Universidad de Cuenca

Facultad de Arquitectura y Urbanismo

Carrera de Arquitectura

Determinación de vulnerabilidad de las paredes de mampostería de ladrillo tochano en viviendas de la ciudad de Cuenca por medio de análisis experimental y numérico

Trabajo de titulación previo a la obtención del título de Arquitecto

Autores:

Gonzalo Andrés Chuquimarca Sánchez Bryan Daniel Hoyos Pacheco

Director:

Hernán Alfredo García Erazo

ORCID: 00000-0002-0279-1112

Cuenca, Ecuador

2024-11-18

Universidad de Cuenca

Facultad de Arquitectura y Urbanismo

Determinación de vulnerabilidad de las paredes de mampostería de ladrillo tochano en viviendas de la ciudad de Cuenca por medio de análisis experimental y numérico

Autores:

Chuquimarca Sánchez Gonzalo Andrés

Hoyos Pacheco Bryan Daniel

Director:

Hernán Alfredo García Erazo

ORCID: 00000-0002-0279-1112

2024

Resumen

La mampostería de ladrillo se constituye como el sistema de construcción más comúnmente utilizado en la ciudad de Cuenca, Ecuador. La cuál se encuentra en una zona sísmica tipo II con un nivel de riesgo sísmico alto, por lo tanto, es necesario profundizar en el estudio de su resistencia y vulnerabilidad ante movimientos telúricos. Esta investigación se enfoca en estimar las propiedades efectivas del ladrillo hueco tipo tochana a través de un Elemento de Volúmen Representativo (RVE), el cual se análiza numérica y experimentalmente. Con las propiedades definidas, se realiza un análisis en muros de mampostería a través de un macromodelo definido por las fachadas de tres viviendas adosadas. Este estudio permite determinar las curvas de capacidad sísmica de la edificación por medio de los análisis modal y no lineal (pushover). De esta forma, se determina la vulnerabilidad sísmica de las edificaciónes con muros de mampostería de ladrillo hueco tipo tochana, lo que permite valorar su eficacía ante eventos sísmicos.

Palabras clave del autor: sismo, mampostería,ladrillo hueco, vulnerabilidad sísmica

Abstract

Brick masonry is the most commonly used construction system in the city of Cuenca, Ecuador. It is located in a seismic zone type II with a high seismic risk level, therefore, it is necessary to study in depth its resistance and vulnerability to earthquake movements. This research focuses on estimating the effective properties of the hollow brick type tochana through a Representative Volume Element (RVE), which is analyzed numerically and experimentally. With the defined properties, an analysis is carried out on masonry walls through a macromodel defined by the facades of three semi-detached houses. This study makes it possible to determine the seismic capacity curves of the building by means of modal and nonlinear (pushover) analysis. In this way, the seismic vulnerability of buildings with hollow brick masonry walls of the tochana type is determined, which allows to assess their effectiveness in seismic events.

Author Keywords: earthquake, masonry, hollow brick, seismic vulnerability

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Cuenca ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por la propiedad intelectual y los derechos de autor.

Repositorio Institucional: https://dspace.ucuenca.edu.ec/

The content of this work corresponds to the right of expression of the authors and does not compromise the institutional thinking of the University of Cuenca, nor does it release its responsibility before third parties. The authors assume responsibility for the intellectual property and copyrights.

Institutional Repository: https://dspace.ucuenca.edu.ec/

Índice de contenido 1.6.2 Viviendas adosadas **Preliminar** 1.6.4 Ladrillos hueco. Resumen / Abstract 3 1.7 Introducción a los sistemas constructivos de interés Introducción 16 1.7.1 Pórticos de hormigón armado......29 Planteamiento del problema......17 Capítulo 1: Marco teórico y metodología 1.7.3 Mampostería simple (No reforzada)......30 1.1 Conceptos Generales: Sismicidad 1.1.1 Sismo. 19 1.8 Metodología 32 1.1.2 Riesgo sísmico 1.8.1 Etapa 1: Realizacion de ensayos para ca-1.1.3 Vulnerabilidad sísmica 20 racterización de propiedades mecánicas33 1.2 Amenaza sísmica local 1.8.2 Etapa 2: Determinación de propiedades efectivas usando resultados de análisis ex-1.2.1 Sismicidad en Ecuador: Ámbito histórico 22 perimental y numérico 33 1.2.3 Sismicidad en Cuenca 24 1.4 Normativas vigentes y diseño sísmico 1.8.5 Etapa 5: Vulnerabilidad......35 1.5 Aplicación de software Capítulo 2:Ensayos 1.5.1 Modelo tridimensional 2.1 Determinación de resistencias de ladrillos me-diante ensayos experimentales......37 1.5.3 Aplicación de Matlab......27 2.1.1 Determinación de la resistencia a la com-1.6 Definiciones relacionadas al objeto de estudio presión en unidades de ladrillo tochana......38 2.1.2 Determinación de la resistencia del mortero

a través de ensayos experimentales	53	4.4 Análisis pushover	10
2.1.3 Ensayo de compresión de muretes de mam-		4.4.1 Determinar la carga vertical	10
postería de ladrillo	57	4.4.2 Análisis del daño	10
·		4.4.3 Definición de curvas de capacidad	11
2.1.4 Determinación del esfuerzo de adherencia		4.5 Análisis espectral	11.
entre ladrillos tochana y mortero de las jun- tas	66	4.5.1 Determinación del espectro de diseño	
las	00		
Capítulo 3: Microanálisis estructural		4.5.2 Espectro de diseño caso de estudio 1	
Introducción		4.5.3 Espectro de diseño caso de estudio 2.	
3.1 Definición de propiedades efectivas de mampostería	73	4.5.4 Espectro de diseño caso de estudio 3.	
3.2 Definición del RVE	75	4.5.5 Determinación de la deformación real	120
3.3 Análisis del RVE	75	Capítulo 5: Vulnerabilidad estructural	
3.4 Calibración de propiedades efectivas	76	5.1 Puntos de vulnerabilidad para los casos de estudio	12:
3.5 Interpretación de resultados	77	5.1.1 Vulnerabilidad del caso 1	
3.6 Determinación de propiedades efectivas para		5.1.2 Vulnerabilidad del caso 2	
macro análisis de muros de mampostería de la- drillo tochana	0.5	5.1.3 Vulnerabilidad del caso 3	
dilio tochana	00		
Capítulo 4: Macroanálisis estructural		5.2 Comparación de resultados	
4.1 Selección de casos de estudio	00	5.2.1 Análisis modal	
		5.2.2 Análisis de vulnerabilidad	
4.1.1 Caso de estudio 1		5.2.3 Análisis del nivel del desempeño de una estructura	13
4.1.2 Caso de estudio 2		Capítulo 6: Conclusiones y futuras lineas de investigació	n.
4.1.3 Caso de estudio 3	95	6.1 Conclusiones	
4.2 Modelo matemático	98	6.2 Futuras lineas de investigación	
4.2.1 Idealización del modelo	98	· ·	
4.2.2 Características de los materiales	99	Referencias	140
4.3 Análisis modal	101	Anexos	14
4.3.1 Resultados del análisis modal	101		

Índice de figuras

- Figura 1.1. Principales placas terrestres
- Figura 1.2. Tres escenarios sísmicos
- Figura 1.3. Fuentes sísmicas de tipo subducción
- Figura 1.4. Fuentes sísmicas de tipo corticales
- **Figura 1.5.** Mapa de daño sísmico a nivel manzanero para sismo leve, PGA= 0.05g.
- Figura 1.6. Implantación de la edificación
- Figura 1.7. Ladrillo tochana
- Figura 1.8. Unidades de perforación horizontal (PH)
- **Figura 1.9.** Proceso constructivo: 1) el panel de mampostería y 2) las columnas y vigas de confinamiento.
- Figura 1.10. Requisitos para mampostería confinada
- Figura 1.11. Esquema de metodología
- Figura 2.1. Ubicación de fábrica de ladrillo
- Figura 2.2. Materiales
- Figura 2.3. Equipos
- Figura 2.4. Codificación de muestras
- **Figura 2.5.** Características geométricas de unidad de ladrillo hueco
- **Figura 2.6.** Falla por compresión en unidades de ladrillo 1A
- **Figura 2.7.** Gráfica de esfuerzo-deformación unidad de ladrillo 1A
- **Figura 2.8.** Gráfica de esfuerzo-deformación unidad de ladrillo 1A
- **Figura 2.9.** Falla por separación de paredes internas en unidades de ladrillo 1B
- **Figura 2.10.** Gráfica de esfuerzo-deformación unidad de ladrillo 1B
- Figura 2.11. Gráfica de esfuerzo-deformación unidad de

ladrillo 1B

- **Figura 2.12.** Falla por separación de paredes internas en unidades de ladrillo 2A
- **Figura 2.13.** Gráfica de esfuerzo-deformación unidad de ladrillo 2A
- **Figura 2.14.** Gráfica de esfuerzo-deformación unidad de ladrillo 2A
- **Figura 2.15.** Falla por separación de paredes internas en unidades de ladrillo 2B
- **Figura 2.16.** Gráfica de esfuerzo-deformación unidad de ladrillo 2B
- **Figura 2.17.** Gráfica de esfuerzo-deformación unidad de ladrillo 2B
- **Figura 2.18.** Falla por separación de paredes internas en unidades de ladrillo 3A
- **Figura 2.19.** Gráfica de esfuerzo-deformación unidad de ladrillo 3A
- **Figura 2.20.** Gráfica de esfuerzo-deformación unidad de ladrillo 3A
- **Figura 2.21.** Falla por separación de paredes internas en unidades de ladrillo 3B
- **Figura 2.22.** Gráfica de esfuerzo-deformación unidad de ladrillo 3B
- **Figura 2.23.** Gráfica de esfuerzo-deformación unidad de ladrillo 3B
- **Figura 2.24.** Falla por separación de paredes internas en unidades de ladrillo 4A
- **Figura 2.25.** Gráfica de esfuerzo-deformación unidad de ladrillo 4A
- **Figura 2.26.** Gráfica de esfuerzo-deformación unidad de ladrillo 4A
- **Figura 2.27.** Falla por separación de paredes internas en unidades de ladrillo 4B

- **Figura 2.28.** Gráfica de esfuerzo-deformación unidad de ladrillo 4B
- **Figura 2.29.** Gráfica de esfuerzo-deformación unidad de ladrillo 4B
- **Figura 2.30.** Falla por separación de paredes internas en unidades de ladrillo 5A
- **Figura 2.31.** Gráfica de esfuerzo-deformación unidad de ladrillo 5A
- **Figura 2.32.** Gráfica de esfuerzo-deformación unidad de ladrillo 5A
- **Figura 2.33.** Falla por separación de paredes internas en unidades de ladrillo 5B
- **Figura 2.34.** Gráfica de esfuerzo-deformación unidad de ladrillo 5B
- **Figura 2.35.** Gráfica de esfuerzo-deformación unidad de ladrillo 5B
- **Figura 2.36.** Diagrama de caja de módulo de Young de unidades de ladrillo: Análisis de distribución y consistencia.
- Figura 2.37. Materiales
- Figura 2.38. Equipos
- **Figura 2.39.** Diagrama de caja de módulo de Young de morteros: Análisis de distribución y consistencia.
- **Figura 2.40.** Esquema del prisma utilizado en la prueba de compresión
- Figura 2.41. Materiales
- Figura 2.42. Equipos
- Figura 2.43. Colocación de mortero
- **Figura 2.44.** Tipos de fallas en ensayos de compresión de muretes huecos
- Figura 2.45. Falla por flexión en murete 1
- Figura 2.46. Gráfica esfuerzo deformación en murete 1

- **Figura 2.47.** Gráfica final esfuerzo deformación en murete 1
- Figura 2.48. Falla por flexión en murete 2
- Figura 2.49. Gráfica esfuerzo deformación en murete 2
- **Figura 2.50.** Gráfica final esfuerzo deformación en murete 2
- Figura 2.51. Falla por separación de caras en murete 3
- Figura 2.52. Gráfica esfuerzo deformación en murete 3
- **Figura 2.53.** Gráfica final esfuerzo deformación en murete 3
- Figura 2.54. Falla por flexión en murete 4
- Figura 2.55. Gráfica esfuerzo deformación en murete 4
- **Figura 2.56.** Gráfica final esfuerzo deformación en murete 4
- Figura 2.57. Falla por separación de caras en murete 5
- Figura 2.58. Gráfica esfuerzo deformación en murete 5
- **Figura 2.59.** Gráfica final esfuerzo deformación en murete 5
- **Figura 2.60.** Diagrama de caja de la fuerza de compresión en muretes: Análisis de distribución y consistencia.
- Figura 2.61. Materiales
- Figura 2.62. Equipos
- Figura 2.63. Curado de muretes en bolsas plásticas
- Figura 2.64. Unión y alineación de ladrillos en muretes
- Figura 2.65. Área de adherencia entre ladrillo y mortero
- Figura 2.66. Gráfica de esfuerzo deformación
- Figura 2.67. Gráfica final de esfuerzo deformación
- Figura 3.1. Ley uniaxial de compresión
- **Figura 3.2.** Curva esfuerzo desplazamiento y su correspondiente energía de fractura por unidad de área.

- **Figura 3.3.** Los RVE representan mampostería compuesta por ladrillos huecos (a) modelo base realizado en Autocad y (b) Modelo discretizado.
- **Figura 3.4.** Esquema de condiciones de contorno para los RVE bajo cargas distribuidas a compresión.
- **Figura 3.5.** Curva esfuerzo-deformación simulada (verde) y experimental (azul)
- **Figura 3.6.** Curva esfuerzo deformación RVE 1 y puntos distintivos
- Figura 3.7. Daños materiales con desplazamientos (a) ux=0,24 mm (límite inelástico), (b) ux=1,32 mm (resistencia a la compresión), (c) ux=1,76 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 1.
- Figura 3.8. Esfuerzos principales mínimos con desplazamientos(a) ux=0,24 mm (límite inelástico), (b) ux=1,32 mm (resistencia a la compresión), (c) ux=1,76 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 1.
- **Figura 3.9.** Curva esfuerzo deformación RVE 2 y puntos distintivos. (3) LI = 3,99 kN, (24) FM = 15,74 kN, (36) FA = 12,45 kN y FR = 3,09 kN.
- Figura 3.10. Daños materiales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,96 mm (resistencia a la compresión), (c) ux=1,44 mm (resistencia de ablandamiento), (d) ux=2,84 mm (resistencia residual) del RVE 2.
- Figura 3.11. Esfuerzos principales mínimos con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,96 mm (resistencia a la compresión), (c) ux=1,44 mm (resistencia de ablandamien-

- to), (d) ux=2,84 mm (resistencia residual) del RVE 2.
- **Figura 3.12.** Resultados reducidos del RVE 3 y sus puntos distintivos: (3) LI = 5,50 kN, (18) FM = 15,65 kN, (32) FA = 12,27 kN y (73) FR = 3,10 kN.
- Figura 3.13. Daños materiales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,72 mm (resistencia a la compresión), (c) ux=1,28 mm (resistencia de ablandamiento), (d) ux=2,92 mm (resistencia residual) del RVE 3.
- Figura 3.14. Esfuerzos principales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,72 mm (resistencia a la compresión), (c) ux=1,28 mm (resistencia de ablandamiento), (d) ux=2,92 mm (resistencia residual) del RVE 3.
- Figura 3.15. Curva esfuerzo deformación del RVE 4 y sus puntos distintivos: (4) LI = 2,76 kN, (16) FM = 5,80 kN, (31) FA = 4,63 kN y (65)FR = 1,12 kN.
- Figura 3.16. Daños materiales con desplazamientos (a) ux=0,16 mm (límite inelástico), (b) ux=0,64 mm (resistencia a la compresión), (c) ux=1,24 mm (resistencia de ablandamiento), (d) ux=2,60 mm (resistencia residual) del RVE 4.
- Figura 3.17. Esfuerzos principales con desplazamientos (a) ux=0,16 mm (límite inelástico), (b) ux=0,64 mm (resistencia a la compresión), (c) ux=1,24 mm (resistencia de ablandamiento), (d) ux=2,60 mm (resistencia residual) del RVE 4.
- Figura 3.18. Curva esfuerzo deformación del RVE 5 y sus puntos distintivos: (5) LI = 3,07 kN, (30) FM = 9,94 kN, (41) FA = 7,87 kN y (76) FR =

1,99 kN.

- Figura 3.19. Daños materiales con desplazamientos (a) ux=0,20 mm (límite inelástico), (b) ux=1,20 mm (resistencia a la compresión), (c) ux=1,64 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 5.
- Figura 3.20. Esfuerzos principales con desplazamientos (a) ux=0,20 mm (límite inelástico), (b) ux=1,20 mm (resistencia a la compresión), (c) ux=1,64 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 5.
- **Figura 3.21.** Energía de fractura de compresión Área bajo curva esfuerzo deformación.
- **Figura 4.1.** Mapa del cantón de Cuenca Ecuador, sector planeamiento Este E-7.
- Figura 4.2. Ubicación de caso estudio 1.
- **Figura 4.3.** Axonometría y emplazamiento de csao de estudio 1
- Figura 4.4. Planta alta y baja caso estudio 1
- Figura 4.5. Elevación y secciones caso estudio 1
- Figura 4.6. Esquema formal caso estudio 1
- Figura 4.7. Esquema de acabados caso estudio 1
- Figura 4.8. Ubicación de caso estudio 2.
- **Figura 4.9.** Axonometría y emplazamiento de csao de estudio 2.
- Figura 4.10. Planta alta y baja caso estudio 2
- Figura 4.11. Elevación y secciones caso estudio 2
- Figura 4.12. Esquema formal caso estudio 2
- Figura 4.13. Esquema de acabados caso estudio 2
- Figura 4.14. Ubicación de caso estudio 3.
- **Figura 4.15.** Axonometría y emplazamiento de csao de estudio 3.

- Figura 4.16. Planta alta y baja caso estudio 3
- Figura 4.17. Elevación y secciones caso estudio 3
- Figura 4.18. Esquema formal caso estudio 3
- Figura 4.19. Esquema de acabados caso estudio 3
- **Figura 4.20.** Modelo tres casos de estudio en Autocad, axonometría, fachada frontal, lateral y planta.
- **Figura 4.21.** Modelo de tres casos de estudio. (a) Modelo discreto y (b) elementos del modelo.
- **Figura 4.22.** Características geométricas de la losa alivianada.
- **Figura 4.23.** Resultados análisis modal Caso 1. (a) Modo = 1, Período = 2,67 s (b) Modo = 2, Período = 2,65 s (c) Modo = 66, Período = 0,49 s.
- **Figura 4.24.** Resultados análisis modal Caso 2. (a) Modo = 1, Período = 2,774 s (b) Modo = 2, Período = 2,772 s (c) Modo = 66, Período = 0,50 s.
- **Figura 4.25.** Resultados análisis modal Caso 3. (a) Modo = 1 Período = 2,67 (b) Modo = 2 Período = 2,65 (c) Modo = 66 Período = 0,49.
- Figura 4.26. Proceso del análisis Pushover
- **Figura 4.27.** Aplicación de la carga lateral en la losa de entrepiso.
- **Figura 4.28.** Curva pushover, relación cortante basal y desplazamiento Caso 1.
- **Figura 4.29.** Análisis pushover, daño por compresión en la mampostería de ladrillo hueco Caso 1.
- **Figura 4.30.** Análisis pushover, daño por tensión en la mampostería de ladrillo hueco Caso 1.
- **Figura 4.31.** Curva pushover, relación cortante basal y desplazamiento Caso 2.
- **Figura 4.32.** Análisis pushover, daño por compresión en la mampostería de ladrillo hueco Caso 2.
- Figura 4.33. Análisis pushover, daño por tensión en la

- mampostería de ladrillo hueco Caso 2.
- **Figura 4.34.** Curva pushover, relación cortante basal y desplazamiento Caso 3.
- **Figura 4.35.** Análisis pushover, daño por compresión en la mampostería de ladrillo hueco Caso 3.
- **Figura 4.36.** Análisis pushover, daño por tensión en la mampostería de ladrillo hueco Caso 3.
- **Figura 4.37.** Curva de capacidad y evaluación de diferentes umbrales de daño.
- Figura 4.38. Curva de capacidad del caso de estudio 1.
- Figura 4.39. Curva de capacidad del caso de estudio 2.
- Figura 4.40. Curva de capacidad del caso de estudio 3.
- Figura 4.41. Mapa para diseño sísmico.
- **Figura 4.42.** Curvas de capacidad (a) Cortante basal Desplazamiento, (b) Aceleración Desplazamiento modal.
- Figura 4.43. Factor de reducción.
- Figura 4.44. Espectro inelástico.
- **Figura 4.45.** Intersección entre la curva de capacidad y el espectro inelástico.
- Figura 4.46. Curva de capacidad
- **Figura 4.47.** Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.
- **Figura 4.48.** Espectro de diseño elástico e inelástico de la ciudad de Cuenca.
- **Figura 4.49.** Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.
- Figura 4.50. Curva de capacidad
- **Figura 4.51.** Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.

- **Figura 4.52.** Espectro de diseño elástico e inelástico de la ciudad de Cuenca.
- **Figura 4.53.** Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.
- Figura 4.54. Curva de capacidad
- **Figura 4.55.** Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.
- **Figura 4.56.** Espectro de diseño elástico e inelástico de la ciudad de Cuenca.
- **Figura 4.57.** Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.
- **Figura 5.1.** Punto de vulnerabilidad en la curva de capacidad aceleración desplazamiento.
- **Figura 5.2.** Punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.3.** Daño a compresión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.4.** Daño a tensión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.5.** Fallas producidas en la fachada del caso 1 por: (a) compresión y (b) tensión.
- **Figura 5.6.** Punto de vulnerabilidad en la curva de capacidad aceleración desplazamiento.
- **Figura 5.7.** Punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.8.** Daño a compresión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.

- **Figura 5.9.** Daño a tensión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.10.** Fallas producidas en la fachada del caso 1 por: (a) compresión y (b) tensión.
- **Figura 5.11.** Punto de vulnerabilidad en la curva de capacidad aceleración desplazamiento.
- **Figura 5.12.** Punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.13.** Daño a compresión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.14.** Daño a tensión en el punto de vulnerabilidad en la curva de capacidad Cortante basal desplazamiento.
- **Figura 5.15.** Fallas producidas en la fachada del caso 1 por: (a) compresión y (b) tensión.
- **Figura 5.16.** Comparación entre el desplazamiento de cada caso de estudio.
- Figura 5.17. Niveles de desempeño de una edificación.
- **Figura 5.18.** Ubicación del punto de vulnerabilidad en los niveles de desempeño de una edificación (a) caso de estudio 1 (b) caso de estudio 2 y (c) caso de estudio 3.

Índice de tablas

- Tabla 1.1. Fuentes de sebducción
- Tabla 1.2. Fuentes corticales
- **Tabla 1.3.** Terremotos con intesidades iguales o superiores a VII en la escala de intensidad MSK.
- **Tabla 2.1.** Resultados analíticos de unidad de ladrillo 1A.
- **Tabla 2.2.** Resultados analíticos de unidad de ladrillo 1B.
- **Tabla 2.3.** Resultados analíticos de unidad de ladrillo 2A
- **Tabla 2.4.** Resultados analíticos de unidad de ladrillo 2B.
- **Tabla 2.5.** Resultados analíticos de unidad de ladrillo 3A.
- **Tabla 2.6.** Resultados analíticos de unidad de ladrillo 3B.
- **Tabla 2.7.** Resultados analíticos de unidad de ladrillo 4A.
- **Tabla 2.8.** Resultados analíticos de unidad de ladrillo 4B.
- **Tabla 2.9.** Resultados analíticos de unidad de ladrillo 5A.
- **Tabla 2.10.** Resultados analíticos de unidad de ladrillo 5B.
- **Tabla 2.11.** Resultados análiticos en unidades de ladrillo hueco.
- **Tabla 2.12.** Requisitos de resistencia mecánica y absorción de la humedad que deben cumplir los ladrillos cerámicos.
- **Tabla 2.13.** Resultados analíticos en unidades de ladrillo hueco.

- **Tabla 2.14.** Dosificación según la norma COGUANOR NTG 41003h4.
- **Tabla 2.15.** Ajuste de dosificación del mortero para ensayos.
- **Tabla 2.16.** Resultados de los ensayos de mortero a los dias 3, 7 y 28.
- **Tabla 2.17.** Resultados experimentales en muestras de mortero
- **Tabla 2.18.** Resultados analíticosde en murete 1.
- **Tabla 2.19.** Resultados analíticos de en murete 2.
- **Tabla 2.20.** Resultados analíticos de en murete 3.
- **Tabla 2.21.** Resultados analíticos de en murete 4.
- **Tabla 2.22.** Resultados analíticosde en murete 5.
- **Tabla 2.23.** Resumen de datos obtenidos en ensayos de compresion de muretes de ladrillo tochana.
- **Tabla 2.24.** Resultados analíticos en murete de adhesión.
- **Tabla 3.1.** Resultados experimentales en unidades de ladrillo hueco.
- **Tabla 3.2.** Resultados experimentales en muestras de mortero.
- **Tabla 3.3.** Propiedades efectivas de muestras de unidades de ladrillos.
- **Tabla 3.4.** Propiedades efectivas de unidades de ladrillos derivadas de la calibración de la curva esfuerzo-deformación obtenidas mediante simulación en STKO.
- **Tabla 3.5.** Resultados reducidos del RVE 1 y puntos distintivos: (6) LI = 8,05 kN, (33) FM = 24,52 kN, (44) FA = 19,63 kN y (76) FR = 4,89 kN.
- **Tabla 3.6.** Resultados reducidos del RVE 2 y puntos distintivos: (3) LI = 3,99 kN, (24) FM = 15,74 kN, (36) FA = 12,45 kN y FR = 3,09 kN.

- **Tabla 3.7.** Resultados reducidos del RVE 3 y sus puntos distintivos: (3) LI = 5,50 kN, (18) FM = 15,65 kN, (32) FA = 12,27 kN y (73) FR = 3,10 kN.
- **Tabla 3.8.** Resultados reducidos del RVE 4 y sus puntos distintivos: (4) LI = 2,76 kN, (16) FM = 5,80 kN, (31) FA = 4,63 kN y (65) FR = 1,12 kN.
- **Tabla 3.9.** Resultados reducidos del RVE 5 y sus puntos distintivos: (5) LI = 3,07 kN, (30) FM = 9,94 kN, (41) FA = 7,87 kN y (76) FR = 1,99 kN.
- **Tabla 3.10.** Propiedades efectivas obtenidas a partir de simulaciones en cinco RVE's.
- **Tabla 3.11.** Propiedades efectivas obtenidas mediante experimentación en 100 RVE's.
- **Tabla 3.12.** Propiedades efectivas para macro análisis.
- **Tabla 4.1.** Características de ocupación del suelo sector de planeamiento E-7.
- **Tabla 4.2.** Datos general caso estudio 1.
- Tabla 4.3. Datos general caso estudio 2.
- Tabla 4.4. Datos general caso estudio 3.
- **Tabla 4.5.** Coeficiente de Poisson y módulo elástico para materiales de estudio.
- **Tabla 4.6.** Densidad por unidad de ladrillo hueco.
- **Tabla 4.7.** Masa total del muro de mampostería. (a) Cantidad de ladrillos por metro cuadrado. (b) Densidad de mortero (c) Masa total del muro por metro cúbico.
- **Tabla 4.8.** Resultados masa de losa alivianada con acabado.
- Tabla 4.9. Resultados del análisis modal del caso 1.
- Tabla 4.10. Resultados del análisis modal del caso 2.
- Tabla 4.11. Resultados del análisis modal del caso 3.
- Tabla 4.12. Factores de diseño sísmico.
- Tabla 4.13. Intersección curva de capacidad con el es-

- pectro inelástico de la ciudad de Cuenca.
- **Tabla 4.14.** Deformación real de los tres casos de estudio.
- **Tabla 5.1.** Resultados de intersección curva capacidad con espectro inelástico.
- **Tabla 5.2.** Resultados de intersección curva capacidad con espectro inelástico.
- **Tabla 5.3.** Resultados de intersección curva capacidad con espectro inelástico.
- **Tabla 5.4.** Resultados del análisis modal para cada caso estudio.
- **Tabla 5.5.** Resultados del análisis de vulnerabilidad para cada caso estudio.

Índice de fórmulas

- **Fórmula 1.1.** Fórmula cuentitativa de riesgo sísmico.
- Fórmula 2.1. Fórmula para determinar el esfuerzo.
- **Fórmula 2.2.** Fórmula para determinar la deformación unitaria.
- Fórmula 2.3. Fórmula para determinar el módulo de elasticidad.
- **Fórmula 2.4.** Fórmula para determinar el módulo de elaticidad a partir del esfuerzo a compresión.
- **Fórmula 2.5.** Fórmula para determinar el esfuerzo.
- Fórmula 2.6. Fórmula para determinar la deformación unitaria.
- **Fórmula 2.7.** Fórmula para determinar el esfuerzo de adherencia.
- Fórmula 3.1. Fórmula para determinar el módulo de elasticidad.
- **Fórmula 3.2.** Fórmula para determinar el módulo de elaticidad a partir del esfuerzo a compresión.
- **Fórmula 3.3.** Fórmula del módulo de corte para materiales isotrópicos lineales
- **Fórmula 4.1.** Fórmula para determinar la cantidad de ladrillos por metro cuadrado.
- **Fórmula 4.2.** Fórmula para determinar el volúmen de mortero por metro cuadrado de muro de mampostería.
- **Fórmula 4.3.** Fórmula para determinar la carga lateral aplicada en la losa.
- **Fórmula 4.4.** Fórmula para determinar la carga en relación a gamma.
- **Fórmula 4.5.** Fórmula para determinar el desplazamiento en relación a gamma.
- Fórmula 4.6. Fórmula para determinar la aceleración.
- **Fórmula 4.7.** Fórmula para determinar la fuerza elástica.
- **Fórmula 4.8.** Fórmula para determinar el límite de la fuerza elástica.
- **Fórmula 4.9.** Fórmula para determinar el factor de reducción.

Agradecimiento

A nuestro director, Ing. Hernán García Erazo, por brindarnos su sabiduría y dedicarnos su tiempo. Al equipo docente, administrativo y de servicio de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca, por su comprensión y aporte a nuestro desarrollo personal y profesional. A nuestras familias y amigos, por su respaldo y compañía durante esta etapa.

Dedicatoria

Esta tesis la dedico en memoria de mi padre y mi hermano, quienes, aunque ya no están conmigo, continúan siendo una gran fuente de inspiración. A mi padre, por enseñarme el valor del esfuerzo y la constancia, y a mi hermano, cuya alegría sigue iluminando mi camino. A mi madre, por su amor incondicional y su apoyo constante; a mi hermana, por su paciencia en los momentos difíciles; a mi prima, por su cercanía y comprensión; y a mis amigos, por su aliento y compañía a lo largo de este proceso.

Gonzalo Andrés Chuquimarca Sánchez

Dedico este trabajo a mi madre, por ser mi fuerza y guía, por su amor incondicional y por enseñarme a nunca rendirme. A mis hermanos, por su apoyo constante y por ser mi inspiración diaria. Y a mis amigos, por estar siempre a mi lado, brindándome su compañía, motivación y momentos de alegría durante este camino.

Bryan Daniel Hoyos Pacheco

Introducción

En las zonas sísmicamente activas de Ecuador, evaluar la resistencia estructural y la vulnerabilidad de las edificaciones es fundamental para la gestión de riesgos y la seguridad pública. Ecuador, ubicado en el cinturón de fuego del Pacífico, experimenta alta actividad sísmica, como evidenció el terremoto de magnitud 7.8 Mw en 2016 en Pedernales, que causó 602 pérdidas humanas y significativos daños materiales (Instituto Geofísico EPN, 2016). La ciudad de Cuenca, situada cerca de la falla geológica de Girón, enfrenta un alto riesgo sísmico. A pesar de la existencia de normativas de construcción, como la Norma Ecuatoriana de Construcción (NEC-SE-DS, 2014), un estudio de 2002 reveló que el 60% de las edificaciones de mampostería y hormigón en Cuenca no cumplían con las normas sismo-resistentes necesarias para soportar sismos mayores a seis grados en la escala de Richter (Red Sísmica del Austro, 2002).

La mampostería, especialmente el ladrillo hueco tipo tochana, es uno de los materiales de construcción más utilizados en Cuenca debido a su disponibilidad y bajo costo. Sin embargo, se requiere un conocimiento más profundo sobre su comportamiento mecánico y su desempeño bajo condiciones sísmicas. El presente estudio aborda esta necesidad mediante un enfoque integral que combina experimentación en laboratorio, análisis numérico y estudios de casos, con el fin de proporcionar una comprensión más exhaustiva de las propiedades sísmicas de las estructuras de mampostería.

El desarrollo del trabajo se estructura en seis etapas metodológicas: se establece un marco teórico que incluye un análisis detallado de la sismicidad de la región y las normativas aplicables; se realizan pruebas experimentales en laboratorio para determinar las propiedades mecánicas del ladrillo; se lleva a cabo un micro análisis numérico utilizando el software STKO; y se

seleccionan tres casos de estudio para un análisis detallado. En la quinta etapa, se efectúa un macro análisis mediante análisis modal y pushover para identificar zonas de daño y establecer las curvas de capacidad de las estructuras. Finalmente, el estudio concluye con una evaluación de la vulnerabilidad sísmica de las fachadas analizadas, ofreciendo recomendaciones para mejorar su desempeño.

Los hallazgos de esta investigación no solo contribuyen a mejorar el diseño de nuevas edificaciones, sino que también tienen el potencial de influir en las políticas de seguridad sísmica locales. Al identificar debilidades en las estructuras existentes y proponer soluciones prácticas, el estudio puede motivar a los responsables de la formulación de políticas a implementar regulaciones más estrictas y a promover un cumplimiento más riguroso de las normativas de construcción. Esto podría traducirse en una mayor capacitación para arquitectos e ingenieros locales, así como en la promoción de técnicas de construcción que aumenten la resiliencia de las edificaciones ante eventos sísmicos, beneficiando así a la comunidad en su conjunto.

Hipótesis

El análisis numérico y práctico proporciona una base sólida para la reducción de la vulnerabilidad física de futuras edificaciones en mampostería de ladrillo tochano en Cuenca, y específicamente en el barrio Totoracocha, al identificar y optimizar las propiedades mecánicas y estructurales de este material. Se postula que la mampostería de ladrillo tochano, con el diseño y las técnicas de construcción adecuadas, puede ser un sistema efectivo para mitigar el impacto sísmico, contribuyendo así a la seguridad estructural en zonas de alto riesgo sísmico.

Objetivo General

Determinar la vulnerabilidad de las paredes de mampostería de ladrillo hueco tipo tochana en viviendas de la ciudad de Cuenca por medio de análisis experimental y numérico.

Objetivos Específicos

Calibrar un modelo numérico utilizando resultados de análisis experimental en unidades y probetas de muros de mampostería de ladrillos huecos tipo tochana.

El objetivo específico busca desarrollar una representación precisa del comportamiento estructural de dichos muros. Para lograrlo, se utilizarán ensayos de compresión, corte y flexión, cuyos datos se integrarán en un modelo numérico ajustado con software especializado. Se espera que el modelo refleje de manera confiable el comportamiento sísmico de los muros y permita identificar los parámetros críticos que influyen en su vulnerabilidad estructural.

Analizar la vulnerabilidad sísmica de muros de mampostería de ladrillo hueco, a través de modelos numéricos.

El objetivo específico busca evaluar el comportamiento de estos muros frente a cargas sísmicas. Para lograrlo, emplea modelos numéricos calibrados para simular el espectro sísmico de la ciudad de Cuenca, Ecuador, con el fin de determinar el desempeño estructural y los factores que incrementan la susceptibilidad al daño. Se espera que este análisis identifique patrones de fallos comunes y áreas de mayor vulnerabilidad, proporcionando una base sólida para mejorar el diseño o la construcción de estos muros.

Planteamiento del problema

Ecuador, en el cinturón de fuego del Pacífico, enfrenta alta actividad sísmica. En 2016, un terremoto de magnitud 7.8 Mw en Pedernales causó 602 víctimas y graves daños (Instituto Geofísico EPN, 2016). Cuenca, cerca de la falla geológica de Girón, presenta un alto riesgo sísmico. A pesar de las normativas de construcción, como la Norma Ecuatoriana de Construcción (NEC-SE-DS, 2014), el cumplimiento es deficiente; un estudio de 2002 reveló que el 60% de 64,200 edificios en Cuenca no cumplía con los requisitos para sismos mayores a seis grados (Red Sísmica del Austro, 2002).

La mampostería de ladrillo, especialmente el ladrillo hueco tipo tochana, presenta vulnerabilidades sísmicas poco comprendidas. Se carece de información sobre su comportamiento mecánico bajo cargas cíclicas y su interacción con morteros, lo que contribuye a una gestión inadecuada de los riesgos.

Este estudio forma parte del grupo de investigación de la Universidad de Cuenca "Vulnerabilidad sísmica del patrimonio edificado", que busca determinar la vulnerabilidad de edificaciones en la ciudad. A través de evaluaciones experimentales y numéricas, se establecerán parámetros para mejorar el diseño y la construcción de estructuras sismo resistentes. Los resultados contribuirán a prácticas de construcción más seguras en zonas de alto riesgo como Cuenca, mejorando así la seguridad de la población.

Marco Teórico y Metodología

1.1 Conceptos generales: Sismicidad

1.1.1 Sismo

Un fenómeno sísmico, también conocido como terremoto, se caracteriza por ser una liberación abrupta de energía acumulada en el núcleo terrestre. Dicha liberación se manifiesta a través de un desplazamiento diferencial de bloques a lo largo de las discontinuidades tectónicas, comúnmente denominadas fallas geológicas. Este desplazamiento puede ser el resultado de la generación de una nueva falla o, alternativamente, la reactivación de una falla preexistente (Canas Torres et al., 1994).

En el análisis de la superficie terrestre, es observable que la litosfera se encuentra segmentada en unidades o placas que pueden alcanzar hasta 100 km de espesor. Estas unidades son conocidas como placas tectónicas (Fig. 1.1). Dichas placas se asientan sobre una capa de manto de consistencia viscosa, denominada astenosfera, lo que propicia un movimiento lateral de las mismas (Iturralde, 2009).

La teoría propuesta por Reid en 1910, comúnmente referida como la teoría del rebote elástico, proporciona una explicación exhaustiva de los fenómenos sísmicos. En la Figura 1.2, se presentan tres escenarios posibles para su análisis.

En el primer escenario, etiquetado como 'Caso A', no se observa ninguna deformación, resultando en una configuración idéntica en ambos lados de la línea de falla, F. El 'Caso B' representa una situación en la que las fuerzas tectónicas actúan de tal manera que inducen una deformación a lo largo de la línea de falla, F. Finalmente, en el 'Caso C', se produce una liberación abrupta de las tensiones acumuladas, lo que conduce a la ruptura y al

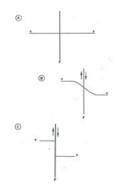

desplazamiento relativo de uno de los lados de F con respecto al otro. Este evento es el que genera el terremoto. La línea a lo largo de la cual ocurre esta ruptura se denomina falla. Es importante destacar que esta teoría ha sido fundamental para entender la dinámica de los terremotos y para el desarrollo de estrategias de mitigación de riesgos sísmicos (Canas Torres et al., 1994).

Figura 1.1. Principales placas terrestres.

Fuente: (Grotzinger, Jordan, 2014)

Figura 1.2. Tres escenarios sísmicos.

Fuente: (Reid,1910)

1.1.2 Riesgo sísmico

La vulnerabilidad se interpreta como la capacidad de un sistema o entidad para adaptarse a ciertas circunstancias adversas. En este contexto, la vulnerabilidad se define como el grado de pérdida que un elemento o conjunto de elementos en riesgo puede sufrir como resultado de la probable ocurrencia de un evento desastroso. Esta pérdida se cuantifica en una escala que va desde 0 (sin daño) hasta 1 (pérdida total). Organizaciones internacionales como la Oficina de las Naciones Unidas para la Reducción del Riesgo de Desastres (UNDRO, por sus siglas en inglés) y la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO) han formulado una definición cuantitativa de este riesgo (Barbat, 2005).

$$R_{t}=H \times V \times E \tag{1.1}$$

Amenaza, peligro o peligrosidad (H): Se refiere a la probabilidad de que un evento potencialmente catastrófico ocurra en un lugar específico durante un periodo de tiempo determinado. Esta medida cuantitativa es crucial para la planificación y preparación de medidas de mitigación de desastres.

Vulnerabilidad (V): Se define como el nivel de pérdida sufrido por un elemento o conjunto de elementos debido a la posible aparición de un evento catastrófico. Esta pérdida se cuantifica en una escala que va desde 0, que representa la ausencia de daño, hasta 1, que simboliza la pérdida total del elemento en cuestión.

Elementos de riesgo (E): En un área geográfica específica, los elementos que están expuestos a una amenaza potencial incluyen la población residente, las estructuras arquitectónicas y las obras de ingeniería civil. Además, las actividades económicas que se llevan a cabo en la región, los

servicios públicos disponibles, las utilidades y la infraestructura existente también están sujetos a dicha amenaza.

Riesgo total (R₂): Se define como la cuantificación de las consecuencias adversas de un desastre, que incluyen la pérdida de vidas humanas, el número de personas heridas, el daño a la propiedad y las repercusiones en la actividad económica. Estos factores representan las pérdidas tangibles e intangibles que resultan de la ocurrencia de un desastre.

1.1.3 Vulnerabilidad sísmica

Posterior a la ocurrencia de un fenómeno sísmico, se ha observado que las estructuras de similar tipología exhiben variaciones en el grado de daño sufrido, a pesar de estar ubicadas en una zona geográfica idéntica. Esta observación ha llevado a la definición de vulnerabilidad sísmica como el nivel de daño que una estructura específica puede recibir durante un evento telúrico. En consecuencia, las estructuras se categorizan en términos de su vulnerabilidad, siendo algunas más vulnerables y otras menos frente a un movimiento sísmico idéntico (Yepez et al., 1995).

La susceptibilidad inherente de una edificación a sufrir daños no se correlaciona directamente con la amenaza que representa un fenómeno sísmico. En cambio, dicha susceptibilidad es una característica intrínseca de cada edificación. De este modo, una edificación puede poseer una alta susceptibilidad a daños (o vulnerabilidad), pero no necesariamente estar en situación de riesgo si no se ubica en una región con alta amenaza sísmica.

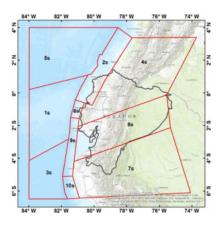
1.2 Amenaza sísmica local

1.2.1 Sismicidad en Ecuador: Ámbito geográfico

El territorio ecuatoriano se segmenta en cuatro regiones distintas: la Costa, la Sierra, la Amazonia y la región Insular. La Sierra es particularmente notable debido a la prevalencia de fallas geológicas, las cuales son el resultado de los pliegues inducidos por la geodinámica de la región.

Ecuador se encuentra en una zona de riesgo sísmico latente, ya que una porción de su territorio está incorporada en la microplaca conocida como "bloque andino", que es una parte integral de la placa Sudamericana. Esta placa, a su vez, está en constante interacción con las placas de Nazca, Cocos y Caribe. Además, la región sur de Ecuador está implicada en la interacción entre la placa de Nazca y la placa Sudamericana. Esta interacción tectónica contribuye a la actividad sísmica y volcánica en la región, lo que tiene implicaciones significativas para la geología y el medio ambiente de Ecuador (Quinde y Reinoso, 2016).

Zonas sísmicas del Ecuador


En Ecuador, el riesgo sísmico se atribuye a dos tipos de fuentes sísmicas: la subducción, tanto a nivel interplaca como intraplaca, y las de tipo cortical que ocurren a nivel superficial. El proceso de acumulación y liberación de energía es independiente en cada una de estas fuentes distintas.

Los sismos interplaca ocurren a una profundidad mayor a 300 km y son el resultado de la fricción entre la placa de Nazca, que subduce bajo la placa Sudamericana. Los sismos intraplaca se generan entre 40 y 300 km de profundidad y corresponden a sismos de falla normal a una profundidad

intermedia. Estos se localizan dentro de la placa oceánica de Nazca que subduce bajo la placa continental sudamericana. Finalmente, los sismos corticales, que ocurren a una profundidad menor a 40 km, corresponden a los sismos someros que suceden dentro de la placa sudamericana. Estos eventos sísmicos representan una manifestación de la dinámica tectónica en esta región geográficamente compleja (Quinde y Reinoso, 2016).

La geometría detallada por Alvarado (2012) ilustra con precisión las fuentes sísmicas en el territorio de Ecuador (Figura 1.3 y 1.4). Según esta representación, las fuentes sísmicas se dividen en diez de tipo subducción y veinte de tipo superficial (Tabla 1.1 y 1.2). Esta clasificación proporciona una visión clara de la distribución y naturaleza de las fuentes sísmicas en la región.

Figura 1.3. Fuentes sísmicas de tipo subducción.

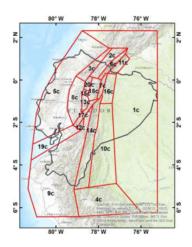

Fuente: (Alvarado, 2012)

Tabla 1.1. Fuentes de subducción.

ID	Nombre	Tipo de falla
1s	Carnegie	Indeterminado
2s	Tumaco-Esmeraldas	Interplaca
3s	Grijalva	Indeterminado
4s	Ibarra	Intraplaca
5s	Malpelo	Indeterminado
6s	Manta	Interplaca
7s	Moyobamba	Intraplaca
8s	Puyo	Intraplaca
9s	Salinas	Interplaca
10s	Sechura	Interplaca

Fuente: Adaptado de Alvarado, 2012.

Figura 1.4. Fuentes sísmicas de tipo corticales.

Fuente: (Alvarado, 2012)

Tabla 1.2. Fuentes corticales.

ID	Nombre	Tipo de falla
1c	Amazonas	Indeterminado
2c	El Ángel-San Gabriel	Inversa y normal
3c	Apuela-Huayrapungo	Normal
4c	Bagua	Inversa
5c	Canadé-San Lorenzo	Indeterminado
6c	Chingual	Normal
7c	Cofanés-Cosanga	Inversa
8c	Cordillera-Occidental	Indeterminado
9c	Cuenca Amotape	Indeterminado
10c	Cutucú	Inversa
11c	Sistema Frontal Este	Normal
12c	Guamote	Inversa y normal
13c	Latacunga	Inversa
14c	Macas	Inversa
15c	Machachi	Normal
16c	Napo	Inversa
17c	Pallatanga-Pisayambo	Normal
18c	Papallacta	Indeterminado
19c	Puná	Normal
20c	Quito	Inversa

Fuente: Adaptado de Alvarado, 2012.

1.2.2 Sismicidad en Ecuador: Ámbito histórico

Desde 1541 hasta nuestros días, se han registrado 37 eventos sísmicos de considerable intensidad, es decir, igual o superior a VIII en la escala de intensidad MSK (Medvedev – Sponheuer – Karnik). Si incluimos los eventos con una intensidad a partir de VI, el número de eventos sísmicos asciende a 86, todos ellos con un grado de daño considerado leve. En cuanto a las pérdidas humanas, estas podrían superar las 80 000 vidas. El registro histórico de eventos sísmicos en Ecuador revela la ubicación de eventos con una magnitud superior a 4. Los epicentros de estos eventos cubren prácticamente todo el territorio nacional, lo que demuestra que cada región del país está expuesta a la posibilidad de un fenómeno sísmico en cualquier momento (Rivadeneira et al., 2007).

A partir de la información recopilada, se puede inferir que la cantidad de terremotos destructivos con una magnitud superior a VIII asciende a 37 eventos en un lapso de 458 años (1541 – 1999). Esto equivale a un promedio de 0,08 sismos por año, con una recurrencia de un evento telúrico cada 12,37 años.

No obstante, es importante destacar que los intervalos entre un terremoto destructivo y el siguiente han variado considerablemente. El intervalo más largo registrado fue de 68 años (1587 – 1645), mientras que el intervalo más corto fue de tan solo un día, ocurrido en agosto de 1868 (Rivadeneira et al., 2007).

En el año 2016, el territorio ecuatoriano fue azotado por un sismo destructivo con una magnitud de 7.8 Mw. El epicentro de este terremoto se localizó en el cantón Pedernales de la provincia de Manabí. Según los registros del Instituto Geofísico de la Escuela Politécnica Nacional, este evento resultó en aproximadamente 700 fallecimientos, más de 7000 heridos, 22000 personas desplazadas, miles de edificaciones destruidas o inhabitables y pérdidas económicas estimadas en alrededor de tres millones de dólares (IG EPN, 2016).

Tabla 1.3. Terremotos con intesidades iguales o superiores a VII en la escala de intensidad MSK.

No.	FECHA	EPIC	ENTRO	INT	ZONA DE MAYOR AFECTACIÓN
	Año/mes/día	Lat.			
1	1541 04 sd	0,10	-77,80	VIII	Napo
2	1587 08 31	0,00	78,40	VIII	Pichincha
3	1645 03 15	1,68	-78,55	IX	Chimborazo, Tungurahua
4	1674 08 29	1,70	-79,00	IX	Chimborazo, Bolívar
5	1687 11 22	-1,10	-78,25	VIII	Tungurahua
6	1698 06 20	1,45	78,30	X	Tungurahua, Chimborazo
7	1736 12 06	0,78	78,80	VIII	Pichincha, Cotopaxi
8	1749 01 20	4,00	79,20	VIII	Loja
9	1755 04 28	0,21	78,48	VIII	Pichincha
10	1757 02 22	0,93	78,61	IX	Cotopaxi, Tungurahua
11	1786 05 10	1,70	78,80	VIII	Chimborazo
12	1797 02 04	-1,43	-78,55	XI	Chimborazo, Tungurahua, Cotopaxi, Bolivar
13	1834 01 20	1,30	-76,90	XI	Carchi, Nariño* (Colombia)
14	1859 03 22	0,40	78,40	VIII	Pichincha, Imbabura, Cotopaxi
15	1868 08 15	0,60	78,00	VIII	Carchi
16	1868 08 16	0,31	78,18	IX	Imbabura, Carchi, Pichincha
17	1896 05 03	0,51	80,45	IX	Manabí
18	1906 01 31	1,00	81,30	IX	Esmeraldas. Nariño (Colombia)
19	1911 09 23	1,70	-78,90	VIII	Chimborazo, Bolivar
20	1913 02 23	4,00	79,40	VIII	Loja, Azuay
21	1914 05 31	0,50	78,48	VIII	Pichincha, Cotopaxi
22	1923 02 05	0,50	78,50	VIII	Pichincha
23	1923 12 16	0,90	77,80	VIII	Carchi, Nariño (Colombia)
24	1926 12 18	0,80	77,90	VIII	Carchi
25	1929 07 25	0,40	78,55	VIII	Pichincha
26	1938 08 10	0,30	78,40	VIII	Pichincha
27	1942 05 14	0,01	-80,12	IX	Manabi, Guayas, Bolivar
28	1949 08 05	1,25	78,37	X	Tungurahua, Chimborazo, Cotopaxi
29	1953 12 12	3,40	80,60	VIII	Loja, norte del Perú
30	1955 07 20	0,20	78,40	VIII	Pichincha, Imbabura
31	1958 01 19	1,22	79,37	VIII	Esmeraldas
32	1961 04 08	2,20	-78,90	VIII	Chimborazo
33	1964 05 19	0,84	80,29	VIII	Manabí
34	1970 12 10	-3,79	80,66	IX	Loja, El Oro, Azuay, norte del Perú
35	1987 03 06	0,87	-77,14	IX	Napo, Sucumbios, Imbabura
36	1995 10 02	-2,79	-77,97	VIII	Morona Santiago
37	1998 08 04	-0,55	-80,53	VIII	Provincia de Manabí

Fuente: (Rivadeneira et al., 2007).

1.2.3 Sismicidad en Cuenca

La Red Sísmica del Austro (RSA) ejecutó el proyecto P-BID 400: Amenaza sísmica en el Austro, vulnerabilidad y riesgo sísmico en la Ciudad de Cuenca (Red Sísmica del Austro, 2002). Este proyecto determinó que la falla geológica de Girón representa la fuente sísmica crítica para la ciudad de Cuenca, con un potencial sísmico de magnitud 7.1 de momento.

En cuanto a la vulnerabilidad sísmica, el P-BID 400 proporciona un mapa de daño sísmico del patrimonio edificado, que se clasifica en cinco niveles de acción sísmica. Estos niveles se determinan según su aceleración máxima en roca, que oscila entre 0,05 g y 0,3 g. Este estudio considera tanto las edificaciones de mampostería no reforzada como las de hormigón armado. La figura 1.5 muestra el mapa de daño manzanero, lo que pone de manifiesto la latente vulnerabilidad sísmica del centro histórico de Cuenca, donde se encuentra la mayor cantidad de edificaciones de mampostería no reforzada de la ciudad (Jiménez, et al., 2018).

1.3 Revisión bibliográfica: Estudio de análisis sísmicos

A continuación, se presenta una revisión exhaustiva de las metodologías empleadas y los resultados obtenidos en estudios previos que guardan relación con el presente trabajo de investigación. Esta revisión tiene como objetivo proporcionar un marco de referencia sólido y contextualizar adecuadamente el alcance y las contribuciones de la presente investigación.

En su estudio, Bravo & Flores (2015) identifican que la tipología predominante en las viviendas de la ciudad de Cuenca corresponde a paredes de mampostería confinada. En consecuencia, su investigación se enfoca en el análisis estático no lineal de paredes prototipo de ladrillo, considerando

tanto las que poseen aberturas como las que no. Este enfoque permite una evaluación más precisa de las características estructurales y de resistencia de este tipo de construcciones. Además, se deduce que las propiedades mecánicas de los materiales de construcción, tales como la resistencia a la compresión y al corte, son relativamente bajas. Una de las razones de esta situación es la ausencia de control de calidad de dichos materiales, así como la baja calidad de la materia prima utilizada en su fabricación. Esta conclusión subraya la necesidad de implementar medidas de control de calidad más rigurosas para mejorar la resistencia y durabilidad de las construcciones.

Figura 1.5. Mapa de daño sísmico a nivel manzanero para sismo leve, PGA= 0.05g.

Fuente: (Red Sísmica del Austro, 2002).

En su estudio, García y Degrande (2017) llevan a cabo una evaluación exhaustiva de la vulnerabilidad sísmica inherente a una residencia unifamiliar de dos niveles, construida con mampostería confinada, ubicada en la ciudad de Cuenca. Los hallazgos de su investigación indican que el grado de vulnerabilidad está intrínsecamente ligado a las propiedades del material de construcción, dado que todas las edificaciones se someten al mismo análisis de probabilidad de colapso. Se evidencia una elevada probabilidad de colapso en estructuras de mampostería que utilizan ladrillos huecos, especialmente cuando se enfrentan a movimientos telúricos con una aceleración pico en el suelo (PGA) de 0,25 g a 0,30 g. Por lo tanto, es crucial tener en cuenta la calidad de los materiales de construcción, ya que esto tiene un impacto directo en la seguridad estructural en el evento de terremotos de alta magnitud.

El estudio realizado por Quinde y Salinas (2019) se enfoca en la configuración arquitectónica de las residencias ubicadas en áreas de la ciudad con alta densidad y tipologías formales que difieren de las estructuras patrimoniales presentes en el centro histórico de la ciudad. Los hallazgos de su investigación indican que las viviendas que presentan un mayor porcentaje de alineación de paredes, menor irregularidad en la planta y mayor continuidad en la elevación, exhiben menos desplazamientos máximos, lo que se traduce en un mejor comportamiento estructural. Por ende, se sugiere la realización de estudios de muestras físicas para determinar el estado actual de los elementos constructivos y obtener valores reales de las características mecánicas.

Las investigaciones previas realizadas por García y Degrande (2017), así como por Quinde y Salinas (2019), proporcionan un marco de referencia sólido para la investigación propuesta. Sin embargo, para obtener una comprensión más profunda y precisa del comportamiento estructural de las

viviendas, será esencial expandir los análisis mecánicos y estructurales de los elementos de construcción. Esto permitirá una evaluación más detallada de las propiedades de los materiales y su impacto en la resistencia y estabilidad de las estructuras en condiciones de estrés sísmico.

1.4 Normativas vigentes y diseño sísmico

1.4.1 Norma Ecuatoriana de la construcción (NEC)

La Norma Ecuatoriana de la Construcción (2014) tiene por objetivo establecer requisitos mínimos de seguridad y calidad para todas las construcciones dentro del territorio ecuatoriano. Por lo tanto, son un conjunto de regulaciones obligatorias dadas por el Ministerio de Desarrollo Urbano y Vivienda.

La NEC en su capítulo Viviendas de hasta pisos con luces de hasta 5 m (2014) establece requisitos mínimos y criterios para el análisis, diseño y construcción de viviendas sismorresistentes. Estas regulaciones consideran variables como:

La regularidad en la planta: es un principio fundamental en el diseño de edificios, especialmente en zonas propensas a sismos. La forma más óptima de una planta es aquella que es lo más simétrica y regular posible. Por lo tanto, las formas cuadrangulares y rectangulares son consideradas óptimas debido a su simetría inherente. Si la planta no puede ser cuadrangular o rectangular, se recomienda dividir la planta en volúmenes independientes. Esto permite que cada volumen pueda moverse de manera independiente durante un sismo, reduciendo así el riesgo de daños estructurales. Es importante recordar que estos volúmenes deben diseñarse para ser lo más simétricos y regulares posible para optimizar su comportamiento sísmico.

La regularidad en la elevación: es otro aspecto crucial en el diseño de edificios sismorresistentes. Implica la generación de formas simétricas en la fachada del edificio. La simetría en la elevación contribuye a la distribución uniforme de las fuerzas sísmicas, lo que puede ayudar a minimizar los daños durante un terremoto. Además, se recomienda alinear los vanos de puertas y ventanas ubicadas en la planta baja y la planta alta. Esta alineación contribuye a la regularidad estructural y puede mejorar la resistencia del edificio a las fuerzas sísmicas. Sin embargo, siempre se debe tener en cuenta que cada diseño debe ser evaluado individualmente, considerando todos los factores relevantes, para garantizar su seguridad y eficacia.

El capítulo "Peligro sísmico, diseño sismorresistente (2014)" de la Norma Ecuatoriana de la Construcción efectivamente tiene como objetivo principal reducir el riesgo sísmico en las edificaciones. Este capítulo enfatiza la importancia de un diseño sísmico basado en un mapa de peligro sísmico o a partir de un análisis de la peligrosidad sísmica del sitio de emplazamiento.

Esto significa que se deben considerar los riesgos sísmicos específicos del lugar donde se construirá el edificio. Los mapas de peligro sísmico proporcionan información sobre la frecuencia y la magnitud de los terremotos esperados en una ubicación específica. Por otro lado, un análisis de la peligrosidad sísmica del sitio de emplazamiento puede proporcionar información más detallada y específica sobre los riesgos sísmicos.

En resumen, este enfoque asegura que el diseño del edificio esté adecuadamente adaptado a los riesgos sísmicos locales, lo que puede contribuir significativamente a la seguridad y resistencia del edificio en caso de un terremoto. Es un enfoque integral que combina la ingeniería sísmica con la evaluación del peligro sísmico para crear edificios más seguros y resistentes.

1.5 Aplicación de Software

1.5.1 Modelo tridimensional

Valle y Rodríguez (2011) señalan que los modelos en tres dimensiones pueden describir la estructura, tamaños y configuración espacial de los elementos. Estos modelos poseen la capacidad de replicar elementos presentes, especulaciones sobre situaciones pasadas o proyectos que no llegaron a materializarse. En general cada modelo virtual se basa en una geometría, la cual puede ser medida directamente en relación con la realidad que se busca representar. También puede ser reconstruida a partir de documentos literales o topográficos que hagan referencia a épocas anteriores, o incluso deducida a partir de indicios, especialmente aquellos de naturaleza histórica.

1.5.2. Aplicación de STKO

STKO (Scientific ToolKit for OpenSees) es una herramienta gráfica avanzada utilizada para preprocesar, postprocesar y visualizar modelos en OpenSees (Open System for Earthquake Engineering Simulation). Este software es fundamental en el campo de la ingeniería sísmica y estructural, permitiendo el análisis detallado de estructuras sometidas tanto a cargas estáticas como dinámicas. STKO simplifica significativamente la creación y modificación de modelos estructurales mediante una interfaz intuitiva y herramientas gráficas, agilizando el proceso en comparación con la generación manual de archivos de entrada para OpenSees. Además, ofrece una amplia biblioteca de materiales y elementos predefinidos que facilitan la visualización y análisis exhaustivo de los resultados de las simulaciones, tales como desplazamientos, fuerzas internas, tensiones y deformaciones. Diseñado específicamente para integrarse de manera óptima con OpenSees, STKO

mejora la eficiencia y precisión del análisis estructural, permitiendo a los ingenieros concentrarse más en la interpretación de resultados y menos en la preparación de datos (Petracca et al., 2017).

1.5.3 Aplicación de Matlab

MATLAB es una abreviatura de Matrix Laboratory, es una plataforma de software altamente eficiente empleada en el ámbito del cálculo numérico, la representación gráfica de datos y la codificación, su aplicación abarca diversos campos como la ingeniería, la física, las matemáticas aplicadas, la estadística y otras disciplinas científicas y técnicas (Moore, 2007).

Las funciones más destacadas de MATLAB incluyen su capacidad para operar directamente con vectores, matrices y cadenas de caracteres como entidades distintas; su flexibilidad para trabajar tanto con números reales como complejos sin restricciones; la eliminación de la necesidad de declarar explícitamente variables y reservar memoria para arreglos; y la habilidad para combinar el enfoque matemático simbólico con el numérico, entre otras características. Estas ventajas se complementan con la disponibilidad de numerosas funciones matemáticas preprogramadas y bibliotecas especializadas (Hurtado, 2013).

1.6 Definiciones relacionadas al objeto de estudio

Para la presente investigación, se adoptan las siguientes definiciones:

1.6.1 Vivienda

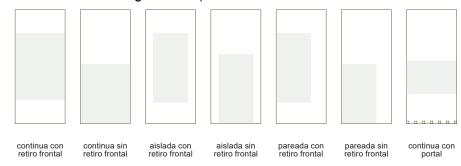
El termino vivienda según la Norma Ecuatoriana de Construcción se refiere a "unidades o grupos de unidades habitacionales que conforman un solo

cuerpo estructural, sean independientes o separadas entre sí mediante juntas sísmicas de las otras unidades habitacionales."

El Instituto Nacional de Estadísticas y Censos (INEC), determina que existen los siguientes tipos de vivienda: casa/villa, departamento en casa o edificio, cuarto, mediagua, rancho, covacha, choza, otra vivienda particular. En esta investigación nos enfocaremos en particular en la categoría casa/villa, ya que en la ciudad de Cuenca mediante el censo de Población y Vivienda determino que es el principal tipo de vivienda con un 76,71% de los hogares encuestados.

De acuerdo al INEC (2017) se define casa/villa como edificación duradera construida con materiales que sean resistentes como asbesto, hormigón, piedra, bloque, ladrillo, adobe, caña o madera. Por lo general, dispone de suministro de agua y servicios sanitarios de uso exclusivo.

1.6.2 Viviendas Adosadas


La vivienda adosada se distingue por ser una residencia única ubicada dentro de un edificio, unida a otras construcciones mediante dos de sus paredes colindantes. Puede estar distribuida en una o varias plantas, poseer anexos o prescindir de ellos, y está emplazada en una parcela de terreno cuya extensión es igual o mayor que la ocupada por el edificio. (INE, s.f.).

Implantación de la edificación

La disposición de una vivienda alude a cómo está situada o dispuesta en el terreno o lote en relación con la vía de acceso. Se reconocen los siguientes tipos de disposición: continua con retiro frontal, continua sin retiro frontal, pareada sin retiro frontal, pareada con retiro frontal, continua con portal,

aislada con retiro frontal, aislada sin retiro frontal (Municipalidad de Cuenca, s.f.).

Figura 1.6. Implantación de la edificación.

Fuente: Propia.

1.6.3. Ladrillos

Productos cerámicos fabricados en una amplia diversidad de variedades, formas y dimensiones, destinados a la construcción de paredes. Estas características de forma, tamaño y diseño se adaptan según las diversas funciones constructivas, estructurales o arquitectónicas que deben cumplir. Con un origen que se remonta a épocas antiguas de la civilización, estos productos se utilizan extensamente en una variedad de obras y construcciones, como viviendas, edificaciones comerciales, instalaciones industriales, pavimentos urbanos, y estructuras como carreteras y puentes, entre otros contextos (NTE INEN 3049 - 1, 2018).

1.6.4. Ladrillo hueco

El ladrillo hueco se caracteriza por tener un peso reducido, representando más del 25 % pero menos del 65 % de su masa total (NTE INEN 3049 - 1,

2018). En la ciudad de Cuenca, Ecuador, este tipo de ladrillo es conocido localmente como ladrillo tochana.

Figura 1.7. Ladrillo tochana.

Fuente: Propia.

1.6.5 Tipos de ladrillo

Los ladrillos se pueden clasificar en varios tipos según diferentes criterios, tales como el material de fabricación, el tamaño, la resistencia, y la aplicación. Sin embargo, en esta investigación, se enfocará específicamente en la clasificación de los ladrillos basada en la presencia o ausencia de perforaciones. Este criterio es fundamental para el estudio, ya que las perforaciones pueden influir significativamente en las propiedades mecánicas del ladrillo, como su resistencia y comportamiento bajo cargas de compresión.

Unidades de perforación horizontal (PH)

Según el INEN (2018), son unidades en las que las celdas o perforaciones están dispuestas paralelamente a las superficies o caras en las que se

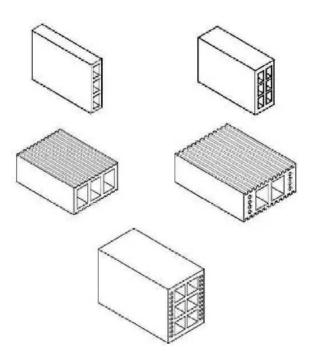
colocan (ver Figura 1) (NTE INEN 3049 - 2, 2019).

Unidades de perforación vertical (PV)

Las unidades presentan celdas o perforaciones dispuestas de forma perpendicular a las caras o superficies sobre las que se sitúan. El área de estas celdas y perforaciones, medida en una sección que sea paralela a la cara de asentamiento y que abarque todas ellas, no debe superar el 60 % del área total bruta de esa sección (NTE INEN 3049 - 2, 2019).

Unidades macizas (M)

Son unidades que no tienen perforaciones, y en caso de tenerlas, estas no deben representar más del 25 % del volumen total de la unidad (NTE INEN 3049 - 2, 2019).


1.7 Introducción a los sistemas constructivos de interés

1.7.1 Pórticos de hormigón armado

Los sistemas de pórticos en hormigón armado se configuran como armazones de soporte formados por columnas y vigas elaboradas a partir de una combinación de hormigón reforzado. Este último es un material de construcción que fusiona cemento o concreto con barras de acero de refuerzo, con el propósito de aumentar tanto su resistencia como su capacidad de carga de acuerdo a lo especificado con la NEC.

En un sistema de pórticos de hormigón armado, las columnas cumplen la función de componentes verticales encargados de soportar la carga en dirección vertical, mientras que las vigas cumplen la función de elementos horizontales que enlazan las columnas y distribuyen las cargas. Este tipo de estructura se utiliza extensamente en varios tipos de construcciones, tales como edificaciones, puentes, almacenes industriales, y otras obras, que requieren niveles elevados de solidez y estabilidad.

Figura 1.8. Unidades de perforación horizontal (PH).

Fuente: NTE INEN 3049 - 2 (2019).

1.7.2 Mampostería

Los tipos de muros de mampostería a los que se hará referencia en este trabajo son:

1.7.3 Mampostería simple (No reforzada)

La mampostería no reforzada se define como la estructura conformada por piezas de mampostería unidas mediante mortero y que no cumple con las cuantías mínimas de refuerzo establecidas para la mampostería parcialmente reforzada (NEC, 2014).

1.7.4 Mampostería de Muros Confinados

Esta mampostería se refuerza principalmente con elementos de concreto reforzado, los cuales se construyen alrededor del muro o se utilizan como piezas especiales donde se vierte el hormigón de relleno, logrando así un confinamiento efectivo a la mampostería. En situaciones donde se emplean estas piezas especiales, se considera que forman parte del recubrimiento de los elementos de concreto reforzado (NEC, 2014).

En relación con la sección de materiales de las normas de diseño de mampostería confinada, se detallan los requisitos que deben cumplir los diversos componentes del muro, como las unidades de mampostería, el mortero, el panel de mampostería, el hormigón de los elementos de confinamiento y el acero de refuerzo. Estas disposiciones están diseñadas para asegurar la seguridad y eficacia estructural, considerando las condiciones específicas de cada país (Quinde et al., 2023).

Unidades de mampostería

Las unidades de mampostería se dividen en dos categorías principales: sólidas o macizas, y huecas o perforadas. Estas categorías pueden subdividirse según el material utilizado, como arcilla u hormigón, o el método de fabricación, que puede ser artesanal o industrial (Quinde et al., 2023).

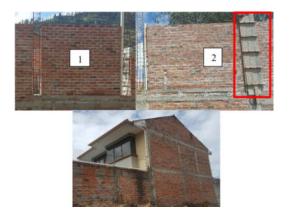
Mortero

El mortero consiste en una mezcla de materiales que usualmente incluye cemento, arena, agua y a veces aditivos, empleada en la construcción para unir elementos de mampostería como ladrillos, bloques de hormigón o piedras. De acuerdo a Quinde et al. (2023) se reconoce que la resistencia a compresión de la mampostería está influenciada por la resistencia a compresión del mortero y por el espesor de la junta horizontal.

Panel de mampostería

Según Tomaževič y Klemenc (1997), la resistencia principal frente a la acción sísmica en el muro de mampostería radica principalmente en el panel compuesto por las unidades de mampostería y la ligazón de mortero.

Materiales de los elementos confinantes


La norma NEC de Ecuador establece que la mampostería confinada debe tener al menos una resistencia a la compresión simple de 21 MPa. Estos elementos de confinamiento de hormigón son esenciales para fortalecer los mecanismos de resistencia, tanto frente a cargas verticales como laterales, especialmente después de que ocurren grietas (Quinde et al., 2023).

Las normas, basadas en ASTM, exigen varillas corrugadas con un esfuerzo de fluencia de 420 MPa tanto para el refuerzo longitudinal como transversal en los elementos que soportan cargas laterales (Quinde et al., 2023).

El proceso de mampostería confinada se desarrolla en dos etapas fundamentales. En la primera, se construyen los muros utilizando unidades de mampostería y mortero. Posteriormente, se añaden elementos de confinamiento, como barras de refuerzo de alta resistencia, tanto longitudinal como transversalmente, siguiendo normativas basadas en estándares ASTM, que son ampliamente adoptadas por la mayoría de los países. Estos elementos juegan un papel crucial al fortalecer la capacidad estructural de los muros frente a cargas verticales y laterales. Para observar más detalladamente este proceso, se incluye la Figura 1 como referencia.

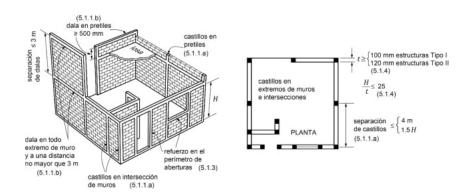

Para complementar la información sobre la mampostería confinada, se presentará la figura 3.1 un esquema detallando los requisitos necesarios según las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Mampostería (NTCM). Estas normativas proporcionan directrices específicas y detalladas para garantizar la seguridad y la resistencia estructural de los muros de mampostería frente a cargas sísmicas y de otro tipo.

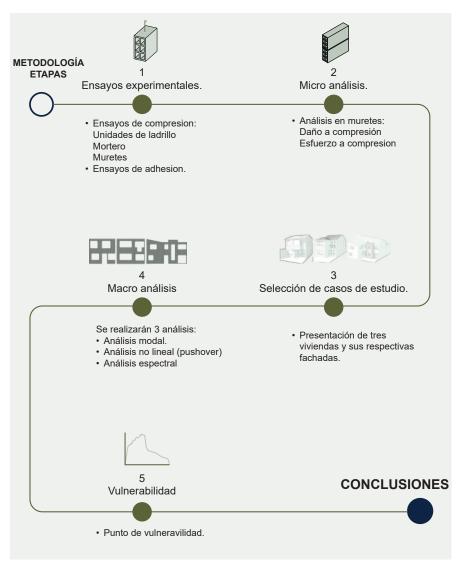
Figura 1.9. Proceso constructivo: 1) el panel de mampostería y 2) las columnas y vigas de confinamiento.

Fuente: Tomado de Quinde et al., 2023

Figura 1.10. Requisitos para mampostería confinada.

Nota: En la terminología ecuatoriana, los términos "Dalas" y "Castillos" se utilizan para denominar a las vigas y columnas, respectivamente.

Fuente: Tomado de NTCM, 2017.


1.8 Metodología

La metodología utilizada en este trabajo de titulación desempeña un papel fundamental en la comprensión y el abordaje de la problemática planteada. Esta sección presenta el marco metodológico empleado para alcanzar los objetivos propuestos y responder a las preguntas de investigación planteadas. La investigación se sustenta en un enfoque integrador que combina ensayos experimentales y análisis numéricos para evaluar la capacidad sísmica de las paredes de mampostería en ladrillo tochana.

Este estudio representa una continuación y ampliación del trabajo de titulación 'Análisis y propuesta arquitectónica sismo-resistente de viviendas adosadas con muros de mampostería en Cuenca' realizado por Quinde y Salinas (2019). Se retoman y utilizan datos y resultados obtenidos de tres casos de estudio previamente seleccionados, específicamente las fachadas de estas viviendas, proporcionando una base de información detallada sobre sus características estructurales y materiales para la presente investigación. Según Quinde y Salinas (2019), la elección de estas tres viviendas se fundamenta en cuatro criterios que abordan aspectos relacionados con el diseño arquitectónico en términos de forma y función.

La metodología propuesta para este estudio se apoya en cinco etapas esenciales que facilitarán un enfoque sistemático y efectivo para la investigación (véase figura 1.11), ofreciendo una estructura sólida para realizar el estudio de manera organizada y rigurosa.

Figura 1.11. Esquema de metodología.

Fuente: Propia.

1.8.1 Etapa 1: Realización de ensayos para caracterización de propiedades mecánicas

En el desarrollo de esta investigación, se llevaron a cabo cuatro tipos de ensayos esenciales para evaluar las propiedades mecánicas de las estructuras de mampostería: ensayos de compresión en unidades de ladrillo tochana, ensayos de compresión en mortero, ensayos de compresión en muretes y ensayos de adherencia en ladrillos tochana.

Estos ensayos proporcionaron datos cruciales como el esfuerzo de compresión (indicativo de la resistencia a la carga), el módulo de Young (que refleja la rigidez del material) y el esfuerzo de adherencia (que mide la resistencia de la unión entre ladrillo y mortero). Además, se realizó un ajuste analítico inicial a los resultados obtenidos para corregir cualquier variación experimental y garantizar la precisión de los datos recopilados durante los ensayos.

Este enfoque metodológico integral permite una evaluación completa de las propiedades mecánicas de la mampostería, proporcionando una base sólida para el análisis estructural y el diseño eficaz de edificaciones.

1.8.2 Etapa 2: Determinación de propiedades efectivas usando resultados de análisis experimental y numérico

Después de realizar los respectivos ensayos, es necesario definir las propiedades efectivas de la mampostería de acuerdo con el modelo de daño de Petracca.

Los factores para definir estas propiedades son el módulo de Young (E), la relación de Poisson (μ) , la resistencia a la tracción (ft), la energía de

fractura a la tracción (Gt), la resistencia elástica a la compresión (fc0), la resistencia a la compresión (fc), la resistencia residual a la compresión (fr), la energía de fractura a la compresión (Gc), la deformación en el pico de resistencia (ερ), el factor de resistencia biaxial a la compresión (kb), y el factor de reducción corte-compresión (k1).

Se procede a determinar la resistencia a la compresión (fc) y el módulo de Young (E) de las unidades de ladrillo y el mortero. Una vez obtenidos estos resultados, se procede a encontrar los factores restantes mediante un análisis numérico utilizando el software STKO (Scientific ToolKit for OpenSees). Para una mejor guía en el uso de este software, se utilizó el "STKO user manual" elaborado por Petracca et al. (2017).

Finalmente, se obtienen los resultados de la simulación empleando las propiedades efectivas teóricas y se procede a calibrar el modelo para que se ajuste más estrechamente a los resultados experimentales. El objetivo de la calibración es asegurar que la pendiente de la fase lineal no varíe más del 5%.

1.8.3 Etapa 3: Selección de casos de estudio

El propósito de esta etapa es presentar estas tres viviendas específicas descritas en el estudio previo titulado "Análisis y propuesta arquitectónica sismo-resistente de viviendas adosadas con muros de mampostería en Cuenca", realizado por Quinde y Salinas en 2019. Estas viviendas adosadas con muros de mampostería se encuentran ubicadas en la ciudad de Cuenca y serán utilizadas posteriormente para un análisis detallado de sus fachadas.

El conjunto de viviendas seleccionado cumple con las siguientes

características fundamentales de interés para la investigación:

- Uso exclusivo de vivienda
- Dos niveles (se incluyen aquellas edificaciones con buhardilla)
- Muros de mampostería de ladrillo
- · Estructura de hormigón armado.
- Área en planta baja dentro de los márgenes previamente seleccionados
- Edificaciones adosadas.

Después de seleccionar y estudiar estos casos de estudio, se procede a modelar exclusivamente las fachadas en el software AutoCAD. Este paso es crucial para realizar un análisis macro posterior detallado.

1.8.4 Etapa 4: Macro análisis

En esta fase se llevarán a cabo tres análisis:

Análisis modal

Durante esta etapa, se llevará a cabo un análisis modal para determinar los períodos y modos de vibración. En este análisis, se considerarán los primeros diez períodos y se enfocará en el período con mayor movimiento de masa en la dirección Y. Esto permitirá identificar los períodos máximos y mínimos de cada estructura analizada.

Se evaluarán específicamente el primer y segundo modo de vibración, así como el modo en el que predomina el movimiento de masa en el eje Y. Esta dirección se elige debido a la tipología de las viviendas adosadas del caso de estudio, donde las viviendas adyacentes limitan el movimiento en el eje X.

Análisis no lineal (pushover)

El análisis estático no lineal permitirá simular cómo se comportan los casos de estudio bajo cargas que varían de manera no lineal, es decir, donde las relaciones entre las fuerzas aplicadas y las deformaciones no son proporcionales. El análisis es útil para evaluar los daños que pueden ocurrir en la estructura tanto a tensión (cuando los materiales se estiran) como a compresión (cuando los materiales se comprimen).

En este contexto, el análisis se centra en identificar las áreas de la estructura que serán más propensas a sufrir daños durante la aplicación de una carga lateral en el eje no gobernante "Y". Esto significa que el análisis ayuda a prever en qué partes de la estructura se iniciarán las grietas y fallas cuando se aplique una fuerza lateral en la dirección Y, que no es la dirección principal de resistencia de la estructura.

Para este análisis primero se determinará las propiedades de los materiales determinadas. Los elementos que se deben tener en cuentas son los ladrillos, el mortero, la losa de hormigón y la viga de cierre superior de la mampostería.

Después obtiene un gráfico denominado Curva de capacidad, que es la relación entre la cortante basal y el desplazamiento superior de la estructura en análisis. Esta curva permitirá determinar los diferentes umbrales de

daño correspondientes a la fuerza. Por lo cual se debe proporcionar un punto de control en el centro de masa de la fachada del nivel superior de la edificación, este es necesario para registrar los movimientos laterales producidos por la carga lateral asignada.

Análisis espectral

Se evaluará la respuesta de las estructuras ante sismos mediante la comparación entre su capacidad de resistencia (representada por la curva de capacidad) y la demanda sísmica anticipada (espectro de demanda sísmica inelástico), con el objetivo de determinar el grado de vulnerabilidad estructural en términos de deformación durante un evento sísmico.

Para calcular el espectro de demanda sísmica inelástico específico de la ciudad de Cuenca, se parte del espectro elástico inicial y se ajusta según las normativas vigentes, que consideran las propiedades de los materiales y la resistencia de las estructuras frente a sismos.

En cuanto a la intersección de los espectros, se realiza el gráfico de la curva de capacidad obtenida del análisis Pushover de cada estructura. Esta curva ilustra cómo la estructura responde progresivamente a cargas sísmicas crecientes hasta alcanzar el punto de fallo. Posteriormente, se sobrepone el espectro de demanda sísmica inelástico calculado para cada estructura sobre esta curva. El punto de intersección entre ambas curvas indica la deformación real que experimentará la estructura bajo la demanda sísmica específica considerada.

1.8.5 Etapa 5: Vulnerabilidad

Por último, se determinará el punto de vulnerabilidad que permitirá evaluar

la resistencia y la vulnerabilidad de los casos de estudio en Cuenca frente a eventos sísmicos. Para ello, se utilizarán herramientas analíticas y factores de ajuste con el fin de identificar el punto crítico donde la estructura comienza a fallar. A continuación, se presentan los pasos del proceso:

Determinación del punto de vulnerabilidad: Se encuentra mediante la intersección de la proyección de la curva de capacidad con el espectro inelástico.

Uso del desplazamiento en la curva de capacidad: Se utiliza el valor del desplazamiento en la curva de capacidad, que relaciona la aceleración con el desplazamiento.

Obtención de la aceleración que afecta a la estructura: A partir del desplazamiento en la curva de capacidad, se determina la aceleración correspondiente que afecta a la estructura en caso de un sismo.

Multiplicación del desplazamiento por el coeficiente de participación gamma (γ): El desplazamiento se multiplica por el coeficiente de participación y para determinar el umbral de daño.

Localización del punto de vulnerabilidad: El umbral de daño permite identificar el punto exacto en la estructura donde comienza a ser vulnerable a daños significativos durante un sismo. Después a través de la curva de capacidad y el punto de vulnerabilidad de cada caso se encuentran los niveles de desempeño de la estructura. De acuerdo con lo establecido en la NEC (2015)

Ensayos

2.1 Determinación de resistencias de ladrillos mediante ensayos experimentales

La evaluación de las propiedades de los materiales de construcción es fundamental para garantizar la seguridad y durabilidad de las estructuras. En el presente capítulo, se exponen los resultados de una serie de ensayos realizados a unidades de ladrillo, mortero y muretes con el propósito de determinar sus propiedades mecánicas y adhesivas. El objetivo de este capítulo es analizar estos resultados para proporcionar una base sólida en la evaluación de la calidad de los materiales utilizados en la construcción.

Importancia de los Ensayos Realizados

Ensayos de Unidades de Ladrillo: Es esencial conocer las propiedades físicas y mecánicas de los ladrillos, ya que estas determinan la resistencia y durabilidad de las estructuras. Estos ensayos permiten evaluar parámetros como la resistencia a la compresión y la absorción de agua, que son cruciales para la calidad del ladrillo.

Pruebas de Mortero a Compresión: El mortero actúa como el adhesivo que une las unidades de ladrillo, por lo que su resistencia a la compresión es un indicador clave de su capacidad para soportar cargas y contribuir a la estabilidad de la construcción.

Ensayos de Muretes a Compresión: Evaluar la resistencia de los muretes construidos con ladrillos y mortero permite entender mejor el comportamiento estructural de las paredes, proporcionando información valiosa sobre su capacidad de carga y deformabilidad.

Ensayos de Adhesión: La adherencia entre los ladrillos y el mortero es

fundamental para la integridad estructural, especialmente en zonas sísmicas. Los ensayos de adhesión permiten evaluar la capacidad del mortero para mantener unidos los ladrillos bajo diversas condiciones de carga.

Ubicación de los Materiales

Los ladrillos utilizados en los ensayos fueron obtenidos de una fábrica ubicada al noroeste de la ciudad de Cuenca en Racar. La selección de este lote específico se debe a su representatividad en la región de Cuenca y su uso común en la construcción local, asegurando que los resultados obtenidos sean aplicables y relevantes para las condiciones de construcción típicas de la zona.

Figura 2.1. Ubicación de fábrica de ladrillo.

2.1.1 Determinación de la resistencia a la compresión en unidades de ladrillo tochana

Para la evaluación precisa de la capacidad de carga que los ladrillos pueden soportar previo a la manifestación de deformaciones o colapsos, se requiere la implementación de pruebas rigurosas que determinen la resistencia a la compresión de dichos ladrillos. Estos ensayos son esenciales para garantizar la integridad estructural y la seguridad en las construcciones que emplean estos materiales.

Normativa

NTE INEN 292 - 294 - 297

NTP E 070

ASTM C 1314

UNE - EN 772 - 1: 2015

Consideraciones previas

Para llevar a cabo el muestreo adecuado, es imperativo considerar una serie de recomendaciones pertinentes para la elección de los ladrillos, prestando especial atención a sus atributos visuales. Estas características son indicativas de la calidad y la idoneidad del material para su uso en construcción.

• Porosidad: Optar por ladrillos con la menor porosidad posible, lo que

indica una menor absorción de agua y una mayor densidad.

- Cocción: Seleccionar ladrillos que muestren signos de una cocción adecuada, evidenciada por un color uniforme y consistente.
- Integridad Estructural: Verificar que los ladrillos estén libres de fisuras profundas y lesiones superficiales, como esquinas dañadas, ondulaciones o abolladuras, que puedan comprometer su desempeño estructural.

Equipo y herramientas

Materiales

1. Unidades de ladrillos tipo tochana

Figura 2.2. Materiales.

Fuente: Propia.

Equipos

- 1. Prensa mecánica
- 2. Cortadora de ladrillo
- 3. Horno
- 4. Báscula.

Figura 2.3. Equipos.

Fuente: Propia.

Procedimiento

Las muestras seleccionadas para su uso consistirán en mitades de ladrillos, las cuales presentarán superficies planas y paralelas entre sí. Estas secciones serán obtenidas a partir de siete ladrillos íntegros, secos y exentos de defectos visibles, los cuales serán cortados utilizando herramientas apropiadas que eviten el deterioro de las aristas y superficies.

Las irregularidades del ladrillo hueco tipo tochana son mínimas, lo que obvia la necesidad de implementar procedimientos correctivos en las superficies de contacto.

Las muestras requeridas para el análisis deben alcanzar un estado de desecación total, lo cual se logra mediante su colocación en un horno durante un período mínimo de 24 horas antes de proceder con el ensayo de compresión. Posteriormente, es esencial registrar meticulosamente las dimensiones y el peso de cada una de las muestras para asegurar la precisión y la reproducibilidad de los resultados del ensayo. Finalmente, se procede a codificar cada una de las muestras (véase Figura 2.4).

Figura 2.4. Codificación de muestras.

Fuente: Propia.

Se debe proceder a posicionar la muestra previamente codificada en la prensa mecánica designada para la realización del ensayo correspondiente. Durante el proceso, es imperativo emplear un deformímetro que permita realizar mediciones con una precisión de cada 0.1 mm, con el fin de obtener datos detallados sobre la deformación del material.

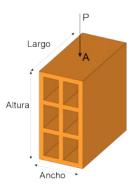
Se debe proceder a posicionar la muestra previamente codificada en la

prensa mecánica designada para la realización del ensayo correspondiente. Durante el proceso, es imperativo emplear un deformímetro que permita realizar mediciones con una precisión de cada 0.1 mm, con el fin de obtener datos detallados sobre la deformación del material.

Resultados

En esta parte, se muestran las gráficas de esfuerzo-deformación unitaria derivadas de los ensayos experimentales realizados en las muestras de ladrillo. Estas gráficas son fundamentales para evaluar el comportamiento mecánico del material cuando se somete a cargas de compresión. A continuación, se detalla el procedimiento utilizado para obtener estos resultados y se contextualizan las gráficas presentadas (véase Figuras 2.7, 2.10, 2.13, 2.16, 2.19, 2.22, 2.25, 2.28, 2.31, 2.34).

Previo al ensayo, se registraron las dimensiones específicas de cada muestra de unidad de ladrillo. Durante el ensayo, se documentaron las cargas aplicadas (P) y las deformaciones (Δ L). Los datos obtenidos se emplearon para calcular el esfuerzo (σ) mediante la siguiente fórmula:


$$\sigma = \frac{P}{A} \tag{2.1}$$

donde P es la carga aplicada en newtons (N) y A es el área de la sección transversal de la muestra en milímetros cuadrados (mm²) (véase Figura 2.5, que muestra la aplicación de la fuerza y el área correspondiente). La fórmula utilizada para determinar la deformación unitaria es:

$$\varepsilon = \frac{\Delta L}{L} \tag{2.2}$$

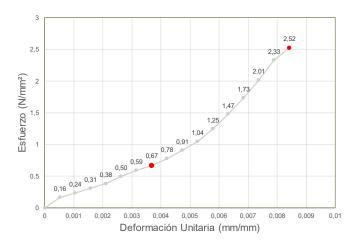
donde ΔL es la deformación (cambio en la longitud) en milímetros (mm) y L es la altura de la muestra en milímetros (mm).

Figura 2.5. Características geométricas de ladrillo hueco.

Fuente: Propia

Tras la generación inicial de las gráficas con los resultados obtenidos, se procede a realizar un ajuste analítico. Este ajuste se enfoca principalmente en la región más lineal de la gráfica, omitiendo la porción inicial que puede reflejar el reajuste de los instrumentos. Usualmente, la porción de interés para este análisis se encuentra comprendida entre el 10% y el 50% de la gráfica (Bartolomé et al., 2022). Este proceso arroja un conjunto de datos que proporciona un esfuerzo y una deformación unitaria finales (véanse Tablas 2.1 a 2.10), los cuales son cruciales para evaluar con mayor precisión el comportamiento mecánico del material bajo carga. Las gráficas lineales correspondientes a este análisis se encuentran detalladas en las Figuras 2.8, 2.11, 2.14, 2.17, 2.20, 2.23, 2.26, 2.29, 2.32 y 2.35. En el presente estudio, se excluyó la porción inicial de las gráficas con este propósito.

Resultados iniciales


Figura 2.6. Falla por compresión en unidades de ladrillo 1A.

Fuente: Propia.

Figura 2.7. Gráfica de esfuerzo-deformación unidad de ladrillo 1A.

Fuente: Propia.

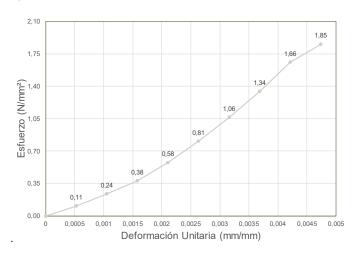
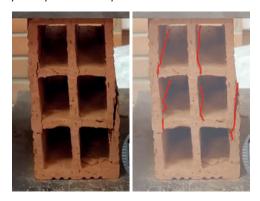

Ajuste analítico

Tabla 2.1. Resultados analíticos de unidad de ladrillo 1A.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)	
183	190,00	94,00	2399,3	17202	
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)	
0,000	0,00	0,00	0,00	0,0000	
0,100	0,100 186,00		1824,05 0,11	0,0005	
0,200	417,40	4093,32 0,24 6466,54 0,38 9912,61 0,58 13850,00 0,81 18288,51 1,06 23120,28 1,34	0,24	0,0011 0,0016	
0,300	659,40		0,38		
0,400	1010,80		0,0021		
0,500	1412,30		0,81	0,0026 0,0032	
0,600	1864,90		,		
0,700	2357,60			0,0037	
0,800	2907,70	28514,94	1,66	0,0042	
0,900	3250,90	31880,60	1,85	0,0047	

Fuente: Propia.


Figura 2.8. Gráfica de esfuerzo-deformación unidad de ladrillo 1A.

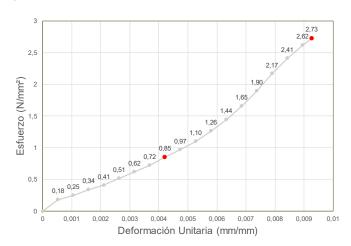

Resultados iniciales

Figura 2.9. Falla por separación de paredes internas en unidades de ladrillo 1B

Fuente: Propia

Figura 2.10. Gráfica de esfuerzo-deformación unidad de ladrillo 1B.

Fuente: Propia

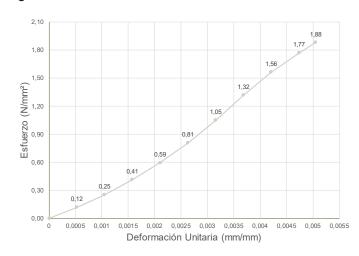

Ajuste analítico

Tabla 2.2. Resultados analíticos de unidad de ladrillo 1B.

Largo (mm)	Altura Ancho (mm) (mm)		Peso (g)	Área (mm²)
189	190,00	94,00	2456,4	17766
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	216,1	2119,23	0,12	0,0005
0,2	457,6	4487,55 0,25	0,25	0,0011
0,3	751,3	7367,77	0,41	0,0016
0,4	- ,	10562,80	0,59	0,0021
0,5		1461,9	14336,41	0,81
0,6	1899,4	18626,85	1,05	0,0032
0,7	2386,6	23404,67	1,32	0,0037
0,8	2827,4	27727,46	1,56	0,0042
0,9	3206,2	31442,24	1,77	0,0047
0,96	3404,5	33386,91	1,88	0,0051

Fuente: Propia.

Figura 2.11. Gráfica de esfuerzo-deformación unidad de ladrillo 1B.


Resultados iniciales

Figura 2.12. Falla por separación de paredes internas en unidades de ladrillo 2A

Fuente: Propia

Figura 2.13. Gráfica de esfuerzo-deformación unidad de ladrillo 2A.

Fuente: Propia.

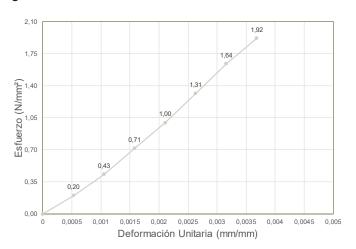

Ajuste analítico.

Tabla 2.3. Resultados analíticos de unidad de ladrillo 2A.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
186	190,00	95,00	2357,4	17670
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	358,8 777,4 1284,7 1796,5	3518,64	0,20	0,0005
0,2		7623,73	0,43	0,0011
0,3		12598,67	0,71	0,0016
0,4		17617,74	1,00	0,0021
0,5	2367,3	23215,40	1,31	0,0026
0,6	2946,9	28899,36	1,64	0,0032
0,7	3452	33852,73	1,92	0,0037

Fuente: Propia.

Figura 2.14. Gráfica de esfuerzo-deformación unidad de ladrillo 2A.

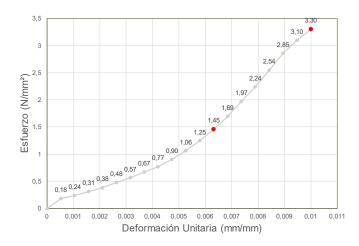

Resultados iniciales

Figura 2.15. Falla por separación de paredes internas en unidades de ladrillo 2B.

Fuente: Propia

Figura 2.16. Gráfica de esfuerzo-deformación unidad de ladrillo 2B.

Fuente: Propia.

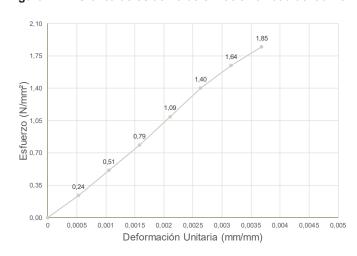

Ajuste analítico

Tabla 2.4. Resultados analíticos de unidad de ladrillo 2B.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
188	190,00	95,00	2382,4	17860
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	438,3	4298,28 0,24	0,0005	
0,2	934,9	9168,28	0,51	0,0011
0,3	1435,5	14077,52	,52 0,79	0,0016 0,0021
0,4	1990,5	19520,24	1,09	
0,5	2554,1	25047,29	1,40	0,0026
0,6	0,6 2994,3		1,64	0,0032
0,7	3364,3	32992,68	1,85	0,0037

Fuente: Propia.

.Figura 2.17. Gráfica de esfuerzo-deformación unidad de ladrillo 2B.

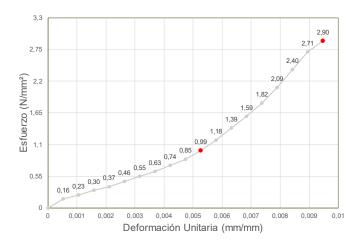

Resultados iniciales

Figura 2.18. Falla por separación de paredes internas en unidades de ladrillo 3A

Fuente: Propia

Figura 2.19. Gráfica de esfuerzo-deformación unidad de ladrillo 3A.

Fuente: Propia.

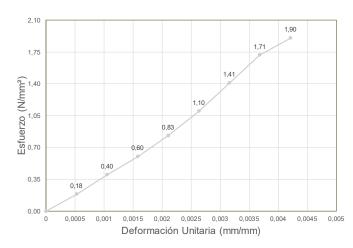

Ajuste analítico

Tabla 2.5. Resultados analíticos de unidad de ladrillo 3A.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
188	190,00	94,00	2412,2	17672
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	332,1	3256,81 0,18 7005,91 0,40	0,18	0,0005
0,2	714,4		0,40	0,0011 0,0016
0,3	1078,5	10576,53	0,60	
0,4	1494,1	14652,19	0,83	0,0021
0,5	1973,9	19357,45	1,10	0,0026 0,0032
0,6	2536,4 24	24873,71	1,41	
0,7	3090,3	30305,65	1,71	0,0037
0,8	3429,3	33630,12	1,90	0,0042

Fuente: Propia.

Figura 2.20. Gráfica de esfuerzo-deformación unidad de ladrillo 3A.

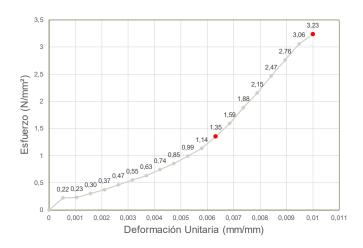

Resultados iniciales

Figura 2.21. Falla por separación de paredes internas en unidad de ladrillo 3B.

Fuente: Propia

Figura 2.22. Gráfica de esfuerzo-deformación unidad de ladrillo 3B.

Fuente: Propia.

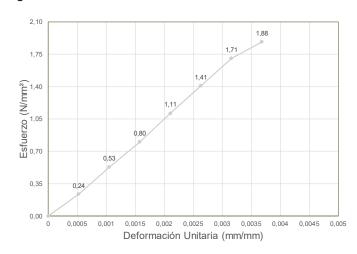
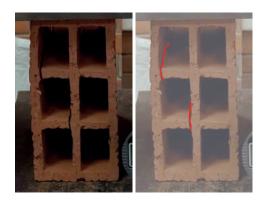

Ajuste analítico

Tabla 2.6. Resultados analíticos de unidad de ladrillo 3B.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
187	190,00	94,00	2430,9	17578
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	422	4138,43	0,24	0,0005
0,2	947,8	9294,79	0,53	0,0011
0,3	1435,8 1995,9	14080,46	0,80 1,11	0,0016 0,0021
0,4		19573,19		
0,5	2519,6	24708,96	1,41	0,0026
0,6	3058,8	29996,73	1,71	0,0032
0,7	3371,2	33060,35	1,88	0,0037

Fuente: Propia.


Figura 2.23. Gráfica de esfuerzo-deformación unidad de ladrillo 3B.

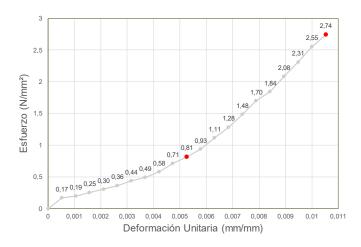

Resultados iniciales

Figura 2.24. Falla por separación de paredes internas en unidades de ladrillo 4A.

Fuente: Propia

Figura 2.25. Gráfica de esfuerzo-deformación unidad de ladrillo 4A.

Fuente: Propia.

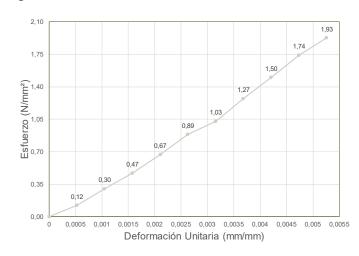

Ajuste analítico

Tabla 2.7. Resultados analíticos de unidad de ladrillo 4A.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
188	190,00	94,00	2413,9	17672
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	219,4	2151,59	0,12	0,0005
0,2	544,5	5339,75	0,30	0,0011
0,3	848,7	8322,95	0,47	0,0016
0,4	1210,7	11872,97	0,67	0,0021
0,5	1595,5	15646,59	0,89	0,0026
0,6	1854,6	18187,51	1,03	0,0032
0,7	2292,3	22479,90	1,27	0,0037
0,8	2701,9	26496,72	1,50	0,0042
0,9	3135,4	30747,93	1,74	0,0047
1	3474,1	34069,46	1,93	0,0053

Fuente: Propia.

Figura 2.26. Gráfica de esfuerzo-deformación unidad de ladrillo 4A.

Resultados iniciales

Figura 2.27. Falla por separación de paredes internas en unidades de ladrillo 4B.

Fuente: Propia

Figura 2.28. Gráfica de esfuerzo-deformación unidad de ladrillo 4B.

Fuente: Propia.

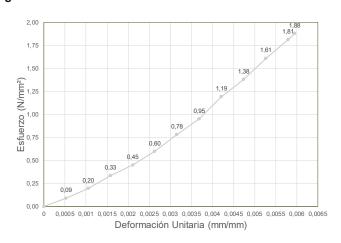

Ajuste analítico

Tabla 2.8. Resultados analíticos de unidad de ladrillo 4B.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
188	190,00	94,00	2379,6	17672
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Defor- mación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	162,9	1597,51	0,09	0,0005
0,2	353,1	3462,75	0,20	0,0011
0,3	599,6	5880,10	0,33	0,0016
0,4	813,2	7974,81	0,45	0,0021
0,5	1077	10561,82	0,60	0,0026
0,6	1404,7	13775,47	0,78	0,0032
0,7	1712,9	16797,90	0,95	0,0037
8,0	2150,2	21086,37	1,19	0,0042
0,9	2483,9	24358,86	1,38	0,0047
1	2900,5	28444,33	1,61	0,0053
1,1	3262,7	31996,32	1,81	0,0058
1,13	3384,8	33193,72	1,88	0,0059


Fuente: Propia.

Figura 2.29. Gráfica de esfuerzo-deformación unidad de ladrillo 4B.

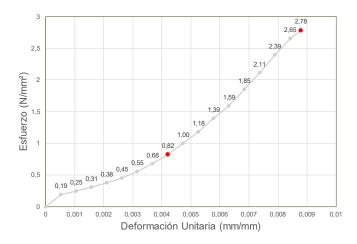

Resultados iniciales

Figura 2.30. Falla por separación de paredes internas en unidades de ladrillo 5A.

Fuente: Propia

Figura 2.31. Gráfica de esfuerzo-deformación unidad de ladrillo 5A.

Fuente: Propia.

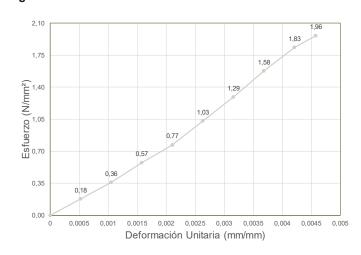

Ajuste analítico

Tabla 2.9. Resultados analíticos de unidad de ladrillo 5A.

Largo (mm)	Altura (mm)	Ancho (mm)	Peso (g)	Área (mm²)
187	190,00	94,00	2429,7	17578
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0,00	0,00	0,0000
0,1	320,2	3140,11	0,18	0,0005
0,2	646,9	6343,95	0,36	0,0011
0,3	1030,5	10105,80	0,77	0,0016 0,0021 0,0026
0,4	1382,4	13556,78		
0,5	1850,8	18150,24		
0,6	2314,1	22693,68	1,29	0,0032
0,7	2823,2	27686,28	1,58	0,0037
0,8	3285,9	32223,84	1,83	0,0042
0,87	3516,7	34487,22	1,96	0,0046

Fuente: Propia.

Figura 2.32. Gráfica de esfuerzo-deformación unidad de ladrillo 5A.

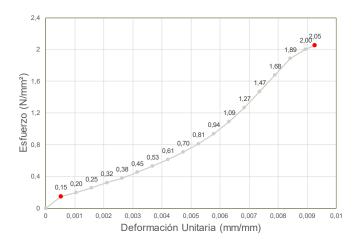

Resultados iniciales

Figura 2.33. Falla por separación de paredes internas de ladrillo 5B.

Fuente: Propia

Figura 2.34. Gráfica de esfuerzo-deformación unidad de ladrillo 5B.

Fuente: Propia.

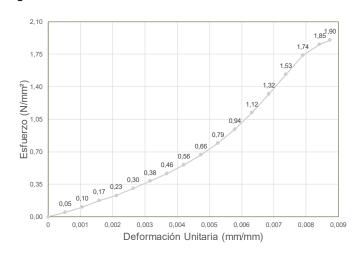

Ajuste analítico

Tabla 2.10. Resultados analíticos de unidad de ladrillo 5B.

Largo (mm)	Altura (mm)			Área (mm²)
188	190,00	94,00	2388,8	17672
Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/ mm)
0	0	0,00	0,00	0,0000
0,1	85,9	842,40	0,05	0,0005
0,3	313,3	3072,44	0,17	0,0016
0,5	545,6	5350,54	0,30	0,0026
0,7	836,8	8206,25	0,46	0,0037
0,9	1197,7	11745,48	0,66	0,0047
1,1	1696,4	16636,09	0,94	0,0058
1,3	2380,5	23344,85	1,32	0,0068
1,5	3131,9	30713,60	1,74	0,0079
1,66	3431	33646,79	1,90	0,0087

Fuente: Propia.

Figura 2.35. Gráfica de esfuerzo-deformación unidad de ladrillo 5B.

Determinación de tipo de ladrillo de acuerdo al INEN con resultados iniciales experimentales

En la Tabla 2.11, se presentan los resultados promedio obtenidos de los ensayos experimentales iniciales realizados en los ladrillos. Estos resultados proporcionan una visión general del desempeño de los ladrillos bajo las condiciones de prueba establecidas. Para contextualizar estos datos, se realiza una comparación con la Tabla 2.12 de la norma INEN, que especifica las características técnicas y estándares requeridos para los diferentes tipos de ladrillo. La comparación entre los promedios experimentales y los valores de referencia establecidos en la norma permite evaluar si los ladrillos utilizados cumplen con los requisitos normativos y ayuda a identificar cualquier discrepancia que pueda indicar la necesidad de ajustes en los métodos de construcción o en la selección de materiales.

Tabla 2.11. Resultados experimentales en unidades de ladrillo hueco.

Muestra	Módulo de Young	Deformación Unitaria (mm/mm)	Esfuerzo (N/mm²)
1A	595,85	0,0084211	2,522
1B	510,97	0,0092632	2,727
2A	611,18	0,0089474	3,107
2B	587,98	0,0100000	3,299
3A	593,08	0,0094737	2,895
3B	593,71	0,0100000	3,234
4A	461,49	0,0105263	2,741
4B	461,07	0,0096316	2,399
5A	539,65	0,0087895	2,782
5B	400,76	0,0092632	2,052
\overline{X}	535,57	0,01	2,78
s	73,50	0,00	0,39
CV	0,14	0,07	0,14

Fuente: Propia.

Tabla 2.12. Requisitos de resistencia mecánica y absorción de la humedad que deben cumplir los ladrillos cerámicos.

	Resistencia compres		Resistencia mínima a la flexión MPa*	Absorción máxima de humedad %
Tipo de ladrillo	1 Torriodio	Individual	Promedio de 5 unidades	Promedio de 5 unidades
macizo tipo A	25	20	4	16
macizo tipo B	16	14	3	18
macizo tipo C	8	6	2	25
hueco tipo E	6	5	4	16
hueco tipo D	4	4	3	18
hueco tipo F	3	3	2	25
Metodo de ensayo	INEN	1 294	INEN 295	INEN 296

Fuente: Adaptado de NTE INEN 297:1

La norma NTE INEN 297:1 establece que los ladrillos cerámicos deben cumplir con los requisitos indicados en la Tabla 1 para su clasificación respectiva. En este caso, el promedio es de 2.78 MPa, por lo tanto, se considerará que el ladrillo es de tipo F.

Resumen de esfuerzos, deformaciones y cálculo del módulo de Young

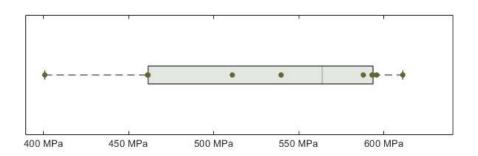
Aquí se presenta una tabla resumida que detalla los esfuerzos máximos y las deformaciones unitarias máximas obtenidas durante los ensayos de tracción en unidades de ladrillo. Además, se incluye el cálculo del Módulo de Young para cada muestra:

Tabla 2.13. Resultados analíticos en unidades de ladrillo hueco.

Muestra	Módulo de Young	Deformación Unitaria (mm/mm)	Esfuerzo (N/mm²)
1A	595,850	0,00105	0,51
2A	510,970	0,0016	0,72
2A	611,180	0,0011	0,60
2B	587,980	0,0016	0,75
3A	593,080	0,0016	0,81
3B	593,710	0,0021	1,08
4A	461,490	0,0021	0,90
4B	461,070	0,0023	0,93
5A	539,650	0,0014	0,67
5B	400,760	0,0019	0,58
\overline{X}	535,574	0,002	0,755
S	73,499	0,000	0,176
CV	0,137	0,256	0,234

Fuente: Propia.

El Módulo de Young, también conocido como el módulo de elasticidad, se calculó utilizando la fórmula:


$$E = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\Delta F_c / A}{\Delta D / h}$$
 (2.3)

En esta fórmula, $\Delta\sigma$ denota la variación del esfuerzo axial aplicado (cambio en la carga vertical sobre el área de la sección transversal del elemento), mientras que $\Delta\epsilon$ representa la variación de la deformación unitaria (cambio en el desplazamiento a lo largo de la altura del elemento).

Detección de valores atípicos en el módulo de Young.

En este estudio, se empleó el método del rango intercuartílico (IQR) para detectar valores atípicos en los datos del módulo de Young. Este método estadístico robusto se fundamenta en la distribución de los datos, ofreciendo una menor sensibilidad a distribuciones que no son normales, asegurando así la precisión y fiabilidad de los resultados experimentales.

Figura 2.36. Diagrama de caja del módulo de Young de unidades de ladrillo: Análisis de distribución y consistencia.

Nota: Se observa una distribución consistente y sin valores atípicos en el módulo de Young de las unidades de ladrillo estudiadas, indicando una uniformidad en sus propiedades mecánicas.

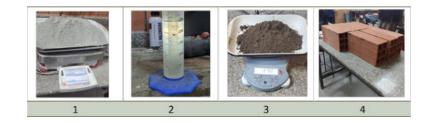
2.1.2 Determinación de la resistencia del mortero a través de ensayos experimentales

En el contexto de la construcción, el mortero se define como una amalgama moldeable compuesta por materiales cementantes, como los agregados finos como la arena, y agua. Su aplicación principal radica en la unión de las unidades de mampostería (NEC, 2014). En Ecuador, la utilización del mortero ha experimentado una diversificación significativa, siendo empleado predominantemente como revestimiento y adherente en las estructuras de mampostería.

Objetivo

Este procedimiento de evaluación se enfoca en determinar la resistencia a la compresión de morteros de cemento hidráulico. Para llevar a cabo esta medición, se utilizan muestras cubicas con dimensiones de 50 mm. La prueba se centra en aplicar una carga de compresión a estos especímenes para evaluar su capacidad de soportar fuerzas en esa dirección específica.

Código o norma usada


En el proceso de llevar a cabo los ensayos de resistencia a la compresión de mortero, se ha adoptado la norma COGUANOR NTG 41003 h4, titulada "Método de Ensayo. Determinación de la resistencia a la compresión de mortero de cemento hidráulico utilizando especímenes cúbicos de 50 mm (2 pulgadas) de lado". como referencia principal. Es importante destacar que esta norma, si bien posee su propia identidad y adaptaciones específicas, es esencialmente equivalente a la norma internacional ASTM C109/C109M-11b.

Equipos y herramientas

Materiales

- 1. Arena estándar.
- 2. Agua
- 3. Cemento Portland tipo I
- 4. Recubrimiento anti adherente.

Figura 2.37. Materiales.

Fuente: Propia

Equipos

- 1. Balanzas: Para medir con precisión la cantidad de materiales utilizados en la mezcla.
- 2. Tamices: Para garantizar que la arena tenga la granulometría apropiada.

- 3. Moldes de ensayo: Para dar forma a las muestras de mortero antes de las pruebas.
- 4. Espátulas y apisonador: Para manipular y distribuir el mortero en los moldes.
- 5. Mezcladora de mortero: Para asegurar una mezcla homogénea y consistente de los materiales.
- 6. Aparatos de medida de la resistencia a la compresión: Para evaluar la resistencia del mortero.

1 2 3 4

Figura 2.38. Equipos.

Fuente: Propia.

Dosificación

Según la norma COGUANOR NTG 41003 h4 (2019), la mezcla debe consistir en una parte de cemento por cada 2.75 partes de arena graduada estándar, por peso. Además, recomienda utilizar una relación agua-cemento de 0.485 para todos los tipos de cemento portland, y una relación de 0.460 para cementos portland que incorporan aire. Estas proporciones garantizaron que la mezcla cumpliera con las especificaciones requeridas para la preparación de seis, nueve y doce especímenes de ensayo (véase tabla 3.11)(COGUANOR, 2019).

Tabla 2.14. Dosificación según la norma COGUANOR NTG 41003 h4.

	Numero de	especímenes
Cemento, g	6	9
Arena, g	500	740
Agua, mL	1375	2035

Fuente: (COGUANOR, 2019).

Para la realización de los ensayos, se utilizó la dosificación correspondiente a nueve especímenes. Así, el mortero fue dosificado tanto para las juntas de los muretes de compresión y adhesión como para las pruebas de compresión del mortero. Como se observa en la tabla 2.12, las proporciones de los materiales se basaron en una mezcla originalmente diseñada para un volumen pequeño. La tabla 2.13 muestra la nueva dosificación ajustada.

Tabla 2.15. Ajuste de Dosificación del Mortero para Ensayos.

	Dosificación de mortero.
Cemento, g	5333
Arena, g	14666
Agua, mL	2586

Fuente: Propia

Procedimiento

- 1. En la dosificación predefinida, se mide las cantidades apropiadas de cemento y arena, asegurando así la proporción adecuada en la mezcla.
- 2. La combinación uniforme del cemento y la arena se lleva a cabo en una mezcladora de mortero, con la adición gradual de agua hasta que se alcance la consistencia deseada.
- 3. Para evitar adherencias se aplicará un recubrimiento anti adherente.
- 4. En un periodo no superior a 2 minutos y 30 segundos tras finalizar la mezcla inicial de la amasada del mortero, se procede a rellenar los moldes con la mezcla, compactando cada capa de acuerdo con la normativa empleada en este ensayo para eliminar posibles bolsas de aire.
- 5. Se procede a retirar las muestras de los moldes después del período de curado, se someten a pruebas significativas, como la resistencia a la compresión en los días 3, 7 y 28, y se registra minuciosamente los resultados obtenidos en cada prueba.

Resultados

Debido a la extensión del proceso y a fin de garantizar la precisión en la realización de las pruebas de mortero, se llevaron a cabo tanto en la mañana como en la tarde. Como resultado, se cuenta con el número específico de morteros evaluados.

Tabla 2.16. Resultados de los ensayos de mortero a los días 3,7 y 28.

	Lado (mm)	Área (mm²)	Lado (cm)	Área (cm²)
	50	2500	0,5	0,25
Dia	Peso (g)	Carga (kgf)	Carga (N)	Compresión (N/mm²)
	271,7	2061,3	20214,6	8,09
	274,8	2321,4	22765,3	9,11
3	373,7	2264,1	22203,3	8,88
3	278	1885	18485,6	7,39
	281,9	1641	16092,8	6,44
	284	1965,1	19271,1	7,71
	284,7	3017	29586,8	11,83
	287,3	2664,9	26133,9	10,45
7	286,9	3042,1	29833,0	11,93
1	271,4	2561	25115,0	10,05
	272,3	2756,1	27028,2	10,81
	288,7	3024,4	29659,4	11,86
	283,6	5054,5	49568,0	19,83
	288,7	4179	40982,2	16,39
28	285,7	4519,2	44318,4	17,73
28	274,8	3315,5	32514,1	13,01
	275,1	4448,6	43626,1	17,45
	274,9	3981,3	39043,4	15,62
				16,67

Resumen de cargas finales y cálculo del módulo de Young

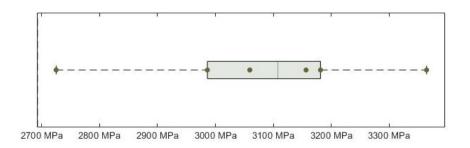
Los resultados de las pruebas de resistencia a compresión de los morteros a los 28 días se presentan en la Tabla 2.15. Esta tabla incluye la media, la desviación estándar y el coeficiente de variación de la resistencia a compresión de las probetas de mortero, obtenidos mediante ensayos experimentales.

Tabla 2.17. Resultados experimentales en muestras de mortero.

Dia de rotura	Carga (N)	Compresión (N/mm²)	Compresión (Psi)	Elasticidad (Psi)	Elasticidad (MPa)
	49568,00	19,83	2875,69	487991,64	3364,59
	40982,20	16,39	2377,59	443720,48	3059,35
28	44318,40	17,73	2571,14	461428,13	3181,44
20	32514,10	13,01	1886,31	395228,09	2725,00
	43626,10	17,45	2530,97	457809,67	3156,49
	39043,40	15,62	2265,11	433097,56	2986,10
X	41675,37	16,67	2417,80	446545,93	3078,83
S	5734,48	2,29	332,69	31268,07	215,59
CV	0,14	0,14	0,14	0,07	0,07

Fuente: Propia.

Para determinar el módulo de elasticidad, se utiliza la siguiente fórmula (Quimbay, 2012).

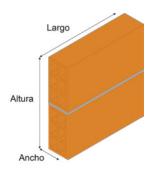

$$E_c = 9100\sqrt{f'c} \tag{2.4}$$

Donde *f*'c representa el esfuerzo axial aplicado en psi, por lo que es necesario convertir el esfuerzo de compresión de N/mm² a psi. Luego, la elasticidad expresada en psi se convierte a MPa, lo cual es necesario para los análisis posteriores. Los resultados se presentan en la Tabla 3.2.

Detección de valores atípicos en el módulo de Young

Tal y como se indicó previamente en la sección 2.1 respecto a las unidades de ladrillo, se utilizó el método del rango intercuartílico (IQR) para detectar valores atípicos en los datos del módulo de Young. Cabe mencionar que no se encontró ningún valor atípico en estos datos.

Figura 2.39. Diagrama de caja del módulo de Young de morteros : Análisis de distribución y consistencia.


Nota: Los resultados del análisis indican que los datos examinados son consistentes y no muestran valores atípicos significativos. Esto sugiere que no se han identificado anomalías o errores evidentes en los datos recopilados.

2.1.3 Ensayo de compresión de muretes de mampostería de ladrillo

La prueba de compresión de muretes en ladrillos desempeña un papel esencial en la ingeniería civil y arquitectura al evaluar la capacidad de carga y la resistencia a la compresión de las estructuras de mampostería, proporcionando datos cruciales para el diseño y la construcción de edificaciones seguras y efectivas en su funcionamiento. El estudio se enfoca en analizar cómo se comporta la estructura de la mampostería cuando está compuesta por piezas prismáticas unidas mediante un mortero aglutinante (ver Figura 2.40).

Figura 2.40. Esquema del prisma utilizado en la prueba de compresión.

Fuente: Propia.

Objetivo

Determinar cómo se comporta la estructura de la mampostería cuando está compuesta por piezas prismáticas unidas mediante un mortero aglutinante y dispuestas en un arreglo específico, también conocido como aparejo.

Código o norma usada

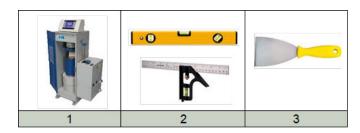
NORMA MEXICANA NMX-C-464-ONNCCE-2010.

Equipos y herramientas

Materiales

- 1. Arena estándar.
- 2. Agua
- 3. Cemento Portland tipo I
- 4. 10 ladrillos tipo tochana (6 huecos).

Figura 2.41. Materiales.



Equipos

- 1. Máquinas para Pruebas de Compresión
- 2. Instrumentos de medición: Se utilizan nivel y escuadras para determinar las dimensiones exactas de los especímenes de prueba, asegurando que cumplen con las especificaciones requeridas.
- 3. Utensilios de preparación: Herramientas como la espátula es utilizada para la correcta aplicación y conformación del mortero antes del ensayo.

Figura 2.42. Equipos.

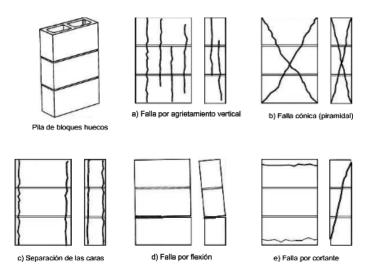
Fuente: Propia.

Procedimiento

- 1. Se procede a colocar las piezas cerámicas en un recipiente con agua, luego de verificar que no presenten ningún daño, con el fin de evitar pérdidas de humedad en el mortero.
- 2. Se inicia el proceso de albañilería colocando la pieza cerámica de ladrillo sobre una superficie plana y nivelada (véase Figura 2.43). Se aplica mor-

tero en una cara y se superpone otro ladrillo, manteniendo un espesor de 1.5 cm. Se verifica la verticalidad y nivel antes de continuar con el siguiente murete.

Figura 2.43. Colocación de mortero.


- 3. Una vez finalizada la comprobación de la verticalidad y nivelación de los muretes, se procede a eliminar el exceso de mortero y limpiar el muro, permitiendo así el adecuado fraguado del elemento construido.
- 4. Tras la construcción de los muretes, se recomienda sellar de inmediato en una bolsa de plástico y ubicar en un lugar resguardado del sol, la lluvia o el viento, manteniéndolos a una temperatura constante de 24 °C.
- 5. Iniciada la práctica con el material y equipo requeridos, se comienza midiendo el murete en altura, anchura y longitud. Estos datos se registran en una tabla para su manejo adecuado. Posteriormente, se coloca el murete en la máquina de compresión, garantizando su centrado y una distribución uniforme de la carga

Resultados

Durante el ensayo, se registraron todas las lecturas de carga y deformación, anotando meticulosamente la carga máxima soportada por el murete, así como las características específicas de la falla observada. Según la norma mexicana NMX-C-464-ONNCCE-2010, la figura 2.44 presenta esquemas ilustrativos de algunos tipos de fallas que pueden ocurrir en ensayos de compresión de muretes construidos con piezas huecas.

Figura 2.44. Tipos de fallas en ensayos de compresión de muretes huecos.

Fuente: NMX-C-464-ONNCCE-2010, 2010.

Este procedimiento permitió obtener datos precisos y detallados, esenciales para el análisis posterior y la evaluación del comportamiento estructural del

murete bajo compresión. Se elaboró una tabla que documentaba las cargas aplicadas y las deformaciones correspondientes, basada en las mediciones obtenidas. Con esta información tabulada, se procedió a calcular tanto el esfuerzo de compresión como la deformación unitaria del murete. Estos datos no solo proporcionaron una comprensión detallada del comportamiento del murete bajo carga, sino que también permitieron la creación de gráficos que representaban la curva esfuerzo-deformación con resultados iniciales (véase Figuras 2.46, 2.49, 2.52, 2.55, 2.58) y ajustada posteriormente (véase Figuras 2.47 2.50, 2.53, 2.56, 2.59), ofreciendo una visualización clara y precisa de cómo respondía el murete a la carga aplicada.

El esfuerzo de compresión se determinó utilizando la fórmula:

$$\sigma = \frac{P}{A} \tag{2.5}$$

donde σ representa el esfuerzo de compresión, P es la carga máxima aplicada, y A es el área de la sección transversal del murete. En las tablas 2.15, 2.17, 2.18 y 2.19 se puede observar el esfuerzo

La fórmula para calcular la deformación unitaria (ε) bajo una carga axial es:

$$\varepsilon = \frac{\delta}{L} \tag{2.6}$$

donde ϵ es la deformación unitaria, δ es la deformación total experimentada por el material bajo la carga axial y L es la longitud original del elemento estructural, que en el caso de un murete, representa su altura, antes de aplicar la carga. En las Tablas 2.18, 2.19, 2.20, 2.21 y 2.22 se puede observar el esfuerzo final máximo y la deformación unitaria máxima con su ajuste correspondiente.

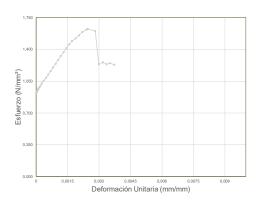

Resultados iniciales

Figura 2.45. Falla por flexión en murete 1.

Fuente: Propia

Figura 2.46. Gráfica de esfuerzo-deformación en murete 1.

Fuente: Propia.

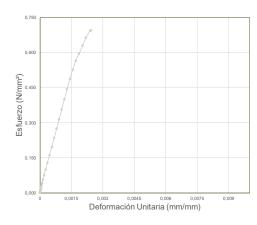

Ajuste analítico

Tabla 2.18. Resultados analíticos de en murete 1.

Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)		
377	94,00	395,00	35438	15		
Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)	Doronnao	ón Unitaria /mm)		
0,00000	0,00	0,000	0,00	0000		
0,00388	201,22	0,006	0,00	0001		
0,00800	380,51	0,011	0,00	0002		
0,01263	571,88	0,016	0,00003			
0,01713	764,84	0,022	0,00004			
0,02200	971,79	0,027	0,00	0006		
0,03063	1218,16	0,034	0,00	8000		
0,07725	2676,01	0,076	0,00	0020		
0,17900	5694,39	0,161	0,00	0045		
0,31288	9699,18	0,274	0,00079			
0,45825	14158,25	0,400	0,00116		0,00116	
0,61550	18677,71	0,527	0,00156			
0,79875	22273,38	0,629	0,00202			
0,96663	24639,13	0,695	0,00	0245		

Fuente: Propia.

Figura 2.47. Gráfica final de esfuerzo-deformación en murete 1.

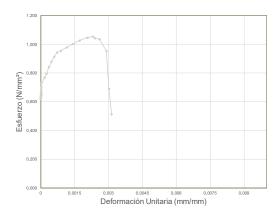

Resultados iniciales

Figura 2.48. Falla por flexión en murete 2.

Fuente: Propia

Figura 2.49. Gráfica de esfuerzo-deformación en murete 2.

Fuente: Propia.

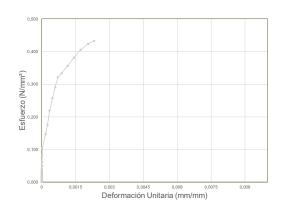

Ajuste analítico

Tabla 2.19. Resultados analíticos de en murete 2.

Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
376	94,00	395,00	35344	15
Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)		nción Unitaria m/mm)
0,000	0,00	0,000	0,	00000
0,000	130,34	0,004	0,	00000
0,001	316,30	0,009	0,00000	
0,001	487,97	0,014	0,00000	
0,001	669,80	0,019	0,00000	
0,002	854,81	0,024	0,	00000
0,002	1040,78	0,029	0,	00001
0,003	1208,31	0,034	0,	00001
0,005	1727,42	0,049	0,	00001
0,011	3653,21	0,103	0,00003	
0,140	7747,65	0,219	0,00036	
0,281	11350,64	0,321	0,00071	
0,563	13443,63	0,380	0,	00142
0,914	15271,82	0,432	0,	00231

Fuente: Propia.

Figura 2.50. Gráfica final de esfuerzo-deformación en murete 2.

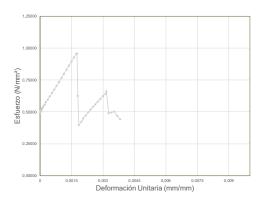

Resultados iniciales

Figura 2.51. Falla por separación de caras en murete 3.

Fuente: Propia

Figura 2.52. Gráfica de esfuerzo-deformación en murete 3.

Fuente: Propia.

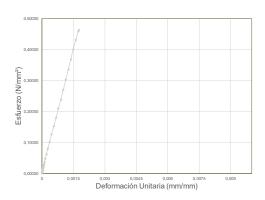

Ajuste analítico

Tabla 2.20. Resultados analíticos de en murete 3.

Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
374	94,00	395,00	35156	15
Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)	D 0101111aoi	ón Unitaria /mm)
0,000	0,00	0,00000	0,00	0000
0,003	131,29	0,00373	0,00	0001
0,007	282,93	0,00805	0,00	0002
0,011	435,83	0,01240	0,00	0003
0,016	592,24	0,01685	0,00	0004
0,020	720,34	0,02049	0,00	005
0,025	865,94	0,02463	0,00	0006
0,034	1062,71	0,03023	0,00	0009
0,081	2182,33	0,06208	0,00	020
0,179	4431,09	0,12604	0,00	045
0,309	7337,89	0,20872	0,00	078
0,447	10635,06	0,30251	0,00	1113
0,589	14078,78	0,40047	0,00	149
0,694	16280,18	0,46308	0,00	176

Fuente: Propia.

Figura 2.53. Gráfica final de esfuerzo-deformación en murete 3.

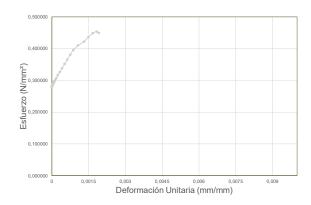

Resultados iniciales

Figura 2.54. Falla por flexión en murete 4.

Fuente: Propia

Figura 2.55. Gráfica de esfuerzo-deformación en murete 4.

Fuente: Propia.

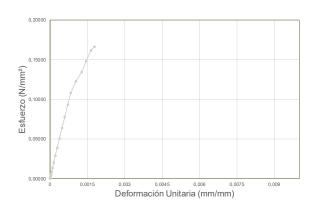

Ajuste analítico

Tabla 2.21.Resultados analíticos de en murete 4.

Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
375	94,00	395,00	35250	15
Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)		ación Unitaria nm/mm)
0,00	0,00	0,00000	0,	000000
0,00	50,22	0,00142	0,	000012
0,01	126,52	0,00359	0,000024	
0,01	196,45	0,00557	0,000037	
0,04	481,60	0,01366	0,000102	
0,06	713,03	0,02023	0,000147	
0,08	1016,93	0,02885	0,	000208
0,19	2257,03	0,06403	0,000482	
0,33	3813,74	0,10819	0,	000834
0,41	4317,92	0,12249	0,001035	
0,50	4738,80	0,13443	0,001273	
0,57	5224,86	0,14822	0,001451	
0,65	5694,07	0,16153	0,	001636
0,70	5857,78	0,16618	0,	001782

Fuente: Propia.

Figura 2.56. Gráfica final de esfuerzo-deformación en murete 4.

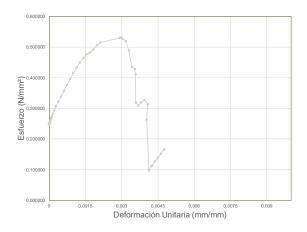

Resultados iniciales

Figura 2.57. Falla por separación de caras en murete 5.

Fuente: Propia.

Figura 2.58. Gráfica de esfuerzo-deformación en murete 5.

Fuente: Propia.

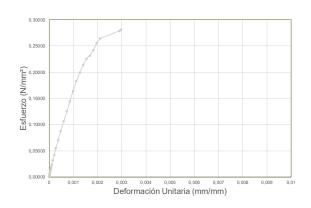

Ajuste analítico

Tabla 2.22. Resultados analíticos de en murete 5.

Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
376	94,00	395,00	35344	15
Defor- mación (mm)	Carga (N)	Esfuerzo (N/mm²)		ión Unitar- n/mm)
0,00	0,00	0,00000	0,00	0000
0,00	91,23	0,00258	0,00	0001
0,01	206,95	0,00586	0,00	0002
0,01	297,23	0,00841	0,00	0003
0,02	401,81	0,01137	0,00	0004
0,02	507,04	0,01435	0,00	0005
0,03	624,66	0,01767	0,00	0007
0,06	1132,64	0,03205	0,00	015
0,14	2494,17	0,07057	0,00	0037
0,29	4424,41	0,12518	0,00	0073
0,44	6442,38	0,18228	0,00)113
0,61	7978,12	0,22573	0,00	154
0,77	9028,11	0,25544	0,00	196
1,17	9942,69	0,28131	0,00	297

Fuente: Propia.

Figura 2.59. Gráfica de esfuerzo-deformación en murete 5.

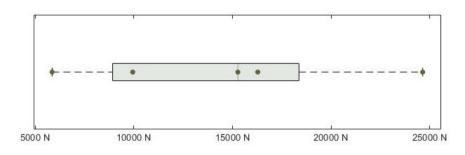
Resumen de cargas finales y cálculo del módulo de Young

Tabla 2.23. Resumen de datos obtenidos en ensayos de compresión de muretes de ladrillo tochana.

Dimensiones		– Área Fuerza		Deformación	Esfuerzo	Modulo de	
Largo (mm)	Ancho (mm)	Altura (mm²)	(mm)	(N)	Unitaria (mm/mm)	(N/mm²)	Elasticidad (MPa)
377	94	395	35438	24639,13	0,0025	0,70	283,79
376	94	395	35344	15271,82	0,0023	0,43	187,05
374	94	395	35156	16280,18	0,0018	0,46	263,12
375	94	395	35250	5857,78	0,0018	0,17	93,36
376	94	395	35344	9942,69	0,0030	0,28	94,72
X				14398,32	0,0023	0,41	184,41
s				7105,84	0,0005	0,20	90,02
CV				0,49	0,2244	0,49	0,49

Fuente: Propia.

Como se mencionó anteriormente, la fórmula para calcular el módulo de Young (E) se define como:


$$E = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\Delta F_c / A}{\Delta D / h}$$
 (2.3)

En esta fórmula, $\Delta\sigma$ denota la variación del esfuerzo axial aplicado (cambio en la carga vertical sobre el área de la sección transversal del elemento), mientras que $\Delta\epsilon$ representa la variación de la deformación unitaria (cambio en el desplazamiento a lo largo de la altura del elemento).

Detección de Valores Atípicos en la Fuerza (N) en ensayos de muretes de ladrillo

Para identificar posibles valores atípicos en la fuerza de compresión (véase tabla 2.3) se utilizó el método del rango intercuartílico (IQR), encontrando que todos los valores se encuentran dentro del rango. Por lo tanto, se concluye que no existen valores atípicos en el conjunto de datos analizado.

Figura 2.60. Diagrama de caja de la fuerza de compresión en muretes: Análisis de distribución y consistencia.

2.1.4 Ensayo sobre la determinación del esfuerzo de adherencia entre ladrillos cerámicos (tochana) y el mortero de las juntas

La propiedad de adherencia es inherente a los morteros de albañilería, como indica Menéndez (1946). Según su definición, esta característica refiere a la capacidad que tienen los morteros de unirse a los materiales con los que entran en contacto, tales como piedra, ladrillos, acero, entre otros.

Objetivo

El objetivo de este procedimiento de evaluación es determinar la fuerza de adherencia entre los ladrillos y el mortero con la composición apropiada, comúnmente utilizados en los muros estructurales de las edificaciones. Comúnmente usados en los muros estructurales de edificios.

Código o norma usada

En el marco de la investigación, se empleará la Norma Mexicana NMX-C-082C1974, titulada "Determinación del esfuerzo de adherencia de los ladrillos cerámicos y el mortero de las juntas" como referencia clave para llevar a cabo los ensayos correspondientes. Esta normativa brinda las pautas y procedimientos estandarizados necesarios para una medición precisa del esfuerzo de adherencia entre los ladrillos cerámicos y el mortero de las juntas. Al adherirse a esta norma, se busca asegurar la uniformidad y la confiabilidad en la ejecución de los ensayos.

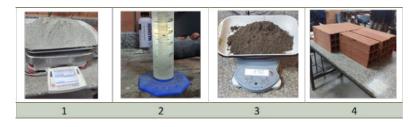
Equipos y herramientas

Materiales

- 1. Arena estándar.
- 2. Agua
- 3. Cemento Portland tipo I
- 4. 15 ladrillos tipo tochana (6 huecos).

Figura 2.61. Materiales.

Fuente: Propia.


Equipos

- 1. Máquinas para Pruebas de Compresión
- 2. Instrumentos de medición: Se utilizan nivel y escuadras para determinar las dimensiones exactas de los especímenes de prueba, asegurando que cumplen con las especificaciones requeridas.
- 3. Utensilios de preparación: Herramientas como la espátula es utilizada

para la correcta aplicación y conformación del mortero antes del ensayo.

Figura 2.62. Equipos.

Fuente: Propia.

Procedimiento

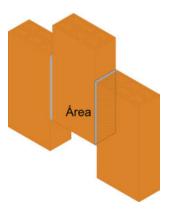
- 1. Con el propósito de evitar la manipulación directa del murete, se elaborará un soporte de madera para la construcción y posterior traslado de la muestra hacia la prensa.
- 2. Asegurando que la alineación vertical de los ladrillos sea perfectamente perpendicular, es necesario suavizar las caras del ladrillo que entrarán en contacto con la placa superior e inferior. Además, se busca que la superficie superior e inferior del murete quede nivelada(véase Figura 2.60).
- 3. Para mejorar la capacidad de adherencia de los ladrillos sumergir en agua alrededor de 10 a 15 minutos.
- 4. Para el curado posterior, se debe elaborar los muretes en bolsas plásticas (véase Figura 2.63).
- 5. En la elaboración de los muretes, se unirán tres ladrillos según la dispo-

- sición ilustrada figura. (2.64), empleando una junta de mortero de 1 cm de espesor. Es crucial realizar la comprobación de la alineación vertical de los ladrillos mediante el uso de un plomo, así como verificar la nivelación de la superficie superior del conjunto a través de un nivel.
- 6. Después de la construcción de los muretes, se recomienda sellar en una bolsa de plástico inmediatamente y ubicar los muretes en un lugar donde estén resguardados del sol, la lluvia o el viento, y mantenerlos a una temperatura constante de 24 °C.
- 7. Tras el período de curado de 28 días, se ubican los tres ladrillos cerámicos en la máquina de prueba, asegurando que los platos inferior y superior establezcan contacto perfecto en toda la superficie del espécimen.
- 8. Evitando incrementos bruscos, se aplica la fuerza de manera gradual y pausada sobre el respectivo murete.

Figura 2.63. Curado de Muretes en Bolsas Plásticas..

Figura 2.64. Unión y alineación de ladrillos en muretes.

Fuente: Propia.

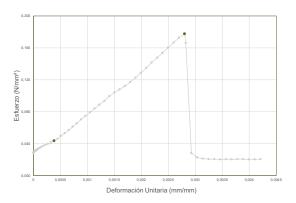

Resultados.

Para determinar la resistencia de la unión entre ladrillos y mortero, e acuerdo con la norma mexicana NMX-C-082-1974, se calcula el esfuerzo de adherencia (A), que es una medida de la fuerza necesaria para separar el mortero del ladrillo por unidad de área. Este esfuerzo se calcula utilizando la fórmula:

$$A = \frac{P}{S} \tag{2.6}$$

En esta fórmula, P representa la fuerza la carga máxima que consigue separar los ladrillos, mientras que S corresponde al área de adherencia entre el ladrillo y el mortero (véase figura 2.61).

Figura 2.65. Área de adherencia entre el ladrillo y el mortero.


Fuente: Propia.

La fuerza máxima (P) se expresa en newtons (N) y el área de adherencia (S) se mide en metros cuadrados (mm²). Este área se determina multiplicando la longitud y el ancho de la superficie del ladrillo que está en contacto con el mortero. Utilizando esta fórmula, es posible medir la capacidad del mortero para adherirse al ladrillo bajo condiciones de carga específicas.

Durante la ejecución de los ensayos de adherencia en ladrillos, se llevaron a cabo las pruebas para evaluar la capacidad del mortero de adherirse a los ladrillos bajo condiciones específicas de carga. Sin embargo, los cuatro ensayos no cumplieron satisfactoriamente con las pautas establecidas para el ensayo. Estos cuatro ensayos mostraron una adherencia insuficiente entre los ladrillos y el mortero, lo que se evidenció por la incapacidad del sistema para soportar las fuerzas aplicadas sin fallar.

Resultados iniciales

Figura 2.66. Gráfica de esfuerzo-deformación.

Fuente: Propia

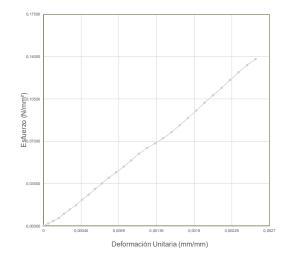

Ajuste analítico.

Tabla 2.24. Resultados analíticos en murete de adhesión.

Largo (mm)	Ancho	Altura	Área de adherencia
188	94	493	47564
Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0,000	0,000	0,000	0,00000
0,191	820,160	0,017	0,00039
0,304	1456,897	0,031	0,00062
0,562	2841,314	0,060	0,00114
0,705	3453,573	0,073	0,00143
1,000	5133,629	0,108	0,00203
1,149	6046,931	0,127	0,00233
1,249	6562,234	0,138	0,00253

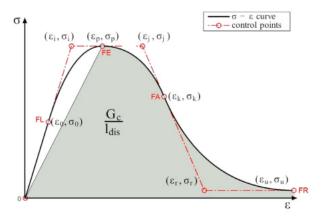
Fuente: Propia.

Figura 2.67. Gráfica final de esfuerzo-deformación en murete de adhesión

Microanálisis Estructural

Para estimar las propiedades efectivas, se empleará la metodología propuesta por García, et al. (2024). Este método define un micromodelo para analizar Representaciones Volumétricas Elementales (RVE, por sus siglas en inglés) y posteriormente analizarlo utilizando el modelo de daño continuo de tensión / compresión desarrollado por Petracca (2016).

El modelo de daño continuo desarrollado por Petracca calcula la tensión efectiva utilizando dos parámetros: uno asociado a la parte negativa y otro a la parte positiva del tensor de tensión efectiva. De esta manera, se puede determinar un efecto unilateral.


Los dos parámetros utilizados para evaluar este efecto se denominan d⁺ para tensión y d⁻ en compresión. Estos factores de daño están relacionados directamente con el efecto del tensor de tensión efectiva. Ambos índices son variables escalares que varían en un rango de 0 a 1. Un valor de 0 indica un estado elástico del material sin daño, mientras que un valor de 1 representa el daño completo del material.

Ahora bien, otro aspecto a tener en cuenta son *los criterios de falla* y superficies de fluencia que son parámetros utilizados para evaluar en que momento ocurre el daño de un material. Estos criterios se basan en dos tensiones equivalentes denominadas como T⁻ y T⁺ e identifican la carga, descarga y recarga para un estado de tensión general.

De igual manera, *las leyes de evolución de daños* de Petracca (2017) analizan la evolución del daño compresivo d⁻ con una formulación ad hoc que se basa en la curva compuesta que esta definida por la ley de endurecimiento / ablandamiento uniaxial el cual usa tres curvas de B'ezier cuadráticas definidas por tres puntos de control, las cuales definen cuatro secciones (veáse Figura 3.1): la fase lineal *FL* [0 - FL], una siguiente fase

de endurecimiento *FE* [FL - FE], una parte de ablandamiento *FA* [FE - FA] y por último, una fase residual final *FR* [FA - FR].

Figura 3.1. Ley uniaxial de compresión.

Fuente: Petracca.2017.

El Comportamiento al corte nos proporciona la capacidad de representar la dilatancia, que es la tendencia de un material a cambiar de volumen bajo deformación. El modelo de daño anisotrópico d+/d- aborda las superficies de falla en tracción y compresión de manera diferenciada, empleando índices de daño y leyes de evolución específicos para cada tipo de tensión.

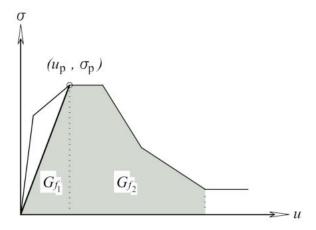
La tensión dañada revela que, dado que el daño por tracción crece más rápidamente que el daño por compresión, la tensión efectiva no seguirá la misma dirección que la tensión elástica, produciendo así una mayor tensión de compresión en la dirección opuesta. Por lo tanto, el modelo anisotrópico permite una representación más precisa de la dilatancia bajo tensión de corte, al diferenciar entre el daño por tracción y compresión.

El objetivo principal de la metodología de García, et al. (2024) es utilizar un micromodelo bidimensional para analizar RVE's sometidos a fuerzas de compresión y tracción, con el fin de deducir las propiedades efectivas de la mampostería. Para ello, es importante conocer dos parámetros fundamentales, la resistencia a la compresión (f_c) y la deformación con respecto a esta fuerza de compresión (ϵ_p) que se muestrean a partir de funciones de distribución de probabilidad (PDFs, por sus siglas en inglés) log-normales ajustadas según resultados experimentales descritos en el capítulo dos.

El analisis considera las fuerzas de compresión, tracción y corte perpendiculares y paralelas al plano del mortero, es importante obtener los resultados en ambas direcciones puesto que representan mejor el comportamiento de la mampostería. Como resultado, en las fases elástica e inelástica se puede estimar: el módulo de Young, el módulo de corte y la resistencia del material a compresión y a tracción. A su vez, las energías de fractura son calculadas con el área bajo las curvas fuerza - desplazamiento en compresión y tracción.

Ahora bien, es necesario obtener un modelo ortotrópico homogéneo de mampostería, para ello es crucial estimar sus propiedades considerando el efecto del patrón de adherencia del muro. Los ensayos experimentales de compresión sobre probetas de mampostería pueden definir estas propiedades.

Para modelar estos materiales anisotrópicos se utilizan estrategias de transformación utilizando la teoria de la representacion tensorial (Liu, 1982). Esta investigación usa el mapeador ortotrópico de Pelà et al. (2014), que está incluído en STKO (Petracca et al., 2017).


Ahora bien, la homogeneización en materiales compuestos simplifica la descripción matemática al aproximar su comportamiento mediante un modelo homogeneizado. Este modelo utiliza propiedades promediadas de cada Volumen Representativo Elemental (RVE). Kouznetsova (2004) analiza la homogeneización de primer orden, mientras que Petracca et al. (2016, 2017) presentan una implementación específica para la mampostería.

A partir de ensayos experimentales y analisís específicos se pueden obtener algunas propiedades mecánicas, indispensables para determinar el resto de propiedades, tales como: el módulo de Young, el módulo a corte, la resistencia a tracción y compresión que corresponden a los valores máximos de cada curva, la resistencia elástica a la compresión, esta se halla en la variación en un 5% de la pendiente inicial e indica el punto en donde el comportamiento del material comienza su fase inelástica,también podemos analizar su resistencia residual que corresponde a una deformación superior a la deformación de compresión (ε_p) que es inferior al 80% de la resistencia a compresión.

Por último, la energía de fractura por compresión y tracción se define a partir de la curva de esfuerzo - desplazamiento, la cual representa la energía de fractura por unidad de superficie. La figura 3.2 muestra la forma de determinar el área de fractura denominado $G_{\rm f2}$, su rango se define desde el esfuerzo máximo hasta el inicio de la resistencia residual.

Figura 3.2. Curva esfuerzo - desplazamiento y su correspondiente energía de fractura por unidad de área.

Fuente: García, et al., 2024.

3.1 Definición de propiedades efectivas de mampostería

Los factores estadísticos que definen las distribuciones log - normales para la resistencia a la compresión y su deformación correspondiente son fundamentales para determinar las propiedades de los materiales bajo el modelo de daños propuesto.

Estos parámetros son los siguientes: el módulo de Young (E), la relación de Poisson (μ), la resistencia a la tracción (f_t), la energía de fractura a la tracción (G_t), la resistencia elástica a la compresión (f_c), la resistencia a la compresión (f_c), la resistencia residual a la compresión (f_r), la energía de fractura a la compresión (G_c), la deformación en el pico de resistencia (ε_p), el factor de resistencia biaxial a la compresión (K_t) y el factor de reducción corte-compresión (K_t).

La tabla 3.1 muestra la media, la desviación estándar y el coeficiente de variación de la resistencia a compresión y la deformación en la máxima resistencia para ladrillos huecos tipo tochana, obtenidos meditante ensayos experimentales. Para analizar el primer parámetro se emplea la fórmula propuesta por Bartolomé et al. (2022) para estimar el módulo de elasticidad de ladrillos (Tabla 4.1).

$$E = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\Delta F_c / A}{\Delta D / h}$$
 (3.1)

Donde $\Delta\sigma$ es la variación del esfuerzo axial aplicado (variación de la carga vertical sobre el área de la sección transversal del elemento) y $\Delta\epsilon$ es la variación de la deformación unitaria (variación del desplazamiento sobre la altura del elemento).

Tabla 3.1. Resultados experimentales en unidades de ladrillo hueco.

Muestra	Módulo de Young	Deformación Unitaria (mm/mm)	Esfuerzo (N/mm²)
1A	595,850	0,00105	0,51
2A	510,970	0,0016	0,72
2A	611,180	0,0011	0,60
2B	587,980	0,0016	0,75
3A	593,080	0,0016	0,81
3B	593,710	0,0021	1,08
4A	461,490	0,0021	0,90
4B	461,070	0,0023	0,93
5A	539,650	0,0014	0,67
5B	400,760	0,0019	0,58
X	535,574	0,002	0,755
S	73,499	0,000	0,176
CV	0,137	0,256	0,234

Fuente: Propia.

La tabla 3.2 muestra la media, la desviación estándar y el coeficiente de variación de la resistencia a compresión de probetas de mortero, obtenidos

meditante ensayos experimentales. Ahora bien, para obtener el módulo de elásticidad se utiliza la siguiente fórmula (Quimbay, 2012).

$$E_c = 9100\sqrt{f'c} \tag{3.2}$$

En donde, $f'_{\rm c}$ es el esfuerzo axial aplicado en Psi, por lo tanto es necesario transformar el esfuerzo de compresión de N/mm² a Psi. Posteriormente, se convierte la elasticidad expresada en Psi a Mpa, necesario para los análisis posteriores. Los resultados se muestran en la tabla 3.2.

Tabla 3.2. Resultados experimentales en muestras de mortero.

Dia de rotura	Carga (N)	Compresión (N/mm²)	Compresión (Psi)	Elasticidad (Psi)	Elasticidad (MPa)
	49568,00	19,83	2875,69	487991,64	3364,59
	40982,20	16,39	2377,59	443720,48	3059,35
28	44318,40	17,73	2571,14	461428,13	3181,44
20	32514,10	13,01	1886,31	395228,09	2725,00
	43626,10	17,45	2530,97	457809,67	3156,49
	39043,40	15,62	2265,11	433097,56	2986,10
X	41675,37	16,67	2417,80	446545,93	3078,83
s	5734,48	2,29	332,69	31268,07	215,59
CV	0,14	0,14	0,14	0,07	0,07

Fuente: Propia.

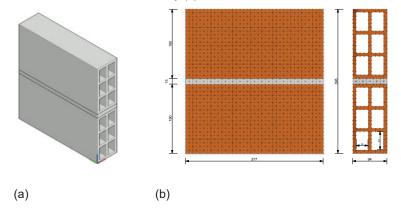
La relación de Poisson utilizada en la investigacion de García, et al. (2024) para ladrillos huecos es de 0,18 y de 0,20 para mortero. De igual forma, el esfuerzo a tracción se determina de una distribución logarítmica normal en correspondencia con el esfuerzo a compresión, con una media de 0,07 f'_{c} y una desviación estandar de 0,007 f'_{c} . La resistencia elástica

a la compresión del ladrillo $(f_{\rm cob})$ se define como 1/3 de su resistencia a compresión y la resistencia residual a la comprensión $(f_{\rm rb})$ es 1/10 de la resistencia a compresión.

Por otra parte, debido a las limitaciones de los equipos de la Universidad de Cuenca de captar el ablandamiento, puesto que el análisis termina cuando el material alcanza su resistencia máxima, las energías de fractura se definen como funciones de resistencia a la compresión.

Por último, la metodología propuesta por García, et al. (2024) sugiere valores para la energía de fractura a compresión, G_c =1,6 f_c y para la energia de fractura a tensión, G_t =0.0029 f_t , el factor de resistencia biaxial a la compresión para ladrillos huecos, k_b =1,10 y el factor de reducción corte - compresión, k_t =0. La tabla 3.3 muestra las propiedades efectivas de los cálculos teóricos realizados a partir de los resultados experimentales.

Tabla 3.3. Propiedades efectivas de muestras de unidades de ladrillos.


Ladrillo Nº	f _c (Mpa)	E (Mpa)	f _∞ (Mpa)	f _{cr} (Mpa)	f _t (Mpa)	e _p (Mpa)	g _t (N/mm)	g _c (N/mm)
1A	1,85	595,85	0,370	0,185	0,2313	0,00621	0,00671	2,960
1B	1,88	510,97	0,376	0,188	0,2350	0,00736	0,00682	3,008
2A	1,92	611,18	0,384	0,192	0,2400	0,00628	0,00696	3,072
2B	1,85	587,98	0,370	0,185	0,2313	0,00629	0,00671	2,960
3A	1,90	593,08	0,380	0,190	0,2375	0,00641	0,00689	3,040
3B	1,88	593,71	0,376	0,188	0,2350	0,00633	0,00682	3,008
4A	1,93	461,49	0,386	0,193	0,2412	0,00836	0,00700	3,088
4B	1,88	461,07	0,376	0,188	0,2350	0,00816	0,00682	3,008
5A	1,96	539,65	0,392	0,196	0,2450	0,00726	0,00711	3,136
5B	1,90	400,76	0,380	0,190	0,2375	0,00948	0,00689	3,040

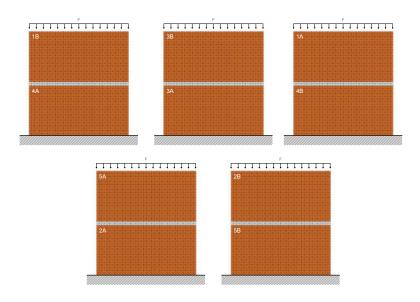
Fuente: Propia.

3.2 Definición del RVE

Previo al análisis numérico, es necesario modelar los elementos volumétricos (RVEs) a través del software Autocad, estos representan el patrón de la totalidad de un muro de mampostería hueca sometido a cargas de compresión (véase figura 3.3a). La figura 3.3b muestra las caracteristicas geométricas de los RVE de ladrillos huecos tipo tochana. Para realizar una evaluación numérica mas acertada debemos discretizar el modelo, para ello se divide en una malla discreta de elementos finitos, compuesta por cuadrilateros de 10 mm. La cantidad de nodos y elementos de los RVE son 16692 y 91237 respectivamente. Las características geométricas se definen para que repliquen las propiedades mecánicas a compresión del muro.

Figura 3.3. Los RVE representan mampostería compuesta por ladrillos huecos (a) modelo base realizado en Autocad y (b) Modelo discretizado.

Fuente: Propia


3.3 Análisis del RVE

Cada RVE esta compuesto por dos ladrillos y una junta de mortero de 15 mm, para seleccionar las propiedades de unidades de ladrillos expuestos en el subcapítulo 3.1, se realiza una selección de forma aleatoria. De esta forma se garantiza que los resultados sean equilibrados. Cinco RVE que caracterizan ladrillos huecos y mortero se analizan con OpenSees (McKenna, 2011) en STKO (Petracca et al., 2017). La figura 3.4 muestra la selección aleatoria de las unidades de ladrillo hueco y los RVE sometidos a cargas de compresión. Los análisis de compresión permiten determinar el módulo de elasticidad, la resistencia a compresión y la energía de fractura por compresión. En el análisis de compresión posterior, los nodos inferiores se encuentran fijos en ambas direcciones. Por otro lado, en los nodos superiores se impone una restricción con el mismo grado de libertad y se aplica una carga vertical distribuida de -1 N/mm hasta que se alcance

el desplazamiento objetivo.

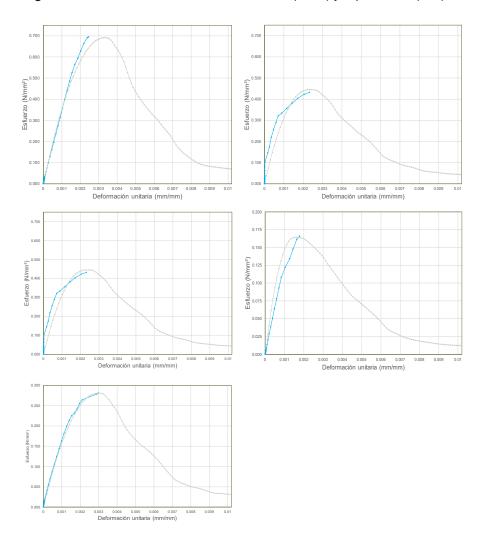
Figura 3.4. Esquema de condiciones de contorno para los RVE bajo cargas distribuidas a compresión.

Fuente: Propia

El análisis a compresión aumenta las cargas iniciales en 100 pasos y se obtiene la respuesta máxima de la resistencia a la compresión. Cada análisis tardó apoximadamente 60 segundos en una laptop con procesador i7-12800HX (2,00 GHz) y 32 GB de RAM.

3.4 Calibración de propiedades efectivas

Los resultados de la simulación, utilizando las propiedades efectivas teóricas, se calibran con el fin de obtener un modelo que se ajuste más


estrechamente a los resultados experimentales. La calibración busca que la pendiente de la fase lineal no varíe más del 5% (véase tabla 3.4).

La figura 3.5 muestra la variación entre la curva esfuerzo-deformación unitaria bajo esfuerzos de compresión simulada (verde) y experimental (azul) en los cinco RVEs analizados.

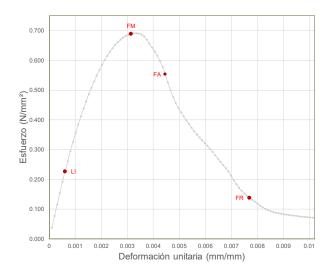
Tabla 3.4. Propiedades efectivas de unidades de ladrillos derivadas de la calibración de la curva esfuerzo-deformación obtenidas mediante simulación en STKO.

1 1.20		-			,			
Ladrillo Nº	fॢ (Mpa)	E (Mpa)	(Mana)	f _{cr} (Mpa)	ք _լ (Mpa)	e _p (Mpa)	g _t (N/mm)	g _c (N/mm)
IN.	(IVIPA)	(ivipa)	(Mpa)	(IVIPA)	(IVIPA)	(ivipa)	(14/111111)	(19/11111)
1B	2,07	1124,13	0,414	0,207	0,2590	0,00368	0,00750	3,312
4A	2,12	1015,28	0,425	0,212	0,2654	0,00418	0,00770	3,397
3B	1,32	1038,99	0,264	0,132	0,1650	0,00254	0,00479	2,112
3A	1,33	1037,89	0,266	0,133	0,1663	0,00256	0,00482	2,128
1A	1,30	1668,38	0,260	0,130	0,1625	0,00156	0,00417	2,080
4B	1,32	1291,00	0,263	0,132	0,1645	0,00204	0,00477	2,106
5A	0,49	539,65	0,098	0,049	0,0613	0,00182	0,00178	0,784
2A	0,48	611,18	0,096	0,048	0,0600	0,00157	0,00174	0,768
2B	0,83	595,33	0,166	0,083	0,1037	0,00279	0,00301	1,328
5B	0,86	405,77	0,171	0,086	0,1069	0,00421	0,00310	1,368

Figura 3.5. Curva esfuerzo-deformación simulada (verde) y experimental (azul)

Fuente: Propia.

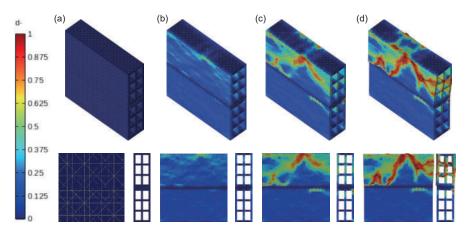
3.5 Interpretación de resultados


La simulación presenta como resultado el comportamiento de un RVE bajo cargas de compresión en cuatro puntos distintivos.

El primer punto es la fuerza donde termina la *fase lineal* y comienza la respuesta inelástica, este se denomina como límite inelástico (LI). En segundo lugar es la fuerza donde termina la *fase de endurecimiento* y es la resistencia a compresión (FM). Después, el modelo pierde rigidez y termina su *fase de ablandamiento*, ese punto se denomina como fuerza de ablandamiento (FA). Por último, el cuarto punto señala la fuerza residual del modelo (FR). En el análisis del primer RVE, los cuatro puntos distintivos son:

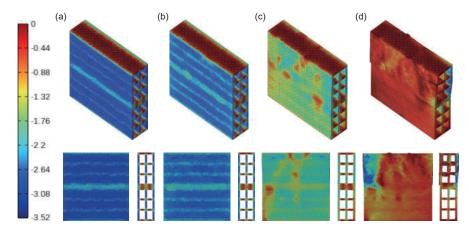
Tabla 3.5. Resultados reducidos del RVE 1 y puntos distintivos: (6) LI = 8,05 kN, (33) FM = 24,52 kN, (44) FA = 19,63 kN y (76) FR = 4,89 kN.

	Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
	377	94,00	395,00	35438	15
Paso	Deformación (mm)	Carga (kN)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
1	0,040	1,3667	1366,69	0,039	0,00010
6	0,240	8,0516	8051,60	0,227	0,00061
10	0,400	12,6200	12619,97	0,356	0,00101
20	0,800	20,7239	20723,87	0,585	0,00203
30	1,200	24,3340	24333,95	0,687	0,00304
33	1,320	24,5190	24519,01	0,692	0,00334
40	1,600	22,3266	22326,63	0,630	0,00405
44	1,760	19,6281	19628,13	0,554	0,00446
50	2,000	15,0879	15087,92	0,426	0,00506
60	2,400	11,0908	11090,76	0,313	0,00608
70	2,800	7,0077	7007,70	0,198	0,00709
76	3,040	4,8917	4891,67	0,138	0,00770
80	3,200	3,9717	3971,72	0,112	0,00810
90	3,600	2,8937	2893,67	0,082	0,00911
100	4,000	2,5230	2523,01	0,071	0,01013


Figura 3.6. Curva esfuerzo - deformación RVE 1 y puntos distintivos.

Fuente: Propia.

La figura 3.7 muestra la evolución de daño para cada punto correspondiente, en donde la figura 3.7a no evidencia un daño en el modelo al inicio de la respuesta no lineal. Al analizar el segundo punto (veáse figura 3.7b), presenta un aumento de daño (0,37) en la zona superior central y las paredes internas del RVE. El daño aumenta (cerca de 1) en la misma zona central superior del modelo y las paredes internas llegan hasta un daño de aproximadamente 0.5,en el estado de fuerza de ablandamiento (veáse figura 3.7c). Por último, el estado previo a la resistencia residual (veáse figura 3.7d) expone un daño total (1) diagonal en la cara lateral, además de la falla por flexión. Este daño final es consistente con la falla de las muestras experimentales bajo fuerzas de compresión crecientes.


Figura 3.7. Daños materiales con desplazamientos (a) ux=0,24 mm (límite inelástico), (b) ux=1,32 mm (resistencia a la compresión), (c) ux=1,76 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 1.

Fuente: Propia.

Ahora bien, la figura 3.8 analiza los esfuerzos a tensiones de compresión en los cuatro puntos distintivos. En el inicio de la respuesta inelástica (figura 3.8a), los esfuerzos a compresión se concentran en las paredes laterales y central del ladrillo, los cuales son mayores a las efectuadas por la junta de mortero, ya que un elemento mas rígido requiere una carga mayor para lograr el mismo desplazamiento. El estado que refleja la resistencia máxima del modelo (véase figura 3.8b) muestra una disminución en la capacidad portante en las divisiones horizontales internas a lo largo de todo el modelo. Después de alcanzar la resistencia máxima comienza el estado de ablandamiento, donde se aprecia una notable reducción de las tensiones presentes en el modelo (véase 3.8c). El estado final (véase figura 3.8d) indica las tensiones residuales correspondientes a daños prácticamente en la totalidad del modelo y por consecuencia su inminente falla.

Figura 3.8. Esfuerzos principales mínimos con desplazamientos(a) ux=0,24 mm (límite inelástico), (b) ux=1,32 mm (resistencia a la compresión), (c) ux=1,76 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 1.

Fuente: Propia.

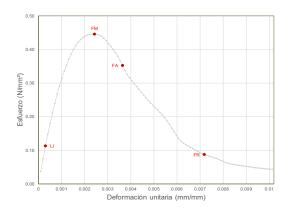

En el análisis del segundo RVE se obtiene los siguientes resultados :

Tabla 3.6. Resultados reducidos del RVE 2 y puntos distintivos: (3) LI = 3,99 kN, (24) FM = 15,74 kN, (36) FA = 12,45 kN y FR = 3,09 kN.

	Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
	376	94,00	395,00	35344	15
Paso	Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
1	0,040	1,3310	1330,97	0,038	0,00010
3	0,120	3,9918	3991,77	0,113	0,00030
10	0,400	11,1055	11105,54	0,314	0,00101
24	0,960	15,7349	15734,95	0,445	0,00243
30	1,200	14,7450	14744,99	0,417	0,00304
36	1,440	12,4491	12449,08	0,352	0,00365
40	1,600	10,8449	10844,88	0,307	0,00405
50	2,000	8,0207	8020,71	0,227	0,00506
60	2,400	4,7966	4796,61	0,136	0,00608
70	2,800	3,1919	3191,94	0,090	0,00709
71	2,840	3,0870	3087,00	0,087	0,00719
80	3,200	2,2685	2268,47	0,064	0,00810
90	3,600	1,8245	1824,46	0,052	0,00911
100	4,000	1,5476	1547,60	0,044	0,01013

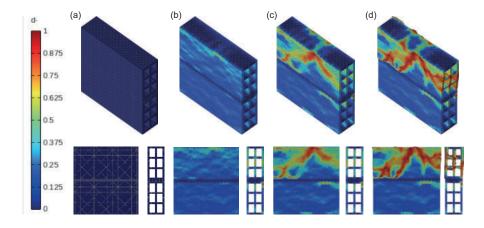
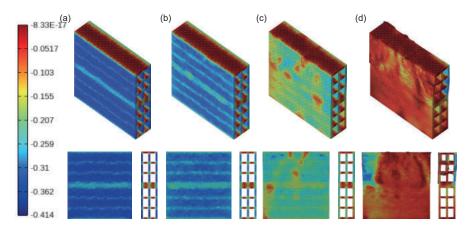

Fuente: Propia.

Figura 3.9. Curva esfuerzo - deformación RVE 2 y puntos distintivos. (3) LI = 3,99 kN, (24) FM = 15,74 kN, (36) FA = 12,45 kN y FR = 3,09 kN.

La Figura 3.10 enseña la evolución de daño a compresión en las distintas fases de análisis. En primer lugar, en el inicio de la respuesta inelástica no existe un daño evidente en el modelo (véase Figura 3.10a). La figura 3.10b, esfuerzo máximo, muestra un aumento del daño en la zona superior central del RVE (0.4) y un aumento menor en las divisiones internas de cada ladrillo. En la fase de ablandamiento (véase figura 3.10c) del material, se presenta un daño cercano al máximo (1) sobre la cara lateral y se extiende diagonalmente hacia las esquinas del ladrillo. Por último, se determina la falla por flexión y el daño total de la pared lateral del ladrillo (véase Figura 3.10d).


Figura 3.10. Daños materiales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,96 mm (resistencia a la compresión), (c) ux=1,44 mm (resistencia de ablandamiento), (d) ux=2,84 mm (resistencia residual) del RVE 2.

Fuente: Propia. Fuente: Propia.

El esfuerzo a ejercido por el RVE se muestra en la figura 3.11. De la misma forma el análisis del primer punto muestra la variación del esfuerzo realizado entre las paredes del RVE y la junta de mortero, siendo mayor el esfuerzo en las paredes del modelo en la fase inelástica del material (véase figura 3.11a). El esfuerzo máximo produce un esfuerzo mayor de las divisiones internas del ladrillo y se evidencia en las paredes laterales del ladrillo (véase Figura 3.11b). La fase de ablandamiento se representa en la figura 3.11c y muestra un esfuerzo uniforme menor en las caras laterales del modelo. Por último, en la fase residual (véase figura 3.11d) se visualiza el fallo por flexión del RVE y un daño casi total del modelo.

Figura 3.11. Esfuerzos principales mínimos con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,96 mm (resistencia a la compresión), (c) ux=1,44 mm (resistencia de ablandamiento), (d) ux=2,84 mm (resistencia residual) del RVE 2.

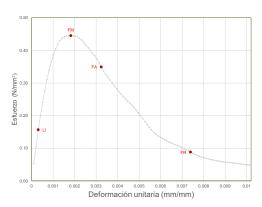
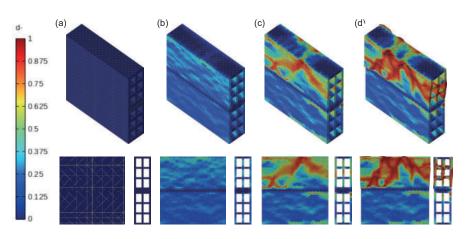

Los resultados del tercer RVE en cada punto específico son:

Tabla 3.7. Resultados reducidos del RVE 3 y sus puntos distintivos: (3) LI = 5,50 kN, (18) FM = 15,65 kN, (32) FA = 12,27 kN y (73) FR = 3,10 kN.

	Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
	374	94,00	395,00	35156	15
Paso	Deformación (mm)	Carga (kN)	Carga (N)	Esfuerzo (N/mm²)	Deformación Uni- taria (mm/mm)
1	0,040	1,8576	1857,57	0,053	0,00010
3	0,120	5,5065	5506,48	0,157	0,00030
10	0,400	13,5733	13573,33	0,386	0,00101
18	0,720	15,6508	15650,82	0,445	0,00182
20	0,800	15,5885	15588,53	0,443	0,00203
30	1,200	13,1317	13131,73	0,374	0,00304
32	1,280	12,2741	12274,15	0,349	0,00324
40	1,600	9,6289	9628,86	0,274	0,00405
50	2,000	7,0277	7027,74	0,200	0,00506
60	2,400	4,5748	4574,81	0,130	0,00608
70	2,800	3,4812	3481,18	0,099	0,00709
73	2,920	3,1008	3100,84	0,088	0,00739
80	3,200	2,4464	2446,44	0,070	0,00810
90	3,600	1,9987	1998,70	0,057	0,00911
100	4,000	1,7014	1701,40	0,048	0,01013

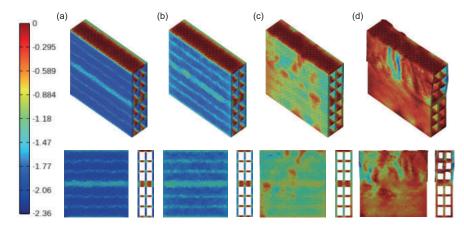
Fuente: Propia.


Figura 3.12. Resultados reducidos del RVE 3 y sus puntos distintivos: (3) LI = 5,50 kN, (18) FM = 15,65 kN, (32) FA = 12,27 kN y (73) FR = 3,10 kN.

Fuente: Propia.

Los daños en el material en cada punto distintivo se muestra en la figura 3.13. En la primera fase de límite inelástico no se evidencia ningún tipo de daño en el material (véase figura 3.13a), el siguiente punto corresponde a la resistencia máxima (véase figura 3.13b) y muestra un daño (0,4) en el ladrillo superior y las divisiones internas. La tercera fase, abladamiento, nos enseña un alto nivel de daño (cercano a 1) en la zona central de la pared lateral del RVE. La última etapa de análisis, vemos el daño completo del material (1) correspondiente a la fuerza residual (véase figura 3.13c).

Figura 3.13. Daños materiales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,72 mm (resistencia a la compresión), (c) ux=1,28 mm (resistencia de ablandamiento), (d) ux=2,92 mm (resistencia residual) del RVE 3.


Fuente: Propia

La figura 3.14 analiza los esfuerzos a tensiones de compresión en las cuatro etapas distintivas de análisis. El inicio de la respuesta inelástica (véase figura 3.14a) los esfuerzos a compresión mayores se hallan en las paredes laterales del RVE, a su vez, se evidencia un esfuerzo menor en la junta de

mortero y las divisiones internas del modelo, esto por la diferencia de rigidez de los dos materiales. La fase de resistencia máxima (véase figura 3.14b) muestra la reducción de la resistencia en la junta y divisiones internas. En el estado de ablandamiento (véase figura 3.14c) se aprecia una reducción de esfuerzos en el modelo. La etapa residual (véase figura 3.14d) indíca la disminución total de esfuerzos del modelo y su falla por flexión.

Figura 3.14. Esfuerzos principales con desplazamientos (a) ux=0,12 mm (límite inelástico), (b) ux=0,72 mm (resistencia a la compresión), (c) ux=1,28 mm (resistencia de ablandamiento), (d) ux=2,92 mm (resistencia residual) del RVE 3.

Fuente: Propia

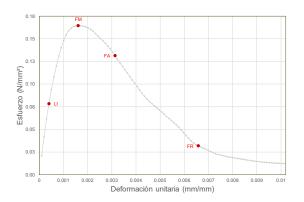

El análisis del cuarto RVE muestra los siguientes resultados:

Tabla 3.8. Resultados reducidos del RVE 4 y sus puntos distintivos: (4) LI = 2,76 kN, (16) FM = 5,80 kN, (31) FA = 4,63 kN y (65) FR = 1,12 kN.

	Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
	375	94,00	395,00	35250	15
Paso	Deformación (mm)	Carga (kN)	Carga (N)	Esfuerzo (N/ mm²)	Deformación Unitaria (mm/mm)
1	0,040	0,7383	738,27	0,021	0,00010
4	0,160	2,7592	2759,17	0,078	0,00041
10	0,400	5,2125	5212,55	0,148	0,00101
16	0,640	5,7962	5796,17	0,164	0,00162
20	0,800	5,7070	5706,95	0,162	0,00203
30	1,200	4,7728	4772,78	0,135	0,00304
31	1,240	4,6287	4628,74	0,131	0,00314
40	1,600	3,4279	3427,90	0,097	0,00405
50	2,000	2,4401	2440,14	0,069	0,00506
60	2,400	1,5248	1524,82	0,043	0,00608
65	2,600	1,1200	1119,98	0,032	0,00658
70	2,800	0,8978	897,81	0,025	0,00709
80	3,200	0,6448	644,81	0,018	0,00810
90	3,600	0,5020	502,00	0,014	0,00911
100	4,000	0,4332	433,23	0,012	0,01013

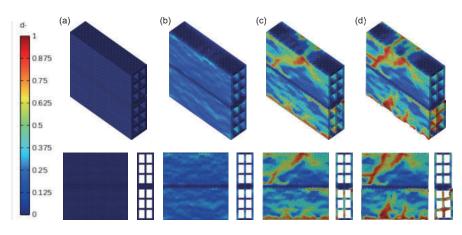
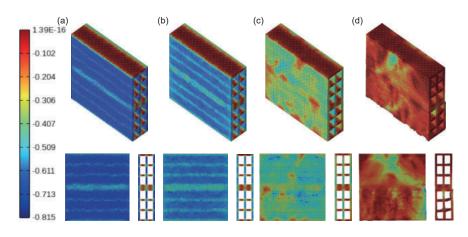

Fuente: Propia

Figura 3.15. Curva esfuerzo - deformación del RVE 4 y sus puntos distintivos: (4) LI = 2.76 kN, (16) FM = 5.80 kN, (31) FA = 4.63 kN y (65) FR = 1.12 kN.

El análisis muestra la evolución de daños en los cuatro puntos distintivos. El primer punto corresponde a la fuerza que inicia la respuesta inelástica, no presenta ningun daño (véase figura 3.16a), en la fase de fuerza máxima se aprecia un leve aumento de daño en el modelo (véase figura 3.16b), La figura 3.16c muestra el daño bajo el comportamiento de ablandamiento. En esta etapa, el daño (aproximadamente 1) aumenta en las paredes centrales y en la base el RVE (véase figura 3.16c). El daño en el ultimo estado previo a la resistencia residual, muestra la falla total en las diagonales del RVE (véase figura 3.16d).

Figura 3.16. Daños materiales con desplazamientos (a) ux=0,16 mm (límite inelástico), (b) ux=0,64 mm (resistencia a la compresión), (c) ux=1,24 mm (resistencia de ablandamiento), (d) ux=2,60 mm (resistencia residual) del RVE 4.



Fuente: Propia

La figura 3.17a muestra los esfuerzos en el modelo al inicio de la respuesta inelástica, los cuales son menores en los elementos que representan la unión de mortero, ya que son mas rígidos y necesitan una fuerza mayor

para tener el mismo desplazamiento. El estado de tensiones que da como resultado la resistencia máxima del RVE (véase figura 3.17b) muestra una disminución de esfuerzos en el modelo. El modelo se ablanda debido al aumento de daño y por ende se reduce las tensiones en el modelo (véase figura 3.17c). La etapa final (véase figura 3.17d) presenta las tensiones residuales correspondientes a daños en la mayoria de los elementos y como consecuencia su falla por flexión, consecuente con la experimentación en laboratiorio.

Figura 3.17. Esfuerzos principales con desplazamientos (a) ux=0,16 mm (límite inelástico), (b) ux=0,64 mm (resistencia a la compresión), (c) ux=1,24 mm (resistencia de ablandamiento), (d) ux=2,60 mm (resistencia residual) del RVE 4.

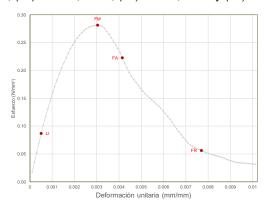
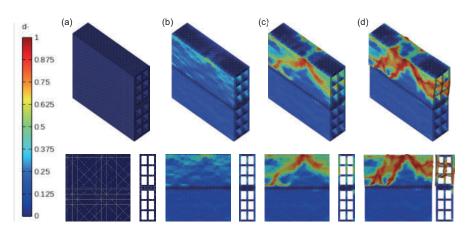

El análisis del quinto y último RVE presenta los resultados:

Tabla 3.9. Resultados reducidos del RVE 5 y sus puntos distintivos: (5) LI = 3,07 kN, (30) FM = 9,94 kN, (41) FA = 7,87 kN y (76) FR = 1,99 kN.

	Largo (mm)	Ancho (mm)	Altura (mm)	Área (mm²)	Junta (mm)
	376	94,00	395,00	35344	15
paso	Deformación (mm)	Carga (kN)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
1	0,04	0,6212	621,17	0,01758	0,00010
5	0,20	3,0678	3067,83	0,08680	0,00051
10	0,40	5,6132	5613,16	0,15882	0,00101
20	0,80	8,9230	8922,96	0,25246	0,00203
30	1,20	9,9408	9940,82	0,28126	0,00304
40	1,60	8,1893	8189,25	0,23170	0,00405
41	1,64	7,8725	7872,50	0,22274	0,00415
50	2,00	5,7632	5763,16	0,16306	0,00506
60	2,40	4,3409	4340,86	0,12282	0,00608
70	2,80	2,4790	2479,01	0,07014	0,00709
76	3,04	1,9849	1984,91	0,05616	0,00770
80	3,20	1,7596	1759,63	0,04979	0,00810
90	3,60	1,2881	1288,14	0,03645	0,00911
100	4,00	1,1159	1115,89	0,03157	0,01013

Fuente: Propia.


Figura 3.18. Curva esfuerzo - deformación del RVE 5 y sus puntos distintivos: (5) LI = 3.07 kN, (30) FM = 9.94 kN, (41) FA = 7.87 kN y (76) FR = 1.99 kN.

Fuente: Propia

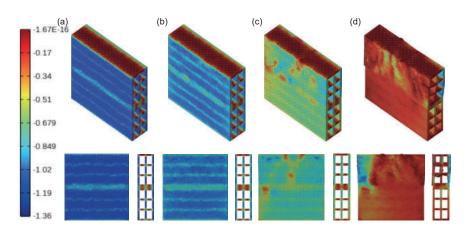
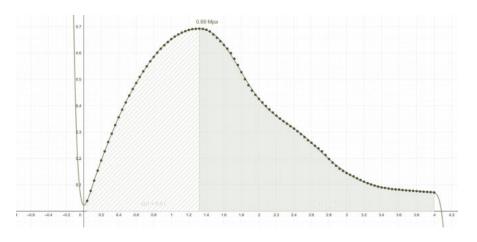

El análisis del daño material del ultimo RVE deja los siguientes resultados en cada punto especifico de estudio (véase figura 3.19). La primera fase correspondiente al inicio del comportamiento inelástico muestra que en el modelo no existe ningun tipo de daño (véase figura 3.19a), En la etapa de esfuerzo máximo (véase figura 3.19b) se determina indicios de daño (0,5) en el ladrillo superior en las paredes laterales. El material pierde capacidad portante hasta llegar al estado de ablandamiento, en donde se aprecia un índice de daño considerable Las paredes laterales del RVE presenta un daño diagonal desde el centro superior (véase figura 3.19c). Finalmente, en la resistencia residual se aprecia la falla por flexión del RVE con un daño completo (1) (véase figura 3.19d).

Figura 3.19. Daños materiales con desplazamientos (a) ux=0,20 mm (límite inelástico), (b) ux=1,20 mm (resistencia a la compresión), (c) ux=1,64 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 5.

Los esfuerzos principales a compresión en sus cuatro etapas de análisis se presentan en la figura 3.20. En donde el inicio del limite inelástico del modelo se caracteriza por mostrar la variación de esfuerzos en cada material, se aprecia un esfuerzo a compresión mayor en las paredes del ladrillo y uno menor en la junta de mortero asi como en las juntas de las divisiones internas del modelo (véase figura 3.20a). El estado de esfuerzo máximo deja en evidencia esta variación (véase figura 3.20b). Sin embargo, se visualiza una tendencia de uniformidad en los esfuerzos ejercidos por el modelo. En el estado de ablandamiento enseña una disminución y regularidad de esfuerzos en el modelo (véase figura 3.20c). Por último, el modelo falla totalmente en el estado de esfuerzo residual. Este fallo es consistente con los ensayos experimentales realizados en laboratorio.

Figura 3.20. Esfuerzos principales con desplazamientos (a) ux=0,20 mm (límite inelástico), (b) ux=1,20 mm (resistencia a la compresión), (c) ux=1,64 mm (resistencia de ablandamiento), (d) ux=3,04 mm (resistencia residual) del RVE 5.



Fuente: Propia

3.6 Determinación de propiedades efectivas para macroanálisis de muros de mampostería de ladrillo tochana.

De las simulaciones realizadas en este capítulo se determinan algunas propiedades útiles para el posterior análisis de muros de mampostería tipicos de la ciudad. Los valores considerados son el módulo elástico del RVE (E) y la resistencia máxima a compresión (f_c). El valor correspondiente a la energía de fractura por compresión se determina mediante el área bajo la curva esfuerzo - deformación (véase figura 3.21) desde la fuerza máxima hasta el inicio de la fuerza residual. El valor se obtiene como un promedio de los cinco RVE's analizados.

Figura 3.21. Energía de fractura de compresión - Área bajo curva esfuerzo - deformación.

El último parámetro necesario para el macro.análisis de muros de mamporteria es el módulo de cortante del RVE (G). Este es determinado mediante la fórmula

$$G = \frac{E}{2(1+v)} \tag{3.3}$$

En donde E corresponde al módulo elástico del materiales y v al coeficiente de Poisson para ladrillos huecos v = 0,17. El módulo a cortante es el promedio del cálculo en los cinco RVE's analizados.

Tabla 3.10. Propiedades efectivas obtenidas a partir de simulaciones en cinco RVE's.

	E (Mpa)	f _c (Mpa)	G _c (N/mm)	G (Mpa)
M1	380,84	0,6919	0,77	162,750
M2	371,86	0,4452	0,55	158,914
M3	521,74	0,4452	0,61	222,964
M4	206,69	0,1644	0,22	88,327
M5	173,55	0,2813	0,33	74,168
Promedio	330,93	0,4056	0,4960	141,425

Fuente: Propia.

Además, es necesario determinar otras propiedades necesarias para el análisis a nivel macro. Por lo que, se toma los resultados obtenidos por la investigación de García et. Al. (2024). Estas propiedades se obtuvieron mediante experimentación a compresión y tracción sobre 100 modelos de ladrillos tochana (véase tabla 3.10).

Tabla 3.11. Propiedades efectivas obtenidas mediante experimentación en 100 RVE's.

E	G	f _t	G _t	f _∞	f _c	f _r	G _。	E _p
(Mpa)	(Mpa)	(Mpa)	(N/mm)	(Mpa)	(Mpa)	(Mpa)	(N/mm)	(mm/mm)
460,58	93,57	0,096	0,0023	0,656	1,328	0,226	2,834	

Fuente: Adaptado de García et. al., (2024).

Por lo tanto, las propiedades efectivas a utilizar en el macro - análisis de muros de mamportería son las siguientes: Módulo de elasticidad (E), Módulo a cortante (G), Esfuerzo a tracción (f_t), Energía de fractura por tracción (G_t), Aproximación al comportamiento elástico (f_c), resistencia máxima a compresión (f_c), Fuerza residual a la compresión (f_t) y por último, energía de fractura por compresión (G_c) (véase tabla 3.11).

Tabla 3.12. Propiedades efectivas para macro - análisis.

E	G	f _t	G _t	f _∞	f _ಂ	f _r	G _。	E _p
(Mpa)	(Mpa)	(Mpa)	(N/mm)	(Mpa)	(Mpa)	(Mpa)	(N/mm)	(mm/mm)
330,93	141,425	0,096	0,0023	0,656	0,406	0,226	0,496	0,0056

Macroanálisis Estructural

4.1 Selección de casos de estudio.

En el marco de la investigación previa titulada "Análisis y propuesta arquitectónica sismo-resistente de viviendas adosadas con muros de mampostería en Cuenca", realizada por Quinde y Salinas en 2019, se presentan tres casos de estudio de viviendas adosadas con muros de mampostería en la ciudad de Cuenca. El propósito en esta parte del capítulo es presentar estas tres viviendas específicas, cuyas fachadas serán utilizadas posteriormente para un análisis detallado.

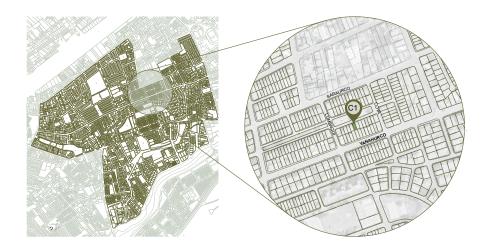
El sector E-7 de la ciudad de Cuenca, situado al este, se distingue por su extensión de 159,72 hectáreas, que incluye un total de 207 manzanas y alberga aproximadamente 4,372 predios. Este sector fue seleccionado por Quinde y Salinas (2019) como el área específica para su estudio sobre viviendas adosadas de dos pisos con muros de mampostería. El estudio destaca un alto porcentaje de viviendas adosadas, predominio de paredes de ladrillo o bloque, y casi la mitad de las viviendas son de dos pisos. Además, se reveló que la mayoría de las edificaciones están en buen estado, con un porcentaje significativo construido en hormigón armado o estructuras metálicas. En la tabla 2.3 se detallan las características específicas de la ocupación del suelo del sector E-7.

Según la metodología propuesta por Quinde y Salinas (2019), la selección de los casos de estudio se dividió en tres fases. Inicialmente, se realizó una exploración del área de estudio para identificar los casos relevantes. Posteriormente, se seleccionaron los tres casos más representativos, considerando las limitaciones temporales y de alcance del proyecto. Finalmente, se llevó a cabo análisis funcional, formal y tecnológico antes de estudios sobre configuración arquitectónica y comportamiento sísmico.

Figura 4.1. Mapa del cantón de Cuenca-Ecuador, sector de planeamiento Este E-7.

Nota. Adaptado de PDOT Cantón Cuenca - Ordenanza que regula el uso de suelo, por Municipalidad de Cuenca.

Tabla 4.1. Características de ocupación del suelo sector de planeamiento E-7.


ALTURA DE LA EDIFICACION	LOTE MINIMO (m2)	FRENTE MINIMO (m)	COS MÁXIMO (%)	DENSISAD NETA (DV)	TIPO DE IMPLANTACION	RETIROS FRONTALES. LATERALES Y POSTERIORES MÍNIMOS (m)		Υ	RETIRO LATERAL DESDE 3º PISO O PISOS QUE SUPEREN LA ALTURA DE LA(S) EDIFICACION(ES) COLINDANTE(S)
						F	L	Р	Dimensión mínima (m)
1 o 2 pisos	120	7	80	55 - 160 Viv./Ha.		5	3	3	-
3 o 4 pisos	300	12	75	igual o mayor a 110 Viv./Ha.	- Continua con retiro frontal. - Pareada con	5	3	3	3
5 o 6 pisos	500	18	75	igual o mayor a 110 Viv./Ha.	retiro frontal	5	4	4	4

Fuente: PDOT Cantón Cuenca - Ordenanza que regula el uso de suelo.

4.1.1 Caso de estudio 1.

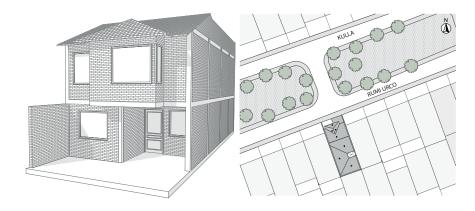

Esta vivienda unifamiliar, objeto del caso de estudio 1, se desarrolla en dos plantas y abarca una superficie total de 150.61 m². La vivienda se distingue principalmente por incluir un patio interior, y está construida con una estructura de hormigón armado y paredes de ladrillo panelón de 15 cm de grosor. La vivienda está ubicada en la calle Rumi Urcu, dentro del sector 1 de la zona de estudio. Este sector se caracteriza por la presencia predominante de viviendas de dos pisos construidas con mampostería. Además, frente a la casa se encuentra un parque diseñado para actividades recreativas. La propiedad ocupa un terreno rectangular de 92.94 m², con una disposición que incluye un retiro frontal y una implantación continua.

Figura 4.2. Ubicación de caso estudio 1.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Figura 4.3. Axonometría y Emplazamiento de caso de estudio 1.

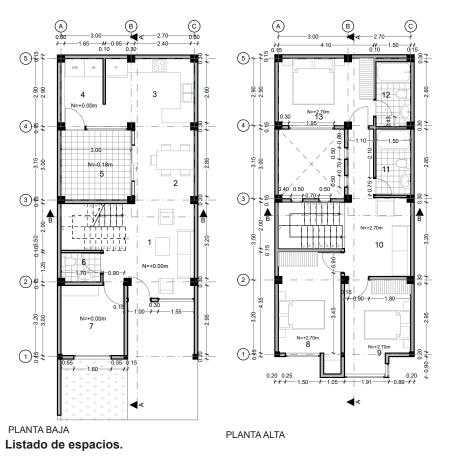
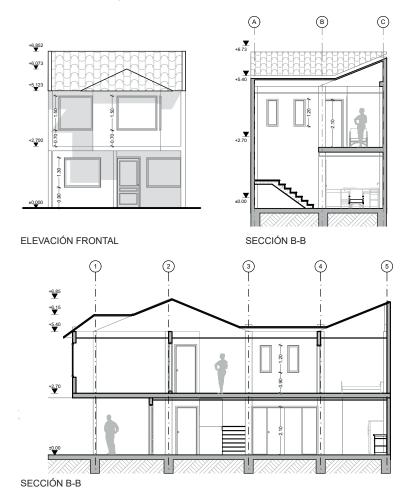

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Tabla 4.2. Datos general caso estudio 1.

Clave Catastral	0403106021000				
Ubicación	Calle Rumiurco entre Lumbaqui y Coya				
Tipo de implantación	Continua con retiro frontal				
Área	Terreno	Vivie	enda		
Alea	92,94 m2	150,6	61 m2		
Uso de suelo	Planta baja	Plant	a alta		
Oso de suelo	Vivienda	Vivie	Vivienda		
	Terreno	Frente	Fondo		
Dimensiones	rerreno	6 m	15,6 m		
Dimensiones	Edificación	Frente	Fondo		
	Edilicación	6 m	13 m		
Retiros	Frontal		2,6		
Retiros	Posterior		Х		

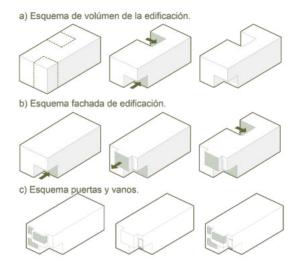
Adaptado de A. Quinde y M. Salinas, 2019.


Figura 4.4. Planta Alta y Baja caso estudio 1.

1. Sala, 2. Comedor, 3. Cocina, 4. Lavandería, 5. Patio, 6. Baño social, 7. Estudio, 8. Dormitorio 1, 9. Dormitorio 2, 10. Sala de estar, 11. Baño compartido, 12. Baño máster, 13. Dormitorio máster

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Figura 4.5. Elevación y Secciones caso estudio 1.


Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Análisis Formal.

El diseño de la edificación muestra un volumen inicial regular que se modifica con retranqueos estratégicos (véase figura 4.6 inciso a). En la planta alta, se destaca un plano que proporciona una apariencia estilizada y específica al edificio. Simultáneamente, en la planta baja se realiza un retranqueo funcional para cumplir con necesidades prácticas y de uso del espacio (véase figura 4.6 inciso b). La fachada frontal presenta cuatro ventanas y una puerta principal (véase figura 4.6 inciso c) dispuestas de manera no simétrica ni alineada con ejes específicos, contribuyendo a la singularidad del diseño arquitectónico.

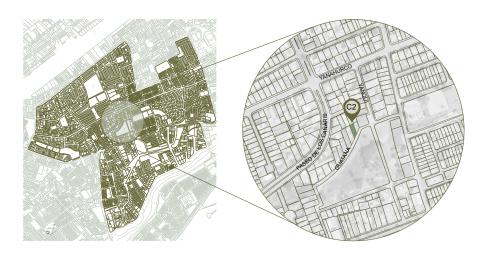
Figura 4.6. Esquema formal caso estudio 1.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Análisis tecnológico.

El caso de estudio 1 emplea una estructura principal de hormigón armado con muros de ladrillo confinados. La cubierta combina planchas metálicas de zinc y teja. Las columnas, de 0.30 x 0.30 metros, están alineadas horizontalmente con espacios de 3 metros entre ellas. Las paredes interiores tienen enlucido y empaste, con cerámica en áreas húmedas. La fachada frontal tiene enlucido, empaste y pintura exterior. Los pisos son de piso flotante en áreas de descanso y porcelanato en zonas húmedas. Las ventanas son de aluminio con vidrio, y las puertas interiores de MDF (véase figura 4.7).

Figura 4.7. Esquema de acabados caso estudio 1.



Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

4.1.2 Caso de estudio 2.

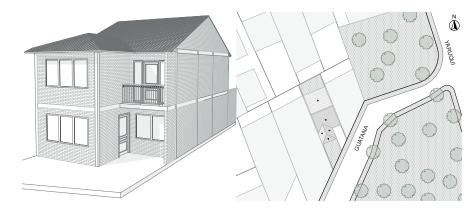

La vivienda unifamiliar en estudio abarca 150.61 metros cuadrados distribuidos en dos plantas y se encuentra en un terreno de 138.98 metros en la calle Guataná. Esta construcción cuenta con una estructura de hormigón armado y paredes de ladrillo de 15 centímetros de espesor. Su diseño incluye una forma irregular debido a un retranqueo en la fachada y un retiro posterior, lo que da lugar a una fachada adicional.

Figura 4.8. Ubicación caso estudio 2.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Figura 4.9. Axonometría y Emplazamiento caso estudio 2.

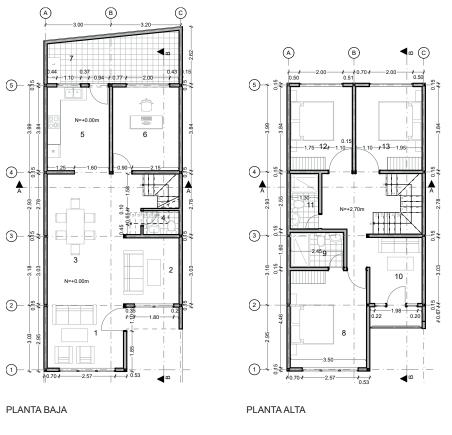
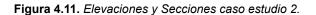
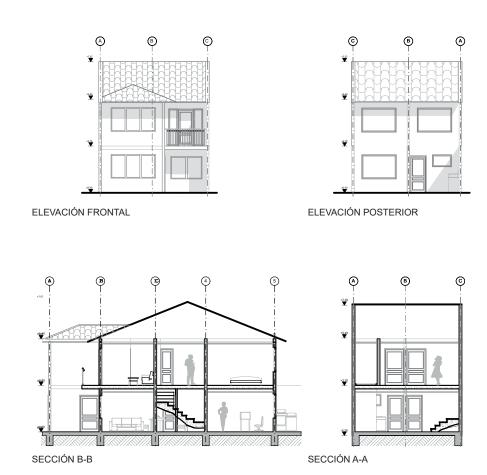

Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Tabla 4.3. Datos general caso estudio 2.

Clave Catastral:	0403058120000				
Ubicación:	Calle Guataná				
Tipo de implantación	Continua con retiro frontal y posterior				
Área	Terreno	Vi	vienda		
Alea	138.98 m2	152	2.90 m2		
Uso de suelo	Planta baja	Planta alta			
Oso de suelo	Vivienda	Vi	vienda		
	Terreno -	Frente	Fondo		
Dimensiones	Terreno —	6.4	25		
Dimensiones	Edificación —	Frente	Fondo		
	Edilicación —	6.4	13.5		
Define	Frontal	5.0 m			
Retiros	Posterior		3.0 m		

Fuente: Adaptado de A. Quinde y M. Salinas, 2019.

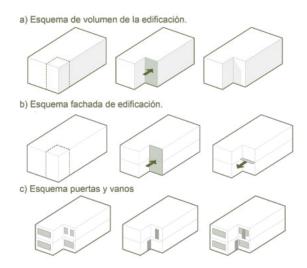

Figura 4.10. Planta Alta y Baja caso estudio 2.



Listado de espacios.

1. Sala, 2. Comedor, 3. Cocina, 4. Lavandería, 5. Patio, 6. Baño social, 7. Estudio, 8. Dormitorio 1, 9. Dormitorio 2, 10. Sala de estar, 11. Baño compartido, 12. Baño máster, 13. Dormitorio máster

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.


Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Análisis Formal.

La estructura se caracteriza por un volumen que surge de la sustracción de una esquina de forma regular (véase figura 4.12 inciso a). La edificación cuenta con dos fachadas: la frontal, que incluye un balcón y carece de elementos adicionales, y la posterior, que se presenta como una superficie plana (véase figura 4.12 inciso b). En la fachada frontal, se disponen tres ventanas y una puerta alineadas verticalmente hacia el balcón, mientras que el acceso principal está lateralmente ubicado. En contraste, la fachada posterior exhibe cuatro ventanas y una puerta que dan al patio, todas colocadas en un mismo plano vertical (véase figura 4.12 inciso c).

Figura 4.12. Esquema formal caso estudio 2.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Análisis tecnológico.

La estructura principal emplea hormigón armado y mampostería de ladrillo para estabilidad. La cubierta, formada por planchas metálicas de zinc y tejas, ofrece protección. Las columnas se distribuyen regularmente, salvo el eje B con desplazamiento horizontal. Los acabados incluyen paredes enlucidas y empastadas, con cerámica en áreas húmedas; la fachada frontal se completa con enlucido, empaste y pintura exterior. Los pisos varían con piso flotante en áreas sociales y porcelanato en zonas húmedas. Ventanas de aluminio con vidrio mejoran la eficiencia energética, y puertas y clósets de MDF combinan funcionalidad y estética (véase figura 4.13).

Figura 4.13. Esquema de acabados caso estudio 2.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

4.1.2 Caso de estudio 2.

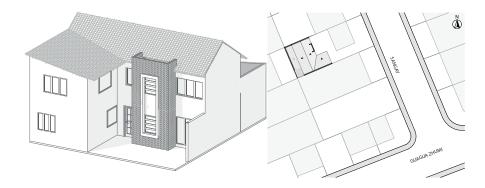

Este terreno alberga dos viviendas unifamiliares contiguas, con esta vivienda específicamente ubicada en la parte trasera y accesible desde un lateral de la vía principal. Con un área en planta baja de entre 80 y 100 m², está construida con estructura de hormigón armado y paredes de ladrillo de 15 cm de grosor. Su diseño más cuadrado la distingue de las viviendas anteriores, que solían tener una forma rectangular.

Figura 4.14. Ubicación de caso estudio 1.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Figura 4.15. Axonometría y Emplazamiento caso estudio 3.

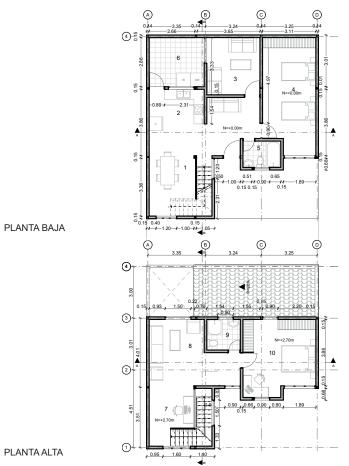

Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Tabla 4.4. Datos general caso estudio 3.

Clave Catastral:	0405009006000				
Ubicación:	Calla Sangay y Altar Urco				
Tipo de implantación	Continua con retiro frontal				
	Terreno	Vivie	enda		
Área	247 m2	146,5	54 m2		
Llas de suela	Planta baja	Plant	a alta		
Uso de suelo	Vivienda	Vivie	enda		
	Terreno	Frente	Fondo		
Dimensiones	refreno	6.5	15		
Differsiones	Edificación	Frente	Fondo		
	Lunicación	6.5	8		
Retiros	Frontal	7			
1,0,1105	Posterior		Х		

Adaptado de A. Quinde y M. Salinas, 2019.

Figura 4.16. Planta Alta y Baja caso estudio 3.

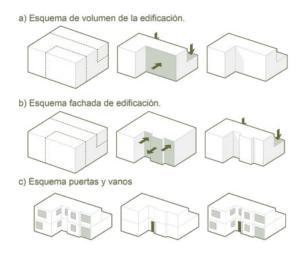


Listado de espacios.

Comedor, 2. Cocina, 3. Sala, 4. Dormitorio, 5. Baño social, 6. Lavandería Planta alta, 7. Estudio, 8. Sala de estar, 9. Baño máster, 10. Dormitorio máster

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Figura 4.17. Elevación y Secciones caso estudio 2.


Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

Análisis formal.

La vivienda exhibe un volumen irregular debido a dos retranqueos: uno en la fachada frontal y otro en la parte posterior, ubicados únicamente en la planta alta (véase figura 4.18 inciso a). La fachada se caracteriza por su forma no uniforme y presenta un elemento saliente cubierto de material pétreo, mostrando cuatro planos distintos cuando se observa desde el frente (véase figura 4.18 inciso b). La disposición de ventanas y puertas en esta fachada no sigue ningún criterio formal claro, con ventanas que no están alineadas y una entrada principal situada en el centro de la vivienda (véase figura 4.18 inciso c).

Figura 4.18. Esquema formal caso estudio 3.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

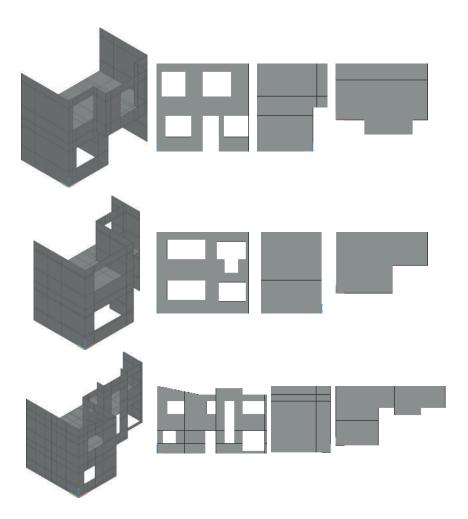
Análisis tecnológico.

La vivienda tiene estructura de hormigón armado, con muros de mampostería reforzada y ladrillo sin refuerzo adicional. El techo es de planchas de zinc. Las columnas, de 0.15 x 0.15 metros, están regularmente distribuidas, con excepción del eje C que muestra un desplazamiento. Las paredes interiores están enlucidas y empastadas, con áreas húmedas revestidas de cerámica. La fachada frontal incluye enlucido, empaste, pintura exterior y secciones con revestimiento de piedra. Los pisos varían entre piso flotante en áreas de descanso y social, y porcelanato en áreas húmedas y de servicio (véase figura 4.19).

Figura 4.19. Esquema de acabados caso estudio 3.

Fuente: Adaptado de A. Quinde y M. Salinas, 2019, Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/33708.

4.2 Modelo matemático


Para desarrollar el modelo matemático correspondiente a las fachadas de los casos de estudio, es imperativo proceder con la idealización del modelo. Asimismo, es esencial determinar las características de los materiales involucrados, asignar las cargas pertinentes y establecer las condiciones de borde adecuadas.

4.2.1 Idealización del modelo

El objetivo principal es simplificar la volumetría de la edificación, sin perder las características principales de la configuración arquitectónica. Para realizarla se usa el método de elementos finitos (FEM, por sus siglas en inglés), este procedimiento contempla la división de la estructura en un numero finito de elementos conectados por nodos (Frías, 2004). Este proceso, denominado discretización de elementos, facilita tanto la asignación de grados de libertad como la localización precisa de cada elemento en el espacio.

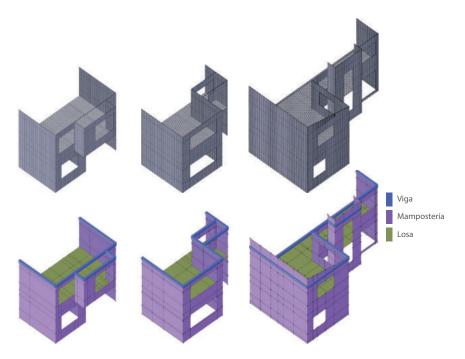

Antes de proceder con dicha simplificación, es imprescindible desarrollar un modelo base de los casos de estudio en el programa Autocad, utilizando un entorno tridimensional y la herramienta 3D Face. A pesar de que la investigación se centra en las fachadas de la edificación, es necesario modelar las paredes laterales (véase figura 4.20). Esto permite representar adecuadamente la implantación adosada de los tres casos de estudio. Los planos que conforman cada pared del modelo se subdividen con respecto a los vanos de la edificación, de esta forma se consigue un modelo continuo.

Figura 4.20. Modelo tres casos de estudio en Autocad. Axonometría, fachada frontal, fachada lateral y planta.

Este modelo se importa en el programa STKO para realizar la discretización de elementos. Para ello, el modelo se divide en una malla discreta de elementos finitos compuesta por cuadrilateros de 100 mm (véase figura 4.21a). Es importante considerar que mientras mas pequeña sea la malla, se obtienen resultados mas acertados para la evaluación sismica de la edificación. Además, el modelo contempla una viga de cierre con una sección de 150 x 200 mm en la parte superior de la mampostería con el objetivo de arriostrar la fachada a las paredes laterales (véase figura 4.21b).

Figura 4.21. Modelo tres casos de estudio. (a) Modelo discreto y (b) elementos del modelo.

Fuente: Propia.

4.2.2 Características de los materiales

En el presente estudio, se ha determinado que las características de los materiales utilizados son consistentes en los tres casos de estudio. Para el análisis de sus características, se consideran tres elementos: mampostería, losa y viga de cierre.

Propiedades mecánicas de los materiales

Las propiedades mecánicas esenciales para el análisis de una edificación son las siguientes: coeficiente de Poisson (v), módulo elástico (E) y la densidad (ρ). En el capitulo 3 se determinaron el coeficiente de Poisson y el módulo elástico, los cuales son los siguientes:

Tabla 4.5. Coeficiente de Poisson y módulo elástico para materiales de estudio.

Material	Coeficiente (v)	Módulo Elástico (E)
Ladrillo hueco	0.17	330.93
Hamminda	0.2	20000
Hormigón	0,2	20000
Mortero	0,2	3078,8

Fuente: Propia

La densidad es una magnitud escalar que hace referencia a la cantidad de masa en un cuerpo con un volúmen determinado (Morocho, Sarmiento, 2020). Para este caso de estudio se deteminan las cargas por peso propio y no se consideran cargas adicionales ya que el objeto de estudio es la fachada de mampostería de ladrillo hueco.

Densidad del muro de mampostería

Los elementos que representan el material ladrillo se debe considerar el peso propio del material y no se considera ningun tipo de enlucido o empastado. Los cálculos realizados se basan en la experimentación en laboratorio. La tabla 4.5 muestra los resultados de densidad por unidad de ladrillo. Posteriormente, es necesario hallar la cantidad de ladrillos por metro cuadrado en un muro de mampostería, a partir de la longitud (L), la altura (H), la junta horizontal (J_n) y la junta vertical (J_v) (véase fórmula 4.1). Además, se determina la densidad del mortero presente en las juntas del muro a través de la fórmula 4.2 en donde relaciona el volúmen del muro (V_{mu}) y el volúmen del ladrillo (V_{la}).

Tabla 4.6. Densidad por unidad de ladrillo hueco.

Ladrillo Nº	Peso (g)	Largo (mm)	Ancho (mm)	Altura (mm)	Volúmen (mm³)	Masa (g)	Masa (Kg)	Volúmen (m³)	Densidad (Kg/m³)
1A	2399,3	183	94,00	190	3023160	4798,6	4,7986	0,00302	1587,280
1B	2456,4	189	94,00	190	3122280	4912,8	4,9128	0,00312	1573,466
2A	2357,4	186	95,00	190	3143400	4714,8	4,7148	0,00314	1499,905
2B	2382,4	188	95,00	190	3177200	4764,8	4,7648	0,00318	1499,685
3A	2412,2	188	94,00	190	3105760	4824,4	4,8244	0,00311	1553,372
3B	2430,9	187	94,00	190	3089240	4861,8	4,8618	0,00309	1573,785
4A	2413,9	188	94,00	190	3105760	4827,8	4,8278	0,00311	1554,467
4B	2379,6	188	94,00	190	3105760	4759,2	4,7592	0,00311	1532,379
5A	2429,7	187	94,00	190	3089240	4859,4	4,8594	0,00309	1573,008
5B	2388,8	188	94,00	190	3105760	4777,6	4,7776	0,00311	1538,303
Promedio:	2405,0	374,4	94,20	190	3106756	4810,1	4,8101	0,00311	1548,565

Fuente: Propia

$$CL = \frac{1}{(L+J_h)\times (H+J_v)}$$
 (4.1)

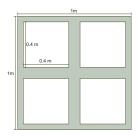
$$V_{mo} = V_{mu} - V_{la} \tag{4.2}$$

Carga por peso propio: Mampostería

La masa total del muro de mampostería se presenta en la tabla 4.6, además es necesario considerar la conversión de la masa, puesto que la magnitud es Kg y se desea trabajar en Ns²/mm³.

Tabla 4.7. Masa total del muro de mampostería. (a) Cantidad de ladrillos por metro cuadrado. (b) Densidad de mortero (c) Masa total del muro por metro cúbico.

(a)	Largo (L) (m)		ıra (H) (m)	Espesor junta Horizontal (Jh) (m)	Espesor junta Vertical (Jv) (m)	Cantidad de ladrillos por m²
	0,3744	(),19	0,015	0,015	13
(b)	Volúmen de muro (Vmu) (m³)	de la	úmen adrillos a) (m³)	Volúmen de mortero (Vmo) (m³)	Peso especí- fico Mortero (kg/m³)	Densidad (Kg/m³)
	0,0942	0,0	3892	0,05528	2100	2100
(c)	Lad	rillo	Volúme 0,03892		Masa 60,26799	Ns ² /mm ³ 6,03x10 ⁻⁸
	Mor	tero	Volúme 0,05528		Masa 116,09	Ns ² /mm ³ 1,16x10 ⁻⁷ 1,76x10 ⁻⁷


Fuente: Propia.

Carga por peso propio: Losa

Para el análisis del peso propio se tiene en cuenta una losa alivianda de 20cm de espesor con casetones de 40 x 40 x 15 cm (véase figura 4.22). Además, es importante considerar el peso que genera el acabado de piso flotante de 1,5 cm de espesor. Los resultados del peso propio se presentan en la tabla 4.7.

Figura 4.22. Características geométricas de la losa alivianada.

Fuente: Propia.

Tabla 4.8. Resultados masa de losa alivianada con acabado.

Material	Volúmen (m³)	Densidad (Kg/m³)	Masa (Kg)	Masa (Ns²/mm³)
Hormigón	0,104	2400	249,6	2,5 x 10 ⁻⁷
Terminado	0.015	2200	33	3,3 x 10 ⁻⁸
Instalaciones	N	EC	40	4,0 x 10 ⁻⁸
Total m	asa losa alivia	323	3,23 x 10 ⁻⁷	

Fuente: Propia.

4.3 Análisis modal

El análisis modal determina los periodos y modos de vibración de una estructura (García & Degrande, 2017). Las formas en las que una estructura reacciona a un evento sísmico se denomina modo de vibración, Los modos que se consideran deben cumplir con dos lineamientos: los modos que afecten significativamente la respuesta total de la estructura y los modos que involucren al menos el 90% de la masa total en la dirección estudiada (NEC-SE-SD, 2015).

Período de vibración

La NEC en el capítulo Peligro sísmico: diseño sismoresistente, define un período de vibración como "el tiempo que transcurre en un movimiento armónico ondulatorio o vibratorio para que el sistema vibratorio vuelva a su posición original considerada luego en un ciclo de oscilación". Además, establece que los valores de los periodos a considerar deben entrar en el rango 0.1 - 1 s (NEC, 2015). Por lo que, para la actual investigación se consideran los diez primeros periodos y el período en donde existe mayor cantidad de movimiento de masa en la dirección Y. De esta forma, se identifica el período máximo y mínimo de cada estructura de estudio.

Modo de vibración

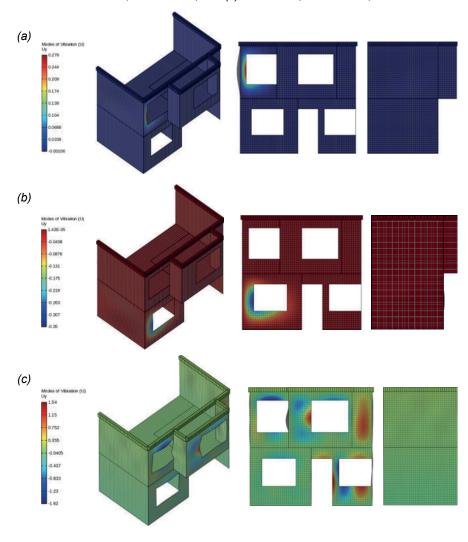
Los modos de vibración exponen los diferentes escenarios de movimiento de la masa de una estructura. En esta investigación se toma en cuenta el primer y segundo modo, además el modo en donde predomine la mayor cantidad de masa en el eje "Y". Se considera esta dirección por la tipología de vivienda del caso de estudio, al ser una vivienda adosada, las viviendas aledañas limitan el movimiento en el eje X.

4.3.1 Resultados del análisis modal

El análisis modal es realizado en el software STKO con compilaciones OpenSees. Las características de los materiales así como las condiciones de borde son expuestas en la sección 4.2 y 4.3.

Modos de vibración - Caso de estudio 1

Los resultados de los modos de vibración se presentan en la tabla 4.8, el primer modo tiene un el mayor periodo (2,67 s), por lo que es el modo de vibracion dominante. El modo 66 es el que mayor masa desplaza con un total del 18,81%, por ende, este modo tiene la mayor incidencia en el movimiento de la estructura.


Tabla 4.9. Resultados del análisis modal del caso 1.

Modo	Período (s)	Masa (Kg)	Porcentaje (%)
		, ,,	
1	2,66818	0,474	0,002
2	2,65562	3,717	0,016
3	2,62885	0,299	0,001
4	2,5774	7,569	0,033
5	2,30413	219,637	0,959
6	2,20962	5,514	0,024
7	1,80211	480,073	2,095
8	1,73414	170,733	0,745
9	1,69674	2,288	0,010
10	1,65854	57,452	0,251
66	0,48980	4309,430	18,810
Total		23057,6	100

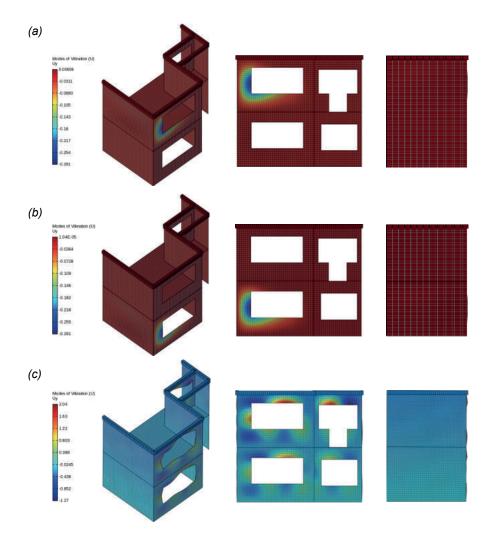
Fuente: Propia.

La figura 4.23 muestra los dos primeros modos de vibración y el modo de masa dominante en el eje Y. Los modos uno y dos se analizan para determinar una tendencia de las áreas mas vulnerables de la edificación. Se evidencia un movimiento en zonas vulnerables del vano de la ventana izquierda de la planta baja (véase figura 4.23a,b). En el modo 66 se ve un incremento de las áreas afectadas, sobre todo en vanos de puertas y ventanas (véase figura 4.23c).

Figura 4.23. Resultados análisis modal - Caso 1. (a) Modo = 1, Período = 2,67 s (b) Modo = 2, Período = 2,65 s (c) Modo = 66, Período = 0,49 s.

Modos de vibración - Caso de estudio 2

Los resultados de los modos de vibración del segundo caso de estudio se presentan en la tabla 4.9. El modo de vibración dominante y con el periodo mas alto es el primero con 2,77 segundos. El período dismunuye hasta el modo con la mayor cantidad de masa desplazada (35,3%), en donde se muestra la mayor respuesta dinámica de la estructura.


Tabla 4.10. Resultados del análisis modal del caso 2.

Modo	Período (s)	Masa (Kg)	Porcentaje %
1	2,77450	3,374	0,015
2	2,77235	3,494	0,016
3	2,58495	7,570	0,035
4	2,43321	17,043	0,078
5	1,95723	149,269	0,686
6	1,95659	80,146	0,368
7	1,92051	235,217	1,080
8	1,77349	470,191	2,159
9	1,77118	296,172	1,360
10	1,43047	11,391	0,052
65	0,50521	7686,480	35,300
Total		21922,5	100

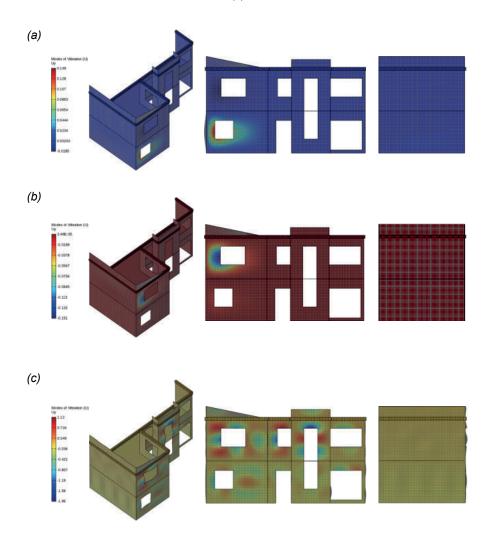
Fuente: Propia.

La figura 4.24 muestra los resultados de los dos primeros modos de vibración, asi como el modo de mayor desplazamiento de masa en el eje Y. El primer y segundo modo (véase figura 4.24a,b) evidencian la vulnerabilidad de la edificación en las ventanas de la planta alta y baja respectivamente. En el modo de vibración sesenta y cinco se percibe un aumento significativo del movimiento en todos los vanos de la fachada del caso 2 (véase figura 4.24c).

Figura 4.24. Resultados análisis modal - Caso 2. (a) Modo = 1, Período = 2,774 s (b) Modo = 2, Período = 2,772 s (c) Modo = 65, Período = 0,50 s.

Modos de vibración - Caso de estudio 3

La tabla 4.10 presenta los resultados del análisis modal del tercer caso de estudio. El modo predominante es nuevamente el primero con una período de 2,95 segundos. En este caso el modo con el mayor movimiento de masa es el ciento siete (12,5%), por lo que es el modo que domina la respuesta dinámica de la fachada.

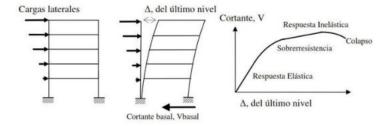

Tabla 4.11. Resultados del análisis modal del caso 3.

Modo	Período (s)	Masa (Kg)	Porcentaje %
1	2,96525	1,625	0,004
2	2,96478	2,437	0,007
3	2,6566	416,870	1,125
4	2,49834	417,913	1,128
5	2,43855	38,096	0,103
6	2,42948	24,610	0,066
7	2,29758	510,791	1,379
8	2,01341	334,975	0,904
9	1,94188	0,798	0,002
10	1,92199	9,415	0,025
107	0,52021	4636,050	12,513
Total		37275,9	100

Fuente: Propia.

Los tres modos de analisís son presentados en la figura 4.25. Al igual que los casos anteriores, se evidencia las áreas vulnerables de la edificación en las ventanas de la planta baja y alta, en los modos uno y dos respectivamente (véase figura 4.25a,b). El modo con mayor movimiento de masa destaca mas esta vulnerabilidad al rededor de todos los vanos de ventanas de la planta alta y en menor medida en la planta baja (véase figura 4.25c).

Figura 4.25. Resultados análisis modal - Caso 3. (a) Modo = 1 Período = 2,67 (b) Modo = 2 Período = 2,65 (c) Modo = 107 Período = 0,52.



4.4 Análisis Pushover

El objetivo de este análisis es someter la estructura a un patrón de carga lateral, el cual se incrementa de forma monotónica en el sentido considerado (Y), para determinar la secuencia de agrietamiento, cedencia y falla de los materiales hasta el colapso de la estructura (Paredes, 2016). De este análisis se obtiene el gráfico entre la cortante basal y el desplazamiento en el la parte alta de la edificación. La finalidad del análisis es evaluar la capacidad máxima que tiene la estructura para deformarse y el daño que producen los desplazamientos (Ureña, López, 2022). La figura 4.26 muestra el proceso que sigue el análisis pushover.

Figura 4.26. Proceso del análisis Pushover.

Fuente: Ureña, López, 2022.

En esta investigación se analiza los daños, producidos por la aplicación de la carga lateral, tanto a tensión como a compresión. Para este análisis son imprescindibles las propiedades de los materiales determinadas en capitulos anteriores. Los elementos que se deben tener en cuentas son los ladrillos, el mortero, la losa de hormigón y la viga de cierre superior de la mampostería.

4.4.1 Determinar la carga lateral

En el modelo, se debe asignar tanto la carga por peso propio de la losa y los muros de mamposteria, asi como la carga lateral sobre la losa en el eje "Y". La carga lateral se debe calcular con la relación con la altura del entrepiso (véase figura 4.27).

Figura 4.27. Aplicación de la carga lateral en la losa de entrepiso.

Fuente: Propia.

La carga se la determina con la siguiente fórmula (véase fórmula 4.3). En donde h es la altura de la losa de entrepiso de la edificación, z es la variable de altura y q(y) representa la carga lateral que incide en la losa de entrepiso.

$$\frac{h}{1} = \frac{-z}{q(y)}$$

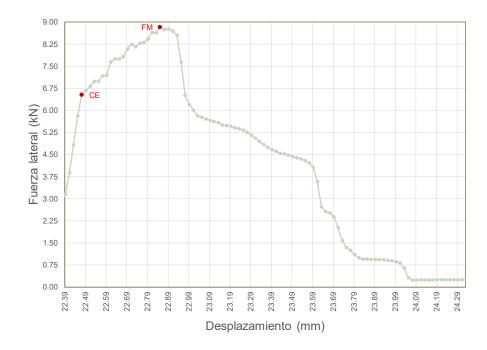
$$q(y) = -0,000370z$$
(4.3)

4.4.2 Análisis del daño

El análisis se centra en el daño provocado por la fuerza máxima resistente a compresión y tensión. Además, se obtiene una curva pushover con la relación entre la cortante basal y el desplazamiento.

Caso de estudio 1

El desplazamiento producido por la carga lateral se evidencia en la figura 4.28. Se evidencia una resistencia muy baja en el muro de mampostería de ladrillo hueco, esto tiene relación con los datos explorados en el análisis de las unidades de ladrillo. Se aprecia un comportamiento elástico muy bajo (6,53 kN) y un desplazamiento lateral de aproximadamente 22,48 mm. Desde este punto comienza la fase de sobreresistencia de la edificación hasta llegar a la fuerza máxima de 8,83 kN y un desplazamiento de 22,85 mm. Posteriormente, tenemos la respuesta inélastica en donde la fuerza desciende hasta su colapso.


Daño por compresión

La figura 4.29 muestra el daño producido por la fuerza a compresión. Se puede notar un daño aproximado a 1, correspondiente a un daño total, en las paredes laterales del piso inferior de la edificación. El daño máximo se puede observar en la pared central de la fachada en el primer piso. El daño es total por lo que se concluye que ese daño es el inicio de un colapso total de la edificación.

Daño por tensión

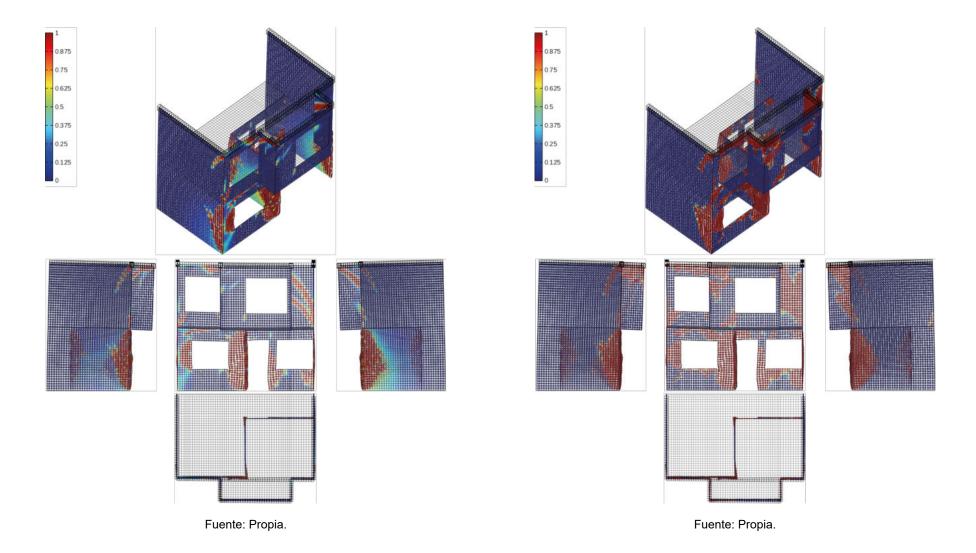

Los daños por tensión se muestran en la figura 4.30. El daño por tensión es mucho mayor al de compresión. Las zonas en donde se evidencia daño es muy cercano a uno, lo que indica un daño total de las paredes transversales a la fachada en planta baja.

Figura 4.28. Curva pushover, relación cortante basal y desplazamiento - Caso 1.

Figura 4.29. Análisis pushover, daño por compresión en la mampostería de ladrillo hueco - Caso 1.

Figura 4.30. Análisis pushover, daño por tensión en la mampostería de ladrillo hueco - Caso 1.

Caso de estudio 2

La figura 4.31 muestra la curva fuerza - desplazamiento a partir del análisis pushover. La fuerza que soporta el muro de mampostería de ladrillo hueco es minima (0.91 kN) y el desplazamiento es de 35mm, lo que denota muy baja capacidad portante del muro. Se constata un comportamiento elástico muy bajo (0,10 kN) y un desplazamiento lateral de aproximadamente 34.91 mm. Desde este pinto comienza la fase de sobreresistencia de la edificación hasta llegar a la fuerza máxima. Posteriormente, tenemos la respuesta inélastica en donde la fuerza desciende hasta su colapso.

Daño por compresión

La figura 4.32 presenta el daño en la fachada por las cargas a compresión. Se evidencia el daño en diagonal de las paredes transversales a la fachada. El daño es muy alto en las paredes laterales y máximo en el muro central. Además, se presenta una deformación maxima en los vanos de las ventanas de la planta inferior. En la vista frontal se visualiza un daño máximo en la pared central de la fachada. De esta forma se concluye en un colapso total de los muros inferiores de la fachada del caso de estudio 2.

Daño por tensión


Los daños por tensión se muestran en la figura 4.33 y es notorio un aumento considerable del daño en la fachada. La deformación de los vanos de las ventanas en planta baja es mayor. Además, se presentan daños en la planta alta, en forma de gritas diagonales en las esquinas de los vanos de las ventanas. El daño en la pared central es mayor, lo que concluye en un fallo total de la estructura.

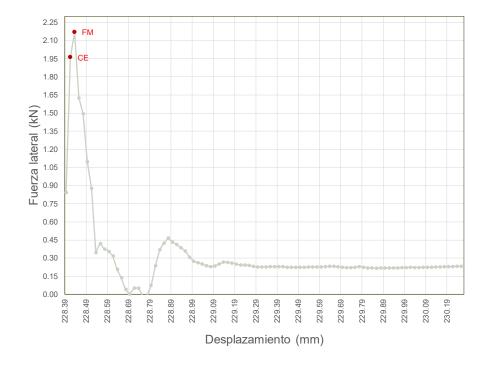
Figura 4.31. Curva pushover, relación cortante basal y desplazamiento - Caso 2.

Figura 4.32. Análisis pushover, daño por compresión en la mampostería de ladrillo hueco - Caso 2.

Figura 4.33. Análisis pushover, daño por tensión en la mampostería de ladrillo hueco - Caso 2.

Caso de estudio 3

En la figura 4.34 se muestra la relación entre la fuerza y el desplazamiento a través del análisis pushover. Al igual que los casos de estudio uno y dos, se evidencia una resistencia muy baja de la fachada de estudio. El comportamiento elástico es muy bajo (1,96 kN) y un desplazamiento lateral de aproximadamente 228,41 mm. La fase de sobreresistencia de la edificación comienza en el limite elástico hasta llegar a la fuerza máxima de 2,17 kN y un desplazamiento de 228,43 mm. Finalmente, en la fase de respuesta inélastica, la fuerza desciende hasta su colapso.


Daño por compresión

La figura 4.35 muestra el daño bajo la carga a compresión. Se evidencia un daño cercano a 1 en toda la planta baja, la capacidad portante es mínima por parte de los muros de mampostería de ladrillo hueco. La fachada principal muestra un daño en diagonal desde los vanos de las ventanas. De igual forma, el mayor daño se presenta en las paredes intermedias de la fachada, el daño y la deformación son máximas. Adémas, en este caso son visibles daños diagonales en los vanos de la fachada de la planta alta.

Daño por tensión

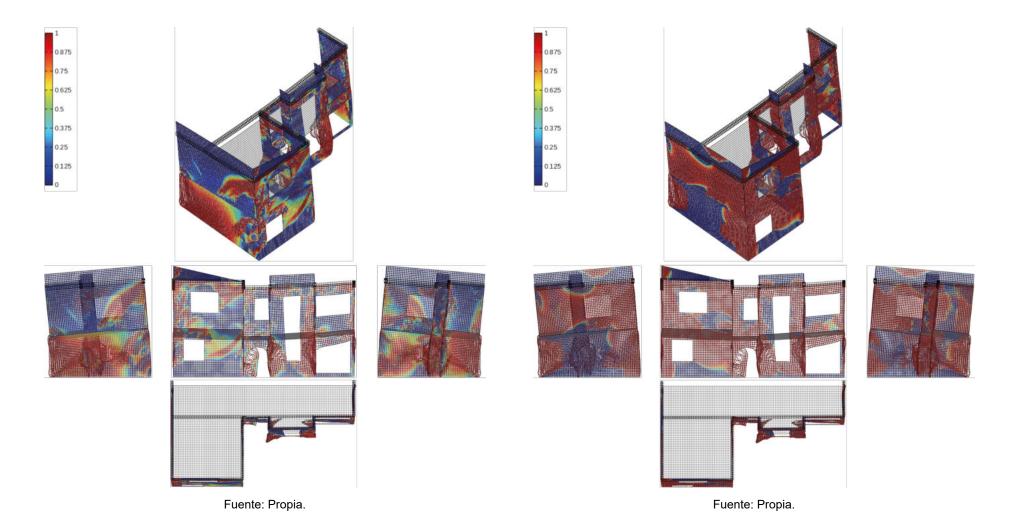

Finalmente, la figura 4.36 muestra los daños por esfuerzos de tensión ejercidos sobre la fachada del caso de estudio tres. De la misma forma que los casos anteriormente analizados, el daño por tensión es mayor a los producidos por compresión. El daño es máximo (1) y se extiende a los dos niveles de la fachada lo que indica un colapso de la fachada en el punto de mayor daño de la simulación.

Figura 4.34. Curva pushover, relación cortante basal y desplazamiento - Caso 3.

Figura 4.35. Análisis pushover, daño por compresión en la mampostería de ladrillo hueco - Caso 3.

Figura 4.36. Análisis pushover, daño por tensión en la mampostería de ladrillo hueco - Caso 3.

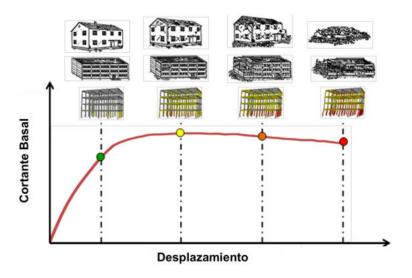
Conclusiones sobre el daño en las fachadas de estudio.

Es importante determinar los daños que se producirían en un eventual movimiento sísmico. A partir del análisis pushover se determina que los daños producidos por los esfuerzos a tensión son mayores a los daños por compresión.

Daño a compresión

Los daños a compresión se evidencian en las paredes intermedias de los tres casos de estudio. Los daños tienen una forma diagonal desde los vanos de ventanas y puertas. Finalmente, se evidencia un estado de colapso total de las edificaciones en la fuerza máxima analizada. Por ende, se concluye que los muros tiene una resistencia baja.

Daño a tensión

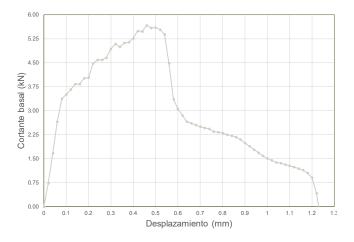

El daño por tensión es mayor al de compresión, pero se localiza en las mismas zonas. Por ello, los daños mayores se presentan en las paredes centrales de la fachada. El daño presente en los tres casos de estudio son los máximos por lo que la edificación se encuentra en un estado de colapso.

4.4.3 Definición de curvas de capacidad

Como se menciona en procesos anteriores, el análisis Pushover corresponde a un análisis estático no lineal, el cual consiste en la aplicación de cargas verticales permanentes y una carga lateral con un aumento gradual hasta llevar a la eficicación a la falla, la cual representa un movimiento sísmico. Se obtiene un gráfico denominado *Curva de capacidad*, que es la relación entre la cortante basal y el desplazamiento superior de la estructura en

análisis. Esta curva permite determinar los diferentes umbrales de daño correspondientes a la fuerza (véase figura 4.37).

Figura 4.37. Curva de capacidad y evaluación de diferentes umbrales de daño.



Fuente: Oliva, 2017

Para ello, se debe proporcionar un punto de control en el centro de masa de la fachada del nivel superior de la edificación, este es necesario para registrar los movimiento laterales producidos por la carga lateral asignada.

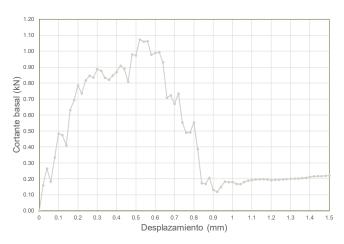

Las curvas de capacidad de los tres casos de estudio muestra su comportamiento ante un movimiento sísmico (véase figuras 4.38, 4.39 y 4.40).

Figura 4.38. Curva de capacidad del caso de estudio 1.

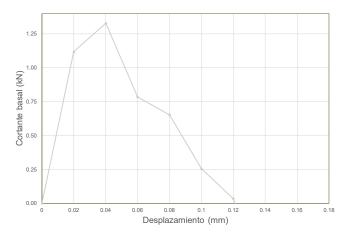

Fuente: Propia.

Figura 4.39. Curva de capacidad del caso de estudio 2.

Fuente: Propia.

Figura 4.40. Curva de capacidad del caso de estudio 3.

Fuente: Propia.

Las curvas de capacidad muestran de manera clara las cuatro diferentes umbrales de daño, asi como el desplazamiento que sufre la edificación con relación a la cortante basal. Se concluye que la cortante basal es un valor bajo así como su capacidad portante.

4.5 Análisis Espectral

Demanda

Es el movimiento del suelo durante un movimiento sísmico. La demanda de desplazamiento de una estructura se define como la respuesta máxima que se espera de una estructura durante un sísmo (López, 2022). A partir de la normativa vigente se determina el espectro de diseño.

Espectro de diseño élastico

El espectro de diseño es la relación entre la aceleración de respuesta y el período fundamental de la edificación, lo que permite determinar el comportamiento de una estructura ante una fuerza sísimica. Este relaciona variables que caracterizan cada sitio de estudio, como: el factor de zona sísmica (Z), el tipo de suelo en donde se emplaza la estructura asi como los coeficientes de amplificación del suelo F_a , F_d y F_s (NEC-SE-DS, 2015).

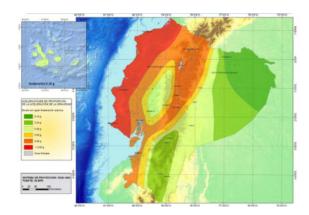

El análisis de los tres casos de estudio considera una zona con pelígro sismico alto, tipo II y una aceleración del suelo con factor Z = 0,25g (véase figura 4.41). Los factores a usarse por el tipo de suelo se presentan en la tabla 4.11.

Tabla 4.12. Factores de diseño sísmico.

Fa	Fs	Fd	r	eta	Z
1,30	0,94	1,28	1	2,4	0,25

Fuente: NEC-SE-DS, 2015.

Figura 4.41. Mapa para diseño sísmico.

Fuente: NEC-SE-DS, 2015.

Espectro de diseño élastico

Durante un evento sísmico de gran magnitud las estructuras puede experimentar deformaciones inelásticas, de esta forma disipa la energía y reduce las fuerzas sísmicas (Chopra, 2014). Para obtener el espectro inelástico es necesario modificar el espectro elástico mediante el período y factores de ductibilidad.

El espectro de diseño inelástico representa la demanda de aceleración, velocidad y desplazamiento máximo en un sistema de un grado de libertad con diferentes periodos de vibración (Chopra, 2014). Para ello es necesario determinar los modos de vibración y la combinación modal de la estructura.

4.5.1 Determinación del espectro de diseño

Sistema de un grado de libertad

Para determinar el espectro de diseño es necesario obtener un sistema con un solo grado de libertad. Para ello, es necesario considerar los datos de la fuerza cortante y desplazamiento del análisis Pushover, así como, el coeficiente del modo que desplaza mayor cantidad de masa en el eje Y (gamma γ), definido en el análisis modal. Para determinar la relación ente el desplazamiento y la aceleración con el factor gamma, se usan las siguientes fórmulas (4.4, 4.5 y 4.6), donde:

V# = Fuerza en relación a gamma, f = Fuerza (kN), γ = Coeficiente de participación (gamma), d# = Desplazamientos en relación a gamma, δ = Desplazamiento (mm), a = aceleración (m2) y m = masa total (kg).

$$V_{\#} = \frac{f}{\gamma} \tag{4.4}$$

$$d_{\#} = \frac{\delta}{\gamma} \tag{4.5}$$

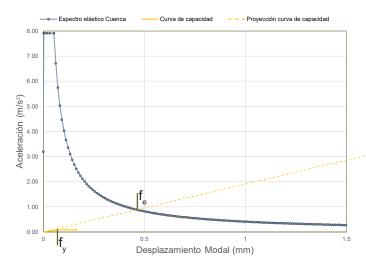
$$a = \frac{V_{\#}}{m} = \frac{kN}{kg} \tag{4.6}$$

Figura 4.42. Curvas de capacidad (a) Cortante basal - Desplazamiento, (b) Aceleración - Desplazamiento modal.

Fuente: Propia.

Factores de reducción basado en la ductibilidad

Para encontrar espectro inelástico es necesario continuar con el método N2, el cúal establece un factor de reducción (R) de acuerdo a la ductibilidad. Para esto es necesario aplicar las fórmulas 4.7, 4.8 y 4.9, donde:

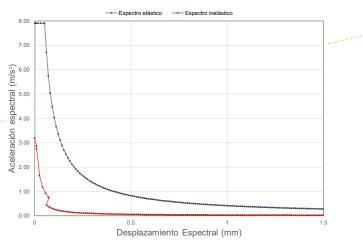

 $\rm f_e$ = Fuerza elástica, Sa₁ = Aceleración (intersección entre la gráfica de espectro elástico y la curva de capacidad proyectada), m = masa total (kg), $\rm f_y$ = Límite de fuerza elástica modelo, a₂ = aceleración (límite modelo) y R = factor de reducción.

$$f_e = m \times Sa_1 \tag{4.7}$$

$$f_{v} = a_{2} \times m \tag{4.8}$$

$$R = \frac{f_e}{f_y} \tag{4.9}$$

Figura 4.43. Factor de reducción.



Fuente: Propia.

De esta forma, se determina el factor de reducción (R)(véase figura 4.43), que esta debajo del espectro elástico si el valor es mayor a 1 o, por lo contrario, si es menor a 1 estará por encima del espectro elástico. El espectro inelástico tiene en cuenta el período perteneciente al modo de mayor movimiento de masa y el factor de reducción basado en la ductibilidad, asi como los factores pertenecientes al espectro elástico pertenecientes a la zona de la ciudad de Cuenca (véase figura 4.44).

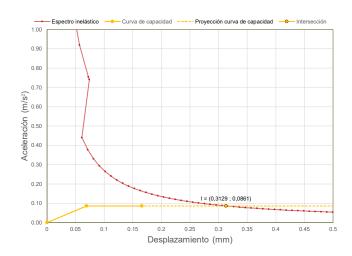
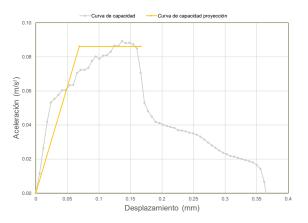

Finalmente, se encuentra el punto de intersección entre la curva del espectro inelástico y la curva de capacidad. Las dos funciones deben ser la relación entre la aceleración (m/s²) y desplazamiento (mm) (véase figura 4.45).}

Figura 4.44. Espectro inelástico.

Fuente: Propia.


Figura 4.45. Intersección entre la curva de capacidad y el espectro inelástico.

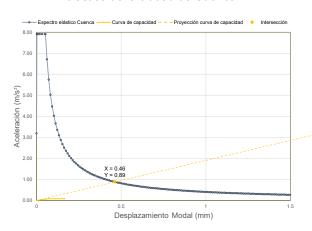

4.5.2 Espectro de diseño caso de estudio 1

Figura 4.46. Curva de capacidad

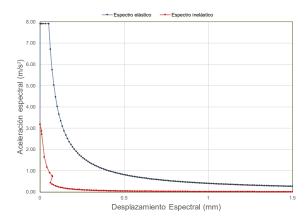

Fuente: Propia.

Figura 4.47. Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.

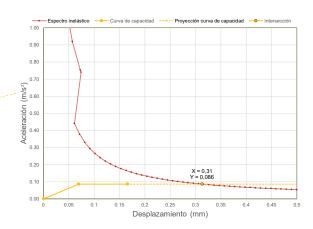
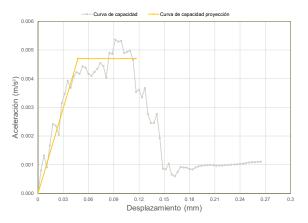

Fuente: Propia.

Figura 4.48. Espectro de diseño elástico e inelástico de la ciudad de Cuenca.

Fuente: Propia.


Figura 4.49. Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.

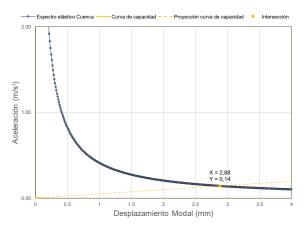

4.5.3 Espectro de diseño caso de estudio 2

Figura 4.50. Curva de capacidad

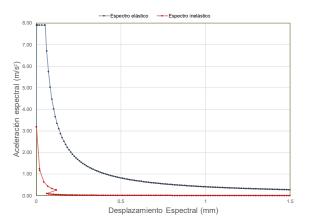

Fuente: Propia.

Figura 4.51. Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.

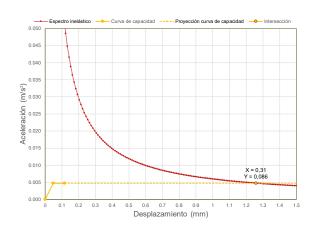

Fuente: Propia.

Figura 4.52. Espectro de diseño elástico e inelástico de la ciudad de Cuenca.

Fuente: Propia.

Figura 4.53. Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.

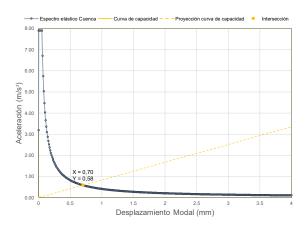

4.5.4 Espectro de diseño caso de estudio 3

Figura 4.54. Curva de capacidad

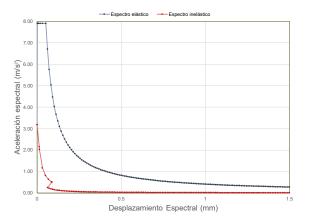

Fuente: Propia.

Figura 4.55. Intersección entre la curva de capacidad proyectada y el espectro elástico de la ciudad de Cuenca.

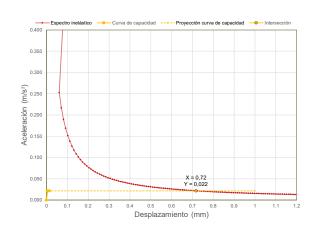

Fuente: Propia.

Figura 4.56. Espectro de diseño elástico e inelástico de la ciudad de Cuenca.

Fuente: Propia.

Figura 4.57. Intersección entre la curva de capacidad proyectada y el espectro inelástico de la ciudad de Cuenca.

La curva de capacidad bilineal muestra la resistencia sísmica de la edificación. En los tres casos de estudio muestra que la mampostería de ladrillo hueco tipo tochana tiene una resistencia baja por lo que la curva de capacidad no se intersecta en ningun punto. Por ello, se analiza la proyección de la fase inelástica. De esta forma se encuentra el umbral de daño con relación al espectro sísmico inelástico (véase tabla 4.12).

Tabla 4.13. Intersección curva de capacidad con el espectro inelástico de la ciudad de Cuenca.

	Intersección curva de capac co de C	Coeficiente de participación	
Caso de estudio	Desplazamiento (mm)	Aceleración (m/s²)	gamma (γ)
Caso 1	0,3129	0,0861	3,37273
Caso 2	1,2585	0,0047	5,66737
Caso 3	0,7174	0.0216	4.22529

Fuente: Propia.

4.5.5 Determinación de la deformación real

La deformación real (δ_r) se determina mediante la relación del punto de intersección (i) con el coeficiente de participación gamma (γ), se usa la ecuacion 4.10.

$$\delta_r = \frac{i}{\gamma} \tag{4.10}$$

La deformación real para cada caso de estudio se muestran en la tabla 4.13.

Tabla 4.14. Deformación real de los tres casos de estudio.

Caso de estudio	Deformación real (mm)	
Caso 1	0,0928	
Caso 2	0.2221	
Caso 3	0,1698	

Vulnerabilidad Sísmica

5.1 Puntos de vulnerabilidad para los casos de estudio

Para concluir la investigación, se determina el punto de vulnerabilidad mediante la intersección de la proyección de la curva de capacidad con el espectro inelástico. Para este propósito, se utiliza el valor del desplazamiento en la curva de capacidad, la cual relaciona la aceleración con el desplazamiento. De esta manera, se obtiene la aceleración que afecta a la estructura en caso de un sismo en la ciudad de Cuenca. Finalmente, el valor del desplazamiento se multiplica por el coeficiente de participación gamma (γ) para determinar el umbral de daño, localizando así el punto de vulnerabilidad de la estructura.

5.1.1 Vulnerabilidad del caso 1

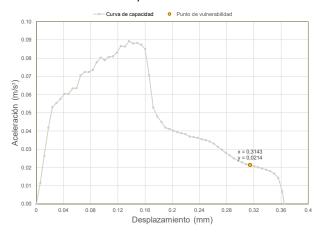

Los resultados se toman a partir del desplazamiento (0,31mm) de la intersección de la curva de capacidad con el espectro inelástico (véase tabla 5.1); con esta magnitud se determina la aceleración (0,02m/s²) en la curva de capacidad con un grado de libertad (véase figura 5.1). Posteriormente, el desplazamiento en la estructura se halla como el producto del desplazamiento modal con el coeficiente de participación gamma. De esta forma, se encuentra el punto de vulnerabilidad real en la estructura en caso de movimiento sísmico y la fuerza cortante en ese punto (1,36 kN) (véase figura 5.2). Por último, se analiza el daño a tensión y compresión.

Tabla 5.1. Resultados de intersección curva capacidad con espectro inelástico.

Desplazamiento (mm)	Aceleración (m/s²)	Cortante (kN)
1,05	0,02	1,36

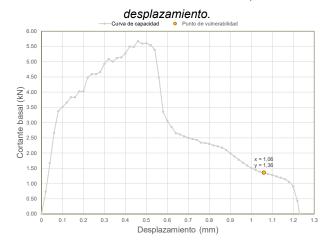
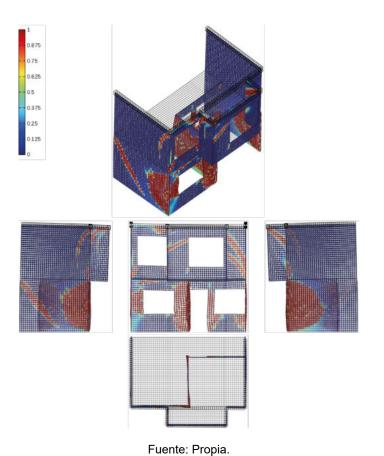

Fuente: Propia.

Figura 5.1. Punto de vulnerabilidad en la curva de capacidad aceleración - desplazamiento.

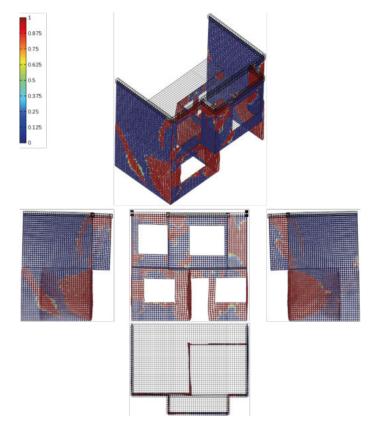
Fuente: Propia.

Figura 5.2. Punto de vulnerabilidad en la curva de capacidad Cortante basal -



Daño a compresión

La figura 5.3 muestra el daño a compresión (1) centralizado en la pared intermedia de la estructura lo que indica un evidente fallo.


Figura 5.3. Daño a compresión en el punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

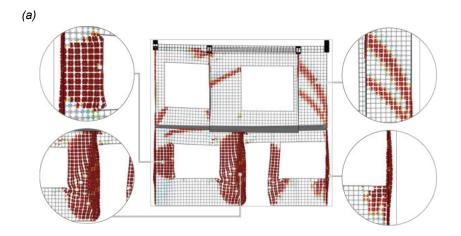
Daño a tensión

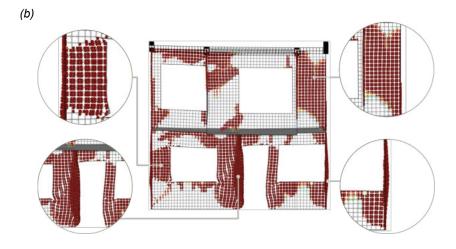
La figura 5.4 presenta el daño por tensión mucho mayor al provocado a compresión y se localiza en las mismas áreas de la fachada.

Figura 5.4. Daño a tensión en el punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

Análisis de fallas en la mampostería

A partir del análisis de vulnerabilidad realizado se detecta una aproximación de las fallas, producto de un movimiento sísmico en la ciudad de Cuenca. De esta forma, se visualiza la tendencia del daño causado por fuerzas a compresión y a tensión.


Fallas a compresión


Se presentan fallas considerables en la pared central en la planta baja de la fachada, esto permite explicar el colpaso de la vivienda a causa de un sismo (véase figura 5.5a).

Fallas a tensión

Las fallas por tensión se producen en las mismas zonas que las por tensión, sin embargo son mucho mayores por lo que se deduce que la mampostería tiene menor resistencia a fuerzas de tensión. De igual forma, la estructura tiende al colapso debido a fuerzas de tensión (véase figura 5.5b).

Figura 5.5. Fallas producidas en la fachada del caso 1 por: (a) compresión y (b) tensión.

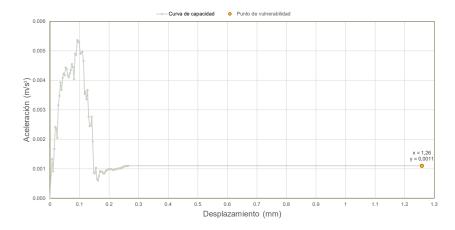
5.1.2 Vulnerabilidad del caso 2

Los resultados obtenidos a partir de la intersección de la curva de capacidad con el espectro inelástico de diseño muestran que el desplazamiento es de 7,13 mm (véase tabla 5.2); con esta magnitud se determina la aceleración (0,0011 m/s²) en la curva de capacidad con un grado de libertad (véase figura 5.6). Posteriormente, el desplazamiento en la estructura se halla como el producto del desplazamiento modal con el coeficiente de participación gamma. De esta forma, se encuentra el punto de vulnerabilidad real en la estructura en caso de movimiento sísmico y la fuerza cortante en ese punto (0,22 kN) (véase figura 5.7). Por último, se analiza el daño máximo a tensión y compresión.

Tabla 5.2. Resultados de intersección curva capacidad con espectro inelástico.

Desplazamiento (mm)	Aceleración (m/s²)	Cortante (kN)
7,13	0,0011	0,22

Fuente: Propia.


Daño a compresión

La figura 5.8 muestra el daño a compresión (1) centralizado en la pared intermedia de la estructura y vanos de la aberturas lo que indica un evidente colapso.

Daño a tensión

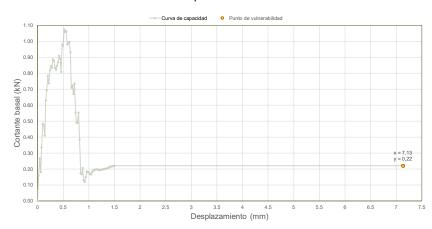

La figura 5.9 presenta el daño por tensión mucho mayor al provocado a compresión y se localiza en las mismas áreas de la fachada.

Figura 5.6. Punto de vulnerabilidad en la curva de capacidad aceleración - desplazamiento.

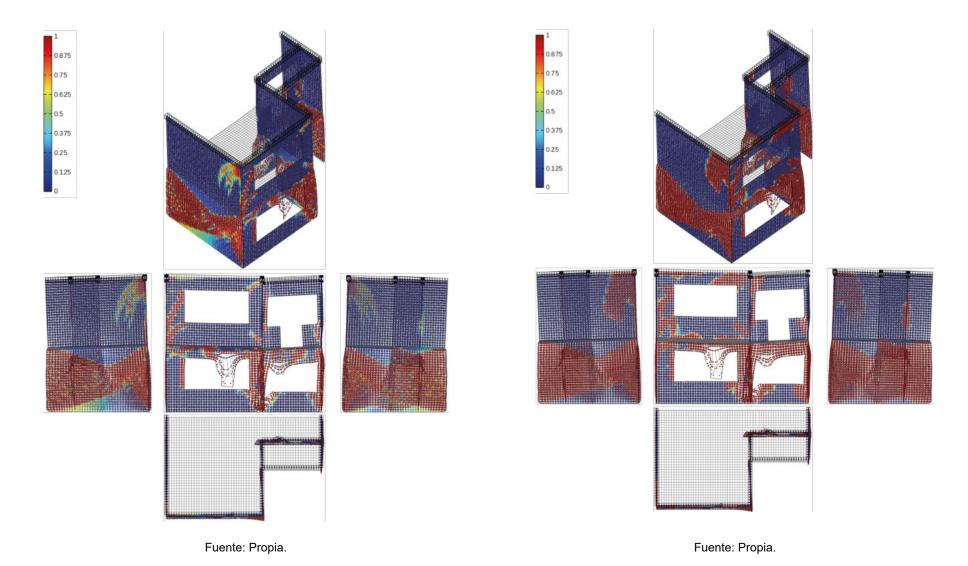

Fuente: Propia.

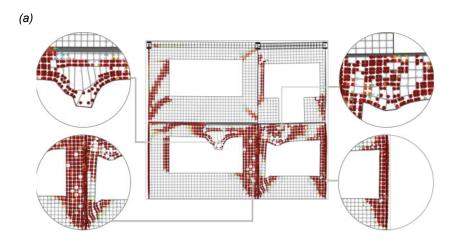
Figura 5.7. Punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

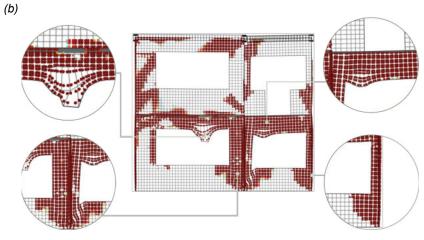
Figura 5.8. Daño a compresión en el punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

Figura 5.9. Daño a tensión en el punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

Análisis de fallas en la mampostería

Como se analizó, la estructura de mampostería se encuentra en un estado de colapso ya que la capacidad portante de la edificación no es suficiente para la fuerza que produce el sismo. A pesar de esto, se analiza las fallas en el daño máximo que resiste la estructura antes del colapso. Los resultados se analizan a continuación:


Fallas a compresión


Las fallas que se presentan a compresión son de daño máximo previo al colapso de la estructura. Se evidencia un daño máximo en la pared central de la planta baja. Además, se muestra un deformación inusual en el vano mas amplio de la planta baja. Lo que indica el fallo de la estructura en este punto.

Fallas a tensión

El daño por esfuerzos a tensión es mayor al provocado por compresión, se halla en las mismas zonas pero tiene mas extensión a lo largo de la fachada. De la misma forma la zona con mayor deformación es en el vano mas extenso de la fachada, así deja en evidencia el punto de fallo de la estructura.

Figura 5.10. Fallas producidas en la fachada del caso 2 por: (a) compresión y (b) tensión.

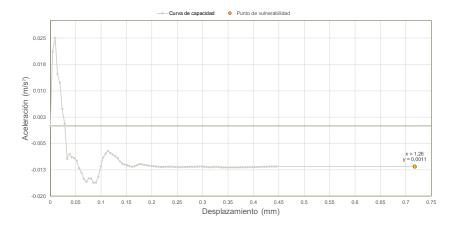
5.1.3 Vulnerabilidad del caso 3

Los resultados se toman a partir del desplazamiento (1.26 mm) de la intersección de la curva de capacidad con el espectro inelástico (véase tabla 5.3); con esta magnitud se determina la aceleración (0,00m/s²) en la curva de capacidad con un grado de libertad (véase figura 5.11). Posteriormente, el desplazamiento en la estructura se halla como el producto del desplazamiento modal con el coeficiente de participación gamma. De esta forma, se encuentra el punto de vulnerabilidad real en la estructura en caso de movimiento sísmico y la fuerza cortante en ese punto (0,0 kN) (véase figura 5.12). Por lo tanto, se concluye que la estructura esta en estado de colapso en el punto de análisis. Por último, se analiza el daño máximo a tensión y compresión.

Tabla 5.3. Resultados de intersección curva capacidad con espectro inelástico.

Desplazamiento (mm)	Aceleración (m/s²)	Cortante (kN)
3,03	0	0

Fuente: Propia.


Daño a compresión

La figura 5.13 muestra el daño máximo a compresión (1) centralizado en las paredes intermedias de la estructura lo que indica un colpaso posterior.

Daño a tensión

La figura 5.14 presenta que el daño por tensión mucho mayor al provocado a compresión y se localiza en las mismas áreas de la fachada.

Figura 5.11. Punto de vulnerabilidad en la curva de capacidad aceleración - desplazamiento.

Fuente: Propia.

Figura 5.12. Punto de vulnerabilidad en la curva de capacidad Cortante basal - desplazamiento.

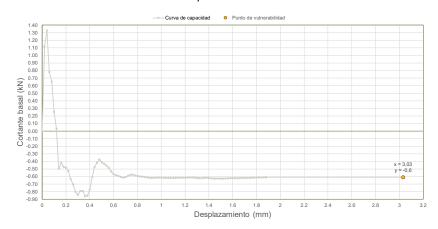
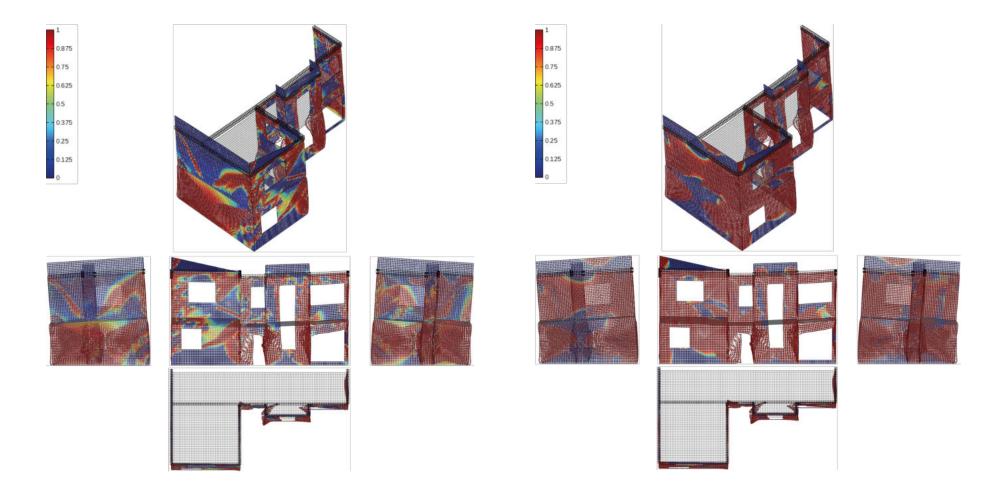



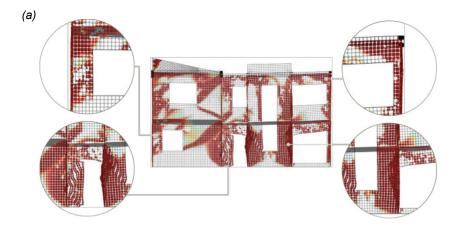
Figura 5.13. Daño máximo a compresión en la curva de capacidad Cortante basal - desplazamiento.

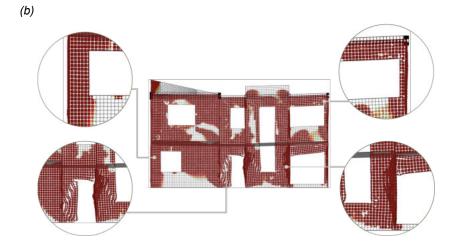
Figura 5.14. Daño máximo a tensión en la curva de capacidad Cortante basal - desplazamiento.

Fuente: Propia. Fuente: Propia.

Análisis de fallas en la mampostería

De la misma forma que el caso de estudio 2, el tercer caso de estudio tiene su punto de vulnerabilidad en un estado de colapso de la estructura. Por lo que, el daño a analizar es en donde la estructura alcanza su daño máximo previo al colapso. Esta observación de las fallas se debe realizar tanto a fuerzas de compresión como tensión.


Fallas a compresión


En este caso de estudio, el daño a compresión esta presente en la mayor parte de la planta baja. Además, el daño se localiza en la zona central al igual que los otros casos de estudio. Los vanos de puertas y ventanas son claramente vulnerables al daño generados por un sismo.

Fallas a tensión

Las daños a tensión se presentan en aproximadamente toda la fachada y son mayores a los que producen las fuerzas a compresión. Los vanos de puertas y ventanas son las mas afectadas con daño al rededor de todo el vano. Finalmente, se concluye en un estado de colapso de toda edificación en el punto máximo de análisis de la estructura.

Figura 5.15. Fallas producidas en la fachada del caso 3 por: (a) compresión y (b) tensión.

5.2 Comparación de resultados

5.2.1 Análisis Modal

Los resultados del análisis modal en la dirección de Y para los tres casos de estudio son los siguientes:

Tabla 5.4. Resultados del análisis modal para cada caso estudio.

Casos de estudio	Modo	Período T (s)	Cantidad de masa (kg)	Porcentaje de masa (%)	Masa total (kg)
	1	2,67	0,47	0,002 %	
Caso 1	2	2,65	3,70	0,016 %	23057,6
	66	0,49	4309,40	18,810 %	
	1	2,77	3,37	0,015 %	
Caso 2	2	2,77	3,49	0,016 %	21922,5
	65	0,51	7686,48	35,300 %	
	1	2,97	1,63	0,004 %	
Caso 3	2	2,96	2,44	0,007 %	37275,9
	107	0,52	4636,05	12,513 %	

Fuente: Propia.

En la tabla 5.4 se evidencian los resultados en el análisis modal. Los primeros dos modos muestran la tendecia de la edificación. Además, para la investigación es necesario considerar el modo que mueve mas masa en el sentido Y, se considera este sentido por la tipología adosada de la edificación. Para seleccionar este modo es necesario que el análisis modal

contemple una masa acumulada del 90% en el sentido Y.

Al comparar las masas, se evidencia que el caso de estudio 1 y el 2 tienen masas totales similares (23057 y 21922, respectivamente), y la masa del caso 3 aumenta por la complejidad y magnitud de la fachada (37275,9).

El período dominante se determina de acuerdo al primer modo de vibrar. Al analizar los modos dominantes de cada caso de estudio, se concluye en una uniformidad con una periodo que oscila entre 2,67 s hasta los 2,97. De esta forma, se determina que las estructuras con ladrillos huecos tipo tochana tienen una rigidez similar en cada caso de estudio.

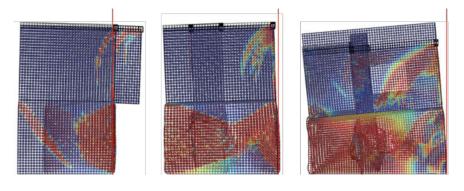
Por último, se analiza la cantidad de masa que mueve cada modo y se observa que el modo 65 de caso de estudio 2 es el que mas cantidad de masa mueve con un porcentaje final de 35,3 % de la masa total de la estructura. Este modo indica que la estructura que mas excitación experimenta es la del caso 2. Seguida del caso de estudio 1 con una porcentaje de 18,8 % y una masa de 4309,4 kg. Finalmente, la masa de menor movimiento es el caso 3 con 12,5 % y una masa de 4636,05 de la estructura completa.

5.2.2 Análisis de vulnerabilidad

En el análisis de vulnerabilidad para los tres casos de estudio se observan los siguientes resultados:

Tabla 5.5. Resultados del análisis de vulnerabilidad para cada caso estudio.

Casos de estudio	Desplazamiento (mm)	Aceleración (m/s²)	Fuerza cortante (kN)
Caso 1	1,05	0,02	1,36
Caso 2	7,13	0,0011	0,22
Od30 2	7,13	0,0011	0,22
Caso 3	3,03	0	0


Fuente: Propia.

Con base en el análisis previo de vulnerabilidad, se considera que para los tres casos de estudio, empleando ladrillos huecos tipo tochana, se encuentran en un estado de colapso en un supuesto movimiento telúrico. Sin embargo, es necesario analizar los resultados de vulnerabilidad para cada caso de estudio.

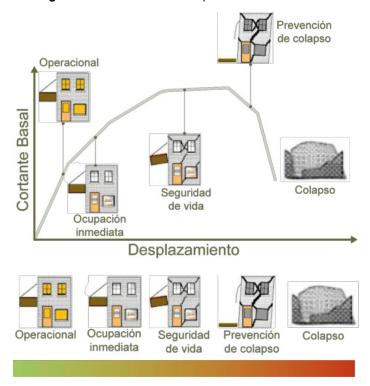
Con respecto al desplazamiento lateral que sufre la estructura, se evidencia que el caso de estudio 2 es la que mayor movimiento tiene con 7,13 mm. Seguida por el caso de estudio 3 con 3,03 mm y por último, el primer caso de estudio con 1,05 mm. Estas deformaciones representan la poca capacidad de la estructura para disipar energía.

Tanto la aceleracion como la fuerza cortante son mínimas o cero en el punto de vulnerabilidad de la estructura, ya que la estructura esta en un estado de colapso. Para finalizar con el análisis de vulnerabilidad es necesario determinar el desempeño de la estructura

Figura 5.16. Comparación entre el desplazamiento de cada caso de estudio.

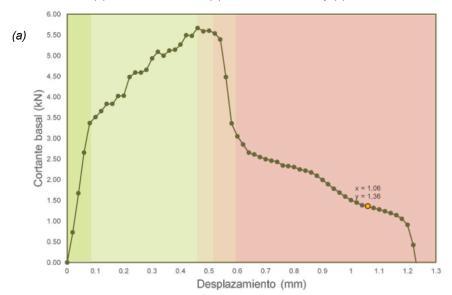
Fuente: Propia.

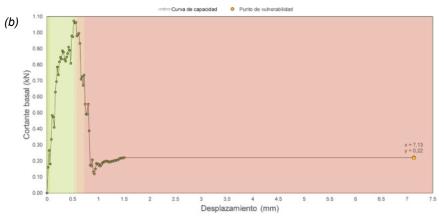
5.2.3 Análisis del nivel de desempeño de una estrucutra

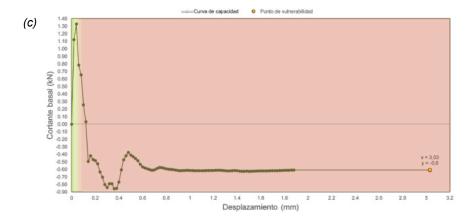

Por último, se analiza el desempeño sísmico para cada caso de estudio. Para ello, se compara la demanda sísmica con la capacidad portante de la edificación. A través de la curva de capacidad y el punto de vulnerabilidad de cada caso se encuentran los niveles de desempeño de la estructura. De acuerdo con lo establecido en la NEC (2015), lo niveles de desempeño son los siguientes (véase figura 5.16):

- Operacional: sin da
 ño en la estructura. Se encuentra dentro del limite elástico de la edificación.
- Ocupación inmediata: el daño es limitado, por lo que la estructura mantiene su resistencia y su rigidez.

- Seguridad de vida: la estructura sufre un da
 ño sustancial, además de una pérdida de su rigidez. Desde este punto comienza una deformación importante antes del colapso.
- Prevención del colapso: es un nivel de daño extermo y previo al colapso ante un movimiento lateral adicional.
- Colapso: fallo total de la estructura.


Figura 5.17. Niveles de desempeño de una edificación.




Fuente: Adaptado de NEC, 2015.

A continuación se presenta el nivel en el que se encuentra cada caso de estudio (véase figura 5.17 a,b y c).

Figura 5.18. Ubicación del punto de vulnerabilidad en los niveles de desempeño de una edificación (a) caso de estudio 1 (b) caso de estudio 2 y (c) caso de estudio 3.

Fuente: Propia.

Al analizar los tres casos de estudio, se evidencia que los puntos de vulnerabilidad se localizan en la zona roja, correspondiente al nivel de colapso. Este hallazgo es consistente con todos los resultados obtenidos en la presente investigación. En conclusión, la investigación determina que la mampostería de ladrillo hueco tipo tochana presenta una capacidad portante y una rigidez bajas, lo cual la hace inapropiada para su uso en la construcción de muros portantes.

Conclusiones y futuras lineas de investigación

6.1 Conclusiones

Cuenca de acuerdo a la NEC (2015) está clasificada dentro de una zona sísmica tipo II, indicando un alto nivel de peligro sísmico, presenta un alto riesgo para sus edificaciones, especialmente aquellas construidas con mampostería de ladrillo hueco tipo tochano. De acuerdo con el IERSE (2010), el ladrillo hueco tipo tochana es el segundo más producido anualmente en la ciudad de Cuenca, después del ladrillo panelón. Por lo tanto, dado que es un tipo de ladrillo demandado, es necesario evaluar su comportamiento frente a eventos sísmicos. La presente investigación se centra en determinar la vulnerabilidad de las paredes de mampostería de ladrillo hueco tipo tochana en viviendas de Cuenca mediante un enfoque combinado de análisis experimental y numérico. La importancia de este estudio radica en la necesidad de comprender mejor el comportamiento estructural de estas paredes bajo cargas sísmicas, lo cual es crucial para desarrollar estrategias efectivas de mitigación y refuerzo.

Este trabajo propone una metodología integrada que permite determinar las propiedades efectivas de los muros de una estructura mediante el uso de un macromodelo. Para lograrlo, se emplean análisis numéricos basados en un modelo de daño aplicado a Elementos de Volumen Representativos (RVE) y el método de elementos finitos (FEM). Los RVE se definen a partir de las propiedades obtenidas en ensayos experimentales de compresión realizados en unidades de ladrillo y mortero, lo que facilita una representación precisa del comportamiento estructural de los muros bajo cargas sísmicas. Sin embargo, una limitación del RVE utilizado es que, aunque permitió determinar eficazmente las cargas a compresión y tensión, para lograr una aproximación más cercana a la realidad sería necesario formular un RVE con características más representativas, incorporando elementos de arriostramiento que reflejen mejor el comportamiento estructural real de las

edificaciones.

En el proceso de experimentación se realizó ensayos de unidades de ladrillo y modelos complejos denominados RVE's en los que se determinó que los esfuerzos máximos soportados fue bajo en comparación con los estandares requeridos de acuerdo al INEN (2014). Lo cual concuerda con los ensayos experimentales realizados, en donde se observó que el fallo de las unidades son por colapso sin agrietamiento previo.

Posteriormente, de acuerdo a la metodología se realizó la determinación de propiedades efectivas a través de simulaciones en micromodelados del RVE de análisis. Con ello se realizó el proceso de simulaciones en tres casos de estudio, se realizó un análisis modal y un estático no lineal lo que permitió conocer el comportamiento de la estructura ante un evento sísmico.

El análisis modal en este caso permitió identificar las zonas más vulnerables de la fachada ante cargas sísmicas, especialmente aquellas áreas cercanas a las aberturas (ventanas y puertas). A través del estudio de los distintos modos de vibración, se pudo observar cómo se distribuyen las deformaciones en la estructura y cuál es su respuesta frente a vibraciones de frecuencias bajas y altas. Este análisis fue clave para entender qué partes de la fachada son más propensas a sufrir daños ante un evento sísmico y cómo afecta el diseño de las aberturas al comportamiento dinámico de la estructura. Además, se determina en qué rangos de frecuencia la estructura es más flexible o rígida, información esencial para diseñar estrategias de refuerzo.

El análisis modal revela que las zonas alrededor de las aberturas son puntos críticos en términos de vulnerabilidad estructural. Estas áreas muestran deformaciones importantes y tienden a concentrar tensiones, lo que las

hace propensas a fallar ante un sismo. Es necesario reforzar las aberturas y mejorar la rigidez global de la fachada para mitigar los efectos de las vibraciones sísmicas, especialmente en los modos de baja frecuencia, donde las deformaciones son más pronunciadas. Además, un diseño que equilibre la rigidez en toda la estructura contribuirá a mejorar su capacidad de resistir los efectos dinámicos de un evento sísmico.

A continuación, en el análisis estático no lineal se determina el daño que provoca un movimiento sísmico a través de un modelo de daños continuo, el cual muestra el daño a compresión y tensión. La simulación permitió encontrar el daño presente en la fachada desde su fase elástica hasta su fase previa al colapso, además de las zonas en donde ubican estos daños, lo cual permitió identificar el patrón de falla de la edificación. La simulación mostró que la estructura tiene una capacidad de carga baja ante una carga lateral progresiva y es propensa a colapso.

Para finalizar con la metodología, se realizó un análisis de vulnerabilidad el cual permite conocer el comportamiento de la estructura ante un sísmo ubicado en la ciudad de Cuenca. Para ello, es necesario determinar el espectro elástico e inélastico de diseño para edificaciones. Esto nos permitió encontrar el punto de vulnerabilidad, de cada caso de estudio, dentro de los niveles de desempeño de una edificación. El resultado fue similiar para cada caso de estudio, en donde se determinó que el punto de vulnerabilidad se encuentró en la fase de colapso, lo cual es acorde con todos los análisis previos realizados.

En la valoración cuantitativa realizada, es crucial destacar que el ladrillo tipo tochana se encuentra considerablemente alejado de un buen comportamiento estructural. Los resultados obtenidos en el estudio muestran una baja capacidad de carga, lo que indica que este material no

es adecuado para muros de mampostería estructural. Por ejemplo, mientras que los ladrillos macizos presentan una resistencia a compresión que puede oscilar entre 16 y 25 MPa (NTE INEN 297:1), los ladrillos huecos, como el tipo tochana, tienen una capacidad de solo 2.78 MPa. Esta diferencia pone de manifiesto la insuficiencia del ladrillo tipo tochana para soportar las exigencias que impone un entorno sísmico, resaltando la necesidad de considerar alternativas más resistentes en la construcción de edificaciones.

En conclusión, este trabajo no solo evidencia la vulnerabilidad de las edificaciones construidas con ladrillo hueco tipo tochana en Cuenca, sino que también subraya la imperante necesidad de adoptar enfoques innovadores en la ingeniería estructural. Al evaluar y comprender el comportamiento de estas estructuras ante eventos sísmicos, se sientan las bases para desarrollar soluciones efectivas que no solo fortalezcan las construcciones actuales, sino que también orienten el diseño de futuras edificaciones más seguras. La investigación presentada contribuye al conocimiento colectivo sobre la mitigación de riesgos sísmicos, marcando un paso decisivo hacia un entorno urbano más resiliente, capaz de resistir los desafíos que impone la naturaleza.

6.2 Futuras lineas de investigacion

Las futuras investigaciones se pueden centrar en varios aspectos para mejorar el ladrillo hueco tipo tochana como material de construccion estructural, las cuales podrían ser:

Desarrollo de Nuevos Materiales o Mejoras en los Existentes: Es fundamental investigar la creación de ladrillos huecos tipo tochana con propiedades mecánicas mejoradas, tales como una mayor resistencia a la compresión y un mejor comportamiento ante cargas laterales. Además, evaluar el uso de aditivos o refuerzos internos en los ladrillos puede resultar en una mejora significativa en su capacidad portante y resistencia a sismos, abriendo nuevas posibilidades para su utilización en la construcción de muros estructurales.

Análisis de Refuerzos y Tecnologías de Mitigación: Se debe desarrollar y probar técnicas de refuerzo para muros de mampostería existentes, utilizando materiales innovadores como fibras de carbono, mallas metálicas o morteros reforzados. Estas técnicas de refuerzo pueden ofrecer soluciones efectivas para mejorar la capacidad sísmica de las paredes de ladrillo hueco tipo tochana, asegurando una mayor seguridad estructural en edificaciones ubicadas en zonas sísmicas.

Referencias.

Referencias.

- Alexandra Alvarado Cevallos Alvarado. Néotectonique et cinématique de la déformation continentale en Equateur. Sciences de la Terre. Université de Grenoble, 2012. Français. NNT: 2012GRENU026. tel-00870332
- Barbat, H., Oller, S., Vielma, J. (2005). Cálculo y diseño sismorresistente de edificios. Aplicación de la norma NCSE-02. Los Autores
- Bartolomé, Á., Quiun, D., Silva, W. (2018). DISEÑO Y CONSTRUCCIÓN DE ESTRUCTURAS SISMORRESISTENTES DE ALBAÑILERÍA (Segunda Edición). Fondo Editorial PUCP
- Bartolomé, R., Quiun, D., & Silva Berríos, W.E. (2022). Diseño y construcción de estructuras sismorresistentes de albañilería. Pontificia Universidad Católica del Perú. https://doi.org/10.18800/9786123173661
- Bravo, D. & Flores, L. (2015). Análisis estático no lineal de paredes de ladrillo de las casas de Cuenca. (Trabajo de titulación). Universidad de Cuenca, Cuenca.
- Cabrera, J. (1995). La adherencia en los morteros de albañilería. Materiales de Construcción, 45.
- Canas Torres, J., Pujades Beneit, L., Banda Tarradellas, E. (1994). Sismología y peligrosidad Sísmica. Los Autores
- Chopra, A. K. (2014). Dynamics of structures: Theory and applications to

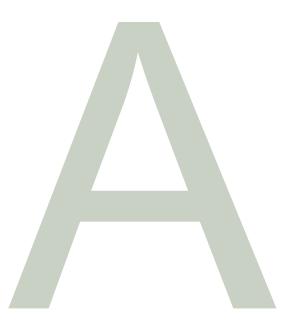
- earthquake engineering (4th ed). Prentice Hall
- Comisión Guatemalteca de Normas (COGUANOR). (2019). Método de ensayo. Determinación de la resistencia a la compresión de morteros de cemento hidráulico usando especímenes cúbicos de 50 mm (2 pulg) de lado. (NTG 41003 h4).
- Frías, E. (2004). Aportaciones al estudio de las máquinas eléctricas de flujo axial mediante la aplicación del método de los elementos finitos (Tesis Doctoral). Recuperado de: https://www.tdx.cat/bitstream/handle/10803/6294/06Efv06de23.pdf
- García, H., & Degrande, G. (2017). Análisis de vulnerabilidad sísmica de una vivienda familiar de dos pisos en mampostería confinada en Cuenca, Ecuador. Maskana, 8(2), 99–114. https://doi.org/10.18537/ mskn.08.02.08
- García, H., Jiménez-Pacheco, J., & Ulloa, J. (2024). Effective properties of masonry structures and macro-model analysis with experimental verification. Results in Engineering, 23, 102546. https://doi.org/10.1016/j.rineng.2024.102546.
- Grotzinger, J. & Jordan, T. (2014) Understanding Earth (Séptima edición). W. H. Freeman and Company
- Hurtado Gómez, J. (2013). Análisis matricial de estructuras : curso con MATLAB. Sin editorial.
- INE Instituto Nacional de Estadística. (s. f.). Glosario de conceptos. INE. https://www.ine.es/DEFIne/es/concepto.htm?c=4281

- Instituto Ecuatoriano de Normalización (INEN). (2014). LADRILLOS CERÁMICOS. REQUISITOS (NTE INEN 297:1977).
- Instituto Ecuatoriano de Normalización (INEN). (2018). LADRILLOS CERÁMICOS. PARTE 1: TERMINOS Y DEFINICIONES, CLASIFICASION Y REQUISITOS DE LAS DIMESNIONES MODULARES (NTE INEN 3049 Parte 1).
- Instituto Ecuatoriano de Normalización (INEN). (2019). LADRILLOS CERÁMICOS. PARTE 2: UNIDADES DE MAMPOSTERÍA ESTRUCTURAL REQUISITOS (NTE INEN 3049 Parte 2).
- Instituto Geofísico EPN. (2016). Informe sísmico del año 2016. EPN.
- Instituto Nacional de Calidad (INACAL). (2002). UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillos de arcilla usados en albañilería (NTP 399.613). Lima: INDECOPI.
- Iturralde-Vinent, M., 2009. Tectónica de placas. En: Iturralde-Vinent, M., (Editor) 2009. Geología de Cuba para todos. Editorial Científico-Técnica, Instituto del Libro, La Habana, 150 pp.
- Jiménez, J., Cabrera, J., Sánchez, J., & Avilés, F. (2018). Vulnerabilidad sísmica del patrimonio edificado del Centro Histórico de la Ciudad de Cuenca: Lineamientos generales y avances del proyecto. Maskana, 9(1), 59–78. https://doi.org/10.18537/mskn.09.01.07
- Kouznetsova, V. Computational homogenization for the multi-scale analysis of multi-phase materials. PhD thesis, Eindhoven University of Technology, 2004.

- Liu, SI. On representations of anisotropic invariants. International Journal of Engineering Science 20, 10 (1982), 1099–1109.
- McKenna, F. Opensees: a framework for earthquake engineering simulation.

 Computing in Science and Engineering 13, 4 (2011), 58–66
- Menéndez, J.: "Una lección sobre morteros", Folleto. Univ. de la Habana. 1946. 33 p.
- Moore, H. (2007). MATLAB para ingenieros. Pearson Education.
- Morocho, S. & Sarmiento, M. (2021). La vulnerabilidad sísmica en edificaciones de mediana altura y la identificación de zonas seguras mediante análisis modal: Caso Centro de Documentación Juan Bautista (Trabajo de titulación). Universidad de Cuenca, Cuenca.
- Norma Ecuatoriana de Construcción (NEC-SE-DS). (2014). Diseño sismorresistente de edificaciones. Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro (AGROCALIDAD). https://www.agrocalidad.gob.ec/wp-content/uploads/downloads/2014/04/NEC-SE-DS.pdf
- Organismo nacional de normalización y certificación de la construcción y la edificación. S.C. (ONNCCE). (2010). Industria de la construcción mampostería determinación de la resistencia a compresión diagonal y módulo de cortante de muretes, así como determinación de la resistencia a compresión y módulo de elasticidad de pilas de mampostería de arcilla o de concreto métodos de ensayo (NMX-C-464-ONNCCE-2010).

- Paredes, Miguel Á. (2016). Evaluación del desempeño sismorresistente de un edificio destinado a vivienda en la ciudad de Lima aplicando el análisis estático no lineal Pushover (Trabajo de titulación). Universidad Peruana de Ciencias Aplicadas.
- Pel' a, L., Oller, S., and Chiumenti, M. A localized mapped damage model for orthotropic materials. Engineering Fracture Mechanics 124 (2014), 196–216.
- Petracca, M., Candeloro, F., & Camata, G. (2017). "STKO user manual". ASDEA Software Technology, Pescara Italy.
- Petracca, M., Pel` a, L., Rossi, R., Zaghi, S., Camata, G., and Spacone, E. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials 149 (2017), 296–314.
- Quimbay Herrera, Rodrigo (2012) Estimación del módulo de elasticidad del concreto y del mortero mediante TCTM. (Trabajo de titulación). Universidad Nacional de Colombia
- Quinde Martínez, Pablo, & Reinoso Angulo, Eduardo. (2016). Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseño para la Ciudad de Cuenca. Ingeniería sísmica, (94), 1-26. Recuperado en 11 de septiembre de 2024, de http://www.scielo.org.mx/scielo. php?script=sci_arttext&pid=S0185-092X2016000100001&Ing=es&tlng=es.
- Quinde Viñansaca, J., Jiménez-Pacheco, J. ., & Ortega-Guamán, E. (2023). Revisión de Normas de Diseño para Mampostería Confinada


- en Latinoamérica: Propuestas para la Norma Ecuatoriana de Construcción. Revista Politécnica, 51(1), 77–92. https://doi.org/10.33333/rp.vol51n1.07
- Quinde, A. S., Salinas, M. C. (2019). Análisis y propuesta arquitectónica sismo-resistente de viviendas adosadas con muros de mampostería en Cuenca. (Trabajo de titulación). Universidad de Cuenca, Cuenca.
- Red Sísmica del Austro. (2002). Informe Final a FUNDACYT -Proyecto P-BID 400: Amenaza Sísmica en el Austro, Vulnerabilidad y Riesgo Sísmico en la Ciudad de Cuenca, Universidad de Cuenca, Cuenca.
- Reid, H.F. (1910) Mechanics of the earthquake, the California Earthquake of April 18, 1906. Report of the State Investigation Commission, Carnegie Institution of Washington, Washington DC.
- Rivadeneira, F., Segovia, M., Alvarado, A., Egred, J., Troncoso, L., Vaca, S., Yepes, H. (2007). Breve fundamentos sobre los terremotos en el Ecuador. Corporación Editora Nacional.
- Secretaria de comercio y fomento industrial. (s/f). Determinación del esfuerzo de adherencia de los ladrillos cerámicos y el mortero de las juntas. (NMX-C-082-1974).
- Ureña, M. & López, S. (2022). Análisis estático no lineal (push over) de los talleres de la facultad de ingeniería civil y mecánica y de la facultad de ingeniería en sistemas electrónica e industrial, con aisladores sísmicos, ubicadas en el campus huachi de la universidad

técnica de Ambato (Trabajo de titulación). Universidad técnica de Ambato.

- Valle, J., & Rodríguez, A. (2011). Características básicas de los modelos tridimensionales de elementos históricos. PH, 77. https://doi. org/10.33349/2011.77.3123
- Yépez, F., Barbat, A., Canas, J. (1995). Riesgo, peligrosidad y vulnerabilidad sísmica de edificios de mampostería. Los Autores.

Anexos

Anexos A.

Tablas de resultados iniciales del ensayo de compresión en unidades de ladrillo tochano.

Tabla A1. Resultados experimentales de unidad de ladrillo 1A.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0
0,10	287,6	2820,41	0,16	0,0005
0,20	414,7	4066,84	0,24	0,0011
0,30	542,6	5321,12	0,31	0,0016
0,40	675	6619,52	0,38	0,0021
0,50	870,5	8536,73	0,50	0,0026
0,60	1034,5	10145,03	0,59	0,0032
0,70	1173,5	11508,16	0,67	0,0037
0,80	1359,5	13332,21	0,78	0,0042
0,90	1590,9	15601,48	0,91	0,0047
1,00	1832,9	17974,70	1,04	0,0053
1,10	2184,3	21420,77	1,25	0,0058
1,20	2585,8	25358,16	1,47	0,0063
1,30	3038,4	29796,68	1,73	0,0068
1,40	3531,1	34628,44	2,01	0,0074
1,50	4081,2	40023,10	2,33	0,0079
1,60	4424,4	43388,76	2,52	0,0084

Tabla A2. Resultados experimentales de unidad de ladrillo 1B.

Deformación	Carga (kgf)	Carga (N)	Esfuerzo	Deformación
(mm)			(N/mm²)	Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	327,8	3214,64	0,18	0,0005
0,2	448,5	4398,30	0,25	0,0011
0,3	613,8	6019,35	0,34	0,0016
0,4	739,6	7253,04	0,41	0,0021
0,5	932	9139,84	0,51	0,0026
0,6	1124,1	11023,71	0,62	0,0032
0,7	1309,9	12845,80	0,72	0,0037
0,8	1536,3	15066,03	0,85	0,0042
0,9	1752,4	17185,26	0,97	0,0047
1	1993,9	19553,58	1,10	0,0053
1,1	2287,6	22433,81	1,26	0,0058
1,2	2613,4	25628,83	1,44	0,0063
1,3	2998,2	29402,45	1,65	0,0068
1,4	3435,7	33692,88	1,90	0,0074
1,5	3922,9	38470,70	2,17	0,0079
1,6	4363,7	42793,50	2,41	0,0084
1,7	4742,5	46508,27	2,62	0,0089
1,76	4940,8	48452,94	2,73	0,0093

Tabla A3. Resultados experimentales de unidad de ladrillo 2A.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	345,6	3389,20	0,19	0,0005
0,2	489,3	4798,42	0,27	0,0011
0,3	639,7	6273,35	0,36	0,0016
0,4	793,1	7777,69	0,44	0,0021
0,5	982,4	9634,10	0,55	0,0026
0,6	1159,9	11374,79	0,64	0,0032
0,7	1361,1	13347,90	0,76	0,0037
0,8	1590,7	15599,52	0,88	0,0042
0,9	1833,1	17976,66	1,02	0,0047
1	2145,9	21044,20	1,19	0,0053
1,1	2504,7	24562,84	1,39	0,0058
1,2	2923,3	28667,93	1,62	0,0063
1,3	3430,6	33642,87	1,90	0,0068
1,4	3942,4	38661,93	2,19	0,0074
1,5	4513,2	44259,60	2,50	0,0079
1,6	5092,8	49943,56	2,83	0,0084
1,7	5597,9	54896,93	3,11	0,0089

Tabla A4. Resultados experimentales de unidad de ladrillo 2B.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	327,2	3208,75	0,18	0,0005
0,2	440,4	4318,87	0,24	0,0011
0,3	568,7	5577,07	0,31	0,0016
0,4	698,6	6850,96	0,38	0,0021
0,5	871,3	8544,58	0,48	0,0026
0,6	1030,2	10102,86	0,57	0,0032
0,7	1215,4	11919,06	0,67	0,0037
0,8	1399,7	13726,44	0,77	0,0042
0,9	1637,6	16059,45	0,90	0,0047
1	1934,8	18974,00	1,06	0,0053
1,1	2269,8	22259,25	1,25	0,0058
1,2	2644,3	25931,86	1,45	0,0063
1,3	3082,6	30230,13	1,69	0,0068
1,4	3579,2	35100,14	1,97	0,0074
1,5	4079,8	40009,37	2,24	0,0079
1,6	4634,8	45452,09	2,54	0,0084
1,7	5198,4	50979,15	2,85	0,0089
1,8	5638,6	55296,06	3,10	0,0095
1,9	6008,6	58924,54	3,30	0,0100

Tabla A5. Resultados experimentales de unidad de ladrillo 3A.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	286	2804,72	0,16	0,0005
0,2	409,6	4016,82	0,23	0,0011
0,3	549,4	5387,80	0,30	0,0016
0,4	669,5	6565,59	0,37	0,0021
0,5	822,3	8064,05	0,46	0,0026
0,6	984,4	9653,72	0,55	0,0032
0,7	1138	11160,02	0,63	0,0037
0,8	1330	13042,91	0,74	0,0042
0,9	1526,8	14972,87	0,85	0,0047
1	1787,8	17532,42	0,99	0,0053
1,1	2119,9	20789,22	1,18	0,0058
1,2	2502,2	24538,32	1,39	0,0063
1,3	2866,3	28108,94	1,59	0,0068
1,4	3281,9	32184,61	1,82	0,0074
1,5	3761,7	36889,86	2,09	0,0079
1,6	4324,2	42406,13	2,40	0,0084
1,7	4878,1	47838,06	2,71	0,0089
1,8	5217,1	51162,53	2,90	0,0095

Tabla A6. Resultados experimentales de unidad de ladrillo 3B.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	392,5	3849,13	0,22	0,0005
0,2	414,6	4065,86	0,23	0,0011
0,3	544,5	5339,75	0,30	0,0016
0,4	670,7	6577,35	0,37	0,0021
0,5	834,5	8183,69	0,47	0,0026
0,6	986,9	9678,23	0,55	0,0032
0,7	1132,2	11103,15	0,63	0,0037
0,8	1329,1	13034,08	0,74	0,0042
0,9	1527,3	14977,77	0,85	0,0047
1	1777,5	17431,41	0,99	0,0053
1,1	2036	19966,44	1,14	0,0058
1,2	2426,1	23792,03	1,35	0,0063
1,3	2848,1	27930,46	1,59	0,0068
1,4	3373,9	33086,83	1,88	0,0074
1,5	3861,9	37872,49	2,15	0,0079
1,6	4422	43365,23	2,47	0,0084
1,7	4945,7	48501,00	2,76	0,0089
1,8	5484,9	53788,77	3,06	0,0095
1,9	5797,3	56852,38	3,23	0,0100

Tabla A7. Resultados experimentales de unidad de ladrillo 4A.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	299,6	2938,09	0,17	0,0005
0,2	351,3	3445,09	0,19	0,0011
0,3	449,5	4408,11	0,25	0,0016
0,4	546,7	5361,32	0,30	0,0021
0,5	649	6364,55	0,36	0,0026
0,6	786,4	7711,99	0,44	0,0032
0,7	883,6	8665,20	0,49	0,0037
0,8	1040,9	10207,79	0,58	0,0042
0,9	1282,6	12578,07	0,71	0,0047
1	1464,4	14360,93	0,81	0,0053
1,1	1683,8	16512,52	0,93	0,0058
1,2	2008,9	19700,68	1,11	0,0063
1,3	2313,1	22683,88	1,28	0,0068
1,4	2675,1	26233,90	1,48	0,0074
1,5	3059,9	30007,52	1,70	0,0079
1,6	3319	32548,44	1,84	0,0084
1,7	3756,7	36840,83	2,08	0,0089
1,8	4166,3	40857,65	2,31	0,0095
1,9	4599,8	45108,86	2,55	0,0100
2	4938,5	48430,39	2,74	0,0105

Tabla A8. Resultados experimentales de unidad de ladrillo 4B.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,000
0,1	312,6	3065,57	0,17	0,0005
0,2	423,2	4150,20	0,23	0,0011
0,3	550,6	5399,57	0,31	0,0016
0,4	623,6	6115,46	0,35	0,0021
0,5	686,3	6730,34	0,38	0,0026
0,6	782,2	7670,80	0,43	0,0032
0,7	938,6	9204,57	0,52	0,0037
0,8	1101,5	10802,08	0,61	0,0042
0,9	1291,7	12667,31	0,72	0,0047
1	1538,2	15084,67	0,85	0,0053
1,1	1751,8	17179,38	0,97	0,0058
1,2	2015,6	19766,38	1,12	0,0063
1,3	2343,3	22980,04	1,30	0,0068
1,4	2651,5	26002,47	1,47	0,0074
1,5	3088,8	30290,93	1,71	0,0079
1,6	3422,5	33563,43	1,90	0,0084
1,7	3839,1	37648,90	2,13	0,0089
1,8	4201,3	41200,89	2,33	0,0095
1,83	4323,4	42398,29	2,40	0,0096

Tabla A9. Resultados experimentales de unidad de ladrillo 5A.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0,0000
0,1	336,8	3302,90	0,19	0,0005
0,2	439,9	4313,97	0,25	0,0011
0,3	548,5	5378,97	0,31	0,0016
0,4	675,5	6624,43	0,38	0,0021
0,5	806,1	7905,18	0,45	0,0026
0,6	994,7	9754,72	0,55	0,0032
0,7	1212,5	11890,62	0,68	0,0037
0,8	1469,4	14409,96	0,82	0,0042
0,9	1789,6	17550,07	1,00	0,0047
1	2116,3	20753,92	1,18	0,0053
1,1	2499,9	24515,77	1,39	0,0058
1,2	2851,8	27966,75	1,59	0,0063
1,3	3320,2	32560,21	1,85	0,0068
1,4	3783,5	37103,65	2,11	0,0074
1,5	4292,6	42096,24	2,39	0,0079
1,6	4755,3	46633,80	2,65	0,0084
1,67	4986,1	48897,19	2,78	0,0088

Tabla A10. Resultados experimentales de unidad de ladrillo 5B.

Deformación (mm)	Carga (kgf)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	0	0	0	0
0,1	267	2618,39	0,15	0,0005
0,2	352,9	3460,78	0,20	0,0011
0,3	455,6	4467,93	0,25	0,0016
0,4	580,3	5690,83	0,32	0,0021
0,5	679,6	6664,63	0,38	0,0026
0,6	812,6	7968,92	0,45	0,0032
0,7	956,8	9383,05	0,53	0,0037
0,8	1103,8	10824,64	0,61	0,0042
0,9	1269,5	12449,61	0,70	0,0047
1	1464,7	14363,87	0,81	0,0053
1,1	1691,3	16586,07	0,94	0,0058
1,2	1963,4	19254,47	1,09	0,0063
1,3	2283,2	22390,66	1,27	0,0068
1,4	2647,5	25963,24	1,47	0,0074
1,5	3027,6	29690,76	1,68	0,0079
1,6	3398,9	33331,99	1,89	0,0084
1,7	3609,2	35394,34	2,00	0,0089
1,76	3698	36265,18	2,05	0,0093

Anexo B.

Tablas de resultados iniciales del ensayo de compresión en muretes de ladrillo tochano.

Tabla B1. Resultados experimentales en murete 1.

Tiempo (s)	Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0	-0,01250	32588,32	0,934	-0,00003
0,1	-0,01250	32588,96	0,934	-0,00003
0,2	-0,01250	32606,76	0,935	-0,00003
0,3	0,00125	32596,90	0,935	0,00000
0,4	0,00750	32631,24	0,936	0,00002
0,5	0,00163	32688,46	0,937	0,00000
0,6	0,00250	32743,45	0,939	0,00001
0,7	0,00350	32778,42	0,940	0,00001
0,8	0,00475	32843,91	0,942	0,00001
0,9	0,00588	32916,39	0,944	0,00001
1	0,00725	32981,56	0,946	0,00002
1,1	0,00863	33045,13	0,948	0,00002
1,2	0,01000	33102,35	0,949	0,00003
1,3	0,01138	33164,98	0,951	0,00003
1,4	0,01275	33224,42	0,953	0,00003
1,5	0,01425	33292,45	0,955	0,00004
1,6	0,01575	33350,63	0,956	0,00004
1,7	0,01738	33415,79	0,958	0,00004
1,8	0,01875	33487,96	0,960	0,00005
1,9	0,02038	33553,76	0,962	0,00005
2	0,02188	33608,75	0,964	0,00006
2,1	0,02350	33686,00	0,966	0,00006
2,2	0,02513	33743,22	0,968	0,00006
2,3	0,02675	33815,70	0,970	0,00007

2,4	0,02838	33871,01	0,971	0,00007
2,5	0,03025	33940,63	0,973	0,00008
2,6	0,03538	34062,07	0,977	0,00009
2,7	0,04500	34369,79	0,986	0,00011
2,8	0,06050	34865,06	1,000	0,00015
2,9	0,08200	35519,92	1,019	0,00021
3	0,10950	36369,96	1,043	0,00028
3,1	0,14325	37400,56	1,072	0,00036
3,2	0,18375	38538,30	1,105	0,00047
3,3	0,22763	39819,40	1,142	0,00058
3,4	0,27225	41173,62	1,181	0,00069
3,5	0,31763	42543,09	1,220	0,00081
3,6	0,36438	43984,73	1,261	0,00093
3,7	0,41300	45481,68	1,304	0,00105
3,8	0,46300	47002,16	1,348	0,00118
3,9	0,51413	48554,42	1,392	0,00131
4	0,56600	50084,43	1,436	0,00144
4,1	0,62025	51521,62	1,477	0,00158
4,2	0,67675	52864,39	1,516	0,00172
4,3	0,74088	53908,66	1,546	0,00189
4,4	0,80350	55117,29	1,580	0,00204
4,5	0,86850	56364,70	1,616	0,00221
4,6	0,94625	57375,59	1,645	0,00241
4,63	0,97138	57483,04	1,648	0,00247
4,7	1,11150	56816,74	1,629	0,00283
4,8	1,17813	43827,37	1,257	0,00300
4,9	1,25413	44528,01	1,277	0,00319
5	1,32675	43860,44	1,258	0,00338
5,1	1,39175	44212,98	1,268	0,00354
5,2	1,46950	43641,73	1,251	0,00374

0,000022

Tabla B2. Resultados experimentales en murete 2.

Tiomno	Deformación		Esfuerzo	Deformación
Tiempo (s)	Deformacion (mm)	Carga (N)	Estuerzo (N/mm²)	Unitaria (mm/mm)
0	0,00000	21974,88	0,628	0,00000
0,1	0,00000	21966,62	0,628	0,000000
0,2	0,00000	21961,85	0,628	0,000000
0,3	0,00001	21973,29	0,628	0,000000
0,4	0,00009	22006,67	0,629	0,000000
0,5	0,00018	22067,07	0,631	0,000000
0,6	0,00026	22103,63	0,632	0,000001
0,7	0,00038	22177,06	0,634	0,000001
0,8	0,00050	22232,06	0,636	0,000001
0,9	0,00063	22289,59	0,637	0,000002
1	0,00075	22352,22	0,639	0,000002
1,1	0,00088	22409,76	0,641	0,000002
1,2	0,00101	22461,26	0,642	0,000003
1,3	0,00115	22528,33	0,644	0,000003
1,4	0,00130	22574,11	0,646	0,000003
1,5	0,00145	22643,09	0,648	0,000004
1,6	0,00160	22705,71	0,649	0,000004
1,7	0,00175	22762,30	0,651	0,000005
1,8	0,00189	22828,10	0,653	0,000005
1,9	0,00205	22887,87	0,655	0,000005
2	0,00221	22953,03	0,656	0,000006
2,1	0,00238	23014,07	0,658	0,000006
2,2	0,00253	23064,29	0,660	0,000007
2,3	0,00268	23134,55	0,662	0,000007
2,4	0,00284	23181,60	0,663	0,000007
2,5	0,00308	23255,98	0,665	0,000008
2,6	0,00360	23403,17	0,669	0,000009
2,7	0,00460	23700,71	0,678	0,000012
2,8	0,00613	24173,10	0,691	0,000016

2,9

0,00823

24830,50

0,710

6,4	1,95750	21903,67	0,626	0,005151
6,5	2,00913	22866,57	0,654	0,005287
6,6	2,06175	23620,29	0,675	0,005426
6,7	2,11438	23894,95	0,683	0,005564
6,8	2,16763	24349,21	0,696	0,005704
6,9	2,22100	24650,57	0,705	0,005845
7	2,27363	25285,09	0,723	0,005983
7,1	2,32588	25917,69	0,741	0,006121
7,2	2,37875	26272,14	0,751	0,006260
7,3	2,43188	26556,65	0,759	0,006400
7,4	2,48400	27224,22	0,779	0,006537
7,5	2,53613	27796,11	0,795	0,006674
7,6	2,58825	27829,81	0,796	0,006811
7,7	2,64450	27597,11	0,789	0,006959
7,8	2,54200	20605,72	0,589	0,006689

Tabla B3. Resultados experimentales en murete 3.

Tiempo (s)	Deformación (mm)	Carga (N)	Esfuerzo (N/ mm²)	Deformación Unitaria (mm/ mm)
0	0	17352,10	0,49357	0,00000
0,1	0	17341,93	0,49329	0,00000
0,2	0	17345,75	0,49339	0,00000
0,3	0,000	17347,02	0,49343	0,00000
0,4	0,001	17367,68	0,49402	0,00000
0,5	0,002	17420,13	0,49551	0,00000
0,6	0,003	17457,33	0,49657	0,00001
0,7	0,004	17514,55	0,49820	0,00001
0,8	0,005	17551,42	0,49924	0,00001
0,9	0,006	17599,42	0,50061	0,00002

0,008	17650,29	0,50206	0,00002
0,009	17703,06	0,50356	0,00002
0,010	17761,55	0,50522	0,00003
0,012	17803,83	0,50642	0,00003
0,013	17855,96	0,50791	0,00003
0,015	17902,69	0,50924	0,00004
0,016	17941,47	0,51034	0,00004
0,018	18012,37	0,51236	0,00005
0,019	18041,61	0,51319	0,00005
0,021	18105,19	0,51500	0,00005
0,022	18140,47	0,51600	0,00006
0,024	18203,74	0,51780	0,00006
0,026	18237,75	0,51877	0,00007
0,027	18286,07	0,52014	0,00007
0,029	18327,08	0,52131	0,00008
0,031	18372,85	0,52261	0,00008
0,036	18482,84	0,52574	0,00010
0,046	18725,71	0,53265	0,00012
0,061	19095,10	0,54315	0,00016
0,082	19602,46	0,55759	0,00022
0,109	20242,37	0,57579	0,00029
0,142	20981,15	0,59680	0,00038
0,181	21851,22	0,62155	0,00048
0,223	22782,33	0,64804	0,00059
0,267	23760,16	0,67585	0,00071
0,311	24758,02	0,70423	0,00082
0,356	25808,33	0,73411	0,00094
0,402	26919,05	0,76570	0,00107
0,448	28055,19	0,79802	0,00119
0,495	29191,02	0,83033	0,00131
	0,009 0,010 0,012 0,013 0,015 0,016 0,018 0,019 0,021 0,022 0,024 0,026 0,027 0,029 0,031 0,036 0,046 0,061 0,082 0,109 0,142 0,181 0,223 0,267 0,311 0,356 0,402 0,448	0,009 17703,06 0,010 17761,55 0,012 17803,83 0,013 17855,96 0,015 17902,69 0,016 17941,47 0,018 18012,37 0,019 18041,61 0,021 18105,19 0,022 18140,47 0,024 18237,75 0,027 18286,07 0,029 18327,08 0,031 18372,85 0,036 18482,84 0,046 18725,71 0,061 19095,10 0,082 19602,46 0,109 20242,37 0,142 20981,15 0,181 21851,22 0,223 22782,33 0,267 23760,16 0,311 24758,02 0,356 25808,33 0,402 26919,05 0,448 28055,19	0,009 17703,06 0,50356 0,010 17761,55 0,50522 0,012 17803,83 0,50642 0,013 17855,96 0,50791 0,015 17902,69 0,50924 0,016 17941,47 0,51034 0,018 18012,37 0,51236 0,019 18041,61 0,51319 0,021 18105,19 0,51500 0,022 18140,47 0,51600 0,024 18203,74 0,51780 0,026 18237,75 0,51877 0,027 18286,07 0,52014 0,029 18327,08 0,52131 0,031 18372,85 0,52261 0,036 18482,84 0,52574 0,046 18725,71 0,53265 0,061 19095,10 0,54315 0,082 19602,46 0,55759 0,142 20981,15 0,59680 0,181 21851,22 0,62155 0,223 22782,33 0,64804

30351,32

31498,91

0,86333

0,89598

0,00144

0,00157

0,543

0,590

4 4,1

4,2	0,638	32575,61	0,92660	0,00169
4,3	0,683	33533,10	0,95384	0,00181
4,33	0,696	33700,31	0,95859	0,00185
4,4	0,623	33671,06	0,95776	0,00165
4,5	0,640	22035,60	0,62679	0,00170
4,6	0,677	22369,07	0,63628	0,00180
4,7	0,707	21975,84	0,62510	0,00187
4,8	0,588	12067,79	0,34326	0,00156
4,9	0,638	12096,72	0,34409	0,00169
5	0,684	13030,69	0,37065	0,00182
5,1	0,727	13958,29	0,39704	0,00193
5,2	0,780	14877,00	0,42317	0,00207
5,3	0,811	15776,32	0,44875	0,00215
5,4	0,860	16647,34	0,47353	0,00228
5,5	0,905	17474,17	0,49705	0,00240
5,6	0,951	18264,14	0,51952	0,00252
5,7	0,996	18995,92	0,54033	0,00264
5,8	1,041	19694,65	0,56021	0,00276
5,9	1,087	20427,39	0,58105	0,00288
6	1,134	21176,66	0,60236	0,00301
6,1	1,183	21910,03	0,62322	0,00314
6,2	1,231	22593,50	0,64266	0,00327
6,3	1,247	23255,67	0,66150	0,00331
6,4	1,290	17246,88	0,49058	0,00342
6,5	1,342	17396,29	0,49483	0,00356
6,6	1,396	17663,00	0,50242	0,00370
6,7	1,451	16482,35	0,46883	0,00385
6,8	1,509	15524,55	0,44159	0,00400

 Tabla B4. Resultados experimentales en murete 4.

Tiempo (s)	Defor- mación (mm)	Carga (N)	Esfuerzo (N/ mm²)	Deformación Unitaria (mm/ mm)
0,00	0,00000	9881,34	0,280322	0,000000
0,10	0,00000	9865,44	0,279871	0,000000
0,20	0,00000	9880,38	0,280295	0,000000
0,30	0,00125	9879,75	0,280277	0,000003
0,40	0,00100	9902,32	0,280917	0,000003
0,50	0,00200	9908,36	0,281088	0,000005
0,60	0,00288	9922,35	0,281485	0,000008
0,70	0,00400	9937,29	0,281909	0,000011
0,80	0,00513	9961,76	0,282603	0,000013
0,90	0,00638	9980,84	0,283144	0,000017
1,00	0,00763	10005,31	0,283839	0,000020
1,10	0,00913	10018,35	0,284209	0,000024
1,20	0,01050	10038,38	0,284777	0,000028
1,30	0,01188	10069,85	0,285670	0,000031
1,40	0,01325	10088,60	0,286201	0,000035
1,50	0,01475	10105,13	0,286670	0,000039
1,60	0,01625	10140,74	0,287681	0,000043
1,70	0,01788	10152,18	0,288005	0,000047
1,80	0,01925	10180,79	0,288817	0,000051
1,90	0,02088	10190,96	0,289105	0,000055
2,00	0,02238	10218,30	0,289881	0,000059
2,10	0,02388	10238,01	0,290440	0,000063
2,20	0,02563	10267,26	0,291270	0,000067
2,30	0,02713	10285,38	0,291784	0,000071
2,40	0,02875	10296,82	0,292108	0,000076
2,50	0,03075	10337,19	0,293254	0,000081
2,60	0,03538	10370,25	0,294191	0,000093
2,70	0,04363	10464,03	0,296852	0,000115

2,80 0,05638 10622,34 0,301343 0,000148 2,90 0,07450 10853,77 0,307908 0,000196 3,00 0,09825 11157,67 0,316530 0,000259 3,10 0,12850 11506,40 0,326423 0,000338 3,20 0,16538 11927,60 0,338372 0,000435 3,30 0,20675 12397,77 0,351710 0,000544 3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895 4,10 <th></th> <th></th> <th></th> <th></th> <th></th>					
3,00 0,09825 11157,67 0,316530 0,000259 3,10 0,12850 11506,40 0,326423 0,000338 3,20 0,16538 11927,60 0,338372 0,000435 3,30 0,20675 12397,77 0,351710 0,000544 3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	2,80	0,05638	10622,34	0,301343	0,000148
3,10 0,12850 11506,40 0,326423 0,000338 3,20 0,16538 11927,60 0,338372 0,000435 3,30 0,20675 12397,77 0,351710 0,000544 3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	2,90	0,07450	10853,77	0,307908	0,000196
3,20 0,16538 11927,60 0,338372 0,000435 3,30 0,20675 12397,77 0,351710 0,000544 3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,00	0,09825	11157,67	0,316530	0,000259
3,30 0,20675 12397,77 0,351710 0,000544 3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,10	0,12850	11506,40	0,326423	0,000338
3,40 0,25113 12887,64 0,365607 0,000661 3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,20	0,16538	11927,60	0,338372	0,000435
3,50 0,29675 13435,05 0,381136 0,000781 3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,30	0,20675	12397,77	0,351710	0,000544
3,60 0,34588 13954,48 0,395872 0,000910 3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,40	0,25113	12887,64	0,365607	0,000661
3,70 0,42525 14458,66 0,410175 0,001119 3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,50	0,29675	13435,05	0,381136	0,000781
3,80 0,51900 14879,54 0,422115 0,001366 3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,60	0,34588	13954,48	0,395872	0,000910
3,90 0,58938 15365,60 0,435904 0,001551 4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,70	0,42525	14458,66	0,410175	0,001119
4,00 0,66238 15834,81 0,449214 0,001743 4,06 0,72013 15998,52 0,453859 0,001895	3,80	0,51900	14879,54	0,422115	0,001366
4,06 0,72013 15998,52 0,453859 0,001895	3,90	0,58938	15365,60	0,435904	0,001551
	4,00	0,66238	15834,81	0,449214	0,001743
4,10 0,75588 15850,07 0,449647 0,001989	4,06	0,72013	15998,52	0,453859	0,001895
	4,10	0,75588	15850,07	0,449647	0,001989

 Tabla B5. Resultados experimentales en murete 5.

Tiempo (s)	Deformación (mm)	Carga (N)	Esfuerzo (N/mm²)	Deformación Unitaria (mm/mm)
0,00	0,00000	8758,545	0,24847	0,000000
0,10	0,00000	8759,499	0,24850	0,000000
0,20	0,00000	8755,366	0,24838	0,000000
0,30	0,00125	8751,869	0,24828	0,000003
0,40	0,00875	8776,982	0,24899	0,000023
0,50	0,00188	8809,726	0,24992	0,000005
0,60	0,00288	8831,978	0,25055	0,000008
0,70	0,00400	8871,396	0,25167	0,000011
0,80	0,00513	8892,059	0,25226	0,000013
0,90	0,00638	8933,067	0,25342	0,000017
1,00	0,00763	8962,631	0,25426	0,000020
1,10	0,00900	8991,241	0,25507	0,000024
1,20	0,01050	9036,064	0,25634	0,000028
1,30	0,01188	9078,343	0,25754	0,000031
1,40	0,01325	9098,053	0,25810	0,000035
1,50	0,01475	9136,836	0,25920	0,000039
1,60	0,01625	9168,625	0,26010	0,000043
1,70	0,01775	9213,448	0,26137	0,000047
1,80	0,01938	9240,787	0,26215	0,000051
1,90	0,02088	9273,211	0,26307	0,000055
2,00	0,02238	9293,239	0,26364	0,000059
2,10	0,02400	9348,233	0,26520	0,000063
2,20	0,02563	9378,433	0,26605	0,000067
2,30	0,02738	9424,846	0,26737	0,000072
2,40	0,02888	9450,276	0,26809	0,000076
2,50	0,03113	9496,053	0,26939	0,000082
2,60	0,03675	9565,989	0,27138	0,000097
2,70	0,04675	9728,432	0,27598	0,000123
2,80	0,06250	10004,04	0,28380	0,000164

2,90	0,08413	10357,86	0,29384	0,000221
3,00	0,11250	10833,42	0,30733	0,000296
3,10	0,14863	11365,57	0,32243	0,000391
3,20	0,19200	11970,2	0,33958	0,000505
3,30	0,24038	12620,61	0,35803	0,000633
3,40	0,29063	13295,81	0,37719	0,000765
3,50	0,34175	13981,5	0,39664	0,000899
3,60	0,39450	14669,42	0,41615	0,001038
3,70	0,44875	15313,78	0,43443	0,001181
3,80	0,50400	15917,78	0,45157	0,001326
3,90	0,55963	16431,49	0,46614	0,001473
4,00	0,61350	16849,52	0,47800	0,001614
4,10	0,66688	17055,19	0,48384	0,001755
4,20	0,72313	17425,54	0,49434	0,001903
4,30	0,77850	17899,51	0,50779	0,002049
4,40	0,83438	18214,54	0,51672	0,002196
5,00	1,15113	18729,21	0,53133	0,003029
5,05	1,17713	18814,09	0,53373	0,003098
5,10	1,20300	18628,44	0,52847	0,003166
5,20	1,25413	18355,69	0,52073	0,003300
5,30	1,30088	17279,31	0,49019	0,003423
5,40	1,35050	15419,01	0,43742	0,003554
5,50	1,40050	15148,16	0,42974	0,003686
5,60	1,41175	14523,82	0,41202	0,003715
5,70	1,41550	11274,66	0,31985	0,003725
5,80	1,45575	10936,42	0,31025	0,003831
5,90	1,50375	11290,55	0,32030	0,003957
6,00	1,55413	11595,09	0,32894	0,004090
6,10	1,60963	11111,58	0,31522	0,004236
6,20	1,59300	9325,345	0,26455	0,004192
6,30	1,63000	3472,01	0,09850	0,004289
6,40	1,67613	3986,041	0,11308	0,004411

6,50	1,72550	4500,707	0,12768	0,004541	
6,60	1,77638	4924,139	0,13969	0,004675	
6,70	1,82725	5401,293	0,15323	0,004809	
6,80	1,87863	5883,852	0,16692	0,004944	

Anexos C.

Tablas de resultados de análisis modal en casos de estudio.

Tabla C1. Resultados del análisis modal en caso de estudio 1.

	MODE	MX	MY	RMX	RMY	RMZ
_	1	4.74644	0.00206794	0.00191507	5.50974	0.197156
	2	9.13931	0.0182916	0.0281481	11.091	0.347463
	3	13.8904	0.0195968	0.0295737	16.5369	0.585882
	4	17.6609	0.052635	0.0791349	21.7122	0.664764
	5	17.777	1.01133	1.63723	21.8634	0.933372
	6	21.0139	1.03539	1.67021	25.9509	0.946254
	7	21.0604	3.13086	3.55701	26.0084	1.03132
	8	21.066	3.87609	4.95174	26.0092	1.89411
	9	21.0684	3.88607	4.95919	26.0121	2.64369
	10	21.1541	4.13685	5.4217	26.0612	3.02869
	11	21.1688	4.14588	5.43084	26.0782	3.73909
	12	21.2538	5.13315	7.63789	26.1263	4.09388
	13	21.2561	5.19605	8.45618	26.1341	4.34049
	14	21.2894	5.19652	8.49312	26.2926	4.42548
	15	21.3474	5.20314	8.62229	26.2975	4.59188
	16	21.3476	5.20358	8.62254	27.4536	4.59269
	17	21.3508	5.20813	8.62265	28.4549	4.5936
	18	21.3508	5.20816	8.62323	29.7716	4.59363
	19	22.2589	5.28686	8.66609	30.9597	5.01955
	20	22.4041	5.57661	8.69176	31.1063	5.05271
	21	22.4416	5.57689	8.70187	31.421	5.05846
	22	22.6671	5.72777	8.70582	32.475	5.05861
	23	22.7304	5.7319	8.70855	32.8505	5.06053
	24	23.319	5.82227	8.76742	33.4758	5.06527
	25	23.75	5.85807	8.93168	34.0358	5.14997

27	25.0556	6.23604	9.04913	36.0047	5.75476
28	25.0676	6.31588	9.05452	36.0092	5.80123
29	25.1569	6.37345	9.05751	36.0899	5.81826
30	25.3658	6.58917	9.06568	36.3237	5.94987
31	25.3658	6.58919	9.06724	36.3247	5.94987
32	25.366	6.87309	9.67496	36.3296	6.22377
33	25.3954	9.05623	10.3004	36.3835	6.51301
34	25.4129	9.39605	10.4017	36.3839	6.7457
35	25.474	9.39651	10.4169	36.4865	6.75036
36	25.4783	9.45314	10.4261	36.4943	6.82236
37	25.7839	12.8894	12.3388	36.8496	8.64086
38	25.7946	12.8897	12.3486	36.8689	8.69816
39	25.7947	13.2077	12.6439	36.9354	9.01696
40	25.7961	13.2879	12.7214	37.0213	9.0195
41	25.7961	13.2949	12.7443	37.191	9.01952
42	25.7969	13.3114	12.7448	37.2871	9.0567
43	25.8012	13.3869	12.7466	37.2904	9.15924
44	25.8013	16.9347	13.8047	37.3617	9.16762
45	25.9449	19.9457	15.4941	37.503	9.28377
46	26.045	22.2706	17.1396	37.6353	9.28712
47	26.0691	22.3007	17.2472	37.6877	9.30702
48	26.0727	23.6036	17.2781	37.6942	9.32602
49	26.2566	23.824	17.3116	38.2394	9.39273
50	26.9346	24.3275	17.5637	38.9661	9.393
51	28.1025	24.3296	17.5644	40.3044	9.45171
52	29.0741	24.3307	17.5647	41.5717	9.48877
53	29.1587	33.5026	21.391	41.5886	9.79708
54	29.1656	37.5377	23.0962	41.589	9.93846
55	29.7655	37.5399	23.1103	42.1733	9.94477
56	30.2294	37.6045	23.1572	42.7302	9.96432
57	30.2844	37.908	23.2141	43.3172	9.96621

26

24.546

6.00767

8.95718

35.4422

5.24056

58	30.3203	38.4543	23.302	43.3211	9.96917	90	32.7036	82.4698	30.5389	46.7449	11.401
59	30.4081	38.7263	23.5165	43.3813	9.98607	91	32.7176	82.4761	30.5521	46.7461	11.4022
60	30.4898	38.7617	23.5571	43.665	10.0257	92	32.7184	82.4793	30.5852	46.7593	11.4493
61	30.4907	38.8911	23.5694	43.667	10.1694	93	32.7315	82.519	30.5947	46.7791	11.6748
62	30.4914	39.7862	23.7553	43.7371	10.1787	94	32.7614	82.6026	30.6649	46.8791	11.684
63	30.4923	40.0546	23.8281	43.7373	10.3344	95	32.8518	82.6224	30.6806	47.1077	11.8385
64	30.4924	40.056	23.8282	43.7404	10.4094	96	32.8609	82.623	30.6826	47.386	11.8476
65	30.4957	40.1997	24.0627	43.8314	10.4101	97	32.8612	82.6469	30.6976	47.3861	11.8525
66	30.5898	59.0099	26.3554	43.8519	10.6605	98	32.8978	82.7664	30.6977	47.4144	12.1468
67	30.6548	59.2377	26.3657	43.8848	10.6633	99	32.9389	82.8739	30.6994	47.483	12.1468
68	30.6597	60.5523	27.57	44.0272	10.7513	100	32.9393	82.8742	30.6994	47.6648	12.1469
69	30.6644	61.1934	27.6922	44.0723	10.7788	101	32.9394	82.8748	30.6995	48.5095	12.147
70	30.6969	61.1937	27.6937	44.1149	10.7792	102	32.9394	82.8755	30.7	48.9659	12.1475
71	30.6974	61.7814	27.7131	44.1575	10.782	103	32.9394	82.8758	30.7135	49.066	12.1663
72	30.7111	61.8017	27.7164	44.1583	10.7948	104	32.9423	82.8959	30.7135	49.1199	12.2262
73	30.7125	61.8359	27.7981	44.162	10.7977	105	32.9424	82.9115	30.7369	49.1745	12.2426
74	30.8192	72.4343	29.0637	44.2448	10.8005	106	32.9426	82.9175	30.7426	49.2748	12.2447
75	30.973	72.7038	29.1366	44.762	10.8349	107	32.9429	82.9175	30.7446	49.5964	12.246
76	30.9769	79.3377	29.6623	44.764	10.8354	108	33.0081	82.9352	30.7476	49.6799	12.3059
77	30.9888	79.3866	29.6625	44.7934	10.886	109	33.0082	82.9415	30.7489	49.7983	12.3333
78	30.9936	79.3891	29.6631	44.8079	10.9162	110	33.0193	83.1172	31.3829	49.8129	12.3382
79	30.9942	79.4008	29.6648	44.8106	10.9166	111	33.0647	83.1186	31.3844	49.8155	12.4626
80	31.0928	79.4014	29.8153	44.9304	10.9284	112	33.0679	83.2915	31.5477	49.8198	12.4627
81	31.1766	79.4638	29.8191	45.0374	10.9284	113	33.0716	83.3914	31.7611	49.8198	12.4628
82	31.4628	79.5257	29.822	45.4771	10.9349	114	33.0859	83.3963	31.8426	49.8678	12.4847
83	31.7104	79.5265	29.8909	45.7183	10.9663	115	33.0918	83.3965	31.8662	49.8731	12.4878
84	31.8342	79.5495	29.8947	45.7521	10.9793	116	33.0918	83.3965	31.8663	49.8732	12.4878
85	31.8734	79.5935	30.3111	45.7745	11.1028	117	33.0918	83.3993	31.8757	49.8733	12.4913
86	32.2935	79.9955	30.4205	46.3404	11.1138	118	33.0932	83.3993	31.879	49.8735	12.4917
87	32.3152	80.3017	30.4349	46.3639	11.1138	119	33.0933	83.4065	31.9238	49.8738	12.5087
88	32.3152	82.2147	30.4655	46.3676	11.3715	120	33.1124	83.4088	31.9281	49.8741	12.5189
89	32.3606	82.4093	30.5191	46.5419	11.3718	121	33.1163	83.4503	32.0842	49.8745	12.5555

122	33.1247	83.5023	32.4423	49.8868	12.567	154	33.5659	83.8489	33.408	50.806	12.9048
123	33.126	83.503	32.4425	49.9388	12.5689	155	33.5665	83.8877	33.4612	50.811	12.9096
124	33.1284	83.5031	32.4432	49.9427	12.65	156	33.5901	83.8891	33.4802	50.9292	12.9152
125	33.1303	83.5132	32.4443	49.9474	12.6743	157	33.5993	83.9841	33.528	50.9349	12.9274
126	33.1903	83.5138	32.4482	50.0195	12.6795	158	33.6081	83.9873	33.5461	50.9358	12.9384
127	33.2495	83.5884	32.4674	50.0342	12.6932	159	33.6235	83.991	33.5586	51.0135	12.9417
128	33.2603	83.5895	32.4728	50.0584	12.6933	160	33.6238	84.0722	33.6283	51.0426	13.0671
129	33.2605	83.5897	32.4763	50.1149	12.6942	161	33.8285	84.0723	33.631	51.2863	13.0671
130	33.2607	83.5906	32.4766	50.1629	12.6942	162	33.887	84.0733	33.6327	51.397	13.0717
131	33.2607	83.5917	32.4789	50.2206	12.6944	163	34.5502	84.0733	33.6327	52.1923	13.1142
132	33.3149	83.5934	32.492	50.3291	12.6992	164	34.8461	84.0733	33.6331	52.5635	13.1305
133	33.3174	83.5953	32.5314	50.3307	12.7141	165	35.0094	84.0734	33.6336	52.8234	13.1322
134	33.3223	83.6271	32.5438	50.333	12.7145	166	35.0094	84.0997	33.7121	52.8717	13.1502
135	33.3248	83.6389	32.5917	50.3427	12.7838	167	35.0847	84.0997	33.7121	52.9688	13.1502
136	33.388	83.6517	32.6001	50.5321	12.7842	168	35.2682	84.1005	33.7155	53.0781	13.1537
137	33.3928	83.664	32.715	50.541	12.7947	169	35.2961	84.1051	33.7169	53.3073	13.1538
138	33.4015	83.6688	32.7171	50.6025	12.8052	170	35.4946	84.1171	33.7425	53.3133	13.1543
139	33.413	83.6705	32.7299	50.6353	12.8053	171	35.5162	84.1171	33.7426	53.3714	13.1561
140	33.4143	83.6791	32.7364	50.6374	12.8055	172	35.5243	84.1175	33.7433	53.4325	13.1892
141	33.4462	83.6805	32.7398	50.6619	12.8056	173	35.5379	84.1734	33.806	53.4335	13.2042
142	33.5043	83.6891	32.7427	50.7374	12.8224	174	35.5379	84.1736	33.8061	53.4336	13.2566
143	33.5388	83.6892	32.7429	50.744	12.8241	175	35.538	84.1738	33.8065	53.4336	13.3091
144	33.5388	83.6971	32.7631	50.744	12.8254	176	35.5412	84.1741	33.8085	53.4362	13.3539
145	33.5389	83.698	32.7633	50.7475	12.8254	177	35.5572	84.1782	33.8332	53.4438	13.3661
146	33.5399	83.698	32.7645	50.7476	12.8254	178	35.5823	84.1827	33.876	53.5191	13.4567
147	33.5399	83.7027	32.7979	50.7499	12.8284	179	35.589	84.1829	33.8766	53.5361	13.463
148	33.5411	83.7063	32.8106	50.7581	12.8322	180	35.6945	84.2195	33.9709	53.5934	13.4686
149	33.5411	83.7637	32.9451	50.7773	12.848	181	35.704	84.2355	34.0078	53.5971	13.4741
150	33.545	83.8403	33.3506	50.7823	12.8803	182	35.7123	84.2356	34.0087	53.6022	13.482
151	33.545	83.8404	33.3506	50.7825	12.8805	183	35.7125	84.2358	34.0161	53.6052	13.5603
152	33.5503	83.8464	33.4003	50.7825	12.8934	184	35.7138	84.2632	34.0869	53.6166	13.576
153	33.5505	83.847	33.4022	50.7825	12.8939	185	35.7168	84.2647	34.0933	53.6254	13.5767

186	35.7187	84.2739	34.1597	53.6279	13.5767
187	35.7226	84.3013	34.2263	53.6311	13.5844
188	35.7228	84.302	34.2297	53.6431	13.5847
189	35.7228	84.3088	34.2492	53.666	13.5916
190	35.7336	84.3117	34.2697	53.6832	13.6066
191	35.7359	84.3769	34.6453	53.6852	13.7852
192	35.743	84.3925	34.7156	53.7234	13.7859
193	35.7452	84.3926	34.7161	53.7701	13.7865
194	35.8015	84.3952	34.7245	53.8333	13.796
195	35.8176	84.4023	34.7468	53.8338	13.7961
196	35.848	84.4024	34.7493	53.8966	13.801
197	35.8495	84.4094	34.779	53.9379	13.8019
198	35.8567	84.4094	34.779	53.938	13.8057
199	35.8633	84.4374	34.9527	53.9532	13.8059
200	35.8633	84.4495	35.0284	53.9542	13.9097

Tabla C2. Resultados del análisis modal en caso de estudio 2.

MODE	MX	MY	RMX	RMY	RMZ
1	5.41598	0.0154944	0.0120244	6.21001	0.00480713
2	11.2833	0.0315387	0.0361423	13.1584	0.0101496
3	13.9995	0.066305	0.0973199	16.6477	0.195959
4	18.2124	0.144574	0.145222	21.0625	0.325336
5	18.2218	0.830084	0.299834	21.0699	2.17728
6	18.2238	1.19815	1.36543	21.0751	3.37213
7	18.2239	2.27837	3.42663	21.0755	3.76559
8	18.2325	4.43769	3.76709	21.0851	3.76561
9	18.2326	5.79784	8.04728	21.0851	3.76616
10	18.2427	5.85015	8.07775	21.0941	4.41927
11	18.4314	5.86762	8.07966	21.3427	5.02821
12	18.5405	5.90457	8.23863	21.4407	5.05206
13	18.5405	6.03377	8.26292	21.4431	5.11216
14	19.0066	6.04709	8.27371	22.1027	5.1901
15	19.754	6.07386	8.29179	22.7498	5.22237
16	19.757	6.35658	9.56815	22.752	5.59138
17	19.7587	6.3621	9.57725	24.1126	5.59259
18	19.7604	6.36522	9.57735	25.5447	5.59396
19	19.7611	6.38891	9.60081	26.2688	5.60043
20	19.793	6.83712	9.84656	26.7145	5.60192
21	19.8856	8.66327	11.3929	27.3873	5.63465
22	19.8888	9.40033	11.8136	27.3934	5.79648
23	19.9588	9.83308	11.9847	27.4694	6.02218
24	19.9628	10.0253	11.9965	27.5168	6.35459
25	19.9628	10.0259	12.0089	27.5171	6.3641
26	19.9634	10.0392	12.0306	27.5204	6.36545
27	20.0832	10.2131	12.0325	27.6651	6.38917
28	20.1284	10.3877	12.1591	27.6814	6.48853
29	20.1912	11.1092	12.1625	27.7808	6.82286
30	20.2068	11.2276	12.5402	27.8318	6.8626

31	20.2838	11.4006	13.2746	27.9292	6.86664	6	63	30.7638	23.5311	20.969	40.2624	9.86213
32	20.4063	13.2713	14.9325	28.0535	7.46512	6	64	30.8265	25.7041	21.0185	40.2716	9.86414
33	20.4233	13.9475	16.3699	28.0544	7.4785	6	65	30.8283	61.0038	26.7461	40.3431	9.86533
34	20.4243	14.3149	16.5123	28.0653	7.57512	6	66	30.8306	70.9265	28.3628	40.3537	9.86589
35	20.4257	14.3455	16.5716	28.0907	7.5943	6	67	30.8508	72.2816	28.7404	40.3571	10.0479
36	20.447	14.7128	16.5938	28.093	7.59657	6	68	30.8675	76.2626	29.5578	40.523	10.0494
37	20.488	14.8782	16.6037	28.0937	7.68234	6	69	30.8868	76.84	29.612	41.0334	10.0595
38	20.4881	15.1424	16.6493	28.0938	7.76657	7	70	30.8868	76.856	29.6214	41.6393	10.061
39	20.4936	15.1788	16.6609	28.3242	7.76696	7	71	30.8868	76.8567	29.6348	42.0307	10.0618
40	20.535	15.1873	16.7936	28.6275	7.77798	7	72	30.9083	81.6027	29.92	42.0314	10.1178
41	20.5394	15.8554	16.9746	28.654	7.79139	7	73	30.9241	82.8547	30.1795	42.0788	10.1245
42	20.8089	19.1031	19.576	28.894	7.79345	7	74	30.9242	82.855	30.1816	42.0819	10.1634
43	21.7702	19.6453	19.614	30.1664	7.83115	7	75	30.9575	82.8865	30.182	42.1017	10.1833
44	21.923	21.7098	19.6799	30.2747	7.87378	7	76	31.0788	82.8881	30.1932	42.2586	10.1888
45	22.1571	22.0972	20.5516	30.626	7.90643	7	77	31.1473	83.0008	30.2002	42.3318	10.2176
46	24.6973	22.1729	20.6912	33.1878	8.53773	7	78	31.1608	83.0021	30.2003	42.3353	10.2913
47	26.5026	22.2036	20.7317	35.4656	9.2462	7	79	31.1675	83.0231	30.4826	42.3405	10.3771
48	26.5026	22.2334	20.7409	35.468	9.25131	8	80	31.1683	83.0411	30.5994	42.3504	10.4015
49	26.5669	22.2358	20.7441	35.5142	9.26617	8	81	31.1695	83.2836	30.6356	42.4568	10.4172
50	26.7423	22.2359	20.7463	35.5366	9.29216	8	82	31.1697	83.6924	30.6557	42.4596	10.5498
51	26.7678	22.2497	20.7469	35.7453	9.34215	8	83	31.1896	83.6952	31.0674	42.4841	10.6827
52	27.2285	22.2497	20.7567	36.2273	9.38602	8	84	31.1944	84.2935	31.0719	42.4843	10.7021
53	28.2994	22.2505	20.7568	37.379	9.38875	8	85	31.1958	84.3146	31.2322	42.4876	10.7029
54	29.4056	22.2515	20.7569	38.7647	9.39029	8	86	31.2557	84.3188	31.2323	42.552	10.7049
55	30.1574	22.256	20.7573	39.5808	9.40676	8	87	31.3158	84.3213	31.2364	42.6242	10.7174
56	30.201	22.2563	20.7573	39.609	9.40887	8	88	31.3263	84.3301	31.2366	42.6381	10.8621
57	30.2055	22.2591	20.7574	39.6104	9.40943	8	89	31.3322	84.3443	31.2367	42.6424	11.0153
58	30.2572	22.5432	20.8188	39.8003	9.45294	9	90	31.333	84.352	31.2583	42.6458	11.0156
59	30.2975	22.8418	20.8754	39.8136	9.45871	9	91	31.333	84.3643	31.2646	42.6458	11.0356
60	30.5208	22.9243	20.8851	40.1198	9.46063	9	92	31.3342	84.3652	31.3395	42.6461	11.0358
61	30.7607	22.9615	20.8882	40.2583	9.48189	9	93	31.3362	84.3864	31.6486	42.6462	11.0673
62	30.7615	23.5311	20.9638	40.2596	9.83273	9	94	31.3912	84.4012	31.655	42.7012	11.0951

95	31.4177	84.4025	31.6862	42.7355	11.1022
96	31.7793	84.409	31.6864	43.1293	11.1692
97	32.1526	84.4093	31.6864	43.5971	11.263
98	32.1526	84.7563	33.1017	43.5971	11.2781
99	32.1528	84.8784	33.2849	43.5994	11.3086
100	32.1529	84.8856	33.2878	44.2005	11.3087

Tabla C3. Resultados del análisis modal en caso de estudio 3.

MODE	MX	MY	RMX	RMY	RMZ
1	3.49897	0.00438682	0.00940275	7.62286	1.71149e-07
2	9.26346	0.0109652	0.0111557	9.6957	2.5379e-05
3	10.6411	1.13614	1.60642	11.7123	0.00229196
4	11.5269	2.26414	3.21244	13.033	0.890154
5	11.5272	2.36696	3.26595	13.0331	1.75785
6	11.5422	2.43339	3.35672	13.0562	2.18909
7	12.2381	3.81207	4.08259	13.4418	2.19956
8	13.448	4.71621	4.48892	14.074	2.82938
9	15.1808	4.71836	4.49059	16.5498	3.13465
10	16.8883	4.74377	4.49779	17.6973	3.29443
11	17.0134	4.77829	4.50878	17.8031	3.34845
12	17.5497	4.78608	4.52634	18.5614	3.37362
13	17.5513	6.23088	6.80693	18.5654	4.19458
14	18.78	6.23104	6.8076	24.8539	4.19459
15	19.1327	6.61868	6.91851	25.0566	4.49544
16	19.1336	6.63876	6.98562	25.0575	4.75266
17	19.1493	8.88596	8.31644	25.0585	5.61652
18	19.2816	8.90886	8.3386	25.0732	5.84057
19	19.5317	8.91162	8.34344	25.501	5.87029
20	19.5739	8.91785	8.34375	25.5191	5.94677
21	19.5937	9.01466	8.36866	25.5234	6.00535
22	19.5937	9.01571	8.37243	25.5238	6.1908
23	19.6209	9.55347	9.08812	25.5758	6.19824
24	19.6433	10.127	9.12696	25.6023	7.26261
25	19.6538	10.1358	9.13417	25.6124	7.54335
26	19.6554	10.1438	9.25456	25.6126	7.65696
27	19.6628	10.6122	10.1459	25.6873	7.65715
28	19.6801	10.6626	10.1569	26.0393	7.68952
29	19.6804	10.8272	11.3443	26.0394	7.72044
30	19.8275	10.8332	11.3544	26.7879	7.72316

31	19.8275	10.8333	11.3545	27.8819	7.72317	6	33	21.4033	18.3218	20.0528	32.9604	10.5594
32	19.8275	10.8349	11.3617	28.8116	7.72354	6	64	21.4034	18.3509	20.0855	32.9675	10.5616
33	19.8475	10.8747	11.4117	29.5558	7.72901	6	65	21.4495	18.3612	20.0858	33.0127	10.5853
34	19.8566	11.2239	11.4117	29.5623	7.8102	6	66	21.45	18.8028	20.536	33.0252	10.5856
35	19.9729	11.3288	11.6353	29.8084	7.83093	6	67	21.4969	19.0089	20.5984	33.1494	10.5857
36	19.9729	11.3289	11.6355	29.8084	7.83095	6	88	21.5105	19.1191	20.6767	33.1495	10.5884
37	19.9732	11.3304	11.6378	29.8087	7.83165	6	89	21.544	19.294	20.6777	33.2309	10.5944
38	20.236	11.3321	11.7273	30.7771	7.86894	7	70	21.5443	19.6334	20.8176	33.2309	10.5983
39	20.43	11.4656	11.7409	30.8098	7.89231	7	' 1	21.5962	19.7874	21.0296	33.489	10.6354
40	20.4418	11.8448	12.0061	30.9116	7.90405	7	72	21.6236	19.9143	21.0844	33.5037	10.6609
41	20.6533	11.8554	12.0093	31.1277	7.90421	7	73	21.625	20.2239	21.1764	33.5053	10.74
42	20.6739	11.9569	12.1502	31.1761	7.93388	7	74	21.6632	20.2755	21.1806	33.5699	10.7511
43	20.8843	11.9714	12.1915	31.3093	7.94341	7	7 5	21.6823	20.2931	21.1839	33.5709	10.7743
44	20.8843	11.9789	12.1915	31.6774	7.94919	7	76	21.8403	20.2933	21.184	34.2973	10.7751
45	20.8845	12.0319	12.2473	32.006	7.97275	7	77	22.0092	20.3088	21.184	34.418	10.8744
46	20.8901	12.1273	12.4689	32.0213	8.08578	7	78	22.0467	20.608	21.2029	34.574	10.888
47	20.9928	12.2101	12.7304	32.1722	8.08611	7	79	22.0562	20.6153	21.2339	34.6893	10.8945
48	21.0535	12.2631	12.7413	32.2706	8.10152	8	30	22.06	21.2324	21.3814	34.7023	10.921
49	21.0537	12.3285	12.7527	32.4009	8.1144	8	31	22.0655	21.3442	21.382	34.7071	10.9327
50	21.0573	12.3488	12.8091	32.4976	8.1196	8	32	22.0713	21.3504	21.3972	34.7093	10.9464
51	21.16	12.6029	12.8103	32.631	8.12995	8	33	22.0714	21.3966	21.4239	34.7094	10.9485
52	21.1608	15.1547	17.189	32.6311	8.68353	8	34	22.7075	21.406	21.4296	35.2544	10.962
53	21.1629	15.1612	17.2649	32.6353	8.68583	8	35	22.7395	21.5335	21.4658	35.2572	10.9786
54	21.2733	15.3408	17.4696	32.7491	8.78984	8	36	22.8681	21.549	21.4664	35.3328	10.9999
55	21.2734	15.5075	17.5006	32.7493	9.15627	8	37	22.9239	27.4863	22.2467	35.3382	11.0069
56	21.274	15.658	17.5915	32.7494	9.43756	8	88	23.0313	27.866	22.5376	35.4044	11.0102
57	21.2909	15.658	17.6466	32.7604	9.43778	8	39	23.838	27.8968	22.5474	36.0954	11.0103
58	21.371	15.66	17.6466	32.9044	9.51446	9	90	24.7655	27.897	22.5476	37.3037	11.0104
59	21.3727	17.3018	19.6468	32.9152	9.57745	9	91	24.767	27.9685	22.5861	37.3061	11.0237
60	21.3817	17.8671	19.8256	32.9236	10.2029	9	92	24.7671	27.9707	22.5869	37.3063	11.0239
61	21.3818	18.2337	19.9655	32.926	10.5371	9	93	24.77	28.1647	22.5892	37.3792	11.0244
62	21.4033	18.3056	20.0447	32.9603	10.5591	9	94	24.7752	29.1747	22.6785	37.3922	11.0296

95	24.7754	33.4108	22.7418	37.4055	11.0764
96	24.7767	33.9373	22.8609	37.4067	11.258
97	24.7978	39.0613	23.3506	37.4397	11.2582
98	24.8296	39.606	23.6485	37.4483	11.2904
99	24.8556	39.9175	23.6787	37.6634	11.3097
100	24.8683	40.0651	24.2236	37.6776	11.3189
101	24.875	40.099	24.2238	37.6825	11.3331
102	24.9565	40.6908	24.3036	37.7601	11.4079
103	25.0881	42.3633	24.7866	37.7988	11.5005
104	25.1071	42.5223	24.8299	37.8204	11.5038
105	25.2644	42.5226	24.8329	38.1531	11.5726
106	25.3714	45.4367	24.8975	38.2414	11.5979
107	25.3944	57.95	26.9013	38.2417	11.6186
108	25.5948	59.1635	27.1488	38.7396	11.6344
109	25.9029	59.3323	27.176	38.8908	11.6793
110	25.9312	59.3959	27.2528	38.891	11.7258
111	25.9322	60.0254	27.3235	38.8952	11.7292
112	25.9455	60.6944	27.3912	39.0698	11.7313
113	26.1287	61.0136	27.4865	39.094	11.735
114	26.1287	61.015	27.4869	39.097	11.7358
115	26.129	61.6206	27.514	39.0978	11.8073
116	26.1374	61.754	27.5252	39.1076	11.8484
117	26.1499	61.7555	27.5259	39.1354	11.8647
118	26.15	72.5414	28.5191	39.1383	11.8683
119	26.1534	72.6857	28.5192	39.1536	11.8864
120	26.1547	78.9343	28.901	39.159	11.8968
121	26.1559	79.0292	28.9011	39.1619	11.9018
122	26.1735	79.2906	28.9153	39.1775	11.9366
123	26.1751	79.3219	29.0023	39.1775	11.9395
124	26.183	79.3227	29.0037	39.1777	11.9481
125	26.183	79.8217	29.0306	39.1777	12.0571
126	26.1853	79.8252	29.0385	39.1783	12.0998

127	26.186	80.0861	29.0385	39.1901	12.1171
128	26.235	80.8908	29.0993	39.1942	12.125
129	26.2726	81.4577	29.1516	39.2276	12.3209
130	26.2971	81.6009	29.1523	39.3544	12.3261
131	26.3011	81.6059	29.2679	39.3558	12.3309
132	26.3028	81.6135	29.2816	39.3699	12.3442
133	26.3564	81.6138	29.3256	39.4779	12.3469
134	26.3565	81.7046	30.4783	39.4823	12.5032
135	26.3565	81.7058	30.4816	39.492	12.5036
136	26.3585	81.7058	30.4818	39.4936	12.5409
137	26.4895	82.0063	30.5664	39.5472	12.6253
138	26.5292	82.0099	30.5737	39.5571	12.6309
139	26.7006	82.0104	30.5881	39.8076	12.636
140	26.7546	82.0114	30.5976	39.913	12.6465
141	26.7735	82.012	30.605	39.9131	12.6496
142	26.7907	82.0251	30.6077	39.9427	12.6865
143	26.7988	82.749	30.6182	39.9447	12.7844
144	26.8005	82.756	30.6479	39.9509	12.8363
145	26.8281	82.7568	30.658	39.9512	12.8408
146	26.8401	82.7584	30.8627	39.9702	12.8461
147	26.8687	82.7651	30.9128	40.0223	13.021
148	26.8799	82.7901	30.913	40.0319	13.0418
149	26.8811	83.7537	31.006	40.0329	13.2191
150	26.8827	83.7541	31.0077	40.0357	13.2317