UCUENCA

Universidad de Cuenca

Facultad de Ingeniería

Carrera de Ingeniería Civil

Diagnóstico y propuestas de mejoras del Sistema de Abastecimiento de Agua Potable de las Comunidades de Patapamba y Chaguarcorral, Parroquia Turi, Cantón Cuenca

Trabajo de titulación previo a la obtención del título de Ingeniero Civil

Autor:

Edin Alejandro Bustamante González

Diego Alonso Coronel Menéndez

Director:

Diego Benjamín Idrovo Murillo

ORCID: 00009-0002-8796-3952

Cuenca, Ecuador

2024-10-30

Resumen

En la zona rural de la ciudad de Cuenca, se han identificado sistemas de abastecimiento de agua potable construidos de forma empírica por las propias comunidades. Estos sistemas muestran deficiencias tanto en la calidad como en la cantidad de agua suministrada. Además, la infraestructura existente presenta daños debido a la falta de mantenimiento y operación adecuada. Con el objetivo de mejorar esta situación, se ha desarrollado una propuesta integral para los sistemas de las comunidades Patapamba y Chaguarcorral, ubicadas en la parroquia Turi del Cantón Cuenca, en la Provincia del Azuay, al sur de la ciudad. La propuesta abarca desde la captación hasta la distribución del agua potable. Para fundamentar estas mejoras, se emplearon datos proporcionados por las comunidades, así como levantamientos topográficos, aforos de caudales y encuestas sanitarias realizadas específicamente para este proyecto. Las propuestas incluyen mantenimientos correctivos y la implementación de filtros lentos de arena, tanques de reserva, cámaras de lavado y cerramiento. Cada infraestructura tiene su correspondiente presupuesto para la futura construcción.

Palabras clave del autor: tanque de reserva, tratamiento de agua potable, aforo de caudales

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Cuenca ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por la propiedad intelectual y los derechos de autor.

Repositorio Institucional: https://dspace.ucuenca.edu.ec/

Abstract

In the rural area of the city of Cuenca, empirical water supply systems built by the communities themselves have been identified. These systems exhibit deficiencies both in the quality and quantity of water supplied. Furthermore, the existing infrastructure suffers from damages due to lack of proper maintenance and operation. With the aim of improving this situation, a comprehensive proposal has been developed for the systems serving the Patapamba and Chaguarcorral communities, located in the Turi parish of the Cuenca Canton, in the Azuay Province, south of the city. The proposal covers everything from water capture to distribution. To substantiate these improvements, data provided by the communities, as well as topographical surveys, flow measurements, and health surveys specifically conducted for this project, were employed. The proposed corrections include corrective maintenance and the implementation of slow sand filters, reserve tanks, washing chambers and enclosure. Each infrastructure has its corresponding budget for future construction.

Authors Keywords: reservoir tank, drinking water treatment, flow rate measurement

The content of this work corresponds to the right of expression of the authors and does not compromise the institutional thinking of the University of Cuenca, nor does it release its responsibility before third parties. The authors assume responsibility for the intellectual property and copyrights.

Institutional Repository: https://dspace.ucuenca.edu.ec/

Índice de contenido

1.	LIN	EAM	IENTOS	. 14
	1.1	Intro	oducción	. 14
	1.2	Ante	ecedentes y Justificación	. 14
	1.3	Alca	ance	. 15
	1.4	Obj	etivos	. 15
	1.4.	.1	Objetivo general	. 15
	1.4.	.2	Objetivos específicos	. 16
2.	MA	RCO	TEÓRICO	. 17
	2.1	Aba	stecimiento de agua	. 17
	2.1.	.1	Importancia	. 17
	2.2	Sist	emas de abastecimiento de agua	. 18
	2.2.	.1	Componentes de un sistema de abastecimiento de agua potable	. 18
	2.2.	.2	Normativa Ecuatoriana	. 26
	2.3	M	létodos de proyección poblacional	. 26
	2.4	E	valuación Hidráulica	. 27
	2.4.	.2	Válvulas en los sistemas de agua potable	. 28
	3.	MA	TERIALES Y METODOLOGÍAS	. 30
	3.1	Estu	udios preliminares	. 30
	3.1.	.1	Ubicación y acceso	. 30
	3.1.	.2	Clima y servicios públicos	. 30
	3.1.	.3	Descripción del sistema existente	. 31
	3.2	Dota	ación de agua potable	. 33
	3.2.	.1	Encuesta Sanitaria	. 33
	3.3	Тор	ografía	. 37
	3.3.	.1	Recorrido de campo	. 37
	3.3.	.2	Definición de equipos	. 37
	3.3.	.3	Proceso de medición	. 38
	3.3.	.4	Procesamiento de datos	. 39
	3.3.	.5	Replanteo de puntos	. 40
	3.4	Eva	luación hidráulica de la red de abastecimiento de agua	. 40
	3.4.	.1	Configuración de la red en EPANET	. 40
	3.4.	.2	Red de abastecimiento de agua de la comunidad de Patapamba	. 41

UCUENCA

	3.4.	3	Red de abastecimiento de agua de la comunidad de Chaguarcorral	. 49
	3.5	Cali	dad del agua potable	. 53
	3.6	Pro	yección poblacional	. 54
4.	RES	SULT	TADOS	. 54
	4.1	Afo	ros	. 54
	4.1.	1	Captaciones	. 54
	4.1.	2	PTAP	. 55
	4.1.	3	Domiciliaria	. 56
	4.2	Тор	ografía	. 56
	4.2.	1	Topografía para la comunidad de Patapamba	. 56
	4.2.	2	Topografía para la comunidad de Chaguarcorral	. 58
	4.3	Enc	uestas sanitarias	. 59
	4.3.	1	Respuestas proporcionadas por las encuestas comunidad de Patapamba	. 59
	4.3.	2	Respuestas proporcionadas por las encuestas comunidad de Chaguarcorra	d 74
	4.3.	3	Dotación de agua potable (Encuestas)	. 89
	4.3.	4	Dotación de agua potable (Medidores)	. 97
	4.3.	5	Dotación futura	. 99
	4.4	Cali	dad del agua potable	100
	4.4.	1	Interpretación de los análisis de laboratorio	100
	4.4.	2	Cuadro resumen interpretación de resultados del análisis de laboratorio	103
	4.5	Pro	yección poblacional	104
	4.5.	1	Comunidad de Patapamba	106
	4.5.	2	Comunidad Chaguarcorral	107
	4.6	Eva	luación de la red	108
	4.6.	1	Presiones en la red correspondiente a Patapamba	108
	4.6.	2	Velocidades sobre la red correspondiente a Patapamba	109
	4.6.	3	Presiones sobre la red correspondiente a Chaguarcorral	111
	4.6.	4	Velocidades sobre la red correspondiente a Chaguarcorral	113
	4.7	Diag	gnóstico y Propuestas de mejoras	115
	4.7.	1	Captaciones	115
	Planta	s de	Tratamiento/reservas	125
	4.7.	2	Caudales	130
	4.7.	3	Tanques de reserva de agua	131
	4.7.	4	Cámara de lavado	133
	4.7.	5	Trazado de nuevas acometidas	134

UCUENCA

	4.7.6	Diseño de filtros lentos de arena	134
	4.7.7	Diseño de cerramientos para las estructuras	139
	4.7.8	Implementación de válvulas reductoras de presión	139
	4.7.9	Estructuras de medición de caudal	140
	4.8 Pre	supuestos	140
5.	CONCL	USIONES Y RECOMENDACIONES	148
6.	REFER	ENCIAS	149
7.	ANEXO	S	151
	Anexo A. I	Formato de encuestas sanitarias Proyecto Patapamba Chaguarcorral	151
	Anexo B. I	Planos topográficos de las comunidades Chaguarcorral y Patapamba	164
	Anexo E	3.1 Plano topográfico de la comunidad de Patapamba	165
	Anexo E	3.2 Plano topográfico de la comunidad de Chaguarcorral	166
	Anexo E	3.3 Plano en planta de emplazamiento en PTAP Patapamba Bajo	167
	Anexo E	3.4 Plano en planta de emplazamiento en PTAP Patapamba Chaguarcorr	al . 168
		Planos de las estructuras de los sistemas de abastecimiento de agua des Chaguarcorral y Patapamba	
	Anexo D.	Resultados de características físico-químicas del agua del sistema	170
	Anexo [0.1. Resultados físico-químicos Patapamba	170
	Anexo [0.2 Resultados físico-químicos Chaguarcorral	171
	Anexo E. I	Evaluación hidráulica de la red	172
	Anexo E	E.1. Evaluación hidráulica de la red de Patapamba	172
	Anexo E	E.2. Evaluación hidráulica de la red de Chaguarcorral	181
	Anexo F. I	Detallamiento de refuerzo para tanques de reserva (ETAPA EP)	186

Índice de figuras

Figura 1 Ejempio de cuenca nidrografica Fuente: (Bravo Jaramilio, 2008)	
Figura 2 Esquema "tren de tratamiento" de agua potable. Fuente:(Kerry et al., 2017)	21
Figura 3 Red ramificada. Fuente:(EADIC, 2016)	. 22
Figura 4 Red mallada. Fuente:(EADIC, 2016)	. 22
Figura 5 Filtro lento de arena	
Figura 6 Equipo de cloración Clorid	26
Figura 7 Válvula reductora de presión modelo 720	28
Figura 8 Línea piezométrica - Válvula reductora de presión	29
Figura 9 Diagrama de cavitación para válvula reductora de presión	29
Figura 10 Ubicación de la comunidad Patapamba -Chaguarcorral en Google maps	
Figura 11 Esquema de sistema de abastecimiento de agua de toda la comunidad	32
Figura 12 Esquema de la planta de tratamiento Patapamba alto - Chaguarcorral	32
Figura 13 Esquema de la planta de tratamiento Patapamba bajo	
Figura 14 Nodos de la red 1 de abastecimiento de agua potable - Patapamba	42
Figura 15 Nodos de la red 2 de abastecimiento de agua en la comunidad - Patapamba	
Figura 16 Longitudes de la red 1 de abastecimiento de la comunidad Patapamba	45
Figura 17 Longitudes de la red 2 de abastecimiento de la comunidad Patapamba	46
Figura 18 Diámetros internos de la red 1 de abastecimiento de la comunidad Patapamba	. 47
Figura 19 Diámetros internos de la red 2 de abastecimiento de la comunidad Patapamba	
Figura 20 Nodos de la red de Patapamba alto - Chaguarcorral	
Figura 21 Longitudes de cada tramo de la red Chaguarcorral	
Figura 22 Diámetros internos de la red Chaguarcorral	
Figura 23 Resultados: Integrantes en un domicilio	
Figura 24 Resultados: Desayuno en casa	
Figura 25 Resultados: Almuerzo en casa	
Figura 26 Resultados: Cena en casa	
Figura 27 Resultados: Desayuno fines de semana	
Figura 28 Resultados: Almuerzo fines de semanas	
Figura 29 Resultados: Cena fines de semana	
Figura 30 Resultados: Número de lavado de platos	64
Figura 31 Resultados: Tiempo de lavado de platos	
Figura 32 Resultados: Número de vasos de agua por día	65
Figura 33 Resultados: Tiempo de ducha	
Figura 34 Resultados: Número de lavados de manos	66
Figura 35 Resultados: Número de duchas por semana	
Figura 36 Resultados: Número de lavado de dientes	67
Figura 37 Resultados: Uso de vaso para cepillado	
Figura 38 Resultados: Abierta o cerrada la llave en el cepillado	
Figura 39 Resultados: Número de descargas de inodoro	
Figura 40 Resultados: Número de lavado de piso	
Figura 41 Resultados: Cantidad de agua para limpieza del piso	
Figura 42 Resultados: limpieza de baños	
Figura 43 Resultados: Cantidad de agua limpieza de baños	
Figura 44 Resultados: Frecuencia lavado de ropa por semana	
Figura 45 Resultados: Método de lavado de ropa	
• • • • • • • • • • • • • • • • • • •	

UCUENCA

Figura	46 Resultados:	Cantidad de agua para lavado de ropa	. 73
Figura	47 Resultados:	Disposición de auto o motocicleta	. 73
Figura	48 Resultados:	Número de lavado de vehículos	. 74
Figura	49 Resultados:	Integrantes en el domicilio	. 75
Figura	50 Resultados:	Desayuno entre semana	. 75
Figura	51 Resultados:	Almuerzo entre semana	. 76
Figura	52 Resultados:	Cena entre semana	. 77
Figura	53 Resultados:	Desayuno fines de semana	. 77
Figura	54 Resultados:	Almuerzo fines de semana	. 78
		Cena fines de semana	
Figura	56 Resultados:	Lavado de platos al día	. 79
Figura	57 Resultados:	Tiempo de lavado de platos	. 79
Figura	58 Resultados:	Vasos de agua al día	. 80
Figura	59 Resultados:	Tiempo de ducha	. 81
Figura	60 Resultados:	Lavado de manos	. 81
Figura	61 Resultados:	Número de duchas al día	. 82
		Lavado de dientes	
		Uso de vaso para cepillado	
_		Llave abierta o cerrada para lavado de platos	
•		Número de descargas de inodoro	
•		Lavado de piso por semana	
-		Cantidad de agua para lavado de pisos	
_		Frecuencia limpieza de baños	
		Cantidad de agua para limpieza de baños	
		Frecuencia lavado de ropa	
_		Cantidad de agua para lavado de ropa	
_		Método de lavado de ropa	
-		Dispone de auto o motocicleta	
-		Frecuencia lavado de auto	
•		ón de cloro, prueba rápida	
•	•	Comunidad Patapamba	
		royección comunidad Chaguarcorral	
_		- Patapamba	
•	•	- Patapamba	
•	•	- Patapamba	
-	-	- Patapamba	
_		- Chaguarcorral - Patapamba	
-		ana captación 1 - Chaguarcorral - Patapamba	
_	-	- Chaguarcorral - Patapamba	
•	•	- Chaguarcorral - Patapamba	
		neda captación 2 - Chaguarcorral - Patapamba	
•		captación 2	
•		le arena PTAP Patapamba	
-		Il PTAP - Chaguarcorral - Patapamba	
		e mezcla PTAP - Chaguarcorral - Patapamba	
•		epartidor	
⊢ıgura	9∠ vertedero re	epartidor - Chaguarcorral - Patapamba	128

9

UCUENCA

Figura 93 Tanque de reserva PTAP Chaguarcorral - Patapamba 1	129
Figura 94 Cámara seca - captación 1 - Chaguarcorral - Patapamba1	129
Figura 95 Esquema tanque de reserva1	133
Figura 96 Tipos de mallas para refuerzo1	136
Figura 97 Vista en planta de los subdrenes1	138

Índice de tablas

	19
Tabla 2 Parámetros de Diseño Filtro lento	24
Tabla 3 Cantidad de agua estándar para preparación de comidas	34
Tabla 4 Cantidad de agua estándar de consumo para limpieza del hogar	35
Tabla 5 Cantidad estándar de consumo por Higiene Personal	36
Tabla 6 Registro de medidores de agua de ambas comunidades	36
Tabla 7 Tipo de red proveniente de la PTAP Patapamba alto - Chaguarcorral	43
Tabla 8 Tipo de red proveniente de la PTAP Patapamba	43
Tabla 9 Diámetros de la red de abastecimiento correspondiente a la PTAP Chaguar	corral
Patapamba alto	44
Tabla 10 Diámetros de la red de abastecimiento correspondiente a la PTAP Patapamba	ı 44
Tabla 11 Datos técnicos de las tuberías de la red de abastecimiento	
Tabla 12 Detalle de tramos de la red de Patapamba alto - Chaguarcorral	50
Tabla 13 Diámetros de la red Patapamba alto - Chaguarcorral	51
Tabla 14 Diámetros nominal e interno de tuberías	51
Tabla 15 Límites de características Físicas, químicas y biológicas del agua	
Tabla 16 Caudales de captaciones	
Tabla 17 Caudales de PTAP	
Tabla 18 Caudales en última domiciliaria	56
Tabla 19 Coordenadas de las captaciones para la PTAP Patapamba	57
Tabla 20 Características de los tramos en las conducciones para la PTAP Patapamba.	57
Tabla 21 Ubicación de la PTAP Patapamba	
Tabla 22 Coordenadas de las captaciones para la PTAP Patapamba Chaguarcorral	
Tabla 23 Características de los tramos en las conducciones para la PTAP Patapa	
Chaguarcorral	
Tabla 24 Ubicación de la PTAP Patapamba Chaguarcorral	
Tabla 25 Resultados consumo de agua – ALIMENTACIÓN	
Tabla 26 Resultado consumo de agua – HIGIENE PERSONAL	
Tabla 27 Resultado consumo de agua – ASEO DEL HOGAR	
Tabla 28 Dotación de agua Patapamba	
Tabla 29 Resultado consumo de agua – ALIMENTACIÓN	
Tabla 30 Resultado consumo de agua – HIGIENE PERSONAL	
	95
Tabla 31 Resultado consumo de agua – ASEO DEL HOGAR	
Tabla 32 Dotación Chaguarcorral	96
Tabla 32 Dotación Chaguarcorral Tabla 33 Dotaciones calculadas para las comunidades	96 97
Tabla 32 Dotación Chaguarcorral	96 97 98
Tabla 32 Dotación Chaguarcorral	96 97 98 99
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104
Tabla 32 Dotación Chaguarcorral	96 97 98 99 . 104 . 105
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104 105 105
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104 105 105
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104 105 106 106
Tabla 32 Dotación Chaguarcorral	96 97 98 99 104 105 105 106 106

UCUENCA

Tabla 44 Nodos con valores de presión fuera de los recomendados – Patapamba	. 108
Tabla 45 Tramos con velocidades bajas – Patapamba	. 109
Tabla 46 Nodos con valores de presión fuera de los recomendados – Chaguarcorral	. 112
Tabla 47 Tramos con velocidades bajas – Chaguarcorral	. 113
Tabla 48 Resultados caudal medio diario por PTAP	. 130
Tabla 49 Resultados caudal máximo diario por PTAP	. 130
Tabla 50 Resultados caudal máximo horario por PTAP	. 131
Tabla 51 Resultados caudal de diseño por PTAP	. 131
Tabla 52 Resultados volumen de tanques de reserva por PTAP	. 132
Tabla 53 Límites y consideraciones – Tanques de reserva	. 132
Tabla 54 Resultados predimensionamiento – Tanque de reserva	. 133
Tabla 55 Pre-dimensionamiento – Filtro lento de arena	. 134
Tabla 56 Dimensionamiento – Sistemas de recolección	. 137
Tabla 57 Pre-dimensionamiento – Filtro lento de arena	. 138
Tabla 58 Dimensionamiento – Sistemas de recolección	. 138
Tabla 59 Ubicación de válvulas en la red	. 139
Tabla 60 Presiones en los nodos	. 139
Tabla 61 Presiones en los nodos	
Tabla 62 Resumen presupuesto Patapamba	. 141
Tabla 63 Resumen presupuesto Chaguarcorral - Patapamba alto	. 141
Tabla 64 Presupuesto Cámara de lavado	. 141
Tabla 65 Presupuesto Filtro lento Patapamba alto - Chaguarcorral	. 143
Tabla 66 Presupuesto Cerramiento Patapamba alto - Chaguarcorral	. 143
Tabla 67 Presupuesto Filtro lento Patapamba bajo	. 145
Tabla 68 Presupuesto Tanque de reserva	. 146

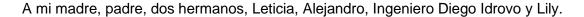
Dedicatoria

		,
Δ	m	
\boldsymbol{r}		и.

Diego Alonso Coronel Menéndez

Dedicatoria

A mis padres Edin y Elsa, por el incondicional apoyo e inculcarme el amor por el conocimiento.


A Carolina, por el cariño y enseñarme que podemos llegar alto.

A Alexa y Salomé, por la confianza en cada momento.

Edin Alejandro Bustamante González

Agradecimiento

Diego Alonso Coronel Menéndez

Agradecimiento

A mi Tutor, Ingeniero Diego Idrovo por su tiempo, conocimiento compartido y enseñanzas a través de los libros durante este proceso de formación.

A los amigos que conocí durante esta etapa universitaria, quienes siempre fueron un gran apoyo.

A mis docentes de la Facultad de Ingeniería por las enseñanzas compartidas.

Edin Alejandro Bustamante González

1. Lineamientos

1.1 Introducción

Se destaca la importancia crucial del suministro de agua para el desarrollo de regiones y países, así como para la salud y la higiene de la población. Un sistema de agua potable eficiente no solo mejora la calidad de vida, sino que también garantiza el acceso suficiente y la calidad adecuada del agua mediante la captación, conducción, tratamiento, almacenamiento y distribución adecuados.

En muchos casos, especialmente en comunidades rurales como Patapamba y Chaguarcorral al sur del centro parroquial de Turi, los sistemas de agua potable existentes requieren urgentemente planes de rehabilitación y mejora. Estos sistemas fueron construidos por las propias comunidades hace aproximadamente 30 años y actualmente atienden a cerca de 200 personas. Este documento proporcionará la información necesaria para que las comunidades afectadas o las autoridades competentes evalúen la viabilidad de mejorar este sistema vital.

1.2 Antecedentes y Justificación

El desarrollo de una población está directamente relacionado con el acceso al agua tanto en cantidad como en calidad, pero este acceso al agua se ve restringido principalmente en poblaciones rurales en países en desarrollo, afectando desde las actividades más esenciales como la higiene personal y la preparación de alimentos. Es uno de los grandes problemas que se siguen enfrentando en la actualidad, y el cual no parece tener solución debido a factores como escasez local de fuentes hídricas, comunidades rurales donde ellas mismas son las encargadas de toda la gestión de su sistema de abastecimiento, comunidades locales cumpliendo el papel de suministradores en vez de entidades gubernamentales locales, baja o nula influencia política ya que estos sectores rurales no son de interés al no ser representativos en lo que respecta al impacto político. (Programa De Las Naciones Unidas Para El Desarrollo, 2006)

En el marco nacional existen comunidades las cuales no cuentan con sistemas de abastecimiento de agua potable o cuentan con sus propios sistemas de abastecimiento, los cuales no necesariamente han sido construidos de manera técnica y/o se construyeron hace tanto tiempo que en la actualidad no cubren la demanda del servicio debido al crecimiento de la población (mayor número de habitantes de los que se pueden abastecer) o por la falta de mantenimiento, siendo necesaria una evaluación, mejora o rehabilitación de estos sistemas de manera técnica. Con lo previamente mencionado tenemos el caso de las comunidades de Chaguarcorral y Patapamba pertenecientes a la parroquia Turi del Cantón Cuenca de la

Provincia del Azuay, las cuales cuentan con un sistema que fue construido hace 30 años. Estas comunidades cuentan con un sistema de abastecimiento de agua compartido el cual inicia con cinco captaciones de vertientes de agua subterránea, donde el agua captada es filtrada y desinfectada en dos PTAP (Planta de Tratamiento de Agua Potable) para ser almacenada y distribuida a las comunidades. (Bojorque, 2019)

Por facilidad de acceso a estas comunidades al ser cercanas a la ciudad de Cuenca y tener vías de acceso se facilita realizar trabajos de campo y laboratorio para la recolección de muestras tanto para análisis físico, químicos y microbiológicos de calidad del agua, inspección y evaluación del estado del sistema, aplicación de encuestas sanitarias a los integrantes de las comunidades y demás actividades necesarias para el proyecto.

1.3 Alcance

El presente proyecto se desarrollará conjuntamente con los representantes de las dos comunidades, quienes indicarán las observaciones, fallas, procesos, equipos, y demás procesos correspondientes al sistema de abastecimiento actual.

El desarrollo de este trabajo ha sido dividido en cuatro etapas principales:

Primera etapa: Revisión de literatura sobre los diferentes sistemas de abastecimiento más comunes en el entorno y consideraciones específicas que se tienen que tomar en cuenta. Paralelamente se realizan visitas de campo con los representantes de las comunidades para una inspección general del sistema, recolección de datos y realizar un inventario de los componentes.

Segunda etapa: Levantamiento topográfico del sistema, red de abastecimiento y vías aledañas. Elaboración de estos planos topográficos y una evaluación de la red mediante el software EPANET.

Tercera etapa: Estudios de la calidad del agua mediante ensayos de laboratorio para determinar características físicas, químicas y microbiológicas del agua.

Cuarta etapa: Diseño de mejoras para el sistema de abastecimiento, elaboración de planos que incluyen las mejoras, estructuras nuevas y el cálculo de un presupuesto aproximado.

1.4 Objetivos

1.4.1 Objetivo general

Elaborar una propuesta de mejoras para el Sistema de abastecimiento de Agua de las Comunidades de Patapamba y Chaguarcorral.

1.4.2 Objetivos específicos

- Realizar una evaluación técnica del estado del sistema de abastecimiento actual de las comunidades de Patapamba y Chaguarcorral.
- 2. Elaborar planos y esquemas actualizados del sistema de abastecimiento considerando estructuras y mejoras a ser construidas.
- 3. Elaborar el presupuesto para la ejecución de las obras de mejora y mantenimiento del sistema.

2. Marco teórico

2.1 Abastecimiento de agua

2.1.1 Importancia

Este recurso es fundamental para la salud, tanto por su uso directo en consumo humano como por su papel esencial en la agricultura, que constituye la principal fuente de alimentos en la dieta diaria. La agricultura consume una gran parte de las reservas mundiales de agua dulce, aproximadamente el 69%. Esto destaca la interdependencia crítica entre acceso a agua segura, una alimentación adecuada y, en última instancia, el bienestar general de las comunidades (Naciones Unidas, 2021)

El abastecimiento de agua está íntimamente relacionado con la salud pública de una población, el agua debe ser de alta calidad, suministrarse en cantidades suficientes para satisfacer las necesidades domesticas como la bebida, higiene personal, usos sanitarios y otros. En el año 2010, la Asamblea de las Naciones Unidas reconoció que todos los seres humanos tienen derecho a disponer de agua salubre de forma continua, físicamente accesible, en cantidades suficientes.

Por otro lado, el agua contaminada contribuye a la transmisión de enfermedades diarreicas, enfermedades respiratorias agudas, y enfermedades tropicales desatendidas. Es por eso que los sistemas de abastecimiento de agua deben garantizar la remoción de las sustancias químicas y biológicas que causan estas enfermedades que cada año causan miles de muertes alrededor de todo el mundo. (OMS, 2023).

El abastecimiento de agua potable es muy importante para el desarrollo económico y social de una región. El acceso a agua potable genera beneficios que impactan directamente en la prosperidad de la comunidad. Esto se ve reflejado en el aumento de la producción industrial, el fomento del desarrollo de empresas locales y la agricultura, entre otras actividades productivas. La disponibilidad física de agua no garantiza su aprovechamiento por la carencia de una infraestructura adecuada (Naciones Unidas, 2021). En ciertas regiones, la ausencia de sistemas eficientes de distribución impide que las regiones con recursos hídricos suficientes puedan satisfacer sus necesidades, así como también el crecimiento socioeconómico.

En conclusión, el abastecimiento de agua se destaca como un factor esencial para la salud y la calidad de vida, enfatizando la importancia de su gestión responsable y sostenible.

2.2 Sistemas de abastecimiento de agua

Este se compone de un grupo de estructuras que realizan la captación, transporte, tratamiento, almacenamiento y distribución del agua. Su propósito es suministrar agua de manera constante y segura a una comunidad, área urbana o rural. Según (Arocha, 1980), el diseño de estas infraestructuras dependerá de los siguientes criterios:

- Cifras de consumo de agua: Se estima mediante investigaciones propias de cada comunidad o utilizando valores de referencia según las normativas.
- Períodos de diseño y vida útil de las estructuras: El sistema debe satisfacer las necesidades de la comunidad para un período razonable.
- Variaciones de consumo: Va a depender de la región a implementar el sistema de abastecimiento debido a sus factores meteorológicos y características de consumo de la población.
- Tuberías y materiales: Estos deben resistir las diferentes presiones y condiciones climatológicas de la región.

2.2.1 Componentes de un sistema de abastecimiento de agua potable

2.2.1.1 Cuenca hidrográfica

Las cuencas hidrográficas son áreas definidas por las cumbres de las montañas, donde todas las aguas convergen hacia un curso de agua, abarcando todos los flujos de agua, como los arroyos o ríos. Las cuencas hidrográficas son fundamentales para comprender y administrar los recursos hídricos, ya que facilita la gestión integral de los escurrimientos y contribuye a la planificación sostenible del agua (SEMARNAT, 2013). La extensión de una cuenca hidrográfica es la que se visualiza en la Figura 1. Estas regiones tienen la siguiente categorización en Ecuador (Tabla 1) según el Instituto Ecuatoriano Forestal y de Áreas Naturales y vida Silvestre (INEFAN):

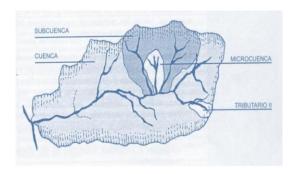


Figura 1 Ejemplo de cuenca hidrográfica Fuente: (Bravo Jaramillo, 2008)

Categoría	Superficie en Has.	Superficie en km^2
Sistema hidrográfico	Mayor a 300.000	Mayor a 3.000
Cuenca hidrográfica	100.001 a 300.000	1.001 a 3.000
Subcuenca	15.001 a 100.000	151 a 1.000
Microcuenca	4.000 a 15.000	40 a 150
Minicuenca o quebrada	Menor a 4.000	Menor a 40

Las microcuencas son las más son utilizadas para la captación de agua en un sistema de abastecimiento. Estas son elementos importantes que se deben tomar en cuenta en cuanto al dimensionamiento del sistema, aunque históricamente no se realiza un estudio de las cuencas previo al diseño.

2.2.1.2 Captación

Se debe tomar en cuenta que las obras de captación se diseñan y se construyen de acuerdo a las características que tiene la fuente, para evitar daños significativos y mantenimientos adecuados.

En las comunidades analizadas en este proyecto se cuentan con captaciones de agua de manantiales de laderas, estas permiten recolectar el agua que fluye de manera horizontal desde una ladera. Dentro de este tipo de captación se pueden encontrar otra subclasificación según el tipo de manantial, estas son: manantiales concentrados y manantiales difusos.

El sistema de captación, para ambos tipos de manantiales, debe estar compuesto de las siguientes estructuras:

- Captación del afloramiento: Es una estructura que cierra el sitio donde aflora el agua.
- Cámara húmeda: Sirve para recolectar el agua del afloramiento.
- Cámara seca: Sirve para ubicar y proteger las llaves de paso o válvulas de cierre, limpieza o regulación.

A continuación, se describe con mayor detalle cada tipo de captación:

Captación en laderas con afloramientos de agua concentrados. Manantiales concentrados.

En este tipo de captaciones el agua brota desde un sitio bien definido en la ladera. La captación del agua se puede hacer mediante una pared que cierre el punto de afloramiento, el agua permanecerá transitoria en esta estructura y luego pasará a la cámara húmeda.

La cámara húmeda es un cajón de hormigón o mampostería cuyo objetivo es almacenar el agua que sale de la captación, esta cámara debe contar con una tubería de entrada del agua

captada, una tubería de salida que conduce el agua captada hacia la siguiente fase del sistema; además de una tubería de limpieza que permite vaciar la cámara y sacar el agua hacia el exterior cuando se requiere limpieza de los sedimentos asentados en el fondo de la cámara; finalmente cuenta con la tubería de rebose que permite evacuar el exceso de agua cuando sobrepasa la capacidad de la cámara.

La última estructura de la captación es la cámara seca que se ubica contigua a la cámara húmeda, la misma cumple la función de proteger de los efectos de la intemperie a las válvulas y llaves de regulación y cierre del sistema. Esta cámara puede ser de hormigón o mampostería y sus dimensiones dependen del tamaño de las llaves y válvulas colocadas.

Captación en laderas con afloramientos de agua dispersos. Manantiales difusos.

Este tipo de captación es empleado cuando el agua brota en pequeñas cantidades desde distintos puntos de afloramiento en una superficie de tamaño variable, todas esas pequeñas contribuciones de agua se suman y pueden ser aprovechadas para lograr una cantidad significativa de agua que puede ser captada.

Para este tipo de afloramiento, la captación del agua se puede realizar mediante la construcción de uno o varios conductos filtrantes.

El sistema consiste en la instalación de una tubería (generalmente de PVC de diámetros entre 90 o 110 mm) perforada o ranurada que actúa como un conducto filtrante, capta el agua a medida que la misma ingresa por las perforaciones o ranuras. El diámetro de las perforaciones debe ser menor al tamaño del material granular que va a cubrir la tubería. El tramo inicial de la tubería se cubre con una tapa, en el tramo final de la tubería no debe tener orificios con el objetivo de que esta parte del tubo actué como colector, para unir este tubo a la tubería de la conducción se utiliza una reducción según los diámetros utilizados.

Esta tubería se instala en una excavación realizada en el terreno en sentido transversal a la pendiente del mismo, esto con el objetivo de cortar el flujo de agua y que ingrese a la tubería, es importante realizar la excavación hasta una profundidad por debajo del nivel del agua que se desea captar, el ancho de la zanja puede variar entre 0.5 m a 1 m, este debe garantizar el fácil acceso de una persona hacia la zanja para las labores de limpieza, mantenimiento y reparaciones. La zanja debe tener pendiente que permita que el agua fluya por gravedad en la dirección deseada, las pendientes pueden variar entre 1 % y 5 %.

Una vez que la tubería está instalada en la zanja, se rellena la misma con ripio o gravilla que tenga un tamaño de 3 a 5 veces superior a los orificios.

Posteriormente el agua es conducida hacia la cámara húmeda que, como se mencionó anteriormente, almacena el agua captada para su posterior conducción. Al igual que en la anterior captación, después de la cámara húmeda se ubica la cámara seca y finalmente el agua sale hacia la conducción. (Pailoff y Gornitzky, 2011).

2.2.1.3 Conducción

La conducción es un sistema de tuberías, bombeo, válvulas y accesorios que tienen como objetivo trasladar el agua hasta algún punto específico, ya sean plantas de tratamiento, tanques de almacenamiento y otros. Hay dos tipos de conducciones: por gravedad y mediante bombeo.

2.2.1.4 Planta de tratamiento

Una planta de tratamiento es un conjunto de estructuras, instalaciones y operaciones individuales seleccionados de manera adecuada con el objetivo de eliminar los contaminantes microbiológicos y físicos-químicos, hasta alcanzar los límites aceptables establecidos por las normativas. (De Vargas, 2004).

Estas plantas adoptan una combinación de procesos conocida como "tren de tratamiento", estos van a depender del tratamiento que se desea realizar en el agua cruda. Se utiliza este sistema porque dos procesos independientes podrían ser ineficaces para eliminar un compuesto, pero al trabajar juntos, el primero debe acondicionar previamente el compuesto de manera que el segundo pueda eliminarlo con eficacia. (Kerry et al., 2017). La Figura 2 es una representación de un ejemplo del "tren de tratamiento".

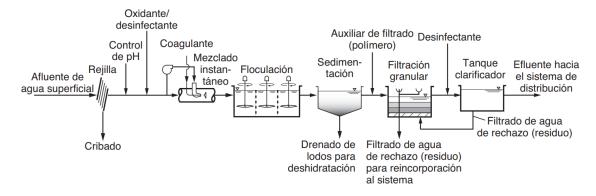


Figura 2 Esquema "tren de tratamiento" de agua potable. Fuente:(Kerry et al., 2017)

2.2.1.5 Almacenamiento

Un sistema de almacenamiento satisface la demanda de una población, sin embargo, el consumo del agua no es constante, por lo que es necesario almacenar el agua que no se utiliza durante el día. Esto normalmente se lo realiza con la disposición de un tanque de

reserva apropiado y su diseño dependerá de las variaciones de consumo de la población (Idrovo et al., 1999).

2.2.1.6 Redes de distribución

Para distribuir el agua es necesario un sistema por donde se pueda trasladar el agua hacia los domicilios o puntos de consumo, este sistema va a depender de la topografía del terreno, distancias y presiones.

Las redes de distribución constan de estaciones de bombeo, tuberías o ramales principales, secundarios y terciarios, tanques de almacenamiento, válvulas, dispositivos de medición y derivaciones domiciliarias.

Existen dos tipos de redes:

- 1. Cerrada o de malla: Constituidas por tuberías interconectadas que forman circuitos cerrados como se observa en la Figura 3.
- 2. Abierta o ramificado: Son redes que tienen un ramal principal y una serie de ramificaciones secundarios como se observa en la Figura 4.

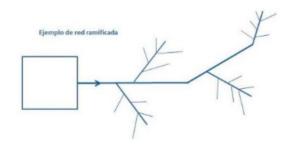


Figura 3 Red ramificada. Fuente:(EADIC, 2016)

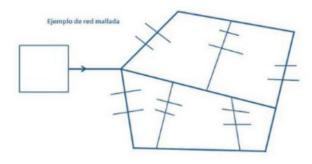


Figura 4 Red mallada. Fuente:(EADIC, 2016)

2.2.1.7 Filtración lenta

La filtración lenta de arena es un método de tratamiento del agua para mejorar su calidad, consiste en filtrar lentamente el agua en distintas capas de grava y arena. Al fondo de los filtros existe un sistema de drenaje el cual permite transportar el agua tratada.

La función del filtro consiste en la formación de una capa biológica, degradación química y biológica de las partículas que se retienen en las diferentes capas. Este proceso de filtración permite remover bacterias, microorganismos patógenos y particulas que se encuentren en el agua. (Rivas, 2016).

Detalles generales de un filtro:

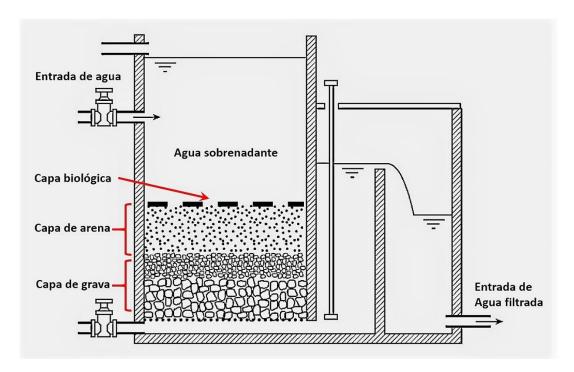


Figura 5 Filtro lento de arena

Etapas

Primera etapa: Lo primero que se tiene que determinar es el diseño del filtro lento, en términos de capacidad, infraestructura, costos, operación y mantenimiento.

Segunda etapa: Consiste en el diseño estructural y especificaciones técnicas.

Ventajas del filtro lento

- Diseño simple de diseño y operación.
- Reduce la necesidad de desinfección debido a la remoción de bacterias y microrganismos patógenos.
- Mínimos problemas de manejo de lodos.

Se pueden construir con materiales disponibles localmente.

Limitaciones

- Ocupan mucho espacio en las plantas de tratamiento.
- El mantenimiento requiere de mucha mano de obra.
- No retiran completamente todos los químicos orgánicos.
- Si el agua tiene altos niveles de turbiedad puede tapar la arena fina.

Se presenta un cuadro resumen sobre el diseño de un filtro de arena:

Tabla 2 Parámetros de Diseño Filtro lento

Fuente: Vigneswaran, S. y C. 1995

Parámetros de Diseño	Rango de valores recomendados
Velocidad de filtración	0.15 m3/m2 x h (0.1 - 0.2 m3/m2 x h)
Área por Cama de Filtro	Menos de 200 m2 (en los abastecimientos
	de agua comunidades pequeñas para
	facilitar la limpieza manual del filtro)
Número de Camas de Filtro	Mínimo de 2 camas.
Profundidad de la Cama de Filtro	1 m (mínimo de 0.7 m de profundidad de
	arena)
Medio de Filtro	Tamaño efectivo (TE) = 0.15-0.35 mm;
	Coeficiente de uniformidad (CU) = 2-3
Altura del Agua	0.7-1 m (máximo 1.5 m)
Sistema de Drenaje	Se usa generalmente.
Ladrillos estándar	
•Losas de hormigón prefabricadas	
Ladrillos de hormigón prefabricados con	
orificios en la parte superior	
hormigón poroso	
Tubos perforados (de tipo lateral y múltiple)	Máxima velocidad en múltiples y laterales =
	0.3 m/s
	Espacio entre laterales = 1.5 m Espacio de
	orificios en laterales = 0.15 m Tamaño de
	orificios en laterales = 3 mm

2.2.1.8 Desinfección

Este proceso puede realizarse mediante métodos químicos y/o físicos que no solo eliminan los microorganismos, sino también los contaminantes orgánicos que sirven de nutrientes para estos.

El método de desinfección más común utiliza cloro y sus derivados. Es fundamental que el desinfectante empleado tenga un efecto residual, lo que significa que debe permanecer activo en el agua después del proceso de desinfección para proteger contra posibles contaminaciones mientras el agua circula por las tuberías.

Según la normativa, se recomienda desinfectar el agua utilizando sales de sodio, como hipoclorito de calcio o de sodio. La dosis tiene que asegurar un cloro residual libre mínimo de 0.2 mg/l, manteniendo un pH menor a 8 y un tiempo de contacto de al menos 30 minutos.

Para determinar la dosis de hipoclorito de sodio necesaria, es esencial conocer:

La concentración de hipoclorito de sodio (% de cloro disponible en el hipoclorito).

La dosis recomendada para agua potable, que varía entre 1 y 3 mg/l. Comúnmente, se utiliza una dosis de 1.5 mg/l, lo que resulta en un cloro residual libre de 0.3 a 0.5 mg/l.

Un equipo utilizado en muchas comunidades para la desinfección es proporcionado por la empresa Clorid S.A. Este equipo genera hipoclorito de sodio a través de la electrólisis de cloruro de sodio o salmuera. Durante este proceso, el cloruro de sodio (NaCl) circula entre los electrodos bajo una corriente eléctrica continua, provocando reacciones específicas que producen el hipoclorito de sodio.

La corriente continua que actúa sobre una solución de cloruro de sodio la descompone en iones de sodio (Na+) y cloruros (Cl-), generando en el polo anódico cloro libre según la siguiente reacción:

Al incorporar hidrogeno en el polo catódico se forman iones hidroxilo (OH-) como se observa en la siguiente reacción:

Los iones OH- se desplazan desde el polo catódico hacia el ánodo y generan Na+ y Cl2, produciendo así el hipoclorito de sodio, el proceso químico se resume en la siguiente expresión:

2NaOH + Cl2 >>> NaClO + NaCl + H2O

El equipo Clorid es utilizado en las comunidades rurales por fácil instalación, operación y mantenimiento, además que es muy económico y solo requiere de una fuente de energía para funcionar, en la siguiente imagen se visualiza el equipo.

Figura 6 Equipo de cloración Clorid

2.2.2 Normativa Ecuatoriana

La ARCA es la institución que regula y supervisa la gestión recursos de agua y los servicios públicos enlazados con la cantidad y calidad del agua en Ecuador. Adicionalmente, la NTE INEN 1108 da los parámetros a cumplir del agua destinada al consumo a nivel nacional.

2.3 Métodos de proyección poblacional

2.3.1 Método aritmético

Se basa en estimar la cifra media anual de crecimiento de la ciudadania censada. Para esta fórmula es necesario tener dos datos como mínimo.

Se utiliza una ecuación diferencial dP/dt=r, la cual nos da una ecuación de la recta que es:

$$P = P_o + r * t \tag{1}$$

Donde:

P: Población en el tiempo t

Po: Población inicial

r: es el crecimiento anual

t: Diferencia de años

Para calcular el crecimiento anual tenemos la ecuación:

$$r = \frac{P_2 - P_1}{n} \tag{2}$$

Donde:

P₁: es la población inicial

P₂: es la población después de n años

n: es el número de años entre la P1 y P2

(Ospina, 1981)

2.3.2 Método geométrico

Este método supone que la población aumenta a la misma tasa que para el último período censal. El crecimiento tiene la siguiente fórmula:

$$P = P_0 * (1+r)^n \tag{3}$$

Donde:

P=población futura

Po=Población inicial

r= la tasa de crecimiento

n= diferencia de años

2.3.3 Método parabólico

$$Nt = a + b * t + c * t^2 \tag{4}$$

2.4 Evaluación Hidráulica

2.4.1 Presión en la red de distribución

Consideraciones:

Las presiones altas en los tramos de la red pueden causar ruidos en las instalaciones, mayor consumo de agua y por ende mayores costos.

Las velocidades bajas en la red principal pueden causar problema de acumulación de sedimentos y esto puede llegar a taponar las tuberías e impedir el paso del agua hacia aguas abajo del taponamiento.

Una velocidad alta en la red principal puede causar cavitación en las válvulas, turbulencia y burbujas de aire.

2.4.2 Válvulas en los sistemas de agua potable

Las válvulas de presión son elementos empleados en sistemas hidráulicos con el fin de establecer o conservar niveles de presión constantes. Controlan la presión en la entrada de la válvula en relación con la salida. Su función principal es salvaguardar las infraestructuras hidráulicas y regular la presión de suministro.

2.4.2.1 Válvulas reductoras y reguladoras de presión

En la Figura 7 se presenta una válvula reductora de presión modelo 720 que se comercializa en Ecuador.

Figura 7 Válvula reductora de presión modelo 720

El efecto de una válvula reductora de presión aguas arriba y aguas abajo cuando se tiene un consumo nulo y cuando existe consumo se representa en la Figura 8:

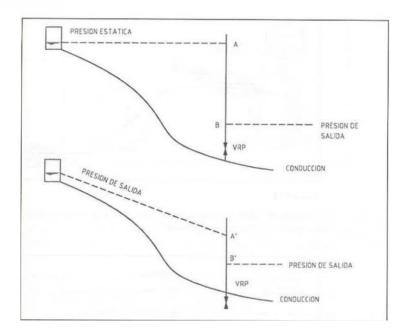


Figura 8 Línea piezométrica - Válvula reductora de presión

Para la elección de un tipo de válvula es necesario considerar los efectos de cavitación que están ligados al deterioro y erosión de las paredes internas, así como también la presencia de ruidos. En la Figura 9 se presenta un diagrama de cavitación para evitar ese efecto, lo ideal es estar por fuera de la zona gris de cavitación:

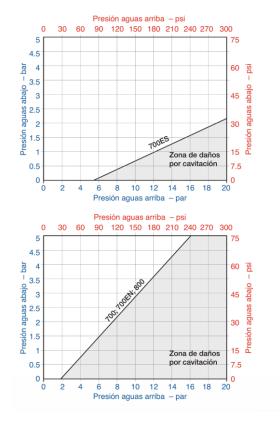


Figura 9 Diagrama de cavitación para válvula reductora de presión

- 3. Materiales y metodología
- 3.1 Estudios preliminares
- 3.1.1 Ubicación y acceso

Patapamba y Chaguarcorral son pequeñas comunidades rurales pertenecientes a la parroquia Turi del Cantón Cuenca de la Provincia del Azuay, ubicada hacia el Sur de la ciudad de Cuenca a 12.8 Km de su centro histórico.

La principal vía de acceso es a través de la vía Turi - El Verde, que se encuentra pavimentada, a la altura del kilómetro 7 (2°57'50.6"S 79°00'16.1"W) se toma hacia la derecha, en un camino de tierra en regular estado, se llega hasta estas dos comunidades.

Los predios corresponden a minifundios que se caracterizan por presentar una vivienda, un huerto, algunos cultivos estacionales y mayoritariamente pastizales.

En la Figura 10 se puede observar la ubicación en Google Maps:

Figura 10 Ubicación de la comunidad Patapamba -Chaguarcorral en Google maps

3.1.2 Clima y servicios públicos

La región presenta dos tipos de climas: el Ecuatorial Mesotérmico semihúmedo y el Ecuatorial de Alta Montaña. Las temperaturas anuales oscilan entre 12 y 20°C, aunque pueden ser más bajas en áreas menos soleadas. Las temperaturas rara vez caen por debajo de 0°C y no superan los 30°C. Hay dos estaciones claramente definidas: verano e invierno. Las mayores

lluvias ocurren en marzo, abril, mayo, noviembre y diciembre, con picos en marzo y abril. La temporada seca va de junio a septiembre. Las comunidades cuentan con los servicios básicos como agua, energía eléctrica, servicio de alcantarillado en su mayoría, cobertura de telefonía celular, y servicios de transporte urbano.

Por el sector atraviesa una línea de conducción del sistema de agua potable "Proyecto Nero" que da servicio a algunas viviendas del sector.

3.1.3 Descripción del sistema existente

Las únicas fuentes disponibles para el abastecimiento de estas comunidades son pequeñas vertientes o manantiales "ojos de agua" ubicadas en las partes altas de las comunidades a partir de las cuales se han construido los diferentes componentes. Cabe hacer hincapié que el sistema ha sido concebido, construido, operado y mantenido por las comunidades.

El sistema está conformado básicamente por el componente de captación y tratamiento que comparten las dos comunidades, los componentes de reserva y redes que sirven independientemente a cada comunidad.

Cuatro captaciones (Patapamba: C1, C2, C3, C4) que abastecen a una planta de tratamiento de agua potable (filtración lenta + desinfección) que sirve a la comunidad de Patapamba bajo. Dos captaciones (Chaguarcorral – Patapamba alto: D1, D2) así mismo de afloramientos o pequeñas vertientes que abastecen a la Planta de Chaguarcorral (prefiltro + filtro lento + desinfección) desde donde se deriva, la mitad del caudal al sistema de Patapamba Alto y la otra mitad a la comunidad de Chaguarcorral. En la Figura 11 se ilustra lo indicado:

Esquema del sistema de abastecimiento de agua para las comunidades de Patapamba y Chaguarcorral

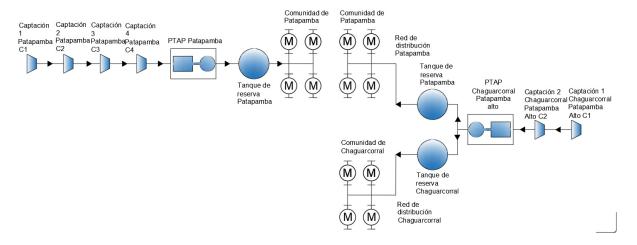


Figura 11 Esquema de sistema de abastecimiento de agua de toda la comunidad

Las captaciones de los manantiales son las típicas, compuestas por una cámara húmeda en donde se capta el agua seguida de una cámara seca en donde se ubican los accesorios (válvulas de salida, desagüe, control). Las estructuras de las plantas de tratamiento y reservas son construidas en ferrocemento que está en buenas condiciones. La red de distribución es en PVC con juntas con cemento solvente.

El tratamiento de agua potable consiste en un filtro de arena. La desinfección se realiza con hipoclorito de sodio producido por electrólisis partir de una solución de sal común. Los esquemas de cada planta se pueden observar en la Figura 12 y Figura 13:

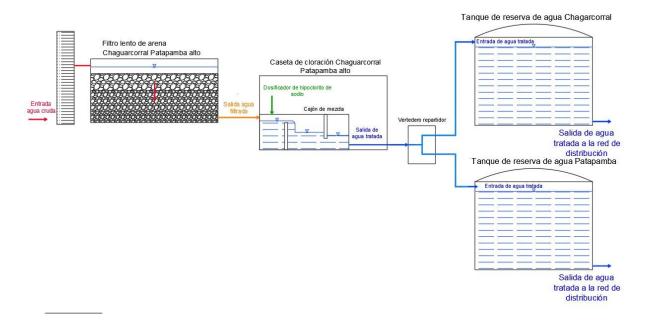


Figura 12 Esquema de la planta de tratamiento Patapamba alto - Chaguarcorral

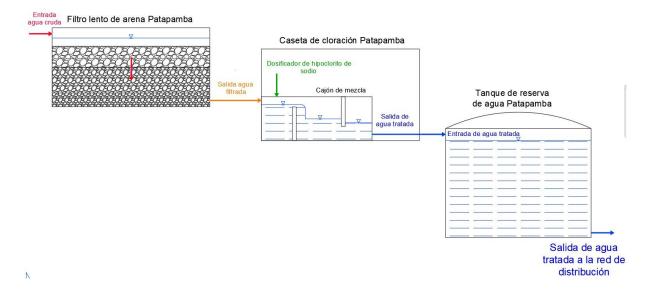


Figura 13 Esquema de la planta de tratamiento Patapamba bajo

3.2 Dotación de agua potable

La dotación de agua potable para las comunidades se calcula mediante dos métodos, el primero consiste en la recopilación de información de consumo mediante encuestas sanitarias a los habitantes y el segundo método consiste en la recopilación de información existente de consumo mediante la lectura de los medidores:

3.2.1 Encuesta Sanitaria

El objetivo principal de la encuesta sanitaria es estimar parámetros que permitan la evaluación y diseño de mejoras del sistema de abastecimiento de agua potable. Las características de la población que será servida es uno de los parámetros más importantes.

En el Anexo A se encuentra la encuesta modelo que se utilizó a los habitantes de ambas comunidades.

Una vez procesada la información se puede calcular el consumo de cada persona según sus actividades, clima, ocupación, costumbres, etc.

Las preguntas que se procesaron de las encuestas se las dividieron en los siguientes temas: alimentación, higiene personal y aseo del hogar.

ALIMENTACIÓN:

- ¿Cuántos integrantes viven en el hogar?
- ¿Cuántas personas desayunan en la casa de lunes a viernes?
- ¿Cuántas personas almuerzan en la casa de lunes a viernes?
- ¿Cuántas personas cenan en la casa lunes a viernes?

- ¿Cuántas personas desayunan en la casa de sábado a domingo?
- ¿Cuántas personas almuerzan en la casa de sábado a domingo?
- ¿Cuántas personas cenan en la casa de sábado a domingo?
- ¿Cuántos vasos de agua toma al día?

Para la preparación de alimentos se establece una cantidad de agua estándar en litros para cada comida del día que deberá ser multiplicada por cada habitante. (Ver tabla 3)

Tabla 3 Cantidad de agua estándar para preparación de comidas

			Vaso de
Desayuno	Almuerzo	Merienda	agua
(litros)	(litros)	(litros)	(litros)
0.5	2	1	0.2

Estos valores se utilizan tanto entre semana como para fin de semana y varían únicamente dependiendo del número de habitantes presentes para cualquiera de esos periodos.

El consumo destinado a la alimentación está dado entonces por la sumatoria de los consumos dados de lunes a viernes y de sábado a domingo:

Consumo alimentación =
$$\frac{(CE*5)+(CF*2)+(\#VA*0.2*7)+(t*caudal)}{(\# habitantes*7 días)}$$
(8)

Donde:

CE: Consumo entre semana.

CF: Consumo fines de semana

#VA: cantidad de vasos de agua

t: tiempo de lavado de platos

ASEO DEL HOGAR:

- ¿Cuántas veces al día lava los platos?
- ¿Cuánto tiempo tarda en lavar los platos (minutos)?
- ¿Con qué frecuencia lava los pisos por semana?
- ¿Qué cantidad de agua emplea para limpiar los pisos?
- ¿Con qué frecuencia limpia los baños a la semana?
- ¿Qué cantidad de agua emplea para limpiar los baños?

- ¿Con qué frecuencia lava la ropa por semana?
- ¿Qué cantidad de agua utiliza para lavar la ropa?
- ¿Con qué frecuencia lava su auto o moto a la semana?

Posteriormente se analiza el tiempo y caudal utilizado para la limpieza del hogar, se divide por el número de habitantes para establecer un consumo individual. Utilizando los datos de la siguiente tabla:

Tabla 4 Cantidad de agua estándar de consumo para limpieza del hogar

Agua para la limpieza del hogar				
Actividad	Cantidad	Unidades		
Lavado de utensilios de cocina	6	litros/minuto		
Lavado de ropa	40	litros/uso		
Limpieza del piso	6	litros/uso		
Limpieza de los baños	6	litros/uso		
Limpieza de cocina	4	litros/uso		
Lavado de vehículos	50	litros/uso		

El consumo se calcula con la siguiente fórmula:

Consumo aseo del hogar =
$$\frac{(CR) + (CB) + (CV) + (CP)}{(7 \text{ días }) * (\# \text{ habitantes})}$$
(9)

Donde:

CR: consumo de lavado de ropa

CB: consumo de limpieza de baños

CV: consumo de lavado de vehículos

CP: consumo de limpieza de pisos

HIGIENE PERSONAL:

- ¿Cuántas veces al día se baña?
- ¿Cuánto tiempo tarda bañándose desde que abre la llave (minutos)?
- ¿Cuántas veces al día se lava las manos?
- ¿Cuántas veces al día se lava los dientes?
- ¿Emplea un vaso al momento de cepillarse los dientes?

- En caso de no utilizar vaso para el cepillado de dientes, ¿Mantiene la llave abierta o cerrada mientras se cepilla los dientes?
- ¿Cuántas veces al día descarga el agua del inodoro?

Se establecen caudales estándares para el uso la ducha, el lavado de manos, el cepillado y la descarga del inodoro, que se multiplicaran por el tiempo en el caso de la ducha y por el número de repeticiones para todo lo demás, si bien se pueden establecer el uso de vasos para el cepillado de dientes y un tiempo mientras se lava las manos, las encuestas reflejan que la mejor aproximación es un valor medio pues valores mayores realmente tendría poca incidencia en el consumo elevado de agua.

Consumo de agua Higiene Personal Actividad Cantidad Unidades Tiempo promedio de cada actividad Ducha 12 litros/minuto 5 minutos Cepillado de dientes 6 litros/minuto 1 minutos 0.4 Lavado de la cara 6 litros/minuto minutos Lavado de las manos 6 litros/minuto 0.2 minutos Uso del Inodoro litros/uso 6

Tabla 5 Cantidad estándar de consumo por Higiene Personal

El caudal usado por la ducha se multiplica por el número de minutos. Para el caso de lavado de manos, de dientes, y de inodoro simplemente se multiplica por el número de repeticiones para obtener el consumo siendo así el valor de consumo por aseo personal:

Consumo higiene personal = consumo ducha + (consumo inodoro * # repeticiones) + (consumo lavado manos * # repeticiones) + (consumo lavado dientes * # repeticiones)

(10)

Medidores de consumo de agua

Para calcular la dotación también se utilizó la información recopilada del registro de medidores:

Tabla 6 Registro de medidores de agua de ambas comunidades.

Fuente: Proporcionada por la comunidad

Dotaciones- Registro de medidores			
	Chaguarcorral	Patapamba	

Mes	litro/habitante/día	litro/habitante/día
enero	89.44	70.28
febrero	90.91	71.43
marzo	128.74	101.15
abril	17.60	14.29
mayo	99.12	77.88
junio	110.3	86.67
julio	78.3	61.52
agosto	62.76	49.31
septiembre	94.24	74.05
octubre	57.18	44.93
noviembre	72.12	56.67

3.3 Topografía

El levantamiento topográfico se realizó en las vías, PTAP, red de la captación y la red de abastecimiento correspondiente a las 2 comunidades. Se identificaron estructuras y puntos especiales que deben tenerse en consideración para este tipo de proyectos, tales como cambios de sentido, cambios de pendiente, cotas de los elementos de cada PTAP. El levantamiento topográfico puede ser dividido en varias etapas: El recorrido previo, instrumentos a usar, la medición y el procesamiento de datos.

3.3.1 Recorrido de campo

En la primera etapa del levantamiento topográfico se realizó un recorrido de campo para identificar el sistema de abastecimiento de agua potable actual de las dos comunidades. Se identificaron aspectos como: fuentes agua, estructuras hidráulicas, condición del sistema, componentes de las PTAP, tanques de reserva, ubicación general de la red de distribución y puntos especiales de la red de abastecimiento.

3.3.2 Definición de equipos

Con lo observado en la etapa previa se definieron los equipos necesarios para el levantamiento topográfico. Para el caso de las dos comunidades por su gran extensión, pero también necesidad de levantamiento de precisión se utilizaron equipos como GPS para el levantamiento de las vías y toma de coordenadas de los puntos GPS para referencias los elementos de las PTAR, estación total Trimble M3 3" para el levantamiento a detalle de las PTAR y sus redes y por la complejidad en la medición de ciertas estructuras por no poder

utilizar en ellas los equipos antes mencionados se utilizó cinta métrica y medidor láser Bosch GLM 400C con precisión de 1mm.

3.3.3 Proceso de medición

Ahora se procede a describir el proceso para la medición de los diferentes componentes. El procedimiento se realizó en el siguiente orden: Captaciones, red de la captación, redes de abastecimiento, PTAP y vías correspondientes a las de las comunidades.

Como primer paso se coloca un punto fijo con una estaca y se toman sus coordenadas GPS, se pone en estación y luego respecto al norte magnético se define un norte relativo en un punto fijo lejano. Con esta configuración se puede comenzar con la medición con estación total.

3.3.3.1 Captaciones

Para las captaciones primero se tomó un punto georreferenciado con GPS y mediante estación total se tomó por el método de radiación el resto de los puntos de estas estructuras, para detalles pequeños o internos de las estructuras se usó el medidor láser Bosch GLM 400C. Los puntos importantes a tomar en las captaciones son sus desniveles, cotas de las tuberías y puntos que limitan cada parte de las estructuras.

3.3.3.2 Redes

Para las redes tanto de las conducciones y abastecimiento se utilizó el GPS. Con ayuda de planos antiguos y comuneros que conocen el trazado de la red se identificó el trazado de la red antigua y sus puntos especiales como cambios de dirección o diámetro. De igual manera para las nuevas redes que ya existen y no constan en planos y las redes propuestas.

3.3.3.3 PTAP

Para el siguiente punto son las PTAP, donde se utilizó el GPS para georreferenciar un punto para usarse como banco de mediciones para la estación total. Luego con la estación total se toman todos los puntos externos de las estructuras (Filtro lento, caseta de cloración, vertedero repartidor de caudales, tanques de reserva), puntos del terreno para hacer curvas de nivel y puntos del lindero para poder ubicar cerramientos. Dentro de las estructuras, como filtros tanques y caseta de cloración se midieron con el medidor laser.

3.3.3.4 Vías

Finalmente, el levantamiento de las vías. Estas por su gran extensión se realizaron con GPS, donde se tomaron puntos de su eje sus extremos y puntos de los medidores.

3.3.4 Procesamiento de datos

Una vez recolectados los puntos mediante el levantamiento topográfico se hace uso del Software AutoDesk Civil 3D 2023. en trabajo de escritorio se procesan estos datos donde se realizan los siguientes trabajos:

Para los planos en planta de las estructuras y las vías: Refinación de puntos del archivo CSV, creación de grupos de puntos según su tipo, dibujo de las distintas estructuras y elementos, creación de las curvas de nivel, configuración del dibujo en formato para planos.

Para las estructuras existentes: Los dibujos realizados en base a las mediciones tomadas y sus coordenadas GPS se pueden emplazar en los planos topográficos.

3.3.4.1 Refinación de puntos del archivo CVS

Al momento del trabajo de campo se toman puntos erróneos o no válidos, por lo que estos se dejan identificados para ser eliminados en el trabajo de escritorio y así evitar equivocaciones al tratar estos datos.

El archivo con este formato contiene la información de todos los puntos recolectados, esta información incluye coordenadas X, Y, Z y su respectiva descripción.

Una vez refinado el archivo CSV se procede a cargarlo en el Software AutoDesk Civil 3D 2023 en formato PNED.

Es importante tomar en cuenta que no fue necesario hacer una poligonal en las distintas estructuras por su tamaño reducido y su terreno poco accidentado, por lo que el cierre de la poligonal no fue necesario al haberlo hecho desde una sola estación.

3.3.4.2 Creación de grupos de puntos y dibujo de estructuras

Durante el levantamiento topográfico cada punto es guardado con una descripción que permite su identificación para saber a cuál elemento corresponde. Con base en esto estos puntos correspondientes a un mismo elemento se asignan a un grupo de puntos con la finalidad de facilitar su trabajo e identificación. Cada grupo de puntos es unido con politíneas (PL) para dar forma a las estructuras o vías y mantener su elevación.

3.3.4.3 Creación de las curvas de nivel

Con el grupo de puntos correspondientes al terreno se crea una superficie de terreno al triangular estos puntos, es indispensable corregir esta triangulación manualmente para asemejar al terreno real la triangulación, luego para el caso las PTAP se interpolaron curvas de nivel cada 0.1m al requerirse precisión. Finalmente se explota la superficie para poder configurar el dibujo en el formato municipal.

3.3.5 Replanteo de puntos

En este caso al diseñarse nuevas estructuras se necesita colocarlas nuevamente en campo a partir del plano, mediante un replanteo. Primero al contar con un punto conocido en campo que se usó como banco de mediciones y sus correspondientes coordenadas puede ser usado para posteriormente y replantear los puntos de las estructuras al terreno. Los que se replantea es la ubicación en X, Y y el valor de excavación o relleno del terreno en cada punto.

Este proceso consiste en colocar nuevamente la estación total en el punto que se usó para el levantamiento e ingresar esas coordenadas conocidas, luego se cargan los puntos donde están ubicadas todas las nuevas estructuras y la estación indicará en lugar donde irá ubicado este punto con una estaca, para posteriormente realizar la construcción en este lugar.

3.4 Evaluación hidráulica de la red de abastecimiento de agua

Para evaluar la red de distribución de agua, se utilizó el software EPANET V2.0. Este programa, ampliamente utilizado en el diseño y análisis de sistemas de distribución de agua, facilita tanto la planificación de nuevas infraestructuras como la actualización de las existentes. También permite optimizar las operaciones de tanques y bombas, reducir el consumo de energía y examinar problemas relacionados con la calidad del agua.

3.4.1 Configuración de la red en EPANET

A continuación, se describe el proceso seguido para la evaluación hidráulica de la red:

EpaCAD:

A partir del levantamiento topográfico con sus respectivos elementos se debe tratar para que pueda ser reconocido por el software Epanet, para lo cual se emplea el software EpaCAD. Software con el cual se convierte el archivo proveniente de AutoCAD a un formato reconocible por Epanet. Al realizar este proceso se obtiene la red con sus coordenadas X, Y de los nodos

Epanet:

Una vez configurado el archivo para ser reconocible por Epanet se procede a cargarlo en el software y se configuran sus distintos elementos, luego se procede con la simulación del funcionamiento de la red, se obtienen los distintos parámetros de respuesta como las

presiones y velocidades y se finaliza con la validación del modelo contrastando los resultados con la normativa vigente (NTE INEN 1680, 2014).

Para la configuración de los elementos se consideran nodos, tuberías y adicionalmente se cargan los accesorios pertenecientes a la red, como las válvulas, tanques. Para los nodos se ingresa el valor de su cota Z y en las tuberías se ingresa el valor de su longitud, coeficiente de rugosidad y su diámetro.

Dentro de la simulación se prueba el funcionamiento de la red bajo las distintas condiciones en las cuales va a funcionar la misma. Con esto se obtiene un reporte de cada punto de la red, el cual permite analizar los parámetros de interés.

El siguiente paso es comprobar las velocidades y presiones obtenidas como resultado de la simulación. Esto se contrasta con lo indicado en la normativa vigente (NTE INEN 1680, 2014) para verificar su estado.

Es importante tener en cuenta las limitaciones que se presentan en este proyecto tales como que esta es una red existente por lo que no se pueden hacer todos los cambios de la manera más adecuada como reemplazar tramos de tuberías o al tener el levantamiento de la vía existente el trazado de la red y cambios debe adecuarse a este parámetro.

3.4.2 Red de abastecimiento de agua de la comunidad de Patapamba

La comunidad de Patapamba se abastece de agua proveniente de dos plantas de tratamiento, la "Planta de Patapamba" y la "Planta de Tratamiento Chaguarcorral y Patapamba Alto".

Las redes de distribución de agua potable de la comunidad de Patapamba se encuentra esquematizada en la Figura 14 y Figura 15, en donde se pueden identificar los nodos de la red con sus correspondientes etiquetas.

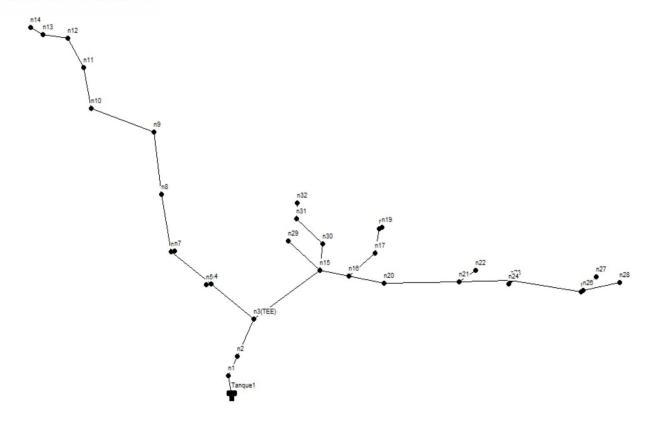


Figura 14 Nodos de la red 1 de abastecimiento de agua potable - Patapamba

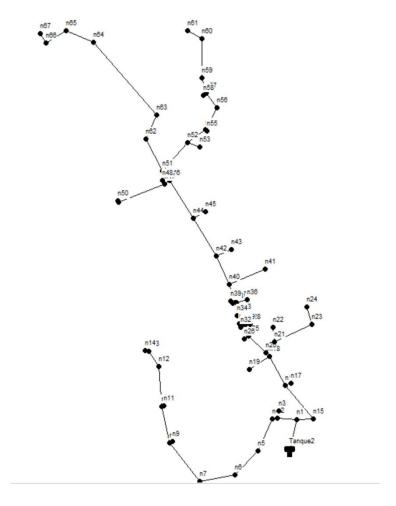


Figura 15 Nodos de la red 2 de abastecimiento de agua en la comunidad - Patapamba

Ambas redes constan de una red principal (red matriz), una serie de redes secundarias (ramales) y las acometidas (tuberías domiciliarias), en la Tabla 7 y 8 se presenta el detalle de tramos que pertenecen a las redes principal y secundarias:

Tabla 7 Tipo de red proveniente de la PTAP Patapamba alto - Chaguarcorral

RED DE LA PLANTA DE TRATAMMIENTO CHAGUARCORRAL- PATAPAMBA		
ALTO – RED 1		
TIPO DE RED TRAMO		
Red Principal Tanque 1 – n28		
Red Secundaria 1 n3 – n14		

Tabla 8 Tipo de red proveniente de la PTAP Patapamba

RED DE LA PLANTA DE CHAGUARCORRAL - PATAPAMBA – RED 2		
TIPO DE RED TRAMO		
Red Principal Tanque 2 – n64		
Red Secundaria 1	ındaria 1 N1 – n14	
Red Secundaria 2	N20 – n24	
Red Secundaria 3	N51– n61	

Red Secundaria 1	N64 - n67
Red Securidaria 4	1104 – 1107

Ambas redes principales empiezan desde la salida de un tanque de reserva de agua, desde ahí se distribuyen por la red y se conectan a través de accesorios a las redes secundarias, que en todos los casos finalizan con tapones sin que exista ninguna malla, siendo ambas redes de distribución abiertas totalmente.

En la Tabla 9 y 10 se pueden observar los diámetros de tubería de cada tramo de ambas redes de Patapamba:

Tabla 9 Diámetros de la red de abastecimiento correspondiente a la PTAP Chaquarcorral Patapamba alto

Diámetros de la Red perteneciente a la PTAP Chaguarcorral y Patapamba Alto				
Tipo de Red	ed Tramo Diámetro Nominal (mm)			
Red Principal	Tanque 1 – n28	50		
Red Secundaria 1	n3 – n14	32		
Acometidas		25		

Tabla 10 Diámetros de la red de abastecimiento correspondiente a la PTAP Patapamba

Diámetros de la Red perteneciente a la Planta de Patapamba				
Tipo de Red	Tramo	Diámetro Nominal (mm)		
Red Principal	Tanque 2 – n64	50		
Red Secundaria 1	N1 – n14	50		
Red Secundaria 2	N20 – n24	50		
Red Secundaria 3	N51 – n61	25		
Red Secundaria 4	N64 – n67	50		
Acometidas		25		

En la Figura 16, 17, 18 y 19 se puede observar la configuración tanto de las longitudes como de los diámetros de tubería de ambas redes de Patapamba.

Figura 16 Longitudes de la red 1 de abastecimiento de la comunidad Patapamba

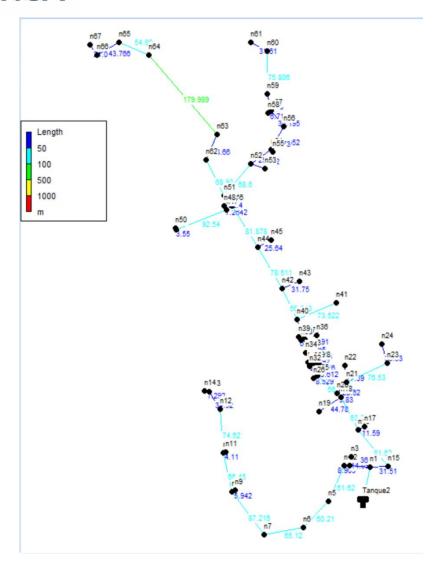


Figura 17 Longitudes de la red 2 de abastecimiento de la comunidad Patapamba

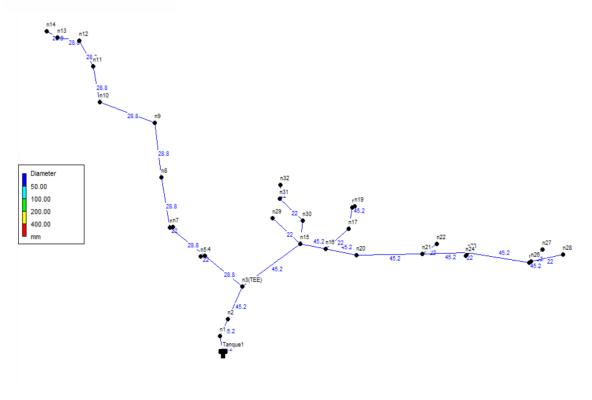


Figura 18 Diámetros internos de la red 1 de abastecimiento de la comunidad Patapamba

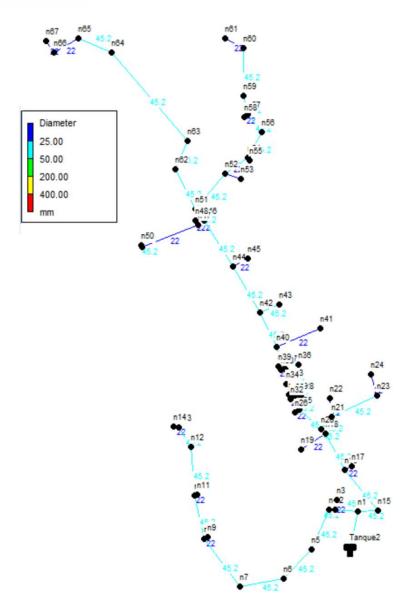


Figura 19 Diámetros internos de la red 2 de abastecimiento de la comunidad Patapamba

Se utiliza la ecuación de Hazen-Williams para calcular las pérdidas por fricción de las tuberías:

$$h = 10,674 * \frac{Q^{1,852}}{C^{1,852} * D^{4,871}} * L$$

En el software EPANET se deben ingresar los diámetros interiores de cada tubería para obtener resultados más precisos de lo que está sucediendo; en ambas redes de la comunidad existen tuberías de diámetros nominales de: 50mm, 32mm y 25mm. Para obtener los diámetros internos de cada tubería se ha utilizado la Tabla 11 que cuenta con el espesor de cada diámetro de tubería dependiendo de la presión nominal. En la siguiente tabla se puede

observar el diámetro nominal, espesor, diámetro interior y presión nominal de las tuberías existentes.

Tabla 11 Datos técnicos de las tuberías de la red de abastecimiento

Referencia: INEN 1373 - Tabla 2 "Espesores nominales"

Diámetro Nominal (mm)	Espesor (mm)	Diámetro Interno (mm)	Presión Nominal (Mpa)
50	2.4	45.2	1.25
32	1.6	28.8	1.25
25	1.5	22	1.6

Ambas redes de la comunidad tienen en su red principal un diámetro nominal de 50 mm, las redes secundarias tienen un diámetro nominal de 32 mm y todas las domiciliarias tiene un diámetro nominal de 25mm.

3.4.3 Red de abastecimiento de agua de la comunidad de Chaguarcorral

La comunidad de Chaguarcorral recibe su agua potable de la planta de tratamiento denominada "Planta de Tratamiento Chaguarcorral y Patapamba Alto". La estructura de la red de distribución de agua potable para esta comunidad está representada en la Figura 20, donde se pueden observar los nodos de la red junto con sus respectivas etiquetas.



Figura 20 Nodos de la red de Patapamba alto - Chaguarcorral

La red consta de una red principal (red matriz), una serie de redes secundarias (ramales) y las acometidas (tuberías domiciliarias), en la siguiente tabla se presenta el detalle de tramos que pertenecen a las redes principal y secundarias:

RED DE LA PLANTA DE TRATAMMIENTO CHAGUARCORRAL Y PATAPAMBA ALTO

TIPO DE RED
TRAMO
Red Principal
Tanque 1 – n66
Red Secundaria 1
Red Secundaria 2
N25 – n41
Red Secundaria 3
N55 – n58

Tabla 12 Detalle de tramos de la red de Patapamba alto - Chaguarcorral

La red principal empieza desde la salida de un tanque de reserva de agua (Tanque 1), desde ahí se distribuye por la red y se conectan a través de accesorios como TEE y YEE a las redes

secundarias, que en todos los casos finalizan con tapones sin que exista ninguna malla, siendo la red de distribución abierta totalmente.

En la Tabla 13 se pueden observar los diámetros de tubería de cada tramo de la red de Chaguarcorral:

Tabla 13 Diámetros de la red Patapamba alto - Chaguarcorral

Diámetros de la Red perteneciente a la Planta de Tratamiento Chaguarcorral y Patapamba Alto			
Tipo de Red	Tramo	Diámetro Nominal (mm)	
Red Principal	Tanque 1 – n66	50	
Red Secundaria 1	n1 – n13	50	
	n13 – n22	32	
	N25 – n39	50	
Red Secundaria 2	n39 – n41	32	
	n41 – n52	25	
Red Secundaria 3	N55 – n58	50	
Acometidas		12.5	

Al igual que en la comunidad de Patapamba, los diámetros que se ingresan en EPANET corresponden al diámetro interno de la tubería, los diámetros existentes en esta red se muestran en la Tabla 14:

Tabla 14 Diámetros nominal e interno de tuberías

Referencia: INEN 1373 - Tabla 2 "Espesores nominales"

Diámetro Nominal (mm)	Espesor (mm)	Diámetro Interno (mm)	Presión Nominal (Mpa)
50	2.4	45.2	1.25
32	1.6	28.8	1.25
25	1.5	22	1.6
12.5	1.4	9.7	3.15

En la Figura 13 y 14 se puede observar la configuración tanto de las longitudes como de los diámetros de tubería de la red de Chaguarcorral:

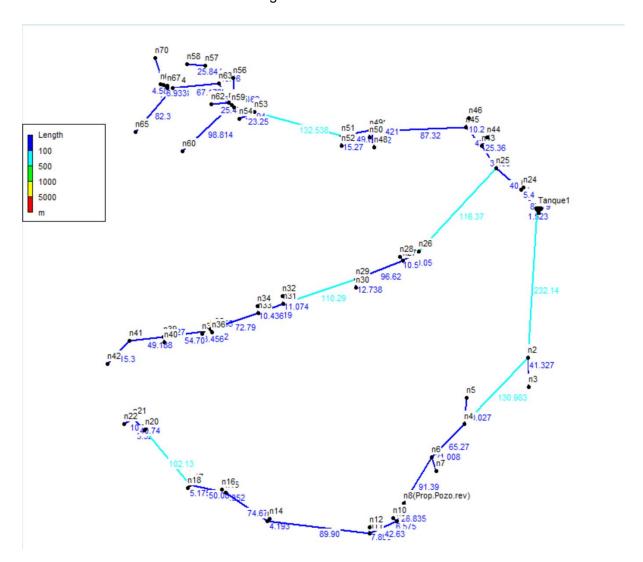


Figura 21 Longitudes de cada tramo de la red Chaguarcorral

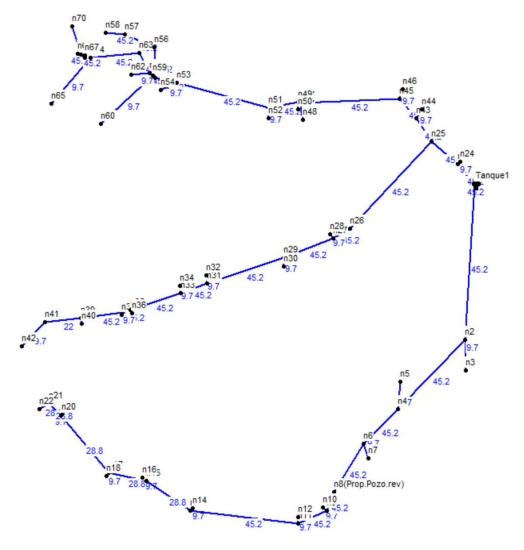


Figura 22 Diámetros internos de la red Chaguarcorral

3.5 Calidad del agua potable

Esta debe ser segura para el consumo humano, cumpliendo con estándares establecidos. En Ecuador, el INEN regula estos parámetros a través de la NTE, específicamente en la normativa NTE INEN 1108:2011, que establece los límites de los componentes presentes en el agua. Según la normativa el agua potable de las comunidades debe cumplir los siguientes criterios Tabla 16:

Tabla 15 Límites de características Físicas, químicas y biológicas del agua.

Fuente: NTE INEN 1108:2011 Cuarta revisión

PARÁMETRO	PARÁMETRO UNIDAD			
CAF	CARACTERÍSTICAS FÍSICAS			
Color Unidades de color verdadero (UTC)		15		
Turbiedad	NTU	5		
Olor y sabor		no objetable		
Sólidos Disueltos	mg/l	1000		
PARÁMETROS QUÍMICOS				
pН		6,5 - 8,5		
Dureza total (CaCO3)	mg/l	300		
Hierro total	mg/l	0,3		
Manganeso	mg/l	0,1		
Cloruros	mg/l	250		
Sulfatos	mg/l	200		
Cloro libre residual mg/l		0,3 - 1,5		
PARÁMETROS BIOLÓGICOS				
Aerobios mesofilos	U.F.C/ml	100		
Coliformes totales	N.M.P./100ml	<2*		
Coliformes termorresistentes	N.M.P./100ml	<2*		

3.6 Proyección poblacional

El dimensionamiento de un sistema de abastecimiento de agua potable debe considerar la población futura que va a tener la comunidad, es esencial que el sistema sea capaz de satisfacer la demanda por dicho aumento de usuarios. En las zonas rurales es el cálculo de la proyección se dificulta por falta de información, sin embargo, con ayuda de las personas de una comunidad se puede obtener información mediante encuestas y fórmulas matemáticas. (Idrovo et al., 1999)

4. Resultados

4.1 Aforos

Debido a las formas de las captaciones de afloramientos subterráneos y los caudales bajos, los aforos se realizaron con métodos indirectos: método volumétrico. Con el cual se recolectó un volumen de agua en un recipiente por un tiempo determinado a partir del cual se obtuvieron los caudales. A continuación, se describe el proceso de aforo para los diferentes componentes del sistema

4.1.1 Captaciones

Para los aforos de las captaciones que no disponen de una tubería de entrada a la cámara húmeda, se midieron las dimensiones del largo y ancho de la cámara para calcular su área,

luego se impidió el paso del agua hacia la conducción y se procedió a medir cómo varía la altura del agua en la cámara húmeda en un tiempo establecido. Con el valor del área y la altura que subía el nivel del agua en el tiempo dado se calcularon los caudales. Este proceso se realizó varias veces para obtener un promedio.

Por otro lado, para las captaciones que disponían de una tubería de entrada a la cámara húmeda se colocó un recipiente para captar el agua que entra por la tubería y se tomó el tiempo que tarda en llenarse un volumen dado, de igual manera se repitió este proceso varias veces para obtener un valor promedio y descartar valores erróneos. Los caudales obtenidos se observan en la Tabla 17.

Captaciones Chaguarcorral Patapamba Captación 1 2.28 1.00 I/min 7.27 Captación 2 1.11 I/min Captación 3 4.00 I/min Captación 4 2.16 I/min Total 9.55 8.28 I/min

Tabla 16 Caudales de captaciones

4.1.2 PTAP

Para los aforos en las PTAP se realizó mediciones en la entrada al filtro lento, a la entrada de la caseta de cloración y en el caso de la PTAP "Chaguarcorral Patapamba alto" se aforó también en el vertedero repartidor.

Se utilizó el mismo método de medición empleado en las captaciones, además se midió en las distintas partes de las PTAP para identificar si existían pérdidas. Por último, se realizaron aforos a las últimas casas de cada comunidad con la finalidad de conocer si existe presión suficiente en los puntos más lejanos del sistema. A continuación, se presentan los resultados tabulados de los aforos en los distintos puntos en la Tabla 18.

Tabla 17 Caudales de PTAP

PTAP (Planta de tratamiento de Agua Potable)			
	Chaguarcorral	Patapamba	
	(PTAP ALTO)	(PTAP BAJO)	
Filtro lento	13.68	8.37	l/min
Caseta cloración	14.46	9.08	l/min
Vertedero	7.10	-	l/min
Patapamba			
Vertedero	6.68	-	l/min
Chaguarcorral			
Total vertedero	13.78	-	l/min

4.1.3 Domiciliaria

Se determinó el caudal con el que llega el agua en el último domicilio de la red de abastecimiento.

Tabla 18 Caudales en última domiciliaria

Domicilio			
Chaguarcorral Patapamba			
Última casa de la red	17.42	5.55	l/min

4.2 Topografía

Como resultado del levantamiento topográfico se obtuvieron los distintos planos de las estructuras de las PTAP, emplazamientos de nuevas estructuras, mapas topográficos con su respectiva red de abastecimiento para cada comunidad y esquema de la red de abastecimiento.

4.2.1 Topografía para la comunidad de Patapamba

De manera general en la topografía se georreferenciaron las distintas estructuras de interés pertenecientes a la red. En la Tabla 20 se muestran las coordenadas de las distintas estructuras.

Las cuatro captaciones de Patapamba, afloramientos o vertientes (C1, C2, C3, C4) están ubicadas respectivamente en las siguientes coordenadas y cotas:

Tabla	10	Coordo	nadae de	lac	captaciones	nara la	DTAD	Datanamha
i apia	19 (Jooraei	nadas de	; ias	captaciones	para la	1 PIAP	Patabamba

Captación	Latitud, longitud	Cota m.s.n.m
C1	-2.965, -79.005	2873
C2	-2.966, -79.006	2850
C3	-2.966, -79.007	2838
C4	-2.966, -79.007	2838

Tabla 20 Características de los tramos en las conducciones para la PTAP Patapamba

Tramo	Longitud [m]	Diámetro [mm]	Material
C1 a C2	114	25	PVC
C2 a C3	160	32	PVC
C3 a C4	14.30	50	PVC
C4 a red	8	50	PVC
C4 a válvula purga	430	50	PVC
Válvula purga a válvula PTAP	257	50	PVC

Tabla 21 Ubicación de la PTAP Patapamba

PTAP	Latitud, Longitud	Cota m.s.n.m
Patapamba	-2.965, -79.012	2810

4.2.1.1 Plano topográfico de las vías y red de conducción y abastecimiento de agua

El plano topográfico se puede observar en el Anexo B.1 y Anexo B.2, donde se presentan las vías, el trazado de la red de la conducción a la PTAP, la red de abastecimiento de agua con sus longitudes, material y diámetros, también se encuentras las acometidas actuales y las propuestas para conexiones a futuro, accesorios de la red y finalmente las captaciones y PTAP.

4.2.1.2 Plano de la PTAP

En los planos de la PTAP Patapamba se presentan en el Anexo B.3 un emplazamiento en planta de la PTAP Patapamba donde constan georreferenciado, sus curvas de nivel, las estructuras actuales y estructuras propuestas. También en el Anexo C se presenta una vista en corte del emplazamiento de las nuevas estructuras.

4.2.1.3 Planos de nuevas estructuras

En el Anexo C se presentan los planos a detalle de cada estructura que se diseñó para la PTAP. Estos planos constan de planos estructurales, de emplazamiento y de dimensiones con accesorios.

4.2.2 Topografía para la comunidad de Chaguarcorral

Formado por dos captaciones de afloramientos subterráneos las cuales están ubicadas respectivamente en las siguientes cotas y coordenadas:

Tabla 22 Coordenadas de las captaciones para la PTAP Patapamba Chaguarcorral

Captación	Latitud, Longitud	Cota m.s.n.m
C1	-2.971, -79.012	2880
C2	-2.970, -79.012	2865

Tabla 23 Características de los tramos en las conducciones para la PTAP Patapamba Chaguarcorral

Tramo	Longitud [m]	Diámetro [mm]	Material
C2 a PTAP	430	50	PVC
C1 a C2	139.3	25	PVC

Tabla 24 Ubicación de la PTAP Patapamba Chaguarcorral

PTAP	Latitud, Longitud	Cota m.s.n.m
Chaguarcorral y Patapamba Alto	-2.967, -79.013	2854

4.2.2.1 Plano topográfico de las vías y red de conducción y abastecimiento de agua

El plano topográfico correspondiente a la comunidad Chaguarcorral se puede observar en el Anexo B.2, donde se presentan las vías, el trazado de la red de la conducción a la PTAP, la

red de abastecimiento de agua con sus longitudes, material y diámetros, también se encuentras las acometidas actuales y las propuestas para conexiones a futuro, accesorios de la red y finalmente las captaciones y PTAP.

4.2.2.2 Plano de la PTAP

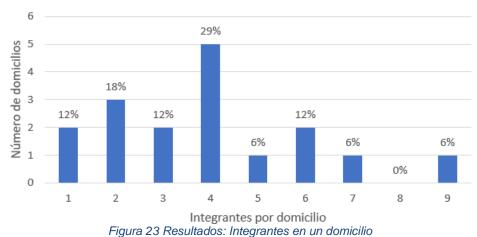
En los planos de la PTAP Patapamba Chaguarcorral se presentan en el Anexo B.4 un emplazamiento en planta de la PTAP Patapamba Chaguarcorral donde constan georreferenciado, sus curvas de nivel, las estructuras actuales y estructuras propuestas. También en el Anexo C se presenta una vista en corte del emplazamiento de las nuevas estructuras.

4.2.2.3 Planos de nuevas estructuras

En el Anexo C se presentan los planos a detalle de cada estructura que se diseñó para la PTAP. Estos planos constan de planos estructurales, de emplazamiento y de dimensiones con accesorios.

4.3 Encuestas sanitarias

4.3.1 Respuestas proporcionadas por las encuestas comunidad de Patapamba


ALIMENTACIÓN

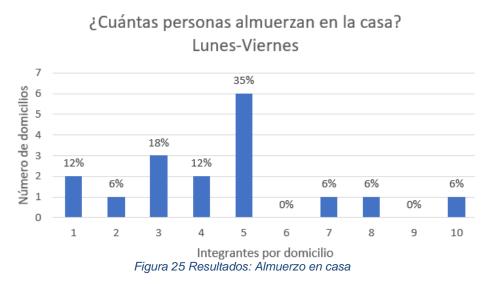
• ¿Cuántos integrantes viven en su domicilio?

Los datos demuestran que la mayor proporción de habitantes por domicilio corresponde a 4 habitantes por domicilio al cual le corresponden el 29 % de las encuestas (5 casas), la menor cantidad de habitantes aunque es 0 y corresponde casas vacías se considera mejor tomar el valor de 1 habitante por casa debido a que sí repercute en el cálculo de las dotaciones siendo 12 % de las encuestas (2 casas) y finalmente el máximo número de habitantes por casa obtenido es de 9 habitantes con el 6 % de las encuestas (1 casa).

La media de habitantes calculada basada en los datos es de 3.94 habitantes redondeado a 4 habitantes por casa.

¿Cuántas personas desayunan en la casa entre semana?

La mayor proporción de personas que desayunan en casa entre semana corresponde a 4 personas que corresponde al 29.4% (5 casas), la menor cantidad de habitantes corresponde a 1 habitante 18 % (3 casas) y finalmente el máximo número de habitantes corresponde a 9 habitantes con el 6 % de las encuestas (1 casa).


Figura 24 Resultados: Desayuno en casa

La media de personas que desayunan en casa es de 4 habitantes por casa.

• ¿Cuántas personas almuerzan en la casa entre semana?

La mayor proporción de habitantes que almuerzan en casa corresponden a 5 personas con un 33.3% de las encuestas (6 casas), la menor cantidad de habitantes corresponde a 1 habitantes 12 % que corresponde a 2 casas. La mayor cantidad de habitantes que almuerzan entre semana corresponde a 10 habitantes con un 6 % (1 casa).

La media de habitantes que almuerzan en casa entre semana es de 3.47 habitantes o 4 habitantes por casa.

• ¿Cuántas personas cenan en la casa entre semana?

Las mayores proporciones de habitantes que meriendan en casa entre semana corresponden a 3 y 4 habitantes, ambas con un 24 % de las encuestas (ambas con 4 casas), el menor número de habitantes corresponde a 1 habitante con un 6 % (1 casa) y con un máximo número de 10 habitantes que cenan entre semana siendo 6 % (1 casa).

¿Cuántas personas cenan en casa? Lunes-Viernes

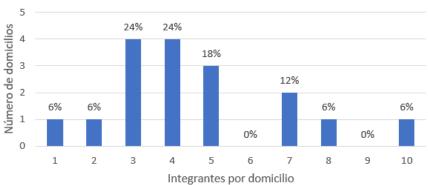


Figura 26 Resultados: Cena en casa

La media de habitantes que cenan entre semana es de 3.59 % o de 4 habitantes por casa.

• ¿Cuántas personas desayunan en la casa el fin de semana?

La mayor proporción de personas que desayunan en casa el fin de semana corresponde a 5 personas que corresponde al 35 % (6 casas), la menor cantidad de habitantes sin considerar casa con 1 habitante corresponde a 2 habitante 12 % (2 casas) y finalmente el máximo número de habitantes corresponde a 10 habitantes con el 6 % de las encuestas (1 casa).

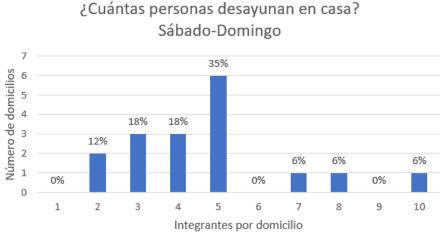


Figura 27 Resultados: Desayuno fines de semana

La media de personas que desayunan en casa el fin de semana es de 3.70, redondeado a 4 habitantes por casa.

• ¿Cuántas personas almuerzan en la casa el fin de semana?

La mayor proporción de habitantes que almuerzan en casa el fin de semana corresponden a 4 habitantes con un 29 % de las encuestas (5 casas), la menor cantidad de habitantes corresponde a 0 habitantes con un 0 % (0 casas) que no almuerzan el fin de semana. La mayor cantidad de habitantes que almuerzan el fin de semana corresponde a 9 habitantes con un 6 % (1 casa).

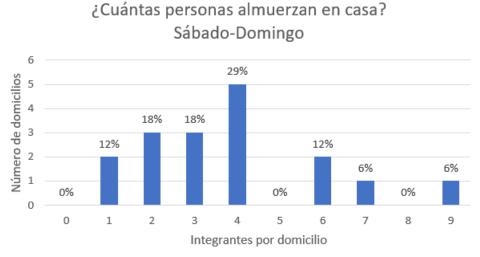


Figura 28 Resultados: Almuerzo fines de semanas

La media de personas que almuerzan en casa el fin de semana es de 3.82 que redondea a 4 habitantes por casa.

• ¿Cuántas personas cenan en la casa el fin de semana?

La mayor proporción de habitantes que meriendan en casa el fin de semana corresponden a 5 habitantes con un 29 % de las encuestas (5 casas), el menor número de habitantes corresponde a 1 habitante con un 6 % (1 casas) y con un máximo número de habitantes de 10 que cenan el fin de semana siendo 6 % (1 casa).

¿Cuántas personas cenan en casa? Sábado-Domingo

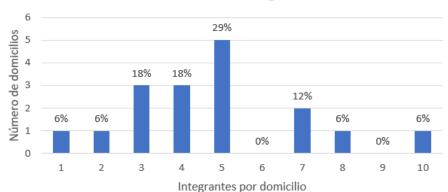


Figura 29 Resultados: Cena fines de semana

La media de habitantes que cenan entre semana es de 3.76 o de 4 habitantes por casa.

• ¿Cuántas veces al día lava los platos?

La mayoría de los habitantes lavan los platos 3 veces al día en el 41 % de las casas. El mínimo número de veces es de 1 vez al día siendo 24 %.

¿CUÁNTAS VECES AL DÍA LAVA LOS PLATOS?

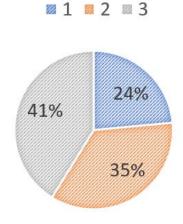


Figura 30 Resultados: Número de lavado de platos

¿Cuánto tarda en lavar los platos (minutos)?

En el 53 % de las casas se lavan los platos por al menos 10 minutos, mientras el menor tiempo empleado es de 2 minutos con un 6 % y el mayor tiempo de 20 minutos con un 6 %.

¿CUÁNTO TIMEPO TARDA EN LAVAR LOS PLATOS?

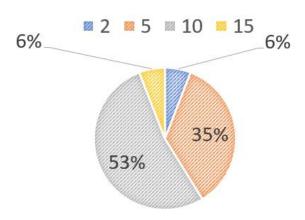


Figura 31 Resultados: Tiempo de lavado de platos

¿Cuántos vasos de agua toma al día?

El 65% de habitantes toma 3 vasos de agua mientras el 29% toman de 6 vasos de agua diariamente.

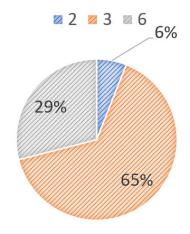


Figura 32 Resultados: Número de vasos de agua por día

HIGIENE PERSONAL

• ¿Cuánto tiempo tarda bañándose desde que abre la llave (minutos)?

Existe un 71 % de habitantes que se tardan 10 minutos en bañarse mientras que el 29 % tarda 5 minutos, por lo que consumirá una menor cantidad de agua.

¿CUÁNTOS MINUTOS TARDA BAÑÁNDOSE DESDE QUE ABRE LA LLAVE?

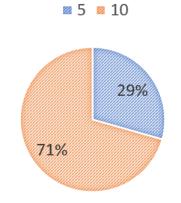


Figura 33 Resultados: Tiempo de ducha

• ¿Cuántas veces al día se lava las manos?

El 47 % de habitantes se lavan las manos 3 veces al día, el 12 % se lava las manos 4 veces al dia siendo el 66emana numero de veces, el 66emana numero de veces de lavarse las manos es 1 y corresponde a un 6 % de habitantes.

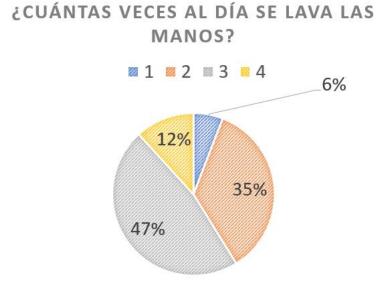


Figura 34 Resultados: Número de lavados de manos

• ¿Cuántas veces a la semana se baña?

Un 41 % de habitantes encuestados se bañan tres veces por semana, el numero 66emana es de 5 baños por semana y corresponde al 6 % de habitantes, mientras que el 66emana de baños por 66emana es de 1 y corresponde al 6 %.

Figura 35 Resultados: Número de duchas por semana

• ¿Cuántas veces al día se lava los dientes?

La mayor parte de habitantes (53 %) se lavan los dientes 3 veces por día lo que puede tomarse como un valor intermedio.

Veces a la semana

¿CUÁNTAS VECES AL DÍA SE CEPILLA LOS DIENTES?

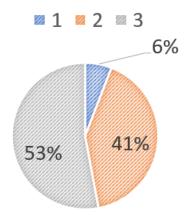


Figura 36 Resultados: Número de lavado de dientes

• ¿Emplea un vaso al momento de cepillarse los dientes?

Un 71 % de habitantes emplea un vaso al momento de cepillarse los dientes mientras el 29 % usa el agua directamente de la llave.

¿EMPLA UN VASO AL CEPILLARSE LOS DIENTES?

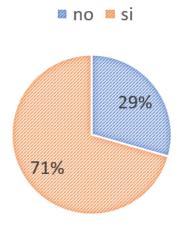


Figura 37 Resultados: Uso de vaso para cepillado

• En caso de no utilizar vaso para el cepillado de dientes, ¿Mantiene la llave abierta o cerrada mientras se cepilla los dientes? El 75 % de los habitantes mantiene la llave cerrada mientras se cepilla los dientes y apenas el 25 % la mantiene abierta. Lo que nos indica que la mayor parte de la población tiene hábitos de ahorro del agua.

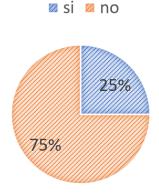


Figura 38 Resultados: Abierta o cerrada la llave en el cepillado

• ¿Cuántas veces al día descarga el agua del inodoro?

El mayor porcentaje de habitantes 41 % descarga el agua del inodoro 2 veces al día, de igual forma el valor medio por habitante para cada casa es de 4 habitantes.

¿CUÁNTAS VECES AL DÍA DESCARGA EL AGUA DEL INODORO?

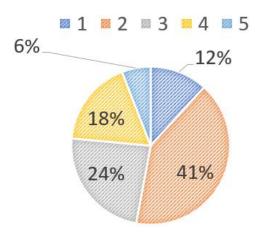


Figura 39 Resultados: Número de descargas de inodoro

ASEO DEL HOGAR:

• ¿Con qué frecuencia lava los pisos por semana?

El 47 % de los habitantes opta por limpiar el piso una vez por semana, es un valor preocupante, ya que se recomienda limpiar el piso a diario por el número de gérmenes y suciedad que se acumula.

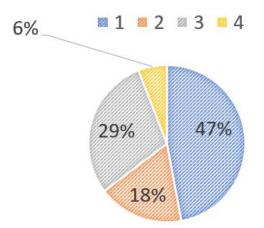


Figura 40 Resultados: Número de lavado de piso

 ¿Qué cantidad de agua emplea para limpiar los pisos (balde de cinco litros de capacidad)?

Según la gráfica, la mayoría de las personas que realizan la limpieza del piso de sus domicilios (41 %) emplean un balde para realizar la limpieza de sus pisos, considerando que es una cantidad moderada para realizar dicha actividad.

¿BALDES USADOS PARA LAVAR LOS PISOS?

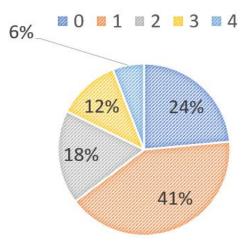


Figura 41 Resultados: Cantidad de agua para limpieza del piso

¿Con qué frecuencia limpia los baños (semanal)?

Según el número de integrantes de la casa y el número de baños disponibles, es recomendable limpiar el piso del baño y el inodoro una vez por día; la limpieza de los lavabos y duchas puede realizarse dos veces por semana.

La encuesta refleja que el 53 % de habitantes limpia los baños una vez por semana, lo que refleja una necesidad de realizar esta labor con mayor frecuencia para garantizar la higiene y salud de los habitantes.

FRECUENCIA EN LIMPIAR LOS BAÑOS SEMANALMENTE

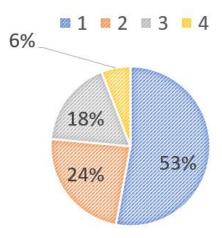


Figura 42 Resultados: limpieza de baños

 ¿Qué cantidad de agua emplea para limpiar los baños (balde de cinco litros de capacidad)?

Con la gráfica se estableció que quienes limpian los servicios higiénicos emplean entre uno (59 % habitantes) y dos baldes (18 %) con agua, una cantidad suficiente y adecuada para realizar la limpieza.

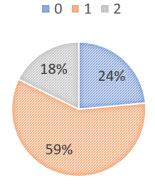


Figura 43 Resultados: Cantidad de agua limpieza de baños

¿Con qué frecuencia lava la ropa por semana?

Por la importancia de gestionar el uso del agua, se recomienda lavar la ropa entre una y dos veces por semana. En la comunidad debido a los trabajos y actividades agrícolas que se realizan hay ciertas familias que optan por lavar la ropa hasta tres veces por semana.

¿FRECUENCIA EN LAVAR LA ROPA A LA SEMANA?

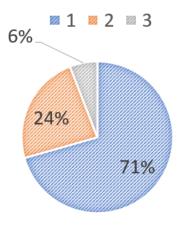


Figura 44 Resultados: Frecuencia lavado de ropa por semana

¿Cómo realiza el lavado de ropa?

La comunidad se encuentra en desarrollo, razón por la cual muchas de las familias no cuentan con los recursos económicos para adquirir una lavadora, debido a esto se logró determinar casi la totalidad de los habitantes realizan el lavado de la ropa a mano.

Figura 45 Resultados: Método de lavado de ropa

• ¿Qué cantidad de agua emplea para lavar la ropa (litros)?

Al lavar ropa casi toda la mano, es evidente que el agua empleada en esa actividad variará, salvo cuando se usa una lavadora donde el promedio mundial para una carga de ropa es de 40 a 50 litros tomando 50 litros como valor referencial desfavorable. En la comunidad, el 53 % de habitantes utilizan alrededor de 50 litros de agua para el lavado de ropa, solo un 6 % de la población presenta un consumo reducido de 20 litros por lavada.

¿LITROS DE AGUA PARA LAVADO DE ROPA A LA SEMANA?

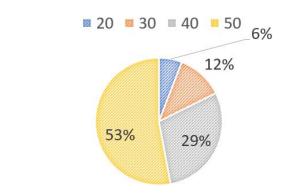


Figura 46 Resultados: Cantidad de agua para lavado de ropa

• ¿Dispone de automóvil o motocicleta?

El 57% de la población dispone de un vehículo esto nos indica que esta parte genera un consumo de agua para la respectiva limpieza de su vehículo, mientras que el 43% no genera consumo ya que no dispone de un vehículo.

DISPONE DE AUTOMÓVIL O MOTOCICLETA

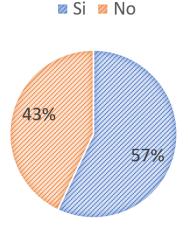


Figura 47 Resultados: Disposición de auto o motocicleta

 En caso de tener un automóvil o motocicleta, ¿Con qué frecuencia lava su vehículo? (semanal)

Las familias con un vehículo propio para movilizarse lavan una vez por semana, además lo hacen usando agua lluvia que recolectan en recipientes o tanques específicos para darle usos.

FRECUENCIA EN LAVAR SU AUTO O MOTO A LA SEMANA

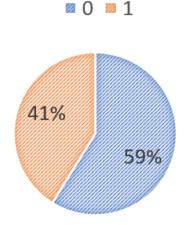


Figura 48 Resultados: Número de lavado de vehículos

4.3.2 Respuestas proporcionadas por las encuestas comunidad de Chaguarcorral ALIMENTACIÓN:

• ¿Cuántos integrantes viven en el hogar?

Los datos demuestran que la mayor proporción de habitantes por casa corresponde a 4 habitantes por casa al cual le corresponden el 36 % de las encuestas (10 casas), la menor cantidad de habitantes aunque es 0 y corresponde casas vacías se considera mejor tomar el valor de 1 habitante por casa debido a que sí repercute en el cálculo de las dotaciones siendo 4 % de las encuestas (1 casa) y finalmente el máximo número de habitantes por casa obtenido es de 9 habitantes con el 4 % de las encuestas (1 casa).

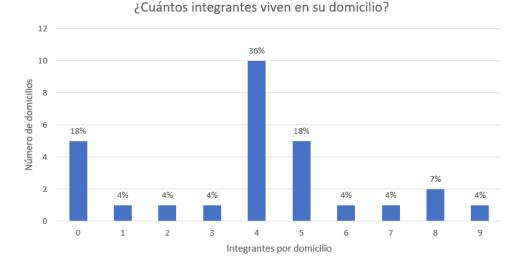


Figura 49 Resultados: Integrantes en el domicilio

La media obtenida para el número de habitantes por casa es de 3.89 que redondeando da un valor de 4 habitantes por casa.

• ¿Cuántas personas desayunan en la casa entre semana?

La mayor proporción de personas que desayunan en casa entre semana corresponde al 32 % (9 casas), la menor cantidad de habitantes corresponde a 1 habitante al 4 % (1 casa) y, finalmente, el máximo número de habitantes corresponde a 9 habitantes con el 4 % de las encuestas (1 casa).

Figura 50 Resultados: Desayuno entre semana

Obteniendo un valor medio de 3.79 redondeado a 4 habitantes que desayunan en la casa entre semana.

• ¿Cuántas personas almuerzan en la casa entre semana?

La mayor proporción de personas que almuerzan en casa semana corresponde a 4 personas, el 21 % (6 casas), ignorando el valor de cero habitantes ya que van a afectar negativamente en el cálculo final de la dotación, la menor cantidad de habitantes corresponde a 1 habitante (4 %) y, finalmente, el máximo número de habitantes es de 9 habitantes con el 4 % de las encuestas (1 casa).

Figura 51 Resultados: Almuerzo entre semana

Se obtiene un valor medio de 2.71 que redondea a 3 habitantes que almuerzan en casa entre semana.

• ¿Cuántas personas cenan en la casa entre semana?

La mayor proporción de personas que cenan en casa semana corresponde al 29 % (8 casas), la menor cantidad de habitantes corresponde a 1 habitante al 21 % (6 casas) y, finalmente, el máximo número de habitantes corresponde a 9 habitantes con el 4 % de las encuestas (1 casa).

Lunes-Viernes 9 29% 8 Número de domicilios 7 21% 18% 5 4 3 7% 2 4% 4% 1 3 2 5 Integrantes por domicilio

¿Cuántas personas cenan en casa?

Figura 52 Resultados: Cena entre semana

Como resultado, un valor medio de 3.85 redondeando a 4 personas que cenan en casa semanales.

• ¿Cuántas personas desayunan en la casa el fin de semana?

El mayor porcentaje de personas que desayunan en casa el fin de semana corresponde al 43 % (12 casas), la menor cantidad de habitantes corresponde a 1 habitante 4 % (1 casa) y, finalmente, el máximo número de habitantes corresponde a 9 habitantes con el 4 % de las encuestas (1 casa).



Figura 53 Resultados: Desayuno fines de semana

Teniendo un valor de 3.68 redondeado a 4 habitantes que desayunan en la casa el fin de semana.

• ¿Cuántas personas almuerzan en la casa el fin de semana?

La mayor proporción de personas que almuerzan en casa entre semana corresponde a 4 personas que corresponde al 36 % (10 casas), la menor cantidad de habitantes

corresponde a 1 habitante 21 % (6 casa) y finalmente el máximo número de habitantes corresponde a 9 habitantes con el 4 % de las encuestas (1 casa).

Figura 54 Resultados: Almuerzo fines de semana

Se obtiene un valor medio de 3.61 redondeado a 4 habitantes que almuerzan en casa el fin de semana.

• ¿Cuántas personas cenan en la casa el fin de semana?

La mayor proporción de personas que cenan en casa entre semana corresponde al 49 % (11 casas), la menor cantidad de habitantes corresponde a 1 habitante al 21 % (6 casas) y finalmente el máximo número de habitantes corresponde a 9 habitantes con el 4 % de las encuestas (1 casa).

Figura 55 Resultados: Cena fines de semana

La media es 3.89 redondeado a 4 habitantes que cenan en casa el fin de semana.

• ¿Cuántas veces al día lava los platos?

La mayoría de la población lava los platos 3 veces al día.

¿CUÁNTAS VECES AL DÍA LAVA LOS PLATOS?

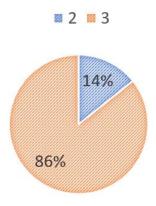


Figura 56 Resultados: Lavado de platos al día

• ¿Cuánto tarda en lavar los platos (minutos)?

El 29 % de la población tarda 20 minutos en lavar los platos, el tiempo mínimo que tardan en lavar los platos es de 5 minutos correspondiente al 14 % y el máximo es de 30 minutos correspondiendo a 14 %.

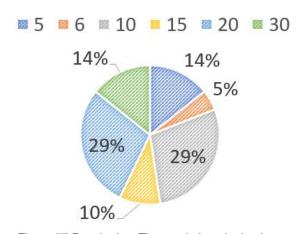


Figura 57 Resultados: Tiempo de lavado de platos

La mayoría de la población se demora 10 o 20 minutos en lavar los platos generando un mayor consumo de agua.

• ¿Cuántos vasos de agua toma al día?

Un 62% de la población consume de 4 vasos de agua al día, un 24% de la población consume 3 vasos de agua al día y un 10% de la población consume de 1 vaso de agua al día.

¿CUÁNTOS VASOS DE AGUA TOMA AL DÍA?

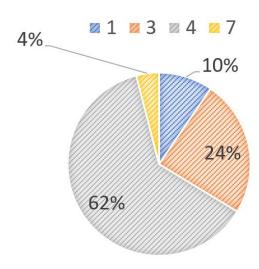


Figura 58 Resultados: Vasos de agua al día

HIGIENE PERSONAL:

¿Cuánto tiempo tarda bañándose desde que abre la llave (minutos)?

Existe un 57 % de la población que se demora 10 minutos bañándose, un 10 % que se demora más de 30 minutos en bañarse, generando un mayor consumo de agua en esta actividad.

¿CUÁNTOS MINUTOS TARDA BAÑÁNDOSE DESDE QUE ABRE LA LLAVE?

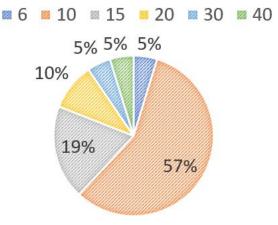


Figura 59 Resultados: Tiempo de ducha

• ¿Cuántas veces al día se lava las manos?

Un 48 % de la población se lava las manos 5 veces al día, un 10 % de la población se lava las manos 12 veces al día. Esto se debe a que la mayoría de la población cuida animales y se genera un mayor lavado de manos.

¿CUÁNTAS VECES AL DÍA SE LAVA LAS MANOS?

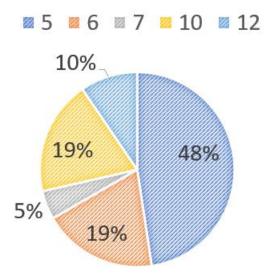


Figura 60 Resultados: Lavado de manos

¿Cuántas veces a la semana se baña?

El 48 % de la población se baña 3 veces a la semana dando como resultado un consumo promedio ya que regularmente se toman de 3 a 4 duchas semanales.

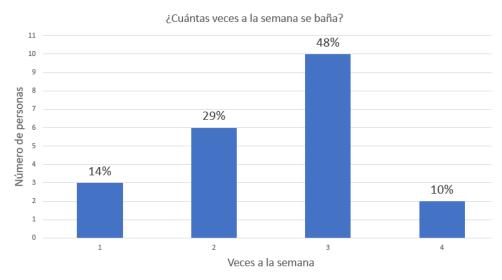


Figura 61 Resultados: Número de duchas al día

• ¿Cuántas veces al día se lava los dientes?

El 76 % de la población se lava los dientes 3 veces al día, siendo un consumo apropiado para esta actividad.

Figura 62 Resultados: Lavado de dientes

¿Emplea un vaso al momento de cepillarse los dientes?

El consumo de agua para el cepillado de dientes es razonable, ya que el 71% de la población usa un vaso al momento de cepillarse los dientes.

¿EMPLA UN VASO AL CEPILLARSE LOS DIENTES?

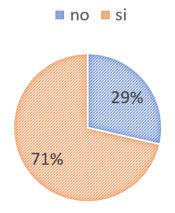


Figura 63 Resultados: Uso de vaso para cepillado

 En caso de no utilizar vaso para el cepillado de dientes, ¿Mantiene la llave abierta o cerrada mientras se cepilla los dientes?

La población está consciente en el uso del agua ya que el 60% de la población mantiene cerrada la llave al momento de cepillarse los dientes.

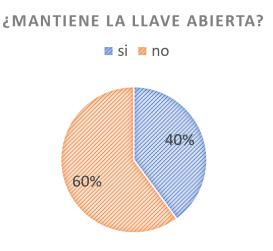


Figura 64 Resultados: Llave abierta o cerrada para lavado de platos

• ¿Cuántas veces al día descarga el agua del inodoro?

Existe un 14 % de la población que descarga el agua del inodoro 2 veces al día tomándolo como el mínimo de descargas, un 29 % de la población descarga el inodoro 5 veces al día tomándolo como el máximo de descargas.

Figura 65 Resultados: Número de descargas de inodoro

ASEO DEL HOGAR:

• ¿Con qué frecuencia lava los pisos por semana?

Existe un 43 % de la población que lava los pisos dos veces por semana mientras que el 24 % de la población no realiza la actividad y el 29 % de la población lo realiza una vez por semana.

¿FRECUENCIA EN LAVAR LOS PISOS POR SEMANA?

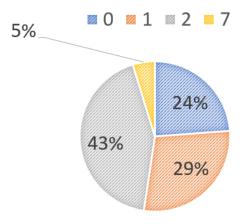


Figura 66 Resultados: Lavado de piso por semana

El 72 % de la población realiza el lavado de los pisos ya sea una o dos veces por semana.

¿Qué cantidad de agua emplea para limpiar los pisos (balde)?

Existe un 24 % de la población que no consume agua para realizar esta actividad, mientras que hay un 38 % de la población que usa más de 1 baldes de agua para realizar esta actividad.

¿BALDES USADOS PARA LAVAR LOS PISOS?

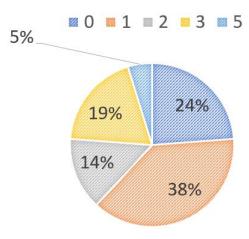


Figura 67 Resultados: Cantidad de agua para lavado de pisos

Más del 50% de la población consume agua para limpiar los pisos, la mayoría usa entre un balde para realizar esta actividad.

¿Con qué frecuencia limpia los baños (semanal)?

El 38 % de la población limpia los baños una vez por semana, un 14 % lo hace 3 veces por semana, un 5 % lo hace todos los días mientras que hay un 5 % de la población que no realiza esta actividad.

Figura 68 Resultados: Frecuencia limpieza de baños

Existe un 95 % de la población que realiza esta actividad generando un consumo de agua mientras que solo un 5 % no realiza esta actividad.

¿Qué cantidad de agua emplea para limpiar los baños (balde)?

La población limpia los baños usando un balde, un 86 % de la población lo realiza usando un balde de agua, el 5 % de la población lo realiza con 2 baldes y el 5 % de la población lo realiza con 3 baldes de agua.

¿LITROS DE AGUA PARA LIMPIAR LOS BAÑOS?

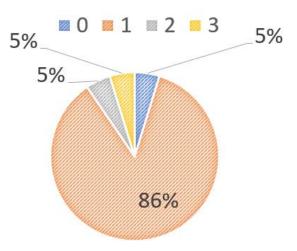


Figura 69 Resultados: Cantidad de agua para limpieza de baños

Existe un consumo de agua que se genera realizando esta actividad por un 96 % de la población, mientras que el 5 % de la población no genera consumo.

• ¿Con qué frecuencia lava la ropa por semana?

La población realiza el lavado de ropa una, dos o tres veces por semana. El 86 % de la población lo realiza una o dos veces por semana y el 14 % de la población lo realiza tres veces por semana.

¿FRECUENCIA EN LAVAR LA ROPA A LA SEMANA?

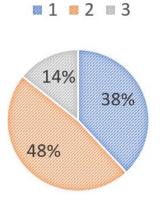


Figura 70 Resultados: Frecuencia lavado de ropa

Más del 50% de la población genera un consumo de agua al realizar esta actividad.

• ¿Qué cantidad de agua emplea para lavar la ropa (litros)?

El 24 % de la población consume 90 litros de agua para lavar ropa, ya que usan tinas grandes para lavarla, además existe un 14 % de la población que no genera consumo corresponde a casas no habitadas.

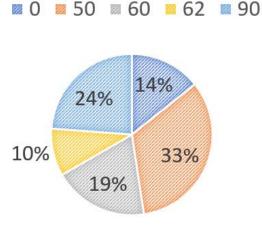


Figura 71 Resultados: Cantidad de agua para lavado de ropa

Más del 50% de la población consume agua para esta actividad generando un alto consumo por la población.

• ¿Cómo realiza el lavado de ropa?

El 82% de los habitantes lava la ropa a mano, mientras el 17% utiliza lavadora.

¿CÓMO REALIZA EL LAVADO DE ROPA?

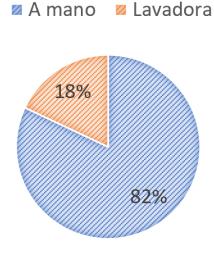


Figura 72 Resultados: Método de lavado de ropa

• ¿Dispone de automóvil o motocicleta?

El 50% de la población posee vehículos propios siendo en todos los casos automóvil pues la encuesta anterior refleja que no existe presencia de motocicletas.

DISPONE DE AUTOMÓVIL O MOTOCICLETA

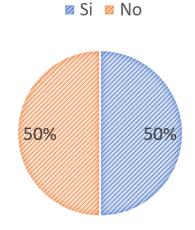


Figura 73 Resultados: Dispone de auto o motocicleta

• En caso de tener un automóvil o motocicleta, ¿Con qué frecuencia lava su vehículo? (semanal)

El 33 % de los habitantes que poseen vehículo realizan el lavado de este con agua de la llave una vez por semana, el 57 % de la población no realiza el lavado del

vehículo en el hogar, mientras el 10% realiza lavados con agua lluvia recolectada 2 veces a la semana.

FRECUENCIA EN LAVAR SU AUTO O MOTO A LA SEMANA

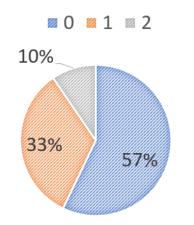


Figura 74 Resultados: Frecuencia lavado de auto

4.3.3 Dotación de agua potable (Encuestas)

Las encuestas fueron hechas, con el apoyo de los directivos de las comunidades, el día 29 de octubre del 2022 desde las 7:30 hasta las 13:00 horas, a todos los usuarios del sistema de abastecimiento, que corresponden a las comunidades de Chaguarcorral y Patapamba.

El objetivo principal de las encuestas es el de calcular una dotación aproximada a la realidad según la información que se recopila directamente con las personas de ambas comunidades. Utilizando la metodología del punto 3.2.1 del presente documento se obtuvo los siguientes resultados:

Comunidad Patapamba

Tabla 25 Resultados consumo de agua – ALIMENTACIÓN

	ALIMENTACIÓN						
Número de		Lunes a Viernes			Sábado y Domingo		
encuesta (Domicilio)	Consumo desayuno (Litros/semanal)	Consumo almuerzo (Litros/semanal)	Consumo cena (Litros/semanal)	Consumo desayuno (Litros/semanal)	Consumo almuerzo (Litros/semanal)	Consumo cena (Litros/semanal)	Consumo vasos de agua (Litros/semanal)
1	10	40	10	4	16	8	11.2
2	5	20	10	2	8	4	8.4
3	2.5	10	5	1	4	2	4.2
4	17.5	70	35	7	28	14	29.4
5	2.5	0	0	1	4	0	4.2
6	22.5	90	45	9	36	18	37.8
7	2.5	30	15	3	12	6	12.6
8	7.5	0	15	3	12	6	12.6
9	7.5	30	30	3	24	12	25.2
10	10	40	20	4	16	8	16.8
11	15	60	30	6	24	12	25.2
12	10	40	15	4	12	6	16.8
13	5	40	15	4	16	8	42
14	5	20	10	2	8	4	16.8
15	5	20	10	2	8	4	16.8
16	10	40	20	4	16	8	33.6
17	10	40	20	4	16	8	33.6

Tabla 26 Resultado consumo de agua – HIGIENE PERSONAL

N.	HIGIENE PERSONAL					
Número de encuesta (Domicilio)	Consumo ducha (Litros/día)	Consumo lavado de manos (Litros/día)	Consumo lavado de dientes (Litros/día)	Consumo por uso del inodoro (Litros/día)		
1	102.9	9.6	72	72		
2	51.4	4.8	12	12		
3	17.1	3.6	12	12		
4	60.0	25.2	84	84		
5	17.1	3.6	12	18		
6	308.6	32.4	108	162		
7	77.1	7.2	36	72		
8	128.6	7.2	36	36		
9	205.7	21.6	72	144		
10	68.6	14.4	72	120		
11	154.3	21.6	108	144		
12	102.9	19.2	72	48		
13	85.7	18	90	60		
14	34.3	9.6	36	12		
15	51.4	4.8	36	24		
16	68.6	4.8	72	48		
17	102.9	9.6	72	72		

Tabla 27 Resultado consumo de agua – ASEO DEL HOGAR

NI.	ASEO DEL HOGAR						
Número de	Consumo	Consumo	Consumo	Consumo	Consumo		
encuesta (Domicilio)	lavado de	por lavado	por lavado	por lavado	lavado de		
(Domicilo)	platos	de pisos	de baños	de ropa	vehículos		
	(Litros/día)	(Litros/día)	(Litros/día)	(Litros/día)	(Litros/día)		
1	48	1.7143	1.71	11.4	0.00		
2	24	2.5714	0.86	5.7	7.14		
3	24	1.7143	1.71	5.7	7.14		
4	24	0.8571	0.86	5.7	7.14		
5	24	2.5714	0.86	5.7	7.14		
6	48	0.8571	0.86	5.7	7.14		
7	48	0.8571	0.86	5.7	7.14		
8	48	0.8571	0.86	5.7	7.14		
9	72	0.8571	0.86	5.7	0.00		
10	72	0.8571	2.57	5.7	0.00		
11	72	0.8571	2.57	5.7	0.00		
12	72	0.8571	0.86	11.4	0.00		
13	72	1.7143	2.57	11.4	0.00		
14	48	2.5714	0.86	17.1	0.00		
15	48	3.4286	3.43	5.7	0.00		
16	72	2.5714	1.71	5.7	0.00		
17	72	2.5714	1.71	11.4	0.00		

Tabla 28 Dotación de agua Patapamba

Número de encuesta (Domicilio)	Consumo total de alimentación (Litros/día)	Consumo total de higiene personal (Litros/día)	Consumo total de aseo del hogar (Litros/día)	Consumo total (Litros/habitante/día)
1	3.5	64.1	15.7	83.4
2	4.1	40.1	20.1	64.4
3	4.1	44.7	40.3	89.1
4	4.1	36.2	5.5	45.8
5	1.7	50.7	40.3	92.7
6	4.1	67.9	7.0	78.9
7	3.9	64.1	20.9	88.8
8	2.7	69.3	20.9	92.8
9	3.1	73.9	13.2	90.3
10	4.1	68.7	20.3	93.1
11	4.1	71.3	13.5	88.9
12	3.7	60.5	21.3	85.5
13	3.7	50.7	17.5	72.0
14	4.7	45.9	34.3	84.9
15	4.7	58.1	30.3	93.1
16	4.7	48.3	20.5	73.5
17	4.7	64.1	21.9	90.7
			Promedio Dotación Comunidad Patapamba	82.83

Comunidad Chaguarcorral

Tabla 29 Resultado consumo de agua – ALIMENTACIÓN

			-	ALIMENTACIÓN			
	Lunes a Viernes			Sábado y Domingo			
Número de encuesta (Domicilio)	Consumo desayuno (Litros/semanal)	Consumo almuerzo (Litros/semanal)	Consumo cena (Litros/semanal)	Consumo desayuno (Litros/semanal)	Consumo almuerzo (Litros/semanal)	Consumo cena (Litros/seman al)	Consumo vasos de agua (Litros/semanal)
1	22.5	90	45	9	36	18	50.4
2	12.5	50	25	5	20	10	28.0
3	10.0	40	20	4	16	8	22.4
4	2.5	0	5	1	4	2	1.4
5	10.0	40	20	4	16	8	22.4
6	20.0	60	40	8	32	16	33.6
7	12.5	30	25	4	12	8	28.0
8	20.0	10	40	6	4	16	78.4
9	7.5	30	15	3	12	6	12.6
10	10.0	20	20	4	16	8	5.6
11	10.0	0	20	4	16	8	28.0
12	10.0	0	20	4	16	8	22.4
13	10.0	20	20	4	16	8	16.8
14	10.0	40	20	4	16	8	22.4
15	17.5	40	35	7	28	14	29.4
16	15.0	60	30	6	24	12	33.6
17	12.5	50	25	5	20	10	21.0
18	7.5	20	15	4	16	8	22.4
19	12.5	30	25	4	16	8	22.4
20	12.5	50	25	5	20	10	28.0
21	10.0	40	20	4	16	8	22.4

Tabla 30 Resultado consumo de agua – HIGIENE PERSONAL

	HIGIENE PERSONAL					
Número de encuesta (Domicilio)	Consumo ducha (Litros/día)	Consumo lavado de manos (Litros/día)	Consumo lavado de dientes (Litros/día)	Consumo por uso del inodoro (Litros/día)		
1	231.4	108.0	162	162		
2	85.7	60.0	90	150		
3	102.9	28.8	72	72		
4	8.6	6.0	12	12		
5	102.9	24.0	72	48		
6	205.7	48.0	96	144		
7	85.7	30.0	90	90		
8	205.7	67.2	144	240		
9	77.1	18.0	36	72		
10	34.3	24.0	72	120		
11	128.6	30.0	60	150		
12	68.6	24.0	48	120		
13	34.3	57.6	72	96		
14	102.9	48.0	72	120		
15	120.0	100.8	126	126		
16	102.9	36.0	108	144		
17	128.6	36.0	90	90		
18	137.1	28.8	72	72		
19	102.9	28.8	72	96		
20	85.7	30.0	90	90		
21	137.1	48.0	72	48		

Tabla 31 Resultado consumo de agua – ASEO DEL HOGAR

	ASEO DEL HOGAR						
Número de encuesta (Domicilio)	Consumo lavado de platos (Litros/día)	Consumo por lavado de pisos (Litros/día)	Consumo por lavado de baños (Litros/día)	Consumo por lavado de ropa (Litros/día)	Consumo lavado de vehículos (Litros/día)		
1	72	6	3.4	11.4	7.1		
2	72	2	1.7	11.4	0.0		
3	72	2	0.9	11.4	7.1		
4	48	1	0.9	5.7	0.0		
5	72	2	0.9	5.7	7.1		
6	72	0	1.7	11.4	7.1		
7	72	2	1.7	5.7	0.0		
8	72	2	2.6	40.0	14.3		
9	72	0	0.9	11.4	0.0		
10	72	1	6.0	11.4	0.0		
11	48	1	0.9	11.4	0.0		
12	48	1	1.7	5.7	0.0		
13	72	0	2.6	17.1	14.3		
14	72	2	0.9	11.4	7.1		
15	72	2	1.7	11.4	0.0		
16	72	0	0.9	5.7	7.1		
17	72	2	1.7	17.1	0.0		
18	72	1	2.6	5.7	0.0		
19	72	0	0.0	11.4	0.0		
20	72	2	0.9	17.1	0.0		
21	72	1	1.7	5.7	7.1		

Tabla 32 Dotación Chaguarcorral

Número de encuesta (Domicilio)	Consumo total de alimentación (Litros/día)	Consumo total de higiene personal (Litros/día)	Consumo total de aseo del hogar (Litros/día)	Consumo total (Litros/habit ante/día)
1	4.3	73.7	11.1	89.1
2	4.3	77.1	17.4	98.8
3	4.3	68.9	23.3	96.5
4	2.3	38.6	55.4	96.3
5	4.3	61.7	21.9	87.9
6	3.7	61.7	11.5	77.0
7	3.4	59.1	16.2	78.8
8	3.1	82.1	16.3	101.6
9	4.1	67.7	28.1	99.9
10	3.0	62.6	22.6	88.1
11	2.5	73.7	12.2	88.4
12	2.9	65.1	14.1	82.1
13	3.4	65.0	26.5	94.9
14	4.3	85.7	23.3	113.3
15	3.5	67.5	12.4	83.4
16	4.3	65.1	14.3	83.7
17	4.1	68.9	18.5	91.5
18	3.3	77.5	20.3	101.1
19	4.2	74.9	20.9	100.0
20	4.3	59.1	18.3	81.8
21	4.3	76.3	21.9	102.4
			Promedio Dotación Comunidad Patapamba	92.22

Estos resultados se basan en la investigación de especificaciones técnicas de artefactos sanitarios presentada por la NTE INEN 1569 y el consumo de agua promedio para las diferentes actividades cotidianas.

4.3.4 Dotación de agua potable (Medidores)

Se calcula el promedio de los consumos de enero a noviembre sin tomar en cuenta el mes de abril, ya que estos valores no reflejan la realidad de las comunidades por lo que es muy probable que en ese mes haya existido una mala lectura o falla en los medidores.

Los resultados de las dotaciones para cada planta de tratamiento es la siguiente:

Tabla 33 Dotaciones calculadas para las comunidades

Planta	Dotación (l/hab/día)
PTAP Patapamba alto y Chaguarcorral	81.5
PTAP Patapamba bajo	75.7

Esta dotación se la comparó con la Norma de Diseño, la cual clasifica los niveles de servicio con la Tabla 27:

Tabla 34 Niveles de servicio para sistemas de abastecimiento de agua

Fuente:(INEN 5, 1997)

NIVELES DE SERVICIO PARA SISTEMAS DE ABASTECIMIENTO DE AGUA, DISPOSICION DE EXCRETAS Y RESIDUOS LIQUIDOS

NIVEL	SISTEMA	DESCRIPCION
0	AP DE	Sistemas Individuales. Diseñar de acuerdo a las disponibilidades técnicas, usos previstos del agua, preferencias y capacidad económica del usuario.
la	AP	Grifos Públicos
la	DE	Letrinas sin arrastre de agua
lb	AP	Grifos Públicos más unidades de agua para lavado de ropa y baño
	DE	Letrinas sin arrastre de agua
lla	AP	Conexiones domiciliarias, con un grifo por casa.
IId	DE	Letrinas con o sin arrastre de agua
IIb	AP	Conexiones domiciliarias, con mas de un grifo por casa.
IID	DE	Sistema de alcantarillado sanitario
	Simbologia Ut	tilizada:
	AP: agua pota	ble
	DE: disposicio	n de excretas
	DRL: disposici	ón de residuos líquidos

Dado que las conexiones vistas en esta comunidad son domiciliarias donde el 100% de la población recibe agua potable a través de la red de distribución y un 75% está conectado a la red de alcantarillado podemos considerar a esta población como una "lib". Conexiones domiciliarias con más de un grifo por casa, para el cuál se utiliza una tabla de dotaciones para el nivel de servicio que hemos definido teniendo:

Tabla 35 Dotaciones de agua para los diferentes niveles de servicio

Fuente: (INEN 5, 1997)

DOTACIONES DE AGUA PARA LOS DIFERENTES NIVELES DE SERVICIO

NIVEL DE SERVICIO	CLIMA FRIO (I/had*día)	CLIMA CALIDO (I/had*día)
la	25	30
lb	50	65
lla	60	85
IIb	75	100

La dotación dada por la norma da como resultado un valor de 75 l/hab/día este valor comparado con la dotación calculada de 81.50 y 75.7 l/hab/día con referencia al promedio de los resultados no existe mayor diferencia. Estos valores son los que se utilizarán para la determinación de la dotación futura.

4.3.5 Dotación futura

La proyección del sistema de abastecimiento de agua potable es de 20 años, por lo que es necesario la determinación de la dotación futura que va a tener las comunidades respecto a la dotación actual. Se utiliza la siguiente fórmula:

$$Df = Do * (1 + \frac{d}{100})^t$$

Donde:

Df= Dotación futura

Do= Dotación actual

d= tasa de crecimiento dotacional (Entre 0.5% y 2%)

t= Variación de tiempo entre Df y Do

Dotaciones por comunidad					
Dotación D Dotación futura Df Unidades					
Chaguarcorral	81.5	91.9	l/hab/día		
Patapamba 75.7 85.3 I/hab/día					

4.4 Calidad del agua potable

4.4.1 Interpretación de los análisis

Se tomaron seis muestras representativas a lo largo de todo el sistema de agua potable, las más importantes fueron las captaciones, el agua que llega al filtro y a la salida del filtro. El informe con los resultados se presenta en el Anexo D.1 y Anexo D.2.

4.4.1.1 Resultados Patapamba

Análisis de resultados de las captaciones:

Se llevaron a cabo estudios exhaustivos en varias fuentes de agua para evaluar diversos aspectos como el color, la conductividad, los sólidos disueltos, el pH y otros parámetros importantes. La mayoría de estos parámetros se encontraron dentro de los límites aceptables para el agua potable, pero se observaron problemas en algunas captaciones con niveles altos de hierro y coliformes totales, lo cual sugiere posibles riesgos para la salud pública debido a la contaminación microbiológica y presencia de metales.

Análisis de resultados de la entrada del filtro de arena y grava:

- El agua que entra al filtro presenta un valor de turbiedad menor al límite que establece la norma (5 N.T.U.).
- El color tiene un valor menor a 15 U.C. que es el límite máximo permisible.
- La conductividad y los sólidos disueltos totales se encuentran en el rango establecido por la normativa por lo que no habría inconveniente.
- El valor de pH y de dureza total no sobrepasa los rangos permisibles, se puede considerar que el agua se encuentra un poco mineralizada.
- Los valores de hierro total en la entrada del filtro son menores que 0,3 mg/l que recomienda la normativa ecuatoriana.
- Los valores de cloruros y sulfatos se encuentran por debajo del límite máximo permisible.
- El valor de aerobios mesófilos cumple con la recomendación de la OMS de ser 0
 U.F.C./ml.
- Los coliformes totales están sobre el límite permisible, en este caso tienen un valor de 4 N.M.P./100ml lo cual podría ser perjudicial para la salud.

Análisis de resultados de la salida del filtro de arena y grava:

 La turbiedad del agua que sale del filtro presenta valores menores a 1, es decir, menor al límite que establece la norma.

- El color se encuentra en el límite máximo permisible, pero es probable que aumente o disminuya dependiendo la época del año.
- La conductividad y los sólidos disueltos totales se encuentran en el rango establecido por la normativa por lo que no habría inconveniente.
- El valor de pH y de dureza total no sobrepasa los rangos permisibles.
- A pesar de que en las captaciones los valores de hierro fueron elevados, el agua que sale del filtro tiene valores muy bajos de hierro comparado con la normativa ecuatoriana.
- Los valores de cloruros y sulfatos se encuentran por debajo del límite máximo permisible.
- El valor de aerobios mesófilos cumple con la recomendación de la OMS de ser 0
 U.F.C./ml.
- Los coliformes totales y fecales se encuentran por debajo de los <2* N.M.P./100ml.
- El valor de cloro libre residual se encuentra en el límite superior permisible, sin embargo, la OMS recomienda que se encuentre en los valores de 0,3 a 0,5 mg/l.

4.4.1.2 Resultados Chaguarcorral-Patapamba Alto:

Análisis de resultados de las captaciones:

- Los valores de color real de la captación 2 se encuentran por encima del límite máximo (15 U.C.), esto puede ser a causa de la ubicación de la captación y factores ambientales.
- Los valores de turbiedad de la captación 1 sobrepasan el límite máximo (5 NTU).
- Los valores de conductividad de todas las captaciones se encuentran en el rango recomendado para agua potable según la OMS.
- Los valores de sólidos disueltos totales de todas las captaciones son inferiores al límite máximo permisible por lo que no existe inconveniente.
- Los valores de pH se encuentran en el rango recomendable establecido por la normativa.
- Los valores referentes a la concentración de hierro son aceptables para el consumo humano.
- La dureza del agua no resulta ser ningún problema, ya que presenta valores menores a 75 mg/lt, por lo cual se la considera blanda.
- Las concentraciones de sulfatos se encuentran por debajo del límite máximo permisible, por lo que no existe inconveniente.

- La captación 1 es la única en sobrepasar los niveles máximos permisibles de manganeso según la normativa ecuatoriana que es de 0.1 mg/l, el resultado obtenido es de 0.213 mg/l.
- Los valores del parámetro aerobios mesófilos se encuentran por debajo del límite máximo permisible para todas las captaciones.
- En las captaciones se observa una concentración de coliformes totales y coliformes fecales mayor al límite máximo permisible.

Análisis de resultados de la entrada del filtro de arena y grava:

- El agua que entra al filtro presenta un valor de turbiedad menor al límite que establece la norma (5 N.T.U.).
- El color tiene un valor menor a 15 U.C. que es el límite máximo permisible.
- La conductividad y los sólidos disueltos totales se encuentran en el rango establecido por la normativa por lo que no habría inconveniente.
- El valor de pH y de dureza total no sobrepasa los rangos permisibles, se puede considerar que el agua se encuentra un poco mineralizada.
- Los valores de hierro total en la entrada del filtro son menores que 0,3 mg/l que recomienda la normativa ecuatoriana.
- Los valores de cloruros y sulfatos se encuentran por debajo del límite máximo permisible.
- El valor de aerobios mesófilos no cumple con la recomendación de la OMS de ser 0
 U.F.C./ml.
- Los coliformes totales están sobre el límite permisible, en este caso tienen un valor de 17 N.M.P./100ml lo cual podría ser perjudicial para la salud.
- Los coliformes termorresistentes se encuentran sobre el límite máximo permisible.

Análisis de resultados de la salida del filtro de arena y grava:

- La turbiedad del agua que sale del filtro presenta valores menores al límite que establece la norma.
- El color se encuentra por debajo del límite máximo permisible.
- La conductividad y los sólidos disueltos totales se encuentran en el rango establecido por la normativa por lo que no habría inconveniente.
- El valor de pH y de dureza total no sobrepasa los rangos permisibles.
- El agua que sale del filtro tiene valores por debajo del límite máximo de hierro comparado con la normativa ecuatoriana.

- Los valores de cloruros y sulfatos se encuentran por debajo del límite máximo permisible.
- El valor de aerobios mesófilos cumple con la recomendación de la OMS de ser 0
 U.F.C./ml.
- Los coliformes totales y termorresistentes se encuentran por debajo de los <2*
 N.M.P./100ml.
- El valor de cloro libre residual se encuentra dentro del rango permisible.

4.4.1.3 Agua de un predio domiciliario:

Se realizó una prueba rápido de concentración de cloro en una de las casas de la comunidad y se obtuvo el siguiente resultado:

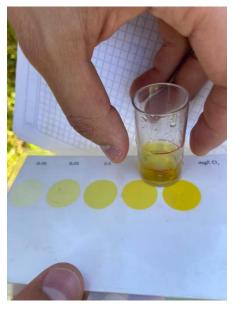


Figura 75 Concentración de cloro, prueba rápida

Con la prueba rápida de cloro se observa que la concentración de cloro se encuentra entre 1,5 mg/l y 2mg/l. Lo cual se encuentra por encima del límite máximo permisible.

4.4.2 Cuadro resumen interpretación de resultados del análisis de laboratorio

Se presenta un cuadro resumen del análisis físico y químico realizado en laboratorio de la muestra de salida del filtro de cada comunidad. La interpretación de resultados se lo realiza comparando con la normativa ecuatoriana y las guías de calidad del agua de la OMS:

Tabla 36 Comparación de resultados características Físico – Químicas

Muestra	Patapamba	Mapacocha (Chaguarcorral Patapamba Alto)
Color	Cumple	Cumple
Turbiedad	Cumple	Cumple
Conductividad	Cumple	Cumple
Sólidos Disueltos	Cumple	Cumple
pН	Cumple	Cumple
Dureza total (CaCO3)	Cumple	Cumple
Cloro libre residual	No Cumple	Cumple
Aerobios mesófilos	Cumple	Cumple
Coliformes totales	Cumple	Cumple
Coliformes termorresistentes	Cumple	Cumple

4.5 Proyección poblacional

Según la encuesta sanitaria, se pudo obtener un promedio de 4 personas por cada domicilio. En la comunidad Patapamba existen 35 domicilios y en la comunidad Chaguarcorral existen 31 domicilios. La población de las comunidades es la siguiente:

Tabla 37 Población actual de las comunidades

Comunidad	Población actual Año 2022 (habitantes)
Patapamba	140
Chaguarcorral	124
Total	264

Sin embargo, debido a que la planta de tratamiento (PTAP Baja) abastece a ambas comunidades se debe realizar una estimación de usuarios por planta, el cual quedaría de la siguiente manera:

Tabla 38	Población	actual	nor nlanta	da	tratamiento	
i avia so	PUDIACION	actuai	DUI DIAIILA	ue	ualannenio	

Planta de	Población	
tratamiento	(habitantes)	
PTAP alta	164	
PTAP baja	100	
Total	264	

Esta población no tiene el carácter de permanente. Alrededor del 30% se desplazan diariamente hacia la ciudad de Cuenca por motivos de trabajo, estudio y comercio de sus productos del huerto familiar.

A efectos de estimar la población futura, se ha considerado en primer lugar el crecimiento de la zona rural registrado en el INEC para las parroquias rurales de Cuenca de la zona sur de la ciudad de comparten similares características (Turi, Tarqui, El Valle):

Tabla 39 Tasa de crecimiento poblacional rural (INEC)

Tasas de crecimiento rural			
Nombre de parroquia	Tasa de crecimiento anual 1990-2001	Tasa de crecimiento anual 2001-2010	
Tarqui	1.07%	1.82%	
Turi	1.58%	3.25%	
El Valle	1.87%	2.92%	

Por otro lado, se dispone de datos históricos poblacionales de la comunidad de Chaguarcorral, correspondiente a los años 2000, 2010 y 2022. Con esta información se obtiene la tasa de crecimiento anual mediante la fórmula:

$$tasa\ de\ crecimiento\ anual\ promedio = (\frac{Población\ presente}{Población\ inicial})^{1/n} - 1$$

Resultados:

Comunidad Chaguarcorral		
Tasa de crecimiento anual año 2000 – 2010	0.71 %	
Tasa de crecimiento anual año 2010 – 2022	1.43%	

En base a estos dos registros, se estima la población para el final del periodo de diseño 20 años para cada comunidad, utilizando como valor inicial el registrado en la encuesta sanitaria.

4.5.1 Comunidad de Patapamba

Tabla 41 Resultados proyección poblacional Patapamba

Año	Proyección	Proyección	Proyección	Proyección	Promedio
	con tasa	con tasa	con tasa	con tasa	proyección
	crecimiento	crecimiento	crecimiento	crecimiento	poblacional
	Tarqui	Turi	Valle	Chaguarcorral	
2022	140	140	140	140	140
2027	155	165	161	155	159
2032	170	194	186	172	181
2037	185	227	215	192	205
2042	202	266	248	212	232

Figura 76 Proyección Comunidad Patapamba

4.5.2 Comunidad Chaguarcorral

Para el caso de esta comunidad, ya se dispone de datos de los años 2000, 2010 y 2022, y se procede a estimar la población mediante los métodos de estimación poblacional como: Aritmético, geométrico y parabólico. Adicional se utilizó la tasa de crecimiento calculada anteriormente. En la tabla 45 se presentan los resultados:

	Resultados número de habitantes		
Año	Método Aritmético	Método Geométrico	Método Parabólico
2022	124	124	124
2027	133	131	138
2032	142	139	154
2037	151	147	172
2042	161	156	194

Tabla 42 Resultados proyección poblacional Chaguarcorral

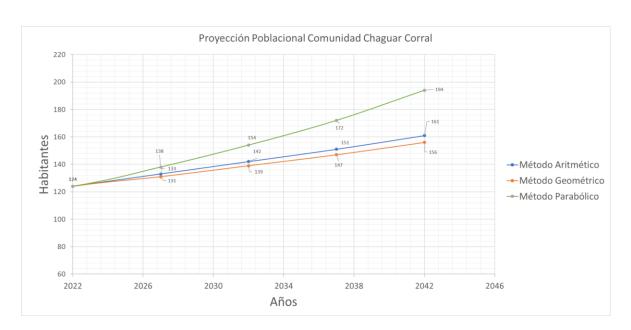


Figura 77 Resultado proyección comunidad Chaguarcorral.

Los resultados mostrados anteriormente son las proyecciones de cada comunidad, pero para el cálculo del diseño de las plantas de tratamiento es necesario realizar la proyección del

número de usuarios por planta, para lo cual se utilizó el porcentaje de usuarios pertenecientes a cada planta de tratamiento y las proyecciones, los resultados son:

Tabla 43 Resultados proyección poblacional por PTAP

Planta de tratamiento	Proyección Poblacional (Año 2042) (habitantes)
PTAP alta	260
PTAP baja	166
Total	426

Los datos de la Tabla 46 son los que se utilizará para el diseño de mejoras.

4.6 Evaluación de la red

4.6.1 Presiones en la red correspondiente a Patapamba

Se indica que la presión en una red de distribución de agua debe ser máximo de 50 m.c.a. y 70 m.c.a. para presión dinámica y estática respectivamente. A demás se indica que en las zonas más complejas de la red la presión puede llegar a un mínimo de 10 m.c.a.

En el Anexo E.1 se presentan cada uno de los nodos de la red de abastecimiento con su correspondiente presión. Del análisis del Anexo E.1 se obtuvo que la mayoría de los nodos tienen una presión mayor a 10 m.c.a., por lo que las presiones cumplen con lo mínimo establecido en la normativa, pero para el valor máximo de presión es superior a lo indicado en la normativa, estos puntos están ubicados en los nodos más lejanos de la red.

En la Tabla 47 se presentan los nodos en los cuales se identificaron problemas de presión.

Tabla 44 Nodos con valores de presión fuera de los recomendados – Patapamba

	NODO	Presiones en el nudo (m.c.a)
	n1	5.06
	n2	9.02
Red 1	n10	52.80
	n11	60.79
ixeu i	n12	70.78
	n13	70.78
	n14	71.77
	n19	52.82
Red 2	n5	6.86
	n6	6.86
	n7	7.85

n46	56.11
n47	58.10
n48	59.10
n49	66.07
n50	66.07
n51	58.11
n52	59.10
n53	59.09
n54	57.09
n55	58.09
n56	59.09
n57	59.09
n58	59.09
n59	59.09
n60	58.09
n61	58.08
n62	67.11
n63	74.10
n64	82.10
n65	92.10
n66	93.09
n67	94.08

4.6.2 Velocidades sobre la red correspondiente a Patapamba

Se recomienda una velocidad de auto limpieza que se encuentre en un rango entre 0.6 a 0.9 m/s, la velocidad máxima recomendada para que la red trabaje a condiciones normales es de 1.5 m/s. Por lo tanto, el rango recomendable de velocidades en la red de distribución es de 0.6 a 1.5 m/s.

Tabla 45 Tramos con velocidades bajas – Patapamba

TRAMOS RED 1			
NODO NODO LONGITUD		Velocidades en el tramo (m/s)	
Tanque	n1	43.52	0.16
n1	n2	38.18	0.16
n2	n3	66.35	0.16
n3	n4	93.63	0.12
n4	n5	8.47	0.07
n4	n6	92.29	0.08
n6	n7	7.18	0.07
n6	n8	97.62	0.04
n8	n9	108.32	0.04
n9	n10	119.32	0.04

n10	n11	73.51	0.04
n11	n12	56.32	0.04
n12	n13	37.32	0.04
n13	n14	26.52	0.04
n3	n15	146.00	0.11
n15	n16	54.62	0.08
n16	n17	61.62	0.07
n17	n18	42.65	0.07
n18	n19	4.34	0.02
n16	n20	63.21	0.06
n20	n21	135.24	0.06
n21	n22	34.89	0.07
n21	n23	64.52	0.05
n23	n24	23.70	0.07
n23	n25	126.32	0.03
n25	n26	1.36	0.03
n26	n27	26.66	0.07
n26	n28	65.92	0.07
n15	n30	46.36	0.07
n30	n31	63.27	0.07
n31	n32	26.20	0.07
n15	n29	75.36	0.07

TRAMOS RED 2			
NODO inicial	NODO final	LONGITUD (m)	Velocidades en el tramo (m/s)
n1	n2	64.63	0.36
n2	n3	36.13	0.06
n2	n4	14.59	0.06
n4	n5	8.91	0.04
n5	n6	61.62	0.04
n6	n7	60.21	0.04
n7	n8	65.12	0.04
n8	n9	87.22	0.04
n8	n10	5.94	0.06
n10	n11	66.45	0.03
n10	n12	4.11	0.06
n12	n13	74.62	0.01
n13	n14	34.52	0.01
n1	n15	7.29	0.06
n15	n16	31.51	0.30
n16	n17	81.62	0.30
n16	n18	11.59	0.06
n18	n19	63.51	0.29
n18	n20	44.78	0.06
n20	n21	9.83	0.27
n21	n22	28.62	0.03
n21	n23	27.39	0.06
n23	n24	76.53	0.01
n20	n25	33.53	0.06

n25	n26	56.35	0.24
n25	n27	8.53	0.06
n27	n28	23.61	0.23
n27	n29	8.98	0.06
n29	n30	10.56	0.22
n30	n31	6.17	0.12
n30	n32	5.00	0.06
n29	n33	4.15	0.06
n33	n34	19.92	0.19
n33	n35	7.23	0.06
n35	n36	22.65	0.17
n35	n37	20.91	0.06
n37	n38	1.51	0.06
n38	n39	5.80	0.06
n37	n40	6.69	0.06
n40	n41	34.26	0.14
n40	n42	73.52	0.06
n42	n43	56.21	0.13
n42	n44	31.75	0.01
n44	n45	78.51	0.11
n44	n46	25.64	0.06
n46	n47	81.88	0.10
n47	n48	10.82	0.12
n47	n49	7.26	0.06
n49	n50	92.54	0.06
n46	n51	3.55	0.01
n51	n52	22.40	0.07
n52	n53	68.60	0.06
n52	n54	25.02	0.06
n54	n55	41.52	0.04
n54	n56	3.77	0.06
n56	n57	42.65	0.03
n57	n58	35.20	0.03
n57	n59	6.71	0.06
n59	n60	31.90	0.01
n60	n61	75.81	0.01
n51	n62	31.61	0.06
n62	n63	68.93	0.01
n63	n64	48.66	0.01
n64	n65	179.99	0.01
n65	n66	54.98	0.01
n66	n67	43.77	0.06

Las velocidades en las redes secundarias 1, 2, 3 y 4 se encuentran por debajo de la velocidad recomendada.

4.6.3 Presiones sobre la red correspondiente a Chaguarcorral

Se indica que la presión en una red de distribución de agua debe ser máximo de 50 m.c.a. y 70 m.c.a. para presión dinámica y estática respectivamente. A demás se indica que en las zonas más complejas de la red la presión puede llegar a un mínimo de 10 m.c.a.

En el Anexo E.2 se presentan cada uno de los nodos de la red de abastecimiento con su correspondiente presión. Del análisis del Anexo E.2 se obtuvo que los nodos que tienen una presión menor a 10 m.c.a. y para el valor máximo de presión hay varios puntos donde son superiores a lo indicado en la normativa, estos puntos están ubicados en los nodos más lejanos de la red. En la Tabla 40 se presentan los nodos en los cuales se identificaron problemas de presión.

Tabla 46 Nodos con valores de presión fuera de los recomendados – Chaguarcorral

NODO final	en el nodo final (m.c.a)
n1	1.09
n2	53.69
n3	55.39
n4	51.91
n5	65.35
n6	55.88
n7	50.59
n8	62.86
n9	62.85
n10	65.76
n11	66.84
n12	68.73
n13	75.88
n14	75.77
n15	87.76
n16	87.67
n17	101.73
n18	102.66
n19	105.71
n20	108.66
n21	105.71
n22	106.70
n25	55.77
n26	65.72
n27	75.70
n28	79.55
n29	100.67
n30	100.50
n31	120.65
n32	120.50
n33	122.64
n34	122.50
n35	125.64
n36	125.57
n37	125.63
n38	125.59
n39	131.63
n40	131.52
n41	133.62

n42	133.41
n43	52.75
n45	52.71
n48	50.33
n53	54.58
n54	59.26
n55	55.57
n59	53.57
n60	79.20
n61	55.57
n62	65.22
n63	55.57
n64	55.56
n65	79.42
n66	55.56
n67	56.51
n68	55.56
n69	57.56
n70	50.01

4.6.4 Velocidades sobre la red correspondiente a Chaguarcorral

Se recomienda una velocidad de auto limpieza que se encuentre en un rango entre 0.6 a 0.9 m/s, la velocidad máxima recomendada para que la red trabaje a condiciones normales es de 1.5 m/s. Por lo tanto, el rango recomendable de velocidades en la red de distribución es de 0.6 a 1.5 m/s.

En el Anexo E.2 se pueden observar todas las velocidades en toda la red. A continuación, se presenta en la Tabla 41 los tramos que presentan estos problemas de bajas velocidades.

Tabla 47 Tramos con velocidades bajas – Chaguarcorral

TRAMOS RED CHAGUARCORRAL			
NODO inicial	NODO final	LONGITUD (m)	Velocidades en el tramo (m/s)
Tanque	n1	1.52	0.43
1	n2	232.14	0.13
2	n3	41.33	0.28
2	n4	130.98	0.12
4	n5	40.03	0.28
4	n6	65.27	0.10
6	n7	21.01	0.28
6	n8	91.39	0.09
8	n9	26.84	0.09
9	n10	65.94	0.28
9	n11	42.63	0.08
11	n12	7.89	0.28
11	n13	89.90	0.07
13	n14	4.19	0.28

15 n16 6.35 0.28 16 n17 50.08 0.10 17 n18 5.18 0.28 17 n19 102.13 0.06 19 n20 3.52 0.28 19 n21 40.74 0.03 21 n22 10.75 0.03 1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35	13	n15	74.67	0.13
17 n18 5.18 0.28 17 n19 102.13 0.06 19 n20 3.52 0.28 19 n21 40.74 0.03 21 n22 10.75 0.03 21 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37	15	n16	6.35	0.28
17 n18 5.18 0.28 17 n19 102.13 0.06 19 n20 3.52 0.28 19 n21 40.74 0.03 21 n22 10.75 0.03 21 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37	16	n17	50.08	0.10
17 n19 102.13 0.06 19 n20 3.52 0.28 19 n21 40.74 0.03 21 n22 10.75 0.03 1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38	17	n18	5.18	0.28
19 n20 3.52 0.28 19 n21 40.74 0.03 21 n22 10.75 0.03 1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38	17	n19	102.13	
19 n21 40.74 0.03 21 n22 10.75 0.03 1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n41	19			
21 n22 10.75 0.03 1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41	19		40.74	
1 n23 87.79 0.30 23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n34 10.44 0.28 35 n36 4.66 0.28 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40	L			
23 n24 5.40 0.28 23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43				
23 n25 40.34 0.29 25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n38 3.46 0.28 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44				
25 n26 116.37 0.12 26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n38 3.46 0.28 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 45 n46				
26 n27 60.05 0.10 27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 45 n46				
27 n28 10.50 0.28 27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47				
27 n29 96.62 0.09 29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47				
29 n30 12.74 0.28 29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49				
29 n31 110.29 0.08 31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n51				
31 n32 11.07 0.28 31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n51				
31 n33 38.19 0.07 33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52				
33 n34 10.44 0.28 33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53				
33 n35 72.79 0.05 35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n46 10.20 0.28 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54				
35 n36 4.66 0.28 35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n55 34.94 0.09 55 n56				
35 n37 11.72 0.04 37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56				
37 n38 3.46 0.28 37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
37 n39 54.70 0.03 39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
39 n40 8.33 0.28 39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
39 n41 49.19 0.06 41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
41 n42 15.30 0.28 25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
25 n43 31.08 0.17 43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
43 n44 25.36 0.28 43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
43 n45 47.52 0.16 45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
45 n46 10.20 0.28 45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
45 n47 87.32 0.14 47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
47 n48 23.42 0.28 47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
47 n49 3.40 0.13 49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
49 n50 9.77 0.28 49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
49 n51 49.05 0.12 51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01	-		+	
51 n52 15.27 0.28 51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01	L			
51 n53 132.54 0.10 53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
53 n54 23.25 0.28 53 n55 34.94 0.09 55 n56 41.36 0.01				
53 n55 34.94 0.09 55 n56 41.36 0.01				
55 n56 41.36 0.01				
	L			
FC				
	56	n57	43.16	0.01
57 n58 25.84 0.01				
55 n59 5.63 0.08		n59		
59 n60 98.81 0.28		n60		0.28
59 n61 4.57 0.07		n61	+	
61 n62 25.47 0.28	61	n62	25.47	0.28
61 n63 32.27 0.05	61	n63		0.05
63 n64 67.17 0.05	63	n64	67.17	0.05
64 n65 82.30 0.28	64	n65	82.30	0.28
64 n66 7.62 0.04	64	n66	7.62	0.04
66 n67 3.26 0.28	66	n67	3.26	0.28

66	n68	6.93	0.03
68	n69	4.59	0.01
68	n70	39.92	0.28

Las velocidades bajas en la red pueden causar problemas de sedimentación de materia sólida en la tubería y posterior taponamiento de la misma.

4.7 Diagnóstico y Propuestas de mejoras

Para un correcto funcionamiento del sistema es importante que factores como acceso, medidas de seguridad y mantenimiento rutinario de las distintas estructuras sean adecuados con la finalidad de evitar daños que impliquen un costo mayor al preventivo y facilidad de mantenimiento preventivo. Al realizar un inspección inicial se identificaron aspectos a mejorar tales como que las captaciones no cuentan con protección que eviten el acceso de animales o personas no autorizadas, estructuras metálicas con presencia de óxido y elementos como geomembranas colmatadas y rotas por falta de mantenimiento, presencia de animales cerca de las captaciones lo cual representa una posible fuente de contaminación para las estructuras, caminos de acceso no definidos o en estado no óptimo para el acceso, para todos estos problemas que se identificaron se plantearon mejoras para solucionar los mismo, como se muestra en los siguientes puntos.

4.7.1 Captaciones

Patapamba:

Captación 1

Captacion i		
Descripción	Estado actual	Mejoras
Captación de pie de	Dificultad de acceso a la	Construir terrazas y cubrirlas
ladera.	captación.	con ripio para evitar formación
Componentes:	El cerramiento de acceso a la	de lodo.
Cámara de	captación no tiene seguridad	Colocar un candado con un
protección del	(candado o cadena).	cobertor para evitar los efectos
afloramiento,	Existe agua encharcada debido a	de la intemperie.
cámara húmeda,	escorrentía y del afloramiento,	Crear una caída (acequia)
cámara seca.	dificultando las labores de	pequeña para que el agua
	mantenimiento y favoreciendo la	desfogue.
	presencia de insectos	Se pueden reemplazar las tapas
	 La estructura de hormigón 	por unas de forma piramidal
	armado se encuentra en buenas	para evitar la acumulación de
	condiciones.	agua sobre las mismas. *
	 La tapa de la cámara húmeda se 	 Otra opción es limpiar las tapas
	encuentra corroída. La tapa de la	y pintarlas con pintura
	cámara seca se encuentra en	anticorrosiva.
	buen estado.	Cambiar los candados de la
		cámara seca y húmeda.

UCUENCA

- Tanto el candado de la cámara seca como el de la cámara húmeda están rotos.
- El interior de la cámara seca se encuentra en buen estado.
- Los accesorios de la cámara seca se encuentran en buen estado.
- La base de la cámara húmeda se encuentra erosionada y con una fina capa de cobertura vegetal. Las paredes de esta cámara se encuentran en buen estado.
- Realizar limpiezas periódicas de la cámara húmeda para retirar el material sedimentado.
- Se recomienda colocar una canastilla en la tubería de salida para impedir el paso de arena hacia la conducción.

Figura 78 Captación 1 - Patapamba

Captación 2

Ouplacion L		
Descripción	Estado actual	Mejoras
Captación de	• La captación se encuentra	Limpiar la maleza de una franja
afloramiento	ubicada dentro de un terreno	y colocar un dren de 1 metro de
subterráneo.	privado, el acceso a la misma se	ancho
Componentes:	vuelve lodoso cuando llueve.	

Cámara húmeda.

- No existe cerramiento.
- Existe gran cantidad de agua encharcada en el suelo que rodea a la captación, el suelo se vuelve muy lodoso y esto dificulta las labores de inspección y mantenimiento, además promueve la proliferación de mosquitos, zancudos y anfibios.
- La estructura de hormigón armado se encuentra en buenas condiciones.
- La tapa de la cámara húmeda se encuentra oxidada y la pintura de la misma está desprendida.
- No existe cámara seca.
- No hay candado para asegurar la cámara húmeda.
- La pared de la cámara húmeda se encuentra manchada con una coloración café, esto puede deberse a la presencia de hierro o manganeso en el agua.
- Las paredes de la cámara están conformadas sobre una roca a través de la cual aflora el agua hacia el tanque
- Junto a la captación se tiene ganado, por lo que estas actividades podrían contaminar el agua.

- Formar una acequia para que el agua desfogue. Colocar ripio en el suelo que rodea la captación para evitar el empozamiento del agua.
- Se pueden reemplazar las tapas por unas de forma piramidal para evitar la acumulación de agua sobre las mismas.
- Otra opción es limpiar las tapas y pintarlas con pintura anticorrosiva.
- Construir una cámara seca.
- Colocar un candado en la cámara húmeda.
- Controlar que el ganado no afecte a la captación.
- Construir un cerramiento.

UCUENCA

Figura 79 Captación 2 - Patapamba

Captación 3

Descripción Estado actual Mejoras Captación de pie de El acceso a la captación es Solicitar al dueño del terreno el ladera. incómodo, en épocas de lluvia el permiso para limpiar la maleza suelo cubierto de vegetación se de una franja del terreno para Componentes: Afloramiento, vuelve resbaladizo. habilitar un camino de acceso. húmeda. El cerramiento de acceso a la Colocar un candado en la cámara cámara seca. captación está en buen estado. entrada de la captación. No cuenta con candado para Crear una caída (acequia) asegurar la entrada. pequeña para que el agua El agua se encharca en el suelo desfogue. que rodea a la captación, el suelo Se pueden reemplazar las está cubierto de ripio por lo que tapas por unas de forma con la presencia de agua se para piramidal evitar vuelve resbaladizo cuando se acumulación de agua o tierra ingresa para ejecutar obras de sobre las mismas. mantenimiento. Promueve Otra opción es limpiar las tapas la proliferación de periódicamente. mosquitos/zancudos. Reubicar la tubería u orificio de La estructura de hormigón se desagüe estén a una altura encuentra en buen estado. correcta que garantice La tapa de la cámara húmeda y desfogue completo del agua seca está en buen estado, pero la que está acumulada en la tierra de la ladera se acumula cámara seca. sobre ellas; además estas tapas Realizar limpiezas periódicas de la cámara húmeda para no aíslan correctamente

- cámaras, por lo que hay ingreso de insectos y ranas.
- Los candados de la cámara húmeda y seca se encuentran en buen estado, pero la colocación del candado en la cámara seca es incómoda por la ubicación de los aros.
- En el interior de la cámara seca el agua se empoza.
- Los accesorios de la cámara seca y tubería se encuentran cubiertos por una fina capa de tierra.
- La base de la cámara húmeda se encuentra cubierta por tierra y las paredes tienen un color café.

- retirar el material sedimentado y limpiar las paredes de la misma.
- Se recomienda colocar una canastilla en la tubería de salida para impedir el paso de arena hacia la conducción.

Figura 80 Captación 3 - Patapamba

Captación 4

Descripción	Estado actual	Mejoras
Captación de pie de ladera. Componentes:	El acceso a la captación es incómodo, en épocas de lluvia el suelo cubierto de vegetación se vuelve resbaladizo.	

Afloramiento, cámara húmeda, cámara seca.

- El cerramiento de acceso a la captación está en buen estado, pero no tiene puerta de acceso.
- No cuenta con candado para asegurar la entrada.
- El agua se encharca en el suelo que rodea a la captación, el suelo es de ripio por lo que con la presencia de agua se vuelve resbaladizo. Promueve la proliferación de mosquitos/zancudos.
- La estructura de hormigón se encuentra en buen estado, con algunas manchas en la pintura.
- La tapa de la cámara húmeda se encuentra corroída y con poca acumulación de tierra y hojas caídas. La tapa de la cámara seca está en buen estado. Estas tapas no aíslan correctamente las cámaras, por lo que hay ingreso de insectos y sapos.
- Los candados de la cámara húmeda y seca se encuentran en buen estado, la colocación de los mismos en ambas cámaras es incómoda por la ubicación de los aros.
- En el interior de la cámara seca el agua se empoza.
- Los accesorios de la cámara seca y tubería se encuentran en buen estado.
- La base de la cámara húmeda se encuentra cubierta por tierra y las paredes tienen un color café.

- para evitar el ingreso de personas ajenas al mantenimiento de la captación.
- Colocar un tubo de bajo el ripio con una inclinación para el filtrado del agua encharcada.
- Repintar las etapas con pinturas galvánicas para evitar su corrosión.
- Reubicar los aros para colocación de candados mejorando su manejo en el momento de mantenimiento o inspección.
- Mejorar el aislamiento de la cámara seca.
- realizar mantenimiento periódico para retirar el material sobre las tapas y limpiar las paredes.
- Se recomienda colocar una canastilla en la tubería de salida para impedir el paso de arena hacia la conducción.

UCUENCA

Figura 81 Captación 4 - Patapamba

Chaguarcorral:

Captación 1

Descripción Estado actual Mejoras Captación de ladera No tiene cámara de protección del Construcción de cámara de Componentes: afloramiento: Por lo que en esta protección del afloramiento. Afloramiento. parte se acumulan insectos. Reemplazo de húmeda, cámara renacuajos y material de las geomembrana paredes de la ladera y agentes cámara seca Se debe eliminar externos. vegetación alrededor de la La geomembrana (4mx4m) se captación y crear una caída encuentra agujereada para que el agua empozada colmatada desfogue El agua se empoza alrededor de Pintar con pintura la captación, por lo que se anticorrosiva las tapas, promueve la proliferación colocar una estructura para insectos y anfibios. proteger los candados de Las tapas metálicas y candados agentes de la intemperie se encuentran oxidados Las tapas metálicas deben tener una pendiente o de La forma hundida de las tapas no permite la caída del agua, por lo forma piramidal para evitar la acumulación de agua en que al abrir las tapas esta agua acumulada ingresa a la captación. estas tapas no aíslan correctamente las cámaras, por lo

- que hay ingreso de insectos y sapos.
- Las válvulas no tienen el manubrio, por lo que se deben operar con una llave de picos
- Ajustar las tapas con la estructura para evitar la entrada de insectos y sapos
- Colocar el manubrio en las válvulas

Figura 82 Captación 1 – Chaguarcorral - Patapamba

Figura 83 Geomembrana captación 1 - Chaguarcorral - Patapamba

Captación 2

Descripción	Estado actual	Mejoras

Edin Alejandro Bustamante González – Diego Alonso Coronel Menéndez

UCUENCA

Captación de ladera Componentes: Afloramiento, cámara húmeda, cámara seca.

- No tiene cámara de protección del afloramiento: Por lo que en esta parte se acumulan insectos y renacuajos y material de las paredes de la ladera y agentes externos.
- La geomembrana se encuentra agujereada y colmatada
- El agua se empoza alrededor de la captación, por lo que se promueve la proliferación de insectos y anfibios.
- Las tapas metálicas y candados se encuentran oxidados
- La forma hundida de las tapas no permite la caída del agua, por lo que al abrir las tapas esta agua acumulada ingresa a la captación
- Las tapas no aíslan correctamente las cámaras, por lo que hay ingreso de insectos y sapos.

- Construcción de cámara de protección del afloramiento.
- Reemplazo de la geomembrana
- Se debe eliminar la vegetación alrededor de la captación y crear una caída para que el agua empozada desfogue
- Pintar con pintura anticorrosiva las tapas, colocar una estructura para proteger los candados de agentes de la intemperie
- Las tapas metálicas deben tener una pendiente o de forma piramidal para evitar la acumulación de agua en estas
- Ajustar las tapas con la estructura para evitar la entrada de insectos y sapos

Figura 84 Captación 2 - Chaguarcorral - Patapamba

Figura 85 Captación 2 - Chaguarcorral - Patapamba

Figura 86 Cámara húmeda captación 2 - Chaguarcorral - Patapamba

Figura 87 Alrededores captación 2

Plantas de Tratamiento/reservas Patapamba:

Filtro lento de arena

Descripción		Estado actual	Mejoras
	Filtro lento de arena	No hay observaciones	
	cilíndrico.		

Figura 88 Filtro lento de arena PTAP Patapamba

Caseta de cloración

Descripción	Estado actual	Mejoras
Caseta de cloración	 Vertederos de metal oxidados 	Cambiar vertederos metálicos
compuesta de:		por un material no corrosivo o
Tangue 250l		

Clorid L10 Dosificador	dar mantenimiento para evitar la corrosión periódicamente.
Tanque de mezcla	 Colocar una regla que permita conocer el caudal en función de la altura.

Tanque de reserva

Descripción	Estado actual	Mejoras
Tanque de reserva cilíndrico. Cámara seca.	 La ubicación de cámara de válvulas no tiene desagüe por lo que se empoza el agua y permite la proliferación de insectos y ranas. 	desagüe

Chaguarcorral

Filtro vertical

Descripción	Estado actual	Mejoras
Filtro vertical que contiene grava en su interior.	 No tiene tapa Tubería de entrada al filtro doblada No tiene cámara para protección de 	Eliminar pre-filtro vertical (No se considera en la propuesta)
Tubería de entrada y salida.	válvulas.	

Figura 89 Filtro vertical PTAP - Chaguarcorral - Patapamba

Filtro lento de arena

Descripción	Estado actual	Mejoras
 Filtro lento de arena cilíndrico. Válvulas de salida y tubería de salida. Compuesto por 3 compartimiento s con grava para el primero y arena para los siguientes compartimiento s 	 Dificultad de acceso al filtro para limpieza, tapa alejada de la tubería de ingreso, por lo que dificulta la toma de muestras, escalera en mal estado Válvulas externas del filtro y candados no tienen cubierta. 	externa

Caseta de cloración

Descripción	Estado actual	Mejoras
Caseta de cloración compuesta de Tanque 250l Clorid L10 Dosificador Vertedero de mezcla de agua con dosificador.	Vertederos de metal oxidados	 Dar mantenimiento correctivo (lijar y volver a pintar) Colocar una regla calibrada que permita conocer el caudal en función de la altura.

Figura 90 Vertedero de mezcla PTAP - Chaguarcorral - Patapamba

Vertedero repartidor:

Descripción		Е	stado actual		Mejoras
Vertedero	que	•	Vertederos de metal oxidados	•	Cambiar vertederos metálicos
divide el cauda	l para				por un material no corrosivo o
las comunidad	es de				dar mantenimiento para evitar la
Patapamba	У				corrosión periódicamente.
Chaguarcorral	_			•	Colocar el medidor de caudal.

Figura 91 Vertedero repartidor

Figura 92 Vertedero repartidor - Chaguarcorral - Patapamba

Tanques de reserva

Descripción	Estado actual	Mejoras
Tanque de reserva.	No hay observaciones	
Cámara seca		

UCUENCA

Figura 93 Tanque de reserva PTAP Chaguarcorral - Patapamba

Figura 94 Cámara seca - captación 1 - Chaguarcorral - Patapamba

4.7.2 Caudales

Para el dimensionamiento de las mejoras se partió de los datos obtenido mediante las encuestas sanitarias y proyecciones con lo cual se realizaron los siguientes cálculos:

4.7.2.1 Caudal medio Diario (Qmd):

El caudal medio diario se calculó utilizando las dotaciones y las proyecciones poblaciones obtenidas por cada planta de tratamiento con la siguiente fórmula:

$$Qmd = \frac{Dotaci\'{o}n*poblaci\'{o}n*factor fugas}{86400 \ seg}$$

Donde el factor de fugas es del 20% debido al nivel de servicio que cae en la categoría "llb". Los resultados para cada planta de tratamiento son:

Planta de tratamiento	Caudal medio diario (qmd) (l/min)			
PTAP alta	18.40			
PTAP baja	10.88			

Tabla 48 Resultados caudal medio diario por PTAP

4.7.2.2 Caudal Máximo Diario (QMD):

Para el caudal máximo diario (QMD) se utiliza la siguiente fórmula:

$$QMD = qmd * KMD$$

Donde KMD es el factor de mayoración máximo diario (KMD), para todos los niveles de servicio es 1,25.

Los resultados para cada planta de tratamiento son:

Planta de	Caudal máximo diario
tratamiento	(QMD) (I/min)
PTAP alta	23

13.6

Tabla 49 Resultados caudal máximo diario por PTAP

4.7.2.3 Caudal Máximo Horario (QMH):

PTAP baja

Se calcula utilizando la siguiente fórmula:

$$QMH = qmd * KMH$$

Donde KMH es el factor de mayoración. La Norma CO 10.7 – 602 indica que para poblaciones rurales el factor de mayoración es de 3.

Los resultados para cada planta de tratamiento son:

Tabla 50 Resultados caudal máximo horario por PTAP

Planta de tratamiento	Caudal máximo horario (QMH) (I/min)
PTAP alta	55.20
PTAP baja	32.65

4.7.2.4 Caudal de diseño

Según la Norma CO 10.7 -602 el caudal de diseño para las plantas de tratamiento será el caudal máximo diario + 10%.

Los resultados para cada planta de tratamiento son:

Tabla 51 Resultados caudal de diseño por PTAP

Planta de tratamiento	Caudal de diseño (l/min)
PTAP alta	25.30
PTAP baja	14.96

4.7.3 Tanques de reserva de agua

No se procedió a realizar una curva de consumos adecuada, debido a la falta de registro histórico de medidores, sin embargo, según (CPE INEN5, 1992) se puede utilizar el 30% del volumen de consumo en un día considerando la demanda media diaria al final del periodo de diseño, mediante los datos del caudal medio diario presentado en la tabla 55.

Tabla 52 Resultados volumen de tanques de reserva por PTAP

Planta de tratamiento	Volumen en un día (m3)	Volumen de almacenamiento (30%)
		(m3)
PTAP alta	26.50	7.95
PTAP baja	15.67	4.70

El volumen más alto es de 7.95 m3, sin embargo, la normativa (CPE INEN5, 1992) nos indica que el volumen mínimo de un tanque de almacenamiento debería ser de 10 m3, por lo que nos basaremos en el diseño con este volumen.

PRE-DIMENSIONAMIENTO

Para realizar un pre-dimensionamiento de los diferentes componentes que tiene un tanque de reserva se tomó en consideración las recomendaciones según (INEN 5, 1997) y (Moreta, 2022). Lo primero que se calculó es el diámetro y la altura del tanque con la siguiente fórmula:

$$V = \pi * r^2 * h$$

Donde:

V= Volumen

r= Radio

h= altura

Consideraciones:

Tabla 53 Límites y consideraciones – Tanques de reserva

	Límites	Consideraciones
Relación: D/h	Mayor a 1.33m	Para la altura total del tanque se debe
		considerar 0.25m como factor de
		seguridad y 0.35m por viga de coronación.
Espesor de las	Límite superior: H/10	
paredes	Límite inferior: H/12	
Espesor de la	Límite superior: D/80	
cúpula	Límite inferior: D/100	
Flecha de la	f= D/6	
cúpula		
Espesor de la	H/25	Como mínimo se debe usar 20cm y
base		considerar 7cm de recubrimiento

Resultados:

	Resultado	Asumimos (m)
Relación: D/h	2.12	H= 2
Espesor de las paredes	0.18 m	ep= 0.2
Espesor de la cúpula	0.03 m	ec= 0.04
Flecha de la cúpula	0.5 m	f= 0.5
Espesor de la base	0.08 m	eb= 0.3 m

Tabla 54 Resultados predimensionamiento - Tanque de reserva

Las características del tanque de reserva se pueden observar en el plano que se encuentra en el Anexo C.

Las dimensiones del tanque y el refuerzo estructural se basaron en el Anexo F el cual indica la cantidad de material se debe usar en cada parte del tanque de reserva según (ETAPA EP, 2015).

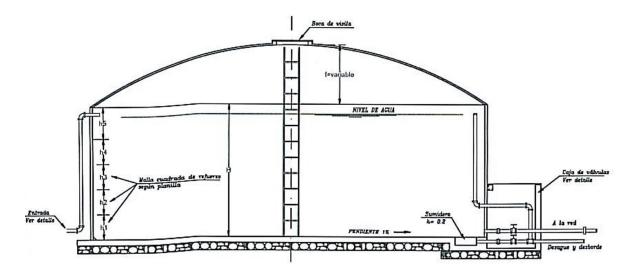


Figura 95 Esquema tanque de reserva

El diseño de este tanque de reserva es válido para implementarlo en la planta de tratamiento que abastece a las dos comunidades (PTAP alta), en este caso se puede realizar la construcción de un tanque para cada comunidad.

4.7.4 Cámara de lavado

Una observación que se realizó en ambas comunidades es la necesidad de una cámara de lavado para el material granular de los filtros lentos ya que ellos realizan esta actividad en una parcela pequeña la cual no permite un adecuado lavado del material debido a los restos de materia orgánica y suciedad del suelo.

Para las dos PTAP se diseñó una cámara de lavado, la cual permite alojar y limpiar el material que se retira de los filtros lentos de arena al momento de su mantenimiento. Esta está

diseñada en hormigón armado con un volumen para permitir el almacenamiento y lavado de los distintos estratos del filtro lento. Esta cámara utiliza el agua proveniente de la captación que ingresa a la misma mediante un bypass ubicado antes de la entrada a los filtros lentos de arena. En el Anexo C se presentan los planos del detalle estructural, materiales y dimensiones de la misma.

4.7.5 Trazado de nuevas acometidas

Debido a factores como la ineficiente cobertura de otros sistemas que funcionan en la zona y al crecimiento de la población en las comunidades que implica construcciones nuevas y por lo tanto la necesidad de contar con nuevas acometidas para poder conectarse a la red de abastecimiento de agua, se identificaron todos los puntos de las acometidas necesarias en las comunidades, por lo que la red se amplió para atenderlos..

4.7.6 Diseño de filtros lentos de arena

Las dos comunidades se caracterizan por tener un solo filtro lento en las plantas de tratamiento, cuando por normativa deberían existir como mínimo dos filtros lentos para que en el proceso de limpieza y mantenimiento no se vea comprometida o interrumpida el flujo de agua hacia las comunidades.

Para el cálculo del dimensionamiento se utiliza los caudales de diseño de cada comunidad y la velocidad de que debe tener el flujo a filtrar según normativa.

Comunidad Patapamba alta - Chaguarcorral

Pre-dimensionamiento

Tabla 55 Pre-dimensionamiento – Filtro lento de arena

Variable	Dato asumido	Observaciones
Caudal a filtrar	0.42 l/s	
Velocidad de filtración	0.2 m/h	Se selecciona el límite superior según normativa
Área superficial	7.59 m2	
Diámetro	3 m	

Para el diseño del filtro lento se utilizaron los documentos de NTE INEN 2149 y planos referenciales de ETAPA EP.

La construcción de los filtros lentos se realiza con material de ferrocemento. La armadura de refuerzo se basa en malla de refuerzo y acero del armazón. La función principal de las mallas es el de sostener el mortero y absorber los esfuerzos de tensión, generalmente se usan alambres delgados, entretejidos o soldados. Para los filtros lentos se utilizan mallas de

alambre hexagonal por su precio y fácil manejo, su diámetro está entre 0.5 y 5 mm. (Sanitaria, 2014). Los refuerzos se seleccionan de acuerdo al tipo de estructura que se va a construir, los cuales se indican en la siguiente tabla:

Clases de mallas, diámetros y tipos de estructuras que son empleadas como refuerzos		
Tipo de malla	Diámetro (mm)	Tipos de estructuras
Mallas de alambre	0,5 -1,0	Reservorios circulares de
hexagonal (malla de gallinero)		pequeño y gran volumen, losas
Malla cuadrada electro-	4,2 – 9,5	Reservorios circulares de
soldada		pequeño y gran volumen,
		cisternas, losas, tubos para
		alcantarillado
Malla cuadrada tejida	1,5 – 2,2	Reservorios circulares de
		pequeño volumen (5 a 25 m3)
Malla cuadrada soldada	0,8-2,8	Tanques circulares de
		pequeño volumen (5 a 25 m3)
Malla de metal expandido	-	Reservorios de pequeño
		volumen. Letrinas, paredes
		divisorias de ambientes.

En la siguiente imagen se puede observar los tipos de mallas que se pueden utilizar:

	Tipos	Norma	Descripción
Hexagonal de alambre (malla de gallinero)	T		Fácil de manejar, se forma por el trenzado de alambres galvanizados, se fabrica con alambre estirado en frío.
Malla electro- soldada		ASTM A185	Está formada por alambres rectilíneos de acero, dispuestos de manera que forman cuadrados o rectángulo, soldados entre sí, en los puntos de contacto.
Malla cuadrada tejida		ASTM E2016-99	Es una malla tejida, en la que los alambres están simplemente entrelazados, formando una malla cuadrada o rectangular, los alambres no están perfectamente derechos y existe un cierto grado de ondulación, según pruebas estas mallas se comportan tan bien o mejor que la malla hexagonal o cuadrada soldada.
Malla de metal expandido		ASTM C 847	Se forma cortando una hoja delgada de metal desplegado para hacer aberturas en forma de diamante. La desventaja de este material es que tiende a abrirse debido a la acción de "tijera" de la malla en forma de diamante; obviamente existe un límite en cuanto al tamaño y peso de este material para evitar la acción de "tijera".

Figura 96 Tipos de mallas para refuerzo

El tamaño de las varillas de acero para hacer el armazón de la estructura debe ser de diámetros de 1/4" y 3/4". Se deben distribuir uniformemente con separaciones de hasta 30 cm. El objetivo del armazón en este tipo de estructuras es el de absorber esfuerzos producidos por el empuje hidrostático del agua almacenado. (Picón, 2014)

Sistema de recolección de agua filtrada

Según (GADMR, 2015) los filtros lentos necesitan un sistema de recolección que se coloca al fondo del filtro y este está compuesto por tuberías y accesorios, generalmente de PVC. Es necesario determinar la cantidad y dimensiones de las tuberías, así como también el agujero por el cual ingresará el agua. Utilizando los datos de la tabla anterior se procede a calcular:

$$N$$
úmero de orificios totales =
$$\frac{Caudal\ a\ filtrar}{Caudal\ de\ un\ orificio}$$

$$\text{\'A}rea~tuber\'ia = \frac{Caudal~de~un~orificio}{Velocidad}$$

Empleando las ecuaciones previas y a través de un proceso iterativo, se calculó las dimensiones del sistema de recolección de manera que cumpliera con los requisitos establecidos por la normativa correspondiente. En la tabla 50 se presentan los resultados.

Tabla 56 Dimensionamiento – Sistemas de recolección

Variable	Dato asumido	Observaciones
Diámetro de cada orificio	6 mm	Primer dato asumido
Velocidad en cada orificio	0.14 m/s	Según normativa
Caudal de ingreso por orificio	0.0036 l/s	
Número de orificios	112	
	Tubería lateral	
Diámetro	32 mm	
Presión	1 Mpa	
Espesor	1.6 mm	
Velocidad	0.133 m/s	Debe ser menor a 0.3 m/s
	Tubería central	
Diámetro	50 mm	
Presión	1 Mpa	
Espesor	2 mm	
Velocidad	0.24 m/s	

En el Anexo C se puede visualizar de manera detallada del sistema de recolección.

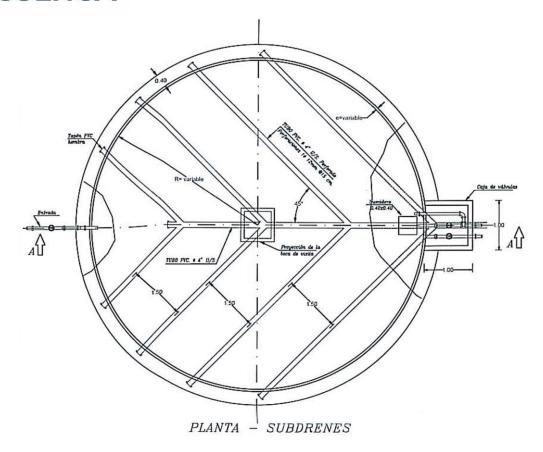


Figura 97 Vista en planta de los subdrenes

Comunidad Patapamba planta baja

Pre-dimensionamiento

Tabla 57 Pre-dimensionamiento – Filtro lento de arena

Variable	Dato asumido	Observaciones
Caudal a filtrar	0.24 l/s	
Velocidad de filtración	0.2 m/h	Se selecciona el límite superior según normativa
Área superficial	4.52 m2	
Diámetro	2.4 m	

Sistema de recolección de agua filtrada

Tabla 58 Dimensionamiento – Sistemas de recolección

Variable	Dato asumido	Observaciones
Diámetro de cada orificio	6 mm	Primer dato asumido
Velocidad en cada orificio	0.14 m/s	Según normativa
Caudal de ingreso por orficio	0.000004 l/s	
Número de orificios	68	
	Tubería lateral	
Diámetro	32 mm	
Presión	1 Mpa	

Espesor	1.6 mm	
Velocidad	0.076 m/s	Debe ser menor a 0.3 m/s
	Tubería central	
Diámetro	50 mm	
Presión	1 Mpa	
Espesor	2 mm	
Velocidad	0.14 m/s	

En el Anexo C se puede visualizar de manera detallada del sistema de recolección.

4.7.7 Diseño de cerramientos para las estructuras

Debido a que la mayoría de componentes del sistema de agua no contaba con cerramiento para protegerlo de agentes externos se diseñó un cerramiento tipo para cercar y proteger los distintos elementos. Este diseño se puede observar en el Anexo C.

4.7.8 Implementación de válvulas reductoras de presión

Se realizó el análisis de la implementación de válvulas reductoras de presión en ambas comunidades.

Red	Ubicación de las válvulas
Red Chaguarcorral	n1 – n2
_	n16 – n17
	n23 – n25
	n27 – n29
Red 2 - Patanamha	n44 – n46

Tabla 59 Ubicación de válvulas en la red

La selección de la válvula se realizó tomando en cuenta el manual de la válvula reductora de presión marca "BERMAD" modelo 720, utilizando los diagramas de presión aguas arriba y aguas abajo para evitar la "zona de daños por cavitación" como se describe en el capítulo 2.4.2 "Válvulas en los sistemas de agua potable".

Los resultados de presiones para la red de distribución de Patapamba son las siguientes:

	NODO	Presiones en el nudo (m.c.a)
	n46	12
	n47	14
Red 2	n48	15
Reu Z	n49	22
	n50	22
	n51	14

Tabla 60 Presiones en los nodos

n52	15
n53	15
n54	13
n55	14
n56	15
n57	15
n58	15
n59	15
n60	14
n61	14
n62	23
n63	30
n64	38
n65	48
n66	49
n67	50

Cuadro resumen de las presiones en los nodos:

Tabla 61 Presiones en los nodos

Red	Número de nodos fuera del rango permitido sin válvula reductora	Número de nodos fuera del rango permitido sin válvula reductora	
Red 2 – Patapamba	25	3	
Red – Chaguarcorral	58	3	

4.7.9 Estructuras de medición de caudal

Para tener mayor conocimiento del sistema de abastecimiento de agua es necesario conocer el volumen de agua que se mueve a través de esta, por lo que se diseñaron estructuras con vertederos para determinar cuál es el caudal en ese punto midiendo con una regleta que relaciona la altura del agua con su caudal. Los diseños respectivos se pueden observar en el Anexo C.

4.8 Presupuestos

Para el cálculo de los presupuestos se utilizó el programa InterPro y la lista del índice de precios de la construcción a nivel nacional de noviembre 2023 que se encuentra en la INEC (Instituto nacional de estadística y censos). Los resultados son los siguientes:

Tabla 62 Resumen presupuesto Patapamba

Cuadro resumen de presupuesto - Patapamba			
Tipo de estructura Costo			
Cámara de lavado	\$740.38		
Filtro lento de arena	\$2,744.86		
Tanque de reserva	\$3,279.05		
Total	\$6,764.29		

Tabla 63 Resumen presupuesto Chaguarcorral - Patapamba alto

Cuadro resumen de presupuesto - Chaguarcorral - Patapamba alto				
Tipo de estructura Costo				
Cámara de lavado	\$740.38			
Filtro lento de arena	\$3,314.67			
Tanque de reserva	\$3,279.05			
Cerramiento	\$2,534.57			
Total	\$9,868.67			

Tabla 64 Presupuesto Cámara de lavado

Construcción cámara de lavado

Oferente: InterPro

Ubicación: Azuay - Ecuador Fecha: 04/07/2023

PRESUPUESTO						
Ítem	Código	Descripción	Unidad	Cantidad	P.Unitario	P.Total
1		PISO				16.96
1.1		Excavación				16.96
1.1.1	500008	Excavación a máquina con retroexcavadora	m3	4.00	4.24	16.96
2		Replantillo				89.79
2.1	500018	Replantillo de piedra e = 15 cm	m2	9.20	9.76	89.79
3		LOSA				284.88
3.1	5AC056	Encofrado de madera para losas (2 usos)	m2	8.80	12.59	110.79
3.2	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.80	121.69	97.35
3.3	564006	Malla electrosoldada R-257, suministro e instalación	m2	8.80	8.72	76.74
4		PAREDES				256.98
4.1	5AC053	Encofrado de madera recto (2 usos)	m2	8.91	11.27	100.42
4.2	564006	Malla electrosoldada R-257, suministro e instalación	m2	8.91	8.72	77.70
4.3	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.65	121.69	78.86
5		ACCESORIOS				12.44
5.1	5A3013	Tubería pvc para desague E/C d= 50mm, suministro e instalación	m	0.60	2.93	1.76
5.2	5A8068	Sum. + Instal. Válvula esférica	u	2.00	5.34	10.68
	•	SUBTOTAL				661.05
IVA 12 %				12 %	79.33	
		TOTAL				740.38

Tabla 65 Presupuesto Filtro lento Patapamba alto - Chaguarcorral

Construcción Filtro Lento Patapamba alto Chaguarcorral

Oferente: InterPro
Ubicación: Azuay – Ecuador
Fecha: 04/07/2023

PRESUPUESTO						
Ítem	Código	Descripción	Unidad	Cantidad	P.Unitario	P.Total
1		PISO				95.48
1.1		Excavación				19.21
1.1.1	500008	Excavación a máquina con retroexcavadora	m3	4.53	4.24	19.21
1.2		Subdrenes				76.27
1.2.1	540002	Drenes con 143ubería pvc 50mm, suministro e instalación	m	2.31	5.87	13.56
1.2.2	540004	Drenes con 143ubería pvc 32mm, suministro e instalación	m	11.34	5.53	62.71
2		Replantillo				107.85
2.1	500018	Replantillo de piedra e = 15 cm	m2	11.05	9.76	107.85
3		LOSA				443.25
3.1	5AC056	Encofrado de madera para losas (2 usos)	m2	9.90	12.59	124.64
3.2	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	1.20	121.69	146.03
3.3	564006	Malla electrosoldada R-257, suministro e instalación	m2	9.99	8.72	87.11
3.4	564007	Malla hexagonal 5/8", suministro e instalación	m2	19.97	4.28	85.47
4		PAREDES				1,763.09
4.1	5AC055	Encofrado de madera curvo (2 usos)	m2	22.62	9.73	220.09
4.2	564006	Malla electrosoldada R-257, suministro e instalación	m2	22.62	8.72	197.25
4.3	564007	Malla hexagonal 5/8", suministro e instalación	m2	90.48	4.28	387.25
4.4	564008	Malla entrelazada cuadrada 3/16", suministro e instalación	m2	22.62	3.40	76.91
4.5	556004	Mortero cemento-arena- impermeabilizante 1:2, producción con concretera un saco, suministro y colocación	m3	2.49	175.18	436.20
4.6	546008	Enlucido mortero cemento-arena 1:2 con impermeabilizante, suministro y colocación	m2	22.62	16.02	362.37
4.7	564009	Pintura latex (primera calidad)	m2	22.62	3.67	83.02
5		CÁMARAS				87.67
5.1	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.63	121.69	76.66
5.2	564001	Malla electrosoldada R-84, suministro e instalación	m2	3.23	3.41	11.01
6		ACCESORIOS				462.19

Tabla 66 Presupuesto Cerramiento Patapamba alto - Chaguarcorral

Construcción cerramiento PTAP Patapamba Alto-Chaguarcorral

Oferente: InterPro

Ubicación: Azuay - Ecuador Fecha: 04/07/2023

	PRESUPUESTO						
Ítem	Código	Descripción	Unidad	Cantidad	P.Unitario	P.Total	
1		Malla de alambre galvanizado	m	65.00	15.85	1,030.25	
2		Hormigón Simple (210 kg/cm2)	m3	2.46	143.40	352.33	
3		Tubos de acero galvanizado	m	97.50	9.03	880.43	
	SUBTOTAL					2,263.01	
		IVA			12 %	271.56	
		TOTAL				2,534.57	

Son: DOS MIL QUINIENTOS TREINTA Y CUATRO CON CON 57/100 DÓLARES DE LOS ESTADOS UNIDOS DE AMÉRICA

Tabla 67 Presupuesto Filtro lento Patapamba bajo

Construcción Filtro Lento Patapamba bajo

Oferente: InterPro

Ubicación: Azuay - Ecuador Fecha: 04/07/2023

		PRESUPUES	то			
Ítem	Código	Descripción	Unidad	Cantidad	P.Unitario	P.Total
1		PISO				88.78
1.1		Excavación				12.51
1.1.1	500008	Excavación a máquina con retroexcavadora	m3	2.95	4.24	12.51
1.2		Subdrenes				76.27
1.2.1	540002	Drenes con tuberia pvc 50mm, suministro e instalación	m	2.31	5.87	13.56
1.2.2	540004	Drenes con tuberia pvc 32mm, suministro e instalación	m	11.34	5.53	62.71
2		Replantillo				75.05
2.1	500018	Replantillo de piedra e = 15 cm	m2	7.69	9.76	75.05
3		LOSA				310.55
3.1	5AC056	Encofrado de madera para losas (2 usos)	m2	6.77	12.59	85.23
3.2	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.89	121.69	108.30
3.3	564006	Malla electrosoldada R-257, suministro e instalación	m2	6.77	8.72	59.03
3.4	564007	Malla hexagonal 5/8", suministro e instalación	m2	13.55	4.28	57.99
4		PAREDES				1,410.27
4.1	5AC055	Encofrado de madera curvo (2 usos)	m2	18.10	9.73	176.11
4.2	564006	Malla electrosoldada R-257, suministro e instalación	m2	18.10	8.72	157.83
4.3	564007	Malla hexagonal 5/8", suministro e instalación	m2	72.38	4.28	309.79
4.4	564008	Malla entrelazada cuadrada 3/16", suministro e instalación	m2	18.10	3.40	61.54
4.5	556004	Mortero cemento-arena- impermeabilizante 1:2, producción con concretera un saco, suministro y colocación	m3	1.99	175.18	348.61
4.6	546008	Enlucido mortero cemento-arena 1:2 con impermeabilizante, suministro y colocación	m2	18.10	16.02	289.96
4.7	564009	Pintura latex (primera calidad)	m2	18.10	3.67	66.43
5		CÁMARAS				87.67
5.1	555002	Hormigón simple f'c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.63	121.69	76.66
5.2	564001	Malla electrosoldada R-84, suministro e instalación	m2	3.23	3.41	11.01
6		ACCESORIOS				478.45

6.1	5A3013	Tubería pvc para desague E/C d= 50mm, suministro e instalación	m	5.05	2.93	14.80
6.2	505002	Codo pvc E/C 90° d= 50mm para desague, suministro e instalación	u	6.00	2.63	15.78
6.3	5A8023	Sum. + Instal. Tapón Hembra Desague 50mm - Tipo B	u	1.00	2.03	2.03
6.4	5A8069	Sum. + Instal. Tapón Hembra Desague 32mm - Tipo B	u	6.00	1.91	11.46
6.5	5A8025	Sum. + Instal. Yee PVC 50 mm - Tipo B	u	12.00	2.71	32.52
6.6	505005	Tee pvc E/C, d= 50mm para desague, suministro e instalación	u	4.00	2.57	10.28
6.7	5A8068	Sum. + Instal. Válvula esférica	u	9.00	5.34	48.06
6.8	533011	Tapa metálica	m2	2.21	155.44	343.52
	•	SUBTOTAL				2,450.77
		IVA			12 %	294.09
		TOTAL				2,744.86

Son: DOS MIL SETECIENTOS CUARENTA Y CUATRO CON 86/100 DÓLARES DE LOS ESTADOS UNIDOS DE AMÉRICA

Tabla 68 Presupuesto Tanque de reserva

Construcción tanque de reserva ambas Comunidades

Oferente: InterPro

Ubicación: Azuay - Ecuador Fecha: 04/07/2023

		PRESUPUES	то			
Ítem	Código	Descripción	Unidad	Cantidad	P.Unitario	P.Total
1		PISO				86.54
1.1		Excavación				19.21
1.1.1	500008	Excavación a máquina con retroexcavadora	m3	4.53	4.24	19.21
1.2		Subdrenes				67.33
1.2.1	540002	Drenes con tuberia pvc 50mm, suministro e instalación	m	11.47	5.87	67.33
2		Replantillo				135.57
2.1	500018	Replantillo de piedra e = 15 cm	m2	13.89	9.76	135.57
3		LOSA				511.52
3.1	5AC056	Encofrado de madera para losas (2 usos)	m2	11.83	12.59	148.94
3.2	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	1.30	121.69	158.20
3.3	564006	Malla electrosoldada R-257, suministro e instalación	m2	11.83	8.72	103.16
3.4	564007	Malla hexagonal 5/8", suministro e instalación	m2	23.65	4.28	101.22
4		PAREDES				1,248.09
4.1	5AC055	Encofrado de madera curvo (2 usos)	m2	16.02	9.73	155.87
4.2	564006	Malla electrosoldada R-257, suministro e instalación	m2	16.02	8.72	139.69

4.3	564007	Malla hexagonal 5/8", suministro e instalación	m2	64.09	4.28	274.31
4.4	564008	Malla entrelazada cuadrada 3/16", suministro e instalación	m2	16.02	3.40	54.47
4.5	556004	Mortero cemento-arena- impermeabilizante 1:2, producción con concretera un saco, suministro y colocación	m3	1.76	175.18	308.32
4.6	546008	Enlucido mortero cemento-arena 1:2 con impermeabilizante, suministro y colocación	m2	16.02	16.02	256.64
4.7	564009	Pintura latex (primera calidad)	m2	16.02	3.67	58.79
5		CÚPULA				434.16
5.1	5AC055	Encofrado de madera curvo (2 usos)	m2	7.79	9.73	75.80
5.2	564007	Malla hexagonal 5/8", suministro e instalación	m2	23.37	3.40	79.46
5.3	522002	Alambre galvanizado calibre 10 suministro y colocación	kg	7.28	3.01	21.91
5.4	5AB072	Acero de refuerzo fy=4200 kg/cm², en varillas de 8 a 16 mm	kg	17.38	2.03	35.28
5.5	556004	Mortero cemento-arena- impermeabilizante 1:2, producción con concretera un saco, suministro y colocación	m3	0.39	175.18	68.32
5.6	546008	Enlucido mortero cemento-arena 1:2 con impermeabilizante, suministro y colocación	m2	7.79	16.02	124.80
5.7	564009	Pintura látex (primera calidad)	m2	7.79	3.67	28.59
6		CÁMARAS				64.03
6.1	555002	Hormigón simple f´c= 240kg/cm2 en concretera, elaboración y vertido	m3	0.43	121.69	52.33
6.2	564001	Malla electrosoldada R-84, suministro e instalación	m2	3.43	3.41	11.70
7		ACCESORIOS				447.81
7.1	5A3013	Tubería pvc para desague E/C d= 50mm, suministro e instalación	m	10.13	2.93	29.68
7.2	505002	Codo pvc E/C 90° d= 50mm para desague, suministro e instalación	u	8.00	2.63	21.04
7.3	5A8023	Sum. + Instal. Tapón Hembra Desague 50mm - Tipo B	u	5.00	2.03	10.15
7.4	5A8025	Sum. + Instal. Yee PVC 50 mm - Tipo B	u	4.00	2.71	10.84
7.5	505005	Tee pvc E/C, d= 50mm para desague, suministro e instalación	u	1.00	2.57	2.57
7.6	5A8068	Sum. + Instal. Válvula esférica	u	3.00	5.34	16.02
7.7	533011	Tapa metálica	m2	2.30	155.44	357.51
	-	SUBTOTAL		-		2,927.72
		IVA			12 %	351.33
		TOTAL				3,279.05

Son: TRES MIL DOSCIENTOS SETENTA Y NUEVE CON 05/100 DÓLARES DE LOS ESTADOS UNIDOS DE AMÉRICA

5. Conclusiones y recomendaciones

- El diseño del sistema de abastecimiento de agua potable no se limita a una estructura predeterminada, sino que requiere un análisis exhaustivo que considere diversos factores fundamentales. Este análisis debe abordar parámetros esenciales como las costumbres locales, la disponibilidad de fuentes de agua, la calidad del agua, las proyecciones poblacionales, la situación socioeconómica y los recursos disponibles. En lugar de seguir dimensiones estándar, el diseño de un sistema de abastecimiento de agua potable se basa en un estudio detallado que toma en cuenta la singularidad de la comunidad, asegurando así un suministro eficiente y sostenible que se adapte a sus necesidades específicas.
- A pesar de ser bajo el número de habitantes en las comunidades lo cual puede afectar a la precisión de los resultados en la proyección, se utilizaron varios métodos, donde las proyecciones poblacionales para ambas comunidades tienen poca variación según el método utilizado, lo cual permite corroborar que las proyecciones son adecuadas, eligiendo el método que da los resultados más críticos para ir por el apartado de la seguridad en el diseño.
- De los análisis físicos, químicos y bacteriológicos se puede concluir que cumplen con los requisitos para considerar el agua apta para consumo. Existe un inconveniente con la dosificación de cloro ya que en ciertos periodos y domicilios se presenta una excesiva concentración de cloro, esto debido a que la dosificación se regula manualmente cuando se presentan valores no adecuados. Por lo cual se debe realizar un control constante de la dosificación de cloro en las PTAPS.
 - Los aforos de los caudales de captación no presentan variaciones significativas, por lo que se puede asegurar el servicio del sistema.
- El estado físico del sistema de abastecimiento se encuentra en buenas condiciones y funciona correctamente, existen pequeños inconvenientes en el adecuado mantenimiento que se deben dar a las captaciones y filtros. Para lo cual en el apartado 4.7 se establecen las recomendaciones a seguir para un mantenimiento preventivo y correctivo en el sistema de abastecimiento con la finalidad de tener un control y facilidad de operación y mantenimiento.
- Respecto al tanque para la comunidad de Patapamba de la PTAP de Chaguarcorral Patapamba alto, se obtuvo como resultado de las proyecciones y aforos los caudales necesarios, donde para la población actual el caudal de la PTAP es mayor al necesario por lo que se observó el rebose del tanque de reserva, pero por otro lado para el final del periodo el volumen de agua necesario es mayor a la capacidad de la PTAP por lo que se planteó el diseño del nuevo tanque de reserva. Con esto se logra evitar la pérdida de agua para la demanda actual por rebose y a futuro disponer de un volumen extra de almacenamiento para suplir la demanda.
- En la red 2 de Patapamba y en la red de Chaguarcorral es necesario colocar las válvulas reductoras de presión para disminuir más del 90% de los nodos que se encuentran fuera del rango permitido. Las presiones altas en una red de distribución pueden generar problemas de consumo excesivo y deterioro de las tuberías.

6. Referencias

- Arocha, S. (1980). Abastecimiento De Agua. Teoría y Diseño. Vega.
- Bojorque, C. B. (2019). Vulnerabilidades socioeconómicas en la Zona 6.
- Bravo Jaramillo, A. F. (2008). Elaboración e implementación participativa de una propuesta de Manejo Hídrico-Forestal para la Microcuenca Minas.
- CPE INEN5. (1992). Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales.
- De Vargas, L. (2004). Tratamiento de agua para consumo humano. Manual I. OPS.
- ΕI Mercurio. (2023).La gestión del agua en la ciudad de Cuenca. https://elmercurio.com.ec/2023/09/21/la-gestion-del-agua-en-la-ciudad-decuenca/#:~:text=Obras%20como%20la%20ampliaci%C3%B3n%20de%20la%20Plan ta%20de,una%20poblaci%C3%B3n%20de%20m%C3%A1s%20de%20500%20mil% 20habitantes.
- ETAPA EP. (2015). Dimensiones de tanques y cantidad de material.
- GADMR. (2015). Diseño de filtros lentos de arena en el cantón Rioverde (p. 6).
- Idrovo, D., Barrrera, R., Espinoza, L., & Ochoa, F. (1999). Agua para Consumo Humano. Diseño, Construcción, Operación, Mantenimiento, Evaluación de sistemas de agua potable. Camaren.
- INEN 5. (1997). Código de práctica para el diseño de sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural.
- Kerry, H., Hand, D., Crittenden, J., & Trussell, R. (2017). *Principios de tratamiento del agua*. Cengage Learning.
- Moreta, J. (2022). Análisis del sistema de agua potable enfocado al diseño del tanque de almacenamiento y ampliación de la red de distribución desde la comunidad el Chilco hasta el Caserío San Antnonio, en el cantón Tisaleo, provincia de Tungurahua.
- Naciones Unidas. (2021). *Informe Mundial de las Naciones Unidas: El Valor del Agua* (p. 12). UNESCO.
- NTE INEN 1680. (2014). URBANIZACIÓN. SISTEMAS DE ABASTECIMIENTO DE AGUA POTABLE. REQUISITOS.
- Ospina, D. (1981). *Modelos matemáticos elementales en proyecciones de población*. Revista colombiana de estadística.
- Plan de desarrollo y ordenamiento territorial de la parroquia rural Turi. (2020). [por Gobierno autónomo Descentralizado Parroquial rural de Turi].

- Programa De Las Naciones Unidas Para El Desarrollo. (2006). *Informe sobre desarrollo humano*. United Nations Organisati.
- SEMARNAT. (2013). Cuencas Hidrográficas. Fundamentos y Perspectivas para su manejo y gestión.
- UNESCO, O. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020: Agua y Cambio Climático (p. 259). UNESCO.

7. Anexos

Anexo A. Formato de encuestas sanitarias Proyecto Patapamba Chaguarcorral

Encuesta Sanitaria Proyecto Patapamba Chaguarcorral

Universidad de Cuenca

* Inc	dica que la pregunta es obligatoria
1.	¿Cuántos integrantes viven en su domicilio? * Marca solo un óvalo.
	0 1 2 3 4 5 6 7 8 9 10
	000000000
2.	¿Cuántas personas vivían en su hogar en el año 2000?
3.	¿Cuántas personas vivían en su hogar en el año 2010?
4.	¿Cuántas personas viven en la actualidad en su hogar?
5.	Indique cuántos hombres: *
6.	Indique cuántas mujeres:

7.	Indique cuántos menores de 18 años:
8.	¿Cuántos integrantes del hogar estudian en escuela? * Marca solo un óvalo.
	0 1 2 3 4 5 6 7
9.	¿Cuántos integrantes del hogar estudian en el colegio?* Marca solo un óvalo. 0 1 2 3 4 5 6 7
10.	¿Cuántos integrantes del hogar estudian en una institución de educación superior? Marca solo un óvalo. 0 1 2 3 4 5 6 7
11.	Tipo de vivienda: * Selecciona todos los que correspondan. Ladrillo o bloque Madera Adobe

12.	¿Cuántas personas pasan entre semana en el hogar?*
13.	¿Cuántas personas desayunan en la casa entre semana?
14.	¿Cuántas personas almuerzan en la casa el fin de semana?
15.	Cuántas personas cenan en la casa entre semana?
16.	¿Cuántas personas almuerzan en la casa entre semana?
17.	¿Cuántas personas desayunan en la casa el fin de semana?
18.	¿Cuántas personas pasan el fin de semana en el hogar?
19.	¿Cuántas personas cenan en la casa el fin de semana?

20.	¿Cuántas veces al día lava los platos?
21.	¿Cuánto tarda en lavar los platos (minutos)?
22.	¿Con que frecuencia lava los pisos por semana?
23.	¿Qué cantidad de agua emplea para limpiar los pisos (balde)?
24.	¿Con qué frecuencia limpia los baños (semanal)?
25.	¿Qué cantidad de agua emplea para limpiar los baños (balde)?
26.	¿Con que frecuencia lava la ropa por semana?
27.	¿Qué cantidad de agua emplea para lavar la ropa (litros)?

28.	¿Cómo realiza el lavado de ropa?
	Marca solo un óvalo.
	A Mano
	Lavadora
29.	¿Qué medio de transporte utiliza para movilizarse?
	Marca solo un óvalo.
	Bus
	Auto propio
	Motocicleta propia
	Otro
30.	¿Dispone de automóvil o motocicleta?
	Marca solo un óvalo.
	Si
	◯ No
31.	En esse de tener un autemévil e metecialete : Con que frequencia leve eu
31.	En caso de tener un automóvil o motocicleta, ¿Con que frecuencia lava su vehículo? (semanal)
32.	Lava su vehículo/motocicleta con:
	Managed and South
	Marca solo un óvalo.
	Manguera
	Balde

33.	¿Tiene animales de granja?
	Marca solo un óvalo.
	Si
	◯ No
34.	¿Cuáles y cuántos de los siguientes animales tiene?
	Selecciona todos los que correspondan.
	Vacas, toro
	Gallinas
	Patos
	Ovejas Caballos
	Chanchos
	Otros
35.	¿De dónde obtienen agua para el consumo de sus animales?
06	
36.	¿Emplea agua de la llave para el consumo de sus animales?
	Marca solo un óvalo.
	Si
	◯ No
37.	¿Cuántas veces al día les da agua a sus animales?

38.	¿Emplea agua de la llave para el consumo de sus animales?
	Marca solo un óvalo.
	si
	No
39.	¿Cuántos baños tiene?
	Marca solo un óvalo.
	1 2 3
40.	¿Cuántas duchas tiene?
	Marca solo un óvalo.
	1 2 3
41.	¿Cuánto tiempo tarda bañándose desde que abre la llave (minutos)?
42.	¿Cuántas veces al día se lava las manos?
43.	¿Cuántas veces al día se baña?

44.	¿Cuántas veces al día se lava los dientes?
45 .	¿Emplea un vaso al momento de cepillarse los dientes? Marca solo un óvalo.
	si no
4 6.	En caso de no utilizar vaso para el cepillado de dientes, ¿Mantiene la llave abierta o cerrada mientras se cepilla los dientes?
	Marca solo un óvalo.
	Si
4 7.	No ¿Cuántas veces al día descarga el agua del inodoro?
48.	Su vivienda dispone de:
	Selecciona todos los que correspondan.
	Conexión a la red de agua
	Conexión a la red de alcatarillado Fosa séptica y pozo de absorción

49.	¿Que actividades realiza con agua de la llave?*
	Selecciona todos los que correspondan.
	Aseo personal
	Preparación de alimentos
	Actividades del hogar
	Lavado de vehículos
	Abrevadero de animales
	Riego de plantas
	Otras actividades
	Otro:
50.	¿Adopta alguna de las siguentes medidas para el ahorro del agua? *
	Selecciona todos los que correspondan.
	Recolección de agua de lluvia para riego de plantas, abrevadero de animales u otra actividad.
	Duchas cortas (5 minutos)
	Reparación imediata de fugas o daños en tuberías, grifos.
	Ninguna medida
	Otro:
51.	¿Presenta cortes en el servicio de agua?
•	C. recond cortes on creatives as again.
	Marca solo un óvalo.
	Si
	○ No

Marca													
	Marca solo un óvalo.												
	0 1 2 3 4 5 6 7												
(000000												
53. ¿Cuár	nto tiempo duran los cortes de agua aproximadamente?*												
Selecci	iona todos los que correspondan.												
Me	enos de 30 minutos												
30	a 60 minutos												
1 a	a 3 horas												
	a 6 horas												
Má	ás de 6 horas o mas de un día												
54. A nota	ado alguna de la siguentes características en el agua potable de su tilio:	*											
Selecci	iona todos los que correspondan.												
Co	ploración												
Tu	ırbiedad												
	edimentos												
	or extraño												
	abor extraño												
Nii	inguna												
O+	tro:												

55.	¿La presión de agua de la llave es suficiente para realizar actividades del hogar? *
	Marca solo un óvalo.
	Suficiente
	Normal
	Insuficiente
56.	La cantidad que dispone de agua es: *
	Marca solo un óvalo.
	Suficiente
	Normal
	Insuficiente
57.	¿Posee un medidor de agua?
	Marca solo un óvalo.
	Si
	No
58.	¿En que epoca del año son mas frecuentes los cortes de agua?
59.	¿Cuántos vasos de agua toma al día?
	Marca solo un óvalo.
	1-3 Vasos
	4 - 6 Vasos
	7- 9 Vasos

60.	¿Compra agua?
	Marca solo un óvalo.
	Si
	○ No
Se	cción sin título
61.	¿Cuándo se dan cortes de agua utiliza una fuente de agua alterna?.
	Marca solo un óvalo.
	Si
	○ No
62.	Usualmente presenta alguna de las siguientes enfermedades
	Selecciona todos los que correspondan.
	Diarrea Fiebre
	Dolor de cabeza
	Pérdida de apetito Dolor de estómago
	☐ Ninguna
63.	Cuando no tiene agua en su hogar, usa alguna de las siguientes fuentes
	alternativas
	Marca solo un óvalo.
	Agua embotellada
	Pozos de agua
	Tanque de agua Iluvia

64.	Ha notado alguna de la siguientes características con el uso del agua de la llave
	Selecciona todos los que correspondan.
	Manchas en los recipientes donde se almacena
	Manchas en las llaves de agua
	No produce espuma al lavar o bañarse
	Otros
	Ninguna

Anexo B. Planos topográficos de las comunidades Chaguarcorral y Patapamba

Anexo B.1 Plano topográfico de la comunidad de Patapamba

Anexo B.2 Plano topográfico de la comunidad de Chaguarcorral

Anexo B.3 Plano en planta de emplazamiento en PTAP Patapamba Bajo

Anexo B.4 Plano en planta de emplazamiento en PTAP Patapamba Chaguarcorral

Anexo C. Planos de las estructuras de los sistemas de abastecimiento de agua de las comunidades Chaguarcorral y Patapamba.

Anexo D. Resultados de características físico-químicas del agua del sistema Anexo D.1. Resultados físico-químicos Patapamba

UNIVERSIDAD DE CUENCA

FACULTAD DE INGENIERIA LABORATORIO DE INGENIERIA SANITARIA

	RESULTADOS DE ANALISIS FÍSICO-QUÍMICO Y MICROBIOLOGICO DE AGUA							
Muestra Procedencia:	Junta de Agua Potable Patapamba Ciudad Cuenca Provincia del Azuay							
Tipo de Fuente:	Superficial							
Fecha de Toma:	05 de diciembre de 2022							
Fecha de Análisis:	05 de diciembre de 2022							
Análisis solicitado por:	Ing. Diego Idrovo							

	#1	#2	#3	#4	#5	#6		
PARÁMETROS	Captación 1	Captación 2	Captación 3	Captación 4	Captación 5	Captación 6	UNIDAD	OBSERVACIONES
PARÁMETROS FÍSICOS				-				
TURBIEDAD	25,1	0,214	6,92	0,832	0,489	0,435	NTU, FTU	
COLOR APARENTE	112,0	4,0	34,0	10,0	9,0	20,0	UC, Pt Co	
COLOR REAL	12,0	3,0	9,0	5,0	5,0	15,0	UC, Pt Co	
CONDUCTIVIDAD	206,7	341,4	235,5	154,6	222,0	272,1	microsiemens/ cm	
SOLIDOS DISUELTOS TOTALES	136,4	225,3	155,4	102,0	146,5	179,6	mg/l	por cálculo
PARÁMETROS QUÍMICOS								
рН	7,96	7,39	7,70	7,44	7,61	7,91		
ALCALINIDAD TOTAL	133,0	144,0	121,2	84,6	113,4	126,2	mg/l, CaCO3	
ALCALINIDAD F.	0,0	0,0	0,0	0,0	0,0	0,0	mg/l, CaCO3	
DUREZA TOTAL	108,0	140,2	105,2	66,6	94,8	96,2	mg/l, CaCO3	
Ca++	32,5	52,8	31,2	17,8	32,6	30,4	mg/I	
Mg++	6,5	2,0	6,6	5,3	3,2	4,9	mg/l	por cálculo
HIERRO TOTAL	1,859	0,134	0,695	0,086	0,161	0,058	mg/l	
MANGANESO	0,1	0,3	0,2	0,3	0,3	0,2	mg/I	
TANINOS Y LIGNINAS	1,7	1,1	2	1,3	1,6	2,6	mg/l	
CLORUROS	5,3	6,5	3,9	4,0	4,5	16,5	mg/l	
SULFATOS	3,23	3,21	2,74	1,49	2,33	2,37	mg/l	
CLORO LIBRE RESIDUAL						1,5	mg/l	
PARÁMETROS BIOLÓGICOS								
AEROBIOS MESOFILOS	32,0	0,0	0,0	23,0	6,0	0,0	U.F.C./ml	35ºC. 24H
COLIFORMES TOTALES	10,0	<1,8	<1,8	2,0	4,0	<1,8	N.M.P./100ml	35ºC. 24H
COLIFORMES TERMORRESISTENTES	2,0	<1,8	<1,8	<1,8	<1,8	<1,8	N.M.P./100ml	35ºC. 24H
	1						1	

Firmado electrónicamente
GLADYS
GUILLERMINA
PAUTA CALLE

Dra. Guillermina Pauta C.

DIRECTORA DE LABORATORIO

UNIVERSIDAD DE CUENCA Facultad de Ingenieria LABORATORIO DE INGENIERIA SANTI ARIA

Anexo D.2 Resultados físico-químicos Chaguarcorral

UNIVERSIDAD DE CUENCA

FACULTAD DE INGENIERIA LABORATORIO DE INGENIERIA SANITARIA

	RESULTADOS DE ANALISIS FISICO-QUIMICO Y MICROBIOLOGICO DE AGUA						
Muestra Procedencia:	Junta de Agua Potable Mapacocha Ciudad Cuenca Provincia del Azuay						
Tipo de Fuente:	Superficial						
Fecha de Toma:	13 de diciembre de 2022						
Fecha de Análisis:	13 de diciembre de 2022						
Análisis solicitado por:	Ing. Diego Idrovo						

•	#1	#2	#3	#4		
PARÁMETROS	Captación 1	Captación 2	Antes del Filtro	Salida de la planta	UNIDAD	OBSERVACIONES
PARÁMETROS FÍSICOS						
TURBIEDAD	10,2	3,2	3,9	3,2	NTU, FTU	
		30.0	-,-	-,-		
COLOR APARENTE	35,0	,-	14,0	12,0	UC, Pt Co	
COLOR REAL	9,0	19,0	10,0	9,0	UC, Pt Co	
CONDUCTIVIDAD	69,6	43,5	48,9	52,9	microsiemens/ cm	
SOLIDOS DISUELTOS TOTALES	45,9	28,7	32,3	34,9	mg/l	por cálculo
PARÁMETROS QUÍMICOS						
pH	6,85	6,94	7,01	7,14		
ALCALINIDAD TOTAL	36,0	22,0	30,0	32,0	mg/l, CaCO3	
ALCALINIDAD F.	0,0	0,0	0,0	0,0	mg/l, CaCO3	
DUREZA TOTAL	32,8	20,2	19,2	22,0	mg/l, CaCO3	
Ca++	8,0	6,6	4,4	7,4	mg/l	
Mg++	3,1	0,9	2,0	0,9	mg/l	por cálculo
HIERRO TOTAL	0,085	0,180	0,103	0,080	mg/l	
MANGANESO	0,213	0,001	0,026	0,053	mg/l	
TANINOS Y LIGNINAS	1,7	1,1	2,0	1,3	mg/l	
CLORUROS	6,0	4,0	3,0	4,0	mg/l	
SULFATOS	0,21	0,18	0,27	0,26	mg/l	
CLORO LIBRE RESIDUAL				0,2	mg/l	
PARÁMETROS BIOLÓGICOS						
AEROBIOS MESOFILOS	12,0	23,0	8,0	0,0	U.F.C./ml	35ºC. 24H
COLIFORMES TOTALES	15,0	21,0	17,0	<1,8	N.M.P./100ml	35ºC. 24H
COLIFORMES TERMORRESISTENTES	9,3	7,8	4,5	<1,8	N.M.P./100ml	35ºC. 24H

Responsable:

Dra. Guillermina Pauta C.
DIRECTORA DE LABORATORIO

UNIVERSIDAD DE CUENCA Facultad de Ingenieria LABORATORIO DE INGENIERIA SANTI ARIA

Anexo E. Evaluación hidráulica de la red Anexo E.1. Evaluación hidráulica de la red de Patapamba Tabla de nodos Patapamba

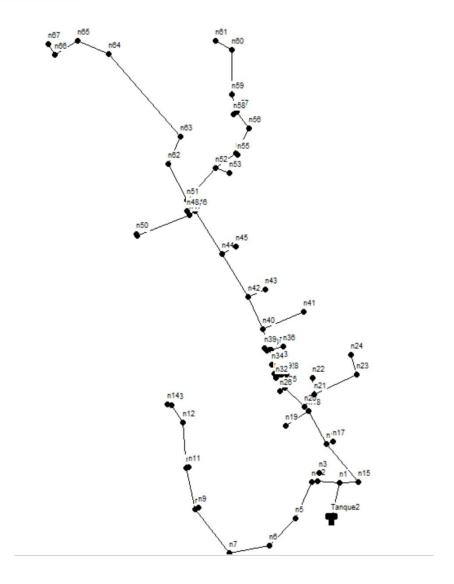
PLANTA ARRIBA - PATAPAMBA - RED 1										
	TRA	MOS								
	NODO inicial	NODO final	LONGITUD (m)	Demanda base acometida (I/s)	Velocidades en el tramo (m/s)	Caudal en el tramo (I/s)	Presiones en el nodo final (m.c.a)			
	Tanque	1	43.52	0.00	0.16	0.25	5.06			
	1	2	38.18	0.00	0.16	0.25	9.02			
	2	3	66.35	0.00	0.16	0.25	12.96			
	3	4	93.63	0.00	0.12	0.08	42.88			
Acometida	4	5	8.47	0.02	0.07	0.03	42.88			
	4	6	92.29	0.00	0.08	0.05	25.85			
Acometida	6	7	7.18	0.02	0.07	0.03	25.85			
	6	8	97.62	0.00	0.04	0.03	32.84			
	8	9	108.32	0.00	0.04	0.03	40.82			
	9	10	119.32	0.00	0.04	0.03	52.80			
	10	11	73.51	0.00	0.04	0.03	60.79			
	11	12	56.32	0.00	0.04	0.03	70.78			
	12	13	37.32	0.00	0.04	0.03	70.78			
Acometida	13	14	26.52	0.02	0.04	0.03	71.77			
	3	15	146.00	0.00	0.11	0.17	15.88			
	15	16	54.62	0.00	0.08	0.12	16.87			
	16	17	61.62	0.00	0.07	0.03	29.84			
	17	18	42.65	0.00	0.07	0.03	44.82			
Acometida	18	19	4.34	0.02	0.02	0.03	52.82			
	16	20	63.21	0.00	0.06	0.10	27.86			
	20	21	135.24	0.00	0.06	0.10	37.84			
Acometida	21	22	34.89	0.02	0.07	0.03	36.83			
	21	23	64.52	0.00	0.05	0.08	29.84			
Acometida	23	24	23.70	0.02	0.07	0.03	29.83			
	23	25	126.32	0.00	0.03	0.05	22.83			
	25	26	1.36	0.00	0.03	0.05	22.83			
Acometida	26	27	26.66	0.02	0.07	0.03	22.82			
Acometida	26	28	65.92	0.02	0.07	0.03	24.80			
	15	30	46.36	0.00	0.07	0.03	23.86			
	30	31	63.27	0.00	0.07	0.03	27.83			
Acometida	31	32	26.20	0.02	0.07	0.03	29.82			
Acometida	15	29	75.36	0.02	0.07	0.03	23.85			

		PL	ANTA ABAJO	- PATAPAN	IBA- RED 2		
	TRAI	MOS					
	NODO inicial	NODO final	LONGITUD (m)	Demanda base acometida (I/s)	Velocidades en el tramo (m/s)	Caudal en el tramo (I/s)	Presiones en el nodo final (m.c.a)
	Tanque 2	1	64.63	0.00	0.36	0.57	14.87
	1	2	36.13	0.00	0.06	0.09	13.87
Acometida	2	3	14.59	0.02	0.06	0.02	13.86
7 toometida	2	4	8.91	0.00	0.04	0.07	12.87
	4	5	61.62	0.00	0.04	0.07	6.86
	5	6	60.21	0.00	0.04	0.07	6.86
	6	7	65.12	0.00	0.04	0.07	7.85
	7	8	87.22	0.00	0.04	0.07	10.85
Acometida	8	9	5.94	0.02	0.04	0.02	10.85
Acometida	8	10	66.45	0.00	0.03	0.06	11.85
Acometida	10	11	4.11	0.02	0.06	0.02	11.84
Acometida	10	12	74.62	0.02	0.00	0.02	15.85
	12	13	34.52	0.00	0.01	0.02	21.84
Acometida	13	14	7.29	0.00	0.06	0.02	22.84
Acometida	13	15	31.51	0.02	0.30	0.48	15.79
	15	16	81.62	0.00	0.30	0.48	22.58
Acometida	16	17	11.59	0.00	0.06	0.40	22.58
Acometida	16	18	63.51	0.02	0.00	0.02	32.43
Acometida	18	19	44.78	0.00	0.29	0.40	32.42
Acometida	18	20	9.83	0.02	0.00	0.02	32.41
	20	21	28.62	0.00	0.03	0.05	28.41
Acometida	21	22	27.39	0.00	0.05	0.03	24.40
Acometida	21	23	76.53	0.02	0.00	0.02	43.41
Acometida	23	24	33.53	0.00	0.06	0.02	39.40
Acometida	20	25	56.35	0.02	0.00	0.39	36.32
Acometida	25	26	8.53	0.00	0.06	0.02	36.31
Acometida	25	27	23.61	0.02	0.00	0.02	39.28
Acometida	27	28	8.98	0.00	0.06	0.02	39.28
Acometida	27	29	10.56	0.00	0.22	0.34	39.27
	29	30	6.17	0.00	0.12	0.05	39.26
Acometida	30	31	5.00	0.00	0.06	0.03	39.26
Acometida	30	32	4.15	0.02	0.06	0.02	39.26
/ Cometida	29	33	19.92	0.02	0.19	0.30	40.24
Acometida	33	34	7.23	0.00	0.06	0.02	40.24
, toometida	33	35	22.65	0.02	0.00	0.02	41.22
Acometida	35	36	20.91	0.00	0.06	0.02	41.22
, toometida	35	37	1.51	0.02	0.06	0.02	41.22
	37	38	5.80	0.00	0.06	0.23	41.22
Acometida	38	39	6.69	0.00	0.06	0.02	41.22
, toometida	37	40	34.26	0.02	0.14	0.02	43.20
Acometida	40	41	73.52	0.00	0.06	0.23	49.18
, toometida	40	42	56.21	0.02	0.13	0.02	44.17

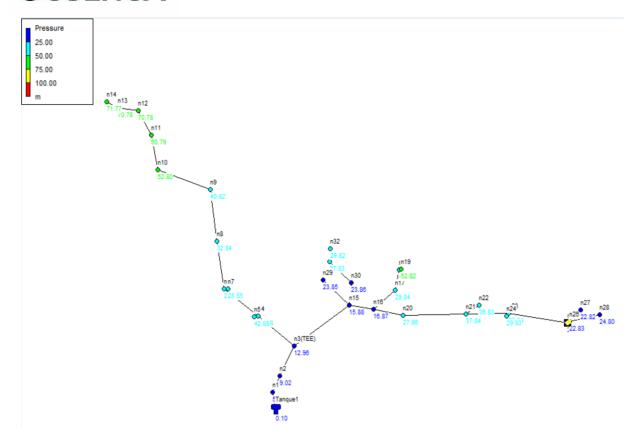


Acometida	42	43	31.75	0.02	0.01	0.02	44.17
	42	44	78.51	0.00	0.11	0.18	49.14
Acometida	44	45	25.64	0.02	0.06	0.02	48.13
	44	46	81.88	0.00	0.10	0.16	56.11
	46	47	10.82	0.00	0.12	0.05	58.10
Acometida	47	48	7.26	0.02	0.06	0.02	59.10
	47	49	92.54	0.00	0.06	0.02	66.07
Acometida	49	50	3.55	0.02	0.01	0.02	66.07
	46	51	22.40	0.00	0.07	0.12	58.11
	51	52	68.60	0.00	0.06	0.09	59.10
Acometida	52	53	25.02	0.02	0.06	0.02	59.09
	52	54	41.52	0.00	0.04	0.07	57.09
Acometida	54	55	3.77	0.02	0.06	0.02	58.09
	54	56	42.65	0.00	0.03	0.05	59.09
	56	57	35.20	0.00	0.03	0.05	59.09
Acometida	57	58	6.71	0.02	0.06	0.02	59.09
	57	59	31.90	0.00	0.01	0.02	59.09
	59	60	75.81	0.00	0.01	0.02	58.09
Acometida	60	61	31.61	0.02	0.06	0.02	58.08
	51	62	68.93	0.00	0.01	0.02	67.11
	62	63	48.66	0.00	0.01	0.02	74.10
	63	64	179.99	0.00	0.01	0.02	82.10
	64	65	54.98	0.00	0.01	0.02	92.10
	65	66	43.77	0.00	0.06	0.02	93.09
Acometida	66	67	21.01	0.02	0.06	0.02	94.08

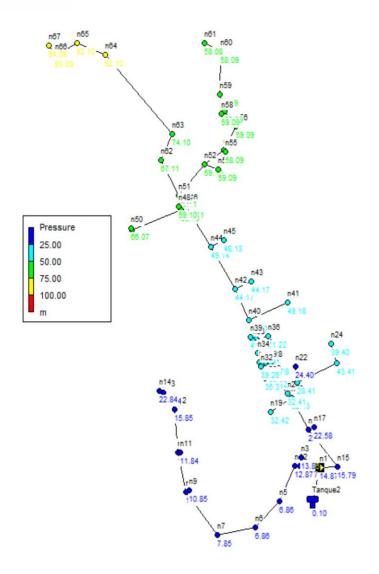
Número de nodos Patapamba


Red 1

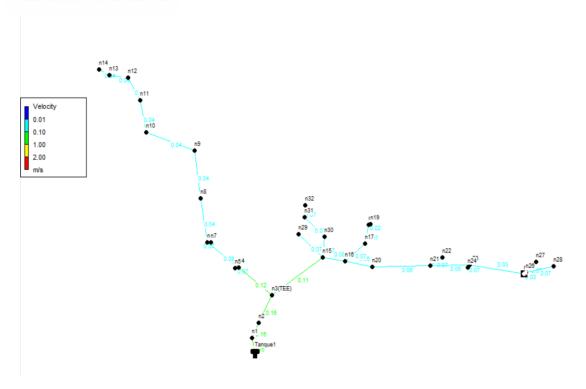
Red 2



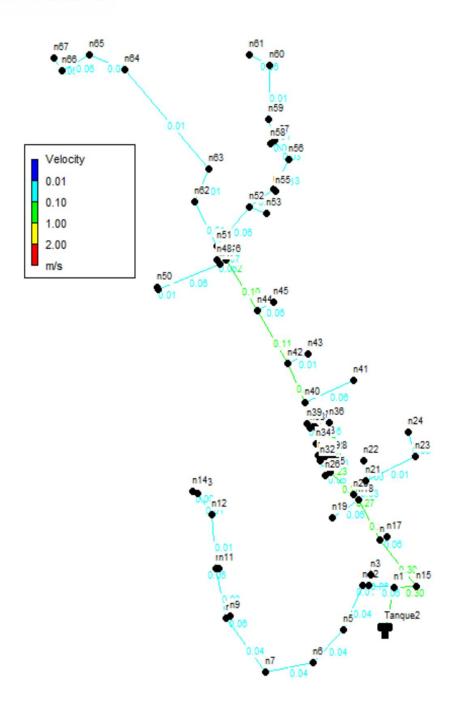
Presiones en los nodos Patapamba


Red 1

Red 2

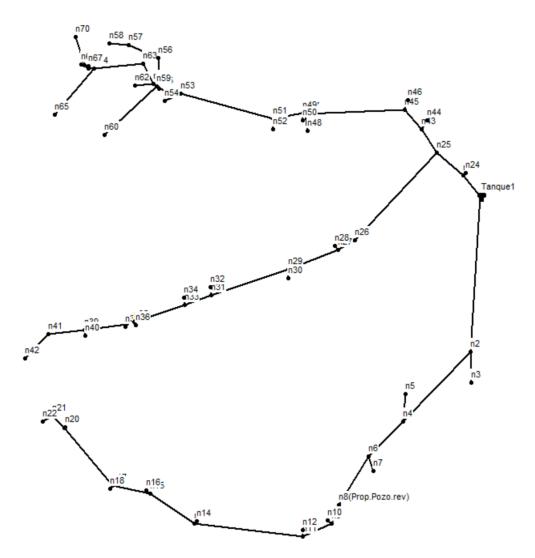


Velocidades en los tramos Patapamba


Red 1

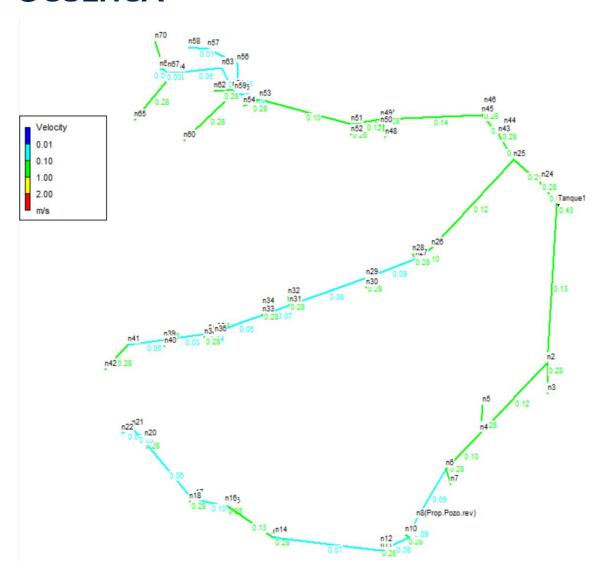
Red 2

Anexo E.2. Evaluación hidráulica de la red de Chaguarcorral Tablas de los nodos Chaguarcorral

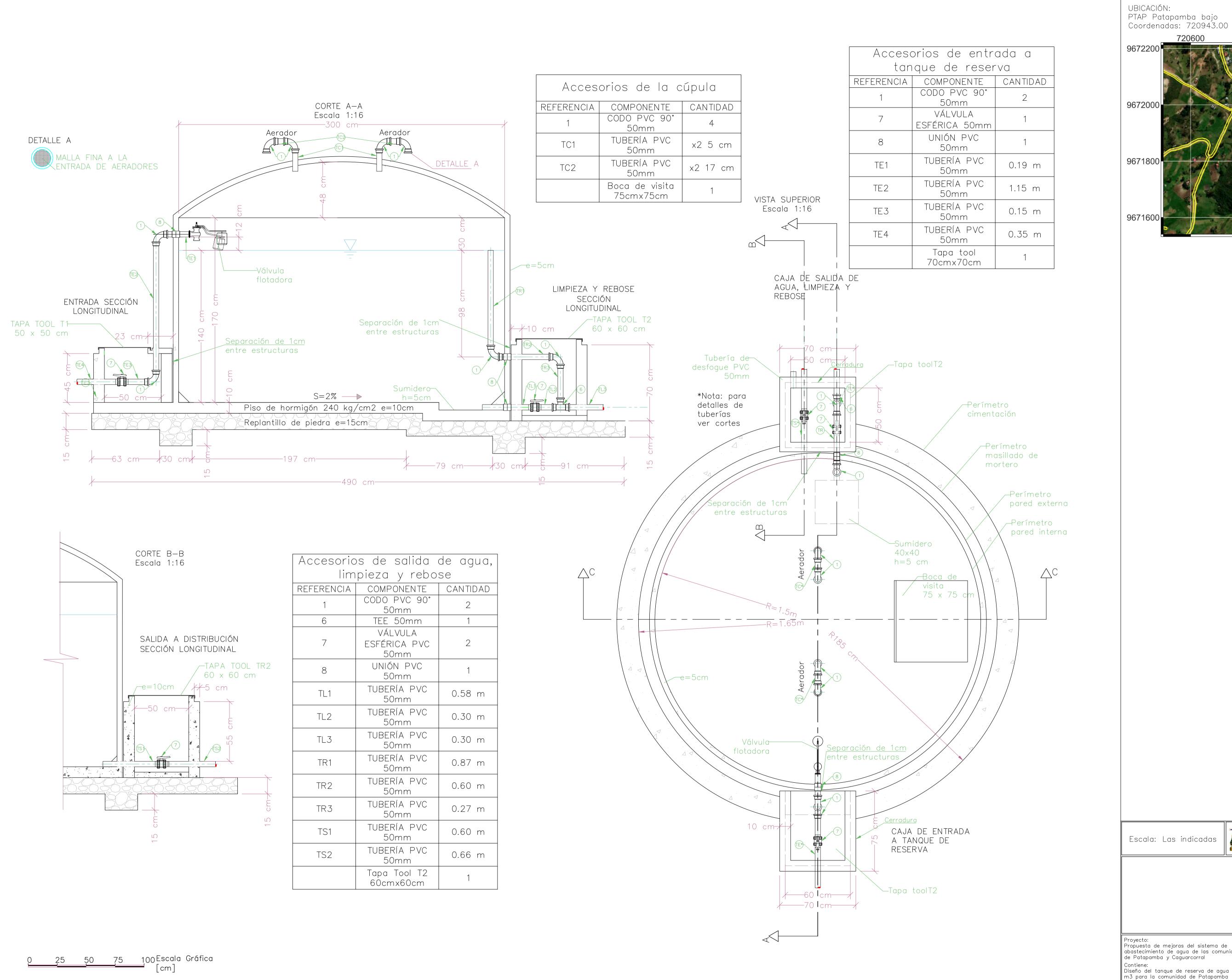

PLANTA ARRIBA - CHAGUARCORRAL							
	TRA	MOS					
	NODO inicial	NODO final	LONGITUD (m)	Demanda base acometida (I/s)	Velocidades en el tramo (m/s)	Caudal en el tramo (l/s)	Presiones en el nodo final (m.c.a)
	Tanque	1	1.52	0.00	0.43	0.69	1.09
	1	2	232.14	0.00	0.13	0.21	53.69
Acometida	2	3	41.33	0.02	0.28	0.02	55.39
	2	4	130.98	0.00	0.12	0.19	51.91
Acometida	4	5	40.03	0.02	0.28	0.02	65.35
	4	6	65.27	0.00	0.10	0.17	55.88
Acometida	6	7	21.01	0.02	0.28	0.02	50.59
	6	8	91.39	0.00	0.09	0.15	62.86
	8	9	26.84	0.00	0.09	0.15	62.85
Acometida	9	10	65.94	0.02	0.28	0.02	65.76
	9	11	42.63	0.00	0.08	0.13	66.84
Acometida	11	12	7.89	0.02	0.28	0.02	68.73
	11	13	89.90	0.00	0.07	0.10	75.88
Acometida	13	14	4.19	0.02	0.28	0.02	75.77
	13	15	74.67	0.00	0.13	0.08	87.76
Acometida	15	16	6.35	0.02	0.28	0.02	87.67
	16	17	50.08	0.00	0.10	0.06	101.73
Acometida	17	18	5.18	0.02	0.28	0.02	102.66
	17	19	102.13	0.00	0.06	0.04	105.71
Acometida	19	20	3.52	0.02	0.28	0.02	108.66
	19	21	40.74	0.00	0.03	0.02	105.71
Acometida	21	22	10.75	0.02	0.03	0.02	106.70
	1	23	87.79	0.00	0.30	0.48	41.87
Acometida	23	24	5.40	0.02	0.28	0.02	40.79
	23	25	40.34	0.00	0.29	0.46	55.77
Acometida	25	26	116.37	0.02	0.12	0.19	65.72
	26	27	60.05	0.00	0.10	0.17	75.70
Acometida	27	28	10.50	0.02	0.28	0.02	79.55
	27	29	96.62	0.00	0.09	0.15	100.67
Acometida	29	30	12.74	0.02	0.28	0.02	100.50
	29	31	110.29	0.00	0.08	0.13	120.65
Acometida	31	32	11.07	0.02	0.28	0.02	120.50
	31	33	38.19	0.00	0.07	0.10	122.64
Acometida	33	34	10.44	0.02	0.28	0.02	122.50
	33	35	72.79	0.00	0.05	0.08	125.64
Acometida	35	36	4.66	0.02	0.28	0.02	125.57
	35	37	11.72	0.00	0.04	0.06	125.63

Acometida	37	38	3.46	0.02	0.28	0.02	125.59
	37	39	54.70	0.00	0.03	0.04	131.63
Acometida	39	40	8.33	0.02	0.28	0.02	131.52
	39	41	49.19	0.00	0.06	0.02	133.62
Acometida	41	42	15.30	0.02	0.28	0.02	133.41
	25	43	31.08	0.00	0.17	0.27	52.75
Acometida	43	44	25.36	0.02	0.28	0.02	25.39
	43	45	47.52	0.00	0.16	0.25	52.71
Acometida	45	46	10.20	0.02	0.28	0.02	45.57
	45	47	87.32	0.00	0.14	0.23	41.65
Acometida	47	48	23.42	0.02	0.28	0.02	50.33
	47	49	3.40	0.00	0.13	0.21	41.65
Acometida	49	50	9.77	0.02	0.28	0.02	43.52
	49	51	49.05	0.00	0.12	0.19	40.63
Acometida	51	52	15.27	0.02	0.28	0.02	45.42
	51	53	132.54	0.00	0.10	0.17	54.58
Acometida	53	54	23.25	0.02	0.28	0.02	59.26
	53	55	34.94	0.00	0.09	0.15	55.57
	55	56	41.36	0.00	0.01	0.02	49.57
	56	57	43.16	0.00	0.01	0.02	49.57
Acometida	57	58	25.84	0.02	0.01	0.02	40.57
	55	59	5.63	0.00	0.08	0.13	53.57
Acometida	59	60	98.81	0.02	0.28	0.02	79.20
	59	61	4.57	0.00	0.07	0.10	55.57
Acometida	61	62	25.47	0.02	0.28	0.02	65.22
	61	63	32.27	0.00	0.05	0.08	55.57
	63	64	67.17	0.00	0.05	0.08	55.56
Acometida	64	65	82.30	0.02	0.28	0.02	79.42
	64	66	7.62	0.00	0.04	0.06	55.56
Acometida	66	67	3.26	0.02	0.28	0.02	56.51
	66	68	6.93	0.00	0.03	0.04	55.56
Acometida	68	69	4.59	0.02	0.01	0.02	57.56
Acometida	68	70	39.92	0.02	0.28	0.02	50.01


Número de nodos Chaguarcorral


Presiones en los nodos Chaguarcorral

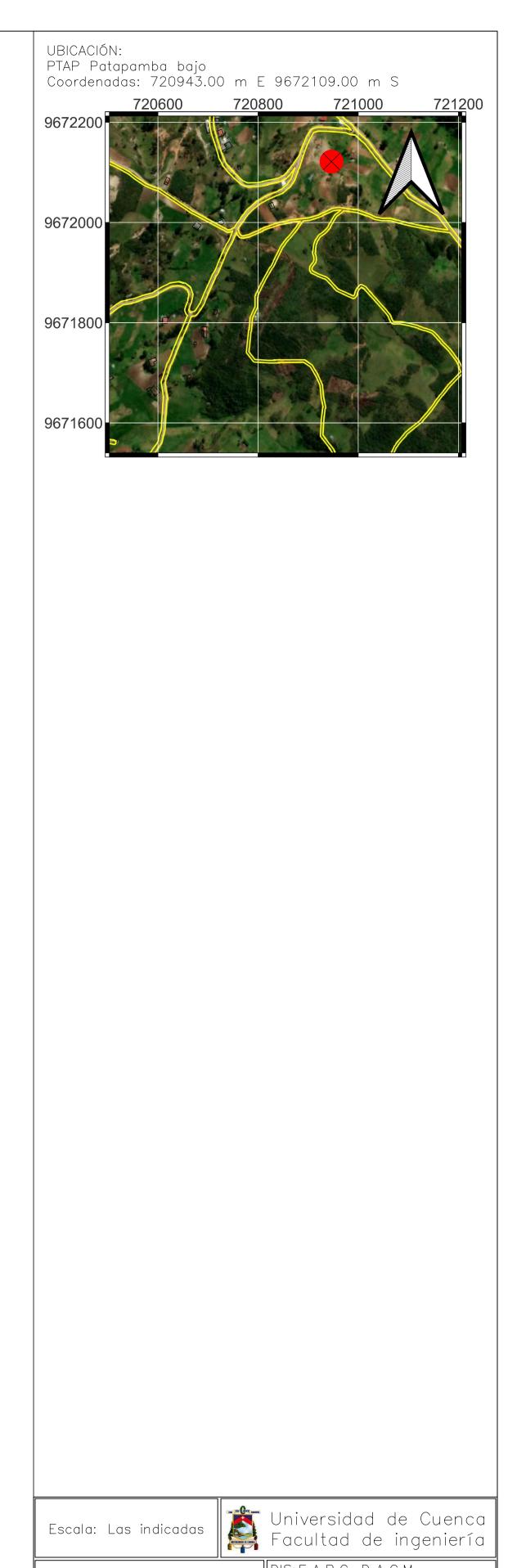
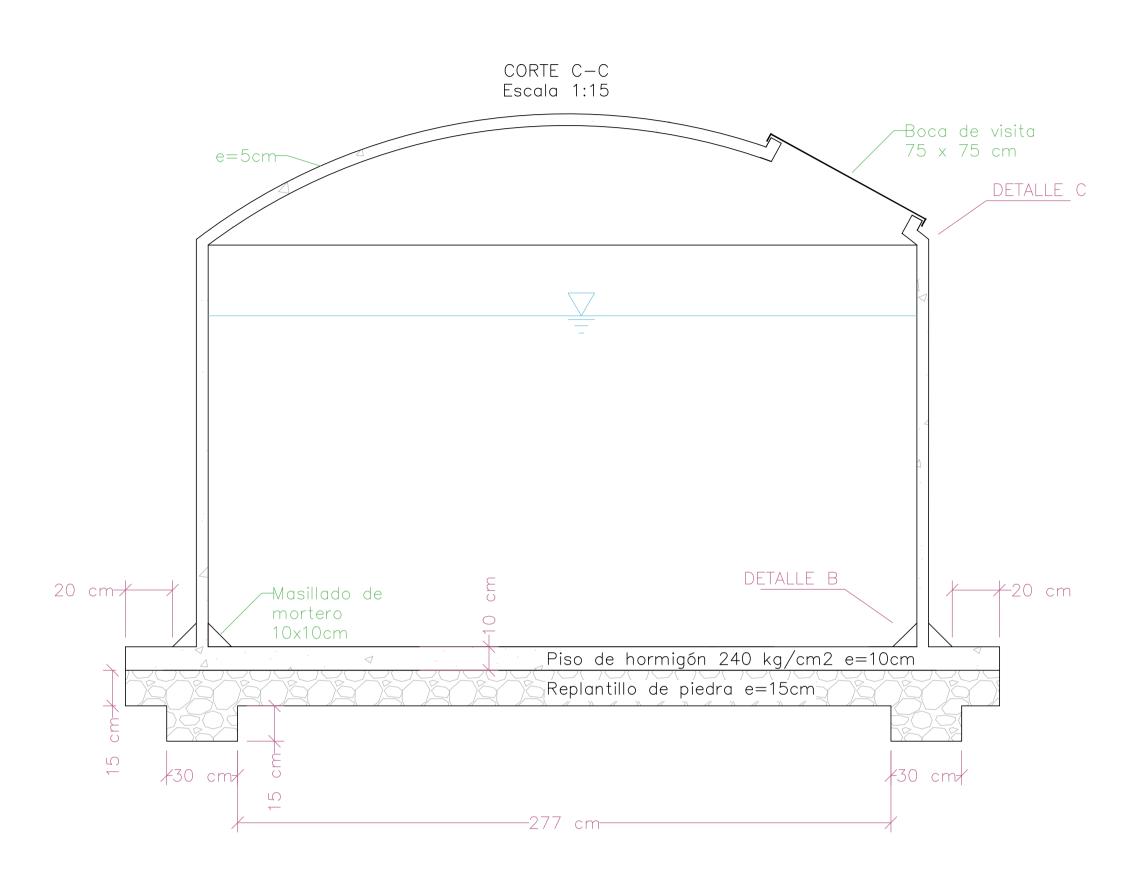
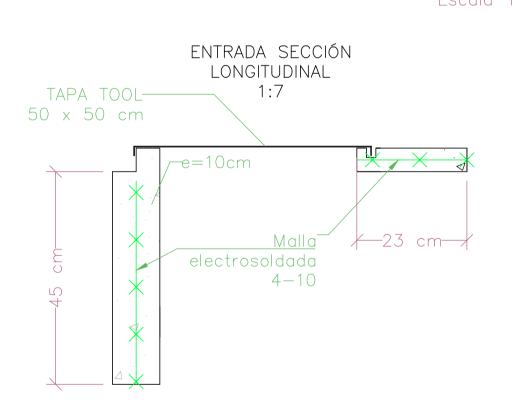
Velocidades en los tramos Chaguarcorral

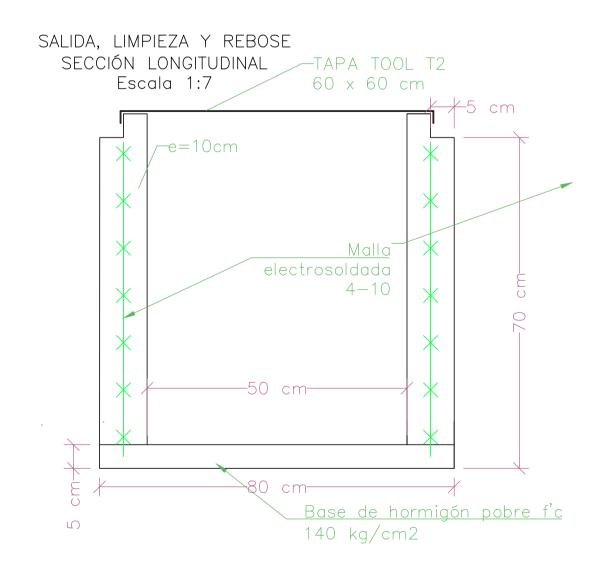


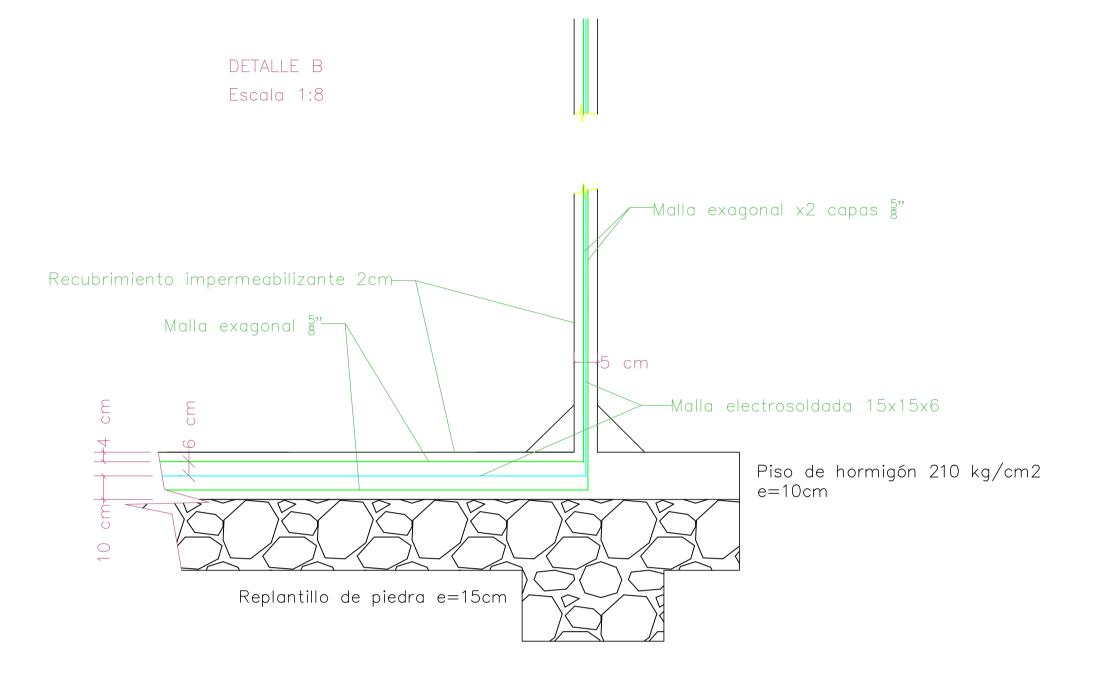
Anexo F. Detallamiento de refuerzo para tanques de reserva (ETAPA EP)

m3	10	20	30	40	50	80	100	120	141.76	180	200
m	1.55	2.15	2.25	2.60	2.60	3.30	3.65	3.65	4.75	4.45	4.70
m	1.50	1.50	2.00	2.00	2.50	2.50	2.50	3.00	2.00	3.00	3.00
e	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.15	0.15
e	0.08	0.08	0.10	0.10	0.12	0.12	0.12	0.15	0.10	0.15	0.15
#	1	1	1	1							
#					1	1	1	1	1	1	1
#	2	2	2	2	2	2	2	2	2	2	2
cm	3.2	3.2	4.0	4.0	4.5	5.2	5.2	5.2	8.0	5.9	5.9
		1	Número	de ma	llas (er	ı toda l	a altura	del ta	nque)		
#	2	2	2	2	2	3	3	3	3	3	3
#	1	1									
#			1	1							
#					1	1	1				
#								1	1	1	1
#	2	2	2	2	2	2	2	2	3	3	3
		N	úmero	de mal	las (ref	uerzo a	diciona	al en la	pared)		
#											
#								1	1	1	1
#							1	1	1	2	2
#			1	1	1	1	1	2	2	2	3
#					1	2	2	2	3	3	3
m	2.76	3.74	4.01	4.63	4.63	5.88	6.50	6.50	8.48	7.93	8.37
m	0.48	0.64	0.69	0.8	0.8	1.01	1.12	1.12	1.45	1.37	1.44
cm	2.40	2.50	2.50	2.80	2.80	2.80	2.80	2.80	3.00	3.00	3.00
					Númer	o de m	allas				
#	2	2	2	2	2	2	2	2	2	2	2
#	1	1	1	2	2	2	2	2	2	2	2
		Al	ambre	radial (@20 cn	n. Circu	ınferen	cial @	20 cm:		
12	10	10	8	8	8	8	8	8	6	6	6
FERE	NCIA	LD = 1	12mm								
#	1	1	1	1	2	2	2	2	3	3	3
		3	3	4	4	5	6	6	7	0	8
#	2	3	3	7	-		U	U	/	8	0
#	2	2	2	2	2	2	2	2	2	2	2
-	2										
	m3	m3 10 m 1.55 m 1.50 e 0.15 e 0.08 # 1 # 2 cm 3.2 # 2 # 1 # # 2 # 1 # # 4 # 4 # 4 # 4 # 5 m 0.48 cm 2.40 # 2 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	m3 10 20 m 1.55 2.15 m 1.50 1.50 e 0.15 0.15 e 0.08 0.08 # 1 1 # 2 2 cm 3.2 3.2 # 2 2 # 1 1 # # 2 2 M # # 4 2 2 M # # 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	m3 10 20 30 m 1.55 2.15 2.25 m 1.50 1.50 2.00 e 0.15 0.15 0.15 e 0.08 0.08 0.10 # 1 1 1 # 2 2 2 2 cm 3.2 3.2 4.0 Número # 2 2 2 # 1 1 #	m3 10 20 30 40 m 1.55 2.15 2.25 2.60 m 1.50 1.50 2.00 2.00 2.00	m 1.55 2.15 2.25 2.60 2.60 m 1.50 1.50 2.00 2.00 2.50 e 0.15 0.15 0.15 0.15 0.15 0.15 e 0.08 0.08 0.10 0.10 0.12 # 1 1 1 1 1 # 2 2 2 2 2 2 # 1 1 1 # 2 2 2 2 2 2 # 1 1 1 # 1 1 1 1 # 2 1 2 2 2 2 2 # 1 1 1 1 1 # 1 1 1 1 # 1 1 1 1 # 1 1 1 1	m3	m3	m3	M3	Mathematical Properties Mathematical Pro

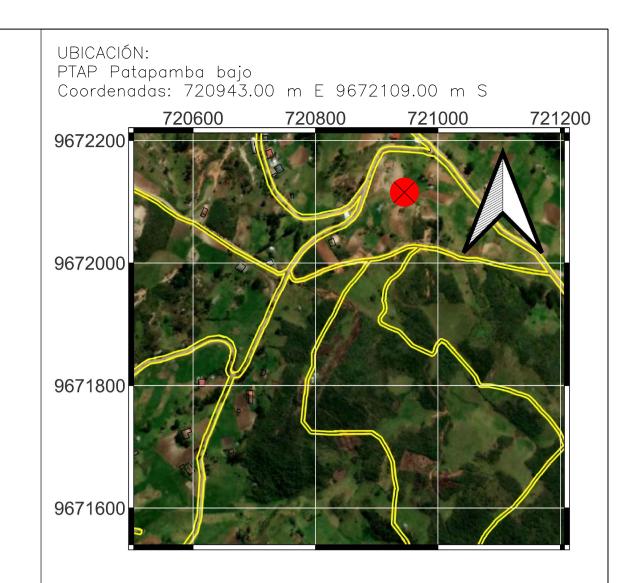
Fuente: (ETAPA EP, 2015)




Lámina 1

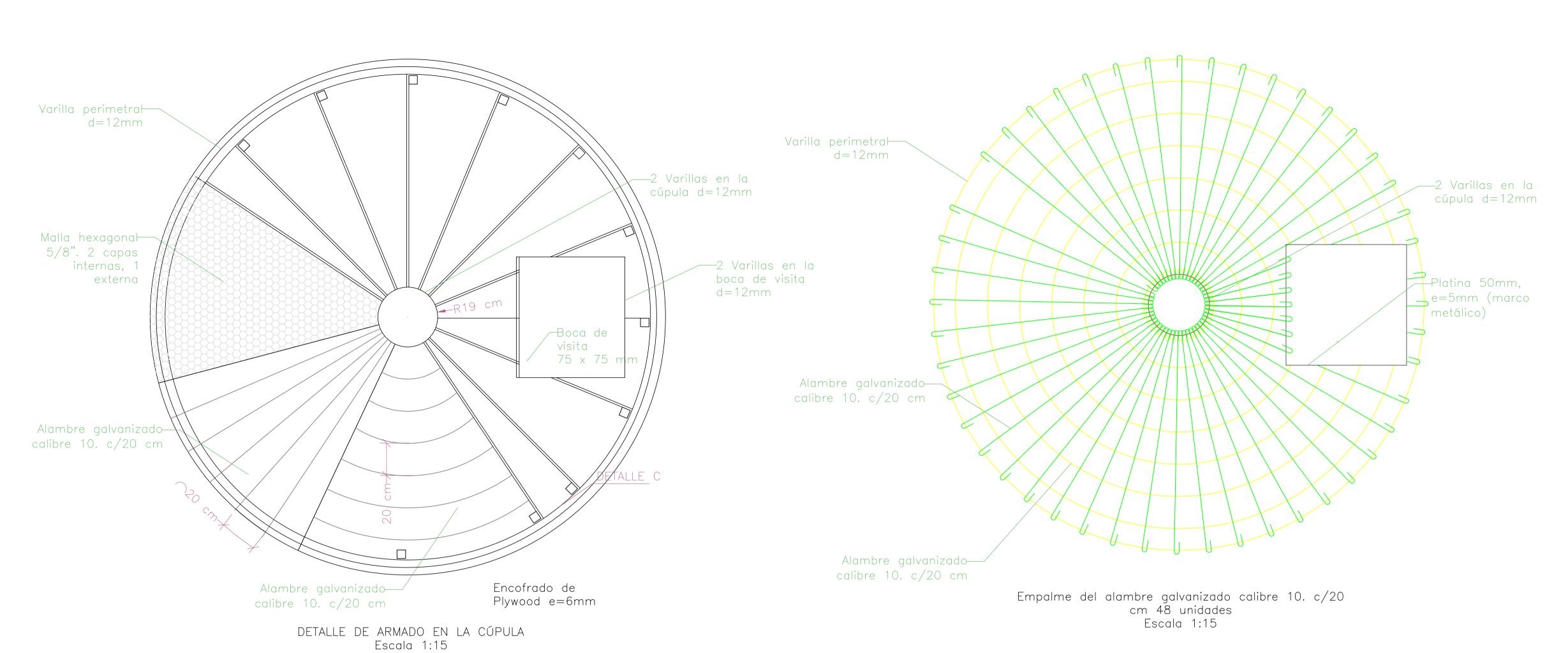
DETALLE REFUERZO DE CÁMARA DE VÁLVULAS Escala 1:7



Refuerzo pared	es
REFERENCIA	CANTIDAD
Malla electrosoldada 15x15x6	16 m2
Malla hexagonal 5/8".	16 m2
Recubrimiento impermeabilizante 2cm	16 m2
Hormigón 240 kg/cm2	1.6 m2

Refuerzo base	2
REFERENCIA	CANTIDAD
Malla electrosoldada 15x15x6	9 m2
Malla hexagonal 5/8".	9 m2
Hormigón 240 kg/cm2 e=10cm	0.9 m3
Recubrimiento impermeabilizante 2cm	9 m2

Refuerzo cámaras de	válvulas
REFERENCIA	CANTIDAD
Malla electrosoldada 4—10 para entrada	1.4 m2
Malla electrosoldada 4—10 para salida limpieza y rebose	1.4 m2
Hormigón f'c 240 kg/cm2 e=10cm	0.2 m3
Base de hormigón pobre f'c 140 kg/cm2	0.03 m3



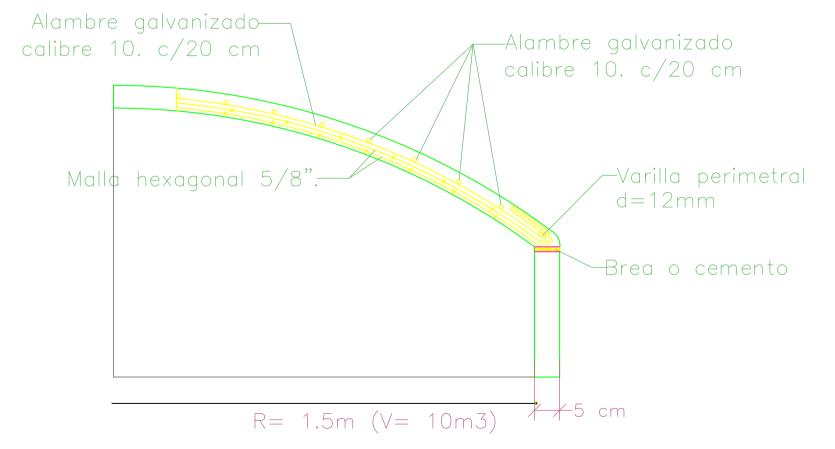
Universidad de Cuenca Facultad de ingeniería Escala: Las indicadas DIS: E.A.B.G, D.A.C.M DIB: E.A.B.G, D.A.C.M REV: D.B.I.M Edin Alejandro Bustamante González Diego Alonso Coronel Menendez Propuesta de mejoras del sistema de abastecimiento de agua de las comunidades de Patapamba y Caguarcorral lng. Diego Benjamín Idrovo Murillo

Detallamiento estructural del tanque de reserva de agua de 10m3 para Patapamba

FECHA: Junio, 2024

Lámina 2

UBICACIÓN:
PTAP Patapamba bajo
Coordenadas: 720943.00 m E 9672109.00 m S


720600 720800 721000 721200

9672200

9671800

9671600

DETALLE C Escala 1:8

Refuerzo cúpul	a
REFERENCIA	CANTIDAD
Alambre galvanizado radial calibre 10	15 m
Alambre galvanizado circunferencial calibre 10	45 m
Varilla perimetral d=12mm	10 m
Malla hexagonal 5/8".	9 m2
Recubrimiento impermeabilizante 2cm	9 m2
Hormigón 240 kg/cm2	0.6 m3

*Las cantidades de detalle pueden observarse dentro del presupuesto Escala: Las indicadas

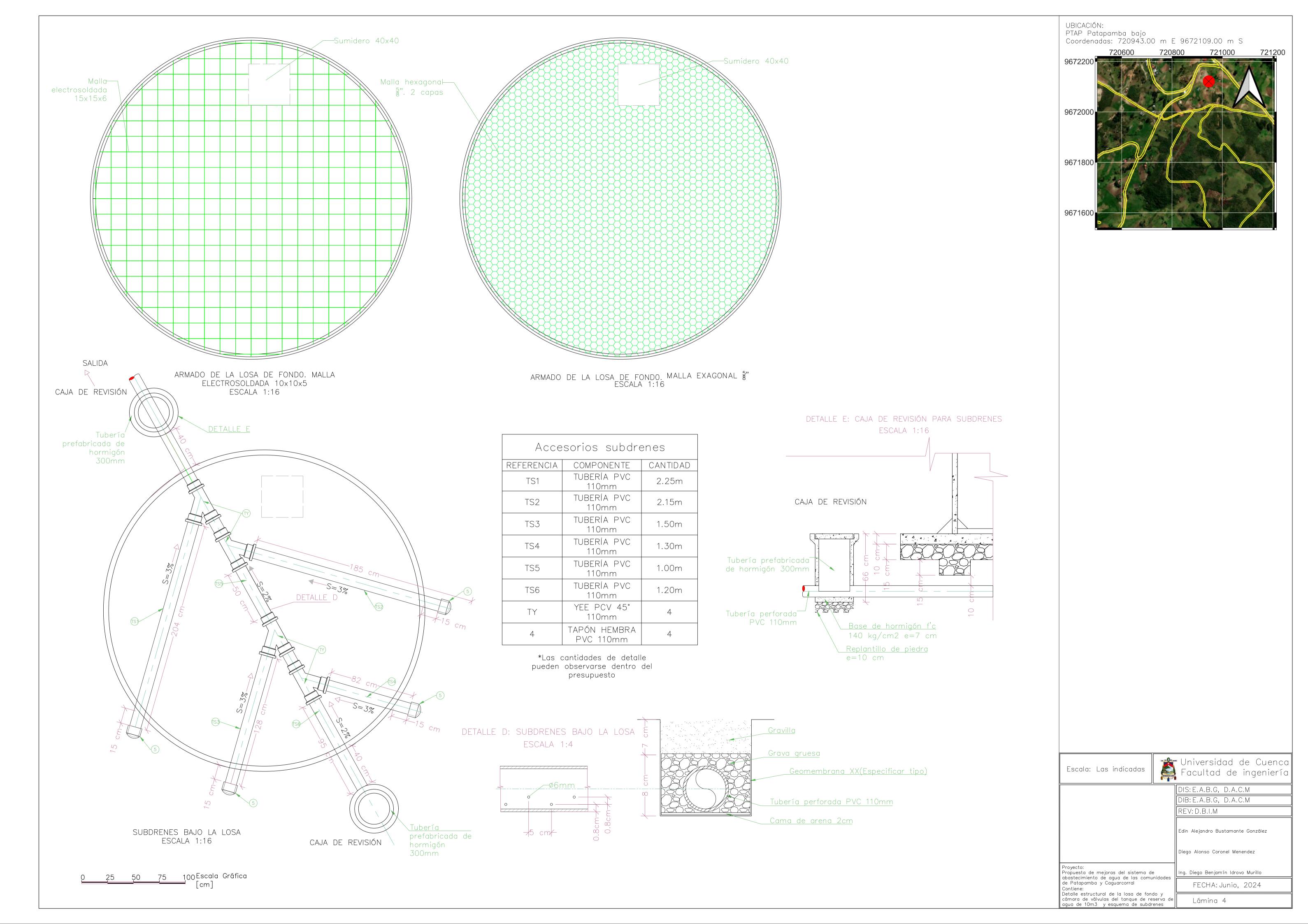
Provecto:

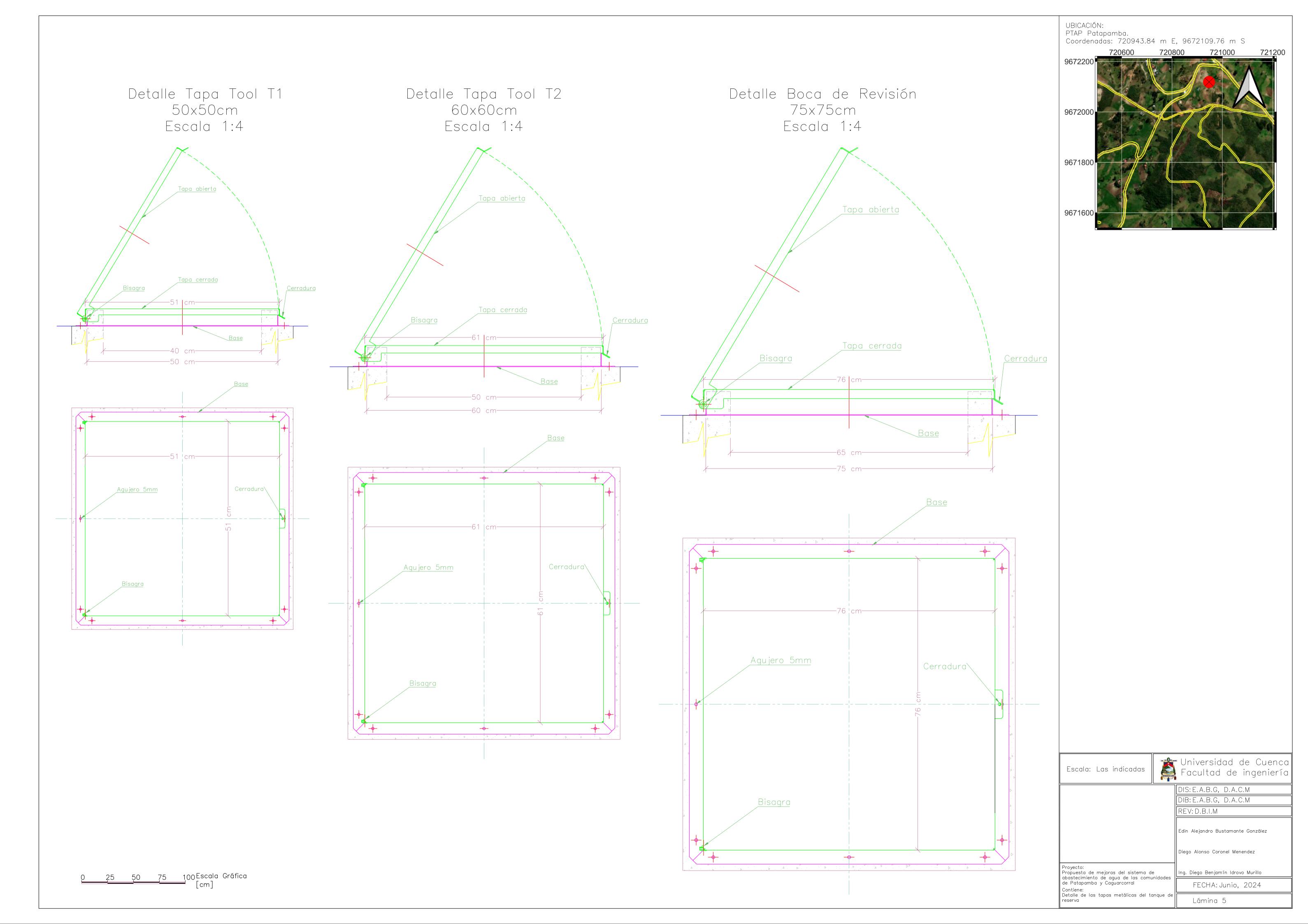
Universidad de Cuenca Facultad de ingeniería

DIS: E.A.B.G, D.A.C.M
DIB: E.A.B.G, D.A.C.M
REV: D.B.I.M

Edin Alejandro Bustamante González

Diego Alonso Coronel Menendez


Proyecto:
Propuesta de mejoras del sistema de abastecimiento de agua de las comunidades de Patapamba y Caguarcorral
Contiene:
Detallamiento estructural de la cúpula del tanque de reserva de agua de 10m3 para Patapamba


Ing. Diego Benjamín Idrovo Murillo

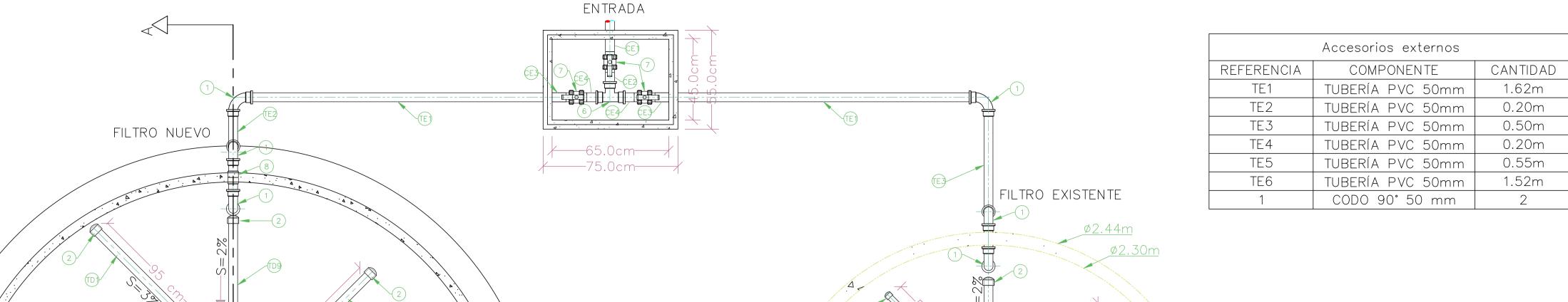

FECHA: Junio, 2024

Lámina 3

0 25 50 75 100 Escala Gráfica [cm]

	Accesorios drenes	
REFERENCIA	COMPONENTE	CANTIDAD
TD1, TD1'	TUBERÍA PVC 50mm	0.95m,0.51m
TD2, TD2'	TUBERÍA PVC 50mm	0.95m,0.70m
TD3, TD3'	TUBERÍA PVC 50mm	1.35m, 0.9m
TD4, TD4'	TUBERÍA PVC 50mm	1.35m, 1.0m
TD5, TD5'	TUBERÍA PVC 50mm	0.95m,0.8m
TD6, TD6'	TUBERÍA PVC 50mm	0.95m,0.8m
TD7, TD7'	TUBERÍA PVC 50mm	0.35m,0.1m
TD8, TD8'	TUBERÍA PVC 50mm	0.35m,0.1m
TD9, TD9'	TUBERÍA PVC 50mm	0.7m, 0.5m
TY	YEE PCV 45° 50mm	6
2	TAPÓN PVC 50mm	1

UBICACIÓN:

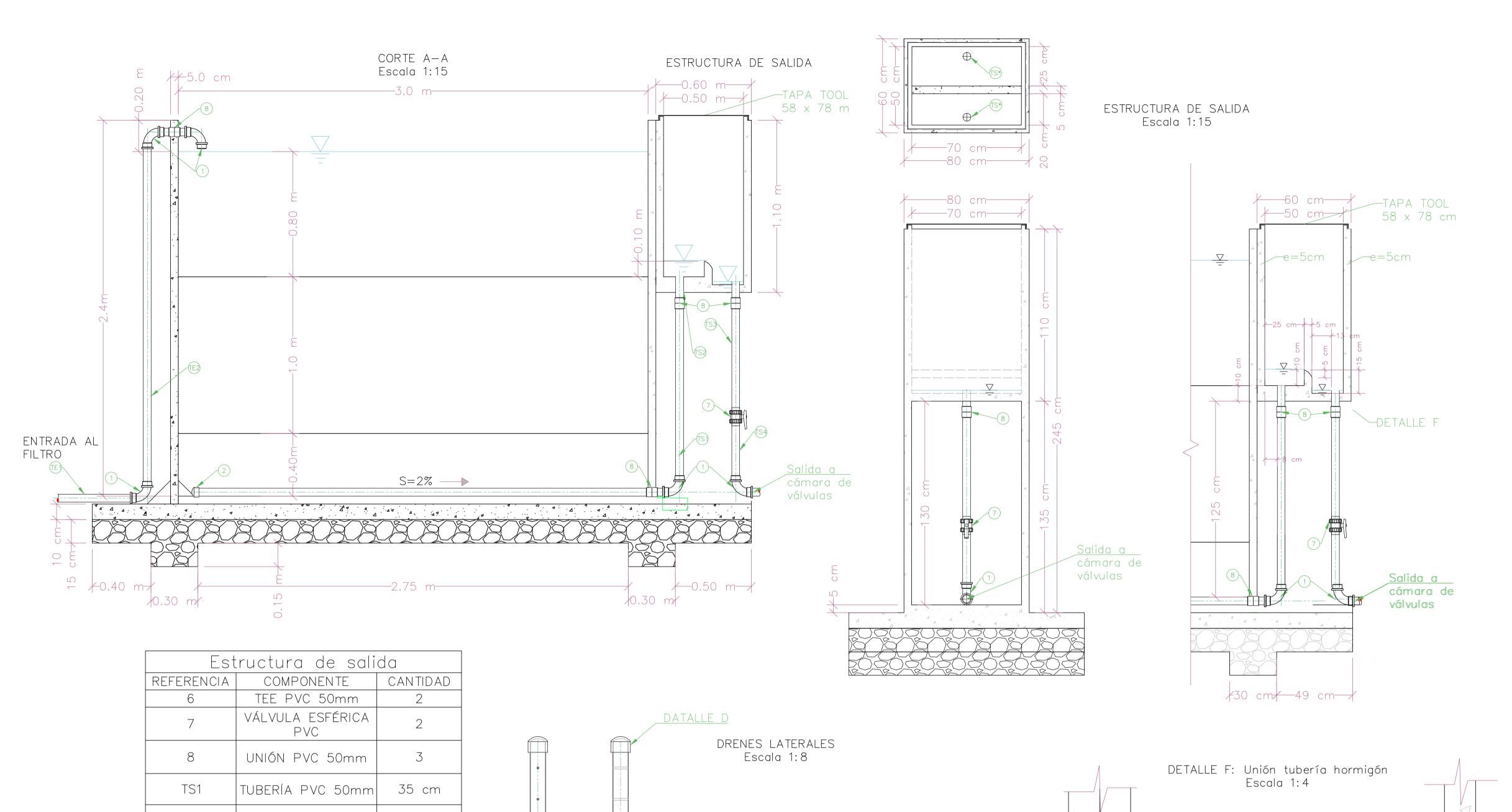
9671800

PTAP Chaguarcorral Patapamba Alto.

Coordenadas: 720799.00 m E, 9671813.00 m S

	EN IRADA		
	CE3 7 CE4 CF3	- F	REF
FILTRO NUEVO	TE)		
1 8 8	65.0cm 75.0cm	FILTRO EXISTENTE	
	A D Pa	© 1	
	2 2	2 Ø2.30m	
	Ø3.00m ï3.10m	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	2 - Ø 3.40m	8 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
		8 05 5 4 1	
	1. The state of th	4	
		SALIDA	
		WRA DE 66.0cm www.020	
TURA DE	Separación de 1cm n entre estructuras	ESTRUCUT	
DI NO TRUCCIO DE LA COMPANSION DE LA COM	CÁMARA DE VÁLVULAS DE	HES TES	
CÁMARA DE	LIMPIEZA 6 CO	CÁMARA DE	
VÁLVULAS DE SALIDA AL TANQUE DE RESERVA	7	VÁLVULAS DE SALIDA AL TANQUE DE RESERVA	
30.0cm 40.0cm	65.0cm 75.0cm		

CÁMARA DE VÁLVULAS DE


Cámara de válvulas de salida al tanque de reserva (cantidades por cada cámara)					
REFERENCIA	COMPONENTE	CANTIDAD			
6	TEE 50mm	1			
7	VÁLVULA ESFÉRICA	1			
CS1	TUBERÍA PVC 50mm	10 cm			
CS2	TUBERÍA PVC 50mm	7 cm			
CS3	TUBERÍA PVC 50mm	5 cm			
CS4	TUBERÍA PVC 50mm	13 cm			
	TAPA TOOL 50x35 cm	1			

Cámara de válvulas de entrada						
REFERENCIA	COMPONENTE	CANTIDAD				
6	TEE 50mm	1				
7	VÁLVULA ESFÉRICA	3				
CL1	TUBERÍA PVC 50mm	12 cm				
CL2	TUBERÍA PVC 50mm	5 cm				
CL3	TUBERÍA PVC 50mm	13 cm				
CL4	TUBERÍA PVC 50mm	5 cm				
	TAPA TOOL 50x70 cm	1				

Cámara de válvulas de limpieza						
6	TEE 50mm	1				
7	VÁLVULA ESFÉRICA	3				
CL1	TUBERÍA PVC 50mm	12 cm				
CL2	TUBERÍA PVC 50mm	5 cm				
CL3	TUBERÍA PVC 50mm	13 cm				
CL4	TUBERÍA PVC 50mm	5 cm				
4	TUBERÍA PVC 50mm	xxm				
	TAPA TOOL 50x70 cm	1				

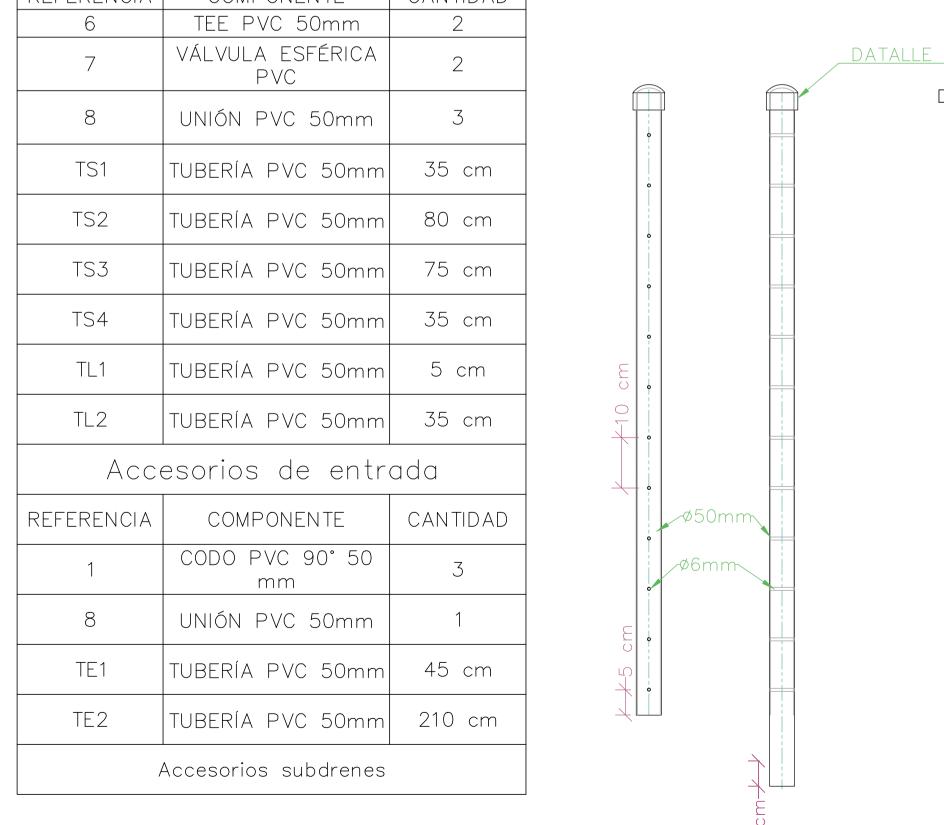
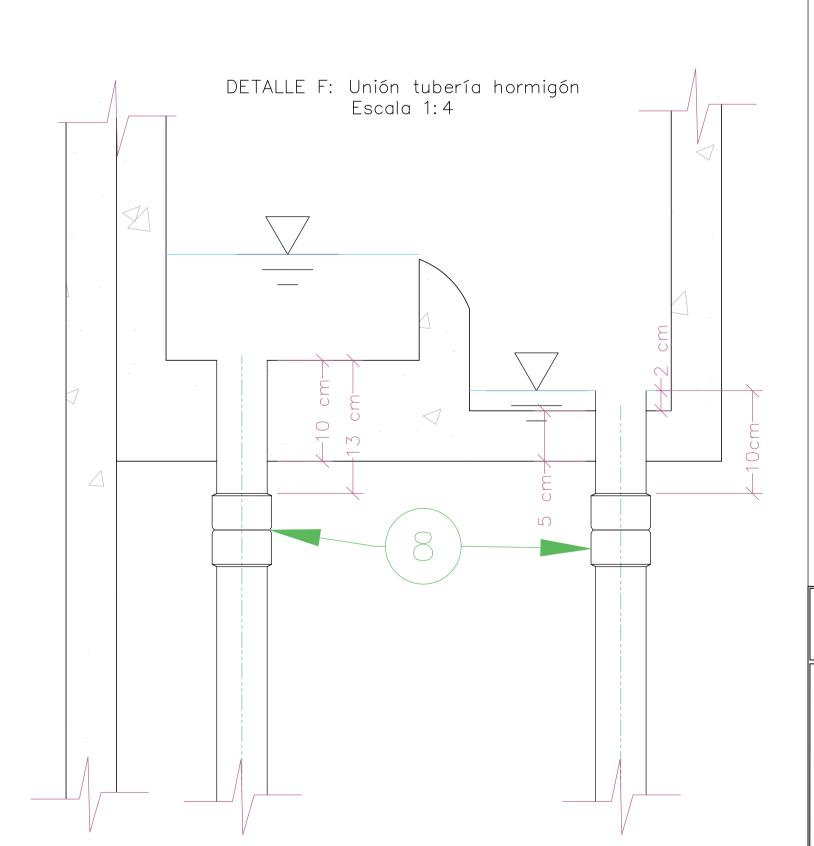
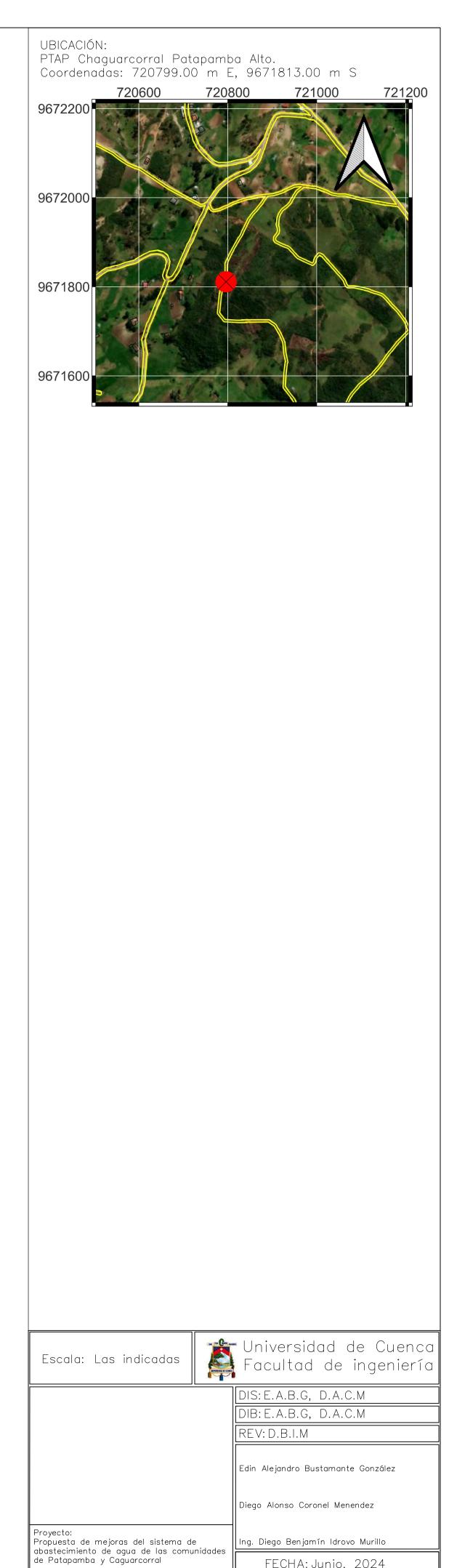

Universidad de Cuenca Facultad de ingeniería Escala: 1:15 DIS: E.A.B.G, D.A.C.M DIB: E.A.B.G, D.A.C.M REV: D.B.I.M Edin Alejandro Bustamante González Diego Alonso Coronel Menendez Propuesta de mejoras del sistema de abastecimiento de agua de las comunidades de Patapamba y Caguarcorral lng. Diego Benjamín Idrovo Murillo FECHA: Junio, 2024 Propuesta sistema de dos filtros lentos de arena para PTAP Chaguarcorral Patapamba

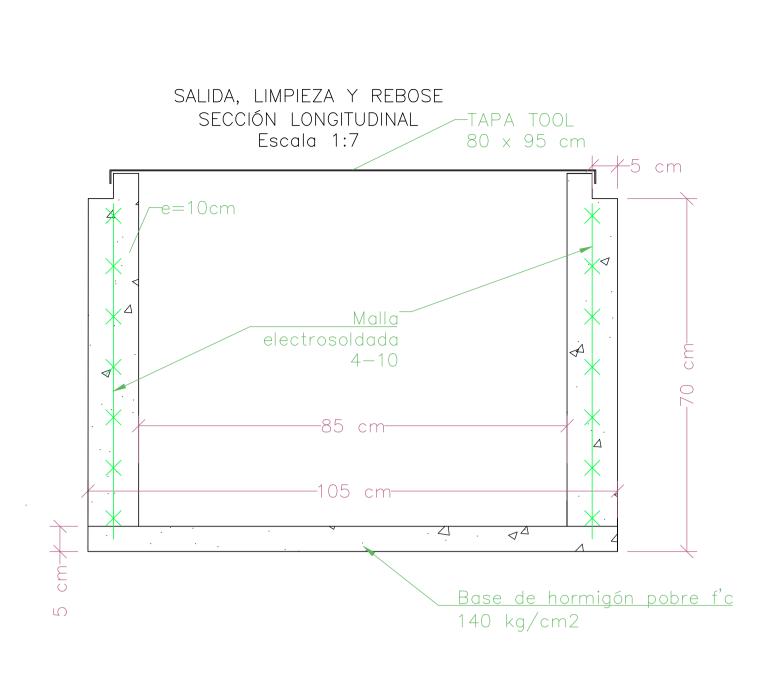
Lámina 6

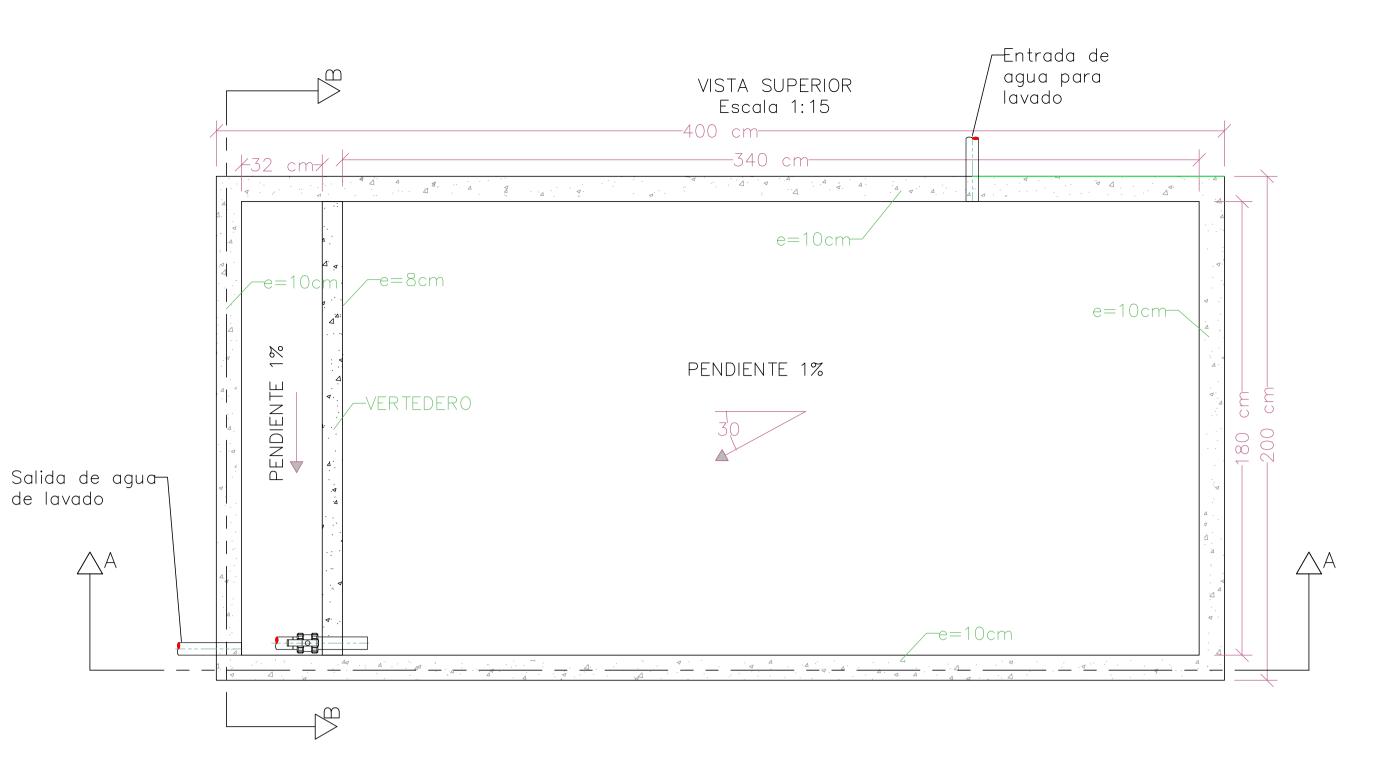


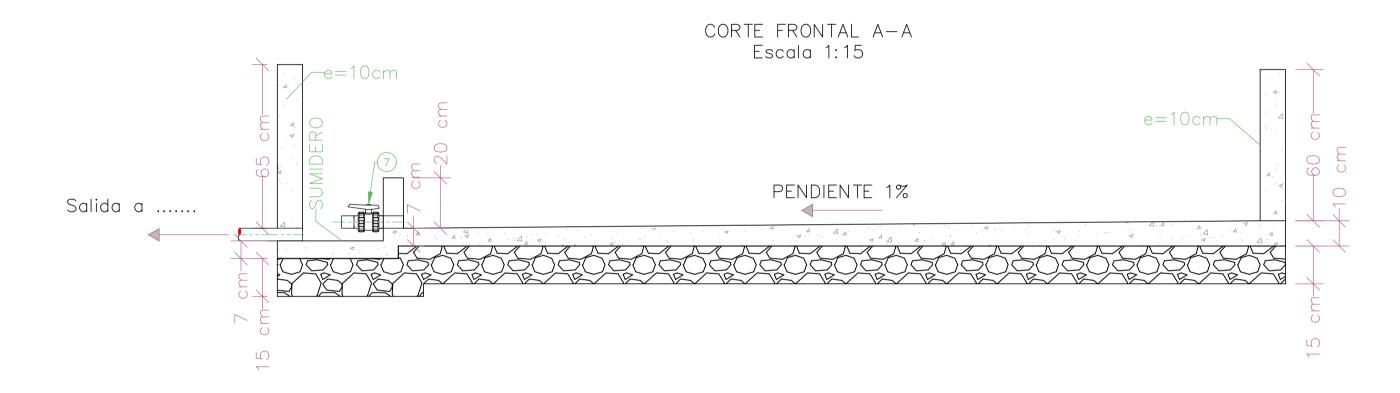

DETALLE D

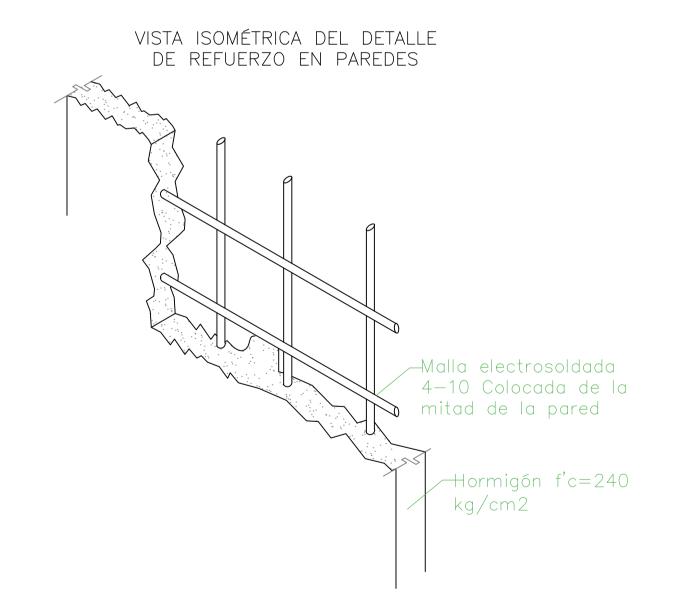
∕ø6mm

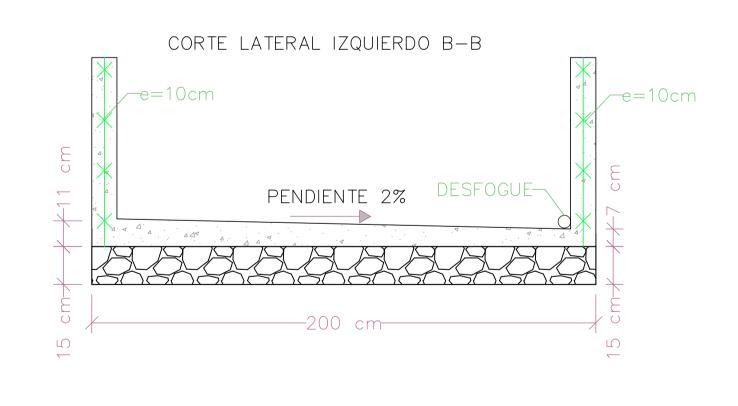
25 50 75 100 Escala Gráfica

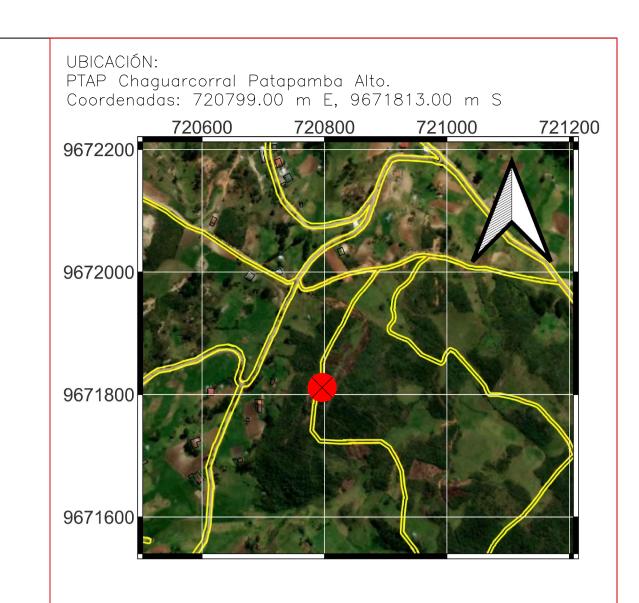


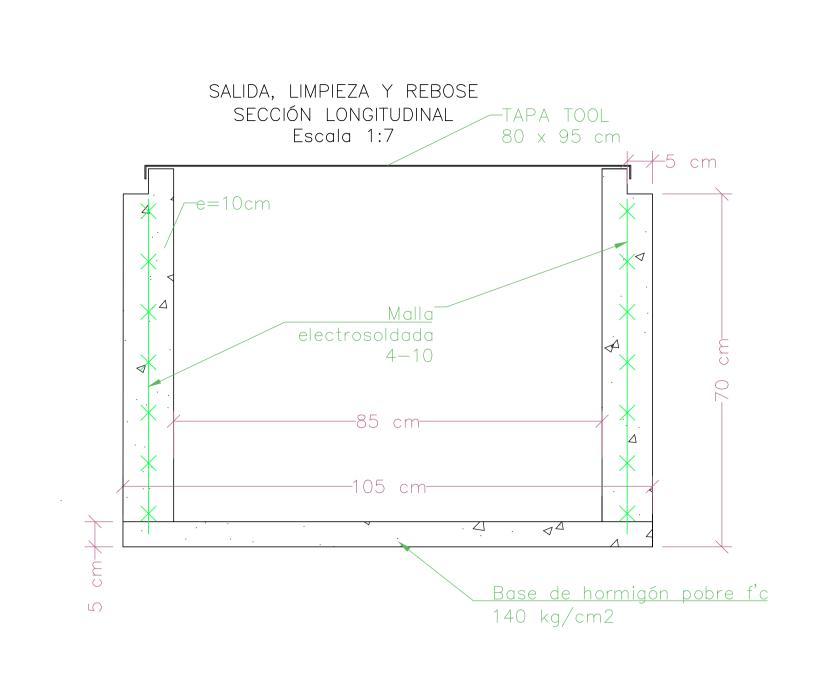


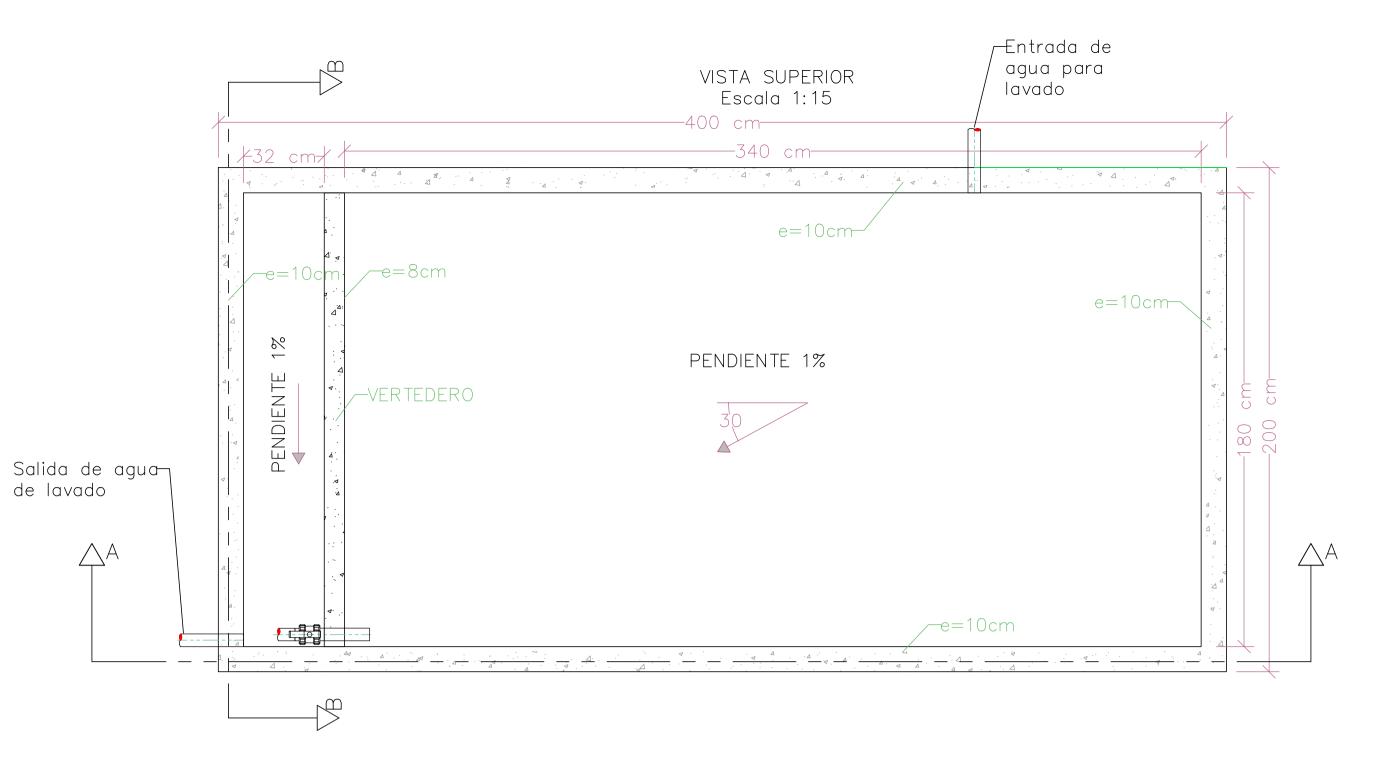

FECHA: Junio, 2024

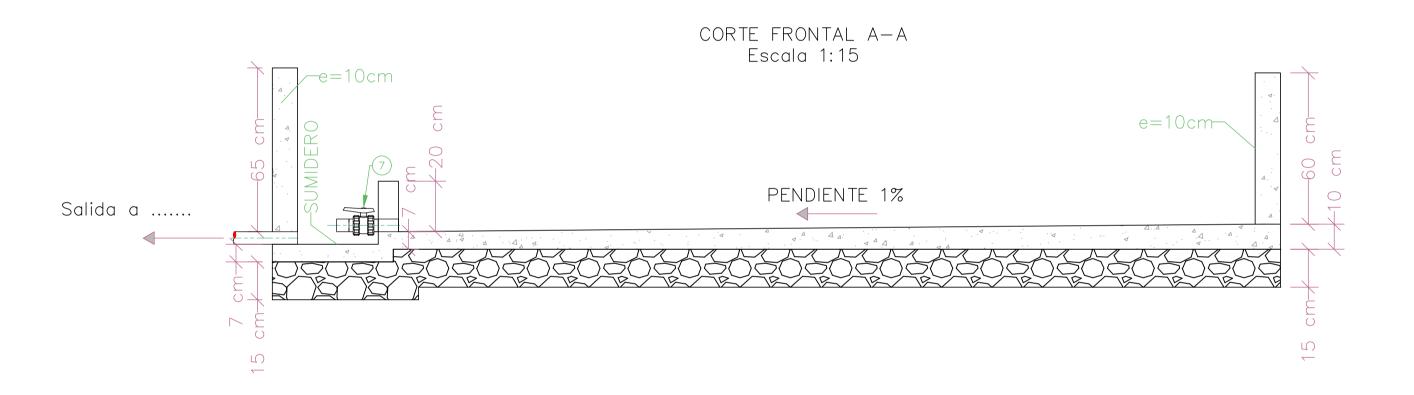

Lámina 7

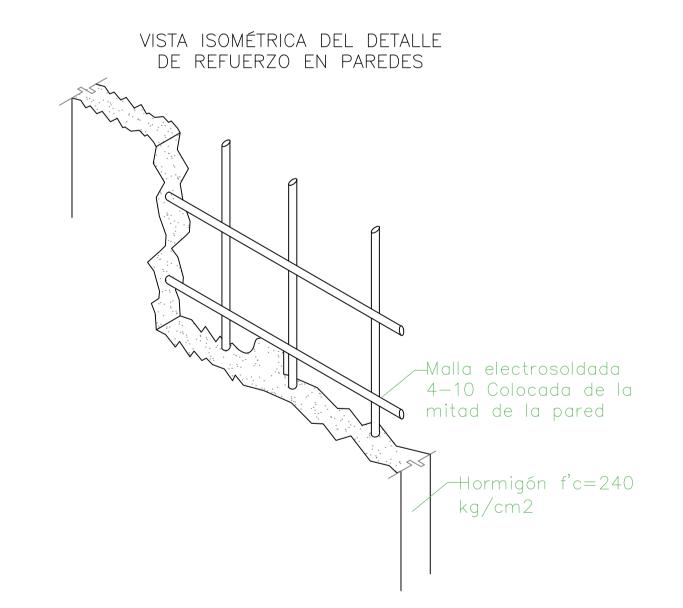

Contiene:
Detalle de la propuesta de nuevo filtro para
la PTAP Chaguarcorral Patapamba alto

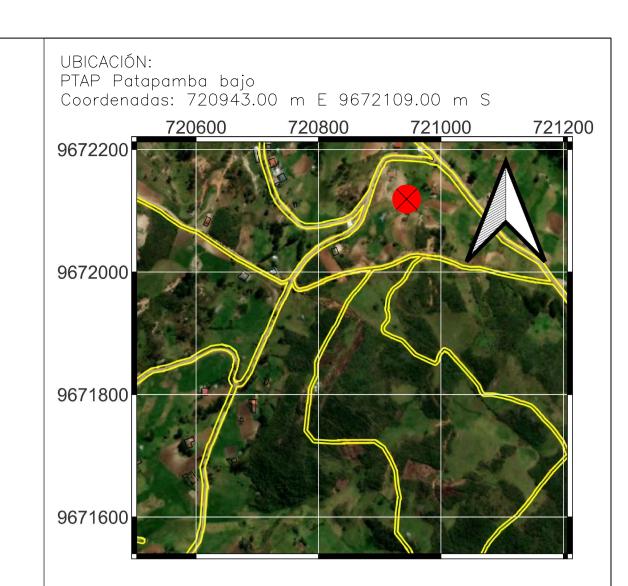







Accesorios cámara de lavado				
REFERENCIA	COMPONENTE	CANTIDAD		
7	VÁLVULA ESFÉRICA PVC 50mm	1		
T50	TUBERÍA PVC 50mm	0.3m		


Refuerzo paredes laterales		
REFERENCIA	CANTIDAD	
Malla electrosoldada 4—10	9.25 m2	
Hormigón f'c 240 kg/cm2 e=10cm	1.5 m3	
Base de hormigón pobre f'c 140 kg/cm2	0.8 m3	



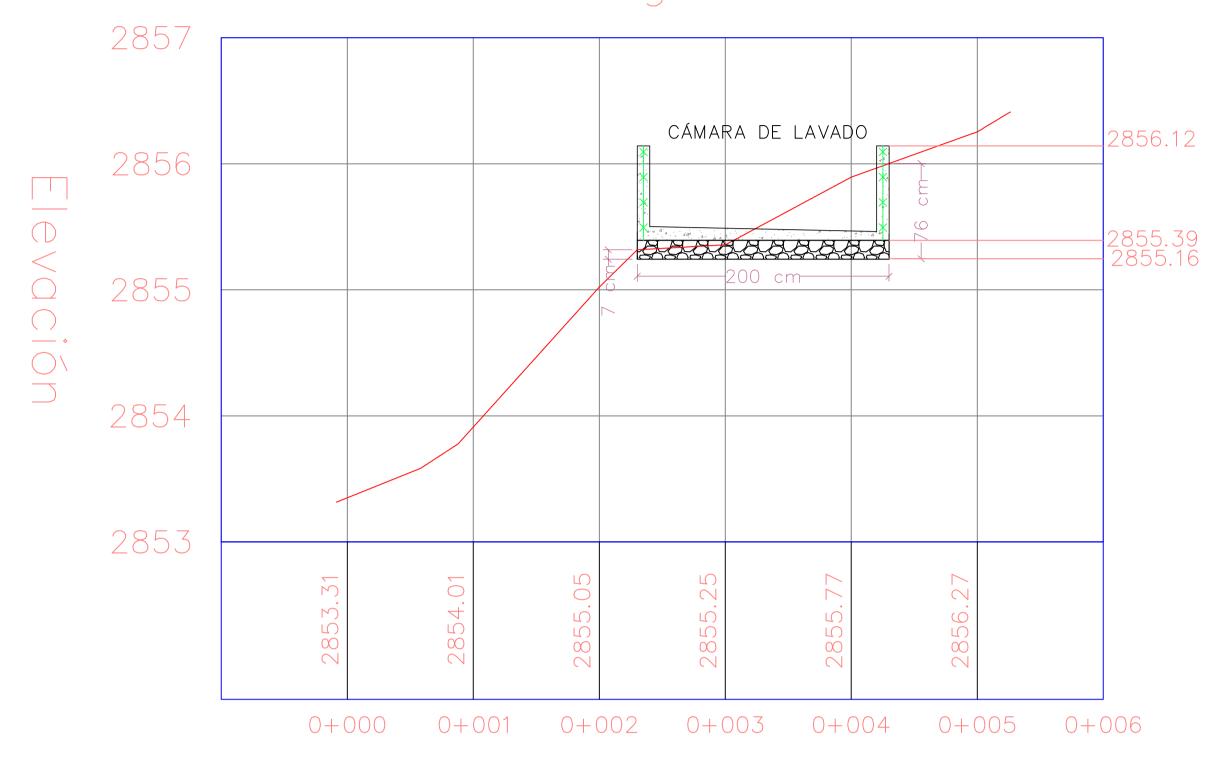
Accesorios cámara de lavado			
REFERENCIA	COMPONENTE	CANTIDAD	
7	VÁLVULA ESFÉRICA PVC 50mm	1	
T50	TUBERÍA PVC 50mm	0.3m	

Refuerzo paredes laterales		
REFERENCIA	CANTIDAD	
Malla electrosoldada 4—10	9.25 m2	
Hormigón f'c 240 kg/cm2 e=10cm	1.5 m3	
Base de hormigón pobre f'c 140 kg/cm2	0.8 m3	

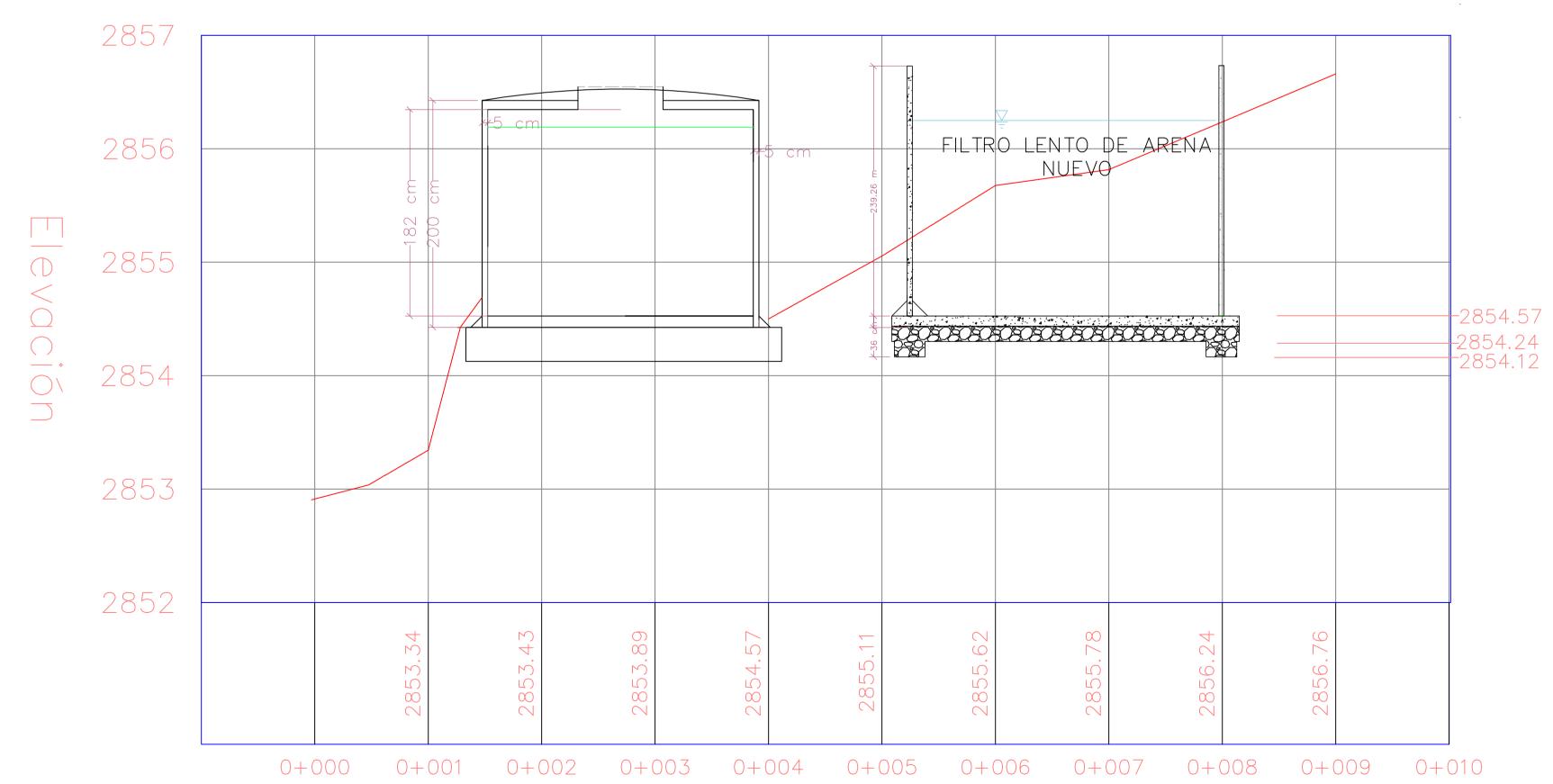
Universidad de Cuenca Facultad de ingeniería Escala: Las indicadas

Propuesta Cámara de lavado para material del filtro lento de arena Patapamba

DIS: E.A.B.G, D.A.C.M DIB: E.A.B.G, D.A.C.M REV: D.B.I.M

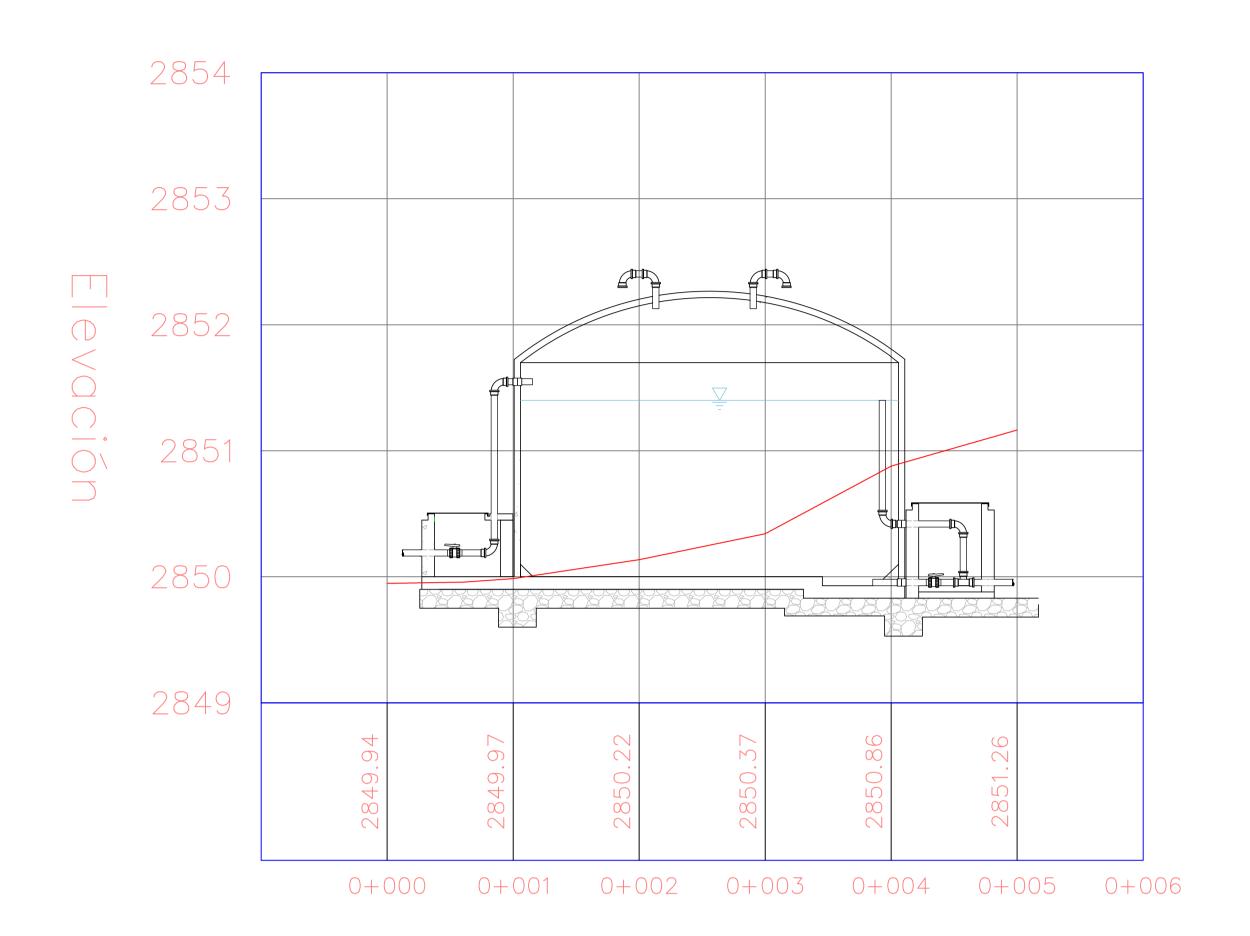

Edin Alejandro Bustamante González

Diego Alonso Coronel Menendez

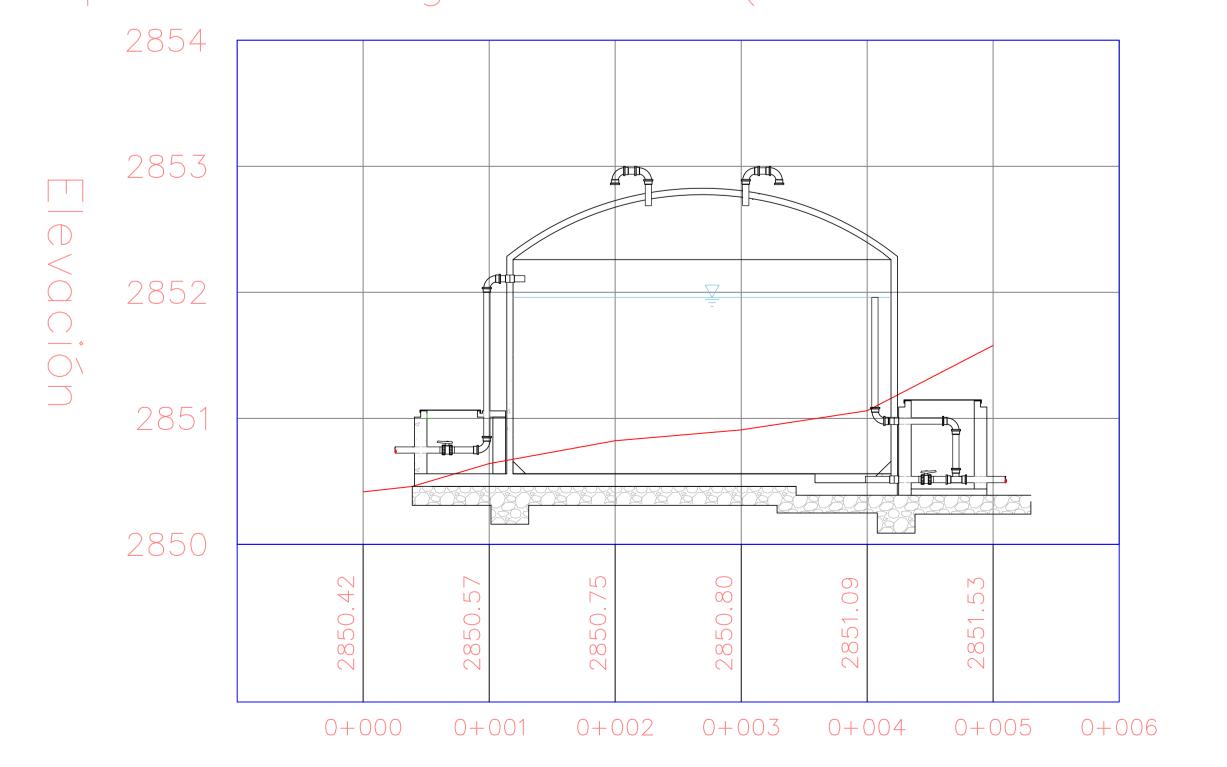

Lámina 9

Propuesta de mejoras del sistema de abastecimiento de agua de las comunidades de Patapamba y Caguarcorral Ing. Diego Benjamín Idrovo Murillo FECHA: Junio, 2024

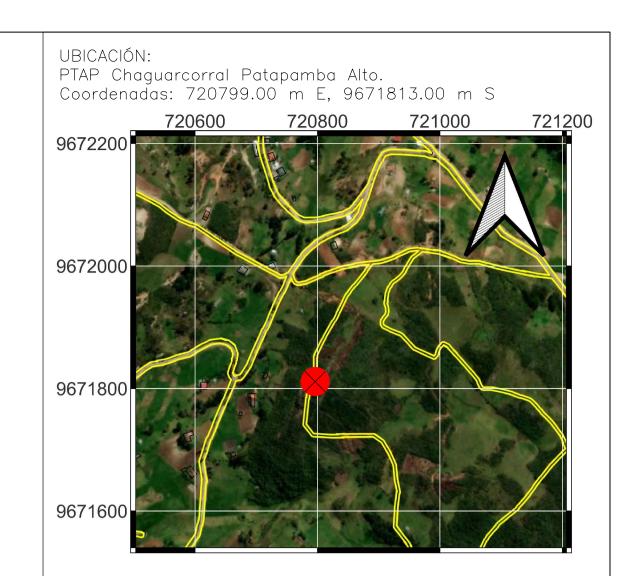
Perfil de terreno cámara de lavado PTAP Patapamba Chaguarcorral

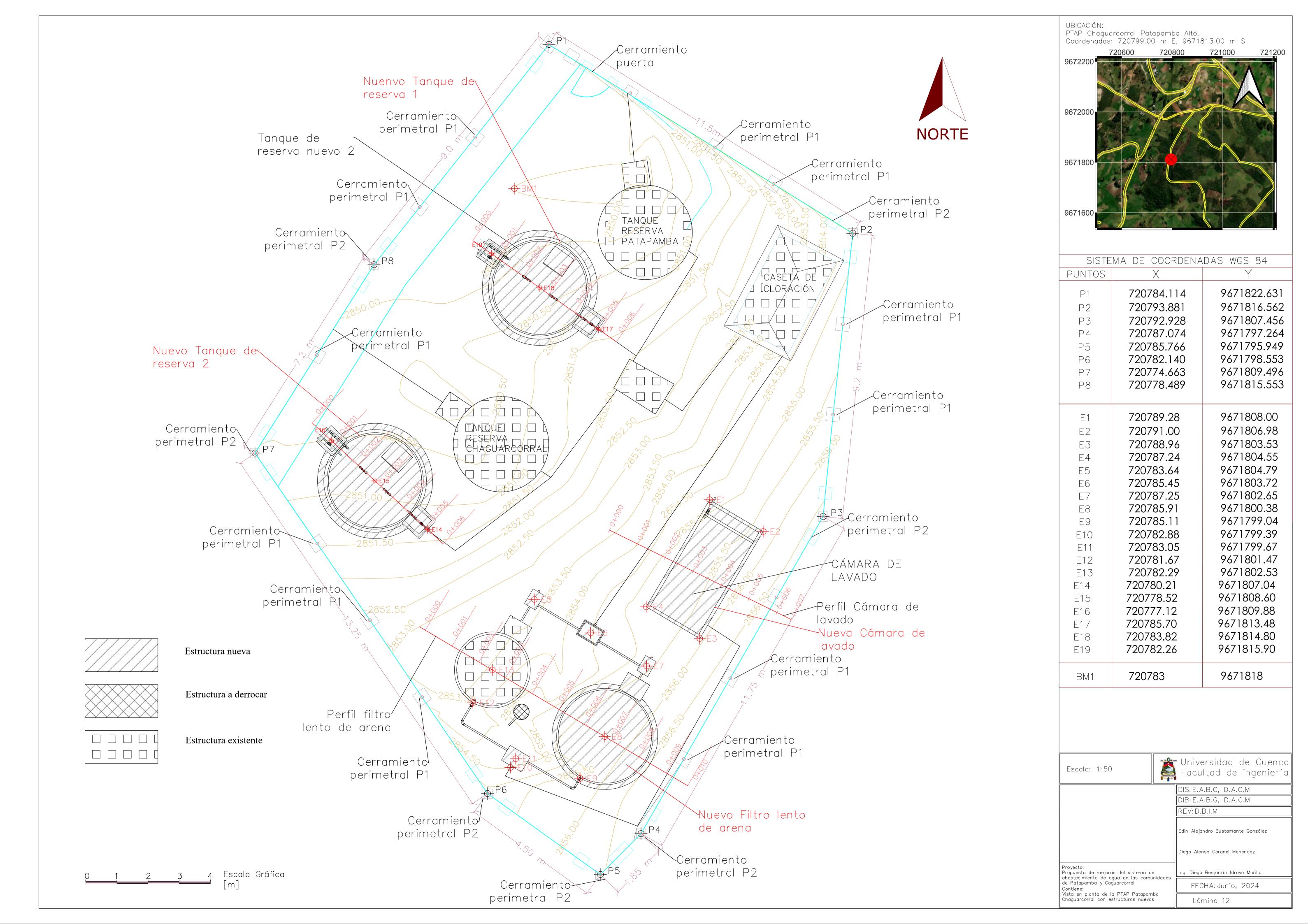


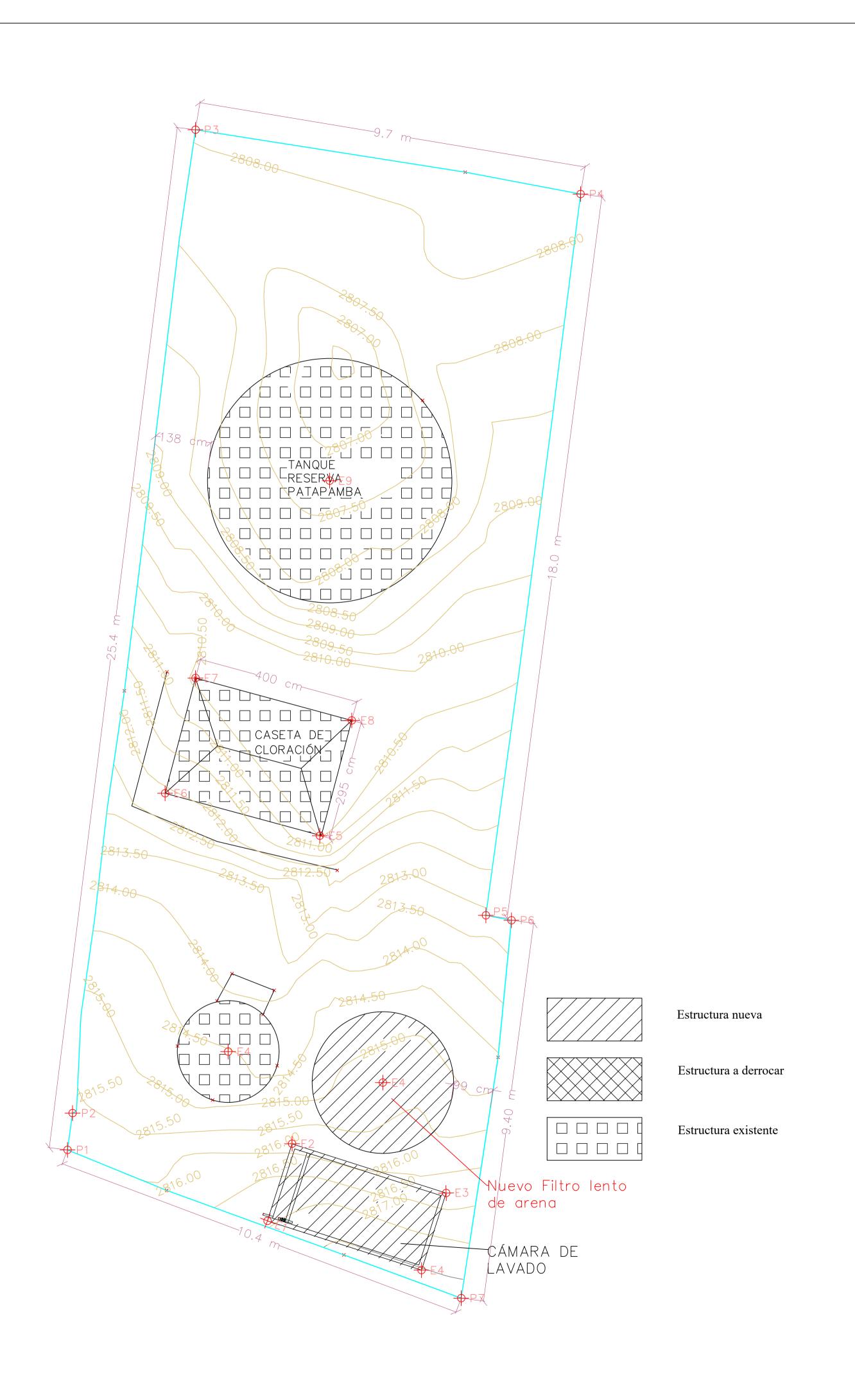
Perfil de terreno filtro lento PTAP Patapamba Chaguarcorral

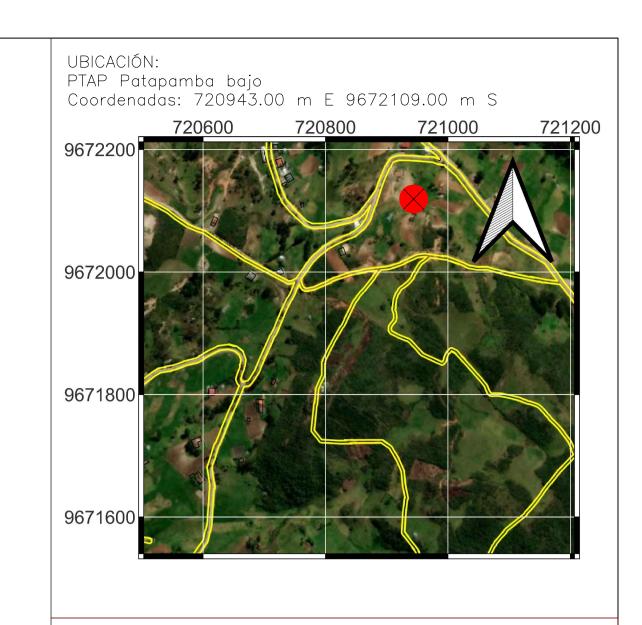


PTAP Chaguarcorral Patapamba Alto. Coordenadas: 720799.00 m E, 9671813.00 m S


Perfil de terreno Tanque de reserva 1 nuevo PTAP Patapamba Chaguarcorral (PATAPAMBA)




Perfil de terreno Tanque de reserva 2 nuevo PTAP Patapamba Chaguarcorral (CHAGUARCORRAL)


100 Escala Gráfica

Escala: 1:60

Universidad de Cuenca Facultad de ingeniería DIS: E.A.B.G, D.A.C.M DIB: E.A.B.G, D.A.C.M REV: D.B.I.M

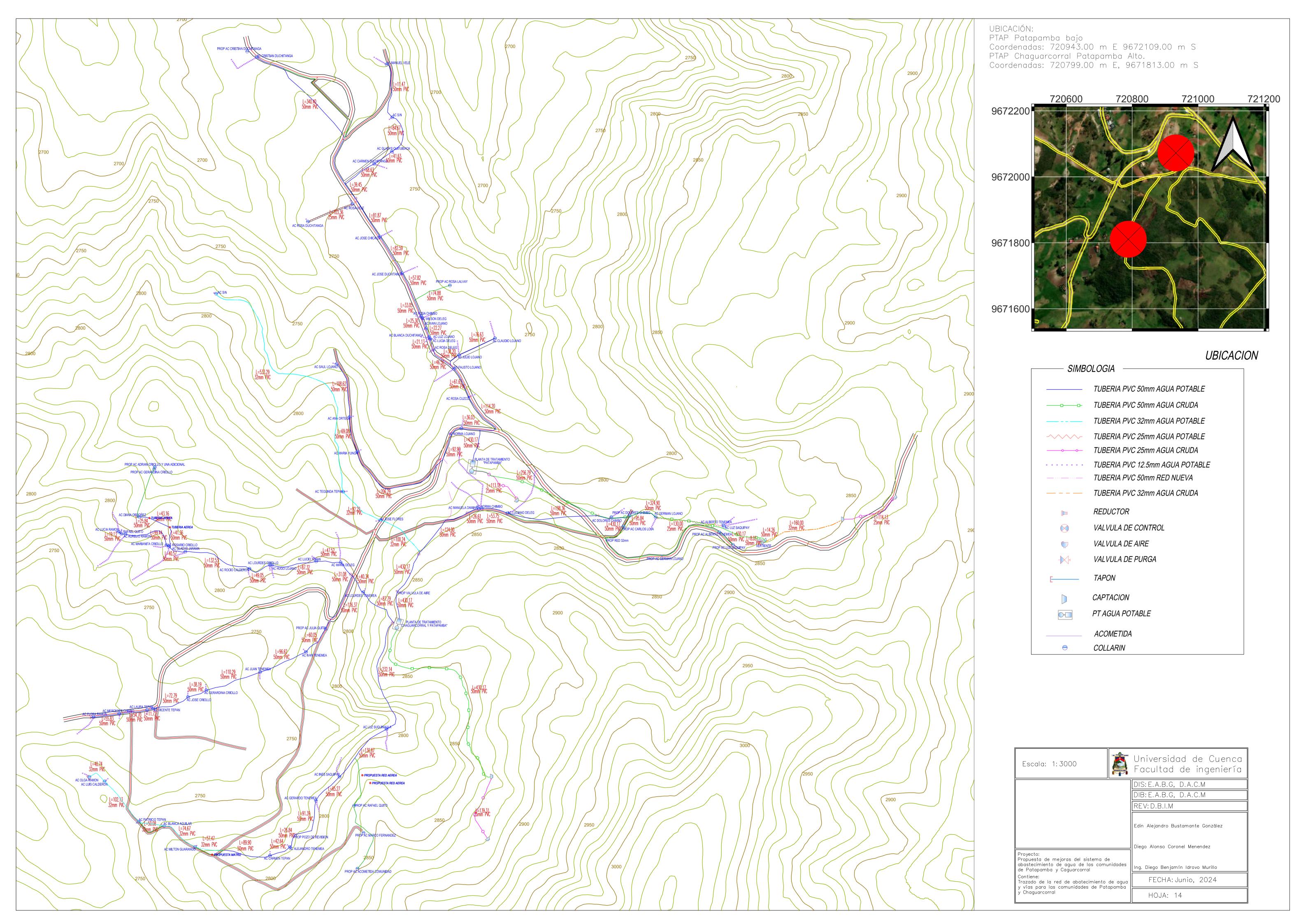

Edin Alejandro Bustamante González

Lámina 13

Diego Alonso Coronel Menendez

e mejoras del sistema de Ing. Diego Benjamín Idrovo Murillo ECHA: Junio, 2024

Propuesta de mejoras del sistema de abastecimiento de agua de las comunidades de Patapamba y Caguarcorral
Contiene:
Vista en planta de la PTAP Patapamba bajo con estructuras nuevas

