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Resumen

Actualmente, el mundo esta en proceso de transicién hacia un entorno interconectado, lo que
ha aumentado la disponibilidad de grandes volumenes de datos y ha subrayado la importancia
de proteger la privacidad. En el ambito de la movilidad, los Intelligent Transportation Systems
(ITS) son un ejemplo significativo de como se genera una gran cantidad de datos en redes

interconectadas.

Este trabajo de titulacién propone de arquitectura basada en técnicas de aprendizaje auto-
matico, especificamente en el Aprendizaje Federado (FL), para mejorar la privacidad de los
usuarios de ITS, con un enfoque en la reduccion de emisiones de CO, en Cuenca, Ecuador.
La metodologia empleada permite que los datos permanezcan en los dispositivos locales de
los usuarios, compartiendo unicamente los parametros del modelo, lo que garantiza una mayor
proteccion de la privacidad. El uso de diversos algoritmos de aprendizaje automatico facilita la
segmentacion y clasificacién de datos, reduciendo asi el tiempo de espera de los vehiculos y

contribuyendo a la disminucion de las emisiones de COs.

Los resultados obtenidos muestran que el FL consume mas recursos en comparacion con el
Reinforcement Learning (RL). El uso promedio de CPU en FL es notablemente mayor, con
valores cercanos al 41 %, en contraste con el 16.69 % del RL. Ademas, el FL utiliza un 8.52 %
mas de Memoria RAM que el RL. Esto indica que, aunque el FL ofrece una mayor proteccion
de la privacidad de los datos, puede afectar la eficiencia del sistema. Asimismo, los resultados
revelan que en el contexto de la privacidad diferencial, un mayor valor de ¢ esta asociado
con una menor privacidad. Por lo tanto, es fundamental encontrar un valor 6ptimo de ¢ que
permita equilibrar la proteccién de la privacidad con la eficiencia del sistema en el Aprendizaje

Federado.

Palabras clave del autor: aprendizaje federado, privacidad de datos, transportacion

urbana, reduccidon de emisiones
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Abstract

Currently, the world is transitioning towards an interconnected environment, which has increa-
sed the availability of large volumes of data and highlighted the importance of protecting pri-
vacy. In the realm of mobility, ITS are a significant example of how large amounts of data are

generated in interconnected networks.

This thesis proposes an architecture based on machine learning techniques, specifically FL, to
enhance the privacy of ITS users, with a focus on reducing C'O, emissions in Cuenca, Ecuador.
The methodology employed allows data to remain on users’ local devices, sharing only model
parameters, thus ensuring greater privacy protection. The use of various machine learning
algorithms facilitates data segmentation and classification, thereby reducing vehicle wait times

and contributing to decreased C'O, emissions.

The results obtained show that FL consumes more resources compared to RL. The average
CPU usage in FL is significantly higher, with values close to 41 %, in contrast to 16.69 % in
RL. Additionally, FL uses 8.52 % more RAM than RL. This indicates that, while FL offers bet-
ter privacy protection, it can impact system efficiency. Furthermore, the results reveal that in
the context of differential privacy, a higher value of ¢ is associated with lower privacy. Therefo-
re, finding an optimal e value is crucial to balance privacy protection with system efficiency in

Federated Learning.

Author Keywords: federated learning, data privacy, urban transportation, emission

re-duction
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1. Generalidades

En una sociedad cada vez mas interconectado, la gestion eficiente de datos y la proteccion
de la privacidad se han convertido en prioridades cruciales. Los Sistemas de Transporte Inteli-
gente (ITS), que utilizan tecnologias avanzadas para optimizar el flujo de trafico y la seguridad
vial, son un claro ejemplo de cédmo la tecnologia puede transformar el transporte urbano. No
obstante, esta transformacion viene acompanada de desafios significativos, particularmente

en lo que respecta a la proteccién de la privacidad de los datos de los usuarios.

En este capitulo, se abordara cémo los ITS, al generar y manejar grandes voliumenes de datos,
enfrentan el dilema de equilibrar la funcionalidad con la privacidad. A través de la introduccién
de técnicas de aprendizaje automatico y en particular el Aprendizaje Federado (FL), se explora
una solucién innovadora que promete mitigar estos desafios. La seccion que sigue proporciona
una vision detallada del papel de los ITS en la movilidad moderna y cémo el FL puede ser una
herramienta clave para mejorar la privacidad sin comprometer la eficiencia del sistema. Ade-
mas, se presentaran los objetivos de este trabajo de titulacion, el alcance de la investigacion,

la justificacion del estudio y los antecedentes relevantes.

1.1. Introduccion

El mundo actual se encuentra inmerso en una profunda evolucion hacia un entorno altamente
interconectado, por lo que existe una disponibilidad de cantidades masivas de datos, esto hace
qgue la proteccion de privacidad de las personas sea mas necesaria que nunca. En el campo
de la movilidad, los Sistemas de Transporte Inteligente (conocidos por sus siglas en inglés
como ITS), que han ganado gran importancia en los ultimos afios, son un claro ejemplo de la

produccion de datos en redes interconectadas [1].

Los ITS estan fundamentados en sistemas de comunicaciones inaldmbricas como Dedica-
ted Short-Range Communications (DSRC) y New Radio - Cellular Vehicle-to-Everything (NR-
CV2X). Latecnologia DSRC esta basada en el estandar IEEE 802.11p [2]. Tiene como objetivo
la comunicacion entre vehiculos para la prevencion de colisiones. Usa los datos de trayecto-
ria de vehiculos vecinos y considerando su propia trayectoria calcula la probabilidad de que
exista una colisién [3]. NR-CV2X se define como un progreso avanzado en las comunica-
ciones Vehicle-to-Everything (V2X) en el marco de la tecnologia de quinta generacién (5G),
particularmente en el ambito del 3rd Generation Partnership Project (3GPP). Este enfoque,

fundamentado en la tecnologia de Quinta Generacion (5G) NR (New Radio), presenta mejoras
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sustanciales en la capacidad de comunicacion V2X. Estas mejoras incluyen técnicas robustas
de conformacién de haz como la conformacion de haz de Capon que minimizan el impacto de
incertidumbres y ruido, y el uso de Filtros de Kalman Extendidos (EKF) para un seguimiento

mas preciso de los vehiculos en movimiento. [4]

Las herramientas usadas en el despliegue de ITS se dedican a la recopilacion, procesamiento,
integracion y provision de informacion para operadores, autoridades de trafico, proveedores de
transporte publico y comercial, asi como para usuarios individuales [5]. Estos datos incluyen in-
formacién critica, como registros de tiempo, coordenadas geograficas, altitud [6], areas de alta
densidad de trafico, longitud de los trayectos y velocidad promedio [7]. La gestion adecuada de
la privacidad en relacion con estos datos es de vital importancia, ya que pueden revelar datos
sensibles, como la ubicacion en tiempo real de individuos, sus rutas habituales y velocidades
de desplazamiento. Por tanto, se vuelve esencial garantizar que estos datos estén protegidos

de posibles amenazas.

El uso de simuladores de trafico es una herramienta pertinente en la optimizacion de procesos
de transporte para disefiar nuevas infraestructuras viales y reconstruir las existentes. A medida
que los sistemas de transporte se vuelven mas complejos y congestionados, las simulaciones
de trafico se utilizan cada vez mas. Los simuladores de trafico permiten modelar una versién
digital de una ciudad, creando un modelo funcional del trafico que corresponde al movimiento
real en las carreteras. Esto es fundamental, ya que probar nuevas estrategias y soluciones en
un entorno real puede ser costoso, arriesgado y logisticamente complicado. Los simuladores
ofrecen una forma segura y eficiente de evaluar y mejorar las infraestructuras y politicas de

trafico sin interferir con el trafico real [8].

Los datos generados por los ITS requieren ser analizados por herramientas externas, como
lo es Simulation of Urban MObility (SUMO). SUMO es un paquete de simulacién de trafico
de cédigo abierto que permite modelar y simular la movilidad urbana con base en datos de
diferentes fuentes de entrada. Se utiliza para analizar y comprender patrones de trafico, disenar
soluciones para la gestion eficiente del trafico y evaluar el impacto de diversas estrategias de
movilidad en entornos urbanos. Ademas, dispone de un modelo de emision de ruido, un modelo

de emision de contaminantes, consumo de combustible y consumo de energia [9].

La aplicacion de Inteligencia Artificial (IA) y Machine Learning (ML) en ITS puede revolucionar
estos sistemas al mejorar la gestion del trafico, prevenir accidentes y optimizar el consumo de
recursos [10]. Sin embargo, estos avances no estan exentos de desafios, especialmente en

términos de privacidad y seguridad. En entornos de comunicaciones inalambricas moviles, la
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informacion de los vehiculos puede estar expuesta a riesgos constantes de interceptacion o
manipulacion. Este problema se agrava en aplicaciones que requieren compartir datos entre

multiples dispositivos y sistemas [11].

En este escenario de creciente interconexién y datos masivos, el FL, emerge como una solu-
cion prometedora para la preservacion de la privacidad de los usuarios de los ITS. El FL, al
operar con algoritmos de inteligencia artificial distribuida, ha demostrado su capacidad para
preservar la privacidad de los datos sin comprometer su utilidad [1]. Esta metodologia permite
el analisis y la generacion de conocimiento sin la necesidad de compartir informacion sensible
de manera centralizada. Dentro del marco de los ITS, el enfoque del FL busca garantizar la
proteccion de los datos sensibles [7], mientras se mantiene la capacidad de analisis para lograr

una gestion segura y avanzada del trafico vehicular.

1.2. Objetivos

1.2.1. Objetivo General

Disefiar una arquitectura basada en técnicas de aprendizaje automatico, con un enfoque en
el Aprendizaje Federado (FL), para mejorar la privacidad de los usuarios en el contexto de los

Sistemas de Transporte Inteligente (ITS).

1.2.2. Objetivos Especificos

= Recopilar informacién en la literatura cientifica acerca de los potenciales problemas a los

que se enfrentan los ITS respecto a la privacidad de datos.

= Evaluar diferentes técnicas de aprendizaje de maquina aplicadas a los ITS, incluyendo

aprendizaje supervisado, no supervisado y por refuerzo.

m Definir métricas para medir la privacidad y el rendimiento del sistema, estableciendo un
equilibrio entre la recopilacion de datos necesarios para el funcionamiento eficiente del

ITS y la proteccion de la privacidad de los usuarios.

= Implementar el sistema de control de emisiones para la zona urbana de Cuenca en el

entorno simulado.

= Disefar y evaluar la arquitectura que mejora la privacidad de los ITS, utilizando simu-

lacion como enfoque principal haciendo uso de la herramienta SUMO y el Framework
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Flower FL, implementando una API de alto nivel utilizando Python Traffic Control Interfa-

ce (TraCl) para la comunicacién entre estos.

1.3. Alcance

El presente trabajo de titulacion se enfoca en la aplicacion de técnicas de aprendizaje automa-
tico, con énfasis en el FL, como una solucién para abordar los desafios de privacidad en los
ITS.

Se propone llevar a cabo una comparacion entre un ITS que emplea técnicas de aprendizaje
de maquina centralizadas y otro que utiliza técnicas de aprendizaje de maquina distribuidas.
La metodologia implica un enfoque experimental utilizando el software de simulacién SUMO y
Flower FL. Se evaluaran los algoritmos propuestos utilizando métricas convencionales, como
lo son el consumo de recursos, privacidad y seguridad. Ademas, se establecera una interfaz
de programacion de aplicaciones (API) entre SUMO y Flower para llevar a cabo la simulacién

correspondiente.

1.4. Justificacion

El FL se elige debido a su capacidad para preservar la privacidad de los datos, al tiempo que
permite el analisis y la generacion de conocimiento sin la necesidad de compartir informacion
sensible de manera centralizada. Se plantea la hipétesis de que la implementacién de inteli-
gencia artificial distribuida mejora la privacidad de los usuarios de los ITS, al mismo tiempo
que preserva la utilidad de los datos para la realizacion de predicciones y la identificaciéon de

patrones.

La suposicion subyacente en esta hipotesis es que el sistema que implementa el FL podria
tener un rendimiento inferior en comparacion con el sistema que transmite los datos sin res-
tricciones. No obstante, se espera que esta pérdida de rendimiento se vea compensada por la

mejora en la privacidad de los datos utilizados.

1.5. Antecedentes del Proyecto

En lo que respecta al ITS en el que se evaluaran los algoritmos propuestos, se basa en datos

previamente recopilados del trafico vehicular en la ciudad de Cuenca. El ITS se centra en dos
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parametros principales: la actualizacién de las rutas de los vehiculos para evitar la exposicion
a la contaminacion (politica de eleccion de ruta) y la actualizacion de los limites de velocidad

de los vehiculos (politica de control de velocidad) [12].

Asimismo, los algoritmos propuestos seran evaluados mediante el empleo de métricas con-
vencionales como la varianza explicada y la pérdida de valor, ambas reconocidas para la
evaluacion de modelos predictivos. La varianza explicada determina si la politica aprendida
constituye un predictor eficaz del rendimiento o la recompensa total. Valores inferiores a cero
indicaran un desempefio peor que la ausencia de prediccion, mientras que valores cercanos
o iguales a uno denotan una prediccidén acertada. En paralelo, la métrica de pérdida de valor,
cuya disminucion sefiala predicciones mas precisas del valor asociado a la politica actual, de-
bera ser elevada durante la fase de aprendizaje del agente, decreciendo posteriormente una

vez que la recompensa se haya estabilizado [13].
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2. Marco Teérico

En este capitulo se abordaran todos los conceptos tedricos considerados de importancia, los

cuales permitieron desarrollar el presente trabajo de titulacion.

2.1. Intelligent Transportation Systems

Los Sistemas de Transporte Inteligente, también conocidos por sus siglas en inglés como In-
telligent Transportation Systems (ITS), constituyen un conjunto innovador de tecnologias en
el ambito de las Telecomunicaciones e Informatica, con el propdsito de potenciar la eficiencia,
seguridad y sostenibilidad del transporte. Los ITS se vuelven cada vez mas indispensables
ante la rapida expansién de métodos avanzados de aprendizaje automatico y la aparicién de

nuevas fuentes de datos en constante evolucion [14].

Una visidn general sobre estos sistemas se puede observar en la Figura 2.1, donde se obser-
van diferentes iconos sobrepuestos que representan componentes y funciones de los Sistemas
de Transporte Inteligente (ITS). Entre ellos, se incluyen el cloud computing para el analisis de
datos en tiempo real, coches conectados que interactuan con la infraestructura vial y otros
vehiculos, y sistemas de geolocalizacion para la navegacion precisa. Ademas, se visualizan
simbolos de transporte publico, sefalizacion inteligente, y dispositivos de monitoreo como sen-
sores y camaras. Estos elementos reflejan como los ITS integran tecnologias avanzadas para
mejorar la eficiencia, seguridad y sostenibilidad del transporte urbano, optimizando el flujo de
trafico y reduciendo emisiones de CO-, en un entorno donde se considera tanto a vehiculos

privados como al transporte publico y a los peatones.

El objetivo principal de este sistema se centra en optimizar la administracién de los recursos
urbanos y mejorar la experiencia de las personas mediante la implementacion de servicios
de informacion y alerta. En este sentido, esta mejora no solo favorece la fluidez del trafico
en la ciudad, reduciendo el tiempo perdido en congestiones, sino que también conlleva una
disminucion significativa en el consumo de combustible, las emisiones de CO; y las pérdidas

econdmicas [15].
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Figura 2.1: ITS. Fuente: [16]

En Ecuador, la adopcion de Sistemas de Transporte Inteligente (ITS) ha mostrado un aumen-
to reciente, pero sigue siendo limitada. A pesar del crecimiento en la investigacién sobre Big
Data desde 2019, la implementacién practica de ITS enfrenta varios desafios, como la falta
de proyectos consolidados y la necesidad de una mayor inversién en tecnologia [17]. En ciu-
dades como Quito y Guayaquil, se han desarrollado proyectos como la implementacion de
sistemas de control de trafico y monitoreo en tiempo real, ademas de la integracion de datos
de movilidad para mejorar la planificacion urbana. Sin embargo, la adopcion efectiva de ITS
continua enfrentando barreras, y es necesario seguir avanzando en la inversién y desarrollo

para superar estas limitaciones.

2.2. Niveles Usuales de Emisiéon de CO2 en Entornos Urbanos

Las emisiones de CO2 de los automdviles estan estrechamente relacionadas con la velocidad
de circulacién. Segun [18], las emisiones de CO2 son directamente proporcionales al consu-
mo de combustible, alcanzando los consumos minimos a velocidades comprendidas entre 80
y 100 km/hora. Sin embargo, en entornos urbanos, donde la velocidad de circulacion es ge-
neralmente mas baja, el consumo de un vehiculo de turismo medio puede ser tipicamente un
60 % superior al alcanzado en el régimen 6ptimo, lo que implica una incidencia significativa del
trafico urbano sobre el total de emisiones. Se estima que el trafico urbano puede representar
mas de la mitad de las emisiones totales, a pesar de que el porcentaje del kilometraje recorrido

en las ciudades es mucho menor.
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Por otro lado, en el Area Metropolitana del Valle de Aburra (AMVA) se realizaron 5,6 millo-
nes de viajes diarios en el afio 2012, responsables de la emisién de 3.545.633 kg de CO2
diarios [19]. Esta cantidad de emisiones no se distribuye uniformemente, ya que los viajes en
automovil, aunque representan solo el 15 % de los viajes, son responsables del 55,2 % de las
emisiones. En términos grupales, los medios de transporte privados, responsables del 26 %
de la movilidad, emiten el 60 % del CO2, mientras que los medios de transporte publicos, que
cubren el 48 % de la movilidad, emiten el 40 % del CO2. Para poner en perspectiva los valores
obtenidos en simulaciones de emisiones en entornos urbanos, se puede considerar que un
viaje en automoévil en el AMVA puede emitir hasta ocho veces mas CO2 que un viaje en bus 'y
tres veces mas que un desplazamiento en metro. Ademas, un desplazamiento promedio por
el motivo de Comer o tomar algo puede emitir alrededor de 861 g de CO2, en comparaciéon
con 750 g de CO2 por un desplazamiento promedio por motivo de Trabajo y 300,9 g de CO2

por un desplazamiento promedio por motivo de Estudio.

2.3. Enfoques de Aprendizaje de Maquina

El aprendizaje supervisado, no supervisado y por refuerzo son enfoques fundamentales del
aprendizaje automatico, cada uno con caracteristicas y aplicaciones distintas [20]. El aprendi-
zaje supervisado se basa en datos etiquetados, donde el modelo aprende a predecir resultados
a partir de ejemplos con entradas y salidas conocidas. Se utiliza en tareas como la clasificaciéon
(Random Forest) y la regresion (Regresion Lineal) [21]. El aprendizaje no supervisado, por otro
lado, trabaja con datos sin etiquetar, buscando patrones y estructuras ocultas sin guia externa
[22]. Se aplica en problemas como la agrupacion de clientes en segmentos de mercado y la
reducciéon de dimensionalidad como el Analisis de Componentes Principales (PCA) [23]. En
contraste, el aprendizaje por refuerzo no se basa en un conjunto de datos estatico; en su lu-
gar, un agente aprende a tomar decisiones a través de la interaccién con un entorno dinamico,
recibiendo recompensas o castigos en funcién de sus acciones [24]. Este enfoque es utilizado
en aplicaciones como el control de robots, la optimizacion de estrategias en juegos y la gestion
de sistemas complejos, donde las decisiones secuenciales son criticas. Se pueden encontrar
algoritmos como Q-learning. Mientras que los dos primeros enfoques se centran en el analisis
de datos preexistentes, el aprendizaje por refuerzo se enfoca en la mejora continua de la toma
de decisiones basada en la retroalimentacién recibida del entorno. A continuacion se explica

con detalle cada uno de los enfoques de aprendizaje de maquina.
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2.3.1. Aprendizaje No Supervisado

El aprendizaje no supervisado se distingue por la presencia de datos no etiquetados, es decir,
aquellos que carecen de asignaciones explicitas. El propdsito fundamental de este enfoque es

extraer informacion significativa de la base de datos o conjunto de datos disponible [22].

En este aprendizaje, se busca que el algoritmo pueda encontrar patrones en el conjunto de
datos, para posteriormente clasificar los datos. Algunos de los problemas de este tipo de apren-
dizaje son: asociacion, deteccion de anomalias y problemas de autoencoder [25]. Ejemplos de
estos algoritmos son el PCA, que se utiliza para la reduccién de dimensionalidad al transfor-
mar los datos a un nuevo espacio con menos dimensiones, preservando la mayor varianza
posible [23]. Otro ejemplo es el K-means, un algoritmo de agrupamiento que divide los datos

en k grupos basados en caracteristicas similares [26].

2.3.1.1. Analisis de Componentes Principales (PCA)

El PCA es un ejemplo de aprendizaje no supervisado que se utiliza en el analisis de posibles
relaciones entre diversas variables cuantitativas. Con esta técnica se busca reducir el nUmero
de variables originales a un conjunto de combinaciones lineales mas pequefio, mostrando asi

una explicacion de la estructura de varianza del amplio volumen de datos medidos [23].

ElI PCA fue incorporado por Pearson [27], en el contexto de variables no aleatorias, para luego
ser utilizado en variables aleatorias por Hotelling [28]. Utilizando este analisis se reduce la di-
mensionalidad de un conjunto de datos, preservando la varianza. Esto se logra mediante una
transformacién ortogonal, la cual convierte los datos en nuevos indices, los cuales pueden ser
conocidos como componentes principales (CPs), que buscan cumplir dos criterios fundamen-
tes: el primero, que cada CP es una combinacion lineal de las variables originales, y el segundo
qgue los CPs son mutuamente no correlacionados. Utilizando este método, el primer CP cap-
tura la mayor cantidad de varianza del conjunto de datos originales y cada CP subsiguiente

contiene la variabilidad no capturada por sus predecesores [29].

2.3.2. Aprendizaje Supervisado

El aprendizaje supervisado es ampliamente utilizado en problemas de clasificacién, ya que

comunmente se busca que la maquina aprenda un sistema de clasificacion predefinido. El
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objetivo principal suele ser construir un estimador capaz de predecir la etiqueta de un ob-
jeto basandose en un conjunto de caracteristicas proporcionadas. Una vez logrado esto, el
proceso de aprendizaje supervisado utiliza este conjunto de caracteristicas junto con las sali-
das correctas correspondientes para aprender, comparando su salida predicha con las salidas
reales para identificar posibles errores. Aunque el modelo creado no es imprescindible mien-
tras se disponga de las entradas, la ausencia de algunos valores de entrada impide inferir

conclusiones sobre las posibles salidas [21].

En este enfoque algoritmico, se identifica un atributo especifico cuyo propésito es utilizar los
datos disponibles para anticipar el valor de dicho atributo en instancias aun no observadas o
de las cuales se carece de informacion. Estos datos, caracterizados por tener asignaciones

explicitas a dicho atributo, se denominan con etiquetas [22].

En el proceso de Aprendizaje Supervisado, una etapa critica es la preparacion y preprocesa-
miento de los datos. Esto implica asegurarse de que los datos estén en un formato adecuado
y limpio antes de aplicar algoritmos de aprendizaje. Los investigadores han desarrollado diver-
sas técnicas para abordar desafios comunes, como la presencia de datos faltantes o valores

atipicos (ruido) en los conjuntos de datos [30].

Existen varios algoritmos populares en aprendizaje supervisado utilizados para la clasifica-
cion de datos. Support Vector Machines (SVM) destaca por su capacidad para encontrar el
hiperplano 6ptimo que separa las clases en un espacio dimensional superior, maximizando
el margen entre ellas [31]. Por otro lado, Gradient Boosting Machines (GBM) construye una
serie de modelos predictivos secuenciales, cada uno corrigiendo los errores del anterior, con
el objetivo de mejorar la precision de las predicciones [32]. Otro algoritmo ampliamente utili-
zado es Random Forest, el cual emplea la técnica de combinacion mediante la construccién
de multiples arboles de decisién. Cada arbol se entrena en un subconjunto aleatorio de datos
y caracteristicas, lo que contribuye a mitigar el sobreajuste y mejorar la capacidad de gene-
ralizacion del modelo [33]. Este ultimo algoritmo sera utilizado en este trabajo, por lo que a

continuacion se detallaran mas aspectos relevantes sobre su funcionamiento y aplicaciones.

2.3.2.1. Random Forest

El Random Forest, también conocido como bosque aleatorio, es un ejemplo de aprendizaje su-
pervisado que se emplea tanto en problemas de clasificaciéon como de regresion. Este método

de aprendizaje automatico se centra en mejorar la precision al combinar multiples modelos
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para abordar un mismo problema. Al integrar varios clasificadores, el Random Forest reduce
la varianza, especialmente en situaciones donde los clasificadores individuales podrian ser
inestables, lo que resulta en predicciones mas confiables. Una técnica comunmente utilizada
es la votacién por mayoria, donde cada muestra sin etiquetar recibe la etiqueta predicha por

el clasificador que obtuvo la mayoria de votos entre los modelos del bosque [34].

Este método es ampliamente utilizado debido a su simplicidad y efectividad. El algoritmo Ran-
dom Forest emplea bosques aleatorios con estructuras de arboles y variables de divisién sig-
nificativamente diversas, lo que fomenta la aparicion de distintas instancias de sobre ajuste y
valores atipicos entre los diversos modelos de arboles en conjunto. En consecuencia, la vo-
tacion final de prediccion mitiga el problema del sobre ajuste en los casos de clasificacion,

mientras que el promedio se utiliza como solucién para los problemas de regresion [33].

El uso de Random Forest en diferentes circunstancias han demostrado que este algoritmo
tiene una mejor precision en cuanto los otros métodos de aprendizaje supervisado, ofreciendo
también medidas de importancia de las variables. Donde estas, son importantes cuando los
estudios tienen multiples fuentes de datos, siendo estos casos donde la dimensionalidad de

los datos en muy alta [35].

En este estudio, se emplea el algoritmo Random Forest para clasificar los datos relacionados
con el tiempo total de espera de los vehiculos y, en consecuencia, las emisiones de COs.
El objetivo fue determinar la duracion éptima del ciclo de los semaforos para minimizar la

contaminacion en la zona urbana de Cuenca.

2.3.3. Aprendizaje por Refuerzo

En el Aprendizaje por Refuerzo un agente es el que establece una conexién hacia su esce-
nario a través de un proceso de observacion y operacién. Esto se ilustra en la Figura 2.2. En
cada interaccioén el agente obtiene la informacion del estado del escenario en ese momento,
el cual se puede escribir como S; y este realiza una accién A; como respuesta. Al realizar este
proceso, se realiza cambios en el estado del escenario S;, por lo que se da una comunica-
cion con el agente mediante una sefial de refuerzo o recompensa R;. El objetivo que tiene el
agente, en este aprendizaje es seleccionar o tomar decisiones que maximicen una medida de
recompensa, la cual se ira acumulando a largo plazo. El agente, para lograr esto, aprende a

través de prueba y error [24].

Este modelo puede verse formalmente como:
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Figura 2.2: Modelo Estandar de Aprendizaje por Refuerzo.

= Un conjunto discreto de estados del escenario S.

= Un conjunto discreto de acciones del agente A.

= Un conjunto de sefales de refuerzo escalares, comunmente entre valores de [0, 1].
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La principal diferencia entre el Aprendizaje por Refuerzo y el Aprendizaje Supervisado es que

no existen los pares de entrada/salida. Ya que, después de elegir una accién, el agente es

informado por la recompensa inmediata y el estado subsiguiente, pero este no sabe cual accion

habria sido mejor dependiendo del interés a largo plazo. Por lo que es importante que el agente

obtenga experiencia util sobre todas las acciones, procesos y recompensas activamente para

actuar de manera 6ptima [24].

Existen varios tipos de RL, que se pueden clasificar principalmente en: Basado en Valores

(Value-Based RL) y Basado en Politicas (Policy-Based RL), a continuacion analizaremos cada

uno de estos.

= Value-Based RL: Los algoritmos basados en valores estiman el valor de cada estado o

de cada par estado-accion y seleccionan la accion 6ptima para mejorar el rendimiento del

agente. Ejemplos tipicos son Q-learning: que aproxima el valor Q para cada par estado-

accién cada vez y decide qué accidén tomar en qué estado. Utiliza politicas e-greedy para

la exploracion. Y Deep Q-Network (DQN): el cual utiliza redes neuronales convolucio-

nales para el reconocimiento de imagenes, para eliminar la correlacion entre muestras

[36].

= Policy-Based RL: Un algoritmo basado en politicas optimiza directamente la politica que

determina el comportamiento del agente. Los algoritmos de gradiente de politica produ-

cen directamente una politica que determina qué accién tomar en cada estado. Ejemplos

mas usados pueden ser: Proximal Policy Optimization (PPO), que optimiza la politica
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limitando la relacién de actualizaciones para prevenir la inestabilidad, manteniendo el
rendimiento y la eficiencia computacional. Y Trust Region Policy Optimization (TRPO):
que agrega una restriccion de divergencia KL para evitar cambios rapidos en la politica,

mejorando la estabilidad del aprendizaje pero requiriendo un calculo significativo [36].

2.3.3.1. QLearning

En el aprendizaje por refuerzo Q Learning (QL), los agentes ajustan iterativamente sus estra-
tegias de accion a través de las recompensas obtenidas de la retroalimentacion del entorno
después de realizar una accion especifica. El agente selecciona una accién en un estado par-
ticular basandose en el refuerzo recibido o en la experiencia previa, conocida como el valor
Q. El refuerzo incluye una recompensa directa y una expectativa futura del valor Q. A través
del refuerzo, los agentes pueden evaluar la eficacia de una accion en el estado actual y tomar
una mejor accion en el siguiente paso. El objetivo del agente es maximizar las expectativas
de las recompensas acumuladas a lo largo de las iteraciones secuenciales. La ventaja del QL
radica en que la funcion de recompensa puede disefiarse utilizando multiples objetivos ponde-
rados para alcanzar diversas metas. Ademas, una estrategia adecuada para la exploracion y
explotacion puede ayudar a lograr la solucidén optima [37]. En este estudio, se utilizé el méto-
do Epsilon-Greedy para la exploracién y explotacion. Este método se explica en detalle en la

siguiente subseccidn.

QL busca determinar una politica de accién 6ptima mediante la estimacion de la funcién 6ptima
de estado-accion Q' (s, a), donde s representa un estado del conjunto de posibles estados S,y a
denota una accién del conjunto de posibles acciones A. La funcién Q cuantifica la recompensa
maxima alcanzable al ejecutar una accién a en un estado s [38]. La ecuacién de QL se expresa

de la siguiente manera:

Q'(s,a) = Q(s,a) + a[R(s,a) + ymazQ'(s',a’) — Q(s,a)] (2.1)

En donde:
= ¢ representa la tasa de aprendizaje,
= ~ representa el factor de descuento, y
= R representa la recompensa obtenida al ejecutar la accion a en el estado s.

Supongamos que un agente debe aprender a navegar en un entorno de cuadricula de 4x4
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para llegar a una meta (G) desde un estado inicial (S). Cada celda de la cuadricula representa
un estado, y las acciones posibles son moverse hacia arriba, abajo, izquierda o derecha. Si el

agente llega a la meta, recibe una recompensa de +1; de lo contrario, la recompensa es 0.

= Inicializacion: Inicializamos la tabla Q(s, a) arbitrariamente (por simplicidad, se puede

inicializar en cero) podemos observar como se inicializa en la Tabla 2.1:

Q(s1,a) | Q(s2,a) | Q(ss,a) | Q(ss,0)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Tabla 2.1: Tabla Inicializada

= lteracion:
1. Estado inicial: s = (1,1).

2. Seleccionar accién a: Usamos una politica e-greedy. Suponemos que selecciona-

mos mover a la derecha.

3. Ejecutar acciéon y observar recompensa . Nos movemos a la derecha, nuevo

estado s’ = (1,2), recompensa r = 0.

4. Actualizar Q(s,a):

Q((1,1),derecha) «+ Q((1,1),derecha)+

a [0+ymaxQ((1,2),a’) — Q((1,1), derecha)

Q((1,1),derecha) <~ 0+ a[0+~v-0—-0]=0

5. Nuevo estado: s = (1, 2).
Repetimos este proceso hasta que la tabla Q(s, a) converja a los valores éptimos.
2.3.3.2. Epsilon-Greedy Exploration

En el método Epsilon-Greedy, el agente realiza acciones aleatorias si se cumple una condi-

cién especifica. El valor de Epsilon determina la probabilidad de que el agente ejecute una
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accioén aleatoria. Cuando el agente alcanza el estado objetivo por primera vez, recibe una re-
compensa, lo que ajusta los pesos y conduce al agente a seguir el mismo camino en futuras
iteraciones. Esto implica que el agente se estabilizara en esta ruta sin explorar otras alternati-
vas, lo que puede llevar a una solucién suboéptima y evitar que el modelo alcance el resultado
globalmente 6ptimo. Sin embargo, al introducir un cierto nivel de aleatoriedad, el agente con-

tinuara buscando otras soluciones incluso después de haber encontrado una inicial [39].

La politica Epsilon-Greedy es una de las estrategias de exploracion mas importantes en el
aprendizaje por refuerzo [40]. La politica Epsilon-Greedy define la probabilidad de seleccién
p, centrando la explotacidn con una probabilidad 1 — e al utilizar el mejor candidato, mien-
tras realiza la exploracion con una probabilidad e. La politica Epsilon-Greedy equilibra bien la
exploracion y la explotacion mediante el parametro ¢ y se emplea ampliamente en muchos

algoritmos de inteligencia artificial [41].

2.4. Aprendizaje Federado

El aprendizaje federado FL es un marco algoritmico de aprendizaje automatico que permite
a multiples partes colaborar en la construccién y entrenamiento de un modelo de aprendizaje
conjunto, abordando desafios como la proteccién de la privacidad, seguridad de datos, aplica-
bilidad a diversas estructuras e instituciones de datos, rendimiento garantizado e igualdad de
estado entre las partes colaboradoras. La construccién de un modelo de aprendizaje federado

implica dos procesos: entrenamiento del modelo e inferencia del modelo.

Durante el entrenamiento, las partes pueden intercambiar parametros que alimentan al mode-
lo sin compartir los datos de identificacion de los clientes, preservando la privacidad. Una vez
que el entrenamiento colaborativo concluye, cada parte puede realizar inferencias locales en
sus propios datos utilizando el modelo global compartido. Esto permite que cada participante
realice predicciones o tome decisiones basadas en el conocimiento adquirido durante el en-
trenamiento conjunto. El mecanismo de distribucién justa de valores asegura la sostenibilidad

de la federacion.

La metodologia de FL implica el uso de algoritmos de agregacién, como el algoritmo de pro-
medio federado (FedAvg), y técnicas de preservacion de la privacidad, asegurando la con-
fidencialidad de los gradientes y pesos del modelo durante la comunicacién entre las partes
colaboradoras [42]. En la Figura 2.3, se presenta un ejemplo de arquitectura de aprendizaje fe-

derado en un modelo cliente-servidor. Basado en la arquitectura antes mencionada, el proceso
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puede describirse en los siguientes pasos:

Global Model
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@
> 3¢ |
X el ~ o X
Y
Local Model A Local Model B Local Model C
T Train T Train
o =
----- -0 L)
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Dataset A Dataset B Dataset C
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T (3)Update T Update T

28

Figura 2.3: Arquitectura de Aprendizaje Federado: Modelo Cliente - Servidor. Fuente: [42]

1. Inicializacion: El coordinador o servidor crea un modelo inicial, lamado Global Model.

Este modelo inicial es enviado a todos los clientes involucrados en el proceso de apren-

dizaje federado.

. Entrenamiento Local: Cada cliente recibe el modelo global y lo entrena utilizando su
propio conjunto de datos local. En la Figura 2.3, estos modelos se denominan Local Model
A, Local Model B, y Local Model C, correspondientes a los clientes con los conjuntos de
datos A, B y C respectivamente. Durante esta fase de entrenamiento, cada participante
ajusta el modelo localmente segun sus datos especificos, sin compartir los datos locales

con otros participantes o con el coordinador.

. Envio de Actualizaciones: Una vez que los modelos locales han sido entrenados, los
clientes envian las actualizaciones de los parametros del modelo local al coordinador o
servidor central. Este paso esta indicado en la Figura 2.3 con las flechas y la etiqueta

Submit.

. Agregacion: El coordinador central o servidor recibe todas las actualizaciones de los mo-

delos locales y procede a combinarlas utilizando algoritmos especificos de agregacion.
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Este proceso es representado en la Figura 2.3 con la etiqueta Aggregation. La agregacion
puede realizarse mediante varios métodos, siendo uno de los mas comunes el promedio

ponderado de los parametros del modelo.

5. Actualizacion del Modelo Global: Después de la agregacion, el coordinador o servi-
dor genera un modelo global actualizado. Este modelo actualizado se envia de nuevo a
todos los clientes, cerrando asi el ciclo de retroalimentacion. Los clientes reciben el mo-
delo global actualizado y pueden iniciar un nuevo ciclo de entrenamiento local con este

modelo.

Este proceso se repite iterativamente, permitiendo que el modelo global mejore progresiva-
mente a medida que se incorporan las actualizaciones basadas en los datos locales de los

participantes.

Las posibles implementaciones del aprendizaje federado abarcan diversas areas como la me-
dicina, la banca, y las telecomunicaciones, donde la privacidad de los datos es critica. Una
plataforma popular para implementar sistemas de aprendizaje federado es Flower (Federa-
ted Learning Framework), debido a su flexibilidad y facilidad de uso. Flower permite la imple-
mentacion de algoritmos personalizados y es compatible con diversas bibliotecas de machine
learning como TensorFlow y PyTorch. Su disefio modular facilita la escalabilidad y la experi-

mentacion con diferentes estrategias de agregacién y comunicacion [43].

2.5. Framework Flower

Flower es un framework de FL cuyo objetivo es facilitar el desarrollo de investigaciones ex-
perimentales que usan una arquitectura cliente - servidor [43]. La arquitectura de Flower se
presenta en la Figura 2.4, en donde se observa que la légica global que incluye la seleccion
de clientes, la configuracion, la agregacion de actualizaciones de parametros y la evaluacion

de modelos federados se realiza a través de una abstraccion llamada estrategia.
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Figura 2.4: Arquitectura de Flower con Edge Client Engine y Virtual Client Engine. Fuente: [43]

La logica local, por otro lado, se centra en el entrenamiento y evaluacion del modelo de ML,
el mismo que puede ser federado a nivel del protocolo de Flower o utilizando una abstraccion
de cliente de alto nivel. La federacion se basa en un modelo cliente-servidor en donde los
principales componentes del servidor son: Client Manager, que gestiona la conexion con el
servidor. El bucle de federacién y la estrategia, en donde se realiza la toma de decisiones.
El lado del cliente recibe los mensajes proporcionados por el servidor y basandose en estos
realiza el llamado a las funciones de entrenamiento y evaluacion. A continuacion analizaremos

cada una de las secciones mostradas en la Figura 2.4.
= Estrategia:

» Global Model: Representa el modelo central que se actualiza y distribuye a los

clientes.

» Configure train/eval: Este componente se encarga de configurar las tareas de en-

trenamiento y evaluacion que se enviaran a los clientes.

» Aggregate train/eval: Este componente recoge y agrega los resultados del entre-

namiento y evaluacién de los clientes para actualizar el modelo global.
n Client Manager:

» Edge Client Proxy: Actia como un intermediario entre los clientes de borde y la
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estrategia central. Se comunica con los clientes de borde a través del servidor RPC.

« Virtual Client Proxy: Similar al proxy de clientes de borde, pero maneja clientes
virtuales, que son simulaciones de clientes en lugar de dispositivos fisicos. Estos

clientes virtuales pueden ser activos o inactivos.
= RPC Server

* RPC Client: El servidor RPC maneja las comunicaciones entre la estrategia central
y los clientes. Cada cliente (tanto de borde como virtual) se comunica con el servidor

RPC a través de un cliente RPC.
= Clientes

» Edge Client: Dispositivos fisicos que tienen un proceso de entrenamiento y datos
locales. Se comunican con el servidor RPC y realizan las tareas de entrenamien-

to/evaluacién configuradas por la estrategia.

* Virtual Client (active/inactive): Clientes simulados que tienen un proceso de en-
trenamiento similar al de los clientes de borde. Los clientes virtuales activos realizan
tareas de entrenamiento/evaluacion, mientras que los inactivos estan listos para ac-

tivarse cuando sea necesario.
= Flujo de Datos

» Desde la Estrategia hacia los Clientes: La estrategia configura las tareas de entre-
namiento/evaluacion y distribuye estas configuraciones a través del Client Manager.
Los proxies de clientes reciben estas configuraciones y las envian a los clientes es-

pecificos.

» Desde los Clientes hacia la Estrategia: Los clientes ejecutan las tareas y envian
los resultados de vuelta a través de los proxies de clientes. La estrategia central

agrega estos resultados para actualizar el modelo global.
= Conexiones y Comunicacion

» Las lineas verdes representan la configuracion de entrenamiento/evaluaciéon que

fluye desde la estrategia a los clientes.

» Las lineas azules representan los resultados de entrenamiento/evaluacion que re-

gresan a la estrategia para la agregacion.
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2.6. Differential Privacy

Differential Privacy (DP) es una técnica de preservacion de la privacidad que proporciona ga-
rantias matematicas de que la inclusién o exclusion de un solo dato en un conjunto no afectara
significativamente el resultado del analisis, protegiendo asi la privacidad individual de los datos
sensibles. DP se logra introduciendo ruido aleatorio en los resultados de consultas a bases de
datos o en los parametros de modelos de aprendizaje automatico, dificultando que un intruso
pueda inferir informacion especifica sobre individuos. La implementaciéon de DP en sistemas
de aprendizaje automatico distribuidos, como FL, es crucial para mantener la privacidad de los
datos [44].

La aplicacion de DP en el aprendizaje automatico ofrece varios beneficios, como la proteccion
de datos sensibles y la robustez frente a la variabilidad de los datos de los usuarios. A pesar
de la adicion de ruido, los enfoques de DP mantienen una buena precision del modelo y pro-
piedades de convergencia. Sin embargo, la implementacion practica de DP enfrenta desafios,
como el equilibrio entre la precision del modelo y los niveles de privacidad, asi como la gestion

de la heterogeneidad de los datos de los usuarios [45].

El ruido Gausiano aplicado por DP se describe por medio de la Ecuacion 2.2.

A X 2><l0g(1‘6ﬁ)

€

(2.2)

En donde A corresponde a la sensibilidad del modelo. Como la precisién se evaluara en base
a los datos sin DP la sensibilidad se establece en 1. Esto debido a que es la maxima diferencia
que puede existir entre los valores. ¢ corresponde a la probabilidad de fallo, es decir la proba-
bilidad de que el mecanismo de privacidad no proporcione el nivel deseado de privacidad, se

establece en 1 x 107°. ¢ se define como el nivel de proteccion de privacidad.

2.7. Simulation of Urban MObility

SUMO es una suite de simulacién de trafico de cédigo abierto desarrollada por el Centro Ae-
roespacial Aleman (DLR). Creado en 2001, SUMO se ha convertido en una herramienta inte-
gral para modelar el trafico en entornos urbanos y ha encontrado aplicaciones significativas
en la investigaciéon de comunicacion vehicular, especificamente en Vehicle-to-Vehicle (V2V) y

Vehicle-to-Infrastructure (V2I).
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La suite SUMO permite la representacion y simulacién detallada de redes viales, demanda
de trafico y comportamiento de vehiculos en un entorno urbano. Ofrece utilidades para la ge-
neracion de demanda, enrutamiento de vehiculos y una interfaz de control remoto TraCl que
permite la adaptacion en tiempo real de la simulacion. SUMO se destaca por su capacidad
para modelar el flujo de trafico convencional, integrandose con simuladores de comunicacion

externos, como ns2 y ns3.

La suite SUMO se ha vuelto importante en la investigacion de sistemas de transporte inteligen-
tes y comunicacion vehicular, brindando a los investigadores la capacidad de simular y evaluar
eficazmente el impacto de diversas estrategias de movilidad y tecnologias de comunicacién

en entornos urbanos [9].

2.8. Trabajos Relacionados

En lo que respecta al conocimiento sobre la privacidad en los ITS, el articulo [1] plantea una
perspectiva de privacidad que considera los datos como informacion que debe mantenerse en
secreto frente a otros usuarios, en particular, cuando se trata de datos de trayectoria y ubica-
cion. Se aborda el riesgo de ataques de reidentificaciéon mediante el uso de informacién del
historial de trayectorias y proponen un modelo llamado modelo de privacidad de k-correlacion
para resolver el ataque de preferencia de movimiento. Ademas, se presenta un algoritmo lla-
mado TRAMP (Anonimato de Trayectoria contra Preferencia de Movimiento) para abordar el
problema. Los resultados obtenidos muestran que el modelo de privacidad de k-correlacion y
el algoritmo TRAMP reducen significativamente la correlacion entre las ubicaciones de estacio-
namiento y los usuarios, disminuyendo asi el riesgo de reidentificacién. Esto se logra mediante
la anonimizacién efectiva de los datos de ubicacién, lo que proporciona una mayor proteccion

de la privacidad de los usuarios en los sistemas de transporte inteligentes.

Por otro lado, en [13] se destaca la eleccién del RL debido a la capacidad inherente de adap-
tarse a entornos variables, lo que lo hace idéneo para situaciones cambiantes y dinamicas. Por
otro lado, los enfoques supervisados y no supervisados son mas adecuados para contextos
estables y predecibles. Se destaca que el aprendizaje por refuerzo permite que los vehiculos
apliquen el modelo de manera local, posibilitando la anticipacién y prediccion de los patro-
nes de comportamiento del sistema en tiempo real. Este enfoque descentralizado tiene como
ventaja el adaptarse a las particularidades del entorno sin depender de un control centraliza-

do, lo que facilita la toma de decisiones garantizando un funcionamiento éptimo en diferentes
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escenarios y condiciones cambiantes.

Asi también, en [46] se emplea él FL con el fin de proteger la informacion personal recopilada
mientras se conduce un vehiculo auténomo. Se plantea un método de participacion utilizando
FL que aprovecha dispositivos interconectados, permitiendo asi preservar la informacion per-
sonal. Con esta estrategia se busca asegurar la eficiencia en el funcionamiento de vehiculos
autonomos a través de la proteccion de datos en un entorno de aprendizaje distribuido. Para
evaluar el trabajo, se emplearon métricas de precision del modelo y eficiencia en el procesa-
miento de datos. Los resultados demostraron que el uso del aprendizaje federado mejoro la
precision de los modelos locales de inteligencia artificial y la generalizacién del modelo global,
al mismo tiempo que se minimizé la exposicién de datos sensibles, lo que garantiza una mayor

proteccion de la privacidad.

En [47], se presenta un sistema de FL basado en Blockchain (BFL), en donde se resalta la
importancia de mantener privados los datos durante el intercambio y la comparticién de cono-
cimientos entre vehiculos en una red. Para lograrlo, se proponen dos algoritmos denominados
como algoritmos oVML y Miner. La comparacion se lleva a cabo con el algoritmo de FL de
Google, utilizando variables criticas como el retraso medio del sistema, las probabilidades de
bifurcacion y pérdida, asi como el impacto de los errores en el sistema. Todo esto se evalua
considerando diferentes numeros de vehiculos en la red y diversas condiciones de los canales.
Los resultados obtenidos muestran que el retraso del sistema disminuye con el aumento de la
relacién sefial-ruido (SNR), mientras que las probabilidades de descarte de bloques y de bifur-
cacién aumentan exponencialmente con los fallos de transmision. Los errores de canal afectan
mas a la probabilidad de bifurcacién que a la de descarte, incrementando significativamente el
retraso total del sistema BFL. Con baja probabilidad de fallos de transmisién, las retransmisio-
nes compensan las pérdidas; sin embargo, con errores significativos, las retransmisiones no

son suficientes, aumentando la pérdida de bloques y la probabilidad de bifurcacion.

En [48], se busca implementar el FL de manera mas eficiente mediante el desarrollo de un
blockchain hibrido, denominado PermiDAG, que mejora un modelo de FL mediante una se-
leccion especifica de nodos. PermiDAG se compone de un blockchain principal con permisos,
mantenido por las RSUs, y un Grafo Aciclico Dirigido (DAG) local ejecutado por los vehiculos
para facilitar el intercambio eficiente de datos en el loV. Se propone un esquema asincrono
de FL para aprender modelos a partir de datos en el borde, mejorando la eficiencia del FL al
seleccionar los nodos participantes con el fin de minimizar el costo total. Esto permite abordar

las capacidades heterogéneas de comunicacion y computo de los vehiculos. Se destaca que

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA 35

la forma segura de compartir datos es un area de investigacion abierta.

De igual manera, en [49] involucra la comunicacion entre el FL basado en cifrado homomaorfico
y el FL basado en computacion multipartida; sin embargo, estas comunicaciones conllevan
una carga computacional significativa y requieren mas tiempo de procesamiento. Asi mismo,
exploramos el paradigma de aprendizaje colaborativo, conocido como FL, con el propdsito de
salvaguardar la utilidad de los datos y, por ende, mantener la exactitud de los modelos de
aprendizaje automatico. Este enfoque se orienta a garantizar la privacidad y confidencialidad

de los usuarios involucrados en un ITS.

En cuanto a la implementacién de técnicas de ML para abordar problemas de seguridad en
los ITS. En [50] se investiga como el uso de técnicas de Deep Learning (DL) puede mejorar la
seguridad y proteccion de las personas dentro de los ITS. Este articulo usa la precision y la tasa
de deteccidn como métricas para evaluar la eficacia de las soluciones propuestas, destacando

la importancia de estas técnicas en la mitigacion de riesgos de seguridad.

En [51], centrado en la prediccién del trafico mediante técnicas de ML, se aborda las vulnerabi-
lidades que pueden surgir con la implementacion de estas técnicas en ITS. Se usa la precision

de las predicciones, y la eficacia operativa del transporte para evaluar todo el sistema.

En el contexto de las ciudades inteligentes, en [52] se discute la aplicacién de DL para la de-
teccion de ataques DDoS en sistemas basados en blockchain. Este estudio demuestra cémo
estas técnicas pueden reducir los problemas de seguridad en los ITS, enfocandose en la tasa
de deteccion de ataques como métrica principal. Los resultados experimentales, obtenidos a
partir de la evaluacioén de tres conjuntos de datos diferentes, muestran que el enfoque propues-
to es efectivo para detectar y clasificar distintos tipos de ataques DDoS, alcanzando tasas de
F1-score superiores al 95 % en promedio. Esto indica que la combinacion de blockchain y DL
proporciona una proteccién robusta y confiable contra diversos ciberataques en el sistema de

transporte inteligente.

En [53] se investiga especificamente cdmo las técnicas de DL pueden resolver problemas de
seguridad en los ITS. La precision y la robustez de los sistemas implementados son usadas

como métricas para evaluar las soluciones propuestas.

El papel de la ciberseguridad en los ITS es otro tema estudiado en la literatura. En [54] se
discute como el ML presenta vulnerabilidades en la fase de entrenamiento que pueden ser
explotadas. Este estudio enfatiza la necesidad de robustez y resiliencia en los ITS para mitigar

estas vulnerabilidades, destaca la importancia de un enfoque integral de seguridad.
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Un informe publicado por el Departamento de Transporte de los Estados Unidos [55] examina
los desafios y las lecciones aprendidas en la implementacion de IA 'y ML en los ITS. El infor-
me aborda como estas tecnologias pueden hacer que los sistemas de transporte sean mas
seguros, equitativos y confiables, destacando los problemas de seguridad y privacidad como

principales preocupaciones.

La aplicacion de IA en la conduccion autbnoma también ha sido objeto de investigacion. En
[56] se analiza diversas aplicaciones habilitadas por IA, utilizando técnicas de DL para mejo-
rar la precision en la conduccion. Se destacan los estandares y amenazas de seguridad que
deben ser considerados, proporcionando una evaluacion integral de las métricas de control,
por ejemplo, la tasa de deteccién de errores, la precision en la prediccion de rutas, el tiempo
de respuesta del sistema, y la tasa de éxito en la identificacidén de obstaculos, necesarias para

mantener la seguridad.

En [57] se discute los desafios en la seguridad de datos y privacidad en los ITS. A medida que
estos sistemas se vuelven esenciales para la comunicacién vehicular, el estudio destaca los
problemas de seguridad y privacidad como desafios criticos que deben ser abordados para

asegurar la eficiencia y seguridad.

Finalmente, en la Tabla 2.2 se presenta un resumen de los articulos analizados que emplean
técnicas deML en los ITS. La tabla detalla el tipo de ML utilizado, las métricas de control apli-
cadas y los problemas de seguridad abordados en cada una de las técnicas analizadas. En el
siguiente capitulo, se presenta la metodologia empleada en este estudio para disefiar y eva-
luar una arquitectura basada en técnicas de aprendizaje automatico que mejoren la privacidad
en los ITS. Este capitulo incluye el planteamiento del escenario y detalla la implementacion de

las diversas técnicas de aprendizaje utilizadas.
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3. Metodologia

En este capitulo se describe la metodologia utilizada para disefar la arquitectura basada en
técnicas de aprendizaje automatico para mejorar la privacidad en los ITS. La metodologia se
divide en varias secciones que detallan desde el planteamiento del escenario hasta la im-
plementacion de diferentes técnicas de aprendizaje. Cada una de estas secciones se puede
apreciar en la Figura 3.1. A continuacion, se presenta el planteamiento del escenario, que pro-
porciona el contexto y las condiciones iniciales necesarias para la aplicacion de las técnicas

de aprendizaje.
‘/Metodologl'a ‘

v
‘ Planteamiento del Escenario ‘

v
‘ Aprendizaje por Refuerzo

) \ 4 ;
Aprendizaje No Supervisado

v
‘ Aprendizaje Supervisado

B A
‘ Aprendizaje Federado ‘

Figura 3.1: Diagrama con las Secciones de Metodologia

3.1. Planteamiento del Escenario

En este capitulo se describe el escenario en el que se aplicaran diversos métodos de aprendi-
zaje automatico. Estos métodos incluyen el Aprendizaje por Refuerzo, el Aprendizaje Super-

visado, el Aprendizaje No Supervisado y el Aprendizaje Federado.

Inicialmente, se crea un mapa detallado del centro urbano de Cuenca utilizando la plataforma
SUMO. Especificamente, se emplea el script osmWebWizard.py [58], que permite obtener
cualquier parte del mundo para su simulacion utilizando el software Open Street Maps; en

este caso, se ha seleccionado el centro de la ciudad de Cuenca.

Este mapa generado incorpora el parque central de la ciudad, conocido por su disposicion de
cuatro esquinas, cuatro arterias principales, asi como cuatro intersecciones y semaforos estra-

tégicamente ubicados. Este entorno cartografico se presenta de manera visual en las Figuras
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3.2, donde la Figura 3.2(a) ofrece una vision detallada de las edificaciones y el parque central,

mientras que la Figura 3.2(b) se enfoca en las calles y los semaforos en cada interseccion,

aspecto central de nuestro estudio.

[ e

(a) Mapa completo del Centro de Cuenca (b) Mapa vial del Centro de Cuenca

Figura 3.2: Mapa Utilizado como Escenario

Una vez generado el mapa, procederemos a modificar el archivo .rou.xml, que contiene las
especificaciones de las rutas y flujos de cada vehiculo. Este archivo permite ajustar diversos
parametros de la simulacion, tales como las rutas, la velocidad de los vehiculos, el carril a uti-
lizar, la posicién de partida y, lo mas relevante en nuestro caso, la probabilidad de generacion
de nuevos vehiculos en la simulacion. En esta configuracién especifica, se ha optado por una
probabilidad de generacién del 15 %. Se ha seleccionado una probabilidad de generacion de
nuevos vehiculos del 15 % para mantener un equilibrio adecuado entre el trafico predefinido y
el aleatorio. Este valor permite simular una cantidad realista de variabilidad en el trafico, repre-
sentando de manera efectiva las fluctuaciones que ocurren en entornos urbanos sin introducir
un nivel de aleatoriedad que podria complicar la interpretacidon de los resultados. Asi, se ase-
gura que la simulacion refleje tanto las rutas planificadas como las variaciones espontaneas

en el flujo vehicular.

De igual manera, se procedié a modificar el archivo .sumocfg con el objetivo de obtener una
nueva salida correspondiente a las emisiones generadas durante la simulacion. Esta informa-
cion es fundamental para nuestro analisis en los diferentes tipos de aprendizaje. Nos centra-

mos principalmente en las emisiones de C'O5 y en el tiempo de espera de los vehiculos en cada
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una de las intersecciones de la simulacion. Estos datos se utilizaron para evaluar y mejorar la

eficiencia del trafico urbano.

Cabe mencionar que también se consider6 el archivo .net.xml, el cual define la duracién de
cada ciclo de los semaforos. Este valor es importante al momento de obtener los datos que se
utilizaron para los aprendizajes supervisados y no supervisados. Para estos casos, se reali-
zaron multiples simulaciones, comenzando con ciclos de 10 segundos y aumentando progre-
sivamente hasta los 30 segundos. De esta manera, se obtuvieron los datos necesarios para

llevar a cabo los analisis de aprendizaje previamente mencionados.

Se propone que cada simulacion tenga una duracion de un dia completo, lo que equivale a

86400 segundos. Todas estas configuraciones se pueden observar en la Tabla 3.1.

Parametro Valor
Tamafno Mapa 300m x 300m
Numero de Calles 12
Numero de Intersecciones 4
Numero de Esquinas 4
Numero Traffic Light System (TLS) 4
Densidad Vehicular 0.15015%
Duracién de la Simulacion 86400

Tabla 3.1: Valores Utilizados para las Simulaciones

3.1.1. Sistema de Control de Emisiones Propuesto

La obtencion de la duraciéon de cada semaforo se realizé a partir del archivo .net.xml, el cual
detalla la duracion del ciclo semaférico. Para el centro de la ciudad de Cuenca, se identificaron
dos ciclos. El primero tiene una duracion de 42 segundos para las luces roja y verde, y de 3
segundos para la luz amarilla. El segundo ciclo tiene una duracion de 15 segundos para cada
luz. Estos datos fueron extraidos durante la configuracion del escenario para la simulacion

utilizando el software OpenStreetMap.

Como se menciond anteriormente, el enfoque se centra en las emisiones de CO- y en el tiempo
de espera de los vehiculos frente a un semaforo. En la Figura 3.3, se muestra las caracteristicas
del sistema inicial propuesto. Mientras que, en las Figuras 3.3(a), 3.3(b) y 3.3(c), se presenta el
tiempo total de espera con la duracion de los semaforos por defecto en segundos, las emisiones
de CO y el numero de vehiculos con respecto a la duracion de la simulacion, que como se

menciono anteriormente, es de 86400 segundos.
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Este tiempo total de espera, o Total waiting time, representa la suma de todos los periodos
de espera de los vehiculos frente a los semaforos durante la simulacion. En este analisis,
se considera el tiempo total de espera de los cuatro seméaforos. La Figura 3.3(a) muestra la
variacion del tiempo total de espera de los vehiculos en las intersecciones con semaforos a
lo largo de la simulacién. Esta figura sugiere una variabilidad significativa en los tiempos de
espera, lo cual puede atribuirse a los patrones de trafico y a la configuracién por defecto de los
semaforos, afectando la densidad vehicular en las simulaciones. Los picos en esta simulacién

alcanzan hasta los 800 segundos.

De igual manera se puede observar la Figura 3.3(b), en donde se muestra el nivel de emisiones
de CO, generado a lo largo de la simulacién, con valores que varian considerablemente a
lo largo del tiempo. Existen fluctuaciones significativas de emisiones de C'O, con picos que

alcanzan las 160 g/s.

Asi también en la Figura 3.3(c), se muestra el numero de vehiculos presentes en la red a lo
largo del tiempo de simulacién. La tendencia de vehiculos es alrededor de los 30 y 40 vehiculos.
El numero de vehiculos es relativamente constante con ligeras fluctuaciones, excepto al inicio

y al final de la simulacién.
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Figura 3.3: Caracteristicas del Sistema Inicial

Se puede notar que la relacion entre estas figuras radica en que los picos en el tiempo de es-
pera (Figura 3.3(a)) tienden a coincidir con aumentos en las emisiones de C'O, (Figura 3.3(b)),
ya que los vehiculos detenidos o en marcha lenta emiten mas contaminantes. Asimismo, un

mayor numero de vehiculos en la red (Figura 3.3(c)) puede contribuir a mayores tiempos de
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espera y, en consecuencia, a mayores emisiones de C'O,. Estas interacciones muestran co-
mo la cantidad de vehiculos, los tiempos de espera y las emisiones se afectan mutuamente,
reflejando la complejidad del trafico urbano y su impacto ambiental. Estos datos servirdn como
punto de partida para realizar las comparaciones con otros métodos de aprendizaje, como el

aprendizaje por refuerzo y el aprendizaje federado.

3.1.2. Escenarios Propuestos para Aprendizaje Federado

Para llevar a cabo las simulaciones del Aprendizaje Federado, se disefid un escenario que
consta de cuatro sub escenarios, es decir, cuatro clientes representados por diferentes mapas,
gue a su vez estaran conectados a un unico servidor. Los cuatro sub escenarios se muestran
en la Figura 3.4. Cada uno de los mapas corresponde a una esquina del mapa utilizado en RL.
Es decir, los semaforos ubicados en la esquina del Parque Calderdn actuaran como clientes de

un esquema de federacion en donde cada cliente entrenara su modelo de RL en modo agente

-

(a) Cliente Semaforo 0 (b) Cliente Semaforo 1 ) Cliente Semaforo 2 (d) Cliente Semaforo 3

unico.

Figura 3.4: Escenarios Utilizados para el Aprendizaje Federado

Todos los escenarios propuestos presentan el mismo flujo de vehiculos, definido por un va-
lor de probabilidad. Un vehiculo sera agregado al mapa aleatoriamente con la probabilidad
configurada en cada segundo hasta que se alcance el tiempo de finalizacién. EI numero de
vehiculos insertados sigue una distribucion binomial. Por lo tanto, se consideraran estas mis-

mas condiciones para cada uno de los clientes en el estudio.

3.2. Aprendizaje por Refuerzo (Q-Learning)

Para la implementacién QL se hizo uso de la libreria SUMO-RL, la cual permite el desarrollo

de algoritmos de RL aplicados al control de senales de trafico. Cuenta con un enviroment de
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Gymmnasium configurado para el despliegue de simulaciones en SUMO por medio de TraCl

[59].

3.2.1. Estados

La definicién del espacio de estados de la Ecuacion 3.1 deriva de la consideracién de un
semaforo como agente que controla una interseccion. Cada uno de los pasos de la simulacién
se relaciona con un tiempo ¢, por lo tanto, en cada paso se produce un vector s; que representa
el estado de la interseccion. Para la definicion del estado se considera ademas la fase actual
p, el tiempo transcurrido de la fase actual 6, la densidad que se define como el niumero de
vehiculos sobre la capacidad de vehiculos de cada fase, y el nUmero de vehiculos detenidos.

Considerando como vehiculos detenidos a los que tienen una velocidad inferior a 0.1 m/s.

st = [p, 6, lane;_density, ..., lane,_density, lane;_queue, ..., lane,_queue] (3.1)

3.2.2. Acciones

Se cuenta con dos acciones: un agente puede mantener el tiempo en verde del paso previo
para la fase actual o actualizar la duracién de la fase. Estas acciones son definidas como
mantener y cambiar, respectivamente. La restriccién de tiempos se realiza asignando un valor
maximo y minimo a la duracién de la fase 4. Entre el cambio de fases se considera una fase

intermedia amairilla con una duracién constante de 2 s.

3.2.3. Funcién de Recompensa

La recompensa asignada se presenta en la Ecuacién 3.2, esta recompensa se define con
la variacion entre el tiempo de espera acumulado en cada interseccion entre las diferentes

acciones.

ry = Wt — Wt+1 (32)

Es decir, W, y W,41 representan el tiempo de espera acumulado en la interseccion antes y

después de la accién q,. El tiempo de espera acumulado W, se define como:
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Wt = Z Wyt (33)

veV:
donde V; es el conjunto de vehiculos que llegan a una interseccién en el paso de tiempo ¢, y
wy+ €s el tiempo total de espera del vehiculo v desde que ingres6 en una de las carreteras
que desembocan en la interseccidn hasta el paso de tiempo ¢. Cuando el tiempo de espera de

W;11 es mayor a W; se establece una recompensa negativa.

3.2.4. Agentes

Un agente en sumo-rl es un semaforo en una interseccion. El agente se define en una clase
que sigue el diagrama de flujo de la Figura 3.5. En este diagrama, el proceso comienza con la
inicializacion del agente. Posteriormente, explora la estrategia de aprendizaje con el método
epsilon-greedy. Basado en la tabla Q el agente elige una accién, y después de su ejecucion pa-
sa al proceso de aprendizaje. Durante este proceso, el agente utiliza la recompensay la nueva
informacion del estado para actualizar la tabla Q, ajustando las estimaciones de los valores
Q para mejorar la politica de seleccion de acciones futuras. El estado del agente se actualiza
basado en el comportamiento del entorno. Finalmente, se establece un valor de recompensa

acumulada.
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Actualizar Q-table |« Actualizar estado
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Incrementar recompensa acumulada |‘

Figura 3.5: Agente Sumo-rl

Sumo-rl define también una clase llamada TrafficSignal, que se encarga de controlar a los
semaforos utilizando la Application Programming Interface (API) de TraCl y cuyo diagrama se
presenta en la Figura 3.6. Esta clase define la inicializacion de los parametros de los semaforos,
las proximas fases de los semaforos basado en el calculo de observaciones y recompensas y
recupera la informacion detallada del trafico, como el tiempo de espera acumulado, velocidad

promedio y densidad de carriles.
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Inicio

v
_build_phases
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time_to_act
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set_next_phase
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compute_observation
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compute_reward
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Figura 3.6: Traffic Signal Sumo-rl
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3.2.5. Entorno

El entorno de SUMO se configura en Gymmnasium. La Figura 3.7 presenta el diagrama de
flujo de la clase que define este entorno. El proceso comienza con el reinicio del entorno. Esta
clase se encarga de iniciar la simulacion y definir lo que sucede en cada paso. Durante cada
paso, se aplican las acciones y se calculan las observaciones y recompensas. Ademas, se

recopila informacion adicional y se configura el archivo de salida.

Inicio

reset

v
_start_simulation

%]
A
(0]

©
y

_apply_actions

_run_steps

v
_compute_observations

v
_compute_rewards

v
_compute_dones

v
_compute_info

render

v
save_csv

Figura 3.7: Entorno Sumo-rl
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3.3. Aprendizaje No Supervisado

Dentro del contexto de Aprendizaje No Supervisado, incluimos el PCA. El objetivo de este
enfoque es segmentar los datos de ingreso generados mediante el aprendizaje por refuerzo,
los cuales han sido obtenidos simulando una densidad media vehicular con los parametros

mostrados en la Tabla 4.1.

Se ha procurado obtener la mayor cantidad de datos posibles, en este caso, se han recopilado
un total de 14000 valores para cada una de las variables que se muestran en la Tabla 3.2. Po-
demos notar que estas variables corresponden a los valores obtenidos en el sistema (system)
y los valores correspondientes a cada uno de los semaforos utilizados en la simulacion, siendo
estos s1, s2, s3y s4. Estos datos se encuentran almacenados en un archivo .csv, un formato

idéneo para datos tabulares y ampliamente compatible con diversas herramientas de analisis.

step system_out_lanes_density_avg | s3_stopped

s3_accumulated_waiting_time

system_vehicles system_lanes_density_avg

system_total_stopped system_queue_avg s3_average_speed

system_total_waiting_time
system_VSP
system_mean_waiting_time

system_mean_total_queued s3_average_acceleration

s1_stopped s4_stopped

s1_accumulated_waiting_time | s4_accumulated_waiting_time

system_mean_speed s1_average_speed s4_average_speed

system_mean_acceleration s1_average_acceleration s4_average_acceleration

system_mean_VSP s2_stopped agents_total_stopped

system_total_C02_emissions

s2_accumulated_waiting_time

agents_total_accumulated_waiting_time

system_mean_fuel_consumption

s2_average_speed

total_accumulated_VSP_emissions

system_total_fuel_consumption

s2_average_acceleration

Tabla 3.2: Variables Utilizadas para el Aprendizaje

Este proceso de reduccion de dimensionalidad permitira simplificar la complejidad de nuestros
datos, preservando al mismo tiempo la mayor cantidad posible de su informacién inherente. La
aplicacion de PCA posibilita explorar la estructura de los datos de manera mas eficiente y, po-
tencialmente, identificar agrupaciones naturales o relaciones significativas entre las variables,
lo que resulta fundamental para el analisis y la toma de decisiones informadas. A continuacion,
se detallaran las etapas seguidas para la implementacion de este algoritmo y en la Figura 3.8

podemos observar el diagrama de flujo implementado.
= Carga y Preparacién de Datos:

» Los datos se cargan desde un archivo .csv utilizando la libreria pandas, que permite

una gestion eficiente y flexible de los datos.

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA 50

» Se realiza un preprocesamiento de datos, incluyendo la limpieza de datos y la eli-
minacion de columnas innecesarias, para asegurar que solo las caracteristicas re-

levantes sean incluidas en el analisis.
= Transformacion y Normalizacién de Datos:

+ Se aplica StandardScaler para normalizar las caracteristicas. Este paso es para evi-
tar que las caracteristicas con mayor varianza dominen el analisis, asegurando que

todas las caracteristicas contribuyan equitativamente al PCA.
= Analisis de Componentes Principales (PCA):

» Se realiza él PCA en los datos normalizados para identificar los componentes prin-

cipales que explican la mayor parte de la variabilidad en los datos.

» Se calcula la varianza explicada por cada componente principal y sé grafica la va-
rianza explicada acumulada para determinar el numero éptimo de componentes a
retener, facilitando asi la reduccién dimensional sin pérdida significativa de informa-
cion.

= Visualizacion de Resultados:

» Se visualizan los primeros componentes principales mediante graficos de disper-
sion y otras técnicas de visualizacion, permitiendo una comprension intuitiva de la

estructura de los datos en un espacio de menor dimension.
= Interpretacion de Componentes Principales:

» Se analizan los pesos (cargas) de las caracteristicas en los componentes principa-
les para interpretar la contribucién de cada caracteristica a los componentes. Esto

ayuda a identificar las caracteristicas mas influyentes en la variabilidad de los datos.
= Seleccién de Método de Normalizacién:

* Se compara el resultado del PCA utilizando StandardScaler y MinMaxScaler para
evaluar como la eleccion del método de normalizacion afecta los resultados del PCA.
Esta comparacién proporciona una comprension mas profunda de como diferentes

técnicas de normalizacién pueden influir en el analisis de componentes principales.
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Figura 3.8: Diagrama de Flujo de Aprendizaje No Supervisado

3.4. Aprendizaje Supervisado

Para la implementaciéon de un Aprendizaje Supervisado se uso el algoritmo Random Forest
para clasificar los datos de tiempo de espera en distintos niveles de congestién de trafico: Alto,
Moderado y Bajo. Esto con el fin de encontrar el valor de duracion de semaforo en el cual exista
menos tiempo de espera de los vehiculos y por ende menos emisiones de C'O,. A continuacion,
se describen los pasos seguidos para la implementacion y analisis de los datos obtenidos a
partir de diversas simulaciones en las que se ha variado el tiempo de los semaforos. En la

Figura 3.9 se observa el diagrama de flujo implementado.

= Cargay Preparaciéon de Datos: Los datos utilizados provienen de simulaciones de tra-
fico en las que se ha variado el tiempo de los seméaforos. Los pasos seguidos son los

siguientes:

» Carga de Datos: Los datos se cargaron desde un archivo .csv que contiene los

resultados de las simulaciones realizadas en SUMO, utilizando la libreria pandas.

* Renombrado de Columnas: Para reflejar los diferentes tiempos de semaforo, se
renombraron las columnas. Esto facilita la identificacion y manejo de los datos en el

analisis posterior.
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= Transformacién y Normalizaciéon de Datos: Para preparar los datos para el analisis y

la modelacion, se realizaron los siguientes pasos:

* Transformacion del Formato de Datos: Utilizando la funcién melt de pandas, se
transformaron los datos a un formato largo. Esto permite un analisis mas eficiente

al convertir multiples columnas de tiempos de semaforo en una sola columna.

» Normalizaciéon de Tiempos de Espera: Se aplico la técnica de normalizacion Stan-
dardScaler para estandarizar los tiempos de espera. La normalizacién asegura que

los tiempos de espera tengan una escala uniforme.

» Clasificacion: Para clasificar los tiempos de espera en diferentes niveles de congestion,

se siguieron estos pasos:

» Calculo de Umbrales: Se calcularon los percentiles 33 % y 66 % de los tiempos
de espera normalizados para definir los umbrales de clasificacion. El percentil 33 %
divide los datos de manera que el 33 % de los tiempos de espera son menores o
iguales a este valor. Mientras que el percentil 66 % divide los datos de manera que

el 66 % de los tiempos de espera son menores o iguales a este valor.

+ Definicion de Categorias de Congestién: Basado en estos umbrales, los tiempos
de espera se clasificaron en tres categorias. Bajo (Flujo de trafico bajo), tiempos de
espera menores al percentil 33 %. Moderado (Flujo de trafico moderado), tiempos
de espera entre el percentil 33 % y el percentil 66 %. Alto (Congestion alta), tiempos

de espera mayores al percentil 66 %.

= Visualizacién de Resultados: Para entender mejor la relacién entre el tiempo de los
semaforos y la congestion del trafico, se realizaron algunas visualizaciones como lo son:

graficos de dispersién y graficos de tiempo.

= Modelado y Evaluacién del Modelo: Para evaluar la capacidad del modelo Random

Forest en clasificar los datos de trafico, se siguieron estos pasos:

+ Division de Datos: Los datos se dividieron en conjuntos de entrenamiento y prueba

para evaluar el rendimiento del modelo.

* Entrenamiento del Modelo: Se entrend un modelo Random Forest utilizando los

datos obtenidos de las simulaciones con RL.

» Evaluacion del Modelo: Se evalud el rendimiento del modelo utilizando un reporte

de clasificacion (classification_report), el cual proporciona métricas detalladas como

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA

precision, recall y F1-score para cada categoria de congestion.
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Figura 3.9: Diagrama de Flujo de Aprendizaje Supervisado

3.5. Aprendizaje Federado

Para la implementacion en el servidor de Flower se selecciona el algoritmo (FedAvg) amplia-
mente utilizado en el FL, creado por McMahan [60] y presentado en el Algoritmo 1 en el Anexo
AA.

El cédigo propuesto para realizar la federacion con Flower se describe en el diagrama de flujo
presentado en la Figura 3.10. El cual consta de dos partes: el cliente de Flower y el servidor
Flower. En el contexto de la federacion cada semaforo es considerado como un cliente, con
su respectivo archivo de red y de rutas. A su vez cada cliente es considerado como un agente
para el algoritmo de RL. Una ronda es considerada como el intercambio de parametros entre
los clientes y el servidor y consta de una etapa de entrenamiento y otra de evaluacion. En cada
etapa de entrenamiento se pueden establecer episodios de ejecucion del algoritmo de RL, a
su vez en cada episodio se establece un determinado numero de pasos, que se interpreta

ademas como el tiempo de simulacion.

En el cliente de Flower se importan las librerias necesarias para el manejo y transformacion
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de datos, la generacion de archivos de salida y la libreria sumo-rl usada para el entrenamiento

con RL.

Posteriormente, se inicializa el cliente mediante la creacion de una instancia de RLClient, que
incluye la configuracion del cliente, y los parametros necesarios para la ejecucion de RL. Se
configura el entorno de SUMO especificando el archivo de red y de ruta, los parametros de
simulacion y la funcion de recompensa. Se crean y configuran agentes de Q-Learning, inclu-

yendo la estrategia de exploraciéon EpsilonGreedy.

Durante la fase de entrenamiento, el entorno de SUMO se reinicia para comenzar el entrena-
miento. Los agentes ejecutan acciones en el entorno durante el numero de episodios estable-
cidos. En cada episodio se generan recompensas y se actualizando las tablas Q (ejemplo en
la subseccién 2.3.3.1). Las tablas Q de los agentes se actualizan basadas en las experiencias
de entrenamiento, generando un diccionario relacionado con un valor de estado y un valor de

accion. Los resultados se guardan en archivos CSV para su posterior uso y analisis.

En la fase de evaluacién, se configura el entorno SUMO seleccionando la red que contiene
a todos los agentes. Se cargan las tablas Q provenientes del servidor. Tras la ejecucion se

registran las métricas de recompensa y tiempo de espera.

En el servidor Flower, se lleva a cabo la comunicacion cliente-servidor. Los clientes envian los
parametros del modelo entrenado al servidor central. El servidor recibe estos parametros y los
combina para crear un modelo global actualizado. El modelo global contiene los diccionarios
de los clientes con los valores de estado-accion. Los resultados de las fases de entrenamiento
son devueltos a los clientes para su evaluacién. Por otro lado las métricas recibidas de la fase

de evaluacion se guardan para su analisis posterior.

El proceso de federacion concluye una vez que se cumplen todas las rondas establecidas por

el servidor.
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4. Analisis de Resultados

En este capitulo se detallaran los resultados obtenidos al aplicar cada uno de los algoritmos
de aprendizaje automatico propuestos anteriormente, asi como una comparacion entre dos de
estos enfoques. En la seccion 4.1, se analizan los resultados del Aprendizaje por Refuerzo,
especificamente aplicando el algoritmo de Q-Learning. Este analisis sirve como punto de par-
tida para los dos siguientes tipos de aprendizaje: Aprendizaje No Supervisado y Aprendizaje

Supervisado.

En la seccion 4.2, se presentan los resultados del Aprendizaje No Supervisado, utilizando
el algoritmo PCA. Este algoritmo permite reducir la dimensionalidad de los datos y descubrir

patrones subyacentes sin la necesidad de etiquetas predefinidas.

En la seccion 4.3, se describen los resultados del Aprendizaje Supervisado, empleando el
algoritmo de Random Forest. Este método permite construir un modelo clasificador robusto
basado en datos etiquetados, mejorando la precision de las clasificaciones de datos mediante

la combinacién de multiples arboles de decision.

En la seccién 4.4, se aborda el Aprendizaje Federado, aplicando nuevamente el algoritmo de
Q-Learning, pero utilizando el marco del framework Flower. Este enfoque distribuye el proceso
de aprendizaje a través de multiples dispositivos o nodos, manteniendo los datos localmente

y mejorando la privacidad.

Finalmente, en la seccion 4.5, se realiza una comparacion detallada entre el Aprendizaje por
Refuerzo y el Aprendizaje Federado. Esta comparacién evaluara el desempefio, la eficiencia
y la escalabilidad de ambos enfoques, destacando sus ventajas y limitaciones en diferentes

escenarios.

4.1. Aprendizaje por Refuerzo

Para el Aprendizaje por Refuerzo, como se menciond anteriormente, se utiliza el algoritmo
Q-Learning. Este algoritmo permite que los agentes aprendan y se adapten a los cambios
en su entorno, asi como a las diferentes variaciones que puedan presentarse. El objetivo es
mejorar el comportamiento de los agentes mediante el aprendizaje continuo a partir de sus

interacciones con el entorno.

Se analiza el comportamiento del aprendizaje bajo tres niveles distintos de densidad vehicular:

alta, media y baja. Para lograr esto, se modifica el archivo .rou.xml, donde se encuentra el
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parametro probability. Este parametro define la probabilidad de generacion de un vehiculo
en cada segundo de la simulacion, determinando asi la frecuencia con la que los vehiculos
ingresan a la red vial desde el punto de origen hacia el destino especificado en cada flujo.
Para cada uno de los niveles de densidad vehicular se utilizaron los parametros indicados en

la Tabla 4.1.

Parametro Valor
Tasa de aprendizaje « 0.1
Factor de descuento ~ 0.99
Factor de decaimiento d 1
Numero de ejecuciones completas del experimento 1
Episodios 10
Duracién de la Simulacion 86400

Tabla 4.1: Valores Utilizados para las Simulaciones

Los valores indicados anteriormente permiten tener una comprension clara del funcionamiento
de nuestro algoritmo y evaluar su desempefio. En primera instancia, consideramos una tasa
de aprendizaje « de 0.1. La tasa de aprendizaje determina la cantidad de nueva informacién
que sobrescribe la informacién antigua. En este caso, un valor de 0.1 permite un aprendizaje
gradual, evitando grandes cambios que podrian desestabilizar el proceso de aprendizaje. Un

valor pequefio asegura convergencia y estabilidad.

De igual manera, se utiliza el factor de descuento v con un valor de 0.99 para estas simulacio-
nes. Este factor determina la importancia de las recompensas futuras. Un valor cercano a uno
indica que se otorga la misma importancia a las recompensas futuras como a las inmediatas.

El valor propuesto permite que el agente tenga una visién a largo plazo.

Ademas, se ha utilizado un factor de decaimiento d de 1 en estas simulaciones. Este factor se
refiere al decaimiento de la tasa de exploracion-explotacion. En este caso, un valor de 1 implica
gue no existe decaimiento, por lo que el agente mantiene una tasa constante de exploracion

durante todo el proceso de aprendizaje.

Por otra parte, se ha determinado el nimero de episodios, que es la cantidad de veces que
el agente se entrena en el entorno. Se ha utilizado el valor propuesto porque, a partir de este

valor y valores mas altos, no se observa un incremento significativo en el aprendizaje.

En la Figura 4.1 se presentan los resultados de emisiones de C'O, clasificado en tres catego-
rias: Alta, Media y Baja. Cada barra representa el promedio de emisiones de CO5 en gramos

por segundo (g/s) para cada episodio. Por otro lado, en la Figura 4.2 se presentan los re-
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sultados del tiempo de espera. Cada barra representa el promedio del tiempo de espera en
segundos (s) para cada episodio. Las barras azules corresponden a las emisiones altas, las
naranjas a las medias, y las verdes a las bajas. Las lineas negras en cada barra muestran los
intervalos de confianza, indicando la variabilidad de los datos en cada categoria y episodio. De
forma general se observa que los intervalos de confianza decrecen a medida que aumentan
los episodios, es decir los valores varian menos conforme avanza la simulacién. Para cada uno
de los episodios se propone una duracion de la simulaciéon de 86,400 segundos, equivalente
a un dia completo. Este valor permite observar el comportamiento del sistema a lo largo de un

periodo significativo de tiempo, facilitando la obtencién de tendencias a largo plazo.

Category
 Alta
— Media
BN Baja

1 2 3 4 5 6 7 8 9 10

Episode

200

=
tn
=]

Mean CO2 Emissions (g/s)
=1
(=]

wn
=]

o

Figura 4.1: Promedio de Emisiones de C'O, para Distintas Densidades
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Figura 4.2: Promedio de Tiempo de Espera para Distintas Densidades

Para el caso de Densidad Vehicular Baja, se utilizé un valor de probability de 0.05, lo que indica
una probabilidad del 5 % de que se genere un vehiculo cada segundo. Las emisiones de CO-
asi como el tiempo de espera en el primer episodio, que es el mas significativo, se presenta

en la Figura 4.3.

Se observa en la Figura 4.3(a) que al inicio del episodio se tiene valores altos de tiempo de
espera, que llegan a los 200 segundos, para después llegar a valores por debajo de los 100

segundos.

Por otra parte, se observa en la Figura 4.3(b) las emisiones de CO- obtenidas con la densidad
vehicular baja. Las emisiones llegan a valores menores a 70 g/s, pero en promedio llegan
a valores menores de 50 g/s. Hay picos altos en las emisiones, lo que indica momentos de
mayor congestion vehicular o ineficiencias en el trafico. Los altos picos en el tiempo de espera
podrian indicar congestion vehicular, lo cual generalmente lleva a un aumento en las emisiones
de CO,. Esto es coherente con los datos de las emisiones de CO,, donde se observan altos

picos que pueden coincidir con los tiempos de espera prolongados.
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Figura 4.3: Resultados con Densidad Vehicular Baja

Para verificar que el nimero de episodios realizados en cada simulacién converge, se realiza el
monitoreo de convergencia. Se analizan las graficas obtenidas en cada episodio paraidentificar
el punto en el que tienden a un valor Unico. Todas las graficas para los andlisis de convergencia
se presentan en el Anexo A.B. En la Figura A.1 se observa como con tres episodios realizados,
ya existe una convergencia de un valor cercano a 40 segundos de tiempo de espera. Esto
permite afirmar que, en la densidad vehicular baja, con tres episodios de simulacién se puede
obtener este valor constante. Sin embargo, al momento de analizar los valores promedio de
emisiones de CO y tiempo de espera de la Figura 4.1 y Figura 4.2 se observa que existe una
tendencia constante a lo largo de los episodios, lo que dificulta comprobar el funcionamiento

del algoritmo de Q-learning con esta densidad.

Para el caso de Densidad Vehicular Media, se utiliza un valor de probability de 0.15, lo que

indica una probabilidad del 15 % de que se genere un vehiculo cada segundo.

En la Figura 4.4 se observa el comportamiento del Tiempo de espera y Emisiones CO5 en
el primer episodio. En primera instancia, en la Figura 4.4(a) se puede observar como varia el
tiempo de espera de los vehiculos. Se observa que al inicio de la simulacién se tienen picos
que alcanzan los 12000 segundos, pero a medida que avanza la simulacion este valor va
reduciendo hasta llegar a valores menores a los 1000 segundos de tiempo de espera, lo que

indica que el algoritmo esta funcionando de manera adecuada.

Asi también, en la Figura 4.4(b) se puede notar como se tiene al inicio de la simulacion valores
muy altos de emisiones de C'O2, en este caso alcanza los niveles de mas de 250 g/s para
luego ir decreciendo estos valores hasta llegar a valores alrededor de los 100 g/s. Esto es un

buen indicativo de que el algoritmo funciona de manera adecuada, ya que ayuda a reducir el

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA 6

nivel de contaminacion, en este caso de C'O,. Se puede apreciar de mejor manera como el

reducir el tiempo total de espera de los vehiculos ayuda a reducir las emisiones de C'Os.
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Figura 4.4: Resultados con Densidad Vehicular Media

En la Figura A.2 se puede observar como con cinco episodios realizados, existe ya una con-
vergencia de un valor cercano a 800 segundos de tiempo de espera. Con lo que se puede decir
gue en la densidad vehicular media, con cinco episodios de simulacién se puede obtener este
valor constante. Esta tendencia se observa también en los valores promedio de emisiones de
CO- y tiempo de espera de la Figura 4.1 y Figura 4.2, en donde ya se puede observar como

el tiempo de espera y las emisiones de C'O, disminuyen a lo largo de los episodios.

Para el caso de Densidad Vehicular Alta, se utilizé un valor de probability de 0.30, lo que indica

una probabilidad del 30 % de que se genere un vehiculo cada segundo.

En la Figura 4.5 se puede observar el comportamiento del Tiempo de esperay Emisiones CO-.
En primer lugar, se puede observar en la Figura 4.5(a) como varia el tiempo de espera de los
vehiculos respecto al tiempo de simulacion. A medida que avanza la simulacién, se aprecia
una disminucion en el tiempo de espera, lo que indica que el algoritmo esta funcionando de
manera adecuada. Esta variacion puede ser notada, ya que al inicio de la simulacion se tiene
un tiempo total de espera de 10000 segundos y al finalizar la misma se tiene un valor menor a

los 6000 segundos.

De igual forma, en la Figura 4.5(b) se puede analizar como empieza la simulacion con valores
cercanos a los 300 g/s de emisiones de C'O,, para a medida que avanza la simulacién esta
vaya disminuyendo, que en este caso llega a valores por debajo de las 200 g/s emisiones
de C'O,. Por lo que se aprecia que el algoritmo sigue funcionando, no tan rapido como en la

densidad media, pero sigue funcionando.
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Figura 4.5: Resultados con Densidad Vehicular Alta

En la Figura A.3 se puede observar como con ocho episodios realizados, existe ya una con-
vergencia de un valor cercano a 6000 segundos de tiempo de espera. Con lo que se puede
decir que en la densidad vehicular alta, con cinco episodios de simulacion se puede obtener
este valor constante. En los valores promedio de emisiones de C'O, y tiempo de espera de
la Figura 4.1 y Figura 4.2 se observar como bajo estas condiciones el tiempo de espera y las

emisiones de C'O- disminuyen a lo largo de los episodios.

4.1.1. Comparacion de Densidades Vehiculares

En primer lugar, se compararon las tres densidades propuestas: Alta, Media y Baja. En la

Figura 4.6 se aprecia como varia la densidad vehicular en cada caso.

En la Figura 4.6(a), se observa la densidad baja, que tiene un pico maximo de 0.12. Esta
densidad muestra una gran variabilidad con valores que oscilan principalmente entre 0.02 y

0.06 durante la mayor parte del tiempo de simulacion.

Enla Figura A.2(b), se aprecia la densidad media, que tiene el pico maximo alcanza un valor de
0.5. Sin embargo, después de aproximadamente 30,000 segundos de simulacién, la densidad
comienza a disminuir, estabilizandose en un valor estimado de 0.2. Esto indica que el sistema

experimenta una reduccion significativa de la densidad con el tiempo.

En la Figura A.3(b), se tiene la densidad alta, en la cual se observa el pico maximo es de 0.6,
pero se observa una tendencia decreciente que lleva la densidad a estabilizarse en un valor
alrededor de 0.4. Este comportamiento sugiere que, aunque inicialmente la densidad es alta,

hay mecanismos en el sistema que ayudan a reducirla parcialmente con el tiempo.
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Figura 4.6: Escenarios Utilizados para el Aprendizaje Federado

También se considero la duracion total de la simulacion para cada caso. Los resultados ob-
tenidos se presentan en la Tabla 4.2. La simulaciéon con mayor duracién corresponde al caso
de Densidad Vehicular Alta, alcanzando un tiempo de 2920.64 segundos. Este resultado era
previsible, dado que un mayor numero de vehiculos en la red incrementa el tiempo necesario

para completar la simulacién.
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Duracion Tiempo [s]
Densidad Vehicular Baja 174.08
Densidad Vehicular Media 468.00
Densidad Vehicular Alta 4292.20

Tabla 4.2: Tiempo de Duracién de cada Simulacion

4.1.2. Evaluacion del Modelo

El modelo de RL se evalla utilizando métricas estandar para la evaluacion de modelos dé RL.
Para realizar estas evaluaciones, se parte de los resultados obtenidos anteriormente, para tra-
bajar sobre la densidad vehicular en la que se obtuvieron resultados mas evidentes en cuanto

al funcionamiento del algoritmo, que en este caso fue la densidad vehicular Media.

Para la evaluacién del modelo, se debe definir en primer lugar los parametros con los cuales
se trabaja. En este caso, se usa casi los mismos valores y parametros listados en la Tabla 4.1,

con el cambio en el numero de episodios realizados, que en este caso, se usa 10 episodios.

La Figura 4.7 presenta la métrica de la varianza explicada EVa. Esta métrica evalua si la
politica aprendida es un buen predictor del rendimiento, es decir, de la recompensa total. Un
valor de FVa < 0 indica que la prediccion es peor que no hacer ninguna prediccion, mientras
que un valor de E'V, = 1 indica una excelente prediccion [61]. En la Figura 4.7, se observa que

EV, se aproxima a 1, por lo que se ha encontrado una estrategia eficaz a nuestro problema.
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Figura 4.7: Varianza Explicada del Modelo

Otra de las métricas utilizadas para evaluar el modelo de RL es la pérdida de valor. Para

calcular la pérdida de valor se calcula las recompensas acumuladas de los agentes presentes
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en la simulacién. La Figura 4.8 presenta las recompensas acumuladas a lo largo del tiempo

de simulacién. Como se indica en la Ecuacién 3.2, esta recompensa es negativa.
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-175
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Figura 4.8: Recompensa Acumulada

La pérdida de valor se presenta en la Figura 4.9. Esta métrica se calcula como la diferencia
de valor entre pasos para la recompensa. Se observa que al inicio de la simulacion hay un
gran cambio en el valor de la recompensa, pero a partir de los 20,000 pasos, esta tiende a

estabilizarse, indicando un aprendizaje en los agentes.
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Figura 4.9: Pérdida de Valor

4.2. Aprendizaje No Supervisado

Como se menciona en la seccion anterior, se trabaja con 35 variables, las cuales se pueden
observar en la tabla 3.2 y con 14000 datos de cada una de ellas, por lo que al aplicar él PCA, se
busca obtener la cantidad de variables minimas relevantes, las componentes principales y las
variables mas importantes que se han encontrado. Asi también, se compararan dos métodos

de normalizacion, como lo son el StandardScaler y MinMaxScaler.
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4.2.1. StandardScaler

Al utilizar el método StandardScaler para la normalizacion, se observa que se pueden utilizar
3 componentes principales con los cuales se puede abarcar aproximadamente el 83.1 % de la

varianza de los datos, como se muestra en la Figura. 4.10.

Dado que se tiene un alto porcentaje de varianza acumulada utilizando tres componentes prin-
cipales, es posible considerar estas tres componentes como suficientes para una clasificacion
efectiva de los datos. Estas tres componentes mencionadas estan compuestas por las varia-
bles mas relevantes, por lo que en las Tablas 4.4, 4.5 y 4.6 estan las componentes principales

uno, dos y tres respectivamente.

Enla Figura4.11, se presenta la proyeccién de los datos en los tres primeros componentes prin-
cipales, utilizando StandardScaler para la normalizacion de los datos. Esta figura proporciona
una vision detallada de la distribucién de los datos en diferentes combinaciones de componen-

tes principales, las cuales estan en las Tablas 4.4, 4.5y 4.6.

De color rojo se observa como los datos se distribuyen en el espacio definido por las dos
primeras componentes principales, que capturan la mayor parte de la varianza en los datos
originales. La distribucion en esta proyeccion revela la estructura principal de los datos. De
color verde se muestra, en cambio, como los datos se distribuyen en la primera y tercera com-
ponentes principales. Aunque la tercera componente captura menos varianza que la primera
y segunda, sigue siendo significativa y ofrece una perspectiva adicional sobre la estructura de
los datos. Mientras que de color azul, se visualiza la relacion entre la segunda y tercera com-
ponentes principales. Esta proyeccion es util para entender las variaciones secundarias en los

datos y como se distribuyen en las componentes de varianza menor.

La utilizacién de las tres primeras componentes principales, las cuales estan en las Tablas 4.4,
4.5y 4.6, que explican un alto porcentaje de la varianza total, es suficiente para comenzar a
clasificar los datos. La proyeccién de los datos en estas componentes muestra una estructura

clara y bien definida, lo que facilita la identificacion de patrones y agrupamientos.
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Figura 4.10: Varianza Acumulada por Componentes Principales StandardScaler
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Figura 4.11: Proyeccion de Datos en las Primeras Tres Componentes Principales StandardS-
caler

4.2.2. MinMaxScaler

Por otra parte, al utilizar el método MinMaxScaler para la normalizacion se muestra igualmente
que utilizando 3 componentes principales abarcamos aproximadamente el 86.5 %, que es mas

que al utilizar el método StandardScaler. Este resultado podemos apreciarlo en la Figura 4.12.

De igual manera que en el anterior método, se ha obtenido un porcentaje de varianza acu-
mulada aceptable para utilizar Unicamente tres componentes principales para realizar una cla-
sificacion efectiva de datos. En la figura 4.13 se presenta la proyeccion de los datos de las

tres componentes principales utilizando en este caso MinMaxScaler para la normalizacion. Se
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utilizan los mismos colores y las mismas componentes principales en comparacion, con la

diferencia mas significada que al comparar las componentes dos y tres estan mas centradas.
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Figura 4.12: Varianza Acumulada por Componentes Principales MinMaxScaler

139 ® PClvsPC2
o PClusPC3
@ PC2vsPC3

PC2/PC3

PC1

Figura 4.13: Proyeccion de Datos en las Primeras Tres Componentes Principales MinMaxS-
caler

4.2.3. Varianza Obtenida en las Primeras Seis Componentes Principales

A continuacion, en la tabla 4.3 se detalla el valor de cada componente principal en cuanto a la
varianza, en donde se observa las seis componentes principales para poder confirmar que con
el uso de las primeras tres se puede empezar a usar un clasificador de datos. Cabe mencionar,

que desde la componente principal 22 hasta la ultima componente principal el valor es de 0 %.
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Varianza por Cada Componente Principal | Porcentaje (%)
Componente Principal 1 (PC1) 56.67
Componente Principal 2 (PC2) 21.63
Componente Principal 3 (PC3) 4.80
Componente Principal 4 (PC4) 3.27
Componente Principal 5 (PC5) 2.90
Componente Principal 6 (PC6) 2.08

Tabla 4.3: Varianza de las Primeras Seis Componentes Principales

4.2.4. Variables mas Importantes en las Tres Primeras Componentes Principales

= Componente Principal 1 (PC1): Las variables que mas contribuyen a PC1 son aquellas
relacionadas con el trafico y el consumo de combustible. Los valores obtenidos por cada

una de las variables se observa en la Tabla 4.4.

Variable Valor Variable Valor

system_total_stopped 0.223369 | system_out lanes_density avg 0.216528
agents_total_stopped 0.223369 | system_total_fuel_consumption 0.213701
system_queue_avg 0.223156 | system_total_C02_emissions 0.213699
system_vehicles 0.220119 | agents_total_accumulated_waiting_time | 0.213402
system_lanes_density_avg | 0.219356 | system_mean_total_queued 0.213402

Tabla 4.4: Valores de las Variables mas Importantes en la Componente Principal 1

De igual manera se define la tabla anterior mediante el uso de la siguiente ecuacion:

PC1 = Wiz + Wigxe + Wizzz + -+ + Wiz (4.1)

Donde:

PC1 es la primera Componente Principal.

* Wy; es el coeficiente o peso de la variable x; en la primera Componente Principal.
* z; es la j-ésima variable original del conjunto de datos.

* p es el numero total de variables originales [62].

Esta ecuacion puede ser utilizada para representar cualquier Componente Principal, se

debe tener en consideracion el numero de componente con la cual estamos trabajando.
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= Componente Principal 2 (PC2): PC2 estda dominada por variables relacionadas con el
promedio y la densidad de la cola del sistema. Los valores obtenidos por cada una de

las variables se observa en la Tabla 4.5.

Variable Valor Variable Valor

s2_stopped 0.017396 | system_total_stopped 0.012875
s1_stopped 0.013502 | system_mean_waiting_time 0.009303
system_queue_avg 0.013332 | system_total_waiting_time 0.008509

system_lanes_density_avg | 0.013204 | s4_accumulated_waiting_time | 0.007573

agents_total_stopped 0.012875 | s2_accumulated_waiting_time | 0.00673

Tabla 4.5: Valores de las Variables mas Importantes en la Componente Principal 2

= Componente Principal 3 (PC3): PC3 destaca las velocidades promedio de las seccio-
nes del sistema, ademas del tiempo total de espera y otros tiempos acumulados. Los

valores obtenidos por cada una de las variables se observa en la Tabla 4.6.

Variable Valor Variable Valor

s4_average_speed 0.398883 | system_mean_waiting_time 0.195839
s3_average_speed 0.398883 | agents_total_accumulated_waiting_time | 0.188464
s2_average_speed 0.398883 | system_mean_total_queved 0.188464
s1_average_speed 0.398883 | s4_accumulated_waiting_time 0.179076
system_total_waiting_time | 0.210222 | s2_accumulated_waiting_time 0.178604

Tabla 4.6: Valores de las Variables mas Importantes en la Componente Principal 3

En este estudio, se realiza un PCA sobre un conjunto de datos que consta de 35 variables y
14,000 observaciones por cada una de ellas. El objetivo para llevar a cabo este PCA fue la
necesidad de reducir la dimensionalidad del conjunto de datos. Al tratar con un alto numero de
variables, es fundamental abordar la posible redundancia y alta correlacion entre ellas, lo cual

puede afectar negativamente el rendimiento de los algoritmos de aprendizaje supervisado.

La reduccion dimensional mediante PCA permite transformar el conjunto de datos original en
un espacio de menor dimensién, preservando la mayor parte de la variabilidad intrinseca a
los datos. Este proceso no solo facilita una mejor visualizacion y comprension de los patrones
subyacentes en los datos, sino que también mejora la eficiencia computacional y el rendimiento

de los modelos de aprendizaje supervisado que se implementaran posteriormente.
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4.3. Aprendizaje Supervisado

Las razones para aplicar aprendizaje supervisado en este analisis surge de la necesidad de
clasificar el tiempo de espera y, consecuentemente, los niveles de emisiones de C'Os. Inicial-
mente, se realizé6 un PCA como una técnica de aprendizaje no supervisado para reducir la
dimensionalidad del conjunto de datos y extraer las caracteristicas mas relevantes. Con los
datos transformados y simplificados obtenidos del PCA, se procedi6 a implementar el aprendi-
zaje supervisado con el fin de clasificar el tiempo de espera y los niveles de C'O, en categorias

de alto, medio y bajo.

Esta clasificacion es para identificar patrones y tendencias en el comportamiento del trafico
vehicular y sus emisiones. El objetivo final de esta clasificacion es optimizar la duracion de las
luces verdes en los semaforos. Al ajustar adecuadamente los tiempos de las sefales de trafico,
se busca reducir las emisiones de C'O,, disminuyendo el tiempo de espera de los vehiculos y

mejorando la fluidez del trafico.

Como se menciond anteriormente, en esta seccion se presentan los resultados obtenidos al
aplicar el algoritmo Random Forest. Este algoritmo se implementa con el propdsito de clasificar
los tiempos de espera y emisiones de C'O, en diferentes niveles, esto se obtiene utilizando
la duracion de la luz verde de cada uno de los semaforos. Cabe destacar que la variable
tiempo de espera total, contenida en la componente principal uno mostrada en la Tabla 4.4,
ha demostrado ser una de las mas significativas, como se analizé en la seccién 4.2. Por esta
razon, se utiliza esta variable para clasificar los niveles de congestion en alto, moderado y bajo
y por ende, poder clasificar estos datos en alto, moderado y bajo respecto a las emisiones de

CO4 generadas.

En la Figura 4.14 se presenta la clasificacion en niveles de emisiones de C'O- en funcién del
tiempo de duracion de encendido de la luz verde de cada semaforo, el cual varia entre 5y
25 segundos. En la figura, se puede observar que, a medida que se dispone de una mayor
cantidad de datos en cada una de las clases, el tamafio de las burbujas aumenta. El punto
central de cada burbuja representa el promedio de cada clase en relacién con los diferentes

tiempos de duracién del semaforo.
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Figura 4.14: Clasificacion de Niveles de C O, segun el Tiempo del Semaforo

También, se ha podido obtener la cantidad de datos por cada una de las clases a lo largo de
la duracién del semaforo. Esto se puede apreciar en la Figura 4.15, en donde se puede ver la
variabilidad de la cantidad de datos de cada una de las clases, ya sea alta, moderada o baja,
dependiendo del tiempo de duracién del semaforo que se configure. En esta figura, se visualiza
que el tiempo del semaforo que se configure influye significativamente en las emisiones de
CO- y en la congestién del trafico, ya que se observan intervalos de tiempo donde se tiene
congestion mas alta y por ende, mayor nivel de emisiones de C'O-. El tiempo de semaforo de
15 segundos es el que tiene un flujo de trafico mas bajo y menor nivel de emisiones de CO2,

lo cual es la duracién de semaforo dptima.

—— Clase 0 Datos
Clase 1 Datos
—— Clase 2 Datos

7000 4

6000 4

5000 o

4000

Cantidad de Datos
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2000 4

5.0 5.5 6.0 6.5 7.0 75 8.0 8.5 9.0
Tiempo del seméforo (s)

Figura 4.15: Cantidad de Datos por Clase a lo Largo del Tiempo de Semaforo

En la Tabla 4.7 tenemos el informe de clasificacion al aplicar Random Forest, en ella se aprecia

lo siguiente:
m Precision: Mide la exactitud de predicciones positivas.

m Recall: Mide la capacidad del modelo para identificar las instancias positivas.
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m F1-Score: Es la media arménica de Precision y Recall, proporcionando un equilibrio entre

ambas métricas.
= Support: Indica el nimero de instancias reales de cada clase en el conjunto de prueba.

m Accuracy: Indica la proporcion de instancias correctamente clasificadas sobre el total de

instancias.

m Macro Avg: Es la media de las métricas (Precision, Recall, F1-Score) calculadas inde-

pendientemente para cada clase.

= Weighted Avg: Es la media ponderada de las métricas, teniendo en cuenta el Support de

cada clase. [63].

Precision | Recall | F1-Score | Support
Bajo 1.00 0.95 0.97 6984
Modera 0.89 1.00 0.94 6841
Alto 1.00 0.93 0.96 7175
Accuracy 0.96 21000
Macro Avg 0.96 0.96 0.96 21000
Weighted Avg 0.96 0.96 0.96 21000

Tabla 4.7: Informe de Clasificacion

Enla Tabla 4.7 se puede observar que: en los niveles Bajo y Alto, todas las predicciones fueron
correctas, mientras que en la clase Moderada se alcanzé un 89 % de predicciones correctas.
De igual manera, solo en la clase Moderada se identificaron correctamente todas las instancias

reales. En la clase Baja se logré un 95 %, y en la clase Alta se obtuvo un 93 %.

El valor mas alto se registré en la clase Bajo con un 0.96, indicando un buen equilibrio entre
precision y exhaustividad. Para las clases Moderada y Alta, se obtuvieron valores de 0.94
y 0.96 respectivamente, también mostrando un buen equilibrio entre estas dos métricas. La
cantidad de instancias por clase es la siguiente: Baja con 6984, Moderada con 6841, y Alta

con 7175 instancias.

La precision general del modelo es del 96 %, lo que indica que este porcentaje de instancias
fueron clasificadas correctamente. Los promedios macro y ponderado (Macro Avg y Weighted
Avg) del modelo son ambos de 0.96. Observadas todas estas caracteristicas, se puede decir
que el modelo muestra un rendimiento sélido y equilibrado en todas las clases, con una alta

precisidon general y promedios consistentemente altos.
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4.4. Aprendizaje Federado

El objetivo de aplicar FL es mejorar la privacidad en el manejo de los datos de los clientes.
A través del aprendizaje federado, los datos permanecen en los dispositivos locales y solo se
comparten los parametros del modelo, evitando asi la transferencia de datos sensibles. Aunque
se espera que el rendimiento del modelo sea inferior en comparaciéon con el aprendizaje por
refuerzo, esta metodologia proporciona una mayor proteccién de la privacidad de los usuarios.
Este enfoque se usa en contextos donde la confidencialidad de los datos es una prioridad,
permitiendo desarrollar modelos robustos mientras se salvaguardan los datos personales de

los clientes.

Para analizar los resultados obtenidos con el FL, se parte del escenario propuesto en la Seccion
3.1.1, en el cual contamos con cuatro clientes y un servidor central. Cada uno de los clientes
tendra su modelo funcional de RL y enviara los resultados al nodo central o servidor para
obtener un modelo general. Para realizar este analisis, se utilizan los parametros iniciales de

simulacion indicados en la Tabla 4.8.

Parametros Valor
Duracion de la Simulacion 3500
Densidad Vehicular 0.15
Numero Episodios 1
Numero de Rondas (Federado) | 25
Runs 1
€ 100

Tabla 4.8: Valores Utilizados para Realizar FL

Inicialmente se realizaron simulaciones considerando 80 rondas en la ejecucion del algoritmo
de FL. Realizando el promedio entre los datos ofrecidos por los clientes, se obtiene el tiempo
promedio de espera presentado en la Figura 4.16, en donde se muestran los datos reales y una
regresion polinémica que permite observar la tendencia de los datos. De manera similar, en
la Figura 4.17 se presentan las emisiones de C' O, promedio. Estas figuras permiten observar
que a partir de la ronda 25 el modelo tiende a estabilizarse, razén por la cual se establecen 25
rondas como el rango de analisis del algoritmo de FL. Como se desea obtener una distribucion
del algoritmo de Q-learning, se establece una duracion de la simulacién de 3500 segundos,

cubriendo asi los 86400 segundos que son el objeto de analisis.
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Figura 4.17: Emisiones de C' O, Promedio por Ronda

4.4.1. Fase de Entrenamiento

En la Figura 4.18 se presenta el proceso de entrenamiento del cliente 0. Se observa una no-
table disminucion en el tiempo de espera promedio del cliente en cada una de las rondas de
federacién, comenzando en aproximadamente 600 segundos y terminando por debajo de los
200 segundos. Los intervalos de confianza, en donde se considerd un valor de confianza del
95 %, demuestran que en las primeras rondas de entrenamiento existe una mayor variabili-
dad en el tiempo de espera promedio, la cual se reduce a medida que el propio modelo de

federacion se estabiliza.
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Figura 4.18: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 0

De igual manera se analiza el comportamiento de las emisiones de C'O5 en cada uno de los
episodios de entrenamiento del cliente 0, esto en la Figura 4.19. Se observa que se tiene
un alto valor de emisiones, en este caso alcanza los valores de 120 g/s para luego disminuir
significativamente a valores inferiores alos 100 g/s. El comportamiento del resto de los clientes

es similar al observado en el cliente 0, y se detallan en el Anexo A.C.A.

130
= FIT Client O

120 T

110

i

Ronda

Emisiones de CO2 [g/s]

Figura 4.19: Resultados Obtenidos de Emisiones de C'O, en cada Entrenamiento Cliente 0

4.4.2. Fase de Evaluacion Utilizando los Parametros Recibidos del Servidor.

Una vez completado el entrenamiento en cada uno de los clientes, estos envian sus para-
metros al nodo central. Con toda esta informacion recopilada, el nodo central genera nuevos
parametros, que son posteriormente enviados de vuelta a cada cliente para evaluar el mode-

lo actualizado. A continuacion, se presenta el comportamiento de estos parametros para el
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cliente 0.

En la Figura 4.20, se presentan los resultados del cliente 0 en cuanto al promedio de tiempo
de espera en cada ronda. Se observa que el valor maximo sobrepasa los 400 segundos y
corresponde a la primera ronda de evaluacion. Se visualiza una notable reduccién en el tiempo
de espera a medida que avanzan las rondas llegando a valores cercanos a los 400 segundos.
En cuanto a los intervalos de confianza se observa una menor variabilidad a a medida que

aumentan las rondas.
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Figura 4.20: Evaluacién de Tiempo de Espera del Modelo Recibido en el Cliente 0

De igual manera, se analizan las emisiones de C'O, generadas durante la fase de evaluacion.
Estas emisiones se pueden observar en la Figura 4.21, donde se aprecia una reduccion a

medida que avanzan las rondas, con valores alrededor de 100 g/s.
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Figura 4.21: Evaluacion de Emisiones CO- del Modelo Recibido en el Cliente 0
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4.4.3. Evaluacion del Modelo

Como se ha mencionado, el aprendizaje federado implementado utiliza el algoritmo de Q-
learning en cada cliente. Para evaluar el desempefio del modelo, se analiza la tendencia de
las recompensas a lo largo de las rondas, verificando que estas tiendan a estabilizarse. En la
Figura 4.22 se muestra la recompensa promedio por ronda, donde se presentan tanto los datos
reales como una regresion polindmica de los mismos. Se observa que, a partir de la ronda 30,

las recompensas tienden a estabilizarse, lo que indica la convergencia del modelo.
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Figura 4.22: Recompensa Promedio por Ronda

En Flower, los clientes utilizan DP a través del mddulo LocalDpMod. Desde el punto de vista
de la privacidad, el uso de DP reduce de manera significativa la capacidad de inferir datos
individuales de los usuarios al afiadir un ruido controlado. Esto no solo proporciona una mayor
proteccion de la informacion sensible, sino que también permite demostrar que el modelo esta
implementando efectivamente mecanismos de privacidad. La Figura 4.23 muestra una grafica
de la precision de las recompensas para diferentes valores de ¢, con el ruido anadido segun
la Ecuacién 2.2. La precision se calcula como la diferencia entre los datos obtenidos con DP
y aquellos sin utilizar DP. La variacion del parametro e revela una relacion entre privacidad y
precision. Valores mas bajos de ¢ mejoran la privacidad, pero reducen la precision del modelo
debido al mayor nivel de ruido afiadido. En cambio, valores mas altos de € incrementan la preci-
sion del modelo, aunque disminuye la privacidad. Los resultados previamente presentados se
realizaron considerando un e de 100, que como se muestra en la Figura 4.23 permite mantener
una precisiéon superior al 85 % del modelo mientras se anade privacidad. Este ajuste del valor

de ¢ permite modificar el nivel de privacidad segun los requisitos especificos, equilibrando la
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precision del modelo con la proteccion de datos.
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Figura 4.23: Precision del Modelo para Distintos Valores de ¢

4.5. Comparacion Aprendizaje por Refuerzo vs Aprendizaje Federado

Para la comparacion entre el Aprendizaje por Refuerzo y el Aprendizaje Federado se empezara
evaluando el porcentaje de uso de CPU y el porcentaje de uso de la memoria RAM. Para esta

comparacion, se tendra las condiciones iniciales mostradas en la Tabla 4.9.

Parametros Valor
Duracién de la Simulacion 86400
Densidad Vehicular 0.15
Numero Episodios 5
Numero de Rondas (Federado) 1
Runs 1

Tabla 4.9: Valores Utilizados para Realizar la Comparacion

En las Figuras A.16 y A.17 se observa el comportamiento del porcentaje de uso del CPU y de

la memoria RAM durante la simulacién del RL y FL.

En la Figura 4.24, se presenta el promedio del porcentaje de uso de CPU y Memoria RAM para
los clientes 0, 1 y 2, comparado con el RL, utilizando diagramas de bloques con un intervalo
de confianza del 95 %. Este intervalo de confianza es pequefio, lo que indica que hay menos
incertidumbre sobre el valor real del parametro. Se observa que el uso promedio de CPU en

los clientes es similar, con valores de 41.67 %, 41.26 % y 41.55 % para los clientes 0, 1 y 2 del
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FL, respectivamente. En contraste, el RL muestra un uso promedio de CPU significativamente
menor, alcanzando solo el 16.69 %. En cuanto al uso promedio de Memoria RAM, los clientes
del FL presentan un valor uniforme de 47.25 %, mientras que el RL tiene un uso promedio
inferior, de 38.73 %.

Comparando los dos tipos de aprendizaje, se observa que el FL presenta un mayor consumo
de recursos que el RL, debido a la necesidad de realizar mas procesos para el envio y recep-
cion de nuevos parametros entre los clientes y el servidor. La diferencia en el uso de CPU es
considerable, con el RL utilizando un promedio de 16.69 % en comparacion con el 41.49 % de
los clientes del FL, lo que representa una diferencia de aproximadamente 24.8 puntos porcen-
tuales. En cuanto al uso de Memoria RAM, el FL también consume mas, con un incremento

de aproximadamente 8.52 puntos porcentuales en comparacion con el RL.

N CPU Usage
W RAM Usage

Uso Promedio (%)
]
L

N
o
L

10 4

Client 0 Client 1 Client 2
Clientes

Figura 4.24: Uso Promedio de CPU y RAM

Otra manera en la que se compararon los diferentes métodos de aprendizaje fue mediante el
tiempo de simulacion. Los resultados de estos tiempos de simulacién se presentan en la Tabla
4.10. Se observa que el tiempo de simulacion del FL es casi cuatro veces mayor que el del
RL, con una duracion de 1797.66 segundos frente a los 468 segundos del RL. Esto indica que
el aprendizaje federado es significativamente mas lento y mas demorado en comparacion con

el aprendizaje por refuerzo.

Estas diferencias en el tiempo de simulacién pueden atribuirse a varios factores. En primer
lugar, él FL involucra la comunicacion y la agregacion de modelos entre multiples clientes y

un servidor central, lo que afnade una sobrecarga computacional y de comunicacién. Ademas,
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la heterogeneidad de los datos y modelos en los diferentes clientes puede llevar a mayores

tiempos de convergencia.

Tipo de Aprendizaje | Tiempo [s]
RL 468
FL 1797.66

Tabla 4.10: Tiempo de Duracién de cada Simulacién
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5. Conclusiones y Recomendaciones

En este capitulo se presentan las principales conclusiones y recomendaciones del estudio, el
cual se enfoco en el disefio y evaluacion de una arquitectura basada en técnicas de apren-
dizaje automatico para mejorar la privacidad en los Sistemas de Transporte Inteligente (ITS).
Los resultados obtenidos abordan la implementacion de diversas técnicas de aprendizaje, in-
cluyendo aprendizaje no supervisado, supervisado, por refuerzo y federado, con el objetivo de
optimizar el trafico vehicular y reducir las emisiones de C'O, en la ciudad de Cuenca, Ecuador,

mientras se protege la privacidad de los usuarios.

5.1. Conclusiones

Se recopild informacion en la literatura cientifica acerca de los potenciales problemas a los
que se enfrentan los ITS respecto a la privacidad de datos. Esta recopilacion proporciond una
base solida para entender las vulnerabilidades y desafios que se deben abordar para proteger

la privacidad de los usuarios en los ITS.

En el aprendizaje no supervisado, Se trabajoé con 35 variables y 14,000 datos por cada una
de ellas. La aplicacion del Andlisis de Componentes Principales (PCA) permitié identificar las
componentes principales y las variables mas importantes. Se compararon dos métodos de nor-
malizacion: StandardScaler y MinMaxScaler. Con StandardScaler, se identificaron tres compo-
nentes principales que explicaron el 83.1 % de la varianza. Con MinMaxScaler, las tres com-
ponentes principales abarcaron el 86.5% de la varianza. En ambos casos, se confirmé que
tres componentes principales eran suficientes para una clasificacion efectiva de los datos. La
variable de tiempo de espera total se establecié como la base para la funcién de recompensa

del algoritmo de Aprendizaje por Refuerzo (QL).

Con los datos transformados mediante PCA, se implementé el aprendizaje supervisado para
clasificar el tiempo de espera y los niveles de CO- en categorias de alto, medio y bajo. Utilizan-
do el algoritmo Random Forest, se determind que la duracion de la luz verde de los semaforos
era una variable clave. La clasificacion mostré una precision general del 96 %, con una buena
capacidad para predecir todas las clases, especialmente los niveles bajos y altos de conges-
tion y emisiones de CO,. Se observo que un tiempo de semaforo minimo de 15 segundos era

6ptimo para reducir las emisiones y mejorar el flujo de trafico.

En el Aprendizaje por Refuerzo con Q-Learning (QL), se configuré una funcién de recompensa

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA 3

basada en el tiempo de espera total. La configuracion inicial incluyé una tasa de aprendizaje
(o) de 0.1 y un factor de descuento (y) de 0.99. La simulacion, que duré 86,400 segundos,
permitié evaluar el comportamiento del sistema bajo diferentes densidades vehiculares (baja,
media y alta). Los resultados mostraron una disminucién en los tiempos de espera y emisiones

de C'O, en todos los escenarios, destacando la robustez del algoritmo.

El Aprendizaje Federado (FL) se implementé utilizando el Framework Flower, asegurando que
los datos permanecieran en los dispositivos locales y solo se compartieran los parametros del
modelo. Se usé ademas el mecanismo de Privacidad Diferencial para afadir ruido en el envio
de parametros. Aunque el rendimiento del modelo FL fue inferior al del aprendizaje por refuer-
zo, se logré una mayor proteccion de la privacidad. Con cuatro clientes y un servidor central,
cada cliente redujo los tiempos de espera y emisiones de C'O, durante la fase de entrena-
miento. En la fase de evaluacién, el modelo general mantuvo la efectividad en la reduccién de

tiempos de espera y emisiones.

Al comparar RL y FL, se observé que FL tenia un mayor consumo de recursos. FL presento
picos de carga de CPU superiores al 60 % y un mayor uso de memoria RAM (47.10 %-47.50 %).
En contraste, RL utilizd alrededor del 20 % del CPU y tuvo un uso de memoria mas estable
(38.6 %-39.1 %). Ademas, el tiempo de simulacién de FL fue casi cuatro veces mayor que el
de RL, indicando que el aprendizaje federado es mas lento y demandante en términos de

recursos.

Se demostrd que es posible disefar una arquitectura basada en técnicas de aprendizaje auto-
matico que mejora la privacidad de los usuarios en los ITS. Mediante la combinacion de PCA,
aprendizaje supervisado, por refuerzo y federado, se logré no solo optimizar la eficiencia del
trafico y reducir las emisiones de COs, sino también proteger la privacidad de los datos de los

usuarios.

5.2. Recomendaciones

A continuacioén se presentan algunas recomendaciones que pueden ser consideradas al mo-

mento de mejorar la arquitectura propuesta.

» Evaluar y experimentar con otros métodos de normalizacion, ademas de StandardScaler
y MinMaxScaler, para determinar si se puede mejorar aun mas la varianza explicada por

las componentes principales.
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= Considerar la optimizacion de los parametros de simulacién y aprendizaje en el marco
de Flower para reducir el consumo de recursos y el tiempo de simulacion. Esto podria
incluir la experimentacion con diferentes tasas de aprendizaje, factores de descuento, y

configuraciones de red.

= Validar los resultados del estudio en entornos reales y con datos de trafico en tiempo real

para evaluar la efectividad del modelo en condiciones practicas.

m Reforzar las medidas de seguridad de datos para proteger aiin mas la privacidad de los
usuarios durante la implementacion del aprendizaje federado, considerando la encripta-

cion de los parametros del modelo.
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A. Anexo

A.A. Algoritmo FedAvg

En este algoritmo el servidor inicializa el modelo global wg (linea 2). Este modelo se utiliza

como punto de partida para las iteraciones de entrenamiento.

Para cada ronda t de entrenamiento, que va desde 1 hasta el nUmero deseado de rondas (linea
3), se determina el numero de clientes a seleccionar en esta ronda, m, que es el maximo entre
C - K y1,donde C es la fraccion de clientes y K el numero total de clientes (linea 4). Luego,

se selecciona un conjunto aleatorio de m clientes, S; (linea 5).

Para cada cliente k& en el conjunto S;(linea 6), se ejecuta la funcién EV_ClientUpdate(k, w_t)
para actualizar su modelo local wfl (linea 7). Es decir, cada cliente seleccionado actualiza su

modelo local utilizando su propio conjunto de datos.

Después de que todos los clientes seleccionados han actualizado sus modelos locales, el
servidor actualiza el modelo global w;; promediando los modelos locales ponderados por el

numero de datos de cada cliente n;, (linea 9).

La funcion EV_ClientUpdate(k, w) se ejecuta en el cliente k y actualiza el modelo local w (linea
12). Primero, el conjunto de datos local P, se divide en minibatches de tamafo B (linea 13).
Luego, para cada epoch local i, desde 1 hasta F (linea 14), y para cada minibatch b en B
(linea 15), se actualiza el modelo local w utilizando el gradiente de la pérdida respecto a w en

el minibatch b, estableciendo una tasa de aprendizaje n (linea 16).

Una vez completadas las actualizaciones locales, la funcion devuelve el modelo local actua-
lizado w al servidor (linea 19), completando asi la ronda de entrenamiento. Este proceso se

repite hasta cumplir con las rondas de entrenamiento establecidas.
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Algorithm 1 Los K clientes estan indexados por k; B es el tamafio del minibatch local, E es
el numero de episodios locales, y n es la tasa de aprendizaje [60].

1: Server executes:

2: initialize wyq

3: foreachroundt=1,2,...do

4: m < max(C - K, 1)

5: St < (random set of m clients)

6: for each client k£ € S; in parallel do

7: wy, | + EV_ClientUpdate(k, w;)

8: end for

9: Wit = Xy T wi

10: end for

11: function EV_ClientUpdate(k, w) > Run on client &

12: B <« (split Py, into batches size B)
13: for each local epoch ¢ from 1 to E do

14: for each batch b € B do
15: w — w — nVIi(w;b)
16: end for

17: end for

18: return w to server

19: end function
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A.B. Monitoreo de Convergencia
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Figura A.2: Episodios Realizados para Monitorear Convergencia
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Figura A.3: Episodios Realizados para Monitorear Convergencia
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A.C. Clientes Aprendizaje Federado
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Figura A.4: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 1
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Figura A.5: Resultados Obtenidos de Emisiones de CO, en cada Entrenamiento Cliente 1
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Figura A.7: Resultados Obtenidos de Emisiones de CO, en cada Entrenamiento Cliente 2
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Figura A.8: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 3

Average Waiting Time (s)

il

Round

1

Esteban Ricardo Arcos Salamea - David Sebastian Gonzalez Saguay



UCUENCA o8

130
= FIT Client 3

1z0

110

il

Figura A.9: Resultados Obtenidos de Emisiones de CO, en cada Entrenamiento Cliente 3
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Figura A.10: Evaluacion de Tiempo de Espera del Modelo Recibido en el Cliente 1
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Figura A.11: Evaluacién de Emisiones de C' O, del Modelo Recibido en el Cliente 1
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Figura A.12: Evaluacién de Tiempo de Espera del Modelo Recibido en el Cliente 2
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Figura A.13: Evaluacion de Emisiones de CO, del Modelo Recibido en el Cliente 2
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Figura A.14: Evaluacién de Tiempo de Espera del Modelo Recibido en el Cliente 3
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A.D. Comparacion Aprendizaje por Refuerzo vs Aprendizaje Federado

Se presentan en las Figuras A.16 y A.17 el comportamiento del CPU y de la Memoria RAM a

lo largo del tiempo de simulacién para los casos de Aprendizaje por Refuerzo y Aprendizaje
Federado.
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Figura A.16: Porcentaje de Uso de CPU y de Memoria RAM con RL
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Figura A.17: Porcentaje de Uso de CPU y de Memoria RAM con FL

A.E. Repositorio

Los algoritmos desarrollados en el presente trabajo de titulacion se encuentran disponibles en:

https://github.com/davidsgonza/Privacy-V2X
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