL		1793

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

T12 (20000 kg pollinaza/ha + 1500 kg zeolita/ha)

	Tecnología del productor	Unidad	Cantidad	Costo Unitario (\$)	Costo Total (\$)
	Disperción de heces	Hora	4	2	8
	Corte de Igualación	Hora	4	2	8
Mano de obra	Resiembra	Hora	4	2	8
Mano de obra	Aplicación de fertilizante orgánico	Kilogramo	20000	0,004	80
	Aplicación de fertilizante mineral	Hora	15	2	30
				Subtotal	134
Laboratorio	Análisis de Suelo	Muestra	1	34	34
Laboratorio				Subtotal	34
	Mezcla Forrajera*	Libra	50	4,5	225
Insumos	Pollinaza	Kilogramo	20000	0,06	1200
Agrícolas	Zeolita	Kilogramo	1500	0,17	255
				Subtotal	1680
Herramientas y	Maquinaria (alquiler)	Día	4	10	40
maquinaria				Subtotal	40
				TOTAL	1888

^{*}mezcla forrajera: 35 lb de bison (boxer), 20 lbs de tetralite (Bandito 2), 20 lb de Super-T, 3 lb de trebol rojo y 2 lb de trebol blanco

ANEXO 5. Análisis de importancia de variables

T1	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				14500	20221	T12	24583	T1	14500	12	30%	3,6	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	8	20%	1,6	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,56	5,27	-	5,66	T8,T10	5,91	T1	5,27	12	20%	2,4	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	60,76	-	60,08	T3	64,64	T7	56,82	3	2,5%	0,075	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	33,86	-	44,42	T12	71,41	T10	30,87	10	2,5%	0,25	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,38	-	0,35	T11	0,48	T8	0,22	9	5%	0,45	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	23,74	-	43,88	T8	60,64	T1	23,74	12	5%	0,6	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	51,54	-	67,33	T11	95,23	T2	50,38	11	2%	0,22	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,63	-	0,74	T12	0,98	T8	0,52	8	2%	0,16	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	11,49	-	14,9	T12	17,1	T1	11,49	12	2%	0,24	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,68	-	0,85	T12	0,97	T1	0,68	12	2%	0,24	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	109,45	-	95,8	T10	385,44	T1	109,45	12	0,5%	0,06	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	3,75	-	4,06	T8	4,7	T5	3,55	10	2%	0,2	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	3,21	-	4,38	T11	6,13	T1	3,21	12	2%	0,24	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	5,10	-	8,42	T12	11,85	T3	4,05	11	2%	0,22	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
			· ·	· ·					Total	154	100%	10,56	

T2	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				17742	20221	T12	24583	T1	14500	11	30%	3,3	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	3	20%	0,6	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,71	5,54	-	5,66	T8,T10	5,91	T1	5,27	8	20%	1,6	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	56,83	-	60,08	T3	64,64	T7	56,82	11	2,5%	0,275	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	31,57	-	44,42	T12	71,41	T10	30,87	11	2,5%	0,275	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,30	-	0,35	T11	0,48	T8	0,22	3	5%	0,15	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	35,66	-	43,88	T8	60,64	T1	23,74	10	5%	0,5	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	50,38	-	67,33	T11	95,23	T2	50,38	12	2%	0,24	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,66	-	0,74	T12	0,98	T8	0,52	7	2%	0,14	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	13,40	-	14,9	T12	17,1	T1	11,49	11	2%	0,22	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,85	-	0,85	T12	0,97	T1	0,68	7	2%	0,14	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	109,90	-	95,8	T10	385,44	T1	109,45	10	0,5%	0,05	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,00	-	4,06	T8	4,7	T5	3,55	8	2%	0,16	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	3,73	-	4,38	T11	6,13	T1	3,21	9	2%	0,18	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	5,85	-	8,42	T12	11,85	T3	4,05	9	2%	0,18	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	130	100%	8,01	

Т3	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				18800	20221	T12	24583	T1	14500	9	30%	2,7	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	2	20%	0,4	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,95	5,70	-	5,66	T8,T10	5,91	T1	5,27	6	20%	1,2	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	64,64	-	60,08	T3	64,64	T7	56,82	1	2,5%	0,025	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	34,51	-	44,42	T12	71,41	T10	30,87	9	2,5%	0,225	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,34	-	0,35	T11	0,48	T8	0,22	5	5%	0,25	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	37,98	-	43,88	T8	60,64	T1	23,74	9	5%	0,45	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	55,19	-	67,33	T11	95,23	T2	50,38	9	2%	0,18	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,62	-	0,74	T12	0,98	T8	0,52	9	2%	0,18	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	15,87	-	14,9	T12	17,1	T1	11,49	5	2%	0,1	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,84	-	0,85	T12	0,97	T1	0,68	8	2%	0,16	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	109,75	-	95,8	T10	385,44	T1	109,45	11	0,5%	0,055	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	3,75	-	4,06	T8	4,7	T5	3,55	11	2%	0,22	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	3,65	-	4,38	T11	6,13	T1	3,21	11	2%	0,22	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	4,05	-	8,42	T12	11,85	T3	4,05	12	2%	0,24	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
			·						Total	117	100%	6,61	

T4	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				19667	20221	T12	24583	T1	14500	8	30%	2,4	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	5	20%	1	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,68	5,66	-	5,66	T8,T10	5,91	T1	5,27	7	20%	1,4	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	58,80	-	60,08	T3	64,64	T7	56,82	7	2,5%	0,175	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	36,03	-	44,42	T12	71,41	T10	30,87	8	2,5%	0,2	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,34	-	0,35	T11	0,48	T8	0,22	6	5%	0,3	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	31,01	-	43,88	T8	60,64	T1	23,74	11	5%	0,55	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	55,00	-	67,33	T11	95,23	T2	50,38	10	2%	0,2	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,74	-	0,74	T12	0,98	T8	0,52	6	2%	0,12	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	13,84	-	14,9	T12	17,1	T1	11,49	10	2%	0,2	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,83	-	0,85	T12	0,97	T1	0,68	9	2%	0,18	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	114,20	-	95,8	T10	385,44	T1	109,45	9	0,5%	0,045	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	3,85	-	4,06	T8	4,7	T5	3,55	9	2%	0,18	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	3,67	-	4,38	T11	6,13	T1	3,21	10	2%	0,2	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	5,80	-	8,42	T12	11,85	T3	4,05	10	2%	0,2	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
								•	Total	125	100%	7,35	

Т5	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				18092	20221	T12	24583	T1	14500	10	30%	3	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	6	20%	1,2	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,78	5,47	-	5,66	T8,T10	5,91	T1	5,27	10	20%	2	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	60,71	-	60,08	T3	64,64	T7	56,82	6	2,5%	0,15	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	44,63	-	44,42	T12	71,41	T10	30,87	7	2,5%	0,175	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,27	-	0,35	T11	0,48	T8	0,22	2	5%	0,1	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	44,81	-	43,88	T8	60,64	T1	23,74	7	5%	0,35	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	57,12	-	67,33	T11	95,23	T2	50,38	8	2%	0,16	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,56	-	0,74	T12	0,98	T8	0,52	11	2%	0,22	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	14,93	-	14,9	T12	17,1	T1	11,49	6	2%	0,12	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,81	-	0,85	T12	0,97	T1	0,68	10	2%	0,2	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	353,54	-	95,8	T10	385,44	T1	109,45	7	0,5%	0,035	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	3,55	-	4,06	T8	4,7	T5	3,55	12	2%	0,24	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	4,07	-	4,38	T11	6,13	T1	3,21	8	2%	0,16	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	6,95	-	8,42	T12	11,85	T3	4,05	8	2%	0,16	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	118	100%	8,27	

T6	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				20600	20221	T12	24583	T1	14500	5	30%	1,5	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	27,72	29,17	-	26,24	T6	29,17	T12	24,15	1	20%	0,2	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,84	5,82	-	5,66	T8,T10	5,91	T1	5,27	5	20%	1	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	58,73	-	60,08	T3	64,64	T7	56,82	9	2,5%	0,225	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	45,44	-	44,42	T12	71,41	T10	30,87	4	2,5%	0,1	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,36	-	0,35	T11	0,48	Т8	0,22	7	5%	0,35	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	47,46	-	43,88	T8	60,64	T1	23,74	5	5%	0,25	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	63,31	-	67,33	T11	95,23	T2	50,38	7	2%	0,14	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,59	-	0,74	T12	0,98	T8	0,52	10	2%	0,2	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	15,93	-	14,9	T12	17,1	T1	11,49	3	2%	0,06	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,81	-	0,85	T12	0,97	T1	0,68	11	2%	0,22	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	357,72	-	95,8	T10	385,44	T1	109,45	5	0,5%	0,025	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,05	-	4,06	T8	4,7	T5	3,55	6	2%	0,12	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	4,61	-	4,38	T11	6,13	T1	3,21	5	2%	0,1	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	9,45	-	8,42	T12	11,85	Т3	4,05	7	2%	0,14	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
			•	•					Total	90	100%	4,63	

T7	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				21917	20221	T12	24583	T1	14500	4	30%	1,2	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	26,08	25,59	-	26,24	T6	29,17	T12	24,15	9	20%	1,8	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,80	5,87	-	5,66	T8,T10	5,91	T1	5,27	4	20%	0,8	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	56,82	-	60,08	T3	64,64	T7	56,82	12	2,5%	0,3	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	44,96	-	44,42	T12	71,41	T10	30,87	6	2,5%	0,15	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,31	-	0,35	T11	0,48	Т8	0,22	4	5%	0,2	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	55,63	-	43,88	T8	60,64	T1	23,74	2	5%	0,1	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	67,07	-	67,33	T11	95,23	T2	50,38	5	2%	0,1	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,84	-	0,74	T12	0,98	T8	0,52	5	2%	0,1	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	14,82	-	14,9	T12	17,1	T1	11,49	7	2%	0,14	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,86	-	0,85	T12	0,97	T1	0,68	5	2%	0,1	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	357,28	-	95,8	T10	385,44	T1	109,45	6	0,5%	0,03	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,30	-	4,06	T8	4,7	T5	3,55	3	2%	0,06	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	4,10	-	4,38	T11	6,13	T1	3,21	7	2%	0,14	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	10,25	-	8,42	T12	11,85	T3	4,05	4	2%	0,08	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	83	100%	5,30	

Т8	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)			1	23167	20221	T12	24583	T1	14500	2	30%	0,6	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	27,00	26,86	-	26,24	T6	29,17	T12	24,15	4	20%	0,8	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	6,05	5,91	-	5,66	T8,T10	5,91	T1	5,27	1	20%	0,2	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	60,75	-	60,08	T3	64,64	T7	56,82	4	2,5%	0,1	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	45,77	-	44,42	T12	71,41	T10	30,87	3	2,5%	0,075	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,22	-	0,35	T11	0,48	T8	0,22	1	5%	0,05	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	60,60	-	43,88	T8	60,64	T1	23,74	1	5%	0,05	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	66,89	-	67,33	T11	95,23	T2	50,38	6	2%	0,12	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,82	-	0,74	T12	0,98	T8	0,52	12	2%	0,24	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	16,07	-	14,9	T12	17,1	T1	11,49	2	2%	0,04	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,89	-	0,85	T12	0,97	T1	0,68	4	2%	0,08	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	351,45	-	95,8	T10	385,44	T1	109,45	8	0,5%	0,04	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,65	-	4,06	T8	4,7	T5	3,55	1	2%	0,02	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	4,65	-	4,38	T11	6,13	T1	3,21	4	2%	0,08	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	11,05	-	8,42	T12	11,85	T3	4,05	2	2%	0,04	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
	•		•	•		•	•	•	Total	53	100%	2,54	

Т9	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)				20000	20221	T12	24583	T1	14500	7	30%	2,1	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	7	20%	1,4	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,51	5,89	-	5,66	T8,T10	5,91	T1	5,27	3	20%	0,6	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	58,79	-	60,08	T3	64,64	T7	56,82	8	2,5%	0,2	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	45,05	-	44,42	T12	71,41	T10	30,87	5	2,5%	0,125	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,42	-	0,35	T11	0,48	Т8	0,22	11	5%	0,55	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	41,72	-	43,88	T8	60,64	T1	23,74	8	5%	0,4	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	67,58	-	67,33	T11	95,23	T2	50,38	4	2%	0,08	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,90	-	0,74	T12	0,98	Т8	0,52	3	2%	0,06	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	15,90	-	14,9	T12	17,1	T1	11,49	4	2%	0,08	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,86	-	0,85	T12	0,97	T1	0,68	6	2%	0,12	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	373,67	-	95,8	T10	385,44	T1	109,45	3	0,5%	0,015	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,05	-	4,06	Т8	4,7	T5	3,55	7	2%	0,14	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	5,14	-	4,38	T11	6,13	T1	3,21	3	2%	0,06	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	9,50	-	8,42	T12	11,85	Т3	4,05	6	2%	0,12	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	85	100%	6,05	

T10	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento materia verde (kg/ha/año)			1	20417	20221	T12	24583	T1	14500	6	30%	1,8	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,83	25,62	-	26,24	T6	29,17	T12	24,15	10	20%	2	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,65	5,91	-	5,66	T8,T10	5,91	T1	5,27	2	20%	0,4	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	58,73	-	60,08	T3	64,64	T7	56,82	10	2,5%	0,25	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	30,87	-	44,42	T12	71,41	T10	30,87	12	2,5%	0,3	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,37	-	0,35	T11	0,48	T8	0,22	8	5%	0,4	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	50,34	-	43,88	T8	60,64	T1	23,74	4	5%	0,2	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	93,52	-	67,33	T11	95,23	T2	50,38	2	2%	0,04	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,95	-	0,74	T12	0,98	T8	0,52	2	2%	0,04	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	14,76	-	14,9	T12	17,1	T1	11,49	9	2%	0,18	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,94	-	0,85	T12	0,97	T1	0,68	2	2%	0,04	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	385,44	-	95,8	T10	385,44	T1	109,45	1	0,5%	0,005	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,25	-	4,06	T8	4,7	T5	3,55	4	2%	0,08	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	5,39	-	4,38	T11	6,13	T1	3,21	2	2%	0,04	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	11,00	-	8,42	T12	11,85	T3	4,05	3	2%	0,06	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
			•	•		•	•	•	Total	77	100%	5,84	

T11	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento forrajero (kg/ha)				23167	20221	T12	24583	T1	14500	3	30%	0,9	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	25,88	24,94	-	26,24	T6	29,17	T12	24,15	11	20%	2,2	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,62	5,53	-	5,66	T8,T10	5,91	T1	5,27	9	20%	1,8	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	60,74	-	60,08	T3	64,64	T7	56,82	5	2,5%	0,125	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	68,95	-	44,42	T12	71,41	T10	30,87	2	2,5%	0,05	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,48	-	0,35	T11	0,48	T8	0,22	12	5%	0,6	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	51,99	-	43,88	T8	60,64	T1	23,74	3	5%	0,15	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	95,23	-	67,33	T11	95,23	T2	50,38	1	2%	0,02	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,98	-	0,74	T12	0,98	T8	0,52	1	2%	0,02	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	14,77	-	14,9	T12	17,1	T1	11,49	8	2%	0,16	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,92	-	0,85	T12	0,97	T1	0,68	3	2%	0,06	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	374,99	-	95,8	T10	385,44	T1	109,45	2	0,5%	0,01	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,33	-	4,06	T8	4,7	T5	3,55	2	2%	0,04	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	6,13	-	4,38	T11	6,13	T1	3,21	1	2%	0,02	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	11,85	-	8,42	T12	11,85	T3	4,05	1	2%	0,02	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	64	100%	6,18	

T12	0 días	95 días	205 días	Promedio	Media	Tratamiento	Mayor	Tratamiento	Menor	Orden Importancia	% Importancia	Total	Ordenados de mayor a menor importancia
Rendimiento forrajero (kg/ha)				24583	20221	T12	24583	T1	14500	1	30%	0,3	T12,T8,T11,T7,T6,T10,T9,T4,T3,T5,T2,T1
M.O. (%)	31,98	26,36	24,15	-	26,24	T6	29,17	T12	24,15	12	20%	2,4	T6,T3,T2,T8,T4,T5,T9,T1,T7,T10,T11,T12
pН	5,80	5,68	5,40	-	5,66	T8,T10	5,91	T1	5,27	11	20%	2,2	T8,T10,T9,T7,T6,T3,T4,T2,T11,T5,T12,T1
CIC (meq/100gr)	60,80	-	64,62	-	60,08	T3	64,64	T7	56,82	2	2,5%	0,05	T3,T12,T1,T8,T11,T5,T4,T9,T6,T10,T2,T7
Σ Bases (meq/100gr)	31,20	-	71,41	-	44,42	T12	71,41	T10	30,87	1	2,5%	0,025	T12,T11,T8,T6,T9,T7,T5,T4,T3,T1,T2,T10
C.E. (mmhos/cm)	0,27	-	0,41	-	0,35	T11	0,48	Т8	0,22	10	5%	0,5	T8,T5,T2,T7,T3,T4,T6,T10,T1,T12,T9,T11
N (ppm)	14,80	-	45,70	-	43,88	T8	60,64	T1	23,74	6	5%	0,3	T8,T7,T11,T10,T6,T12,T5,T9,T3,T2,T4,T1
P (ppm)	69,10	-	85,16	-	67,33	T11	95,23	T2	50,38	3	2%	0,06	T11,T10,T12,T9,T7,T8,T6,T5,T3,T4,T1,T2
K (meq/100ml)	0,60	-	0,87	-	0,74	T12	0,98	Т8	0,52	4	2%	0,08	T11,T10,T9,T12,T7,T4,T2,T1,T3,T6,T5,T8
Ca (meq/100ml)	12,00	-	17,10	-	14,9	T12	17,1	T1	11,49	1	2%	0,02	T12,T8,T6,T9,T3,T5,T7,T11,T10,T4,T2,T1
Mg (meq/100ml)	0,90	-	0,97	-	0,85	T12	0,97	T1	0,68	1	2%	0,02	T12,T10,T11,T8,T7,T9,T2,T3,T4,T5,T6,T1
Fe (ppm)	95,80	-	366,63	-	95,8	T10	385,44	T1	109,45	4	0,5%	0,02	T10,T11,T9,T12,T6,T7,T5,T8,T4,T2,T3,T1
Cu (ppm)	3,50	-	4,15	-	4,06	T8	4,7	T5	3,55	5	2%	0,1	T8,T11,T7,T10,T12,T6,T9,T2,T4,T1,T3,T5
Zn (ppm)	3,10	-	4,27	-	4,38	T11	6,13	T1	3,21	6	2%	0,12	T11,T10,T9,T8,T6,T12,T7,T5,T2,T4,T3,T1
Mn (ppm)	3,60	-	10,20	-	8,42	T12	11,85	T3	4,05	5	2%	0,1	T11,T8,T10,T7,T12,T9,T6,T5,T2,T4,T1,T3
									Total	72	100%	6,30	

ANEXO 6. Listado de acrónimos utilizados

AMAs: Acuerdo Mutuo por el Agua.

AGSO: Asociación de Ganaderos de la Sierra y el Oriente.

AGROCALIDAD: Agencia Ecuatoriana de Aseguramiento de Calidad del Agro.

EEA: Estación Experimental del Austro.

ETAPA: Empresa de Telecomunicaciones Agua Potable, Alcantarillado y Saneamiento de Cuenca.

FAO: Food and Agriculture Organization of the United Nations

INIAP: Instituto Nacional Autónomo de Investigaciones Agropecuarias.

MAGAP: Ministerio de Agricultura, Ganadería, Acuacultura y Pesca.

MICPA: Manejo Integrado de Cuencas para la Protección de Fuentes de Agua.

NTC: Núcleo de transferencia y Comunicación.

USAID: United States Agency International Development.

UTT: Unidad Técnica de Transferencia.

ANEXO 7. Definiciones/Glosario

Absorber: retener una sustancia las moléculas de otra en estado líquido o gaseoso.

Adsorber: atraer un cuerpo moléculas o iones de otro cuerpo en estado líquido o gaseoso y retenerlos en su superficie.

Clorosis: falta de clorofila en las plantas que causa en ellas una pigmentación amarillenta.

Compostaje: tratamiento aeróbico (presencia de oxígeno) que convierte los residuos orgánicos en humus, por medio de la acción de microorganismos, esencialmente bacterias y hongos, hasta obtener un abono orgánico estable

Contaminación: introducción o presencia de un contaminante en los alimentos o en el medio ambiente alimentario.

Contaminante: cualquier agente biológico o químico, materia extraña u otras sustancias no añadidas intencionalmente a los alimentos y que puedan comprometer la inocuidad o la aptitud de los alimentos.

Digestión enzimática: consiste en degradar químicamente el alimento mediante enzimas.

Edáfico: del suelo o relativo a él, especialmente en lo que se refiere a las plantas.

Excreta: término general para los materiales de desecho eliminados fuera del cuerpo como la orina, el sudor o las heces.

Humus: designa las sustancias orgánicas variadas, de color pardo y negruzco, que resultan de la descomposición de materias orgánicas de origen exclusivamente vegetal (estiércoles, pajas, abonos verdes, restos de cosechas, etc.), bajo la acción de los microorganismos del suelo.

Nervadura: es la distribución de los nervios que componen el tejido vascular de la hoja de una planta.

Palatabilidad: grado de apetencia de un alimento por el ganado.

Pluviometría: parte de la meteorología que estudia la distribución geográfica y estacional de las precipitaciones acuosas.

Sintetizar: obtener un compuesto o un producto mediante síntesis.

Test (estadístico): son pruebas matemáticas que se aplican a las estadísticas

para determinar su grado de certeza y su significado.

BIBLIOGRAFÍA

- Acuna, E. (2014, 04 24). *Universidad de Puerto Rico. Recinto Universitario de Mayaguez.* From Estadística Aplicada I: http://academic.uprm.edu/eacuna/miniman3sl.pdf
- Agreda Turriate, O. (1986). Posibilidades de la utilización de leguminosas forrajeras para mejorar la productividad agrícola y ganadería en la selva peruana. Lima, Perú.
- AGROCALIDAD. (2010). Resolución No. 047. Quito.
- Álvarez Cáceres, R. (2007). Estadística Aplicada a las Ciencias de la Salud. España: Ediciones Días de Santos.
- Arauz, A. M. (1989). Consideraciones para uniformar los resultados de un análisis químico de suelo. San José, Costa Rica: IICA.
- Arias Jiménez, A. C. (2001). *Suelos Tropicales.* San José, Costa Rica: Universidad Estatal a Distancia.
- Balluerka Lasa, N., & Vergara Iraeta, A. I. (2002). Diseños de investigación experimental en psicología: modelos y análisis de datos mediante el SPSS 10.0. Madrid: Illustrated.
- Barrera, V., León-Valarde, C., Grijalva, J., & Chamorro, F. (2004). *Manejo del sistema de producción "Papa-Leche" en la sierra ecuatoriana.*Alternativas Tecnológicas. INIAP-CIP-PROMSA. Quito, Ecuador: Abya-Yala.
- Berenson, M. L., Levine, D. M., & Krehbiel, T. C. (2006). *Estadística para administración*. México: Pearson Educación.
- Berrezueta Alvarado, E., & Domínguez Cuesta, M. (2010). *Técnicas aplicadas a la caracterización y aprovechamiento de recuros geológico-mineros.*Oviedo, España: Morés S. L.
- Blasco Lamenco, M. (1970). *Microbiología de Suelos. Instituto Interamericano de Ciencias Agrícolas de la OEA*. Turrialba, Costa Rica.
- Brown, G. H., & Sallee, E. M. (1967). *Química cuantitativa*. Barcelona, España: Reverté.

- Casals Corella, C. (1988). *La Zeolita, mineral del siglo XX.* La Habana, Cuba: Publicigraf.
- Casas Flores, R. (2011). El suelo de cultivo y las condiciones climáticas. España: Paraninfo S.A.
- Castro Ramírez, Á. (2002). *Ganadería de la Leche.* Volumen I. Madrid, España: EUNED.
- Centro de Artigos. (2014). *Prueba de rangos de Tukey*. From http://centrodeartigos.com/articulos-educativos/article_11102.html
- CORPOICA. (n.d.). *Guía para la toma de muestras de suelos.* Retrieved MAYO 03, 2013 from http://www.corpoica.org.co/sitioweb/Servicios/Documentos/GUIA_PARA _LA_TOMA_DE_MUESTRAS_DE_SUELOS_CORPOICA-FEDEGAN.pdf
- Delgado de la Torre, R. (2004). *Iniciación a la probabilidad y la estadística*.

 Barcelona: Universidad Autónoma de Barcelona.
- Díaz Coronel, G. T., Sánchez Mora, F. D., Llerena Ramos, L. T., & Vásconez Montúfar, G. H. (2009). *Empleo de zeolitas naturales en la fertilización y producción del fréjol (Phaseolus vulgaris L.) en la zona de Quevedo.*Quevedo.
- Domínguez Vivancos, A. (1992). Abonos minerales. Madrid, España.
- Estrada Álvarez, J. (2002). *Pastos y Forrajes para el Trópico Colombiano.*Caldas, Colombia: Universidad de Caldas.
- Estrada, J. (2012). 3er Seminario de Agrostología Manabí. Manabí, Ecuador.
- ETAPA. (2014, arbil 14). From Gestión Ambiental Protección de Fuentes Hídricas: http://www.etapa.net.ec/DGA/dga_pro_fue_hid_man_com.aspx
- FAO. (1997). Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal: memorias de un taller regional. Italia, Roma.
- Flóres Serrano, J. (2009). *Agricultura Ecológica: Manual y guía didáctica.*Mundi-Prensa.

- Fonseca, J. G., Ruiz, G., & Vasquéz, J. E. (2005). Alternativas viables para la sanitización y compostación de gallinaza y pollinaza. Bucaramanga.
- Franco Q., L. H., Calero Q., D., & Durán C., C. V. (2006). *Manejo y utilización de forrajes tropicales multipropósito*. Valle del Cauca, Colombia.
- Fuentes Yagüe, J. L. (1999). El suelos y los fertilizantes. Madrid: Mundi Prensa.
- FUNDIBEQ. (2014, 04 21). Fundación Iberoamericana para la Gestión de la Calidad.

 From http://www.fundibeq.org/opencms/export/sites/default/PWF/downloads/g allery/methodology/tools/diseno de experimentos.pdf
- Gallinaza México. (2013, Agosto 27). From http://www.gallinaza.com/que_es_la_gallinaza.php
- García Castaño, L. H., Gómez Chacón, D. R., & Guerra Hernández, C. F. (2008). Evaluación y caracterización del proceso de biodegradación de pollinazas en camas usando microorganismos. VIRTUALPRO, 20.
- García Fernández, J., & García de Caz, R. (1982). *Edafología y fertilización agrícola*. Barcelona, España: Aedos.
- García Legazpe, F. (2008). *Motivar para el aprendizaje desde la actividad orientadora*. Ministerio de Educación.
- Garrido Valero, M. S. (1994). *Interpretación de análisis de suelos*. Madrid, España: Rivadeneyra S.A.
- Garzón, J. P. (2013, Marzo 21). Técnico del INIAP. (A. K. Suin, Interviewer)
- González Manteiga, M. T., & Pérez de Vargas Luque, A. (2012). Estadística Aplicada. Una visión instrumental. Madrid: Ediciones Dïas de Santos, S.A.
- González, G., & García, M. (1999). Uso de aditivos como mejorantes de la calidad de las dietas para monogástricos: enzimas y acidificantes. *V Encuentro sobre Nutrición y Producción de Animales Monogástricos.*Maracay.
- Gottardi, G., & Galli, E. (1985). Natural Zeolites. Berlin, Germany.
- Guerrero, A. (2000). El suelo, los abonos y la fertilización de los cultivos. Madrid, España: Mundi-Prensa.

- Haro Álvarez, M. F. (2011, 05 24). Engormix. From Zeolita natural: triple impacto para el sector agropecuario ecuatoriano: http://www.engormix.com/MA-agricultura/cultivos-tropicales/articulos/zeolita-en-la-agricultura-t3390/078-p0.htm
- Icart Isern, M. T., Fuentelsaz Gallego, C., & Pulpón Segura, A. M. (2006). Elaboración y presentación de un proyecto de investigación y una tesina. Barcelona: Edicions Universitat Barcelona.
- Inglezakis, V., Loizidou, M., & Grigoropoulou, H. (2004). *Ion Exchange studies* on natural and modified zeolites and the concept of Exchange site accessibility. Greece.
- INPOFOS. (2003). Manual de nutrición y fertilización de pastos. Quito, Ecuador.
- IUMA. (2014, 04 25). *Universidad de las Palmas de Gran Canaria*. From http://www.iuma.ulpgc.es/~nunez/mastertecnologiastelecomunicacion/Te ma3DisenodeExperimentos/doe-5-tratamientos-factoriales.pdf
- Johnson, C., Albrecht, G., Ketterings, Q., Beckman, J., & Stockin, Q. (2005).

 Nitrogen Basics The Nitrogen Cycle.
- Klein, C., & Pérez, J. (2000). Consideraciones Metodologicas en la Experimentacion Científica Agricolad. Turrialba: IICA - CATIE.
- La Colina Cía. Ltda. (2010, Marzo 4). Cuenca, Ecuador.
- Lobo Di Palma, M. V., & Díaz Sánchez, O. (2001). *Agrostología*. San José, Costa Rica: Editorial Universidad Estatal a Distancia.
- López Salcedo, M. G., & Pauta Placencia, D. X. (2012). Efectos en la calidad del agua y del suelo por el uso de la pollinaza como fertilizante en los pastos de la zona de Cruzpamba-Cajas. Cuenca, Ecuador.
- Manejo y Analisis de Datos de Investigacion. (1983). Costa Rica: Bib. Orton IICA / CATIE.
- Martínez González, M. Á. (2013). Conceptos de Salud Pública y Estrategias preventivas: Un manual para ciencias de la salud. Barcelona: Elsevier España.

- Mate Jiménez, C. (1995). Curso general sobre Statgraphics: procedimientos, métodos estadísticos, aplicaciones, ejercicios resueltos. Madrid: Universidad Pontificia de Comillas.
- Merchán Vélez, I., & Quezada Urgilés, J. (2013). Reducción de amoniaco de la pollinaza de pollos Broiler mediante adición de zeolita en la ración alimenticia durante el período de crianza en la parroquia Paccha del cantón Cuenca, Provincia del Azuay. Cuenca, Ecuador.
- Milena Quiroga, A. (2012). Prueba de Tukey.
- Millán, G., Agosto, F., Mabel, V., Botto, L., Luciano, L., & Juan, L. (n.d.). Estudio de la dinámica de las bases en la solución del suelo con el uso de clinoptilolita-Ca como corrector de la acidez en un suelo bonaerense.
- Moncada Jiménez, J. (2005). *Estadística para ciencias del movimiento humano.*San José: Editorial de la Universidad de Costa Rica.
- Mongay Fernández, C. (2011). Quimiometría. Valencia: Universitat de València.
- Moore, D. S. (2005). Estadística aplicada básica. Barcelona: Antoni Bosch editor.
- Morante Carballo, F. (2004). Las Zeolitas de la Costa de Ecuador (Guayaquil): geología, caracterización y aplicaciones. Madrid, España.
- Moreno Casco, J. (2008). Compostaje. Mundi-Prensa.
- Murillo, T. (1996). Manejo de residuos en la industria avícola. X Congreso Nacional Agronómica. San José.
- Navarro García, G., & Navarro García, S. (2013). Química Agrícola: Química del suelo y de los nutrientes esenciales para las plantas. Madrid, España: Paraninfo.
- Navarro, G. (2003). Química Agrícola. El suelos y los elementos químicos esenciales para la vida vegetal. Madrid, España: Mundi-Prensa.
- Niño Rivera, A. B. (2005). Compostación acelerada de la pollinaza mediante microorganismos aerobios para su utilización como abono orgánico. Bucaramanga, Colombia.

- Notario del Pino, J. S., Arteaga Padron, I. J., González Martin, M. M., & García Hernandez, J. (1994). Response of alfalfa to a phillipsite-based selow-release fertilizer.
- Obregon Guerra, R. (2005, Agosto). Investigación de la Actividad y Selectividad de la Zeolita Natural, Clinoptilolita como Catalizador para la Obtención de Compuetos Alquilaromaticos. Universidad Autónoma de Nueva León (UANL).
- Odetti, H., & Bottani, E. (2006). *Introducción a la Química Inorgánica*. Santa Fé, Argentina: UNL.
- Oliveira Prendes, J. A., Afif Khouri, E., & Mayor López, M. (2006). *Análisis de suelos y plantas y recomendaciones de abono.* España: Ediciones de la Universidad de Oviedo.
- Orozco, C., Cantero, V., & Rodríguez, J. F. (1992). Seminario Taller El Tratamiento Anaeróbico de los Residuos del Café: Una Alternativa Energética Para la Disminución del Impacto Ambiental en el Sector. Matagalpa: Bibblioteca Conmemorativa Orton IICA/CATIE.
- Orozco, C., Cantero, V., & Rodríguez, J. F. (1992). Seminario Taller El Tratamiento Anaeróbico de los Residuos del Café: Una Alternativa Energética Para la Disminución del Impacto Ambiental en el Sector. Matagalpa, Nicaragua: Biblioteca Conmemorativa Orton IICA/CATIE.
- Palomino Aguirre, S. (2004). *Granja Integral Autosuficiente: manual.* Bogotá: San Pablo.
- Perdomo, C., Barbazán, M., & Durán Manzoni, J. M. (n.d.). Nitrógeno. Área de suelos y aguas. Montevideo, Uruguay.
- Pérez Suarez, R. (2010). Nociones Básicas de Estadística. Universidad de Oviedo. Dpto de Economía Aplicada. Oviedo.
- Purves, & Sadava, D. (2009). *Vida. La Ciencia de la Biología.* Buenos Aires: Médica Panamericana.
- Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1992). *Biología de las plantas, Volúmen 2.* Barcelona: Reverté S.A.
- Rodríguez Alza, M. Á. (2011). Cultivo y manejo de Forrajes.

- Rodríguez Jiménez, V. (1999). *Terra*. From La problemática de los residuos ganaderos: el caso de la gallinaza: http://www.terra.es/personal/forma-xxi/cono2.htm
- Rodríguez Suppo, F. (1989). Fertilizantes: Nutrición Vegetal. México: AGT S.A.
- Roldán Pérez, G., & Ramírez Restrepo, J. J. (2008). Fundamentos de limnología neotropical. Antioquía, Colombia: Universidad de Antioquía.
- Salafranca Cosialls, L., Sierra Olivera, V., Núñez Peña, M. I., Solanas Pérez, A., & Leiva Ureña, D. (2005). Análisis estadístico mediante aplicaciones informáticas: SPSS, Stratgraphics, Minitab y Excel. Barcelona: Edicions Universitat Barcelona.
- Salinas, J. G., & Valencia, C. A. (1984). *Oxisoles y Ultisoles en América Tropical*. II. Mineralogía y características químicas. Cali, Colombia.
- Sánchez Nava, J. (2007). Fertilizantes: *El alimento de nuestros alimentos.*México: Trillas.
- Seoánez Calvo, M. (2000). Ingeniería del medio ambiente. *Tratado de reciclado y recuperación de productos de los residuos*. Mundi-Prensa.
- Simpson, K. (1991). Abonos y estiércoles. Zaragoza: Acribia S.A.
- Spenta Mexico. (2014, 04 27). *Spenta University Mexico*. From http://www.spentamexico.org/v5-n1/5(1)208-236.pdf
- SPSS Free. (2014). From Pruebas Estadísticas: http://www.spssfree.com/spss/tablas24.html
- Stevenson, F. J., & Cole, M. A. (1999). *Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients*. John Wiley & Sons.
- Stocking, M., & Murnaghan, N. (2003). *Manual para la evaluación de campo de la degradación de la tierra*. Madrid: Mundi-Prensa.
- Suquilanda V., M. B. (1996). *Agricultura orgánica*. Alternativa tecnológica del futuro. Quito, Ecuador: Ediciones UPS.
- Terrádez, M., & Juan, Á. A. (n.d.). *Universidad Oberta de Cataluña*. From Análisis de Varianza (ANOVA): http://www.uoc.edu/in3/emath/docs/ANOVA.pdf

- Thomson, L. M., & Troeh, F. R. (1988). Los suelos y su fertilidad. Barcelona, España: Reverté.
- UB. (2014, 04 26). *Universidad de Barcelona*. From http://www.ub.edu/aplica_infor/spss/cap4-7.htm
- UC3M. (2014, 04 14). Universidad Carlos III de Madrid. From Departamento de Estadística: http://halweb.uc3m.es/esp/Personal/personas/nunez/esp/statII/notas/ana lisis.pdf
- UGR. (2014, 04 26). *Universidad de Granada*. From Campus de Excelencia Internacional: http://www.ugr.es/~bioestad/_private/cpfund3.pdf
- UMA. (2014, 04). *Universidad de Málaga*. From Bioéstadística: Métodos y Aplicaciones: http://www.bioestadistica.uma.es/libro/node22.htm
- UNIOVI. (2014). *Universidad de Oviedo*. Oviedo: http://www.psico.uniovi.es/dpto_psicologia/metodos/tutor.5/gs.html.
- UNLU. (2014, 04 22). *Universidad Nacional de Luján*. From http://www.unlu.edu.ar/~estadistica/Diseno_de_experimentos.pdf
- URU. (2014, 04 22). *Universidad Rafael Urdaneta*. From http://www.uru.edu/fondoeditorial/libros/pdf/manualdestatistix/cap3.pdf
- URV. (2014, 04 25). *Universidad Rovira i Virgili*. From Facultad de psicología: http://psico.fcep.urv.es/spss/inferencia/manova.html
- USAID. (2011, Julio). Programa de USAID de excelencia ambiental y laboral para CAFTA-DR. *Manual de compostaje para granjas avícolas de engorde*. El Salvador.
- UV. (2014, 04 25). *Universidad de Valencia*. From http://www.uv.es/webgid/Inferencial/45_anova_intrasujetos.html
- Velázquez Garrido, M., Febles, J., Alonso Pérez, J., & Montejo Serrano, E. (2005). *I Congreso de Minería: Taller de Zeolitas Naturales, Usos y Aplicaciones*. La Habana.