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Resumen

Actualmente, el mundo está en proceso de transición hacia un entorno interconectado, lo que

ha aumentado la disponibilidad de grandes volúmenes de datos y ha subrayado la importancia

de proteger la privacidad. En el ámbito de la movilidad, los Intelligent Transportation Systems

(ITS) son un ejemplo significativo de cómo se genera una gran cantidad de datos en redes

interconectadas.

Este trabajo de titulación propone de arquitectura basada en técnicas de aprendizaje auto-

mático, específicamente en el Aprendizaje Federado (FL), para mejorar la privacidad de los

usuarios de ITS, con un enfoque en la reducción de emisiones de CO2 en Cuenca, Ecuador.

La metodología empleada permite que los datos permanezcan en los dispositivos locales de

los usuarios, compartiendo únicamente los parámetros del modelo, lo que garantiza una mayor

protección de la privacidad. El uso de diversos algoritmos de aprendizaje automático facilita la

segmentación y clasificación de datos, reduciendo así el tiempo de espera de los vehículos y

contribuyendo a la disminución de las emisiones de CO2.

Los resultados obtenidos muestran que el FL consume más recursos en comparación con el

Reinforcement Learning (RL). El uso promedio de CPU en FL es notablemente mayor, con

valores cercanos al 41%, en contraste con el 16.69% del RL. Además, el FL utiliza un 8.52%

más de Memoria RAM que el RL. Esto indica que, aunque el FL ofrece una mayor protección

de la privacidad de los datos, puede afectar la eficiencia del sistema. Asimismo, los resultados

revelan que en el contexto de la privacidad diferencial, un mayor valor de ϵ está asociado

con una menor privacidad. Por lo tanto, es fundamental encontrar un valor óptimo de ϵ que

permita equilibrar la protección de la privacidad con la eficiencia del sistema en el Aprendizaje

Federado.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el
pensamiento institucional de la Universidad de Cuenca ni desata su responsabilidad frente a terceros.
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Abstract

Currently, the world is transitioning towards an interconnected environment, which has increa-

sed the availability of large volumes of data and highlighted the importance of protecting pri-

vacy. In the realm of mobility, ITS are a significant example of how large amounts of data are

generated in interconnected networks.

This thesis proposes an architecture based on machine learning techniques, specifically FL, to

enhance the privacy of ITS users, with a focus on reducing CO2 emissions in Cuenca, Ecuador.

The methodology employed allows data to remain on users’ local devices, sharing only model

parameters, thus ensuring greater privacy protection. The use of various machine learning

algorithms facilitates data segmentation and classification, thereby reducing vehicle wait times

and contributing to decreased CO2 emissions.

The results obtained show that FL consumes more resources compared to RL. The average

CPU usage in FL is significantly higher, with values close to 41%, in contrast to 16.69% in

RL. Additionally, FL uses 8.52% more RAM than RL. This indicates that, while FL offers bet-

ter privacy protection, it can impact system efficiency. Furthermore, the results reveal that in

the context of differential privacy, a higher value of ϵ is associated with lower privacy. Therefo-

re, finding an optimal ϵ value is crucial to balance privacy protection with system efficiency in

Federated Learning.

The content of this work corresponds to the right of expression of the authors and does not compromise
the institutional thinking of the University of Cuenca, nor does it release its responsibility before third
parties. The authors assume responsibility for the intellectual property and copyrights.
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1. Generalidades

En una sociedad cada vez más interconectado, la gestión eficiente de datos y la protección

de la privacidad se han convertido en prioridades cruciales. Los Sistemas de Transporte Inteli-

gente (ITS), que utilizan tecnologías avanzadas para optimizar el flujo de tráfico y la seguridad

vial, son un claro ejemplo de cómo la tecnología puede transformar el transporte urbano. No

obstante, esta transformación viene acompañada de desafíos significativos, particularmente

en lo que respecta a la protección de la privacidad de los datos de los usuarios.

En este capítulo, se abordará cómo los ITS, al generar y manejar grandes volúmenes de datos,

enfrentan el dilema de equilibrar la funcionalidad con la privacidad. A través de la introducción

de técnicas de aprendizaje automático y en particular el Aprendizaje Federado (FL), se explora

una solución innovadora que promete mitigar estos desafíos. La sección que sigue proporciona

una visión detallada del papel de los ITS en la movilidad moderna y cómo el FL puede ser una

herramienta clave para mejorar la privacidad sin comprometer la eficiencia del sistema. Ade-

más, se presentarán los objetivos de este trabajo de titulación, el alcance de la investigación,

la justificación del estudio y los antecedentes relevantes.

1.1. Introducción

El mundo actual se encuentra inmerso en una profunda evolución hacia un entorno altamente

interconectado, por lo que existe una disponibilidad de cantidades masivas de datos, esto hace

que la protección de privacidad de las personas sea más necesaria que nunca. En el campo

de la movilidad, los Sistemas de Transporte Inteligente (conocidos por sus siglas en inglés

como ITS), que han ganado gran importancia en los últimos años, son un claro ejemplo de la

producción de datos en redes interconectadas [1].

Los ITS están fundamentados en sistemas de comunicaciones inalámbricas como Dedica-

ted Short-Range Communications (DSRC) y New Radio - Cellular Vehicle-to-Everything (NR-

CV2X). La tecnología DSRC está basada en el estándar IEEE 802.11p [2]. Tiene como objetivo

la comunicación entre vehículos para la prevención de colisiones. Usa los datos de trayecto-

ria de vehículos vecinos y considerando su propia trayectoria calcula la probabilidad de que

exista una colisión [3]. NR-CV2X se define como un progreso avanzado en las comunica-

ciones Vehicle-to-Everything (V2X) en el marco de la tecnología de quinta generación (5G),

particularmente en el ámbito del 3rd Generation Partnership Project (3GPP). Este enfoque,

fundamentado en la tecnología de Quinta Generación (5G) NR (New Radio), presenta mejoras
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sustanciales en la capacidad de comunicación V2X. Estas mejoras incluyen técnicas robustas

de conformación de haz como la conformación de haz de Capon que minimizan el impacto de

incertidumbres y ruido, y el uso de Filtros de Kalman Extendidos (EKF) para un seguimiento

más preciso de los vehículos en movimiento. [4]

Las herramientas usadas en el despliegue de ITS se dedican a la recopilación, procesamiento,

integración y provisión de información para operadores, autoridades de tráfico, proveedores de

transporte público y comercial, así como para usuarios individuales [5]. Estos datos incluyen in-

formación crítica, como registros de tiempo, coordenadas geográficas, altitud [6], áreas de alta

densidad de tráfico, longitud de los trayectos y velocidad promedio [7]. La gestión adecuada de

la privacidad en relación con estos datos es de vital importancia, ya que pueden revelar datos

sensibles, como la ubicación en tiempo real de individuos, sus rutas habituales y velocidades

de desplazamiento. Por tanto, se vuelve esencial garantizar que estos datos estén protegidos

de posibles amenazas.

El uso de simuladores de tráfico es una herramienta pertinente en la optimización de procesos

de transporte para diseñar nuevas infraestructuras viales y reconstruir las existentes. A medida

que los sistemas de transporte se vuelven más complejos y congestionados, las simulaciones

de tráfico se utilizan cada vez más. Los simuladores de tráfico permiten modelar una versión

digital de una ciudad, creando un modelo funcional del tráfico que corresponde al movimiento

real en las carreteras. Esto es fundamental, ya que probar nuevas estrategias y soluciones en

un entorno real puede ser costoso, arriesgado y logísticamente complicado. Los simuladores

ofrecen una forma segura y eficiente de evaluar y mejorar las infraestructuras y políticas de

tráfico sin interferir con el tráfico real [8].

Los datos generados por los ITS requieren ser analizados por herramientas externas, como

lo es Simulation of Urban MObility (SUMO). SUMO es un paquete de simulación de tráfico

de código abierto que permite modelar y simular la movilidad urbana con base en datos de

diferentes fuentes de entrada. Se utiliza para analizar y comprender patrones de tráfico, diseñar

soluciones para la gestión eficiente del tráfico y evaluar el impacto de diversas estrategias de

movilidad en entornos urbanos. Además, dispone de unmodelo de emisión de ruido, unmodelo

de emisión de contaminantes, consumo de combustible y consumo de energía [9].

La aplicación de Inteligencia Artificial (IA) y Machine Learning (ML) en ITS puede revolucionar

estos sistemas al mejorar la gestión del tráfico, prevenir accidentes y optimizar el consumo de

recursos [10]. Sin embargo, estos avances no están exentos de desafíos, especialmente en

términos de privacidad y seguridad. En entornos de comunicaciones inalámbricas móviles, la
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información de los vehículos puede estar expuesta a riesgos constantes de interceptación o

manipulación. Este problema se agrava en aplicaciones que requieren compartir datos entre

múltiples dispositivos y sistemas [11].

En este escenario de creciente interconexión y datos masivos, el FL, emerge como una solu-

ción prometedora para la preservación de la privacidad de los usuarios de los ITS. El FL, al

operar con algoritmos de inteligencia artificial distribuida, ha demostrado su capacidad para

preservar la privacidad de los datos sin comprometer su utilidad [1]. Esta metodología permite

el análisis y la generación de conocimiento sin la necesidad de compartir información sensible

de manera centralizada. Dentro del marco de los ITS, el enfoque del FL busca garantizar la

protección de los datos sensibles [7], mientras se mantiene la capacidad de análisis para lograr

una gestión segura y avanzada del tráfico vehicular.

1.2. Objetivos

1.2.1. Objetivo General

Diseñar una arquitectura basada en técnicas de aprendizaje automático, con un enfoque en

el Aprendizaje Federado (FL), para mejorar la privacidad de los usuarios en el contexto de los

Sistemas de Transporte Inteligente (ITS).

1.2.2. Objetivos Específicos

Recopilar información en la literatura científica acerca de los potenciales problemas a los

que se enfrentan los ITS respecto a la privacidad de datos.

Evaluar diferentes técnicas de aprendizaje de máquina aplicadas a los ITS, incluyendo

aprendizaje supervisado, no supervisado y por refuerzo.

Definir métricas para medir la privacidad y el rendimiento del sistema, estableciendo un

equilibrio entre la recopilación de datos necesarios para el funcionamiento eficiente del

ITS y la protección de la privacidad de los usuarios.

Implementar el sistema de control de emisiones para la zona urbana de Cuenca en el

entorno simulado.

Diseñar y evaluar la arquitectura que mejora la privacidad de los ITS, utilizando simu-

lación como enfoque principal haciendo uso de la herramienta SUMO y el Framework
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Flower FL, implementando una API de alto nivel utilizando Python Traffic Control Interfa-

ce (TraCI) para la comunicación entre estos.

1.3. Alcance

El presente trabajo de titulación se enfoca en la aplicación de técnicas de aprendizaje automá-

tico, con énfasis en el FL, como una solución para abordar los desafíos de privacidad en los

ITS.

Se propone llevar a cabo una comparación entre un ITS que emplea técnicas de aprendizaje

de máquina centralizadas y otro que utiliza técnicas de aprendizaje de máquina distribuidas.

La metodología implica un enfoque experimental utilizando el software de simulación SUMO y

Flower FL. Se evaluarán los algoritmos propuestos utilizando métricas convencionales, como

lo son el consumo de recursos, privacidad y seguridad. Además, se establecerá una interfaz

de programación de aplicaciones (API) entre SUMO y Flower para llevar a cabo la simulación

correspondiente.

1.4. Justificación

El FL se elige debido a su capacidad para preservar la privacidad de los datos, al tiempo que

permite el análisis y la generación de conocimiento sin la necesidad de compartir información

sensible de manera centralizada. Se plantea la hipótesis de que la implementación de inteli-

gencia artificial distribuida mejora la privacidad de los usuarios de los ITS, al mismo tiempo

que preserva la utilidad de los datos para la realización de predicciones y la identificación de

patrones.

La suposición subyacente en esta hipótesis es que el sistema que implementa el FL podría

tener un rendimiento inferior en comparación con el sistema que transmite los datos sin res-

tricciones. No obstante, se espera que esta pérdida de rendimiento se vea compensada por la

mejora en la privacidad de los datos utilizados.

1.5. Antecedentes del Proyecto

En lo que respecta al ITS en el que se evaluarán los algoritmos propuestos, se basa en datos

previamente recopilados del tráfico vehicular en la ciudad de Cuenca. El ITS se centra en dos
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parámetros principales: la actualización de las rutas de los vehículos para evitar la exposición

a la contaminación (política de elección de ruta) y la actualización de los límites de velocidad

de los vehículos (política de control de velocidad) [12].

Asimismo, los algoritmos propuestos serán evaluados mediante el empleo de métricas con-

vencionales como la varianza explicada y la pérdida de valor, ambas reconocidas para la

evaluación de modelos predictivos. La varianza explicada determina si la política aprendida

constituye un predictor eficaz del rendimiento o la recompensa total. Valores inferiores a cero

indicarán un desempeño peor que la ausencia de predicción, mientras que valores cercanos

o iguales a uno denotan una predicción acertada. En paralelo, la métrica de pérdida de valor,

cuya disminución señala predicciones más precisas del valor asociado a la política actual, de-

berá ser elevada durante la fase de aprendizaje del agente, decreciendo posteriormente una

vez que la recompensa se haya estabilizado [13].
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2. Marco Teórico

En este capítulo se abordarán todos los conceptos teóricos considerados de importancia, los

cuales permitieron desarrollar el presente trabajo de titulación.

2.1. Intelligent Transportation Systems

Los Sistemas de Transporte Inteligente, también conocidos por sus siglas en inglés como In-

telligent Transportation Systems (ITS), constituyen un conjunto innovador de tecnologías en

el ámbito de las Telecomunicaciones e Informática, con el propósito de potenciar la eficiencia,

seguridad y sostenibilidad del transporte. Los ITS se vuelven cada vez más indispensables

ante la rápida expansión de métodos avanzados de aprendizaje automático y la aparición de

nuevas fuentes de datos en constante evolución [14].

Una visión general sobre estos sistemas se puede observar en la Figura 2.1, donde se obser-

van diferentes iconos sobrepuestos que representan componentes y funciones de los Sistemas

de Transporte Inteligente (ITS). Entre ellos, se incluyen el cloud computing para el análisis de

datos en tiempo real, coches conectados que interactúan con la infraestructura vial y otros

vehículos, y sistemas de geolocalización para la navegación precisa. Además, se visualizan

símbolos de transporte público, señalización inteligente, y dispositivos de monitoreo como sen-

sores y cámaras. Estos elementos reflejan cómo los ITS integran tecnologías avanzadas para

mejorar la eficiencia, seguridad y sostenibilidad del transporte urbano, optimizando el flujo de

tráfico y reduciendo emisiones de CO2, en un entorno donde se considera tanto a vehículos

privados como al transporte público y a los peatones.

El objetivo principal de este sistema se centra en optimizar la administración de los recursos

urbanos y mejorar la experiencia de las personas mediante la implementación de servicios

de información y alerta. En este sentido, esta mejora no solo favorece la fluidez del tráfico

en la ciudad, reduciendo el tiempo perdido en congestiones, sino que también conlleva una

disminución significativa en el consumo de combustible, las emisiones de CO2 y las pérdidas

económicas [15].
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Figura 2.1: ITS. Fuente: [16]

En Ecuador, la adopción de Sistemas de Transporte Inteligente (ITS) ha mostrado un aumen-

to reciente, pero sigue siendo limitada. A pesar del crecimiento en la investigación sobre Big

Data desde 2019, la implementación práctica de ITS enfrenta varios desafíos, como la falta

de proyectos consolidados y la necesidad de una mayor inversión en tecnología [17]. En ciu-

dades como Quito y Guayaquil, se han desarrollado proyectos como la implementación de

sistemas de control de tráfico y monitoreo en tiempo real, además de la integración de datos

de movilidad para mejorar la planificación urbana. Sin embargo, la adopción efectiva de ITS

continúa enfrentando barreras, y es necesario seguir avanzando en la inversión y desarrollo

para superar estas limitaciones.

2.2. Niveles Usuales de Emisión de CO2 en Entornos Urbanos

Las emisiones de CO2 de los automóviles están estrechamente relacionadas con la velocidad

de circulación. Según [18], las emisiones de CO2 son directamente proporcionales al consu-

mo de combustible, alcanzando los consumos mínimos a velocidades comprendidas entre 80

y 100 km/hora. Sin embargo, en entornos urbanos, donde la velocidad de circulación es ge-

neralmente más baja, el consumo de un vehículo de turismo medio puede ser típicamente un

60% superior al alcanzado en el régimen óptimo, lo que implica una incidencia significativa del

tráfico urbano sobre el total de emisiones. Se estima que el tráfico urbano puede representar

más de la mitad de las emisiones totales, a pesar de que el porcentaje del kilometraje recorrido

en las ciudades es mucho menor.

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay



20

Por otro lado, en el Área Metropolitana del Valle de Aburrá (AMVA) se realizaron 5,6 millo-

nes de viajes diarios en el año 2012, responsables de la emisión de 3.545.633 kg de CO2

diarios [19]. Esta cantidad de emisiones no se distribuye uniformemente, ya que los viajes en

automóvil, aunque representan solo el 15% de los viajes, son responsables del 55,2% de las

emisiones. En términos grupales, los medios de transporte privados, responsables del 26%

de la movilidad, emiten el 60% del CO2, mientras que los medios de transporte públicos, que

cubren el 48% de la movilidad, emiten el 40% del CO2. Para poner en perspectiva los valores

obtenidos en simulaciones de emisiones en entornos urbanos, se puede considerar que un

viaje en automóvil en el AMVA puede emitir hasta ocho veces más CO2 que un viaje en bus y

tres veces más que un desplazamiento en metro. Además, un desplazamiento promedio por

el motivo de Comer o tomar algo puede emitir alrededor de 861 g de CO2, en comparación

con 750 g de CO2 por un desplazamiento promedio por motivo de Trabajo y 300,9 g de CO2

por un desplazamiento promedio por motivo de Estudio.

2.3. Enfoques de Aprendizaje de Máquina

El aprendizaje supervisado, no supervisado y por refuerzo son enfoques fundamentales del

aprendizaje automático, cada uno con características y aplicaciones distintas [20]. El aprendi-

zaje supervisado se basa en datos etiquetados, donde el modelo aprende a predecir resultados

a partir de ejemplos con entradas y salidas conocidas. Se utiliza en tareas como la clasificación

(Random Forest) y la regresión (Regresión Lineal) [21]. El aprendizaje no supervisado, por otro

lado, trabaja con datos sin etiquetar, buscando patrones y estructuras ocultas sin guía externa

[22]. Se aplica en problemas como la agrupación de clientes en segmentos de mercado y la

reducción de dimensionalidad como el Análisis de Componentes Principales (PCA) [23]. En

contraste, el aprendizaje por refuerzo no se basa en un conjunto de datos estático; en su lu-

gar, un agente aprende a tomar decisiones a través de la interacción con un entorno dinámico,

recibiendo recompensas o castigos en función de sus acciones [24]. Este enfoque es utilizado

en aplicaciones como el control de robots, la optimización de estrategias en juegos y la gestión

de sistemas complejos, donde las decisiones secuenciales son críticas. Se pueden encontrar

algoritmos como Q-learning. Mientras que los dos primeros enfoques se centran en el análisis

de datos preexistentes, el aprendizaje por refuerzo se enfoca en la mejora continua de la toma

de decisiones basada en la retroalimentación recibida del entorno. A continuación se explica

con detalle cada uno de los enfoques de aprendizaje de máquina.
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2.3.1. Aprendizaje No Supervisado

El aprendizaje no supervisado se distingue por la presencia de datos no etiquetados, es decir,

aquellos que carecen de asignaciones explícitas. El propósito fundamental de este enfoque es

extraer información significativa de la base de datos o conjunto de datos disponible [22].

En este aprendizaje, se busca que el algoritmo pueda encontrar patrones en el conjunto de

datos, para posteriormente clasificar los datos. Algunos de los problemas de este tipo de apren-

dizaje son: asociación, detección de anomalías y problemas de autoencoder [25]. Ejemplos de

estos algoritmos son el PCA, que se utiliza para la reducción de dimensionalidad al transfor-

mar los datos a un nuevo espacio con menos dimensiones, preservando la mayor varianza

posible [23]. Otro ejemplo es el K-means, un algoritmo de agrupamiento que divide los datos

en k grupos basados en características similares [26].

2.3.1.1. Análisis de Componentes Principales (PCA)

El PCA es un ejemplo de aprendizaje no supervisado que se utiliza en el análisis de posibles

relaciones entre diversas variables cuantitativas. Con esta técnica se busca reducir el número

de variables originales a un conjunto de combinaciones lineales más pequeño, mostrando así

una explicación de la estructura de varianza del amplio volumen de datos medidos [23].

El PCA fue incorporado por Pearson [27], en el contexto de variables no aleatorias, para luego

ser utilizado en variables aleatorias por Hotelling [28]. Utilizando este análisis se reduce la di-

mensionalidad de un conjunto de datos, preservando la varianza. Esto se logra mediante una

transformación ortogonal, la cual convierte los datos en nuevos índices, los cuales pueden ser

conocidos como componentes principales (CPs), que buscan cumplir dos criterios fundamen-

tes: el primero, que cada CP es una combinación lineal de las variables originales, y el segundo

que los CPs son mutuamente no correlacionados. Utilizando este método, el primer CP cap-

tura la mayor cantidad de varianza del conjunto de datos originales y cada CP subsiguiente

contiene la variabilidad no capturada por sus predecesores [29].

2.3.2. Aprendizaje Supervisado

El aprendizaje supervisado es ampliamente utilizado en problemas de clasificación, ya que

comúnmente se busca que la máquina aprenda un sistema de clasificación predefinido. El
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objetivo principal suele ser construir un estimador capaz de predecir la etiqueta de un ob-

jeto basándose en un conjunto de características proporcionadas. Una vez logrado esto, el

proceso de aprendizaje supervisado utiliza este conjunto de características junto con las sali-

das correctas correspondientes para aprender, comparando su salida predicha con las salidas

reales para identificar posibles errores. Aunque el modelo creado no es imprescindible mien-

tras se disponga de las entradas, la ausencia de algunos valores de entrada impide inferir

conclusiones sobre las posibles salidas [21].

En este enfoque algorítmico, se identifica un atributo específico cuyo propósito es utilizar los

datos disponibles para anticipar el valor de dicho atributo en instancias aún no observadas o

de las cuales se carece de información. Estos datos, caracterizados por tener asignaciones

explícitas a dicho atributo, se denominan con etiquetas [22].

En el proceso de Aprendizaje Supervisado, una etapa crítica es la preparación y preprocesa-

miento de los datos. Esto implica asegurarse de que los datos estén en un formato adecuado

y limpio antes de aplicar algoritmos de aprendizaje. Los investigadores han desarrollado diver-

sas técnicas para abordar desafíos comunes, como la presencia de datos faltantes o valores

atípicos (ruido) en los conjuntos de datos [30].

Existen varios algoritmos populares en aprendizaje supervisado utilizados para la clasifica-

ción de datos. Support Vector Machines (SVM) destaca por su capacidad para encontrar el

hiperplano óptimo que separa las clases en un espacio dimensional superior, maximizando

el margen entre ellas [31]. Por otro lado, Gradient Boosting Machines (GBM) construye una

serie de modelos predictivos secuenciales, cada uno corrigiendo los errores del anterior, con

el objetivo de mejorar la precisión de las predicciones [32]. Otro algoritmo ampliamente utili-

zado es Random Forest, el cual emplea la técnica de combinación mediante la construcción

de múltiples árboles de decisión. Cada árbol se entrena en un subconjunto aleatorio de datos

y características, lo que contribuye a mitigar el sobreajuste y mejorar la capacidad de gene-

ralización del modelo [33]. Este último algoritmo será utilizado en este trabajo, por lo que a

continuación se detallarán más aspectos relevantes sobre su funcionamiento y aplicaciones.

2.3.2.1. Random Forest

El Random Forest, también conocido como bosque aleatorio, es un ejemplo de aprendizaje su-

pervisado que se emplea tanto en problemas de clasificación como de regresión. Este método

de aprendizaje automático se centra en mejorar la precisión al combinar múltiples modelos
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para abordar un mismo problema. Al integrar varios clasificadores, el Random Forest reduce

la varianza, especialmente en situaciones donde los clasificadores individuales podrían ser

inestables, lo que resulta en predicciones más confiables. Una técnica comúnmente utilizada

es la votación por mayoría, donde cada muestra sin etiquetar recibe la etiqueta predicha por

el clasificador que obtuvo la mayoría de votos entre los modelos del bosque [34].

Este método es ampliamente utilizado debido a su simplicidad y efectividad. El algoritmo Ran-

dom Forest emplea bosques aleatorios con estructuras de árboles y variables de división sig-

nificativamente diversas, lo que fomenta la aparición de distintas instancias de sobre ajuste y

valores atípicos entre los diversos modelos de árboles en conjunto. En consecuencia, la vo-

tación final de predicción mitiga el problema del sobre ajuste en los casos de clasificación,

mientras que el promedio se utiliza como solución para los problemas de regresión [33].

El uso de Random Forest en diferentes circunstancias han demostrado que este algoritmo

tiene una mejor precisión en cuanto los otros métodos de aprendizaje supervisado, ofreciendo

también medidas de importancia de las variables. Donde estás, son importantes cuando los

estudios tienen múltiples fuentes de datos, siendo estos casos donde la dimensionalidad de

los datos en muy alta [35].

En este estudio, se emplea el algoritmo Random Forest para clasificar los datos relacionados

con el tiempo total de espera de los vehículos y, en consecuencia, las emisiones de CO2.

El objetivo fue determinar la duración óptima del ciclo de los semáforos para minimizar la

contaminación en la zona urbana de Cuenca.

2.3.3. Aprendizaje por Refuerzo

En el Aprendizaje por Refuerzo un agente es el que establece una conexión hacia su esce-

nario a través de un proceso de observación y operación. Esto se ilustra en la Figura 2.2. En

cada interacción el agente obtiene la información del estado del escenario en ese momento,

el cual se puede escribir como St y este realiza una acción At como respuesta. Al realizar este

proceso, se realiza cambios en el estado del escenario St, por lo que se da una comunica-

ción con el agente mediante una señal de refuerzo o recompensa Rt. El objetivo que tiene el

agente, en este aprendizaje es seleccionar o tomar decisiones que maximicen una medida de

recompensa, la cual se irá acumulando a largo plazo. El agente, para lograr esto, aprende a

través de prueba y error [24].

Este modelo puede verse formalmente como:
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Figura 2.2: Modelo Estándar de Aprendizaje por Refuerzo.

Un conjunto discreto de estados del escenario S.

Un conjunto discreto de acciones del agente A.

Un conjunto de señales de refuerzo escalares, comúnmente entre valores de [0, 1].

La principal diferencia entre el Aprendizaje por Refuerzo y el Aprendizaje Supervisado es que

no existen los pares de entrada/salida. Ya que, después de elegir una acción, el agente es

informado por la recompensa inmediata y el estado subsiguiente, pero este no sabe cuál acción

habría sido mejor dependiendo del interés a largo plazo. Por lo que es importante que el agente

obtenga experiencia útil sobre todas las acciones, procesos y recompensas activamente para

actuar de manera óptima [24].

Existen varios tipos de RL, que se pueden clasificar principalmente en: Basado en Valores

(Value-Based RL) y Basado en Políticas (Policy-Based RL), a continuación analizaremos cada

uno de estos.

Value-Based RL: Los algoritmos basados en valores estiman el valor de cada estado o

de cada par estado-acción y seleccionan la acción óptima para mejorar el rendimiento del

agente. Ejemplos típicos son Q-learning: que aproxima el valor Q para cada par estado-

acción cada vez y decide qué acción tomar en qué estado. Utiliza políticas ε-greedy para

la exploración. Y Deep Q-Network (DQN): el cual utiliza redes neuronales convolucio-

nales para el reconocimiento de imágenes, para eliminar la correlación entre muestras

[36].

Policy-Based RL:Un algoritmo basado en políticas optimiza directamente la política que

determina el comportamiento del agente. Los algoritmos de gradiente de política produ-

cen directamente una política que determina qué acción tomar en cada estado. Ejemplos

mas usados pueden ser: Proximal Policy Optimization (PPO), que optimiza la política
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limitando la relación de actualizaciones para prevenir la inestabilidad, manteniendo el

rendimiento y la eficiencia computacional. Y Trust Region Policy Optimization (TRPO):

que agrega una restricción de divergencia KL para evitar cambios rápidos en la política,

mejorando la estabilidad del aprendizaje pero requiriendo un cálculo significativo [36].

2.3.3.1. Q Learning

En el aprendizaje por refuerzo Q Learning (QL), los agentes ajustan iterativamente sus estra-

tegias de acción a través de las recompensas obtenidas de la retroalimentación del entorno

después de realizar una acción específica. El agente selecciona una acción en un estado par-

ticular basándose en el refuerzo recibido o en la experiencia previa, conocida como el valor

Q. El refuerzo incluye una recompensa directa y una expectativa futura del valor Q. A través

del refuerzo, los agentes pueden evaluar la eficacia de una acción en el estado actual y tomar

una mejor acción en el siguiente paso. El objetivo del agente es maximizar las expectativas

de las recompensas acumuladas a lo largo de las iteraciones secuenciales. La ventaja del QL

radica en que la función de recompensa puede diseñarse utilizando múltiples objetivos ponde-

rados para alcanzar diversas metas. Además, una estrategia adecuada para la exploración y

explotación puede ayudar a lograr la solución óptima [37]. En este estudio, se utilizó el méto-

do Epsilon-Greedy para la exploración y explotación. Este método se explica en detalle en la

siguiente subsección.

QL busca determinar una política de acción óptima mediante la estimación de la función óptima

de estado-acciónQ′(s, a), donde s representa un estado del conjunto de posibles estadosS, y a

denota una acción del conjunto de posibles acciones A. La función Q cuantifica la recompensa

máxima alcanzable al ejecutar una acción a en un estado s [38]. La ecuación de QL se expresa

de la siguiente manera:

Q′(s, a) = Q(s, a) + α[R(s, a) + γmaxQ′(s′, a′)−Q(s, a)] (2.1)

En donde:

α representa la tasa de aprendizaje,

γ representa el factor de descuento, y

R representa la recompensa obtenida al ejecutar la acción a en el estado s.

Supongamos que un agente debe aprender a navegar en un entorno de cuadrícula de 4x4
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para llegar a una meta (G) desde un estado inicial (S). Cada celda de la cuadrícula representa

un estado, y las acciones posibles son moverse hacia arriba, abajo, izquierda o derecha. Si el

agente llega a la meta, recibe una recompensa de +1; de lo contrario, la recompensa es 0.

Inicialización: Inicializamos la tabla Q(s, a) arbitrariamente (por simplicidad, se puede

inicializar en cero) podemos observar como se inicializa en la Tabla 2.1:

Q(s1, a) Q(s2, a) Q(s3, a) Q(s4, a)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Tabla 2.1: Tabla Inicializada

Iteración:

1. Estado inicial: s = (1, 1).

2. Seleccionar acción a: Usamos una política ϵ-greedy. Suponemos que selecciona-

mos mover a la derecha.

3. Ejecutar acción y observar recompensa r: Nos movemos a la derecha, nuevo

estado s′ = (1, 2), recompensa r = 0.

4. Actualizar Q(s, a):

Q((1, 1), derecha)← Q((1, 1), derecha)+

α

[
0 + γmáx

a′
Q((1, 2), a′)−Q((1, 1), derecha)

]

Q((1, 1), derecha)← 0 + α [0 + γ · 0− 0] = 0

5. Nuevo estado: s = (1, 2).

Repetimos este proceso hasta que la tabla Q(s, a) converja a los valores óptimos.

2.3.3.2. Epsilon-Greedy Exploration

En el método Epsilon-Greedy, el agente realiza acciones aleatorias si se cumple una condi-

ción específica. El valor de Épsilon determina la probabilidad de que el agente ejecute una
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acción aleatoria. Cuando el agente alcanza el estado objetivo por primera vez, recibe una re-

compensa, lo que ajusta los pesos y conduce al agente a seguir el mismo camino en futuras

iteraciones. Esto implica que el agente se estabilizará en esta ruta sin explorar otras alternati-

vas, lo que puede llevar a una solución subóptima y evitar que el modelo alcance el resultado

globalmente óptimo. Sin embargo, al introducir un cierto nivel de aleatoriedad, el agente con-

tinuará buscando otras soluciones incluso después de haber encontrado una inicial [39].

La política Epsilon-Greedy es una de las estrategias de exploración más importantes en el

aprendizaje por refuerzo [40]. La política Epsilon-Greedy define la probabilidad de selección

p, centrando la explotación con una probabilidad 1 − ϵ al utilizar el mejor candidato, mien-

tras realiza la exploración con una probabilidad ϵ. La política Epsilon-Greedy equilibra bien la

exploración y la explotación mediante el parámetro ϵ y se emplea ampliamente en muchos

algoritmos de inteligencia artificial [41].

2.4. Aprendizaje Federado

El aprendizaje federado FL es un marco algorítmico de aprendizaje automático que permite

a múltiples partes colaborar en la construcción y entrenamiento de un modelo de aprendizaje

conjunto, abordando desafíos como la protección de la privacidad, seguridad de datos, aplica-

bilidad a diversas estructuras e instituciones de datos, rendimiento garantizado e igualdad de

estado entre las partes colaboradoras. La construcción de un modelo de aprendizaje federado

implica dos procesos: entrenamiento del modelo e inferencia del modelo.

Durante el entrenamiento, las partes pueden intercambiar parámetros que alimentan al mode-

lo sin compartir los datos de identificación de los clientes, preservando la privacidad. Una vez

que el entrenamiento colaborativo concluye, cada parte puede realizar inferencias locales en

sus propios datos utilizando el modelo global compartido. Esto permite que cada participante

realice predicciones o tome decisiones basadas en el conocimiento adquirido durante el en-

trenamiento conjunto. El mecanismo de distribución justa de valores asegura la sostenibilidad

de la federación.

La metodología de FL implica el uso de algoritmos de agregación, como el algoritmo de pro-

medio federado (FedAvg), y técnicas de preservación de la privacidad, asegurando la con-

fidencialidad de los gradientes y pesos del modelo durante la comunicación entre las partes

colaboradoras [42]. En la Figura 2.3, se presenta un ejemplo de arquitectura de aprendizaje fe-

derado en un modelo cliente-servidor. Basado en la arquitectura antes mencionada, el proceso
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puede describirse en los siguientes pasos:

Figura 2.3: Arquitectura de Aprendizaje Federado: Modelo Cliente - Servidor. Fuente: [42]

1. Inicialización: El coordinador o servidor crea un modelo inicial, llamado Global Model.

Este modelo inicial es enviado a todos los clientes involucrados en el proceso de apren-

dizaje federado.

2. Entrenamiento Local: Cada cliente recibe el modelo global y lo entrena utilizando su

propio conjunto de datos local. En la Figura 2.3, estosmodelos se denominan Local Model

A, Local Model B, y Local Model C, correspondientes a los clientes con los conjuntos de

datos A, B y C respectivamente. Durante esta fase de entrenamiento, cada participante

ajusta el modelo localmente según sus datos específicos, sin compartir los datos locales

con otros participantes o con el coordinador.

3. Envío de Actualizaciones: Una vez que los modelos locales han sido entrenados, los

clientes envían las actualizaciones de los parámetros del modelo local al coordinador o

servidor central. Este paso está indicado en la Figura 2.3 con las flechas y la etiqueta

Submit.

4. Agregación: El coordinador central o servidor recibe todas las actualizaciones de los mo-

delos locales y procede a combinarlas utilizando algoritmos específicos de agregación.
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Este proceso es representado en la Figura 2.3 con la etiquetaAggregation. La agregación

puede realizarse mediante varios métodos, siendo uno de los más comunes el promedio

ponderado de los parámetros del modelo.

5. Actualización del Modelo Global: Después de la agregación, el coordinador o servi-

dor genera un modelo global actualizado. Este modelo actualizado se envía de nuevo a

todos los clientes, cerrando así el ciclo de retroalimentación. Los clientes reciben el mo-

delo global actualizado y pueden iniciar un nuevo ciclo de entrenamiento local con este

modelo.

Este proceso se repite iterativamente, permitiendo que el modelo global mejore progresiva-

mente a medida que se incorporan las actualizaciones basadas en los datos locales de los

participantes.

Las posibles implementaciones del aprendizaje federado abarcan diversas áreas como la me-

dicina, la banca, y las telecomunicaciones, donde la privacidad de los datos es crítica. Una

plataforma popular para implementar sistemas de aprendizaje federado es Flower (Federa-

ted Learning Framework), debido a su flexibilidad y facilidad de uso. Flower permite la imple-

mentación de algoritmos personalizados y es compatible con diversas bibliotecas de machine

learning como TensorFlow y PyTorch. Su diseño modular facilita la escalabilidad y la experi-

mentación con diferentes estrategias de agregación y comunicación [43].

2.5. Framework Flower

Flower es un framework de FL cuyo objetivo es facilitar el desarrollo de investigaciones ex-

perimentales que usan una arquitectura cliente - servidor [43]. La arquitectura de Flower se

presenta en la Figura 2.4, en donde se observa que la lógica global que incluye la selección

de clientes, la configuración, la agregación de actualizaciones de parámetros y la evaluación

de modelos federados se realiza a través de una abstracción llamada estrategia.
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Figura 2.4: Arquitectura de Flower con Edge Client Engine y Virtual Client Engine. Fuente: [43]

La lógica local, por otro lado, se centra en el entrenamiento y evaluación del modelo de ML,

el mismo que puede ser federado a nivel del protocolo de Flower o utilizando una abstracción

de cliente de alto nivel. La federación se basa en un modelo cliente-servidor en donde los

principales componentes del servidor son: Client Manager, que gestiona la conexión con el

servidor. El bucle de federación y la estrategia, en donde se realiza la toma de decisiones.

El lado del cliente recibe los mensajes proporcionados por el servidor y basándose en estos

realiza el llamado a las funciones de entrenamiento y evaluación. A continuación analizaremos

cada una de las secciones mostradas en la Figura 2.4.

Estrategia:

• Global Model: Representa el modelo central que se actualiza y distribuye a los

clientes.

• Configure train/eval: Este componente se encarga de configurar las tareas de en-

trenamiento y evaluación que se enviarán a los clientes.

• Aggregate train/eval: Este componente recoge y agrega los resultados del entre-

namiento y evaluación de los clientes para actualizar el modelo global.

Client Manager:

• Edge Client Proxy: Actúa como un intermediario entre los clientes de borde y la
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estrategia central. Se comunica con los clientes de borde a través del servidor RPC.

• Virtual Client Proxy: Similar al proxy de clientes de borde, pero maneja clientes

virtuales, que son simulaciones de clientes en lugar de dispositivos físicos. Estos

clientes virtuales pueden ser activos o inactivos.

RPC Server

• RPC Client: El servidor RPC maneja las comunicaciones entre la estrategia central

y los clientes. Cada cliente (tanto de borde como virtual) se comunica con el servidor

RPC a través de un cliente RPC.

Clientes

• Edge Client: Dispositivos físicos que tienen un proceso de entrenamiento y datos

locales. Se comunican con el servidor RPC y realizan las tareas de entrenamien-

to/evaluación configuradas por la estrategia.

• Virtual Client (active/inactive): Clientes simulados que tienen un proceso de en-

trenamiento similar al de los clientes de borde. Los clientes virtuales activos realizan

tareas de entrenamiento/evaluación, mientras que los inactivos están listos para ac-

tivarse cuando sea necesario.

Flujo de Datos

• Desde la Estrategia hacia los Clientes: La estrategia configura las tareas de entre-

namiento/evaluación y distribuye estas configuraciones a través del Client Manager.

Los proxies de clientes reciben estas configuraciones y las envían a los clientes es-

pecíficos.

• Desde los Clientes hacia la Estrategia: Los clientes ejecutan las tareas y envían

los resultados de vuelta a través de los proxies de clientes. La estrategia central

agrega estos resultados para actualizar el modelo global.

Conexiones y Comunicación

• Las líneas verdes representan la configuración de entrenamiento/evaluación que

fluye desde la estrategia a los clientes.

• Las líneas azules representan los resultados de entrenamiento/evaluación que re-

gresan a la estrategia para la agregación.
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2.6. Differential Privacy

Differential Privacy (DP) es una técnica de preservación de la privacidad que proporciona ga-

rantías matemáticas de que la inclusión o exclusión de un solo dato en un conjunto no afectará

significativamente el resultado del análisis, protegiendo así la privacidad individual de los datos

sensibles. DP se logra introduciendo ruido aleatorio en los resultados de consultas a bases de

datos o en los parámetros de modelos de aprendizaje automático, dificultando que un intruso

pueda inferir información específica sobre individuos. La implementación de DP en sistemas

de aprendizaje automático distribuidos, como FL, es crucial para mantener la privacidad de los

datos [44].

La aplicación de DP en el aprendizaje automático ofrece varios beneficios, como la protección

de datos sensibles y la robustez frente a la variabilidad de los datos de los usuarios. A pesar

de la adición de ruido, los enfoques de DP mantienen una buena precisión del modelo y pro-

piedades de convergencia. Sin embargo, la implementación práctica de DP enfrenta desafíos,

como el equilibrio entre la precisión del modelo y los niveles de privacidad, así como la gestión

de la heterogeneidad de los datos de los usuarios [45].

El ruido Gausiano aplicado por DP se describe por medio de la Ecuación 2.2.

∆×
√
2× log

(
1.25
δ

)
ϵ

(2.2)

En donde ∆ corresponde a la sensibilidad del modelo. Como la precisión se evaluará en base

a los datos sin DP la sensibilidad se establece en 1. Esto debido a que es la máxima diferencia

que puede existir entre los valores. δ corresponde a la probabilidad de fallo, es decir la proba-

bilidad de que el mecanismo de privacidad no proporcione el nivel deseado de privacidad, se

establece en 1× 10−5. ϵ se define como el nivel de protección de privacidad.

2.7. Simulation of Urban MObility

SUMO es una suite de simulación de tráfico de código abierto desarrollada por el Centro Ae-

roespacial Alemán (DLR). Creado en 2001, SUMO se ha convertido en una herramienta inte-

gral para modelar el tráfico en entornos urbanos y ha encontrado aplicaciones significativas

en la investigación de comunicación vehicular, específicamente en Vehicle-to-Vehicle (V2V) y

Vehicle-to-Infrastructure (V2I).
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La suite SUMO permite la representación y simulación detallada de redes viales, demanda

de tráfico y comportamiento de vehículos en un entorno urbano. Ofrece utilidades para la ge-

neración de demanda, enrutamiento de vehículos y una interfaz de control remoto TraCI que

permite la adaptación en tiempo real de la simulación. SUMO se destaca por su capacidad

para modelar el flujo de tráfico convencional, integrándose con simuladores de comunicación

externos, como ns2 y ns3.

La suite SUMO se ha vuelto importante en la investigación de sistemas de transporte inteligen-

tes y comunicación vehicular, brindando a los investigadores la capacidad de simular y evaluar

eficazmente el impacto de diversas estrategias de movilidad y tecnologías de comunicación

en entornos urbanos [9].

2.8. Trabajos Relacionados

En lo que respecta al conocimiento sobre la privacidad en los ITS, el artículo [1] plantea una

perspectiva de privacidad que considera los datos como información que debe mantenerse en

secreto frente a otros usuarios, en particular, cuando se trata de datos de trayectoria y ubica-

ción. Se aborda el riesgo de ataques de reidentificación mediante el uso de información del

historial de trayectorias y proponen un modelo llamado modelo de privacidad de k-correlación

para resolver el ataque de preferencia de movimiento. Además, se presenta un algoritmo lla-

mado TRAMP (Anonimato de Trayectoria contra Preferencia de Movimiento) para abordar el

problema. Los resultados obtenidos muestran que el modelo de privacidad de k-correlación y

el algoritmo TRAMP reducen significativamente la correlación entre las ubicaciones de estacio-

namiento y los usuarios, disminuyendo así el riesgo de reidentificación. Esto se logra mediante

la anonimización efectiva de los datos de ubicación, lo que proporciona una mayor protección

de la privacidad de los usuarios en los sistemas de transporte inteligentes.

Por otro lado, en [13] se destaca la elección del RL debido a la capacidad inherente de adap-

tarse a entornos variables, lo que lo hace idóneo para situaciones cambiantes y dinámicas. Por

otro lado, los enfoques supervisados y no supervisados son más adecuados para contextos

estables y predecibles. Se destaca que el aprendizaje por refuerzo permite que los vehículos

apliquen el modelo de manera local, posibilitando la anticipación y predicción de los patro-

nes de comportamiento del sistema en tiempo real. Este enfoque descentralizado tiene como

ventaja el adaptarse a las particularidades del entorno sin depender de un control centraliza-

do, lo que facilita la toma de decisiones garantizando un funcionamiento óptimo en diferentes
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escenarios y condiciones cambiantes.

Así también, en [46] se emplea él FL con el fin de proteger la información personal recopilada

mientras se conduce un vehículo autónomo. Se plantea un método de participación utilizando

FL que aprovecha dispositivos interconectados, permitiendo así preservar la información per-

sonal. Con esta estrategia se busca asegurar la eficiencia en el funcionamiento de vehículos

autónomos a través de la protección de datos en un entorno de aprendizaje distribuido. Para

evaluar el trabajo, se emplearon métricas de precisión del modelo y eficiencia en el procesa-

miento de datos. Los resultados demostraron que el uso del aprendizaje federado mejoró la

precisión de los modelos locales de inteligencia artificial y la generalización del modelo global,

al mismo tiempo que se minimizó la exposición de datos sensibles, lo que garantiza una mayor

protección de la privacidad.

En [47], se presenta un sistema de FL basado en Blockchain (BFL), en donde se resalta la

importancia de mantener privados los datos durante el intercambio y la compartición de cono-

cimientos entre vehículos en una red. Para lograrlo, se proponen dos algoritmos denominados

como algoritmos oVML y Miner. La comparación se lleva a cabo con el algoritmo de FL de

Google, utilizando variables críticas como el retraso medio del sistema, las probabilidades de

bifurcación y pérdida, así como el impacto de los errores en el sistema. Todo esto se evalúa

considerando diferentes números de vehículos en la red y diversas condiciones de los canales.

Los resultados obtenidos muestran que el retraso del sistema disminuye con el aumento de la

relación señal-ruido (SNR), mientras que las probabilidades de descarte de bloques y de bifur-

cación aumentan exponencialmente con los fallos de transmisión. Los errores de canal afectan

más a la probabilidad de bifurcación que a la de descarte, incrementando significativamente el

retraso total del sistema BFL. Con baja probabilidad de fallos de transmisión, las retransmisio-

nes compensan las pérdidas; sin embargo, con errores significativos, las retransmisiones no

son suficientes, aumentando la pérdida de bloques y la probabilidad de bifurcación.

En [48], se busca implementar el FL de manera más eficiente mediante el desarrollo de un

blockchain híbrido, denominado PermiDAG, que mejora un modelo de FL mediante una se-

lección específica de nodos. PermiDAG se compone de un blockchain principal con permisos,

mantenido por las RSUs, y un Grafo Acíclico Dirigido (DAG) local ejecutado por los vehículos

para facilitar el intercambio eficiente de datos en el IoV. Se propone un esquema asíncrono

de FL para aprender modelos a partir de datos en el borde, mejorando la eficiencia del FL al

seleccionar los nodos participantes con el fin de minimizar el costo total. Esto permite abordar

las capacidades heterogéneas de comunicación y cómputo de los vehículos. Se destaca que
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la forma segura de compartir datos es un área de investigación abierta.

De igual manera, en [49] involucra la comunicación entre el FL basado en cifrado homomórfico

y el FL basado en computación multipartida; sin embargo, estas comunicaciones conllevan

una carga computacional significativa y requieren más tiempo de procesamiento. Así mismo,

exploramos el paradigma de aprendizaje colaborativo, conocido como FL, con el propósito de

salvaguardar la utilidad de los datos y, por ende, mantener la exactitud de los modelos de

aprendizaje automático. Este enfoque se orienta a garantizar la privacidad y confidencialidad

de los usuarios involucrados en un ITS.

En cuanto a la implementación de técnicas de ML para abordar problemas de seguridad en

los ITS. En [50] se investiga cómo el uso de técnicas de Deep Learning (DL) puede mejorar la

seguridad y protección de las personas dentro de los ITS. Este artículo usa la precisión y la tasa

de detección como métricas para evaluar la eficacia de las soluciones propuestas, destacando

la importancia de estas técnicas en la mitigación de riesgos de seguridad.

En [51], centrado en la predicción del tráfico mediante técnicas de ML, se aborda las vulnerabi-

lidades que pueden surgir con la implementación de estas técnicas en ITS. Se usa la precisión

de las predicciones, y la eficacia operativa del transporte para evaluar todo el sistema.

En el contexto de las ciudades inteligentes, en [52] se discute la aplicación de DL para la de-

tección de ataques DDoS en sistemas basados en blockchain. Este estudio demuestra cómo

estas técnicas pueden reducir los problemas de seguridad en los ITS, enfocándose en la tasa

de detección de ataques como métrica principal. Los resultados experimentales, obtenidos a

partir de la evaluación de tres conjuntos de datos diferentes, muestran que el enfoque propues-

to es efectivo para detectar y clasificar distintos tipos de ataques DDoS, alcanzando tasas de

F1-score superiores al 95% en promedio. Esto indica que la combinación de blockchain y DL

proporciona una protección robusta y confiable contra diversos ciberataques en el sistema de

transporte inteligente.

En [53] se investiga específicamente cómo las técnicas de DL pueden resolver problemas de

seguridad en los ITS. La precisión y la robustez de los sistemas implementados son usadas

como métricas para evaluar las soluciones propuestas.

El papel de la ciberseguridad en los ITS es otro tema estudiado en la literatura. En [54] se

discute cómo el ML presenta vulnerabilidades en la fase de entrenamiento que pueden ser

explotadas. Este estudio enfatiza la necesidad de robustez y resiliencia en los ITS para mitigar

estas vulnerabilidades, destaca la importancia de un enfoque integral de seguridad.
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Un informe publicado por el Departamento de Transporte de los Estados Unidos [55] examina

los desafíos y las lecciones aprendidas en la implementación de IA y ML en los ITS. El infor-

me aborda cómo estas tecnologías pueden hacer que los sistemas de transporte sean más

seguros, equitativos y confiables, destacando los problemas de seguridad y privacidad como

principales preocupaciones.

La aplicación de IA en la conducción autónoma también ha sido objeto de investigación. En

[56] se analiza diversas aplicaciones habilitadas por IA, utilizando técnicas de DL para mejo-

rar la precisión en la conducción. Se destacan los estándares y amenazas de seguridad que

deben ser considerados, proporcionando una evaluación integral de las métricas de control,

por ejemplo, la tasa de detección de errores, la precisión en la predicción de rutas, el tiempo

de respuesta del sistema, y la tasa de éxito en la identificación de obstáculos, necesarias para

mantener la seguridad.

En [57] se discute los desafíos en la seguridad de datos y privacidad en los ITS. A medida que

estos sistemas se vuelven esenciales para la comunicación vehicular, el estudio destaca los

problemas de seguridad y privacidad como desafíos críticos que deben ser abordados para

asegurar la eficiencia y seguridad.

Finalmente, en la Tabla 2.2 se presenta un resumen de los artículos analizados que emplean

técnicas deML en los ITS. La tabla detalla el tipo de ML utilizado, las métricas de control apli-

cadas y los problemas de seguridad abordados en cada una de las técnicas analizadas. En el

siguiente capítulo, se presenta la metodología empleada en este estudio para diseñar y eva-

luar una arquitectura basada en técnicas de aprendizaje automático que mejoren la privacidad

en los ITS. Este capítulo incluye el planteamiento del escenario y detalla la implementación de

las diversas técnicas de aprendizaje utilizadas.
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3. Metodología

En este capítulo se describe la metodología utilizada para diseñar la arquitectura basada en

técnicas de aprendizaje automático para mejorar la privacidad en los ITS. La metodología se

divide en varias secciones que detallan desde el planteamiento del escenario hasta la im-

plementación de diferentes técnicas de aprendizaje. Cada una de estas secciones se puede

apreciar en la Figura 3.1. A continuación, se presenta el planteamiento del escenario, que pro-

porciona el contexto y las condiciones iniciales necesarias para la aplicación de las técnicas

de aprendizaje.

Figura 3.1: Diagrama con las Secciones de Metodología

3.1. Planteamiento del Escenario

En este capítulo se describe el escenario en el que se aplicarán diversos métodos de aprendi-

zaje automático. Estos métodos incluyen el Aprendizaje por Refuerzo, el Aprendizaje Super-

visado, el Aprendizaje No Supervisado y el Aprendizaje Federado.

Inicialmente, se crea un mapa detallado del centro urbano de Cuenca utilizando la plataforma

SUMO. Específicamente, se emplea el script osmWebWizard.py [58], que permite obtener

cualquier parte del mundo para su simulación utilizando el software Open Street Maps; en

este caso, se ha seleccionado el centro de la ciudad de Cuenca.

Este mapa generado incorpora el parque central de la ciudad, conocido por su disposición de

cuatro esquinas, cuatro arterias principales, así como cuatro intersecciones y semáforos estra-

tégicamente ubicados. Este entorno cartográfico se presenta de manera visual en las Figuras
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3.2, donde la Figura 3.2(a) ofrece una visión detallada de las edificaciones y el parque central,

mientras que la Figura 3.2(b) se enfoca en las calles y los semáforos en cada intersección,

aspecto central de nuestro estudio.

(a) Mapa completo del Centro de Cuenca (b) Mapa vial del Centro de Cuenca

Figura 3.2: Mapa Utilizado como Escenario

Una vez generado el mapa, procederemos a modificar el archivo .rou.xml, que contiene las

especificaciones de las rutas y flujos de cada vehículo. Este archivo permite ajustar diversos

parámetros de la simulación, tales como las rutas, la velocidad de los vehículos, el carril a uti-

lizar, la posición de partida y, lo más relevante en nuestro caso, la probabilidad de generación

de nuevos vehículos en la simulación. En esta configuración específica, se ha optado por una

probabilidad de generación del 15%. Se ha seleccionado una probabilidad de generación de

nuevos vehículos del 15% para mantener un equilibrio adecuado entre el tráfico predefinido y

el aleatorio. Este valor permite simular una cantidad realista de variabilidad en el tráfico, repre-

sentando de manera efectiva las fluctuaciones que ocurren en entornos urbanos sin introducir

un nivel de aleatoriedad que podría complicar la interpretación de los resultados. Así, se ase-

gura que la simulación refleje tanto las rutas planificadas como las variaciones espontáneas

en el flujo vehicular.

De igual manera, se procedió a modificar el archivo .sumocfg con el objetivo de obtener una

nueva salida correspondiente a las emisiones generadas durante la simulación. Esta informa-

ción es fundamental para nuestro análisis en los diferentes tipos de aprendizaje. Nos centra-

mos principalmente en las emisiones deCO2 y en el tiempo de espera de los vehículos en cada
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una de las intersecciones de la simulación. Estos datos se utilizaron para evaluar y mejorar la

eficiencia del tráfico urbano.

Cabe mencionar que también se consideró el archivo .net.xml, el cual define la duración de

cada ciclo de los semáforos. Este valor es importante al momento de obtener los datos que se

utilizaron para los aprendizajes supervisados y no supervisados. Para estos casos, se reali-

zaron múltiples simulaciones, comenzando con ciclos de 10 segundos y aumentando progre-

sivamente hasta los 30 segundos. De esta manera, se obtuvieron los datos necesarios para

llevar a cabo los análisis de aprendizaje previamente mencionados.

Se propone que cada simulación tenga una duración de un día completo, lo que equivale a

86400 segundos. Todas estas configuraciones se pueden observar en la Tabla 3.1.

Parámetro Valor
Tamaño Mapa 300m x 300m

Número de Calles 12
Número de Intersecciones 4

Número de Esquinas 4
Número Traffic Light System (TLS) 4

Densidad Vehicular 0.15 o 15%
Duración de la Simulación 86400

Tabla 3.1: Valores Utilizados para las Simulaciones

3.1.1. Sistema de Control de Emisiones Propuesto

La obtención de la duración de cada semáforo se realizó a partir del archivo .net.xml, el cual

detalla la duración del ciclo semafórico. Para el centro de la ciudad de Cuenca, se identificaron

dos ciclos. El primero tiene una duración de 42 segundos para las luces roja y verde, y de 3

segundos para la luz amarilla. El segundo ciclo tiene una duración de 15 segundos para cada

luz. Estos datos fueron extraídos durante la configuración del escenario para la simulación

utilizando el software OpenStreetMap.

Como semencionó anteriormente, el enfoque se centra en las emisiones deCO2 y en el tiempo

de espera de los vehículos frente a un semáforo. En la Figura 3.3, semuestra las características

del sistema inicial propuesto. Mientras que, en las Figuras 3.3(a), 3.3(b) y 3.3(c), se presenta el

tiempo total de espera con la duración de los semáforos por defecto en segundos, las emisiones

de CO2 y el número de vehículos con respecto a la duración de la simulación, que como se

mencionó anteriormente, es de 86400 segundos.
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Este tiempo total de espera, o Total waiting time, representa la suma de todos los periodos

de espera de los vehículos frente a los semáforos durante la simulación. En este análisis,

se considera el tiempo total de espera de los cuatro semáforos. La Figura 3.3(a) muestra la

variación del tiempo total de espera de los vehículos en las intersecciones con semáforos a

lo largo de la simulación. Esta figura sugiere una variabilidad significativa en los tiempos de

espera, lo cual puede atribuirse a los patrones de tráfico y a la configuración por defecto de los

semáforos, afectando la densidad vehicular en las simulaciones. Los picos en esta simulación

alcanzan hasta los 800 segundos.

De igual manera se puede observar la Figura 3.3(b), en donde se muestra el nivel de emisiones

de CO2 generado a lo largo de la simulación, con valores que varían considerablemente a

lo largo del tiempo. Existen fluctuaciones significativas de emisiones de CO2, con picos que

alcanzan las 160 g/s.

Así también en la Figura 3.3(c), se muestra el número de vehículos presentes en la red a lo

largo del tiempo de simulación. La tendencia de vehículos es alrededor de los 30 y 40 vehículos.

El número de vehículos es relativamente constante con ligeras fluctuaciones, excepto al inicio

y al final de la simulación.
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(a) Tiempo de Espera

(b) Emisiones de CO2

(c) Número de Vehículos en la Simulación

Figura 3.3: Características del Sistema Inicial

Se puede notar que la relación entre estas figuras radica en que los picos en el tiempo de es-

pera (Figura 3.3(a)) tienden a coincidir con aumentos en las emisiones de CO2 (Figura 3.3(b)),

ya que los vehículos detenidos o en marcha lenta emiten más contaminantes. Asimismo, un

mayor número de vehículos en la red (Figura 3.3(c)) puede contribuir a mayores tiempos de
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espera y, en consecuencia, a mayores emisiones de CO2. Estas interacciones muestran có-

mo la cantidad de vehículos, los tiempos de espera y las emisiones se afectan mutuamente,

reflejando la complejidad del tráfico urbano y su impacto ambiental. Estos datos servirán como

punto de partida para realizar las comparaciones con otros métodos de aprendizaje, como el

aprendizaje por refuerzo y el aprendizaje federado.

3.1.2. Escenarios Propuestos para Aprendizaje Federado

Para llevar a cabo las simulaciones del Aprendizaje Federado, se diseñó un escenario que

consta de cuatro sub escenarios, es decir, cuatro clientes representados por diferentes mapas,

que a su vez estarán conectados a un único servidor. Los cuatro sub escenarios se muestran

en la Figura 3.4. Cada uno de los mapas corresponde a una esquina del mapa utilizado en RL.

Es decir, los semáforos ubicados en la esquina del Parque Calderón actuarán como clientes de

un esquema de federación en donde cada cliente entrenará su modelo de RL en modo agente

único.

(a) Cliente Semáforo 0 (b) Cliente Semáforo 1 (c) Cliente Semáforo 2 (d) Cliente Semáforo 3

Figura 3.4: Escenarios Utilizados para el Aprendizaje Federado

Todos los escenarios propuestos presentan el mismo flujo de vehículos, definido por un va-

lor de probabilidad. Un vehículo será agregado al mapa aleatoriamente con la probabilidad

configurada en cada segundo hasta que se alcance el tiempo de finalización. El número de

vehículos insertados sigue una distribución binomial. Por lo tanto, se considerarán estas mis-

mas condiciones para cada uno de los clientes en el estudio.

3.2. Aprendizaje por Refuerzo (Q-Learning)

Para la implementación QL se hizo uso de la librería SUMO-RL, la cual permite el desarrollo

de algoritmos de RL aplicados al control de señales de tráfico. Cuenta con un enviroment de
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Gymmnasium configurado para el despliegue de simulaciones en SUMO por medio de TraCI

[59].

3.2.1. Estados

La definición del espacio de estados de la Ecuación 3.1 deriva de la consideración de un

semáforo como agente que controla una intersección. Cada uno de los pasos de la simulación

se relaciona con un tiempo t, por lo tanto, en cada paso se produce un vector st que representa

el estado de la intersección. Para la definición del estado se considera además la fase actual

ρ, el tiempo transcurrido de la fase actual δ, la densidad que se define como el número de

vehículos sobre la capacidad de vehículos de cada fase, y el número de vehículos detenidos.

Considerando como vehículos detenidos a los que tienen una velocidad inferior a 0.1 m/s.

st = [ρ, δ, lane1_density, ..., lanen_density, lane1_queue, ..., lanen_queue] (3.1)

3.2.2. Acciones

Se cuenta con dos acciones: un agente puede mantener el tiempo en verde del paso previo

para la fase actual o actualizar la duración de la fase. Estas acciones son definidas como

mantener y cambiar, respectivamente. La restricción de tiempos se realiza asignando un valor

máximo y mínimo a la duración de la fase δ. Entre el cambio de fases se considera una fase

intermedia amarilla con una duración constante de 2 s.

3.2.3. Función de Recompensa

La recompensa asignada se presenta en la Ecuación 3.2, esta recompensa se define con

la variación entre el tiempo de espera acumulado en cada intersección entre las diferentes

acciones.

rt = Wt −Wt+1 (3.2)

Es decir, Wt y Wt+1 representan el tiempo de espera acumulado en la intersección antes y

después de la acción at. El tiempo de espera acumulado Wt se define como:
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Wt =
∑
v∈Vt

wv,t (3.3)

donde Vt es el conjunto de vehículos que llegan a una intersección en el paso de tiempo t, y

wv,t es el tiempo total de espera del vehículo v desde que ingresó en una de las carreteras

que desembocan en la intersección hasta el paso de tiempo t. Cuando el tiempo de espera de

Wt+1 es mayor a Wt se establece una recompensa negativa.

3.2.4. Agentes

Un agente en sumo-rl es un semáforo en una intersección. El agente se define en una clase

que sigue el diagrama de flujo de la Figura 3.5. En este diagrama, el proceso comienza con la

inicialización del agente. Posteriormente, explora la estrategia de aprendizaje con el método

epsilon-greedy. Basado en la tabla Q el agente elige una acción, y después de su ejecución pa-

sa al proceso de aprendizaje. Durante este proceso, el agente utiliza la recompensa y la nueva

información del estado para actualizar la tabla Q, ajustando las estimaciones de los valores

Q para mejorar la política de selección de acciones futuras. El estado del agente se actualiza

basado en el comportamiento del entorno. Finalmente, se establece un valor de recompensa

acumulada.
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Figura 3.5: Agente Sumo-rl

Sumo-rl define también una clase llamada TrafficSignal, que se encarga de controlar a los

semáforos utilizando la Application Programming Interface (API) de TraCI y cuyo diagrama se

presenta en la Figura 3.6. Esta clase define la inicialización de los parámetros de los semáforos,

las próximas fases de los semáforos basado en el cálculo de observaciones y recompensas y

recupera la información detallada del tráfico, como el tiempo de espera acumulado, velocidad

promedio y densidad de carriles.
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Figura 3.6: Traffic Signal Sumo-rl
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3.2.5. Entorno

El entorno de SUMO se configura en Gymmnasium. La Figura 3.7 presenta el diagrama de

flujo de la clase que define este entorno. El proceso comienza con el reinicio del entorno. Esta

clase se encarga de iniciar la simulación y definir lo que sucede en cada paso. Durante cada

paso, se aplican las acciones y se calculan las observaciones y recompensas. Además, se

recopila información adicional y se configura el archivo de salida.

Figura 3.7: Entorno Sumo-rl
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3.3. Aprendizaje No Supervisado

Dentro del contexto de Aprendizaje No Supervisado, incluimos el PCA. El objetivo de este

enfoque es segmentar los datos de ingreso generados mediante el aprendizaje por refuerzo,

los cuales han sido obtenidos simulando una densidad media vehicular con los parámetros

mostrados en la Tabla 4.1.

Se ha procurado obtener la mayor cantidad de datos posibles, en este caso, se han recopilado

un total de 14000 valores para cada una de las variables que se muestran en la Tabla 3.2. Po-

demos notar que estas variables corresponden a los valores obtenidos en el sistema (system)

y los valores correspondientes a cada uno de los semáforos utilizados en la simulación, siendo

estos s1, s2, s3 y s4. Estos datos se encuentran almacenados en un archivo .csv, un formato

idóneo para datos tabulares y ampliamente compatible con diversas herramientas de análisis.

step system_out_lanes_density_avg s3_stopped
system_vehicles system_lanes_density_avg s3_accumulated_waiting_time
system_total_stopped system_queue_avg s3_average_speed
system_total_waiting_time system_mean_total_queued s3_average_acceleration
system_VSP s1_stopped s4_stopped
system_mean_waiting_time s1_accumulated_waiting_time s4_accumulated_waiting_time
system_mean_speed s1_average_speed s4_average_speed
system_mean_acceleration s1_average_acceleration s4_average_acceleration
system_mean_VSP s2_stopped agents_total_stopped
system_total_C02_emissions s2_accumulated_waiting_time agents_total_accumulated_waiting_time
system_mean_fuel_consumption s2_average_speed total_accumulated_VSP_emissions
system_total_fuel_consumption s2_average_acceleration

Tabla 3.2: Variables Utilizadas para el Aprendizaje

Este proceso de reducción de dimensionalidad permitirá simplificar la complejidad de nuestros

datos, preservando al mismo tiempo la mayor cantidad posible de su información inherente. La

aplicación de PCA posibilita explorar la estructura de los datos de manera más eficiente y, po-

tencialmente, identificar agrupaciones naturales o relaciones significativas entre las variables,

lo que resulta fundamental para el análisis y la toma de decisiones informadas. A continuación,

se detallarán las etapas seguidas para la implementación de este algoritmo y en la Figura 3.8

podemos observar el diagrama de flujo implementado.

Carga y Preparación de Datos:

• Los datos se cargan desde un archivo .csv utilizando la librería pandas, que permite

una gestión eficiente y flexible de los datos.

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay



50

• Se realiza un preprocesamiento de datos, incluyendo la limpieza de datos y la eli-

minación de columnas innecesarias, para asegurar que solo las características re-

levantes sean incluidas en el análisis.

Transformación y Normalización de Datos:

• Se aplica StandardScaler para normalizar las características. Este paso es para evi-

tar que las características con mayor varianza dominen el análisis, asegurando que

todas las características contribuyan equitativamente al PCA.

Análisis de Componentes Principales (PCA):

• Se realiza él PCA en los datos normalizados para identificar los componentes prin-

cipales que explican la mayor parte de la variabilidad en los datos.

• Se calcula la varianza explicada por cada componente principal y sé gráfica la va-

rianza explicada acumulada para determinar el número óptimo de componentes a

retener, facilitando así la reducción dimensional sin pérdida significativa de informa-

ción.

Visualización de Resultados:

• Se visualizan los primeros componentes principales mediante gráficos de disper-

sión y otras técnicas de visualización, permitiendo una comprensión intuitiva de la

estructura de los datos en un espacio de menor dimensión.

Interpretación de Componentes Principales:

• Se analizan los pesos (cargas) de las características en los componentes principa-

les para interpretar la contribución de cada característica a los componentes. Esto

ayuda a identificar las características más influyentes en la variabilidad de los datos.

Selección de Método de Normalización:

• Se compara el resultado del PCA utilizando StandardScaler y MinMaxScaler para

evaluar cómo la elección del método de normalización afecta los resultados del PCA.

Esta comparación proporciona una comprensión más profunda de cómo diferentes

técnicas de normalización pueden influir en el análisis de componentes principales.
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Figura 3.8: Diagrama de Flujo de Aprendizaje No Supervisado

3.4. Aprendizaje Supervisado

Para la implementación de un Aprendizaje Supervisado se usó el algoritmo Random Forest

para clasificar los datos de tiempo de espera en distintos niveles de congestión de tráfico: Alto,

Moderado y Bajo. Esto con el fin de encontrar el valor de duración de semáforo en el cual exista

menos tiempo de espera de los vehículos y por endemenos emisiones deCO2. A continuación,

se describen los pasos seguidos para la implementación y análisis de los datos obtenidos a

partir de diversas simulaciones en las que se ha variado el tiempo de los semáforos. En la

Figura 3.9 se observa el diagrama de flujo implementado.

Carga y Preparación de Datos: Los datos utilizados provienen de simulaciones de trá-

fico en las que se ha variado el tiempo de los semáforos. Los pasos seguidos son los

siguientes:

• Carga de Datos: Los datos se cargaron desde un archivo .csv que contiene los

resultados de las simulaciones realizadas en SUMO, utilizando la librería pandas.

• Renombrado de Columnas: Para reflejar los diferentes tiempos de semáforo, se

renombraron las columnas. Esto facilita la identificación y manejo de los datos en el

análisis posterior.
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Transformación y Normalización de Datos: Para preparar los datos para el análisis y

la modelación, se realizaron los siguientes pasos:

• Transformación del Formato de Datos: Utilizando la función melt de pandas, se

transformaron los datos a un formato largo. Esto permite un análisis más eficiente

al convertir múltiples columnas de tiempos de semáforo en una sola columna.

• Normalización de Tiempos de Espera: Se aplicó la técnica de normalización Stan-

dardScaler para estandarizar los tiempos de espera. La normalización asegura que

los tiempos de espera tengan una escala uniforme.

Clasificación: Para clasificar los tiempos de espera en diferentes niveles de congestión,

se siguieron estos pasos:

• Cálculo de Umbrales: Se calcularon los percentiles 33% y 66% de los tiempos

de espera normalizados para definir los umbrales de clasificación. El percentil 33%

divide los datos de manera que el 33% de los tiempos de espera son menores o

iguales a este valor. Mientras que el percentil 66% divide los datos de manera que

el 66% de los tiempos de espera son menores o iguales a este valor.

• Definición de Categorías de Congestión: Basado en estos umbrales, los tiempos

de espera se clasificaron en tres categorías. Bajo (Flujo de tráfico bajo), tiempos de

espera menores al percentil 33%. Moderado (Flujo de tráfico moderado), tiempos

de espera entre el percentil 33% y el percentil 66%. Alto (Congestión alta), tiempos

de espera mayores al percentil 66%.

Visualización de Resultados: Para entender mejor la relación entre el tiempo de los

semáforos y la congestión del tráfico, se realizaron algunas visualizaciones como lo son:

gráficos de dispersión y gráficos de tiempo.

Modelado y Evaluación del Modelo: Para evaluar la capacidad del modelo Random

Forest en clasificar los datos de tráfico, se siguieron estos pasos:

• División de Datos: Los datos se dividieron en conjuntos de entrenamiento y prueba

para evaluar el rendimiento del modelo.

• Entrenamiento del Modelo: Se entrenó un modelo Random Forest utilizando los

datos obtenidos de las simulaciones con RL.

• Evaluación del Modelo: Se evaluó el rendimiento del modelo utilizando un reporte

de clasificación (classification_report), el cual proporciona métricas detalladas como
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precisión, recall y F1-score para cada categoría de congestión.

Figura 3.9: Diagrama de Flujo de Aprendizaje Supervisado

3.5. Aprendizaje Federado

Para la implementación en el servidor de Flower se selecciona el algoritmo (FedAvg) amplia-

mente utilizado en el FL, creado por McMahan [60] y presentado en el Algoritmo 1 en el Anexo

A.A.

El código propuesto para realizar la federación con Flower se describe en el diagrama de flujo

presentado en la Figura 3.10. El cual consta de dos partes: el cliente de Flower y el servidor

Flower. En el contexto de la federación cada semáforo es considerado como un cliente, con

su respectivo archivo de red y de rutas. A su vez cada cliente es considerado como un agente

para el algoritmo de RL. Una ronda es considerada como el intercambio de parámetros entre

los clientes y el servidor y consta de una etapa de entrenamiento y otra de evaluación. En cada

etapa de entrenamiento se pueden establecer episodios de ejecución del algoritmo de RL, a

su vez en cada episodio se establece un determinado número de pasos, que se interpreta

además como el tiempo de simulación.

En el cliente de Flower se importan las librerías necesarias para el manejo y transformación
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de datos, la generación de archivos de salida y la librería sumo-rl usada para el entrenamiento

con RL.

Posteriormente, se inicializa el cliente mediante la creación de una instancia de RLClient, que

incluye la configuración del cliente, y los parámetros necesarios para la ejecución de RL. Se

configura el entorno de SUMO especificando el archivo de red y de ruta, los parámetros de

simulación y la función de recompensa. Se crean y configuran agentes de Q-Learning, inclu-

yendo la estrategia de exploración EpsilonGreedy.

Durante la fase de entrenamiento, el entorno de SUMO se reinicia para comenzar el entrena-

miento. Los agentes ejecutan acciones en el entorno durante el número de episodios estable-

cidos. En cada episodio se generan recompensas y se actualizando las tablas Q (ejemplo en

la subsección 2.3.3.1). Las tablas Q de los agentes se actualizan basadas en las experiencias

de entrenamiento, generando un diccionario relacionado con un valor de estado y un valor de

acción. Los resultados se guardan en archivos CSV para su posterior uso y análisis.

En la fase de evaluación, se configura el entorno SUMO seleccionando la red que contiene

a todos los agentes. Se cargan las tablas Q provenientes del servidor. Tras la ejecución se

registran las métricas de recompensa y tiempo de espera.

En el servidor Flower, se lleva a cabo la comunicación cliente-servidor. Los clientes envían los

parámetros del modelo entrenado al servidor central. El servidor recibe estos parámetros y los

combina para crear un modelo global actualizado. El modelo global contiene los diccionarios

de los clientes con los valores de estado-acción. Los resultados de las fases de entrenamiento

son devueltos a los clientes para su evaluación. Por otro lado las métricas recibidas de la fase

de evaluación se guardan para su análisis posterior.

El proceso de federación concluye una vez que se cumplen todas las rondas establecidas por

el servidor.
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Figura 3.10: Esquema de Implementación Cliente - Servidor con Flower
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4. Análisis de Resultados

En este capítulo se detallarán los resultados obtenidos al aplicar cada uno de los algoritmos

de aprendizaje automático propuestos anteriormente, así como una comparación entre dos de

estos enfoques. En la sección 4.1, se analizan los resultados del Aprendizaje por Refuerzo,

específicamente aplicando el algoritmo de Q-Learning. Este análisis sirve como punto de par-

tida para los dos siguientes tipos de aprendizaje: Aprendizaje No Supervisado y Aprendizaje

Supervisado.

En la sección 4.2, se presentan los resultados del Aprendizaje No Supervisado, utilizando

el algoritmo PCA. Este algoritmo permite reducir la dimensionalidad de los datos y descubrir

patrones subyacentes sin la necesidad de etiquetas predefinidas.

En la sección 4.3, se describen los resultados del Aprendizaje Supervisado, empleando el

algoritmo de Random Forest. Este método permite construir un modelo clasificador robusto

basado en datos etiquetados, mejorando la precisión de las clasificaciones de datos mediante

la combinación de múltiples árboles de decisión.

En la sección 4.4, se aborda el Aprendizaje Federado, aplicando nuevamente el algoritmo de

Q-Learning, pero utilizando el marco del framework Flower. Este enfoque distribuye el proceso

de aprendizaje a través de múltiples dispositivos o nodos, manteniendo los datos localmente

y mejorando la privacidad.

Finalmente, en la sección 4.5, se realiza una comparación detallada entre el Aprendizaje por

Refuerzo y el Aprendizaje Federado. Esta comparación evaluará el desempeño, la eficiencia

y la escalabilidad de ambos enfoques, destacando sus ventajas y limitaciones en diferentes

escenarios.

4.1. Aprendizaje por Refuerzo

Para el Aprendizaje por Refuerzo, como se mencionó anteriormente, se utiliza el algoritmo

Q-Learning. Este algoritmo permite que los agentes aprendan y se adapten a los cambios

en su entorno, así como a las diferentes variaciones que puedan presentarse. El objetivo es

mejorar el comportamiento de los agentes mediante el aprendizaje continuo a partir de sus

interacciones con el entorno.

Se analiza el comportamiento del aprendizaje bajo tres niveles distintos de densidad vehicular:

alta, media y baja. Para lograr esto, se modifica el archivo .rou.xml, donde se encuentra el
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parámetro probability. Este parámetro define la probabilidad de generación de un vehículo

en cada segundo de la simulación, determinando así la frecuencia con la que los vehículos

ingresan a la red vial desde el punto de origen hacia el destino especificado en cada flujo.

Para cada uno de los niveles de densidad vehicular se utilizaron los parámetros indicados en

la Tabla 4.1.

Parámetro Valor
Tasa de aprendizaje α 0.1
Factor de descuento γ 0.99
Factor de decaimiento d 1

Número de ejecuciones completas del experimento 1
Episodios 10

Duración de la Simulación 86400

Tabla 4.1: Valores Utilizados para las Simulaciones

Los valores indicados anteriormente permiten tener una comprensión clara del funcionamiento

de nuestro algoritmo y evaluar su desempeño. En primera instancia, consideramos una tasa

de aprendizaje α de 0.1. La tasa de aprendizaje determina la cantidad de nueva información

que sobrescribe la información antigua. En este caso, un valor de 0.1 permite un aprendizaje

gradual, evitando grandes cambios que podrían desestabilizar el proceso de aprendizaje. Un

valor pequeño asegura convergencia y estabilidad.

De igual manera, se utiliza el factor de descuento γ con un valor de 0.99 para estas simulacio-

nes. Este factor determina la importancia de las recompensas futuras. Un valor cercano a uno

indica que se otorga la misma importancia a las recompensas futuras como a las inmediatas.

El valor propuesto permite que el agente tenga una visión a largo plazo.

Además, se ha utilizado un factor de decaimiento d de 1 en estas simulaciones. Este factor se

refiere al decaimiento de la tasa de exploración-explotación. En este caso, un valor de 1 implica

que no existe decaimiento, por lo que el agente mantiene una tasa constante de exploración

durante todo el proceso de aprendizaje.

Por otra parte, se ha determinado el número de episodios, que es la cantidad de veces que

el agente se entrena en el entorno. Se ha utilizado el valor propuesto porque, a partir de este

valor y valores más altos, no se observa un incremento significativo en el aprendizaje.

En la Figura 4.1 se presentan los resultados de emisiones de CO2 clasificado en tres catego-

rías: Alta, Media y Baja. Cada barra representa el promedio de emisiones de CO2 en gramos

por segundo (g/s) para cada episodio. Por otro lado, en la Figura 4.2 se presentan los re-
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sultados del tiempo de espera. Cada barra representa el promedio del tiempo de espera en

segundos (s) para cada episodio. Las barras azules corresponden a las emisiones altas, las

naranjas a las medias, y las verdes a las bajas. Las líneas negras en cada barra muestran los

intervalos de confianza, indicando la variabilidad de los datos en cada categoría y episodio. De

forma general se observa que los intervalos de confianza decrecen a medida que aumentan

los episodios, es decir los valores varían menos conforme avanza la simulación. Para cada uno

de los episodios se propone una duración de la simulación de 86,400 segundos, equivalente

a un día completo. Este valor permite observar el comportamiento del sistema a lo largo de un

periodo significativo de tiempo, facilitando la obtención de tendencias a largo plazo.

Figura 4.1: Promedio de Emisiones de CO2 para Distintas Densidades
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Figura 4.2: Promedio de Tiempo de Espera para Distintas Densidades

Para el caso de Densidad Vehicular Baja, se utilizó un valor de probability de 0.05, lo que indica

una probabilidad del 5% de que se genere un vehículo cada segundo. Las emisiones de CO2

así como el tiempo de espera en el primer episodio, que es el más significativo, se presenta

en la Figura 4.3.

Se observa en la Figura 4.3(a) que al inicio del episodio se tiene valores altos de tiempo de

espera, que llegan a los 200 segundos, para después llegar a valores por debajo de los 100

segundos.

Por otra parte, se observa en la Figura 4.3(b) las emisiones de CO2 obtenidas con la densidad

vehicular baja. Las emisiones llegan a valores menores a 70 g/s, pero en promedio llegan

a valores menores de 50 g/s. Hay picos altos en las emisiones, lo que indica momentos de

mayor congestión vehicular o ineficiencias en el tráfico. Los altos picos en el tiempo de espera

podrían indicar congestión vehicular, lo cual generalmente lleva a un aumento en las emisiones

de CO2. Esto es coherente con los datos de las emisiones de CO2, donde se observan altos

picos que pueden coincidir con los tiempos de espera prolongados.
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(a) Tiempo de Espera (b) Emisiones de CO2

Figura 4.3: Resultados con Densidad Vehicular Baja

Para verificar que el número de episodios realizados en cada simulación converge, se realiza el

monitoreo de convergencia. Se analizan las gráficas obtenidas en cada episodio para identificar

el punto en el que tienden a un valor único. Todas las gráficas para los análisis de convergencia

se presentan en el Anexo A.B. En la Figura A.1 se observa como con tres episodios realizados,

ya existe una convergencia de un valor cercano a 40 segundos de tiempo de espera. Esto

permite afirmar que, en la densidad vehicular baja, con tres episodios de simulación se puede

obtener este valor constante. Sin embargo, al momento de analizar los valores promedio de

emisiones de CO2 y tiempo de espera de la Figura 4.1 y Figura 4.2 se observa que existe una

tendencia constante a lo largo de los episodios, lo que dificulta comprobar el funcionamiento

del algoritmo de Q-learning con esta densidad.

Para el caso de Densidad Vehicular Media, se utiliza un valor de probability de 0.15, lo que

indica una probabilidad del 15% de que se genere un vehículo cada segundo.

En la Figura 4.4 se observa el comportamiento del Tiempo de espera y Emisiones CO2 en

el primer episodio. En primera instancia, en la Figura 4.4(a) se puede observar como varía el

tiempo de espera de los vehículos. Se observa que al inicio de la simulación se tienen picos

que alcanzan los 12000 segundos, pero a medida que avanza la simulación este valor va

reduciendo hasta llegar a valores menores a los 1000 segundos de tiempo de espera, lo que

indica que el algoritmo está funcionando de manera adecuada.

Así también, en la Figura 4.4(b) se puede notar como se tiene al inicio de la simulación valores

muy altos de emisiones de CO2, en este caso alcanza los niveles de más de 250 g/s para

luego ir decreciendo estos valores hasta llegar a valores alrededor de los 100 g/s. Esto es un

buen indicativo de que el algoritmo funciona de manera adecuada, ya que ayuda a reducir el
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nivel de contaminación, en este caso de CO2. Se puede apreciar de mejor manera como el

reducir el tiempo total de espera de los vehículos ayuda a reducir las emisiones de CO2.

(a) Tiempo de Espera (b) Emisiones de CO2

Figura 4.4: Resultados con Densidad Vehicular Media

En la Figura A.2 se puede observar como con cinco episodios realizados, existe ya una con-

vergencia de un valor cercano a 800 segundos de tiempo de espera. Con lo que se puede decir

que en la densidad vehicular media, con cinco episodios de simulación se puede obtener este

valor constante. Esta tendencia se observa también en los valores promedio de emisiones de

CO2 y tiempo de espera de la Figura 4.1 y Figura 4.2, en donde ya se puede observar como

el tiempo de espera y las emisiones de CO2 disminuyen a lo largo de los episodios.

Para el caso de Densidad Vehicular Alta, se utilizó un valor de probability de 0.30, lo que indica

una probabilidad del 30% de que se genere un vehículo cada segundo.

En la Figura 4.5 se puede observar el comportamiento del Tiempo de espera y Emisiones CO2.

En primer lugar, se puede observar en la Figura 4.5(a) como varía el tiempo de espera de los

vehículos respecto al tiempo de simulación. A medida que avanza la simulación, se aprecia

una disminución en el tiempo de espera, lo que indica que el algoritmo está funcionando de

manera adecuada. Esta variación puede ser notada, ya que al inicio de la simulación se tiene

un tiempo total de espera de 10000 segundos y al finalizar la misma se tiene un valor menor a

los 6000 segundos.

De igual forma, en la Figura 4.5(b) se puede analizar como empieza la simulación con valores

cercanos a los 300 g/s de emisiones de CO2, para a medida que avanza la simulación esta

vaya disminuyendo, que en este caso llega a valores por debajo de las 200 g/s emisiones

de CO2. Por lo que se aprecia que el algoritmo sigue funcionando, no tan rápido como en la

densidad media, pero sigue funcionando.
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(a) Tiempo de Espera (b) Emisiones de CO2

Figura 4.5: Resultados con Densidad Vehicular Alta

En la Figura A.3 se puede observar como con ocho episodios realizados, existe ya una con-

vergencia de un valor cercano a 6000 segundos de tiempo de espera. Con lo que se puede

decir que en la densidad vehicular alta, con cinco episodios de simulación se puede obtener

este valor constante. En los valores promedio de emisiones de CO2 y tiempo de espera de

la Figura 4.1 y Figura 4.2 se observar como bajo estas condiciones el tiempo de espera y las

emisiones de CO2 disminuyen a lo largo de los episodios.

4.1.1. Comparación de Densidades Vehiculares

En primer lugar, se compararon las tres densidades propuestas: Alta, Media y Baja. En la

Figura 4.6 se aprecia cómo varía la densidad vehicular en cada caso.

En la Figura 4.6(a), se observa la densidad baja, que tiene un pico máximo de 0.12. Esta

densidad muestra una gran variabilidad con valores que oscilan principalmente entre 0.02 y

0.06 durante la mayor parte del tiempo de simulación.

En la Figura A.2(b), se aprecia la densidad media, que tiene el pico máximo alcanza un valor de

0.5. Sin embargo, después de aproximadamente 30,000 segundos de simulación, la densidad

comienza a disminuir, estabilizándose en un valor estimado de 0.2. Esto indica que el sistema

experimenta una reducción significativa de la densidad con el tiempo.

En la Figura A.3(b), se tiene la densidad alta, en la cual se observa el pico máximo es de 0.6,

pero se observa una tendencia decreciente que lleva la densidad a estabilizarse en un valor

alrededor de 0.4. Este comportamiento sugiere que, aunque inicialmente la densidad es alta,

hay mecanismos en el sistema que ayudan a reducirla parcialmente con el tiempo.
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(a) Densidad Vehicular Baja

(b) Densidad Vehicular Media

(c) Densidad Vehicular Alta

Figura 4.6: Escenarios Utilizados para el Aprendizaje Federado

También se consideró la duración total de la simulación para cada caso. Los resultados ob-

tenidos se presentan en la Tabla 4.2. La simulación con mayor duración corresponde al caso

de Densidad Vehicular Alta, alcanzando un tiempo de 2920.64 segundos. Este resultado era

previsible, dado que un mayor número de vehículos en la red incrementa el tiempo necesario

para completar la simulación.
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Duración Tiempo [s]
Densidad Vehicular Baja 174.08
Densidad Vehicular Media 468.00
Densidad Vehicular Alta 4292.20

Tabla 4.2: Tiempo de Duración de cada Simulación

4.1.2. Evaluación del Modelo

El modelo de RL se evalúa utilizando métricas estándar para la evaluación de modelos dé RL.

Para realizar estas evaluaciones, se parte de los resultados obtenidos anteriormente, para tra-

bajar sobre la densidad vehicular en la que se obtuvieron resultados más evidentes en cuanto

al funcionamiento del algoritmo, que en este caso fue la densidad vehicular Media.

Para la evaluación del modelo, se debe definir en primer lugar los parámetros con los cuales

se trabaja. En este caso, se usa casi los mismos valores y parámetros listados en la Tabla 4.1,

con el cambio en el número de episodios realizados, que en este caso, se usa 10 episodios.

La Figura 4.7 presenta la métrica de la varianza explicada EV a. Esta métrica evalúa si la

política aprendida es un buen predictor del rendimiento, es decir, de la recompensa total. Un

valor de EV a ≤ 0 índica que la predicción es peor que no hacer ninguna predicción, mientras

que un valor de EVa = 1 índica una excelente predicción [61]. En la Figura 4.7, se observa que

EVa se aproxima a 1, por lo que se ha encontrado una estrategia eficaz a nuestro problema.

Figura 4.7: Varianza Explicada del Modelo

Otra de las métricas utilizadas para evaluar el modelo de RL es la pérdida de valor. Para

calcular la pérdida de valor se calcula las recompensas acumuladas de los agentes presentes
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en la simulación. La Figura 4.8 presenta las recompensas acumuladas a lo largo del tiempo

de simulación. Como se indica en la Ecuación 3.2, esta recompensa es negativa.

Figura 4.8: Recompensa Acumulada

La pérdida de valor se presenta en la Figura 4.9. Esta métrica se calcula como la diferencia

de valor entre pasos para la recompensa. Se observa que al inicio de la simulación hay un

gran cambio en el valor de la recompensa, pero a partir de los 20,000 pasos, esta tiende a

estabilizarse, indicando un aprendizaje en los agentes.

Figura 4.9: Pérdida de Valor

4.2. Aprendizaje No Supervisado

Como se menciona en la sección anterior, se trabaja con 35 variables, las cuales se pueden

observar en la tabla 3.2 y con 14000 datos de cada una de ellas, por lo que al aplicar él PCA, se

busca obtener la cantidad de variables mínimas relevantes, las componentes principales y las

variables más importantes que se han encontrado. Así también, se compararán dos métodos

de normalización, como lo son el StandardScaler y MinMaxScaler.

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay



66

4.2.1. StandardScaler

Al utilizar el método StandardScaler para la normalización, se observa que se pueden utilizar

3 componentes principales con los cuales se puede abarcar aproximadamente el 83.1% de la

varianza de los datos, como se muestra en la Figura. 4.10.

Dado que se tiene un alto porcentaje de varianza acumulada utilizando tres componentes prin-

cipales, es posible considerar estas tres componentes como suficientes para una clasificación

efectiva de los datos. Estas tres componentes mencionadas están compuestas por las varia-

bles más relevantes, por lo que en las Tablas 4.4, 4.5 y 4.6 están las componentes principales

uno, dos y tres respectivamente.

En la Figura 4.11, se presenta la proyección de los datos en los tres primeros componentes prin-

cipales, utilizando StandardScaler para la normalización de los datos. Esta figura proporciona

una visión detallada de la distribución de los datos en diferentes combinaciones de componen-

tes principales, las cuales están en las Tablas 4.4, 4.5 y 4.6.

De color rojo se observa como los datos se distribuyen en el espacio definido por las dos

primeras componentes principales, que capturan la mayor parte de la varianza en los datos

originales. La distribución en esta proyección revela la estructura principal de los datos. De

color verde se muestra, en cambio, como los datos se distribuyen en la primera y tercera com-

ponentes principales. Aunque la tercera componente captura menos varianza que la primera

y segunda, sigue siendo significativa y ofrece una perspectiva adicional sobre la estructura de

los datos. Mientras que de color azul, se visualiza la relación entre la segunda y tercera com-

ponentes principales. Esta proyección es útil para entender las variaciones secundarias en los

datos y cómo se distribuyen en las componentes de varianza menor.

La utilización de las tres primeras componentes principales, las cuales están en las Tablas 4.4,

4.5 y 4.6, que explican un alto porcentaje de la varianza total, es suficiente para comenzar a

clasificar los datos. La proyección de los datos en estas componentes muestra una estructura

clara y bien definida, lo que facilita la identificación de patrones y agrupamientos.
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Figura 4.10: Varianza Acumulada por Componentes Principales StandardScaler

Figura 4.11: Proyección de Datos en las Primeras Tres Componentes Principales StandardS-
caler

4.2.2. MinMaxScaler

Por otra parte, al utilizar el método MinMaxScaler para la normalización se muestra igualmente

que utilizando 3 componentes principales abarcamos aproximadamente el 86.5%, que es más

que al utilizar el método StandardScaler. Este resultado podemos apreciarlo en la Figura 4.12.

De igual manera que en el anterior método, se ha obtenido un porcentaje de varianza acu-

mulada aceptable para utilizar únicamente tres componentes principales para realizar una cla-

sificación efectiva de datos. En la figura 4.13 se presenta la proyección de los datos de las

tres componentes principales utilizando en este caso MinMaxScaler para la normalización. Se
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utilizan los mismos colores y las mismas componentes principales en comparación, con la

diferencia más significada que al comparar las componentes dos y tres están más centradas.

Figura 4.12: Varianza Acumulada por Componentes Principales MinMaxScaler

Figura 4.13: Proyección de Datos en las Primeras Tres Componentes Principales MinMaxS-
caler

4.2.3. Varianza Obtenida en las Primeras Seis Componentes Principales

A continuación, en la tabla 4.3 se detalla el valor de cada componente principal en cuanto a la

varianza, en donde se observa las seis componentes principales para poder confirmar que con

el uso de las primeras tres se puede empezar a usar un clasificador de datos. Cabe mencionar,

que desde la componente principal 22 hasta la última componente principal el valor es de 0%.
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Varianza por Cada Componente Principal Porcentaje (%)
Componente Principal 1 (PC1) 56.67
Componente Principal 2 (PC2) 21.63
Componente Principal 3 (PC3) 4.80
Componente Principal 4 (PC4) 3.27
Componente Principal 5 (PC5) 2.90
Componente Principal 6 (PC6) 2.08

Tabla 4.3: Varianza de las Primeras Seis Componentes Principales

4.2.4. Variables más Importantes en las Tres Primeras Componentes Principales

Componente Principal 1 (PC1): Las variables que más contribuyen a PC1 son aquellas

relacionadas con el tráfico y el consumo de combustible. Los valores obtenidos por cada

una de las variables se observa en la Tabla 4.4.

Variable Valor Variable Valor
system_total_stopped 0.223369 system_out_lanes_density_avg 0.216528
agents_total_stopped 0.223369 system_total_fuel_consumption 0.213701
system_queue_avg 0.223156 system_total_C02_emissions 0.213699
system_vehicles 0.220119 agents_total_accumulated_waiting_time 0.213402
system_lanes_density_avg 0.219356 system_mean_total_queued 0.213402

Tabla 4.4: Valores de las Variables más Importantes en la Componente Principal 1

De igual manera se define la tabla anterior mediante el uso de la siguiente ecuación:

PC1 = W11x1 +W12x2 +W13x3 + · · ·+W1pxp (4.1)

Donde:

• PC1 es la primera Componente Principal.

• W1j es el coeficiente o peso de la variable xj en la primera Componente Principal.

• xj es la j-ésima variable original del conjunto de datos.

• p es el número total de variables originales [62].

Esta ecuación puede ser utilizada para representar cualquier Componente Principal, se

debe tener en consideración el número de componente con la cual estamos trabajando.
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Componente Principal 2 (PC2): PC2 está dominada por variables relacionadas con el

promedio y la densidad de la cola del sistema. Los valores obtenidos por cada una de

las variables se observa en la Tabla 4.5.

Variable Valor Variable Valor
s2_stopped 0.017396 system_total_stopped 0.012875
s1_stopped 0.013502 system_mean_waiting_time 0.009303
system_queue_avg 0.013332 system_total_waiting_time 0.008509
system_lanes_density_avg 0.013204 s4_accumulated_waiting_time 0.007573
agents_total_stopped 0.012875 s2_accumulated_waiting_time 0.00673

Tabla 4.5: Valores de las Variables más Importantes en la Componente Principal 2

Componente Principal 3 (PC3): PC3 destaca las velocidades promedio de las seccio-

nes del sistema, además del tiempo total de espera y otros tiempos acumulados. Los

valores obtenidos por cada una de las variables se observa en la Tabla 4.6.

Variable Valor Variable Valor
s4_average_speed 0.398883 system_mean_waiting_time 0.195839
s3_average_speed 0.398883 agents_total_accumulated_waiting_time 0.188464
s2_average_speed 0.398883 system_mean_total_queved 0.188464
s1_average_speed 0.398883 s4_accumulated_waiting_time 0.179076
system_total_waiting_time 0.210222 s2_accumulated_waiting_time 0.178604

Tabla 4.6: Valores de las Variables más Importantes en la Componente Principal 3

En este estudio, se realiza un PCA sobre un conjunto de datos que consta de 35 variables y

14,000 observaciones por cada una de ellas. El objetivo para llevar a cabo este PCA fue la

necesidad de reducir la dimensionalidad del conjunto de datos. Al tratar con un alto número de

variables, es fundamental abordar la posible redundancia y alta correlación entre ellas, lo cual

puede afectar negativamente el rendimiento de los algoritmos de aprendizaje supervisado.

La reducción dimensional mediante PCA permite transformar el conjunto de datos original en

un espacio de menor dimensión, preservando la mayor parte de la variabilidad intrínseca a

los datos. Este proceso no solo facilita una mejor visualización y comprensión de los patrones

subyacentes en los datos, sino que tambiénmejora la eficiencia computacional y el rendimiento

de los modelos de aprendizaje supervisado que se implementarán posteriormente.
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4.3. Aprendizaje Supervisado

Las razones para aplicar aprendizaje supervisado en este análisis surge de la necesidad de

clasificar el tiempo de espera y, consecuentemente, los niveles de emisiones de CO2. Inicial-

mente, se realizó un PCA como una técnica de aprendizaje no supervisado para reducir la

dimensionalidad del conjunto de datos y extraer las características más relevantes. Con los

datos transformados y simplificados obtenidos del PCA, se procedió a implementar el aprendi-

zaje supervisado con el fin de clasificar el tiempo de espera y los niveles de CO2 en categorías

de alto, medio y bajo.

Esta clasificación es para identificar patrones y tendencias en el comportamiento del tráfico

vehicular y sus emisiones. El objetivo final de esta clasificación es optimizar la duración de las

luces verdes en los semáforos. Al ajustar adecuadamente los tiempos de las señales de tráfico,

se busca reducir las emisiones de CO2, disminuyendo el tiempo de espera de los vehículos y

mejorando la fluidez del tráfico.

Como se mencionó anteriormente, en esta sección se presentan los resultados obtenidos al

aplicar el algoritmo Random Forest. Este algoritmo se implementa con el propósito de clasificar

los tiempos de espera y emisiones de CO2 en diferentes niveles, esto se obtiene utilizando

la duración de la luz verde de cada uno de los semáforos. Cabe destacar que la variable

tiempo de espera total, contenida en la componente principal uno mostrada en la Tabla 4.4,

ha demostrado ser una de las más significativas, como se analizó en la sección 4.2. Por esta

razón, se utiliza esta variable para clasificar los niveles de congestión en alto, moderado y bajo

y por ende, poder clasificar estos datos en alto, moderado y bajo respecto a las emisiones de

CO2 generadas.

En la Figura 4.14 se presenta la clasificación en niveles de emisiones de CO2 en función del

tiempo de duración de encendido de la luz verde de cada semáforo, el cual varía entre 5 y

25 segundos. En la figura, se puede observar que, a medida que se dispone de una mayor

cantidad de datos en cada una de las clases, el tamaño de las burbujas aumenta. El punto

central de cada burbuja representa el promedio de cada clase en relación con los diferentes

tiempos de duración del semáforo.
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Figura 4.14: Clasificación de Niveles de CO2 según el Tiempo del Semáforo

También, se ha podido obtener la cantidad de datos por cada una de las clases a lo largo de

la duración del semáforo. Esto se puede apreciar en la Figura 4.15, en donde se puede ver la

variabilidad de la cantidad de datos de cada una de las clases, ya sea alta, moderada o baja,

dependiendo del tiempo de duración del semáforo que se configure. En esta figura, se visualiza

que el tiempo del semáforo que se configure influye significativamente en las emisiones de

CO2 y en la congestión del tráfico, ya que se observan intervalos de tiempo donde se tiene

congestión más alta y por ende, mayor nivel de emisiones de CO2. El tiempo de semáforo de

15 segundos es el que tiene un flujo de tráfico más bajo y menor nivel de emisiones de CO2,

lo cual es la duración de semáforo óptima.

Figura 4.15: Cantidad de Datos por Clase a lo Largo del Tiempo de Semáforo

En la Tabla 4.7 tenemos el informe de clasificación al aplicar Random Forest, en ella se aprecia

lo siguiente:

Precision: Mide la exactitud de predicciones positivas.

Recall: Mide la capacidad del modelo para identificar las instancias positivas.
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F1-Score: Es la media armónica de Precision y Recall, proporcionando un equilibrio entre

ambas métricas.

Support: Indica el número de instancias reales de cada clase en el conjunto de prueba.

Accuracy: Indica la proporción de instancias correctamente clasificadas sobre el total de

instancias.

Macro Avg: Es la media de las métricas (Precision, Recall, F1-Score) calculadas inde-

pendientemente para cada clase.

Weighted Avg: Es la media ponderada de las métricas, teniendo en cuenta el Support de

cada clase. [63].

Precision Recall F1-Score Support
Bajo 1.00 0.95 0.97 6984

Modera 0.89 1.00 0.94 6841
Alto 1.00 0.93 0.96 7175

Accuracy 0.96 21000
Macro Avg 0.96 0.96 0.96 21000

Weighted Avg 0.96 0.96 0.96 21000

Tabla 4.7: Informe de Clasificación

En la Tabla 4.7 se puede observar que: en los niveles Bajo y Alto, todas las predicciones fueron

correctas, mientras que en la clase Moderada se alcanzó un 89% de predicciones correctas.

De igual manera, solo en la claseModerada se identificaron correctamente todas las instancias

reales. En la clase Baja se logró un 95%, y en la clase Alta se obtuvo un 93%.

El valor más alto se registró en la clase Bajo con un 0.96, indicando un buen equilibrio entre

precisión y exhaustividad. Para las clases Moderada y Alta, se obtuvieron valores de 0.94

y 0.96 respectivamente, también mostrando un buen equilibrio entre estas dos métricas. La

cantidad de instancias por clase es la siguiente: Baja con 6984, Moderada con 6841, y Alta

con 7175 instancias.

La precisión general del modelo es del 96%, lo que indica que este porcentaje de instancias

fueron clasificadas correctamente. Los promedios macro y ponderado (Macro Avg y Weighted

Avg) del modelo son ambos de 0.96. Observadas todas estas características, se puede decir

que el modelo muestra un rendimiento sólido y equilibrado en todas las clases, con una alta

precisión general y promedios consistentemente altos.

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay



74

4.4. Aprendizaje Federado

El objetivo de aplicar FL es mejorar la privacidad en el manejo de los datos de los clientes.

A través del aprendizaje federado, los datos permanecen en los dispositivos locales y solo se

comparten los parámetros del modelo, evitando así la transferencia de datos sensibles. Aunque

se espera que el rendimiento del modelo sea inferior en comparación con el aprendizaje por

refuerzo, esta metodología proporciona una mayor protección de la privacidad de los usuarios.

Este enfoque se usa en contextos donde la confidencialidad de los datos es una prioridad,

permitiendo desarrollar modelos robustos mientras se salvaguardan los datos personales de

los clientes.

Para analizar los resultados obtenidos con el FL, se parte del escenario propuesto en la Sección

3.1.1, en el cual contamos con cuatro clientes y un servidor central. Cada uno de los clientes

tendrá su modelo funcional de RL y enviará los resultados al nodo central o servidor para

obtener un modelo general. Para realizar este análisis, se utilizan los parámetros iniciales de

simulación indicados en la Tabla 4.8.

Parámetros Valor
Duración de la Simulación 3500

Densidad Vehicular 0.15
Número Episodios 1

Número de Rondas (Federado) 25
Runs 1
ϵ 100

Tabla 4.8: Valores Utilizados para Realizar FL

Inicialmente se realizaron simulaciones considerando 80 rondas en la ejecución del algoritmo

de FL. Realizando el promedio entre los datos ofrecidos por los clientes, se obtiene el tiempo

promedio de espera presentado en la Figura 4.16, en donde se muestran los datos reales y una

regresión polinómica que permite observar la tendencia de los datos. De manera similar, en

la Figura 4.17 se presentan las emisiones de CO2 promedio. Estas figuras permiten observar

que a partir de la ronda 25 el modelo tiende a estabilizarse, razón por la cual se establecen 25

rondas como el rango de análisis del algoritmo de FL. Como se desea obtener una distribución

del algoritmo de Q-learning, se establece una duración de la simulación de 3500 segundos,

cubriendo así los 86400 segundos que son el objeto de análisis.
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Figura 4.16: Tiempo Promedio de Espera por Ronda

Figura 4.17: Emisiones de CO2 Promedio por Ronda

4.4.1. Fase de Entrenamiento

En la Figura 4.18 se presenta el proceso de entrenamiento del cliente 0. Se observa una no-

table disminución en el tiempo de espera promedio del cliente en cada una de las rondas de

federación, comenzando en aproximadamente 600 segundos y terminando por debajo de los

200 segundos. Los intervalos de confianza, en donde se consideró un valor de confianza del

95%, demuestran que en las primeras rondas de entrenamiento existe una mayor variabili-

dad en el tiempo de espera promedio, la cual se reduce a medida que el propio modelo de

federación se estabiliza.
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Figura 4.18: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 0

De igual manera se analiza el comportamiento de las emisiones de CO2 en cada uno de los

episodios de entrenamiento del cliente 0, esto en la Figura 4.19. Se observa que se tiene

un alto valor de emisiones, en este caso alcanza los valores de 120 g/s para luego disminuir

significativamente a valores inferiores a los 100 g/s. El comportamiento del resto de los clientes

es similar al observado en el cliente 0, y se detallan en el Anexo A.C.A.

Figura 4.19: Resultados Obtenidos de Emisiones de CO2 en cada Entrenamiento Cliente 0

4.4.2. Fase de Evaluación Utilizando los Parámetros Recibidos del Servidor.

Una vez completado el entrenamiento en cada uno de los clientes, estos envían sus pará-

metros al nodo central. Con toda esta información recopilada, el nodo central genera nuevos

parámetros, que son posteriormente enviados de vuelta a cada cliente para evaluar el mode-

lo actualizado. A continuación, se presenta el comportamiento de estos parámetros para el
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cliente 0.

En la Figura 4.20, se presentan los resultados del cliente 0 en cuanto al promedio de tiempo

de espera en cada ronda. Se observa que el valor máximo sobrepasa los 400 segundos y

corresponde a la primera ronda de evaluación. Se visualiza una notable reducción en el tiempo

de espera a medida que avanzan las rondas llegando a valores cercanos a los 400 segundos.

En cuanto a los intervalos de confianza se observa una menor variabilidad a a medida que

aumentan las rondas.

Figura 4.20: Evaluación de Tiempo de Espera del Modelo Recibido en el Cliente 0

De igual manera, se analizan las emisiones de CO2 generadas durante la fase de evaluación.

Estas emisiones se pueden observar en la Figura 4.21, donde se aprecia una reducción a

medida que avanzan las rondas, con valores alrededor de 100 g/s.

Figura 4.21: Evaluación de Emisiones CO2 del Modelo Recibido en el Cliente 0
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4.4.3. Evaluación del Modelo

Como se ha mencionado, el aprendizaje federado implementado utiliza el algoritmo de Q-

learning en cada cliente. Para evaluar el desempeño del modelo, se analiza la tendencia de

las recompensas a lo largo de las rondas, verificando que estas tiendan a estabilizarse. En la

Figura 4.22 se muestra la recompensa promedio por ronda, donde se presentan tanto los datos

reales como una regresión polinómica de los mismos. Se observa que, a partir de la ronda 30,

las recompensas tienden a estabilizarse, lo que indica la convergencia del modelo.

Figura 4.22: Recompensa Promedio por Ronda

En Flower, los clientes utilizan DP a través del módulo LocalDpMod. Desde el punto de vista

de la privacidad, el uso de DP reduce de manera significativa la capacidad de inferir datos

individuales de los usuarios al añadir un ruido controlado. Esto no solo proporciona una mayor

protección de la información sensible, sino que también permite demostrar que el modelo está

implementando efectivamente mecanismos de privacidad. La Figura 4.23 muestra una gráfica

de la precisión de las recompensas para diferentes valores de ϵ, con el ruido añadido según

la Ecuación 2.2. La precisión se calcula como la diferencia entre los datos obtenidos con DP

y aquellos sin utilizar DP. La variación del parámetro ϵ revela una relación entre privacidad y

precisión. Valores más bajos de ϵ mejoran la privacidad, pero reducen la precisión del modelo

debido al mayor nivel de ruido añadido. En cambio, valores más altos de ϵ incrementan la preci-

sión del modelo, aunque disminuye la privacidad. Los resultados previamente presentados se

realizaron considerando un ϵ de 100, que como se muestra en la Figura 4.23 permite mantener

una precisión superior al 85% del modelo mientras se añade privacidad. Este ajuste del valor

de ϵ permite modificar el nivel de privacidad según los requisitos específicos, equilibrando la
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precisión del modelo con la protección de datos.

Figura 4.23: Precisión del Modelo para Distintos Valores de ϵ

4.5. Comparación Aprendizaje por Refuerzo vs Aprendizaje Federado

Para la comparación entre el Aprendizaje por Refuerzo y el Aprendizaje Federado se empezará

evaluando el porcentaje de uso de CPU y el porcentaje de uso de la memoria RAM. Para esta

comparación, se tendrá las condiciones iniciales mostradas en la Tabla 4.9.

Parámetros Valor
Duración de la Simulación 86400

Densidad Vehicular 0.15
Número Episodios 5

Número de Rondas (Federado) 1
Runs 1

Tabla 4.9: Valores Utilizados para Realizar la Comparación

En las Figuras A.16 y A.17 se observa el comportamiento del porcentaje de uso del CPU y de

la memoria RAM durante la simulación del RL y FL.

En la Figura 4.24, se presenta el promedio del porcentaje de uso de CPU y Memoria RAM para

los clientes 0, 1 y 2, comparado con el RL, utilizando diagramas de bloques con un intervalo

de confianza del 95%. Este intervalo de confianza es pequeño, lo que indica que hay menos

incertidumbre sobre el valor real del parámetro. Se observa que el uso promedio de CPU en

los clientes es similar, con valores de 41.67%, 41.26% y 41.55% para los clientes 0, 1 y 2 del
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FL, respectivamente. En contraste, el RL muestra un uso promedio de CPU significativamente

menor, alcanzando solo el 16.69%. En cuanto al uso promedio de Memoria RAM, los clientes

del FL presentan un valor uniforme de 47.25%, mientras que el RL tiene un uso promedio

inferior, de 38.73%.

Comparando los dos tipos de aprendizaje, se observa que el FL presenta un mayor consumo

de recursos que el RL, debido a la necesidad de realizar más procesos para el envío y recep-

ción de nuevos parámetros entre los clientes y el servidor. La diferencia en el uso de CPU es

considerable, con el RL utilizando un promedio de 16.69% en comparación con el 41.49% de

los clientes del FL, lo que representa una diferencia de aproximadamente 24.8 puntos porcen-

tuales. En cuanto al uso de Memoria RAM, el FL también consume más, con un incremento

de aproximadamente 8.52 puntos porcentuales en comparación con el RL.

Figura 4.24: Uso Promedio de CPU y RAM

Otra manera en la que se compararon los diferentes métodos de aprendizaje fue mediante el

tiempo de simulación. Los resultados de estos tiempos de simulación se presentan en la Tabla

4.10. Se observa que el tiempo de simulación del FL es casi cuatro veces mayor que el del

RL, con una duración de 1797.66 segundos frente a los 468 segundos del RL. Esto indica que

el aprendizaje federado es significativamente más lento y más demorado en comparación con

el aprendizaje por refuerzo.

Estas diferencias en el tiempo de simulación pueden atribuirse a varios factores. En primer

lugar, él FL involucra la comunicación y la agregación de modelos entre múltiples clientes y

un servidor central, lo que añade una sobrecarga computacional y de comunicación. Además,
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la heterogeneidad de los datos y modelos en los diferentes clientes puede llevar a mayores

tiempos de convergencia.

Tipo de Aprendizaje Tiempo [s]
RL 468
FL 1797.66

Tabla 4.10: Tiempo de Duración de cada Simulación
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5. Conclusiones y Recomendaciones

En este capítulo se presentan las principales conclusiones y recomendaciones del estudio, el

cual se enfocó en el diseño y evaluación de una arquitectura basada en técnicas de apren-

dizaje automático para mejorar la privacidad en los Sistemas de Transporte Inteligente (ITS).

Los resultados obtenidos abordan la implementación de diversas técnicas de aprendizaje, in-

cluyendo aprendizaje no supervisado, supervisado, por refuerzo y federado, con el objetivo de

optimizar el tráfico vehicular y reducir las emisiones de CO2 en la ciudad de Cuenca, Ecuador,

mientras se protege la privacidad de los usuarios.

5.1. Conclusiones

Se recopiló información en la literatura científica acerca de los potenciales problemas a los

que se enfrentan los ITS respecto a la privacidad de datos. Esta recopilación proporcionó una

base sólida para entender las vulnerabilidades y desafíos que se deben abordar para proteger

la privacidad de los usuarios en los ITS.

En el aprendizaje no supervisado, Se trabajó con 35 variables y 14,000 datos por cada una

de ellas. La aplicación del Análisis de Componentes Principales (PCA) permitió identificar las

componentes principales y las variables más importantes. Se compararon dos métodos de nor-

malización: StandardScaler y MinMaxScaler. Con StandardScaler, se identificaron tres compo-

nentes principales que explicaron el 83.1% de la varianza. Con MinMaxScaler, las tres com-

ponentes principales abarcaron el 86.5% de la varianza. En ambos casos, se confirmó que

tres componentes principales eran suficientes para una clasificación efectiva de los datos. La

variable de tiempo de espera total se estableció como la base para la función de recompensa

del algoritmo de Aprendizaje por Refuerzo (QL).

Con los datos transformados mediante PCA, se implementó el aprendizaje supervisado para

clasificar el tiempo de espera y los niveles de CO2 en categorías de alto, medio y bajo. Utilizan-

do el algoritmo Random Forest, se determinó que la duración de la luz verde de los semáforos

era una variable clave. La clasificación mostró una precisión general del 96%, con una buena

capacidad para predecir todas las clases, especialmente los niveles bajos y altos de conges-

tión y emisiones de CO2. Se observó que un tiempo de semáforo mínimo de 15 segundos era

óptimo para reducir las emisiones y mejorar el flujo de tráfico.

En el Aprendizaje por Refuerzo con Q-Learning (QL), se configuró una función de recompensa
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basada en el tiempo de espera total. La configuración inicial incluyó una tasa de aprendizaje

(α) de 0.1 y un factor de descuento (γ) de 0.99. La simulación, que duró 86,400 segundos,

permitió evaluar el comportamiento del sistema bajo diferentes densidades vehiculares (baja,

media y alta). Los resultados mostraron una disminución en los tiempos de espera y emisiones

de CO2 en todos los escenarios, destacando la robustez del algoritmo.

El Aprendizaje Federado (FL) se implementó utilizando el Framework Flower, asegurando que

los datos permanecieran en los dispositivos locales y solo se compartieran los parámetros del

modelo. Se usó además el mecanismo de Privacidad Diferencial para añadir ruido en el envío

de parámetros. Aunque el rendimiento del modelo FL fue inferior al del aprendizaje por refuer-

zo, se logró una mayor protección de la privacidad. Con cuatro clientes y un servidor central,

cada cliente redujo los tiempos de espera y emisiones de CO2 durante la fase de entrena-

miento. En la fase de evaluación, el modelo general mantuvo la efectividad en la reducción de

tiempos de espera y emisiones.

Al comparar RL y FL, se observó que FL tenía un mayor consumo de recursos. FL presentó

picos de carga de CPU superiores al 60% y unmayor uso dememoria RAM (47.10%-47.50%).

En contraste, RL utilizó alrededor del 20% del CPU y tuvo un uso de memoria más estable

(38.6%-39.1%). Además, el tiempo de simulación de FL fue casi cuatro veces mayor que el

de RL, indicando que el aprendizaje federado es más lento y demandante en términos de

recursos.

Se demostró que es posible diseñar una arquitectura basada en técnicas de aprendizaje auto-

mático que mejora la privacidad de los usuarios en los ITS. Mediante la combinación de PCA,

aprendizaje supervisado, por refuerzo y federado, se logró no solo optimizar la eficiencia del

tráfico y reducir las emisiones de CO2, sino también proteger la privacidad de los datos de los

usuarios.

5.2. Recomendaciones

A continuación se presentan algunas recomendaciones que pueden ser consideradas al mo-

mento de mejorar la arquitectura propuesta.

Evaluar y experimentar con otros métodos de normalización, además de StandardScaler

y MinMaxScaler, para determinar si se puede mejorar aún más la varianza explicada por

las componentes principales.
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Considerar la optimización de los parámetros de simulación y aprendizaje en el marco

de Flower para reducir el consumo de recursos y el tiempo de simulación. Esto podría

incluir la experimentación con diferentes tasas de aprendizaje, factores de descuento, y

configuraciones de red.

Validar los resultados del estudio en entornos reales y con datos de tráfico en tiempo real

para evaluar la efectividad del modelo en condiciones prácticas.

Reforzar las medidas de seguridad de datos para proteger aún más la privacidad de los

usuarios durante la implementación del aprendizaje federado, considerando la encripta-

ción de los parámetros del modelo.
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A. Anexo

A.A. Algoritmo FedAvg

En este algoritmo el servidor inicializa el modelo global w0 (línea 2). Este modelo se utiliza

como punto de partida para las iteraciones de entrenamiento.

Para cada ronda t de entrenamiento, que va desde 1 hasta el número deseado de rondas (línea

3), se determina el número de clientes a seleccionar en esta ronda,m, que es el máximo entre

C ·K y 1, donde C es la fracción de clientes y K el número total de clientes (línea 4). Luego,

se selecciona un conjunto aleatorio de m clientes, St (línea 5).

Para cada cliente k en el conjunto St(línea 6), se ejecuta la función EV_ClientUpdate(k, w_t)

para actualizar su modelo local wt+1
k (línea 7). Es decir, cada cliente seleccionado actualiza su

modelo local utilizando su propio conjunto de datos.

Después de que todos los clientes seleccionados han actualizado sus modelos locales, el

servidor actualiza el modelo global wt+1 promediando los modelos locales ponderados por el

número de datos de cada cliente nk (línea 9).

La función EV_ClientUpdate(k, w) se ejecuta en el cliente k y actualiza el modelo local w (línea

12). Primero, el conjunto de datos local Pk se divide en minibatches de tamaño B (línea 13).

Luego, para cada epoch local i, desde 1 hasta E (línea 14), y para cada minibatch b en B

(línea 15), se actualiza el modelo local w utilizando el gradiente de la pérdida respecto a w en

el minibatch b, estableciendo una tasa de aprendizaje η (línea 16).

Una vez completadas las actualizaciones locales, la función devuelve el modelo local actua-

lizado w al servidor (línea 19), completando así la ronda de entrenamiento. Este proceso se

repite hasta cumplir con las rondas de entrenamiento establecidas.
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Algorithm 1 Los K clientes están indexados por k; B es el tamaño del minibatch local, E es
el número de episodios locales, y η es la tasa de aprendizaje [60].
1: Server executes:
2: initialize w0

3: for each round t = 1, 2, . . . do
4: m← máx(C ·K, 1)
5: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← EV_ClientUpdate(k,wt)
8: end for
9: wt+1 ←

∑K
k=1

nk
n · w

k
t+1

10: end for

11: function EV_ClientUpdate(k,w) ▷ Run on client k
12: B ← (split Pk into batches size B)
13: for each local epoch i from 1 to E do
14: for each batch b ∈ B do
15: w ← w − η∇l(w; b)
16: end for
17: end for
18: return w to server
19: end function
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A.B. Monitoreo de Convergencia

A.B.A. Densidad Baja

(a) Episodio 1 (b) Episodio 2

(c) Episodio 3

Figura A.1: Episodios Realizados para Monitorear Convergencia
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A.B.B. Densidad Media

(a) Episodio 1 (b) Episodio 2

(c) Episodio 3 (d) Episodio 4

(e) Episodio 5

Figura A.2: Episodios Realizados para Monitorear Convergencia
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A.B.C. Densidad Alta

(a) Episodio 1 (b) Episodio 2

(c) Episodio 3 (d) Episodio 4

(e) Episodio 5 (f) Episodio 6

(g) Episodio 7 (h) Episodio 8

Figura A.3: Episodios Realizados para Monitorear Convergencia
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A.C. Clientes Aprendizaje Federado

A.C.A. Entrenamiento

Figura A.4: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 1

Figura A.5: Resultados Obtenidos de Emisiones de CO2 en cada Entrenamiento Cliente 1
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Figura A.6: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 2

Figura A.7: Resultados Obtenidos de Emisiones de CO2 en cada Entrenamiento Cliente 2

Figura A.8: Resultados Obtenidos de Tiempo de Espera en cada Entrenamiento Cliente 3
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Figura A.9: Resultados Obtenidos de Emisiones de CO2 en cada Entrenamiento Cliente 3

A.C.B. Evaluación

Figura A.10: Evaluación de Tiempo de Espera del Modelo Recibido en el Cliente 1

Figura A.11: Evaluación de Emisiones de CO2 del Modelo Recibido en el Cliente 1
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Figura A.12: Evaluación de Tiempo de Espera del Modelo Recibido en el Cliente 2

Figura A.13: Evaluación de Emisiones de CO2 del Modelo Recibido en el Cliente 2

Figura A.14: Evaluación de Tiempo de Espera del Modelo Recibido en el Cliente 3

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay



100

Figura A.15: Evaluación de Emisiones de CO2 del Modelo Recibido en el Cliente 3

A.D. Comparación Aprendizaje por Refuerzo vs Aprendizaje Federado

Se presentan en las Figuras A.16 y A.17 el comportamiento del CPU y de la Memoria RAM a

lo largo del tiempo de simulación para los casos de Aprendizaje por Refuerzo y Aprendizaje

Federado.

Figura A.16: Porcentaje de Uso de CPU y de Memoria RAM con RL
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Figura A.17: Porcentaje de Uso de CPU y de Memoria RAM con FL

A.E. Repositorio

Los algoritmos desarrollados en el presente trabajo de titulación se encuentran disponibles en:

https://github.com/davidsgonza/Privacy-V2X

Esteban Ricardo Arcos Salamea - David Sebastián González Saguay
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