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Resumen

Este trabajo evalla la aplicacion de técnicas de aprendizaje profundo en el descu-
brimiento de codigos para canales unidireccionales, especificamente en un Binary
Symmetric Channel (BSC). El objetivo principal es crear cédigos comparables con las
técnicas de codificacion convencionales, enfrentando los retos que plantea la inclu-
sién de aprendizaje automatico en el proceso. Este documento revisa exhaustivamen-
te trabajos relacionados y el marco teodrico necesario para comprender el problema,
cubriendo redes neuronales y cddigos convencionales en canales binarios simétricos.
Luego, se proponen experimentos con redes neuronales profundas para crear mo-
delos de codificador y decodificador de canal, describiendo las arquitecturas, tasas
de codificacion y aspectos técnicos clave. Se emplean capas lineales, redes Gated
Recurrent Unit (GRU) y Long Short-Term Memory (LSTM). Los resultados experimen-
tales que se derivan de cada experimento permiten observar de manera gréfica el
desempefio de los cédigos descubiertos por los modelos neuronales frente a cddigos
de correccion de errores convencionales en términos de la medicion del Bit Error Rate
(BER) para determinados valores de q (probabilidad de error de bit del canal). Final-
mente, se discuten las limitaciones inherentes al canal binario simétrico y su impacto
en el desarrollo y los resultados de este trabajo. Ademas, se esbozaron lineas de
investigacion futuras que podrian contribuir a mejorar los resultados, incluyendo una

interpretacion de los cédigos descubiertos en el marco de la Teoria de la Codificacion.

Palabras clave del autor: aprendizaje profundo, codificacién, redes neuronales,

codigos convencionales, canal binario
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Abstract

This work evaluates the application of deep learning techniques in the discovery of co-
des for one-way channels, specifically in a BSC. The main objective is to create codes
comparable to conventional coding techniques, addressing the challenges posed by
the inclusion of machine learning in the process. This document provides an exhaus-
tive review of related work and the theoretical framework necessary to understand the
problem, covering neural networks and conventional codes in binary symmetric chan-
nels. Then, experiments with deep neural networks are proposed to create encoder
and decoder models for the channel, describing the architectures, coding rates, and
key technical aspects. Linear layers, GRU, and LSTM networks are employed. The ex-
perimental results derived from each experiment graphically show the performance of
the codes discovered by the neural models compared to conventional error-correcting
codes in terms of BER measurement for specific values of g (the bit error probability
of the channel). Finally, the inherent limitations of the binary symmetric channel and
their impact on the development and results of this work are discussed. Additionally,
future research directions that could help improve the results are outlined, including an

interpretation of the discovered codes within the framework of Coding Theory.

Author Keywords: deep learning, coding, neural networks, conventional codes,

binary channel
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Capitulo 1 Introduccion

En este capitulo se describe de manera general, el enfoque de este trabajo de titu-
lacion, principalmente motivado por el reciente impulso que ha tomado la IA en di-
ferentes aplicaciones, y particularmente en el campo de la codificacion de canal. La
Seccion 1.1, aborda la identificacién del problema, en la que se describe el contexto
en el cual se centra el desarrollo del proyecto y se enfatiza la necesidad de explorar
nuevas técnicas de codificacion. Seguidamente, la Seccion 1.2 describe el enfoque
propuesto para abordar el problema de la codificacién de canal. En la Seccion 1.3,
se indica el alcance del trabajo de titulacion en términos de lo que se espera obtener
como resultado de la implementacién de nuestra propuesta. Finalmente, la Seccién
1.4 presenta tanto el objetivo general como los objetivos especificos propuestos. Este
capitulo brinda una vision general del trabajo que se ha desarrollado y se expone la
relevancia que tiene en el contexto de los sistemas de comunicacién y de la teoria de

la codificacion de manera particular.

1.1. Identificacion del problema

El constante crecimiento del trafico de informacién en las redes de comunicacién ac-
tuales debido principalmente a la masificacion del uso y dependencia de los servicios
de telecomunicaciones en la poblacion, ha motivado a diferentes organizaciones, em-
presas y especialmente a la academia, a buscar nuevas formas eficientes y confiables
de transmisién de informacién. Este incremento del trafico ha sido acelerado en afnos
recientes debido al nacimiento de nuevas tecnologias de telefonia celular como 5G,
o del Internet of Things (loT), etc. En las que la cantidad de informacién transmitida
exige sistemas mas robustos y capaces de transmitir grandes volimenes de datos
en tiempo real. Por otro lado, el principal desafio en la transmisién de informacion
a través de distintos canales se centra en la deteccién y correcciéon de errores, que
se ha constituido como un area de intensa investigacién durante varias décadas. En
1948, Shannon [12] demostr6 que al codificar la informacién de manera adecuada, es
posible reducir la probabilidad de errores en la transmisién producidos por interferen-
cias o ruido en el canal de comunicacion, incluso hasta llegar asintéticamente a cero

[13]. Desde la publicacién de este articulo de Shannon, se han llevado a cabo esfuer-
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zos mayusculos para la generacion de sistemas de codificacion y decodificacion cada
vez mas eficientes. Actualmente existe un conjunto de cédigos ya implementados en
distintas tecnologias y generaciones de comunicacién tanto méviles como fijas es-
tos incluyendo Turbo Cddigos [14] (3G y 4G), Low-Density Parity-Check (LDPC) [15]
4G, codigos convolucionales (2G y 3G) [16], codigos de Hamming (2G) [17], cddigos
polares (5G NR) [18], etc.

Todos estos cddigos se engloban dentro de la categoria de cédigos Forward Error Co-
rrection (FEC). Al usar cddigos FEC, el elemento encargado de transformar el men-
saje original a ser transmitido en una palabra codificada y capaz de incrementar la
robustez de la integridad de la informacion enviada recibe el nombre de codificador
de canal. Asi el equipo transmisor toma un mensaje usualmente representado como
un namero binario de m bits y agrega redundancia (mediante la inclusiéon de otros
bits) con el fin de producir una palabra codificada. Esta palabra puede enviarse por el
canal para que al ser recibida en el destino pueda decodificarse correctamente, iden-
tificando el mensaje enviado originalmente. Convencionalmente, el rendimiento de un
sistema de comunicaciones se mide en términos de una métrica como la tasa de error
por bit transmitido, la cual se espera reducir explotando la redundancia introducida por
el codificador. El efecto combinado de incorporar un decodificador y codificador es el
de reducir las indeseables consecuencias del ruido en el canal sobre la informacion
transmitida, que se entiende como interferencias de diversas indoles. El uso de FEC
se fundamenta en el Teorema de Codificacién de Canal propuesto por Shannon, y
puede resumirse en un uso controlado de redundancia en la palabra de cédigo trans-
mitida, tanto para detectar errores como para corregir los errores causados durante la
transmision por un canal ruidoso. Sin importar si el resultado de la decodificacidén es
0 no correcto, no se realiza ningun procesamiento adicional en el receptor [19] a este

nivel de comunicacién de capa fisica.

Actualmente, se han desarrollado multiples codigos para diferentes modelos de cana-
les, sin embargo, algunos experimentan en la practica, el problema de requerir exten-
sas tablas de busqueda, lo que dificulta su implementacién debido a la pesada carga
computacional que implica la exploracion de dichas tablas. Desde la perspectiva de

ingenieria el problema se reduce a la busqueda de codigos que permitan codificacion
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y decodificacién en una cantidad razonable de tiempo (complejidad computacional) y
que al mismo tiempo, permitan obtener tasas de error promedio por bit por debajo de
ciertos limites de tolerancia. En particular, el factor de tiempo de procesamiento es el
principal obstaculo en la meta de alcanzar los limites impuestos por la teoria de Shan-
non, ya que un cédigo deberia tener palabras de longitud infinita. No obstante, hoy en
dia existen cddigos muy eficientes para diversos tipos de canales ruidosos en general.
Existen codigos que pueden lograr una probabilidad de error muy baja, siempre que la
cantidad de informacién transmitida (denotada como tasa de transmisién o rate) esté
por debajo de la maxima tasa de transmision establecida por la capacidad del canal.
Asi mismo existen codigos que solamente pueden operar satisfactoriamente con ta-
sas de transmision de cero. Por ultimo, existen los cddigos practicos que son cédigos
que pueden codificar y decodificar eficientemente en tiempo y espacio polinémicos
en funcion de la longitud del bloque (que hace referencia al tamano de las palabras

generadas por el elemento codificador) [20].

Para el caso de canales cuyo ruido es caracterizado por una variable aleatoria con
una distribucién Gaussiana y con la caracteristica de ser aditivo a la sefal transmitida
(Additive White Gaussian Noise), se han desarrollado multiples cédigos que actual-
mente se utilizan en la practica en los modernos sistemas de comunicaciones. En
[20] encontramos un par de cédigos muy populares, empezando por los cédigos con-
volucionales estandar, los cuales se usan ampliamente en comunicaciones satélites,
adicionalmente se menciona los cédigos convolucionales concatenados, que se ba-
san en el uso de los codigos convolucionales estdndar como cédigo interno en una
estructura concatenada donde el cédigo externo es un codigo Reed-Solomon [20] con
simbolos de ocho bits, presentando un enfoque mas robusto y ampliamente utilizado

en entornos de comunicacién como el espacio profundo.

Otra familia de codigos muy utilizados corresponde a los Cédigos Turbo o Turboco-
des, los cuales fueron introducidos en 1993 en [20]. Se fundamentan en el uso de dos
codificadores basados en codigos convolucionales alimentados por los bits que com-
ponen el mensaje original a ser transmitido. Estos codificadores transmiten los bits
de paridad de cada cdédigo constituyente. La decodificacién de estos codigos impli-

ca un proceso iterativo de decodificacion de cada uno de los cédigos constituyentes.
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En este punto, de manera analoga al transmisor, se usan dos decodificadores, con la

diferencia de que, los decodificadores funcionan en serie.

De manera general, cada codigo desarrollado presenta ventajas y desventajas, prin-
cipalmente asociadas al tipo 0 modelo de canal sobre el cual se aplican, puesto que
éste impone condiciones fisicas y restricciones inquebrantables al codificador. Como
se ha mencionado, existe una gran cantidad de cddigos que pueden ser usados con
el objetivo de transmitir informacidén con una baja tasa de errores, sin embargo, la res-
puesta definitiva sobre la optimalidad de los cédigos usados para diferentes canales
continla como un trabajo en curso. Hoy en dia, el rapido crecimiento de las redes de
comunicaciones y del numero de usuarios y dispositivos que conforman nuestro mo-
do de vida presente implica transmitir bastas cantidades de informacién de manera
confiable. Dicha confiabilidad se relaciona con una transmisién robusta ante la ocu-
rrencia de errores, es decir, que posibilite una recuperacion de la informacién recibida
de manera incorrecta, y en lo posible contribuya a disminuir la congestion de las redes
con mensajes de repeticidn. En ese contexto se necesita una constante busqueda de
nuevos codigos o del mejoramiento de los cédigos actuales de correccidn de errores
con el objetivo de que estos vayan a la par del ritmo de crecimiento de la demanda de

trafico de informacién actual.

Cada cddigo tiene diferentes caracteristicas y rendimiento. Un analisis interesante se
presenta en [21], donde se realiza una comparativa entre cédigos convolucionales,
Turbo cédigos, LDPC y cédigos Polares, los cuales se han utilizado ampliamente en
las tecnologias celulares més recientes. Para esta comparacién se ha utilizado un es-
guema de modulacion de desplazamiento de fase binaria o Binary Phase Shift Keying
(BPSK) sobre un canal Additive White Gaussian Noise (AWGN). Un hecho importante
es que el uso de codigos mejora sustancialmente las tasas de error por bit transmitido
en comparacion con una transmision de datos sin codificacién. En el estudio realizado
en [21], se observa que los codigos simulados se comportan de manera similar para
diferentes SNR, con la unica excepcion de los cédigos convolucionales. A pesar de
que estos ultimos tienen un BER menor que los datos sin codificacién, su desempefio
es peor en comparacion con el resto de los cédigos. Ademas, todos los cédigos anali-

zados, exceptuando los cédigos convolucionales, muestran una respuesta muy similar
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cuando se incrementa la tasa de informacion y el tamafio del bloque de codificacion

(rate).

En [22] se presenta una comparacidon centrada en codigos Polares y Turbo cddigos
donde se destaca la generacion de codigos polares como un método nuevo de codifi-
cacion para la fecha de la publicacion. En esta comparacion se constata lo mostrado
en [21], puesto que estos dos codigos se comportan de manera muy similar ante un
determinado nivel de SNR, sin embargo, podemos notar que a medida que se aumen-
ta el tamafo de bloque, los codigos polares presentan un mejor rendimiento que los

Turbo codigos.

La construccion de cada codigo esta usualmente relacionada al modelo de canal so-
bre el cual va a utilizarse, dado que en muchas ocasiones, su operacion se ve res-
tringida por las caracteristicas fisicas del canal. No obstante, una practica comun es
evaluar su operacién en diferentes modelos. Asi, tal como el caso de canales AWGN,
estos cddigos también han sido evaluados en canales discretos como BSC y Binary
Erasure Channel (BEC). Segun se menciona en [22], los turbo cédigos experimentan
dificultades cuando se usan en canales BSC y BEC debido a que son canales de
“salida fuerte” lo que hace que la comunicacién entre decodificadores no sea confia-
ble y por lo tanto existan errores transmitidos entre decodificadores. A pesar de esto,
podemos observar como para niveles indicados de probabilidad de error, los Turbo
cbdigos funcionan con un nivel de BER bastante bueno en estos canales. El uso de

estos cddigos en canales binarios se revisa con mayor profundidad en [23] y [24].

Si bien estos codigos presentan un rendimiento aceptable, la busqueda de nuevos
codigos sigue abierta, y con el fin de obtener mejoras tanto en la carga computacional

de su operacion como en la obtencién de mejores tasas de error.

1.2. Propuesta y Justificacion

La constante problematica que representa la necesidad de tasas de transmisién cada
vez mas altas y la limitaciéon del ingenio humano para desarrollar cédigos practicos
de correccién de errores capaces de adaptarse y asegurar la transmision de datos,

induce la investigacion y creacidén de nuevos métodos de codificacién capaces de sa-
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tisfacer los requerimientos de las nuevas generaciones. En este proyecto, se propone
la aplicacién de técnicas de Aprendizaje Profundo (Deep Learning) para abordar esta
problematica y generar cédigos cuyos resultados puedan compararse con algunos de
los codigos convencionales mencionados en la seccion anterior. Esta estrategia ha
sido exitosamente probada en canales AWGN con retroalimentacion, lo que se puede

apreciar en un conjunto de investigaciones relacionadas a este tema tal como [7].

Actualmente, existe un conjunto de modelos y arquitecturas de aprendizaje que se
pueden explorar en diferentes clases de canales de comunicacion, sin embargo, esta
propuesta se enfoca en canales binarios. La eleccion de este tipo de canales se fun-
damenta en su enfoque didactico e inherente practicidad, como la comunicacién en
sistemas de almacenamiento, tales como unidades de disco duro 0 memorias digita-
les y ciertos sistemas de telecomunicaciones en general que pueden ser modelados

mediante estos canales.

Asi mismo, dirigimos nuestro enfoque a canales binarios puesto que hemos notado
que en mayor parte este tipo de técnicas han sido empleadas en canales AWGN, los
cuales, también son muy importantes y con multiples aplicaciones practicas. Sin em-
bargo, estos canales no abarcan ni representan el universo de medios de comunica-
cidn existentes, por lo que se desea alumbrar zonas aun no expuestas centrdndonos
en canales que tienen un funcionamiento tanto fisico como matematico diferente a
los canales AWGN. Como se mencion6 anteriormente, los canales binarios requieren
que las senales presentes en el canal adopten unicamente dos valores, en contraste
con un AWGN en el que las sefales a ser transmitidas corresponden al conjunto de

numeros reales.

Finalmente, este trabajo también nace con la intencién de explorar el area de inves-
tigacion relacionada con el descubrimiento de cédigos para la transmisién de infor-
macioén utilizando IA. El uso de técnicas de Deep Learning en la busqueda de estos
cbdigos abre nuevas oportunidades y sugiere un nuevo horizonte en el que la IA sirva
de soporte para el desarrollo de cédigos. Se espera que el enfoque de este traba-
jo de titulacion en esta area, contribuya en el mejoramiento de las caracteristicas de

transmision de informacién en futuras generaciones de comunicacion.
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1.3. Alcance

El desarrollo experimental de este trabajo involucra un camino de investigacion, estu-
dio y aplicacion de diferentes arquitecturas y técnicas de aprendizaje profundo para la
creacion de codificadores y decodificadores. Asi mismo, involucra el uso de métodos

practicos y de optimizacion para su implementacion sobre canales binarios.

En general, el proyecto se puede seccionar en cuatro etapas, en primer lugar estudiar
el modelo de canal de comunicacién. En particular, se utiliza un canal simétrico binario
BSC, con la meta de explorar un modelo de canal con y sin retroalimentacion ruidosa
(y perfecta), es decir, que en la arquitectura experimental disenada, el transmisor sea
capaz de recibir la informacién que obtiene el receptor luego de atravesar el canal, es-
to debido a que, la informacion de retroalimentacion puede resultar extremadamente
util para sistemas de aprendizaje basados en redes neuronales dentro de la fase de

entrenamiento, como ya se ha comprobado para un AWGN en [7].

En la segunda etapa, se llevara a cabo la implementacién de un codificador y un deco-
dificador mediante sistemas basados en redes neuronales y aprendizaje supervisado,
donde se produce un entrenamiento simultaneo del codificador y el decodificador. Es-
te desarrollo serd implementado en lenguaje Python, debido a la sencillez del idioma
con respecto a la sintaxis y estructuras para el desarrollo de programacién cientifica,
ademas cuenta con multiples librerias disponibles para la creacion y manejo de redes
neuronales denominada Pytorch, la cuéal simplifica en gran medida la adaptacién de
la informacidn para que sea procesada por un procesador potente Graphics Proces-
sing Unit (GPU). Este ultimo detalle es muy importante ya que en algunos estudios
se muestra que la ejecucion de la fase de entrenamiento empleando una GPU pro-
duce mejores resultados puesto que estos dispositivos estan disefiados para operar
con matrices de gran tamafo y que poseen gran cantidad de informacion, tal como
se realiza en este proyecto. Si la arquitectura experimental tiene retroalimentacion se

presenta un escenario como el de la Figura 1.1.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo



UCUENCA 25

X, = f(m,z(n—1)) mo=
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Informacion » Codificador » »  Decodificador > Destino

v
Decodificador de i BSC perfecto 6 Y Codificador de
retroalimentacion ruidoso retroalimentacion

u=g,(y)

Figura 1.1: Esquema del modelo de entrenamiento y simulacion planteado.

Para el proceso de entrenamiento, se creara un conjunto de datos representando una
fuente de informacién que contendra una cantidad especifica de mensajes para la
transmision, dicha fuente serd generada de manera aleatoria, para simular una co-
municacidén convencional entre un transmisor y receptor a través de un BSC. De este
conjunto, una parte se utilizara para el entrenamiento simultaneo de los codificadores
y decodificadores, mientras que el resto se reservara para las pruebas de funciona-

miento, respectivamente en los conjuntos de validacién y pruebas.

De acuerdo con la Figura 1.1 (en la que el canal de retroalimentacion puede omitir-
se para el caso sin feedback) cada mensaje ingresa al codificador, cuya arquitectura
esta basada en una red neuronal, dicha arquitectura sera seleccionada luego de una
etapa de prueba y error hasta alcanzar el mejor modelo tanto para el codificador co-
mo para el decodificador. Los modelos de redes neuronales en los que se basan los
disenos del codificador y decodificador inician con distintos parametros (o0 pesos que
caracterizan las conexiones entre los elementos neuronales de procesamiento) con
valores asignados de manera aleatoria. El codificador recibe como entrada el men-
saje a transmitir y en caso de disponer de retroalimentacion, cuenta adicionalmente
con otras entradas destinadas a las sefales recibidas a través del canal de retroali-
mentacién. La salida del codificador corresponde a una nueva palabra codificada en
funcién del mensaje a enviar. Una vez que el codificador ha generado la palabra a
transmitir, ésta se introduce al BSC para ser recibida por el decodificador, el cual pro-
duce una salida que, en caso de una decodificacion correcta corresponde al mensaje

transmitido originalmente.

Este proyecto ha optado por el uso de aprendizaje supervisado, el mismo que per-
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mite que los mensajes decodificados puedan compararse con los originales, de tal
modo que el resultado de esta comparacion se utilice para la correccidon progresiva
de los pesos del modelo neuronal tanto del decodificador como del codificador para
la préxima iteracion. De forma simultanea, y ante la presencia de un enlace de retro-
alimentacion, se sigue un proceso similar, y la informacién decodificada se convierte
en el parametro de entrada al codificador para ajustar los pesos nuevamente. Este
ciclo se repite de manera iterativa hasta que se agoten los mensajes del conjunto
de entrenamiento. Se ha previsto que los procesos experimentales se ejecuten sobre
la plataforma Google Colab ', debido al requerimiento de una buena capacidad de
procesamiento para el entrenamiento del codificador y decodificador, asi como de las

distintas simulaciones que se deben llevar a cabo.

Tras la culminacién del entrenamiento, el modelo obtenido se somete a un nuevo con-
junto de datos de prueba, con el objetivo de realizar una comparacién entre los resul-
tados del BER (utilizado como una métrica practica de comparacidn) que se consigue
empleando el método propuesto basado en aprendizaje profundo, frente a cédigos
convencionales como los Turbo cédigos, cddigos convolucionales, entre otros. Con
este fin, en esta etapa se ejecuta la evaluacion de estos cddigos convencionales en

condiciones similares de tasa de bits y de modelo de canal.

1.4. Objetivos

1.4.1. Objetivo general

Evaluar la aplicacion de técnicas de Deep Learning para el descubrimiento de cddigos

en canales de una sola via.

'En [25] indican que Google Colab es una herramienta disefiada por Google, que tiene el objetivo de
otorgar acceso a GPU y TPU a cualquier persona, en cualquier lugar del mundo. Es una herramienta
cuyas funciones se centran especificamente en el desarrollo de aplicaciones de analisis de datos e
IA. Puede considerarse como una version avanzada de Jupyter Notebook en cuanto a su interfaz y
funcionalidad.
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1.4.2. Objetivos especificos

El presente trabajo de titulacion posee los siguientes objetivos especificos.

» Estudiar diferentes arquitecturas y técnicas de aprendizaje profundo (Deep Lear-
ning — DL) para la implementacién de codificadores y decodificadores en canales

de una sola via.
= Implementar un sistema de aprendizaje (DL) para el descubrimiento de cédigos.

= Comparar el rendimiento de los cédigos descubiertos mediante DL con respecto

a codigos convencionales.
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Capitulo 2 Marco Teédrico

2.1. Introduccion

En este capitulo, se presentan principios fundamentales que han sido revisados para
el desarrollo e implementacién del trabajo planteado. Esta revisiéon se centra en tres
temas fundamentales que son: el teorema general de la codificacion de canal ruidoso,
técnicas de codificacidn convencionales y técnicas de codificacién basada en redes

neuronales.

Con este fin se presenta una revision del estado del arte, en el que se estudia dife-
rentes articulos y trabajos relacionados que contribuyen al desarrollo y planteamiento
de la metodologia de propuesta en este trabajo. De igual forma, los resultados expe-
rimentales de ciertos articulos se incluyen con la finalidad de comparar y validar la

informacion que se obtengan en el transcurso de la investigacion.

Por ultimo, también se desarrolla una revision sobre las herramientas empleadas para
la experimentacion de este trabajo, con el objetivo de explicar el uso correcto de los
recursos para formar una estructura adecuada de escenarios experimentales en la

metodologia.

2.2. Teorema de la codificacion de canal ruidoso.

Uno de los fundamentos mas importantes de la teoria que sustenta los sistemas de
comunicaciones modernos corresponde al Teorema de la Codificacién de Canal ruido-
so (Noisy-Channel Coding Theorem), o también conocido como el limite de Shannon
[12]. Este teorema describe el proceso matematico de la transmision de informacién
y establece que es posible transmitir informacién sobre un canal ruidoso con una
probabilidad de error tendiente a cero, siempre que la tasa de transmisién de dicha in-
formacion esté por debajo de cierto limite, al que Shannon denominé la capacidad del
canal, y la longitud de las palabras codificadas tienda al infinito. Por su parte Kolmo-
gorov [26], presentd una base l6gica para explicar la Teoria de la informacién desde
la perspectiva de la complejidad computacional y explicar los conceptos de Entropia

e Informacién Mutua.
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Un canal es un medio fisico mediante el cual se transmite informacién. Generalmente,
debido a sus condiciones fisicas, las sefiales transmitidas sobre un canal experimen-
tan diferentes distorsiones y cambios, que convencionalmente, se entienden como
ruido que el canal afnade a las sefales. Generalmente el modelado de los canales
se realiza siguiendo un modelo probabilistico que, en medida de lo posible, imita-
ra el comportamiento real o esperado del canal [27]. Este modelado por lo general
corresponde a una caracterizacion del ruido afadido por el canal como una varia-
ble aleatoria con una determinada distribucion. Es asi que surge la pregunta ; Como
es posible enviar informacion y que arribe correctamente a su destino?. Para esta
pregunta existen dos respuestas ampliamente aceptadas: la primera corresponde al
esquema basado en el uso de Automatic Repeat reQuest (ARQ) de aquellos mensa-
jes que fueron recibidos erroneamente, mientras que la segunda, corresponde a uso

de técnicas Forward Error Correction (FEC).

El primer esquema consiste en detectar si la palabra recibida contiene uno o mas erro-
res con el objetivo de solicitar al transmisor la repeticién de los mensajes erréneos.
En contraste, los esquemas de correccién de errores hacia adelante se fundamentan
en generar un codigo lo suficientemente robusto y que contenga las caracteristicas
que le permitan la correccion de errores a través de un algoritmo de decodificacion
[27]. Estas dos soluciones pueden ser usadas de forma conjunta en esquemas hibri-
dos FEC/ARQ, puesto que se puede generar codigos capaces de controlar y corregir
un cierto numero de errores. Sin embargo, en caso de que el decodificador no logre

corregir los errores generados por el canal, se solicitara una retransmision.

Los esquemas de correccién de errores hacia adelante se fundamentan en el uso de
codificadores y decodificadores de canal. Un codificador se alimenta de los mensajes
de entrada (usualmente representados en cédigo binario plano de m bits) y los trans-
forman en una secuencia distinta y de mayor longitud, en la que se cuenta con n bits
donde se incluye informacion adicional que le da robustez, y que finalmente es explo-
tada por el decodificador para estimar los mensajes transmitidos con mayor precision
dados los efectos adversos introducidos por el canal en forma de ruido, distorsién o

interferencia.

Un factor muy importante al momento de construir o utilizar un codificador es la tasa

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo



UCUENCA 30

de cddigo (denotado como rate), y corresponde a la relacion entre el numero de bits
que ingresan al codificador y el numero de bits ya codificados que salen del mismo.
Teniendo en cuenta el hecho de que el trabajo del codificador es agregar redundancia
al mensaje original, el mensaje codificado tiene una extensién mayor al original y por

esto la tasa de codigo se mantendra siempre entre O y 1.

Este trabajo se centra en la exploracion y descubrimiento de nuevos codigos sobre un
modelo de canal Binary Symmetric Channel (BSC) 2.2. Este es el modelo mas basico
de un canal binario sin memoria. En un BSC, el transmisor envia los bits 0 y 1. En
este modelo de canal existe una probabilidad ¢ de que el bit enviado se "voltee", es
decir, que el receptor obtenga lo opuesto a lo enviado (un cero transmitido es recibido
COmMO un uno y viceversa) y una probabilidad p = 1 — ¢ de que el bit enviado sea el
mismo que se ha recibido. En caso de que p > ¢ la probabilidad de que el receptor
reciba un bloque sin errores es mayor a la probabilidad de recibir un bloque con un
solo error y asi mismo la probabilidad de recibir una secuencia con un error es mayor

a la probabilidad de recibir un bloque con 2 0 méas errores [28].

Figura 2.1: BSC con probabilidad de error ¢

La Figura 2.1 muestra un BSC cuya entrada estd denotada por X y su salida por Y.
En [27] se presentan los criterios de disefio y medidas de desempeniio de los sistemas
de codificacién para un canal BSC, donde se indica claramente que las probabilidades
de transicion del canal, denotadas por P(y;|z;) para el i-ésimo uso del canal, estan
dadas por:

P(y; = 1|z; =0) = P(y; =0|z; = 1) = g, (2.1)

Plyi=1lz; =1) = P(y; =0|lz; =0) = 1 — ¢ (2.2)

En estas ecuaciones ¢ es la probabilidad de cruce del canal (channel flipping proba-

bility). Como consecuencia de la caracteristica de falta de memoria del canal BSC
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tenemos que:

P(ylx) = Hp(yi|$z’)> (2.3)
donde y corresponde a [y, s, y3, ...| Y x €s igual a [z, o, 3, ...].

Para el disefio de un decodificador se considera el criterio de minimizar la probabilidad
de fallo al decodificar la palabra de codigo recibida, lo que se traduce en maximizar la
probabilidad a posteriori para el canal, de esa forma la decision 6ptima para un canal
BSC esta dada por:

Ply[x)P(x)

Ply) (2.4)

0 = argmax P(y|x) = arg max

donde arg méx, f(v) es el argumento v que maximiza la funcion f(v). De esta manera,

se decodifica el mensaje v que maximiza la probabilidad a posteriori.

De forma frecuente, las palabras que ingresan al canal tienen la misma probabilidad
de ocurrir, es por esto que P(x) es independiente de x y de v. Debido a que P(y)
también es independiente de v, se puede reemplazar la regla de maxima probabilidad

a posteriori por la regla de maxima verosimilitud [27].
v = argmax P(y|x). (2.5)

Utilizando la monotonia de la funcién logaritmica y (2.3) se tiene que para el canal

binario simétrico:

0 = argmdx log H P(yi|z;) (2.6)
= arg mix Z log P(y;|x;) (2.7)
= argmax[dp (y, v) log(q) + (n — du(y, ) log(1 — g)] (2.8)
— arg méx{dn(y, z) log (%q) +nlog(l— q)] (2.9)

Y dado que log [l%q] < 0y nlog(l — ¢) no son funciones de v, se tiene que:

v = argmindy(y, x) (2.10)
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donde n es la longitud de la palabra de cddigo y dy corresponde a la distancia de

Hamming entre las secuencias x y y.

De esta forma se entiende que el criterio para el disefio de un decodificador funcional
al canal BSC corresponde al de la regla de maxima verosimilitud, es decir que el de-
codificador escoja una palabra de codigo lo mas cercana posible a la salida del canal
y en términos de distancia de Hamming. Asi mismo se comprende la necesidad de
disenar codigos que maximicen la distancia de Hamming minima entre dos palabras
de caédigo. En la préactica, el problema de disefiar nuevos codigos radica en que hallar
las palabras del cédigo que minimicen la distancia de Hamming es un proceso su-
mamente complejo excepto para cddigos muy simples como los cddigos de Hamming
[27].

Para medir el rendimiento de los cédigos disefiados se utiliza la probabilidad de error
de bit P,, que corresponde a la probabilidad de que la decision ejecutada por el deco-

dificador para el bit i-ésimo «; sea distinta al bit de entrada al codificador u;.

Comunmente a P, también se le conoce como Bit Error Rate (BER) o tasa de error de
bit.

Adicionalmente, en el contexto de la codificacion de canal, es fundamental referirse
al concepto de su capacidad. Desde el afio 1948 en el que Claude Shannon publico
su articulo sobre la teoria de la informacion [12] hasta el inicio de la década de los
90 era una idea generalizada que la Unica forma de operar cerca de la capacidad de
los canales era con el uso de cbdigos extensos y con una velocidad de codificacion
y decodificacion tan lenta que se volvian impracticos. Sin embargo, como se detalla
en “Elements of Information Theory” de Thomas Cover [29], el desarrollo de Turbo
codigos en la década de 1990 [14] demostré que se puede alcanzar un rendimiento
cercano a la capacidad del canal en la practica. La capacidad de un BSC esta dada
por [27]:

Cpsc =1— H(q), (2.12)

donde H(q) representa la funcidén de entropia binaria para una probabilidad q.
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2.3. Técnicas de codificacion convencionales

Desde el nacimiento de la teoria de la informacidn gracias al trabajo del matematico
e ingeniero estadounidense Claude Shannon [12], se han buscado de forma exhaus-
tiva codigos de canal eficientes que permitan transmitir informacion lo mas cercano
posible a la capacidad del canal en cuestion. Los esfuerzos en el desarrollo de cé-
digos practicos capaces de acercarse o incluso alcanzar los limites de comunicacion
teoricos, se suman al trabajo de Shannon y de multiples investigadores entre los que
se destacan Robert Gallager [30], Daniel Costello [31], Robert McEliece [32], Andrey
Kolmogorov [26], Tomas Cover [29]. Esto se consigue al generar codificadores que
anadan la justa y necesaria cantidad de redundancia al cédigo y decodificadores que
exploten de la mejor forma posible dicha redundancia, de esa forma minimizando la
cantidad de errores en la transmisién tanto como sea posible. El resultado del esfuer-
zo de varios matematicos e ingenieros tuvo sus respectivos frutos con la creacion de
distintos cédigos, entre los mas relevantes, se puede mencionar a los cédigos con-
volucionales, de Hamming, Turbo cédigos, cddigos polares, Low-Density Parity-Check
(LDPC), etc. Estos cddigos facilitaron una amplia evolucion en la transmision de in-
formacién ya que disminuyeron las tasas de errores de manera significativa en las

comunicaciones en comparacion a las transmisiones de datos sin codificar.

Evidentemente en la practica, la forma de determinar el desemperio de los distintos
codigos descubiertos y desarrollados asi como sus codificadores y decodificadores
es hacer pruebas respectivas en canales ya sean estos simulados o reales. Al hacer
pruebas en canales simulados se tiene una astronémica ventaja y es que es posi-
ble controlar practicamente la totalidad de las variables lo que permite determinar de
mejor forma el desempeno de los cédigos que se prueban. En [1] se presenta una
evaluacién sobre el uso de cddigos de Hamming en un canal caracterizado por ruido
aditivo Gaussiano Additive White Gaussian Noise (AWGN).

En particular, la légica detras de los cédigos de Hamming segun lo visto en [33] es
tomar una matriz cuadrada y que su dimension sea potencia de dos, en [34] se usa
una matriz cuadrada de dimensién igual a cuatro, es decir de 16 valores. Esta matriz

es utilizada para transmitir 11 bits ya que el resto de posiciones seran rellenadas con
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bits de paridad. La matriz incluyendo unicamente los bits de transmision se muestra

en la Figura 2.2:

1
0 1 2 3
0| 1 0
4 5 6 7
1 0 | 1
8l 9 10 1
0 | 1 0O
12l 13 14l 15

Figura 2.2: Matriz de Hamming con bits de informacion.

La matriz se divide en 4 partes cada una de ellas contempla una porcidén especifica

tal como se puede ver en la Figura 2.3.

Porcion 1 Porcion 2

Porcién 3 Porcion 4

Figura 2.3: Porciones de la matriz para bits de paridad.

Tal como se puede ver en 2.3, las porciones se encuentran divididas de la siguiente

forma:
= Porcién 1 : Columnas pares
» Porcién 2 : Columnas del fondo (izquierda)
= Porcién 3 : Filas pares

m Porcién 4 : Filas del fondo
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La légica para incorporar los bits de paridad dentro de sus respectivas posiciones es
la siguiente: en cada porcién se cuenta la cantidad de bits activos, si estos son pares,
el bit de paridad sera 0, por otro lado, si estos son impares, el bit de paridad sera 1,
manteniendo asi la paridad de bits activos en cada porcidn. Este proceso resulta en

el contenido de la Figura 2.4.

1
0 1 2 3
L 0 1 0
Porcién 1 4 5 6 7
1 0 1
8 9 10 11
0 1 0 0
Porcién 2 12 13 14 15
Porcién 3 Porcion 4

Figura 2.4: Matriz de codificada con bits de paridad de Hamming.

Para poder detectar un error basta con tomar una a una las porciones y revisar si la
cantidad de bits en 1 corresponde al bit de paridad. En caso de no ser asi se podra con
cuatro sencillas preguntas rastrear la posicion del error, las “preguntas” consistirian
en determinar si en cada porcion de la matriz el bit de paridad corresponde a su
namero de bits en 1. Si tomamos las respuestas de tal forma que “SI” sea equivalente
a 1y “NO” sea equivalente a 0 entonces al colocar las cuatro respuestas juntas se
nos devuelve (en binario) la posicidén en la que se gener6 el error, haciendo asi facil

corregirlo. Esto se puede ver de mejor forma en la Figura 2.5.
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1
0 1 2 3
O 110
R:S1->1 4 5 6 7
1T 10 |1
8 9 10 11
O 1T[0]O0

R:NO->0 12 13 14 15
101
Posicion del T ]
error en
binario
R:SI->1 R:NO->0

Figura 2.5: Matriz de Hamming con error detectado.

Como se muestra en la Figura 2.5, se ha encontrado un error, y detectado su ubi-
cacion gracias a los bits de paridad, por lo que es posible corregirlo. El punto débil
de los cddigos de Hamming con bit de paridad es el hecho de que pueden corregir

Unicamente un solo error.

En [1] se ha propuesto un método para analizar la probabilidad de error de bit de
un cédigo de Hamming cuando los simbolos tienen distintos niveles de energia, pero
ademas se ha simulado sobre un canal AWGN de modo que se pueda visualizar la
probabilidad de error al simular las condiciones de un canal. La Figura 2.6 compara
el BER al usar datos crudos y datos codificados con Hamming (7,4). Esta notacion
indica que se envian 7 bits de los cuales Unicamente 4 son bits de informacion, por lo

que los 3 bits restantes corresponden a bits de codificacién.
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simulated Pb

g EL| e analytical Pb using (7,4) Hamming code

T

...... Pb without Hamming coding

T

10'5 T T I I I I
5 6

E, /N, (dB)

o
=
no
w
~

Figura 2.6: Probabilidad de error analitica y simulada con cddigos Hamming [1], ©
2005 IEEE.

Claramente en la Figura 2.6 se puede ver que la diferencia entre usar codigos de
Hamming y enviar datos “crudos” o sin codificar es bastante grande, puesto que el
BER se reduce significativamente, como se puede apreciar para un Signal-to-Noise
Rati (SNR) (E,/N0) de 10 dB, donde se observa una diferencia de varios ordenes de

magnitud en el BER.

Siguiendo esta metodologia, es posible observar el desempefio de otros cddigos, co-

mo son los cédigos polares y los turbo cédigos.

Los turbo cédigos, como se documenta en [3], corresponden a un tipo de cédigos que
se construyen uniendo dos codificadores convolucionales mediante un intercalador de
bits. El intercalador de bits reorganiza la secuencia de bits antes de que estos pasen
al segundo codificador para asi aumentar la dispersién de los errores y mejorar la
capacidad de correccion. Generalmente, los codificadores turbo tienen una tasa de
bit (rate) de 1/3. Para que esto sea posible, se usan dos codificadores convoluciona-
les con tasa de 1/2 en paralelo. La decodificacién de estos cédigos utiliza de forma
iterativa el Bahl, Cocke, Jelinek, and Raviv (Algoritmo) (BCJR), el cual calcula las pro-

babilidades a posteriori de cada bit de informacion dada toda la secuencia recibida.
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La decodificacion se realiza mediante dos decodificadores BCJR: el primero procesa
los bits recibidos en primera instancia y genera informacién de fiabilidad para cada
bit de informacién. Esta informacién pasa al segundo decodificador BCJR, que proce-
sa los bits reorganizados por el intercalador. La informacion extrinseca obtenida del
segundo decodificador se retroalimenta al primero. Finalmente, este intercambio de
informacion continda hasta que las probabilidades a posteriori estimadas por ambos

decodificadores sean consistentes.

Por otro lado, los cédigos polares, como se describe en [18], son un tipo de codigos
que aprovechan la polarizacion de canales para lograr un desempefio superior. En la
etapa de codificacion, se utiliza una matriz de polarizacién construida mediante opera-
ciones que dividen los canales en canales polarizados fuertes y débiles. Los canales
polarizados fuertes son aquellos extremadamente confiables, con una probabilidad de
error muy baja, mientras que los canales polarizados débiles son poco confiables, con
una alta probabilidad de error. De esta forma, se puede enviar la informacion a través
de los canales fuertes y los bits de paridad a través de los canales débiles. Al hacer
esto, se crea un patron donde los bits de informacion son mas propensos a ser recibi-
dos con mayor precision. En la decodificacidn, se utiliza un algoritmo conocido como
algoritmo de decodificacion suave de polaridad sucesiva, que aprovecha la estructura
jerarquica de los canales polarizados para realizar una decodificacién eficiente y de
baja complejidad. A grandes rasgos, este algoritmo estima la secuencia de bits trans-
mitida usando la informacidn recibida a través del canal y la estructura polarizada de

los canales.

En el articulo escrito por Mahdi Bersali, Hocine Ait-Saadi y Messaoud Bensebti se
documenta el rendimiento de los cédigos polares en términos de la tasa de error de
bit para distintas longitudes de cédigo y tasas de codificacién. Ademas, se explica que
el algoritmo usado para construir los cédigos polares se basa en una seleccion de los
mejores canales de bits segun un valor inicial de SNR llamado SNR de disefio. Adicio-
nalmente usando como métrica el BER, se comparan los turbo cédigos y los cédigos
polares al pasar estos sobre un canal de ruido Gaussiano blanco aditivo binario [2].
La Figura 2.7, tomada de [2] muestra dos gréficas: a la izquierda se pueden observar

los resultados al usar distintos niveles de SNR de disefio, mientras que a la derecha
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se pueden ver los resultados obtenidos en [2] al utilizar cédigos polares con distintas
tasas de cédigo. Finalmente en 2.8 podemos ver la comparacién de desempeno de

turbo codigos y codigos polares sobre el mismo tipo de canal.

—+— without coding
—— PC: N=1024, Rate 1/3: design-SNR = - 4 dB

BER

#— PC: N=1024, Rate 1/3: design-SNR = - 3 dB
107 —#%— PC: N=1024, Rate 1/3: design-SNR = - 2 dB

PC: N=1024, Rate 1/3: design-SNR = - 1 dB
—=+— PC: N=1024, Rate 1/3: design-SNR = 0 dB
—P— PC: N=1024, Rate 1/3: best design-SNR = + 1 dB
) PC: N=1024, Rate 1/3: design-SNR = + 2 dB
10 £ PC: N=1024, Rate 1/3: design-SNR = + 3 dB

—— without coding
10| ==& PC:N=1024, R=0.50, best design-SNR = +2 dB
=8 PC:N=1024, R=0.33, best design-SNR = +1 dB
=== PC:N=1024, R=0.25, best design-SNR= 0 dB
=—+— PC:N=1024, R=0.20, best design-SNR= +2 dB

10 L L r L L L L 10" L L L L L L
-1 -0.5 0 0.5 1.5 2 25 3 -1 -0.5 0 0.5 1 15 2 25 3

1
Eb/NO (dB) Eb/NO (dB)

Figura 2.7: Izquierda: Resultado de cédigos polares con distintos niveles de SNR de
diseno. Derecha: Resultado de codigos polares con distintas tasas de cédigo [2], ©
2017 IEEE.

Evidentemente, la Figura 2.7 refleja el hecho de que utilizar una técnica de codifica-
cién es siempre mejor que no utilizarla. Ademas podemos ver en la parte izquierda
las diferencias de desemperfio segun el nivel de SNR de disefio utilizado, esto es in-
teresante ya que permite observar como al tener un mayor nivel de SNR de disefio, el
rendimiento de los codigos disefiados seran mejores. Ademas, tal como se indica en
[2], en la parte derecha de la Figura 2.7 se puede ver como una realidad tedrica se
cumple, esta es que para una longitud de codigo determinada, se nota una mejora en
los valores de BER a medida que se disminuye la tasa de codificacién. Como era de
esperarse, a medida que se incrementa el nivel de SNR de disefio, el rendimiento de
los cédigos mejora. Sin embargo, en los niveles mas altos de SNR de la simulacion,
se observa que el cédigo generado con 2 dB tiene un mejor rendimiento que el cédigo
generado con 3 dB. Dado que esto no se explica en [2], podemos concluir que podria
deberse a la naturaleza de su diseno. Los codigos disefiados para 2 dB estan opti-
mizados para funcionar mejor en condiciones de canal adversas, es decir, con mas
ruido, lo que les permite manejar una mayor cantidad de errores. Por lo tanto, cuando

la calidad del canal mejora, estos cédigos pueden mejorar aun mas su desempeno
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debido a su robustez inherente, incluso superando a aquellos cédigos disefiados con
un SNR mayor. Por otro lado, en la imagen de la derecha es claro notar como mientras
se disminuye la tasa de codificacién los resultados de BER son mejores. Estos resul-
tados evidencian que mientras menor es la tasa de codificacion, mayor es la cantidad
de bits de redundancia que se envian por cada bit de informacién lo que permite una

tolerancia mayor a errores.

10®

10°

BER

------ TC, N=512, Rate 1/3, 5 iter.
—E6— PC: N=512, Rate 1/3
—B— PC: N=1024, Rate 1/3
10 - | —— PC: N=2048, Rate 1/3
—&— PC: N=4096, Rate 1/3
—&— PC: N=8192, Rate 1/3

PC: N=16384, Rate 1/3
107 | —&— PC: N=32768, Rate 1/3
=== PC: N=65536, Rate 1/3

10° | | I |

Eb/No (dB)

Figura 2.8: Comparacion del desempefio de turbo cddigos y codigos polares [2], ©
2005 IEEE.

En la Figura 2.8 los resultados son bastante claros: en caso de utilizar turbo codigos
con longitud de 512, tenemos mejores resultados que los codigos polares con la ex-
cepcion de los codigos polares que utilizan longitudes de cédigo de 16384, 32768,
65536. No obstante, aqui, tal como se menciona en [2], podemos ver otro hecho teori-
co, el cual indica que al incrementar la longitud de cédigo tendremos cédigos polares

con mejor desempeno.
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B[] DH—{D}—{D}-

>é—> cy

Figura 2.9: Codificador convolucional, imagen adaptada de [3].

La Figura 2.9 muestra un codificador convolucional con tasa de codificacion (rate) 1/2.
Estos codificadores funcionan de la siguiente forma: la informacion (B) ingresa al co-
dificador por la izquierda del diagrama; los bits componentes del mensaje a codificar
ingresar de uno en uno, y se desplazan progresivamente de forma que se coloca una
cierta cantidad de bits (definida por el kernel del codificador) dentro del codificador a
la vez. Estos bits presentan retrasos entre si, representados por los bloques etiqueta-
dos como D, que corresponden a una unidad de retardo. En cada instante de tiempo
(instante en el que los bits toman su posicién en el codificador), se realiza la suma en
méddulo 2 o Exclusive OR (XOR) de los elementos indicados. En el ejemplo presenta-
do en 2.9, el primer bit de codificacion es el resultado de la suma de las dos primeras
posiciones en modulo dos y el segundo bit de codificacion es el resultado de la suma
de las tres posiciones en modulo dos. Los codificadores convolucionales dependen

de parametros como la tasa de codificacion o la memoria total del cédigo.

La decodificacion de los codigos convolucionales se realiza utilizando el algoritmo de
Viterbi [35]. Este algoritmo implica analizar toda la secuencia de bits recibida para
encontrar la secuencia que minimice la distancia de Hamming con respecto a las
posibles secuencias generadas por el codificador. En este algoritmo se asume que
los estados iniciales y finales del codificador son conocidos, y se utiliza una métrica
de rama para evaluar la probabilidad de cada transiciéon entre estados. El proceso
de decodificacion selecciona de forma iterativa el camino mas probable, acumulando
métricas de rama para determinar la secuencia mas probable de bits de entrada que
coincide con la secuencia recibida. Al ejecutar este proceso, se corrigen los posibles

errores introducidos por el canal.
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En [36] se hace una comparacion del rendimiento que muestran los cédigos con-
volucionales y Random Codes Based on Quasigroups (RCBQ) en un canal binario
simétrico. Por un lado tenemos a los cédigos convolucionales, cuyo desempefio se
documenta en [16] y corresponden a uno de los primeros y mas utilizados cddigos
para correccion de errores en la practica. Por otro lado, los codigos aleatorios basa-
dos en cuasigrupos, se documentan en [37], y corresponden a una clase de cddigos
de correccidn de errores generados por transformaciones de cadenas de cuasigru-
pos casi aleatorios que pueden ser decodificados de forma eficiente con esquemas

iterativos.

En [36] el proceso de decodificacion de los codigos convolucionales usa el algoritmo
de Viterbi, el cual es practicamente un estandar para estos cédigos. El proceso de
decodificacion utilizado para los cédigos aleatorios basados en cuasigrupos es el al-
goritmo de decodificacion por cortes [38]. Finalmente los experimentos reportados en
[36] son:

Para RCBQ con el algoritmo de Decodificacién por Cortes se realizaron para el cédigo

(72, 288) utilizando los siguientes parametros del cédigo:
= patrén de redundancia: 1100 1110 1100 1100 1110 1100 1100 1100 0000
» dos claves diferentes: k1 = 01234 y k2 = 56789
= cuasigrupo de orden 16

Y para los cédigos convolucionales se realizaron usando la estructura trellis y los

siguientes parametros:
= bits de datos k = 1, para cada bit entrante, hay n bits
= palabras de cddigo de n bits, n = 4, cada bit se codifica con 4 bits
= longitud de restriccion K = 3, el nimero de estados es 4 (2% — 1)

Para todos los experimentos se utilizé un canal binario simétrico con distintas proba-
bilidades para error de bit. Los resultados de los dos cédigos evaluados se presentan
en la Figura 2 de [36], donde se aprecia como los codigos convolucionales exhiben un
menor nivel de tasa de error de bits mientras el canal tiene una probabilidad de error

de canal mayor a 0.07. En contraste, los codigos aleatorios basados en cuasigrupos
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tienen un desempeno claramente mejor que los convolucionales cuando se mejora la
calidad del canal BSC. Nétese que cuando la probabilidad de error del canal es aproxi-
madamente 0.07 los dos cédigos tienen un desempeno similar, sin embargo a medida
que la probabilidad de error disminuye, los cédigos aleatorios basados en cuasigrupos

mejoran de forma notable en comparacion con los coédigos convolucionales.

Adicionalmente, [4] presenta un tipo de cddigos recientemente desarrollados con la
peculiaridad de ser rateless", los codigos espinales (Spinal codes). Estos cédigos
introducen una funcién de tipo hash como el nicleo de su proceso de codificacién, de
esa manera pueden generar bits pseudoaleatorios de forma continua. Basicamente el

proceso de codificacion incluye cuatro pasos clave:
1. Un mensaje de n bits, denotado por M, se divide en segmentos de k bits.

2. El codificador usa una funcién hash para mapear el segmento del mensaje a un

estado de bits.

3. El estado de bits se usa para inicializar un Random Number Generator (RNG)

para generar una secuencia de simbolos pseudoaleatorios de ¢ bits.

4. El emisor mapea los simbolos de ¢ bits a un conjunto de entradas del canal para

ajustarse a las caracteristicas del canal.

En particular [4] se enfoca en el estudio del limite asint6tico ajustado de la tasa de
error de bits de los codigos espinales en un canal binario simétrico, lo que constituye
un paso fundamental para comprender su comportamiento y optimizar su desempefio.
Utilizando este analisis como base, se desarrolla una estrategia de perforacion éptima
para mejorar la eficiencia de los cédigos espinales en dicho canal. Esta estrategia de
perforacion se disefia meticulosamente para dirigir mas simbolos hacia las regiones
del codigo que son mas propensas a errores, con el fin de garantizar una decodifica-
cidon exitosa. Este enfoque estratégico no solo reduce la tasa de error de bits, sino que
también mejora significativamente el rendimiento del BER global del sistema. Para va-
lidar la efectividad y la robustez de esta estrategia de perforacién propuesta, se llevan
a cabo simulaciones exhaustivas en diversas condiciones de canal, proporcionando
asi una evaluacién de su desempeno. En la Figura 2.10 se presentan los resultados

de la simulacion de cddigos espinales originales y cddigos espinales con perforacion
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Optima, y un rate de 1/3.
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Figura 2.10: Desemperio de codigos espinales con y sin perforacion [4], © 2020 IEEE.

Puede observarse que, de manera similar a los demas cédigos mencionados ante-
riormente, los cddigos espinales muestran una mejora sustancial en la tasa de error
de bit. El estudio detallado en [4] es de gran relevancia, ya que logra un avance signi-
ficativo en el rendimiento de estos cddigos, mejorando su eficacia en casi un orden de
magnitud con respecto a los codigos espinales originales. Esto demuestra de manera
concluyente que la estrategia de perforacidén supera con creces a los cédigos espina-
les originales, lo que tiene implicaciones importantes en el disefio y la implementacion

de sistemas de comunicacion.

En la misma linea, se puede mencionar que los cédigos polares, desarrollados por
Erdal Arikan [18] pueden alcanzar la capacidad de Shannon de la clase de cana-
les binarios discretos sin memoria con una complejidad de codificacién y decodifi-
cacién bastante baja. Estos cddigos usan la polarizacion de canal la cual establece
que al momento de combinar y dividir N copias independientes de canales Binary
Discrete Memoryless Channel (B-DMC), los canales se polarizan, es decir, se tie-
nen canales libres de ruido. Una evaluacion del rendimiento de codigos polares en

canales binarios simétricos se muestra en [5]. Esta imagen muestra distintos tama-
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nos de bloque en canales AWGN y en canales BSC. El articulo [5] incluye detalles
importantes sobre la implementacion de estos cédigos sobre un canal binario simé-
trico, en la que se definen los alfabetos de entrada y salida del canal como X = 0,1
e Y = 0,1 respectivamente, un bit transmitido se invierte con una probabilidad q.
Las probabilidades de transicion son P(Y = 0|X = 1) = P(Y = 1|X =0) =qy
P(Y =0/X =0) = P(Y =1|X =1) = 1 — ¢. La tasa de errores de bit usando cédi-
gos polares en canales BSC se obtiene mediante simulaciones en Matlab segun los

siguientes pasos:
1. Se generan K bits aleatorios.
2. Esos bits se introducen como entrada al codificador que produce N bits.

3. Luego se agrega ruido binario. Se calculan los Log-Likelihood Ratio (LLR) de los

resultados.
4. Estos LLR se introducen en el decodificador Successive Cancellation (SC).
5. El decodificador SC produce una estimacion de los datos de entrada.

6. Al final se comparan los bits de salida con los bits de entrada y se cuentan los

errores.

Con estos pasos se ha comparado también el desempefio entre los cédigos pola-
res de distinta longitud de bloque (N), estos bloques tienen una tasa de codigo de

1/2(K/N), cuyos resultados se muestran en La Figura 2.11.

Polar Codes over BSC
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Bit Error Rate

Figura 2.11: Desempenfio de cddigos polares en canal BSC [5].
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En La Figura 2.11 se evidencia de forma clara como a medida que aumenta el tamafo
de bloque (N), se tiene un mejor desempeno del c6digo, o que se traduce en un menor
valor BER. Al igual que en otros codigos convencionales, cuando se tiene un canal en
muy malas condiciones (q = 0.1), la cantidad de errores que se puede corregir es muy
pequena y por tanto, en estos casos el BER es significativamente alto. No obstante, a
medida de que el canal mejora (q se reduce) la cantidad de errores se corrige crece

de manera veloz, es por esto que en La Figura 2.11 se observa una curva creciente.

2.4. Técnicas de Codificacion de Canal basada en Redes Neuronales

El constante desarrollo y mejoras que se presentan en relacion a la capacidad compu-
tacional y las continuas invenciones cada vez mas eficientes de algoritmos de Inteli-
gencia Atrtificial (I1A) y Aprendizaje Automatico (AA) tal como se menciona en [39], han
conseguido que actualmente la |IA sea empleada en una amplia gama de aplicaciones,
entre ellas se encuentra el procesamiento de imagenes, clasificacion de informacion,
ciencia de datos, en la industria y el que nos concierne, las comunicaciones digitales,

entre otros.

La razon fundamental para hacer uso de técnicas de codificacién basadas en redes
neuronales, es evidentemente la solucién que ha representado el uso de Artificial
Neural Network (ANN) para varios problemas de la actualidad. Por ello, apoyarnos de
esta tecnologia para generar nuevos desarrollos en el area de las comunicaciones
digitales, especificamente centrando la investigacidn en la codificacién de canal es un
paso completamente razonable en la busqueda de obtener métodos de codificacion
Optimos que puedan acercarse a la capacidad del canal, manteniendo una compleji-
dad de implementacion baja, esto teniendo en cuenta el arduo trabajo y la dificultad

que tiene este nicho de estudio.

2.4.1. Conceptos y funcionamiento general de redes neuronales artificiales

Esta Seccidn presenta una breve revision sobre los principios fundamentales que ri-
gen los modelos de ANN. Segun [6], en el modelo computacional de las redes de

neuronas artificiales, la gran diferencia con los programas convencionales de compu-
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tadora, es que estas redes generan la informacion de entrada para obtener una salida
o respuesta, en lugar de ejecutar un algoritmo predefinido. El proceso de elaboracion

es dependiente de las caracteristicas estructurales y funcionales de la red neuronal.

Estas redes poseen elementos de procesamiento que tratan de simular las células
del cerebro humano, y que usualmente, se conectan con otras formando diferentes
capas o niveles de procesamiento. Las neuronas artificiales poseen un estado interno
denominado nivel de activacion y reciben sefales las cuales inducen un cambio de
estado. Se pueden representar con un conjunto de estados posibles, tal como 0 y 1
para estados inactivo y activo respectivamente, o también con un intervalo continuo
de valores. Cada una de las neuronas que componen el modelo posee una funcién
de transicion de estado o funcion de activacion que determina su nivel de activacion
a partir de las sefales recibidas. Esta funcién puede tener un comportamiento lineal,
umbral o cualquier otra funcion previamente definida. En La Figura 2.12, se muestra

un modelo que representa la idea de una neurona artificial.

Unidad de Proceso j

Y1

Entradas Salidas

Figura 2.12: Modelo de neurona artificial, imagen adaptada de [6].

En La Figura 2.12, se observa que un grupo de entradas ingresan a la neurona ar-
tificial. Estas entradas se pueden definir mediante un vector X, que analogamente
corresponde a las senales de la sinapsis de una neurona biolégica. Cada una de las
sefales se multiplica por un factor o peso correspondiente wy, ws, ..., w,, para formar
una combinacién lineal. Cada uno de los pesos se asemeja a una conexion sinaptica,
en otras palabras, representa el nivel de concentracion idnica de la sinapsis, y esto se

representa por medio de un vector .

El elemento sumatorio corresponde al cuerpo de la neurona, la cual suma cada una

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo



UCUENCA 48

de las entradas ponderadas algebraicamente, dando como resultado una salida E,
que no es mas que una combinacién lineal de las entradas y los pesos, como se

muestra en (2.13).

E = zyw; + zows + ... + z,w, (2.13)

La ecuacién (2.13) se puede escribir de manera vectorial tal como se presenta en
(2.14).

E=X"wW (2.14)

Las senales de F, se atraviesan una funcién de activacion f, generando una salida
Y, en base a la funcién de activacion, se pueden generar diferentes tipos de modelos

autématas.

Ala forma en que estas células artificiales se conectan entre si se les denomina patrén
de conectividad o arquitectura de la red. La estructura mas bésica de interconexion
entre neuronas se le denomina la red multicapa, representada de forma grafica en La
Figura 2.13.

— e
Entrada Salida
— —

Interpretacion

de estructura interna
de las unidades

Figura 2.13: Esquema de una red de tres capas que estdan completamente conecta-
das, imagen adaptada de [6].

Esta estructura de implementacién tipica pertenece al paradigma conocido como

“Feed-Foward”. Aqui, el primer nivel esta constituido por las células de entrada, quie-
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nes reciben los valores de patrones que estan representados como vectores, y cons-
tituyen la entrada para la red. Después se incluye una serie de capas intermedias
0 capas ocultas, cuyas unidades de procesamiento responden a rasgos particulares
que podrian aparecer en los patrones de entrada. Normalmente, pueden existir uno o
mas niveles ocultos. Luego, el ultimo nivel se conoce como el nivel de salida. La salida
de estas unidades en esencia es la salida de la red. Cada una de las interconexiones
de las neuronas actua como una ruta de comunicacién, por medio de las cuales atra-
viesan valores numéricos. Cada valor es evaluado por los pesos de las conexiones
y estos pesos son ajustados durante la fase de aprendizaje para lograr producir una
red de neuronas artificial. Este ajuste de los pesos se realiza mediante un proceso
de optimizacién en el que los errores producidos por la salida de la red (en compara-
cidén con los valores deseables) se utilizan hacia atras, modificando los pesos de las

conexiones de manera proporcional a dicho error (backpropagation).

Una red de neuronas artificial puede considerarse un grafo, que posee nodos que
se encuentran constituido por unidades de proceso idénticas, las cuales propagan
informacion por medio de los arcos (conexiones entre los nodos). En este grafo se

distinguen tres diferentes tipos de nodos, los de entrada, los de salida e intermedios.

En funcidon a esta estructura, se puede explicar brevemente el funcionamiento de la
red neuronal. Cada uno de los vectores de entrada ingresan a la red copiando sus va-
lores en las células de entrada correspondientes. Luego, cada célula al recibir todas
sus entradas, procesa la informacion y crea una salida la cual es propagada por me-
dio de las conexiones hacia las células destino (propagacion hacia adelante o Feed-
Foward). Después de que la entrada se propagdé completamente por la red, se crea
un vector de salida que esta compuesto por multiples valores de salida presente en la
capa que contiene las células de salida. Este comportamiento se describe mediante
(2.15).

§:F<F (F (X'-W1> -W2>> (2.15)

donde W; y W, corresponden a los pesos de las capas, F' a la funcion de activacion,

X al vector de entrada y S corresponde al vector de salida.
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Segun se indica en [6], el aspecto mas relevante de los modelos de ANN es el ti-
po de aprendizaje, pues este indica los problemas que la red es capaz de resolver
y usualmente se basa en ejemplos. La capacidad de resolver problemas de la red
es dependiente de que el conjunto de los ejemplos sea significativo y representati-
vo. De esta manera, el proceso de aprendizaje implica el ajuste de los pesos de las
conexiones por medio de la introduccién de ejemplos y la verificacion de si cumple
con un criterio de convergencia. El proceso de aprendizaje puede ser supervisado,
no supervisado o por refuerzo en funcién de la informacion que se posee. Para el
aprendizaje supervisado, los ejemplos tienen datos y soluciones esperadas. En el no
supervisado, la red tiene que identificar patrones de manera auténoma, mientras que
para el aprendizaje por refuerzo se emplea evaluaciones generales de adecuacion (o

un mecanismo de recompensas) sin informacién precisa de errores.

El proceso de entrenamiento también debe realizarse con precaucién, puesto que rea-
lizar un ajuste excesivo de datos de entrenamiento puede producir malas predicciones
cuando nuevos datos se ingresan al modelo. Este fendbmeno se denomina sobre ajus-
te y claramente disminuye la capacidad de generalizacion de la red. Para analizar si la
red esta produciendo salidas adecuadas, se realiza una divisidon de los datos, donde
se asigna una proporcion de los mismos para entrenamiento y otra para validacion
y evaluacion. Con el conjunto de datos de entrenamiento se realiza el ajuste de los
pesos, mientras que el conjunto de validacion se mide el error obtenido por el mode-
lo. Si el error es bajo en el conjunto de validacion, entonces, se garantiza una buena
capacidad de generalizacion para cuando el modelo se pruebe con otro conjunto de
datos de evaluacion. Es importante recalcar que el conjunto de validacion tiene que
ser independiente, pero también cumplir con las mismas propiedades de un conjunto
de entrenamiento. En la etapa de aprendizaje, hay pasos que resaltan y se pueden
marcar como hitos en el proceso: en primer lugar se realiza una asignacién de valo-
res aleatorios a los pesos, que después se ajustan a medida que se va evaluando las
salidas para cada uno de los patrones del conjunto de entrenamiento; acto seguido se
evalua el error con el conjunto de validacion. Este proceso se repite hasta que el error
caiga por debajo de un umbral determinado (o nivel de tolerancia del error) o se haya
cumplido con cierto numero de iteraciones. Si las condiciones se cumplen, entonces,

el aprendizaje concluye y se obtiene el modelo de red resultante u éptima (aunque
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siempre cabe la posibilidad de que no se alcance un minimo global en la métrica de

error evaluada).

2.4.2. Algoritmo de Retropropagacion del gradiente

Este algoritmo, conocido en Inglés como back-propagation, corresponde a uno de los
principios fundamentales que se aplican en el contexto del aprendizaje supervisado.
En [40], se indica que este algoritmo nace de la critica de Minsky al perceptrén de
Rosenblatt [41], lo que produjo un estancamiento en las investigaciones de redes
neuronales durante dos décadas, puesto que un perceptrdn simple, no podia resolver
el problema de una compuerta XOR. La solucién a este problema requeria de modelos
de redes de mas de una capa y un mecanismo para poder aprender (modificar los
pesos de las conexiones) al interior de las capas internas. Entonces, el proceso de

retro-propagacion del gradiente surgié para permitir este aprendizaje.

El algoritmo de retro-propagacion calcula los gradientes de la funcion de error empe-
zando por las neuronas de la capa de salida, y los va propagando hacia atras hasta
llegar a la capa de entrada. Este algoritmo permite el entrenamiento de redes neuro-
nales multicapas, solucionando ciertas limitaciones del perceptron de una capa. De
esta manera, se tiene un factor proporcional al error calculado en la salida y que puede
utilizarse en cada capa para realizar la modificacién de los pesos de las conexiones

entre neuronas.

El algoritmo tiene algunas etapas que describimos a continuacion: la primera es la
propagacion hacia adelante, en la que una entrada atraviesa la red neuronal capa por
capa hasta llegar a la salida. Y en cada una de las neuronales se realiza un célculo
de la suma ponderada, esto significa que cada neurona recepta las salidas de las
neuronas de la capa anterior, las multiplica por los pesos sindpticos y realiza la suma
de estos valores junto con un sesgo (bias). Luego esta suma ponderada atraviesa una
funcidén de activacion que puede ser, por ejemplo, un sigmoide, una funcién Rectified
Linear Unit (ReLU), entre otras y con esto produce la salida de la neurona. El proceso

se aplica para todas las neuronas en la capa de salida.

Cuando se obtienen las salidas, se realiza la comparacién con los valores reales em-
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pleando una funcién de pérdida, dicha funcién mide cuan lejos estan las predicciones
obtenidas por el modelo con respecto a los valores verdaderos, lo que constituye el
principio fundamental del aprendizaje supervisado. Seguidamente, se realiza la retro-
propagacion, con el objetivo de ajustar los pesos de la red minimizando el error calcu-
lado en la fase anterior. Para ello, el primer punto es calcular el gradiente de la pérdida
en la capa de salida. Esto implica que para cada una de las neuronas de esta capa,
se realiza el célculo del gradiente de la funcién de pérdida con respecto a la salida.

Esto se puede identificar en (2.16).

_OE

_8_sj

d; (2.16)
donde E corresponde a la funcién de pérdida y sj a la salida de la neurona. Posterior-
mente, se propaga el error hacia atras por cada capa, para lo cual se emplea el valor
del gradiente calculado en la capa de salida para calcular los valores de gradientes
de capas anteriores. Esto se efectia de forma iterativa desde la capa de salida hasta

la capa de entrada. La ecuacion (2.17), refleja mateméaticamente este proceso.

5 = (D dkwge) - f (x) (2.17)

En (2.17), 6, corresponde al gradiente de la neurona j en una capa oculta, ¢, es aquel
de las neuronas en la capa siguiente, w;; es el peso entre cada una de las neuronas
JjYyky f'(z;) es la derivada de la funcion de activacién. Cuando ya se dispone de los
gradientes, los pesos se actualizan empleando el algoritmo de descenso de gradiente,

que se expresa mediante (2.19).

donde 7 corresponde a un factor conocido como la tasa de aprendizaje, ¢, correspon-
de al delta (gradiente) de la neurona de salida y d; es la entrada a la neurona.

Esta es la forma mas usada para el ajuste de los pesos en redes neuronales, si bien,

actualmente existen algunos algoritmos que no usan el descenso del gradiente debido
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a ciertas limitaciones que puede llegar a tener, es también habitual que se empleen
algoritmos basados en diferentes heuristicas. No obstante, este algoritmo es el em-
pleado por excelencia y hasta la actualidad a permitido un gran desarrollo para el

entrenamiento de redes neuronales.

2.4.3. Técnicas de Aprendizaje profundo (Deep Learning)

Con el incremento de la capacidad computacional que se ha obtenido en anos re-
cientes, el uso de modelos neuronales cada vez mas complejos es posible. Actual-
mente, se pueden tener modelos neuronales con multiples capas y un vasto nimero
de neuronas en cada capa sin que esto sea un obstaculo para realizar tareas de
entrenamiento que hasta hace pocos afos, hubiesen sido irrealizables debido a su

complejidad computacional.

A partir de esto, el Deep Learning ha sido usado ampliamente en algunas aplicaciones
segun [42], algunas de ellas son: visidon por computadora, procesamiento de lenguaje
natural, automatizacién y modelos predictivos. La variedad de aplicaciones también ha
generado la invencion de diferentes técnicas dentro del propio Deep Learning, esto
se refiere a la existencia de distintas estructuras neuronales que ayudan a mejorar
los resultados dependiendo la aplicacién. Algunos de los tipos de redes neuronales
empleadas en Deep Learning son: redes neuronales convolucionales, recurrentes,
generativas adversarias, profundas y modulares. Las redes neuronales recurrentes a

su vez poseen una division entre redes de memoria a corto y largo plazo.

2.4.3.1. Redes Neuronales Recurrentes

En [43], se indica que a diferencia de redes neuronales artificiales tradicionales, las
cuales asumen la independencia entre los datos de entrada, las Recurrent Neural
Network (RNN) realizan una captura de dependencias secuenciales y temporales. Un
atributo definitorio de las RNN es la comparticion de parametros, esto permite al mo-
delo llevar a cabo algunas inferencias acerca de secuencias de longitud variable. Sin
dicha comparticién, el modelo necesitaria parametros Unicos para cada dato en una

secuencia. Las RNN agregan ciclos, los cuales conectan nodos adyacentes o pasos
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de tiempo, generando una memoria interna la cual evalua el dato actual a compara-
cién de los datos previos. Esto ayuda a que las RNN lleven a cabo mapeos de uno a
muchos, muchos a muchos y muchos a uno, en contraste con las redes neuronales
tradicionales que se encuentran limitadas a mapeos de uno a uno entre la entrada
y la salida. Las relaciones de recurrencia se ven generalizadas mediante (2.19), que
indica que el estado del sistema es dependiente de un paso de tiempo anterior que
esta dado por ¢t — 1.

SO = f (s (2.19)

Esta ecuacidn puede ser reescrita como (2.20).

D = f (A, 2" (2.20)

Donde ! corresponde a la entrada de una instancia de tiempo particular. La verdadera
relevancia de h' es que representa los aspectos relevantes de una secuencia pasada

de entradas hasta ¢.

Las RNN tienen la capacidad de adaptarse a diferentes tipos de problemas en funcién
de las secuencias de entrada y salidas necesitadas. Un buen ejemplo, corresponde
a un escenario de analisis de series temporales en el mercado, donde la red es ca-
paz de predecir el valor futuro de algunas acciones en base de los valores pasados
o también prever los valores para cada dia basandose unicamente en el valor del
dia anterior. Existen cuatro topologias que pueden adoptar las RNN: la primera es
el Sequence-Vector, donde la red produce una Unica salida tomando en cuenta so-
lo la informacién del ultimo paso de tiempo; la segunda corresponde a la topologia
Sequence-Sequence, donde la red entrega resultados procesados en cada uno de
los periodos de tiempo, esto agrega mayor complejidad en la salida; en tercer lugar
se tiene a la topologia Vector-Sequence, donde la red recibe un vector como entrada
y genera una secuencia como salida; finalmente, la topologia Encoder-Decoder, en la
cual se combina dos topologias anteriores, pues el Encoder transforma una secuencia

en un vector y el Decoder realiza el proceso contrario.

A pesar de que las RNN disponen de varias ventajas, poseen un problema conoci-

do como “short-term memory”. Este problema se genera por el desvanecimiento del
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gradiente durante el entrenamiento, esto produce que se generen dificultades para re-
cordar informacion pasada mientras se procesa mas elementos de la secuencia. Para
poder abordar este problema, se ha propuesto el uso de celdas de memoria de corto
y largo plazo Long Short-Term Memory (LSTM) [43], que son capaces de capturar

patrones de secuencias mas largas y se describen a continuacién.

2.4.3.2. Redes Neuronales LSTM

Las redes LSTM corresponden a un tipo de redes neuronales recurrentes que estan
disenadas para solucionar el problema del desvanecimiento de gradiente que experi-
mentan las RNN tradicionales, [44]. Este tipo de redes emplean celdas de memoria
que permiten mantener informaciéon en periodos de tiempo mas largos, lo cual es
crucial para tareas en las que se necesita recordar dependencias en un tiempo con-
siderablemente amplio. Existen dos caracteristicas principales de las redes LSTM: la
primera corresponde a sus celdas de memoria, las cuales mantienen su estado en
un periodo de tiempo mas grande, esto permite almacenar informacién a largo plazo;
mientras que la segunda caracteristica corresponde a sus puertas de entrada, olvi-
do y salida. Una puerta de entrada controla la informacién que ingresa a la celda de
memoria, mientras que la puerta de olvido se encarga de decidir la cantidad de infor-
macion anterior que tiene que olvidar y establecer la seccidén de informacion que debe

entregarse como salida de la celda de memoria.

En una red LSTM la informacion es almacenada y procesada de dos maneras. La
primera en una memoria de corto plazo, aqui la funcién de activacion de una unidad
neuronal es una funcién de la historia reciente del modelo, generando de esta manera
una memoria a corto plazo. Por otro lado, los pesos de los enlaces entre neuronas
también generan una memoria la cual se ajusta en base a la experiencia y el proceso
de entrenamiento. Estos pesos se inician con un valor aleatorio y luego se optimizan

para minimizar la funcién de pérdida. Esto crea la memoria a largo plazo.

Finalmente, las redes LSTM presentan dos beneficios importantes: /la resolucion del
problema del desvanecimiento del gradiente, puesto que son capaces de recordar
eventos que se han dado durante periodos largos, logrando asi disminuir el impacto

del desvanecimiento del gradiente; y, la adaptabilidad ya que son capaces de deter-
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minar si el estado anterior de la red es relevante o si el estado actual sirve para otras

unidades neuronales.

2.4.3.3. Redes Neuronales de Memoria a Corto Plazo (GRU)

Las redes neuronales recurrentes son las redes neuronales mas adecuadas para cap-
turar las relaciones entre datos secuenciales, sin embargo, es complicado mantener
las dependencias a largo plazo utilizando RNN simples debido a que los gradientes
tienden a desaparecer con secuencias largas, es aqui cuando se proponen los mode-
los de Gated Recurrent Unit (GRU).

En [45] se indica que las redes neuronales recurrentes GRU se requiere Unicamente
dos sefales de gating (mecanismo que controla el flujo de informacién dentro de la
red) con respecto al modelo LSTM . Las puertas son llamadas puerta de actualizacion

z; ¥ puerta de reinicio r,. El modelo RNN GRU se presenta de la siguiente forma:

he=(1—2)®h1+20h (2.21)
he = g(Whay + Upn(re @ hy_y) + by) (2.22)
2z =W,z +U,hy_1+b,) (2.23)
re =o(W,zy + U.hy_1 + b,) (2.24)

Desde (2.21) hasta (2.24) se puede observar el modelo GRU donde se presentan las
compuertas de actualizacion y reinicio. También podemos notar que a pesar de que
las redes GRU sean similares a las redes LSTM, estas tienen menos sefales de gating
lo que se traduce a una menor cantidad de parametros necesarios. No obstante, las

redes GRU tienen tres veces mas parametros en comparacion a una RNN simple.

2.4.4. Redes Neuronales Profundas (DNN)

Estos modelos corresponden a un tipo de red neuronal artificial, la cual contiene un

conjunto de capas ocultas entre las capas de entrada y salida, [46]. Al igual que las
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ANN poco profundas, las Deep Neural Network (DNN) son capaces de modelar rela-

ciones no lineales muy complejas.

Para el entrenamiento de este tipo de redes se emplea comunmente aprendizaje su-
pervisado o aprendizaje por refuerzo. La optimizacién de los modelos generalmente
se lleva a cabo mediante optimizadores que emplean el método de descenso de gra-
diente para lograr optimizar la red y minimizar la funcién de pérdida. Aqui también
entra en juego el algoritmo de retropropagacion, como el mas popular para el entre-

namiento en modelos de Deep Learning.

Existen varias aplicaciones que pueden hacer uso de este tipo de redes, entre ellas
se puede mencionar la clasificacion de imagenes, el reconocimiento de objetos, reco-

nocimiento facial, diagndsticos médicos entre otras.

2.5. Redes Neuronales para la codificacion de canal

Esta Seccidn se centra en presentar algunos trabajos e investigaciones que se han
llevado a cabo sobre el uso de redes neuronales para la codificacion de canal, en
primer lugar se realiza una investigacion general acerca del uso del Deep Learning en
diferentes aplicaciones en el area de las comunicaciones digitales. Después se centra
en el uso de estas técnicas especificamente en el campo de estudio de la codificacion
de canal, se observan algunas arquitecturas empleadas para el entrenamiento de los
modelos, luego se presenta un enfoque especifico de Deep Learning para decodifi-
cadores y finalmente se menciona el uso de Python como herramienta fundamental

para el desarrollo de escenarios de entrenamiento y prueba para redes neuronales.

2.5.1. Deep Learning como factor de progreso en las comunicaciones digitales

En [47], presentan algunas aplicaciones innovadoras basadas en Deep Learning cen-
tradas en la capa fisica. Aqui adoptan una nueva visién para los sistemas de co-
municaciones, esta vision establece entender al sistema como un autoencoder, en
base a ese planteamiento, se genera un nuevo método para idear el disefo de sis-

temas de comunicaciones, donde se propone entender el disefio como una tarea de
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reconstruccién entre el transmisor y el receptor y el objetivo es la optimizacion de los

componentes en un mismo proceso.

Esta idea puede ser exportada a arquitecturas de mdultiples transmisores y recepto-
res, lo que lleva al concepto de redes de transformadores de radio como un método
de insercion de conocimiento experto del dominio en el modelo de Deep Learning.
También se presenta la aplicacion de Convolutional Neural Network (CNN) en mues-
tras “In-Phase” y “Quadrature” (1Q) crudas para llevar a cabo la clasificacién de mo-
dulacion, esto genera una precision comparable a esquemas tradicionales que son

dependientes de caracteristicas expertas.

Lo mas relevante en [47], sin duda es la introduccion de una nueva idealizacion de las
comunicaciones, donde se pretende traducir el proceso de disefio a la optimizacion
de una tarea de reconstruccion de extremo a extremo, con el objetivo de aprender las
implementaciones del transmisor, receptor y también de las codificaciones de sefales

que realizan los modelos sin ningun tipo de conocimiento previo.

Comparando este tipo de aplicaciones, con métodos convencionales, se puede ver
en varios escenarios que el rendimiento del BLER es competitivo, sin embargo, la

escalabilidad a longitudes de bloque largas representa un desafio.

Asi mismo, lo novedoso de este enfoque es que puede entregar informacién de interés
acerca de esquemas de comunicacion éptimos, en escenarios completamente desco-
nocidos. Esto marca un claro comienzo para una variedad de estudios en el ambito
del Deep Learning y el Machine Learning que pueden converger en nuevos esque-
mas de comunicaciones que ofrezcan mejores caracteristicas que los empleados en

la actualidad.

En [48], realizan un recuento de diferentes aplicaciones de las redes neuronales en el
area de comunicaciones digitales, tal como identificacion y ecualizaciéon de canales,
codificacion y decodificacidon, cuantificacion vectorial, entre otros. Mencionan que el
elemento fundamental en modelos que emplean redes neuronales es hallar una ar-
quitectura correcta capaz de brindar los mejores resultados. Se presenta como llevar
a cabo la eleccion de estructuras de redes neuronales y el proceso para combinar los

algoritmos generados con técnicas como procesamiento adaptativo de senales, siste-
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mas difusos y también algoritmos genéticos. Ademas se revisan los enfoques mate-
maticos que se usan para tener una compresién estructurada del comportamiento de

aprendizaje y la convergencia de los algoritmos generados por las redes neuronales.

El punto con mayor grado de importancia para los intereses del trabajo que estamos
realizando es la codificacion, decodificacion y deteccion de errores. En [48] se comen-
ta que estos son campos sumamente prometedores para las aplicaciones de redes
neuronales, en consecuencia a la necesidad de realizar calculos paralelos, se pre-
sentan los requerimientos de grandes velocidades de computo. Los autores de [48]
comentan varias aplicaciones halladas para las redes neuronales en el contexto de la
correccion de errores. Una de las aplicaciones comentadas es una red neuronal ge-
nerada para la decodificacion de canales con ruido blanco gaussiano aditivo para el
codigo Bose—Chaudhuri-Hocquenghem (Cddigos) (BCH) (7,4). Por otro lado, también
se presenta un decodificador de Viterbi basado en ANN. Esta aplicacion es de gran
interés puesto que este no solamente iguala el rendimiento de un decodificador de
Viterbi ideal sino que ademds debido a la naturaleza de las neuronas implementadas

en el decodificador, permite que este tenga un comportamiento mucho mas rapido.

En [49], se centran en la problematica de aprender algun tipo de codificacidén para la
capa fisica que sea eficiente y adaptable, con el objetivo de transmitir informacién por
medio de un canal deteriorado. Aqui el problema se aborda desde punto de vista del
aprendizaje automatico no supervisado, en vez de metodologia tradicional. La tarea
central es optimizar la pérdida de reconstruccidn a través de capas de deterioro arti-
ficial en el autoencoder, asi mismo, se agregan otras capas de regularizacién, estas
se encargan de emular degradaciones frecuentes en los canales inaldmbricos. Tam-
bién se habla sobre cual es la funcion de los modelos de atencidn en la forma de la
red transformadora de radio para la recuperacion de representaciones candnicas de

sefales previo al proceso de decodificacion.

La importancia que representa aprender a transmitir informacién de forma 6ptima en
base al canal de comunicacion sin esquemas de modulacién altamente complejos es
gigantezca. A pesar que tedricamente se ha comprobado la existencia de codigos que
sean capaces de alcanzar la capacidad del canal y tras millones de dolares de inver-

sidbn aun no se ha encontrado una solucion general para todos los escenarios y en
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algunos casos la dificultad que representa implementar algunos algoritmos disenados
para acercarse a la capacidad deseada es muy alta. A pesar de ello, en [49], se mues-
tra que la arquitectura basada en redes neuronales es viable para ser implementada y
posee un potencial de rendimiento capaz de competir con sistemas de comunicacion
actuales, casi alcanzando la capacidad de Shannon, pero manteniendo generalidad y

baja complejidad.

Asi mismo, se presenta algunos descubrimientos experimentales, como el impacto
que representa la eleccién de SNR de entrenamiento y la tasa de Dropout, esta para-
metrizacién de modelos también es un area de estudio compleja y digna de investiga-
cion para encontrar metodologias de entrenamiento eficientes para modelos de redes

neuronales.

En general, se puede ver que el uso de este tipo de técnicas tiene una pendiente
positiva para el descubrimiento y evolucion de los sistemas de comunicacidn actuales

y sus componentes.

En [50], los autores proponen un nuevo algoritmo para decodificar cddigos lineales
con el uso de Deep Learning. Este método mejora el algoritmo de propagacion de
creencias estandar asignando pesos a los bordes del grafico de Tanner, donde los

bordes son generados con el uso de aprendizaje profundo.

Este método propuesto presenta resultados positivos puesto que se logra una mejora
en el BER al ponderar de manera adecuada los mensajes transmitidos. Cabe mencio-
nar que el decodificador propuesto una vez entrenado, puede mejorar el desempefo
en comparacién con el algoritmo de propagacion de creencias estandar sin la nece-
sidad de aumentar la capacidad computacional. Los autores consideran este trabajo
como uno de los primeros pasos en la implementacion del Deep Learning para el

disefo de decodificadores mejores.

En [51] podemos observar una investigacion similar en la que se estudian distintas
técnicas para la decodificacion de cddigos lineales. En este trabajo se ha demostrado
que el Deep Learning puede ser usado para mejorar un decodificador de propagacion
de creencias estandar. Ademas se ha introducido una arquitectura de decodificador

neuronal recurrente basada en el método de relajacién sucesiva, en este decodifica-
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dor se observan mejoras sobre el algoritmo de propagacion de creencias estandar.
En [51] se obtuvieron mejoras sobre los decodificadores estandar de propagacién de
creencias con el uso de redes neuronales y se introducen decodificadores que man-
tiene el equilibrio entre rendimiento a la hora de corregir errores y la complejidad de

la implementacion.

2.5.2. Generacion de codigos mediante el uso de aprendizaje profundo

En [7], se propone el uso de técnicas de Deep Learning para la codificacion sobre
un canal AWGN, uno de los escenarios mas practicos ya que estandares como 5G
Long Term Evolution (LTE) lo toman como referencia para la creacién de los mismos.
La propuesta comprende un codificador de canal que recibe K bits de informacién
y luego los convierte en n sefiales reales para poder transmitirlas por medio de un
canal ruidoso. Para cada uso del canal (denotado por ), cada uno de los simbolos
x; trasmitidos es afectado por ruido aditivo Gaussiano independiente e idénticamente
distribuido para cada uso del canal, y denotado por n;. Para este modelo de canal,
el decodificador recibe y; = x; + n;. Luego de recibir los n simbolos, el decodificador
determina cuél de las secuencias de bits fue enviada, entre las 2% opciones posibles,

con el objetivo de maximizar la probabilidad de una correcta decodificacion.

En canales caracterizados por ruido blanco Gaussiano (AWGN), tanto el codificador
como el decodificador corresponden a funciones que tienen como objetivo mapear
bits de informacion a senales reales, mientras que las sefiales recibidas se mapean a
bits de informacion respectivamente. En [7], indican de forma general que el principal
reto que se tiene al momento de disenar un buen cddigo es lograr una baja tasa de

error y que sea eficiente en términos de su complejidad computacional.

Tomando como referencia los trabajos presentados en [7] y [8], donde el enfoque
central es el analisis del BER, en este trabajo de Integracion Curricular se busca de
igual manera evaluar el desempefno de modelos neuronales de codificadores y de-
codificadores en términos de este parametro. Si bien un estudio comprensivo de la
complejidad computacional esta fuera de los objetivos primordiales de esta investi-
gacioén, se realiza la medicién de los tiempos de ejecucion sobre un mismo equipo

para diferentes codigos contemplados en este trabajo con el fin de observar la carga
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computacional. La Seccién 4.3, presenta una evaluacion experimental de los tiempos
de procesamiento en la funcién de codificacién/decodificacion de lotes de informacion
para los modelos de redes neuronales que presentaron resultados comparables con
codigos convencionales y las implementaciones de dichos cédigos. Esta evaluacion
permite contrastar la duracion de codificacion y decodificacion, de los modelos neu-
ronales y tradicionales, ejecutandose en un mismo equipo computacional (plataforma
Colab), y con ello, brinda una perspectiva del esfuerzo computacional de cada uno de

estos enfoques.

Si bien décadas de progreso en el campo de la teoria de codificacion han resultado
en el desarrollo de cédigos innovadores tales como los convolucionales, Turbo, LDPC
y polares, estos solo se acercan a los limites fundamentales de una comunicacion

confiable.

En particular [7] se enfoca en un canal AWGN candnico con retroalimentacion ruidosa
(inclusién de un canal de feedback), donde el simbolo que se recibe y;, luego se trans-
mite de regreso al codificador con un retraso de una unidad de tiempo por medio de
otro canal de ruido Gaussiano aditivo (aunque el escenario de retroalimentacion ideal
también puede ser considerado). Esta revision sera la referencia del planteamiento de
este trabajo de titulacién, donde se explora el uso de un BSC. Dada la disponibilidad
de un canal de retroalimentacion, el codificador puede emplear las transmisiones reci-
bidas mediante feedback para decidir de forma adaptativa que simbolo debe transmitir

a continuacion.

En [7] se sugiere que una estrategia natural para la creacién de un codigo con re-
troalimentacién es emplear una red neuronal recurrente RNN como codificador, esto
porque la comunicacion con retroalimentacion es un proceso secuencial. De esta ma-
nera tanto el codificador y el decodificador se presentan como dos modelos basados
en RNN'’s, siguiendo el principio fundamental de un auto-encoder, donde se entrenan
de manera simultdnea tomando en cuenta el intercambio de informacion en las dos di-
recciones mediante canales AWGN, donde la retroalimentacion es ruidosa. El objetivo
del entrenamiento es minimizar el error en la decodificacién de los bits de informacién.
Este enfoque requiere atravesar un proceso experimental para seleccionar de manera

cuidadosa varios de los elementos de disefio al construir, parametrizar y entrenar un
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modelo basado en RNN y que permite descubrir nuevos cédigos.

Los autores contemplan un escenario para una transmision a un rate de 1/3, en el
que se usa palabras codificadas en binario de longitud 50 bits, que corresponden a
los mensajes, y 100 bits adicionales que se generan como redundancia mediante el

codificador.

A partir de un modelo base, los autores buscan diferentes maneras de obtener una
mejora de rendimiento teniendo en consideracion un esquema de codificacién para
canales con retroalimentacién. Esto induce a un planteamiento de dos fases en la
etapa de codificacion, en la primera fase solo se envia un bloque de simbolos corres-
pondientes a la misma palabra a ser transmitida, para después, transmitir un cédigo
basado en la retroalimentacién, el mismo que es generado mediante un modelo de
RNN. De esta manera, el c6digo solo necesita disefiarse para la segunda fase. En
[7], se lleva a cabo un proceso, donde se plantea un esquema base y el cual va ob-
teniendo mejoras progresivas. En el primer esquema experimental propuesto, no se
tiene mas que el encoder y decoder disefiados con una capa RNN y una capa lineal
de salida con su respectiva funcién de activacién. En un segundo esquema propues-
to, se realiza una mejora que denominaron zero padding, en la que se envian bits
adicionales en respuesta a la observacién de resultados donde los ultimos bits tenian
un menor rendimiento en cuanto al BER (puesto que no contaban con feedback se-
cuencial), por ello, al agregar unos bits irrelevantes al final de cada palabra suponian
que podrian obtener una mejora en ese sentido. Un tercer esquema propone el uso
de una capa adicional de pesos promedios la cual mejora de manera general el BER
y finalmente, agregan una capa adicional la cual realiza un balance del BER entre los

primeros y ultimos bits.

Las mejoras de rendimiento se van construyendo sobre el esquema base de codi-
ficador y decodificador, consiguiendo asi una red neuronal balanceada que genera
buenos resultados. En la Figura 2.14, se observa el resultado del BER en funcién del
SNR de cada una de las pruebas realizadas de la red neuronal y también la compa-
racién con algunos cédigos convencionales para el mismo modelo de canal objeto de

dicho estudio.
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Figura 2.14: BER en funcién del SNR [7], © 2020 |IEEE.

En La Figura 2.14, se observa que las mejoras en la arquitectura de los modelos
neuronales consiguen una reducciéon mayor del BER, tal como se mencioné anterior-
mente. De igual manera, en La Figura 2.15, se observa el BER por bit transmitido y
también se puede presenciar la evidente mejora con los distintos ajustes en el esque-
ma base.
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Figura 2.15: BER por bit [7], © 2020 IEEE.

De manera interesante, la metodologia de prueba y analisis que adoptan para poder ir
dando diferentes estructuras a la red, resulta en mejoras progresivas de los resultados

gue se esperan.
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Por ultimo, en [7], llevan a cabo una interpretacién de los resultados obtenidos, con
el fin de buscar una explicacién sobre el cddigo descubierto por el modelo basado en
RNN. Los autores atribuyen la segunda fase, en la que el codificador esta enfocado en
mejorar los bits de informacion dafiados por el ruido en la primera fase y un compor-
tamiento particular, en la que los bits componentes del cédigo responden a un patrén
que depende de la informacién pasada y presente. El esquema de codificacion de dos
fases propuesto tiene como objetivo corregir los problemas causados por el ruido que
se introduce en la primera fase. Para la segunda fase el codificador puede aprender a
transmitir informacién buscando ayudar al decodificador en la correcta estimacion de

los bits que se danaron por efectos del ruido.

La Figura 2.16, muestra que los bits de redundancia creados por el codificador res-
ponden a un comportamiento esencialmente determinista que se asimila a una fun-
cion Relu. Los bits ¢, ; y cr2 se generan en funcion del ruido percibido y del bit ¢,

transmitido en la primera fase del codigo.

-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3

Figura 2.16: Reaccidn de bits de paridad generados por la red [7], © 2020 |IEEE.

Estos resultados también evidencian que el codificador hace uso de la memoria del
modelo RNN, sugiriendo que el cddigo explota las caracteristicas esenciales de un
buen cédigo de retro-alimentacion. Con base en este trabajo, se fundamenta los pun-
tos clave del desarrollo de este trabajo de titulacidén, pues la idea es evaluar de la
misma manera cdmo esta metodologia tiene efectos positivos sobre un modelo dife-

rente de canal, en particular sobre BSC.
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2.5.3. Otras arquitecturas basadas en Deep Learning y feedback

En [8], se continua una linea de investigacion similar a la propuesta en [7], pero con
una nueva arquitectura de codificacién de errores. La propuesta esta basada en el
uso de las DNN para canales con retroalimentacion, que se denomina Deep Exten-
ded Feedback (DEF). Este tipo de codificador envia la secuencia correspondiente a la
secuencia original seguida de una secuencia de simbolos redundantes los cuales es-
tan generados en funcion del mensaje y de las observaciones de las salidas del canal
de feedback que son enviadas hacia el transmisor. Estos codigos DEF generalizan
Deep Code, pues los simbolos de paridad son producidos por observaciones del ca-
nal durante intervalos de tiempo mucho mas largos para lograr mejorar la capacidad
de correccién de errores y también se emplean formatos de modulacién los cuales

aumentan la eficiencia espectral.

En sistemas de codificacion convencionales, la correccidén de errores se logra con el
uso de codigos binarios lineales, combinados con mecanismos de retransmisién tal
como Hybrid automatic repeat request (HARQ). Lamentablemente, el uso de mensa-
jes simples de ACK/NACK en HARQ no aprovecha completamente el canal de re-
troalimentacién, puesto que no hace un uso eficiente del mismo. Generalmente los
codigos que hacen un uso completo de la retroalimentacion logran un rendimiento
mejorado en comparacion con cédigos convencionales, sin embargo, siempre debe
considerarse la calidad del canal de retroalimentacion, el mismo que en la préctica,

no puede ser perfecto (noiseless).

La obtencion de buenos codigos para canales con retroalimentacion generalmente
es un problema notoriamente dificil. Varios métodos de codificacién para canales con
retroalimentacion han sido propuestos, sin embargo, todas las soluciones conocidas
no logran el rendimiento que se prevé o exhiben una complejidad inasequible. Re-
cientemente, se ha obtenido progreso significativo aplicando métodos de aprendizaje
automatico, donde el codificador y decodificador se implementan como dos DNN se-
paradas. Los coeficientes de las DNN son calculados mediante un proceso de entre-
namiento de codificador que se realiza mutuamente. El nuevo c6digo que esta basado
en DNN para canales con retroalimentacion denominado DEF y documentado en [8]

esta basado en la extensién de la retroalimentacién, esto consiste en extender la en-
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trada del codificador para incluir versiones retrasadas de las sefiales de retroalimen-
tacion. De esta manera, el codificador DEF comprende la sefial de retroalimentacion
mas reciente y un conjunto de sefales de retroalimentacion pasadas dentro de una

ventana de tiempo.

El codigo DEF combina diferentes arquitecturas de redes neuronales recurrentes, ta-
les como RNN, GRU y LSTM . Los principales beneficios del codigo DEF incluyen
una mejor capacidad de correccion de errores que se obtiene a través de la extension
de la retroalimentacién y una mayor eficiencia espectral gracias al uso de modulacio-
nes Quadrature Amplitude Modulation (QAM) /Pulse Amplitude Modulation (PAM). Asi
mismo, se evalua canales que tienen retroalimentacion con ruido y sin ruido. En la pri-
mera fase de este codigo DEF el mensaje se convierte en una secuencia de simbolos
reales y se transmite. El receptor los recibe con ruido y los devuelve al transmisor
colocando mas ruido (ya que el canal de feedback no es perfecto). El codificador DEF
emplea un modulador QAM /PAM y un Parity Symbol Generator (PSG) que usa re-
des neuronales como RNN, GRU o LSTM para poder realizar el calculo de simbolos
de paridad partiendo de observaciones del canal en periodos de tiempo mas largos.
El decodificador por su parte DEF emplea una red neuronal recurrente bidireccional
para llevar a cabo el mapeo de los simbolos recibidos al original, logrando mejorar la

proteccién contra errores distribuidos de manera desigual.

Naturalmente, las dos redes DNN (codificador + decodificador), son entrenadas en
conjunto. Los bloques de mensajes que se transmiten se generan aleatoriamente.
El optimizador Adaptive Moment Estimation (ADAM) actualiza los coeficientes de las
DNN empleando la funcién Binary Cross Entropy (BCE). La tasa de aprendizaje al
principio es 0.02 y disminuye a la décima parte luego de 103 bloques de mensajes del

conjunto de entrenamiento.

Algunos de los resultados obtenidos por el cédigo planteado en [8] se muestran en la
Figura 2.17, donde se ilustra que el cdédigo DEF con entrada del codificador extendida
tiene un mejor rendimiento que Deep Code. Los codigos DEF-LSTM tienen el mejor

rendimiento entre los cddigos evaluados.
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Figura 2.17: Resultados de rendimiento entre Deep Code, cédigos DEF, Deep Code
basado en LSTM y cddigos DEF-LSTM [8], © 2021 IEEE.

En relacién a la estabilizacion del entrenamiento, habitualmente se emplea un conjun-
to grande de datos para estabilizar y acelerar la convergencia, asi mismo, un meca-
nismo de retroceso es el que descarta las actualizaciones de pesos si la pérdida es

mayor que la obtenida en la anterior iteracion.

En [8] se menciona con base a observaciones experimentales que una posibilidad
de mejorar el rendimiento de un modelo neuronal es realizar el entrenamiento con
mensajes de longitud mayor a los mensajes que se utilizaran durante la evaluacion
del modelo. Especificamente, utilizar durante el entrenamiento mensajes con el do-
ble de longitud de los mensajes empleados en la evaluacion, resulta beneficioso, por
ejemplo, con mensajes del lote de prueba de 50 bits de longitud y una longitud para
mensaje en el entrenamiento de 100 bits. No obstante, este beneficio se desvanece
cuando el entrenamiento involucra lotes de mensajes sustancialmente mas grandes,
que poseen mas palabras, por lo que finalmente se sugiere que tanto los mensajes
del lote de entrenamiento, como los del lote de prueba tengan la misma longitud y se
opere con lotes de palabras extensos (por ejemplo, en el orden de las 20000 pala-
bras). Este hecho se ratifica en [7] (Seccién 4), donde también se estudia los efectos
de la longitud de los mensajes durante las fases de entrenamiento y prueba. La moti-
vacion de estudiar estos efectos se fundamenta en los estandares de comunicaciones

inalambricas actuales donde existe una cantidad importante de longitudes de bloque
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que son de interés practico; por ejemplo, en el estandar LTE los bloques pueden te-
ner una longitud entre 40 y 6144 bits. Observe la Figura 5 (centro) en [7], donde se
presenta el desempeno de un sistema de codificacién basado en redes neuronales,
empleando mensajes con una longitud de palabra de 50 y 500 bits, en un escenario
con retroalimentacion sin ruido para canales AWGN. El BER no experimenta mejo-
ras considerables ante un incremento de la longitud de los mensajes a codificar. Sin
embargo, esta observacion no puede generalizarse de manera absoluta puesto que
si es posible disenar codigos que mejoran BER a medida que la longitud de bloque
aumenta. Un ejemplo de este hecho son los Turbo Cbodigos, los cuales poseen una
tasa de error que disminuye exponencialmente con la longitud de bloque, tal como se

menciona en [7].

2.5.4. Un enfoque Deep Learning para el decodificador

En [52] se propone un escenario distinto a los descritos en las anteriores subseccio-
nes, pues aqui se hace uso de redes neuronales solo en el decodificador, mientras
que en la etapa de codificacion se puede usar cualquier método convencional, como
codificacion con turbo cédigos, codigos convolucionales o LDPC . Un enfoque en la
misma linea de trabajo se desarrolla en [51] donde se usan métodos de aprendizaje

profundo para mejorar la decodificacion de codigos lineales .

En [52] se plantea usar una Doubly Residual Neural (DRN) para la decodificacién de
canales. Basicamente la arquitectura de la DRN consta de dos partes, una CNN y una
Fully Connected Network (FCN). La CNN es empleada para procesar la entrada de la
red, que es un vector de mensajes de canal y la FCN en cambio se usa para generar
la salida de la red, y corresponde a un vector de bits decodificados. La idea es poder
integrar tanto la entrada residual como el aprendizaje residual en la arquitectura de la

red neuronal y de esta forma poder mejorar el rendimiento de la decodificacion.

Detallando un poco mas la arquitectura de la DRN se puede decir que esta emplea la
entrada residual y el aprendizaje residual en ambas partes de la red. En la CNN, la
entrada residual se junta con la entrada original antes de la primera capa convolucio-
nal, en cambio, en la FCN, la entrada residual se agrega a la entrada de la primera

capa completamente conectada. Asi mismo, el aprendizaje residual se usa en todas
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las capas de la red, esto permite que la red se centre solo en aprender las carac-
teristicas relevantes de los datos. Para el entrenamiento de la DRN se emplea un
algoritmo de descenso de gradiente estocastico o Stochastic Gradient Descent (SGD)

con retropropagacion.

Mientras se ejecuta el entrenamiento, la funcion de pérdida de la red es minimizada.
Esta funcion es la que mide la diferencia entre la salida deseada y la salida actual de la
red. Los resultados experimentales dejan ver que el DRN supera a los decodificadores
neuronales actuales en términos de rendimiento de decodificacidn, tamafo de modelo
y costo computacional. Particularmente, el uso de DRN en el decodificador logra un
BER mas bajo que otros decodificadores neuronales en varios tipos de codigos de
canal, entre ellos incluidos los cédigos LDPC, Polar y BCH. Esto resulta interesante
para nuestra propuesta debido a que muestra una arquitectura diferente e igualmente

optima para la transmision de datos.

En [53] se presenta una vision general del uso de distintas técnicas de Deep Learning
para la codificacion de canales, este documento es muy interesante porque logra dife-
renciar bajo qué condiciones las diferentes técnicas pueden funcionar eficientemente,
mientras que en [54] se habla sobre la arquitectura interna de las redes neuronales.
Especificamente se indica que las DNN son aplicables para la decodificacién de se-
cuencias binarias en la codificacion de canales. Pues como se sabe, a través de un
canal viajan unos y ceros, que debido a interferencias o ruido pueden cambiarse y
la idea es que el decodificador DNN sea capaz de decodificar estos datos, en vez
de usar decodificadores tradicionales. Para ello, el decodificador con DNN tiene una
etapa de entrenamiento donde va ajustando sus pesos y bias para lograr minimizar el

error de prediccion entre la secuencia original y la secuencia decodificada.

Por otro lado, las CNN se pueden usar para la decodificacién de secuencias de sim-
bolos. Esto se debe a que las CNN son capaces de aprender patrones complejos en
los datos de entrada y de generalizar a datos nuevos. Asi mismo, pueden manejar
grandes cantidades de datos y procesarlos en paralelo, esto los hace adecuados para

aplicaciones en tiempo real.

En términos generales, el uso de estas técnicas en la codificacién de canal pue-

den mejorar en gran medida el rendimiento de decodificacion, reducir la complejidad
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computacional, el consumo de energia y mejorar la latencia de procesamiento. Las
CNN pueden ser empleadas especialmente para tratar con la distorsion no lineal del
canal, puesto que son capaces de extraer caracteristicas relevantes de los datos de
entrada y poder compensar esas distorsiones. El uso de RNN para procesar datos
secuenciales se ha vuelto atractivo en anos recientes debido a que tienen la capaci-
dad de recordar informacion de estados anteriores y emplearlo para procesar datos
futuros, esto hace que sean utiles para tareas de procesamiento de datos secuencia-
les. Las RNN son capaces de aprender a modelar la estructura recurrente de turbo
codigos o cddigos convolucionales y esto permite mejorar la precisién en la decodifi-

cacion.

Finalmente, en la actualidad el uso de técnicas de Deep Learning ha aumentado de-
bido al gran poder computacional que se ha desarrollado y son métodos que van
tomando fuerza para ser aplicados en la transmisiéon de informacion. En ese contex-
to, se puede encontrar investigaciones relacionadas con diferentes arquitecturas que
contribuyen a la propuesta de este trabajo de titulacién y que marcan un camino de

investigacion con pasos bien definidos para alcanzar diferentes objetivos.

2.5.5. Python como herramienta para la implementacion de redes neuronales

Desde su creacidn, el lenguaje Python ha demostrado ser una herramienta muy poten-
te para el desarrollo de la ciencia de datos. Esto se debe principalmente a la incursion
de la comunidad en el desarrollo de paquetes que faciliten la implementacién de redes
neuronales. Segun [55], el lenguaje de programacion mas empleado en el &mbito de
la IA es Python. Ademas de ser una herramienta de cédigo abierto u open-source,

Python ofrece todas las funcionalidades para el desarrollo de este trabajo.

En [56], se indica que actualmente coexisten varias librerias para la implementacién
de modelos de aprendizaje automatico. A pesar de ello, hay tres que destacan estas

corresponden a: Keras, TensorFlow y PyTorch.
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Busquedas realizadas de distintas herramientas para desarrollo de |1A en Python a nivel
global.
120

Py Torch

TensorFlow
S Keras
— 5Py
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Figura 2.18: Tendencias en el uso de librerias de IA en Python del 04/06/2024, gene-
rado con Google Trends [9].

En funcion de la Figura 2.18, se puede notar que Pytorch' es actualmente la libreria
mas usada y analizada a nivel mundial, lo que se empareja con las revisiones que los
autores de este trabajo realizaron para seleccionar y estudiar distintas librerias, con-
cluyendo que existe una comunidad mas desarrollada y madura entorno a PyTorch.
Es asi que este conjunto de librerias fue seleccionado como la herramienta base para
el desarrollo de nuestro trabajo de titulacion. A continuacion se revisa brevemente el
funcionamiento y uso general de este Framework para el desarrollo de redes neuro-

nales, ademas de destacar sus cualidades principales.

PyTorch corresponde a una biblioteca disefiada para desarrollos en lenguaje Python,
la cual permite la construccion de proyectos relacionados con el aprendizaje profundo
[11]. Se caracteriza por tener gran flexibilidad y permitir expresar modelos de apren-
dizaje profundo en un estilo semejante a lo esperado en cuanto sintaxis de Python.
De hecho, la accesibilidad y facilidad de uso es lo que ha llamado la atencién de la
comunidad cientifica, convirtiéndose asi en una de las herramientas mas empleadas

y preferidas dentro de la gama de aplicaciones de aprendizaje profundo.

Este framework brinda una excelente introduccion para el aprendizaje profundo, esto

hace que sea adecuado para contextos educativos y profesionales. La sintaxis clara,

'En [57], indican que Pytorch es una libreria de codigo abierto, que tiene como idioma base Python y
cuyo objetivo es ser empleada en proyectos de aprendizaje automatico. Esta especializada en calculos
de tensor, aceleracion de GPU y diferenciacién automatica.
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API simplificada y la facilidad de depuracion convierten a PyTorch en una excelente
opcién para principiantes. Adicionalmente, el nucleo de informacion de PyTorch es-
ta compuesto por elementos conocidos como tensores, que corresponden a arreglos
multidimensionales similares a los arrays de NumPy. Los tensores se diferencian de
otros tipos de elementos porque con ellos se pueden realizar operaciones matema-
ticas aceleradas en hardware especializado, esto permite que el proceso de disero
y entrenamiento de las redes neuronales sea sencillo tanto en maquinas individuales

como en recursos de computacién paralela.

En el contexto del aprendizaje profundo, Pytorch permite abordar tareas complejas,
comprendiendo operaciones de traduccidén automatica, identificacion de objetos en es-
cenas desordenadas, etc. Para la implementacion de estas aplicaciones inteligentes,
se necesitan herramientas flexibles, eficientes y capaces de abordar la variabilidad
en datos de entrada. Por ello, algunas de las razones por las que PyTorch es una

herramienta que cumple con esas caracteristicas son las siguientes:

» Simplicidad: PyTorch es sencillo de aprender, usar, extender y depurar, esto lo

transforma en accesible para investigadores y profesionales.

= Naturalidad en la programacion: PyTorch usa como su atomo de datos el Tensor
para el manejo de numeros, vectores, matrices o arreglos en general, junto con
funciones las cuales permiten operar sobre ellos. Ademas permite la programa-

cion incremental e interactiva, muy similar a Numpy.

» Calculo acelerado: Esto se refiere a una opcion integrada en la libreria la cual
permite la aceleracion mediante el uso de Graphics Processing Unit (GPU), con-
siguiendo de esta forma aumentos significativos en la velocidad de ejecucion y

procesamiento a comparacién con calculos en Central Processing Unit (CPU).

» Optimizacién numérica: Brinda facilidades para la optimizacion numérica para
expresiones matematicas genéricas y cruciales para el entrenamiento en apren-

dizaje profundo.

» Alta performance: PyTorch es un framework de alto rendimiento con soporte de

optimizacién para la computacion cientifica.

» Expresividad: Permite implementar modelos complejos sin la necesidad de im-
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poner una complejidad indebida, o que se traduce en una interpretacion de

ideas sencilla en cédigo de Python.

= Transicién a produccidn: A pesar que en sus inicios PyTorch estaba centrado
en la investigacion, en la actualidad incluye un entorno de ejecucién de alto
rendimiento en C++ para lograr desplegar modelos sin depender directamente

de Python, ademas admite el disefio y entrenamiento de modelos en C++.

Por otro lado, [10] provee una visidn mas sencilla acerca de PyTorch, pues plantea a
este Framework, como el resultado de la suma de tres componentes principales, tal

como se muestra en (2.25).

PyTorch = Numpy + Autograd + GPU (2.25)

PyTorch sigue una interfaz similar a la de Numpy, y recordando que Numpy es la
libreria por excelencia para la ciencia de datos en Python, se puede establecer que, si
se conoce el uso de Numpy, entonces, la curva de aprendizaje de PyTorch tendra una
pendiente no tan elevada y no deberia implicar gran complejidad. De esta forma, la
mayor parte de los conceptos que se manejan sobre Numpy pueden aplicarse sobre
PyTorch, esto incluye las operaciones matematicas, indexado y troceado, iteracion,

vectorizacidn y broadcasting.

Si bien, la facilidad de uso y la funcionalidad de una estructura de datos eficiente
que brinda PyTorch es muy relevante, la caracteristica mas importante de este Fra-
mework es el Autograd. El Autograd ofrece la funcionalidad de calcular derivadas de
forma automatica con respecto a cualquier tensor. Esto brinda un gran potencial para
el disefio de redes neuronales complejas y también para el entrenamiento empleando
algoritmos de gradientes sin la necesidad de calcular todas las derivadas de forma
manual. Para realizar estas operaciones, PyTorch construye de forma dinamica un
grafo computacional. Es decir, cada vez que se efectia una operacion sobre uno o
varios tensores, éstos se agregan al grafo computacional junto a la operacién en con-
creto. De esta forma, si se desea calcular la derivada de cualquier valor con respecto
a cualquier tensor, lo Unico que se debe realizar es aplicar el algoritmo de retropro-

pagacion en el grafo. El algoritmo de retropropagacion es la regla de la cadena de la
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derivada.

La mejor manera de entender acerca de la generacion del grafo computacional y el
algoritmo de retropropagacion, es mediante un ejemplo, para ello, se explica el desa-
rrollo de [10]. Tomando como ejemplo la Figura 2.19, se observa algunas operaciones

que se realizan con los tensores principales z, z e y.

Figura 2.19: Grafo del ejemplo descrito, imagen adaptada de [10].

Arriba puede observarse con facilidad que p, es el resultado de = + y y que luego el
tensor intermedio p es empleado para obtener el resultado final ¢ = p x z. Entonces,
cada vez que se aplica una operacion sobre un tensor que tiene activada la opcion
de Autograd, PyTorch ira construyendo y actualizando el grafo computacional. Lo que
se presenta en la Figura 2.19, es como se observaria el grafo computacional en este
ejemplo especifico. Luego, simplemente se debe correr el algoritmo de retropropaga-
cion implementado en PyTorch y con esto ya se podria acceder a las diferentes deri-
vadas del grafo. El grafo computacional sin duda es una herramienta estupenda para
el disefio de redes neuronales de complejidad arbitraria. Pues simplemente con una
funcion, gracias al algoritmo de retropropagacion, se puede hacer el célculo de todas
las derivadas de forma sencilla y realizar la optimizacién del modelo con el algoritmo
de gradiente escogido. De esta forma, con la facilidad de uso de Numpy y la funcién
de Autograd se tiene todo lo necesario para disenar y entrenar redes neuronales. Sin
embargo, surge un nuevo problema, puesto que las redes neuronales necesitan data-
sets (0 conjuntos de datos) de informacidn grandes para su entrenamiento y prueba,
el manejo de esta informacion mediante CPU es muy lento por lo que es habitual su

implementacién sobre un GPU.
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Un hecho al momento de enfrentarse al desarrollo de una red neuronal, es que la
operacion que mas se realiza es la multiplicacién de matrices y esto representa un
problema en el caso de que dichas matrices sean muy grandes. Es aqui donde surge
la necesidad de hardware especializado en acelerar ese tipo de operaciones, esta
tecnologia no es mas que las GPU. Puesto que las GPU se encuentran originalmente
disenadas para acelerar los calculos mencionados necesarios para la renderizacion
de escenas tridimensionales en video, entonces, son también utiles para entrenar
redes neuronales, debido a que, en esencia las operaciones tanto para renderizacion
como para entrenamiento de redes neuronales son las mismas, es por ello, que este
tipo de hardware ha ganado un nuevo tipo de uso en aplicaciones de Deep Learning.
Es muy importante destacar que el papel que ha tenido las GPU en el desarrollo de
la eficiencia al momento de realizar estos calculos ha sido clave para la revolucion del

Deep Learning y el aumento de sus aplicaciones en la ultima década.

Otro de los componentes clave de PyTorch mencionados en [11], es que éste po-
see seis herramientas clave que apoyan al desarrollo de proyectos de aprendizaje
profundo. Los tensores que ya han sido sefialados y sin duda componen un punto
importante; Autograd que es la caracteristica principal de este Framework, puesto
que genera de manera automatica un grafo computacional de gradientes y agrega
algunos mas. Uno de ellos es la construccién de redes neuronales, para ello existe
el médulo “torch.nn”, el cual brinda capas neuronales comunes, funciones de activa-
cién y pérdida, las cuales son fundamentales para la construcciéon y entrenamiento
de los modelos de redes neuronales. Otro de los componentes es la carga de datos,
esto hace referencia a que PyTorch facilita el procesamiento y carga de informacion
por medio de las clases “Dataset” y “Datal.oader” en “torch.utils.data”, estos permiten

transformar los datos personalizados en tensores y cargarlos de forma eficiente.

El entrenamiento de los modelos es otro componente clave, aqui el ciclo de entre-
namiento, por lo general se implementa como un bucle tipo for en Python, se realiza
la evaluacion del modelo con los datos de entrenamiento, se calcula la pérdida y se
ajustan parametros del modelo empleando optimizadores del modulo “torch.optim”. El
ultimo componente de PyTorch es la distribucion y produccién, pues este framework

es capaz de soportar el entrenamiento distribuido en multiples GPU o maquinas, es-
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to mediante el uso de “torch.nnparallel.DistributedDataParallel” y “torch.distributed”.
Para efectuar el despliegue de modelos, PyTorch es capaz de exportar modelos em-
pleando TorchScript o también por medio de un formato estandar como Open Neural
Network Exchange (ONNX), permitiendo de esta manera su integracién con varias

aplicaciones y dispositivos.

Asi mismo, en [11], se establece la estructura basica que posee un proyecto de Py-
Torch. El primer punto siempre es la “Fuente de Datos”, por lo general los datos
provienen de algun tipo de almacenamiento y antes de que estos datos lleguen al
modelo, necesitan un procesamiento considerable, pues estos datos deben ser con-
vertidos en tensores que PyTorch pueda manejar empleando la clase “Dataset” en

“torch.utils.data”.

El siguiente parametro en la estructura del proyecto es la carga de datos en parale-
lo, para evitar la latencia de acceso, PyTorch emplea la clase “DatalLoader”, la cual
permite cargar datos en paralelo empleando multiples procesos, asegurando de esta

forma que los datos se encuentren listos para el bucle de entrenamiento.

El tercer punto en la estructura basica es el modelo no entrenado, aqui se lleva a cabo
la construccidn del modelo haciendo uso de los modulos “torch.nn”; con esto se puede
construir modelos de redes neuronales, incluyendo capas que estdn completamente

conectadas, capas convolucionales, funciones de activacion y pérdida.

El bucle de entrenamiento es la siguiente seccion a tratar en la estructura del pro-
yecto, aqui en cada iteracion del bucle de entrenamiento, el modelo es evaluado con
los datos cargados. Seguidamente, se compara la salida del modelo con los objetivos
empleando funciones de pérdida de “torch.nn”. Después se lleva a cabo el proceso
de optimizacion del modelo, empleando los optimizadores de “torch.optim”, los para-
metros de la red son ajustados para minimizar la pérdida, esto con ayuda del motor

Autograd.

El quinto punto en la estructura es el entrenamiento distribuido, que sin duda se en-
cuentra en paralelo al punto cuatro, pues en caso de modelos muy grandes, se puede
hacer uso de las herramientas para un entrenamiento en paralelo, y de esta manera

hay como distribuir el proceso en multiples GPU o maquinas.
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Una vez que este proceso se ha completado se tiene el modelo entrenado, de tal
forma que contiene los parametros optimizados para llevar a cabo la tarea especifica

que se practicé en el entrenamiento.

Como ultimo punto en la estructura de un proyecto de PyTorch esté el despliegue en
produccion, donde se sefalan dos acciones: la primera es el despliegue del modelo,
que se refiere a que el modelo se puede desplegar en un servidor, puede ser ex-
portado a un motor en la nube o integrado en aplicaciones mas grandes; la segunda
es que PyTorch permite la exportacién de los modelos empleando TorchScript para
su ejecucién independiente de Python en formato ONNX para interoperabilidad. Toda
esta estructura de proyecto se puede ver en la Figura 2.20, donde de manera grafica

se muestra cOmo se correlaciona cada punto de la estructura.
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Figura 2.20: Estructura de un proyecto de PyTorch, imagen adaptada de [11].

Esta claro que el Deep Learning tiene una amplia gama de aplicaciones, como la
identificacién de objetos, clasificacién, toma de decisiones, etc. Sin embargo, para
cada escenario, la seccion de entrenamiento y prueba es muy diferente y es aqui
donde se presenta la complejidad de lograr fusionar las comunicaciones con este tipo

de técnicas.

En [58], tienen como objetivo emplear técnicas de Deep Learning para acotar un co6-
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digo LDPC, aprovechando que un grafo bipartido posee una estructura similar a una
red neuronal artificial. La idea general de este trabajo es conseguir que las redes
neuronales aprendan a decodificar un cédigo LDPC de manera mas eficiente, dado
una matriz H, sin la necesidad de consumir una gran cantidad de recursos ni rea-
lizar tantas iteraciones. Especificamente en el contexto de la codificacién de canal,
utilizar Deep Learning presenta desafios en consecuencia a la complejidad del entre-
namiento. Por ello, la preinicializacidén de la estructura de la red puede ser capaz de
reducir de forma significativa el tiempo de entrenamiento, tal como sugiere la técnica
de Deep Unfolding. En esta propuesta se emplea redes de tipo Feed-Foward, en don-
de la informacion fluye de una capa a otra sin conexiones de retroalimentacion. Para
la optimizacion de los parametros de la red, los autores sefalan que el método mas
comun es el descenso de gradiente, esta es una técnica iterativa para encontrar el
minimo local de una funcién diferenciable. El optimizador ADAM es una variacion del
descenso de gradiente el cual mejora la convergencia adaptando de forma implicita el

entrenamiento.

Para la definicion de la red hace uso de PyTorch, como una libreria adecuada gracias
a sus clases y métodos especificos para la implementacion. En este framework, toda
red neuronal es definida mediante una clase que hereda de “nn.Module”. Esta clase
contiene dos métodos principales, uno es el “Init”, aqui se definen las capas de la
red, es decir, pesos y sesgos junto con sus respectivas dimensiones. También se
inicializan las capas de la red considerando las dimensiones necesarias y también se

puede implementar métodos de inicializacion especificos.

Un segundo método, corresponde a “Forward”, también denominado propagacién ha-
cia adelante, que en general define cobmo se pasan los datos a lo largo de la red
desde la capa de entrada hasta la capa de salida. Asi mismo, se realiza una iteracion
sobre las capas, aplicando funciones de actualizacion de nodos variables y nodos de
chequeo en cada iteracidén para este caso particular. El punto del método Forward es
caracterizar el comportamiento de entrenamiento de la red, es decir, guiar de alguna
manera la interaccion interna de la informacion para forzar el aprendizaje y reducir

tiempos de entrenamiento.

En [58], hacen modificaciones respectivas para su caso de estudio, por ejemplo, en lu-
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gar de emplear Neural Network (NN) convencionales, aqui se mejora un grafo existen-
te con pesos entrenables, asignando un peso entrenable a cada uno de los mensajes
empleando el grafo de Tanner suave. Asi mismo, aplican la técnica de Deep Unfol-
ding, la cual consiste en desglosar las iteraciones de un método de inferencia por en
una estructura por capas analoga a una NN, consiguiendo de esta manera desatar
los parametros del modelo a través de las capas. De esta manera se expande el grafo

de Tanner, interpretando las actualizaciones de nodos como capas de una NN.

Para la implementacion en PyTorch, se define una matriz H de un LDPC, se genera la
clase poday por ultimo la clase Net. En la clase Net es donde se definen los dos méto-
dos principales antes mencionados con las funcionalidades respectivas. Basicamente
el experimento de codificacion realizado en [58], se llevé a cabo en un canal AWGN,
donde empleando redes neuronales, obtuvieron una mejora en el BER a compara-
cién de trabajos relacionados. Esto deja ver de forma directa, que el uso de PyTorch
evidentemente es util para la implementacion de escenarios con redes neuronales,
ademas, deja ver la estructura fundamental en cuanto a sintaxis para el uso efectivo

de esta libreria.

Asi como [58], existen diversos articulos que hacen uso de PyTorch como herramienta
para la implementacién de redes neuronales en diferentes aplicaciones. Un ejemplo
se presenta en [59], donde se investiga como el Deep Learning es capaz de mejorar
el rendimiento en la capa fisica de las comunicaciones inalambricas, en especifico
la estimacion de canales. Dicho trabajo propone realizar un estimador de canal que
emplea una red neuronal, con el fin de operar en un entorno de canal de desva-
necimiento Rayleigh que varia en el tiempo. Para el desarrollo y entrenamiento del
estimador hacen uso de PyTorch, y dicho estimador se desarrolla y entrena mediante
datos simulados los cuales representan el comportamiento del canal de Rayleigh. De
esta forma la red se ajusta para rastrear de forma dinamica el estado del canal sin la

necesidad de requerir un conocimiento previo del modelo de canal o sus estadisticas.

Luego de todo el proceso de entrenamiento y prueba, los resultados indican que el
estimador basado en NN posee un mejor rendimiento de Mean Squared Error (MSE)
a comparacion de algoritmos tradicionales y otras arquitecturas de Deep Learning.

Esto implica que el estimador es capaz de prever con mayor precision el estado del
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canal.

Asi mismo el estimador posee mayor robustez frente a diferentes densidades de pilo-
tos. Lo que significa que consigue mantener su rendimiento aunque existan variacio-

nes en la cantidad de informacién referencia disponible para la estimacién del canal.

Finalmente, tras presentar diversos ejemplos, se observa las capacidades que posee
PyTorch y justifica la eleccion de esta herramienta para el desarrollo de nuestro tra-
bajo, ademas, al usar esta libreria se logra de forma directa que el desarrollo tenga
mayor visibilidad, puesto que es el Framework para implementacién de redes neu-
ronales con mas uso en la actualidad, esto hard que otras personas se encuentren

interesadas en comparar sus resultados con los presentados en este documento.
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Capitulo 3 Metodologia

3.1. Introduccion y generalidades

Como se evidencid en la revision del estado del arte presentada en el Capitulo 2,
las redes neuronales han demostrado resultados prometedores en el campo de la
codificacion de canal frente a cddigos convencionales. Sin embargo, la investigacion
se ha orientado mayormente a canales caracterizados por ruido aditivo Gaussiano.
AWGN. A partir de este hecho, nace la motivacion de llevar esta aplicacion de Deep
Learning a uno de los canales mas conocidos y estudiados en la teoria de codificacion,

este es el BSC.

El proceso para llevar a cabo nuestro objetivo se basa en tomar un enfoque experi-
mental, en el que se puede proponer diferentes modelos y arquitecturas para descubrir
y obtener modelos éptimos de redes neuronales que puedan ser aplicables a un BSC
en el contexto de las dificultades propias que este canal conlleva para un codificador,
dada sus condiciones propias de funcionamiento y el tipo de informacion que puede

ser introducida y obtenida del canal (bits con valores de 0 y 1).

En este sentido se han considerado dos escenarios de experimentacion: El primero
plantea el uso de un BSC sin retroalimentaciéon donde el codificador y decodificador,
que tienen arquitecturas de redes neuronales como eje central de funcionamiento, y se
entrenaran simultaneamente; por otro lado, se contempla un segundo escenario en el
que se busca evaluar las ventajas evidentes que ofrece un canal de comunicacién con
retroalimentacion, para esto se hara uso de algunas metodologias para la generacion
de cbdigos en canales que tienen esta caracteristica. Sin embargo, llevar a cabo esto

implica realizar un grupo de adaptaciones al primer escenario.

Para llevar a cabo el entrenamiento de las redes neuronales, se aplicara aprendizaje
supervisado, donde a partir del dataset original se aplicara la funcién de pérdida de
entropia binaria cruzada con la informacién que entregue el decodificador después
de haber atravesado el canal con cierta probabilidad de error ¢q. Luego de esto, se
contrasta los resultados con respecto a codigos convencionales seleccionados para
realizar la comparacién de rendimiento y se busca dar una interpretacion a los resul-

tados obtenidos con el uso de los codificadores y decodificadores basados en Deep
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Learning para comprender lo que la red neuronal ha descubierto.

3.2. Implementacion de Cédigos Convencionales

Como ya se menciond en la Seccién 3.1, la evaluacién de un cédigo descubierto me-
diante técnicas basadas en redes neuronales consiste en contrastar los resultados
con aquellos obtenidos mediante las técnicas de codificacion convencionales de me-
jor desemperio. Con este fin, se realizé un trabajo de investigacién, con el objetivo
de encontrar documentacion, librerias y ejemplos que permitan implementar cédigos
convencionales sobre un canal binario simétrico. El propésito fundamental es el de
de obtener graficas de BER frente la probabilidad de error de un BSC, para distintas
técnicas convencionales de codificacion de canal. Esto posibilitar4 poder realizar un
analisis comparativo con codificadores implementados por medio de redes neuronales

convencionales o recurrentes.

En el marco de este trabajo de titulacién se seleccionaron cddigos clasicos y muy
importantes en el area de la codificacién como son los convolucionales y los cédigos
Hamming, asi mismo, cddigos didacticos y baja complejidad de implementacién como
los cédigos de repeticion y algunas técnicas de codificacién de alto desempefio como

son los turbo cédigos y cédigos polares.

Con este grupo de técnicas clasicas, se pretende evidenciar la eficiencia que pueden
tener codigos generados mediante redes neuronales y analizar ventajas y desventa-
jas de su uso. A continuacion se presenta una breve revisidon de cada uno de estos

codigos, asi como detalles de su implementacién en el contexto de este proyecto.

3.2.1. Cddigos convolucionales

Los cddigos convolucionales, constituyen una de las aproximaciones clasicas a la
proteccion de errores. Estos se diferencian de los cédigos de bloque, debido a que el
codificador es un sistema con memoria. La literatura en el contexto de la evaluacion
de este tipo de codigos en el contexto de BSC es escasa, por lo que se opté por
la implementacién de un escenario donde se haga uso de este tipo de codificadores

para ver su comportamiento en el canal de interés. Con este fin, se utilizé la libre-
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ria “CommPy” creada por el investigador Veeresh Taranalli, y documentada en [60].
Esta libreria posee un conjunto de herramientas de codigo abierto, que implementan
algoritmos de comunicaciones digitales en Python, empleando algunas librerias tra-
dicionales como NumPy y SciPy. En la documentacion existen multiples ejemplos de
uso sobre el proceso de codificacion y decodificacion con el codificador convolucional.

A partir de estos ejemplos se genera el escenario de prueba descrito a continuacién:

Primero se define el modelo del canal binario simétrico, mediante una funcién que
tiene implementada la misma libreria. Luego de esto, se definen los respectivos pa-
rametros del codificador convolucional, como se detalla mas adelante. Antes de eso,
se debe destacar que la matriz generadora se describe matematicamente como se
indica en (3.1).

G(D)=[1+D* 1+ D+ D?] (3.1)

El primer parametro que se define es el tamafno de la memoria, que para este codi-
ficador se usa dos elementos de retardo. Luego se define en el programa la matriz
generadora del cédigo convolucional. Para ello se emplea las representaciones (en
base octal) de los polinomios generadores, en este caso “005” y “007”, esto se puede
comprobar en [61], donde se menciona brevemente las representaciones octales de
los polinomios generadores para una tasa de transmisién (rate) de 1/2. Luego de esto
se genera la estructura de la trama (Trellis), aqui se usa la libreria CommPy, ingre-
sando la memoria del codificador y la matriz generadora en la funcién “cc.Trellis” de

CommPy.

A continuacion, se establece una seccion con un nivel de generalidad superior: en pri-
mer lugar, se declara las probabilidades de prueba, es decir las condiciones del canal
que seran evaluadas. Para este fin se define un rango de probabilidades desde 0.0001
hasta 0.15, generando 20 puntos para obtener una cantidad de datos suficiente que
nos brinde una resolucion de informacidén adecuada. Acto seguido, se plantean algu-

nas variables relacionadas a los bloques de informacién para el proceso de prueba.

Para la evaluacion seleccionamos un numero de bloque correspondiente a 100000
palabras, de la totalidad del bloque se van tomando lotes mas pequefios de 100 pa-
labras de 50 bits, es decir, el proceso de tomar un lote y pasarlo por el escenario en

total se realiza 1000 veces en cada época. Para este caso, se ejecuta el experimento
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por 10 épocas, y en cada una se obtiene una medicién del BER promedio para ca-
da probabilidad de error evaluada en el BSC. Finalmente, todas estas mediciones se
promedian entre si para obtener la grafica de BER vs probabilidad con la posibilidad

de adicionalmente observar sus correspondientes intervalos de confianza.

Dentro del escenario de prueba, en primer lugar, los mensajes son codificados me-
diante la funcion “conv_encode", que recibe como parametros los 50 bits de informa-
cion y la estructura Trellis, con esto se tiene como resultado 100 bits y un residuo

debido al funcionamiento intrinseco de los codigos convolucionales.

Esta informacién codificada entra a la funcion de canal binario simétrico y se ve afec-
tada en funcion de la probabilidad. Acto seguido, la informacion es recibida por el
decodificador, el cual usa la funcién “cc.viterbi_decode” de la libreria CommPy para
la decodificacién, esta funcion, los bits que se reciben del canal, la estructura Trellis
del codificador y la profundidad de traceback que recomienda el ejemplo de uso. Con

esto el resultado es una palabra de 50 bits.

Para el calculo del BER se usa la funcién “hamming_dist” de la libreria para contar
el nUmero de errores por palabra. Esta funcion tiene como parametros el mensaje
original y el decodificado, de esta forma se va comparando y se van sumando los
errores encontrados. Después, simplemente se genera un cociente entre el total de
errores encontrados sobre el total de bits de bits de informacion enviados y se obtiene
el BER.

En esencia, este es el funcionamiento para el escenario con uso de codigos convolu-
cionales. Basicamente se realiza el mismo procedimiento para un codificador convo-
lucional de 1/3. La diferencia es que la matriz generadora cambia a la que se presenta

en la ecuacion 3.2 y también el numero de memoria a 3.
G(D)=[14+D+D*1+ D+ D?1+ D? (3.2)

La representacion octal de la matriz generadora para 1/3 es “007”, “007” y “005”, con
base en esto y la memoria, se sigue el mismo proceso para conseguir la construccion

del codificador y el decodificador Viterbi.
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3.2.2. Turbo cédigos

Otro de los cddigos convencionales utilizados para comparar los resultados obtenidos
con las redes neuronales corresponde a los turbo cédigos. Como se menciona en la
Seccion 2 donde se muestra algunos resultados de su rendimiento sobre un canal

AWGN, la documentacién sobre su uso en un canal binario simétrico es escasa.

Para generar y comprobar el desempefio de los turbo cddigos, este proyecto optd por
la libreria pyturbo, desarrollada por Paul David [62]. Esta libreria incluye cddigos re-
ferentes a un codificador turbo, decodificador turbo, un decodificador Trellis, un canal
AWGN vy también un ejemplo de su uso. Este ejemplo empieza generando un en-
trelazador aleatorio el cual es clave para, en base a este instanciar el codificador y
decodificador, posteriormente y para cada valor de SNR se generan vectores de bits
aleatorios, estos vectores pasan por el turbo codificador y después se transmiten por
el canal AWGN. Finalmente, se decodifica el vector recibido, y se calcula la tasa de

error de bit para cada valor de SNR.

Tomando en cuenta este ejemplo y la disponibilidad de esta libreria se cre6é un codigo
que se utilizara para la codificacion de mensajes y su transmision por medio de un
canal binario simétrico. El proceso de este codigo empieza por definir funciones de
calculo de BER, la definicidon del modelo de un BSC y la generacién de turbo codifi-
cador y decodificador. Posteriormente, se crea una funcion que empieza generando
un bloque de 100 palabras de 50 bits cada una y un bloque de 100 palabras y 156
bits cada una (150 bits es debido a la tasa de 1/3 y 6 bits extra debido a las colas de

terminacién de los codificadores convolucionales).

El primer bloque genera bits aleatorios que seran transmitidos y el segundo genera
bits pero con una probabilidad ¢ de que el bit sea igual a 1 ya que esto sera utilizado
como ruido del canal. Posteriormente, estos datos se toman de palabra en palabra y
se procede a codificar los datos de transmision, de este modo, se tiene un vector de

156 bits, este vector, junto al vector de ruido son ingresados al canal binario simétrico.

A la salida del canal tenemos un vector de 156 bits afectado por el efecto del canal,
estos se decodifican para de ese modo, tener un vector de 50 bits nuevamente. Final-

mente, este se compara con el vector original y de esa forma se obtiene el valor de
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BER para esa palabra con un q especifico. Este proceso se hace varias veces para

cada valor de probabilidad de error de bit q.

3.2.3. Cddigo de Repeticion

La I6gica para codificacion por repeticion es sencilla, y se detalla a continuacion. En
primer lugar se genera la informacion a ser transmitida, siguiendo los mismos linea-
mientos mencionados para la evaluacion de los codigos convolucionales. Un codifica-
dor de repeticidn lo que hace es leer cada bit de informacion y lo repite en funcion de
un factor. Suponiendo que el factor de repeticion es 3, el ejemplo que se muestra en

la Figura 3.1 muestra el funcionamiento del codificador para una tasa de 1/3.

Factor de repeticion 3

Mensaje original Mensaje codificado

1 08— | s (— 1L D001

Figura 3.1: Codificador de repeticion.

Como se observa en la Figura 3.1, cuando un bit ingresa al codificador, este se repite
tres veces (factor de repeticion 3). Por otro lado, el funcionamiento del decodificador
es algo distinto, puesto que se debe sefalar que este método funciona solo para fac-
tores de repeticion impares, puesto que el decodificador tiene una légica de votacion.
De esta manera, siempre se necesita que exista mayoria de unos o ceros, como se
observa la Figura 3.2.

Factor de repeticion 3
Mensaje recibido Mensaje decodificado

101000100 —>| o5repeicien [—> 100

Figura 3.2: Decodificador de repeticion.

Note que en la Figura 3.2, se dispone del mensaje que se envi6é en la Figura 3.1,
pero se ha visto afectado por efectos de enviarlo mediante el canal binario simétrico.

El decodificador sabe que el factor de repeticidén es 3, por lo que, toma tres bits de
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entrada y realiza un proceso de votacion. Como se observa, el decodificador logra
recuperar el primer y segundo bit correctamente, sin embargo, puesto que para el
tercer bit ocurre una alteracion sobre los bits codificados (dos de los tres bits estan

complementados), entonces, no se logra recuperar correctamente.

A pesar de un funcionamiento simple que se contrasta con algunas limitaciones, es-
te tipo de codigos son muy didacticos para realizar comparaciones con el resto de

codigos.

3.2.4. Hamming

Finalmente, el ultimo cédigo convencional que sera generado es el codigo de Ham-
ming (15, 11); este cddigo Hamming ha sido seleccionado debido a que contiene el
tasa mas cercana a 3/4 y de esa forma sera util para compararlo con cédigos descu-
biertos por una red neuronal con tasa 3/4. El proceso de codificacién de este algoritmo
se ha desarrollado inspirado en [34], donde se explica de manera didactica la dinami-
ca de los bits de paridad en un bloque de bits y cdmo estos son capaces de detectar
errores en un cddigo una vez que se colocan bits de paridad. Como es ya sabido, este

tipo de cédigos puede corregir Unicamente un error.

Para la implementacion del codificador, se parte de los bits a transmitir, las posiciones
en las que se colocaran estos bits y la dimension de la matriz. Posteriormente, se
colocan los bits de informacidn en sus respectivos lugares y se realiza el célculo de los
bits de paridad de cada “porcion” de la matriz. Estos bits se colocan en sus respectivas

posiciones y finalmente, se devuelve un vector codificado de 15 bits.

Para la implementacion del decodificador, se toman los bits que salen del canal bina-
rio simétrico y las posiciones en las que deberia encontrarse la informaciéon. Mediante
una implementacion en bucle, se itera sobre los bits de la matriz haciendo una ope-
racion XOR entre cada una de las posiciones en las que se tiene un bit 1. Posterior-
mente, se verifica el resultado final de la operacion XOR: en caso de ser 0, no se ha
encontrado un error; por otro lado, en caso de ser distinto de 0, se ha encontrado un
error. La ventaja de este codigo es que, en caso de existir un error, el resultado final

de la operaciéon XOR da la posicion (en binario) donde se encuentra el error, de este
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modo se puede corregir volteandolo. Finalmente, de las posiciones donde se debe

encontrar la informacién, se extraen los bits y asi obtenemos el vector decodificado.

3.3. Descubrimiento de codigos mediante Deep Learning

Como se menciond en la Seccion 2.5.2, el descubrimiento de cédigos mediante Deep
Learning se lleva a cabo en dos escenarios: el primero sobre un BSC sin retroalimen-
tacién, donde se plantean dos metodologias de construccion de mensaje codificado;
y el segundo escenario donde se empleara un canal con retroalimentacién, conside-
rando que la probabilidad de error del canal hacia adelante (forward) sera diferente
(generalmente mucho mayor) que la del canal hacia atras (feedback). Este enfoque
permitird explorar nuestra metodologia experimental para analizar la magnitud de la
influencia que puede tener el canal de retroalimentacion en el desempenio final del
codificador y el decodificador. Cada experimento planteado se basa en la propuesta
presentada en [7] para canales AWGN, tomando en cuenta todas las adaptaciones

necesarias que implica un modelo de canal binario.

3.3.1. Modelo de BSC

Uno de los primeros elementos a considerar es el modelo del canal binario simétrico.
Un BSC admite unicamente valores binarios para su ingreso y salida, en particular 0
y 1. Estos valores transmitidos son afectados por el ruido del canal, lo que puede pro-
vocar que los bits se “volteen” durante la transmision. Se le denomina canal simétrico
porque la probabilidad ¢ de que un 0 se convierta en 1 es la misma que la probabilidad

de que un 1 se convierta en 0.

Para implementar el modelo de un BSC se empieza generando un vector aleatorio
de bits llamado vector de ruido, el cual debe tener el mismo tamarnio que el vector
del mensaje. Ademas, el vector de ruido tiene la caracteristica de que la probabilidad
de generar un 1 en lugar de un 0 es igual a la probabilidad de que un bit se voltee.
Finalmente, se realiza una operacion XOR (OR “exclusivo”) entre los dos vectores,

resultando en un mensaje afectado por el ruido.

Este proceso simula perfectamente los efectos de transmisién sobre un canal binario
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simétrico porque al ejecutar un XOR entre un bit del vector de mensaje y un bit del
vector de ruido, el bit del mensaje cambiard de estado si el bit correspondiente del
vector de ruido es 1. Dado que los bits de 1 en el vector de ruido se generan segun la
probabilidad de volteo de bit en el canal, |la salida del canal sera un mensaje con una

probabilidad de error en cada bit igual a la probabilidad de torsion del canal.

3.3.2. Codificacion basada en Redes Neuronales

A continuacion, se presenta los diferentes escenarios en lo que se evalua el uso de
redes neuronales para el descubrimiento de cédigos. Inicialmente, la Seccién 3.3.3
presenta el enfoque propuesto para escenarios sin retroalimentacion, mientras que
su incorporacién al modelo de canal se presenta en la Seccidén 3.3.4. En total se rea-
lizaran 5 experimentos, los tres primeros experimentos seran en redes sin feedback
y el resto seran en redes que usen retroalimentacion. Los experimentos sin retroali-
mentacion se diferencian en la manera que el codificador genera los datos codificados
y el decodificador los toma. Por otro lado, los experimentos sin retroalimentacién se

diferencian en la forma en la que los datos son decodificados.

3.3.3. Codificacion para un BSC sin retroalimentacion

En general, puesto que en un modelo de comunicacidén convencional sin retroalimen-
tacion los codificadores no tienen acceso a la informacion disponible en el decodifi-
cador, lo conveniente es usar redes neuronales convencionales. Como se presenta
mas adelante, se puede utilizar modelos particulares de redes neuronales para sacar

mayor provecho en caso que retroalimentacion esté disponible.

En el escenario de un BSC comunicando transmisor con receptor, nuestra propuesta
se basa en utilizar simplemente redes que internamente estan construidas con capas
lineales las cuales estan interconectadas entre si. Esto no implica que la metodologia
de funcionamiento de las redes sea la misma, pues se pueden realizar algunas mo-
dificaciones en relacién a como se componen las tramas de informacién codificadas
como se describe mas adelante. En la Figura 3.3, se presenta el escenario planteado

para estos experimentos sin retroalimentacion.
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Encoder Canal forward: BSC Decoder

DNN BSC(q) DNN

Figura 3.3: Arquitectura del escenario experimental sin retroalimentacion.

Como puede observarse, la idea es que el transmisor envie informacion codificada
a través de un canal simétrico binario y que el decodificador realice el proceso de
decodificacion. A medida que progresa el proceso de entrenamiento, se espera que
los pesos internos de las redes se hayan ajustado de tal manera que puedan solventar
los errores producidos por el canal y se consiga un modelo descubierto por la red

neuronal, y que sea capaz de obtener tasas de BER comparables con otros codigos.

A continuacién describimos brevemente cada uno de los experimentos desarrollados
para este escenario, fundamentalmente se distinguen en la manera en que la infor-
macion de salida del codificador es generada, en el experimento 1 y 2 se emplea una
tasa de codificacion de 1/3, pero la forma de generar los bits para la transmision es
distinta y se explicara en las Subsecciones 3.3.3.1 y 3.3.3.2 respectivamente. Para el
experimento 3.3.3.3 se emplea una tasa de codificacion de 3/4, lo que induce cambios
estructurales de la entrada y salida tanto para el codificador y decodificador, el detalle
de estos cambios se revisaran en dicha Subseccién. El tamafio de mensaje es de 50
bits codificados en binario plano para el experimento 1y 2 y para el experimento 3 el

tamano del mensaje es de 12 bits.

3.3.3.1. Experimento 1

La estructura funcional de este experimento se inspira en la estructura propuesta en
[7]. Naturalmente se realiza un conjunto de modificaciones y adaptaciones en el con-
texto del modelo de canal y la ausencia de retroalimentacion. El proceso de obtencion
de un modelo entrenado con el mejor desempefio se realizaron un conjunto de prue-
bas, en las que se modifica una serie de parametros que incluyen variaciones de la
arquitectura de la red, y del proceso de entrenamiento si mismo. Entre estos parame-
tros se puede mencionar: tamafos de lote, tasa de aprendizaje, numero de épocas,

tamano de bloque, nimero de neuronas, probabilidades de entrenamiento y diferentes
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funciones de activacion. El resumen de todas estas pruebas realizadas se presenta
en la Tabla 3.3, en la que también se incluye los mejores resultados obtenidos para
cada una de las redes empleadas. La arquitectura del codificador utiliza la estructura
que se muestra en la Figura 3.4, donde ¢; son los bits que se ingresan al codificador

Yy c1,1, jJunto a co 5 son los bits codificados (aquellos que salen de la red neuronal).

‘:J ciz C‘F c1,1fc1,2 c2,1A;Tc2,2 ck,?ck,z
2x-T([2x-1|--- [ 2x-1 DNN| [DNN| --- |DNN
b1 b2 Jk ct CT; cl

Figura 3.4: Estructura del codificador de experimento 1 (E1).

En rasgos generales, en esta estructura de codificador la trama de envio se conforma
mediante un bit correspondiente al mensaje original y dos bits redundantes que se
generan mediante el codificador. Este proceso se repite para cada uno de los 50
bits de cada mensaje, por lo que la palabra codificada termina con una longitud de
150 bits (tasa de 1/3). El bit original tanto para ser enviado, como para entrar en el
codificador pasa por un proceso previo de sefalizacién antipodal, donde los bits con
1 se mantienen, pero los bits con cero se convierten en -1, es decir, se realiza un
proceso similar a una modulacién Binary Phase Shift Keying (BPSK). Este proceso
de senalizacién antipodal se agregé al observar que la red neuronal no reaccionaba
apropiadamente cuando sus entradas tienen valores de cero y ningun modelo era
capaz de recuperarse de los errores, e incluso fue peor que enviar datos sin codificar
en muchos casos. La explicacién a este fendmeno es que los pesos internos de las
neuronas al multiplicarse por los bits de entrada marcados como cero complicaban el

aprendizaje de la red.

Este proceso se realiza con cada uno de los 50 bits de mensaje como se aprecia en
la Figura 3.4. Una vez se tiene la palabra codificada de 150 bits, esta se envia por el
canal de comunicacion el mismo que modifica la secuencia por los efectos del ruido.
Un punto importante a sefalar es qué para el proceso de aprendizaje automatico, se
debe considerar la probabilidad de error del canal BSC utilizada en entrenamiento,
la cual ha sido elegida como 0.15, y que los resultados de la evaluacién del modelo

entrenado se obtienen probando diferentes valores de probabilidad. En particular se
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realiza un barrido desde 0.0001 hasta 0.15 (el valor usado durante el entrenamiento).

La estructura del decodificador para el experimento 1 (y también para el siguiente Ex-
perimento 2) es la que se muestra en la Figura 3.5, donde y; ; son los bits codificados

que ya han pasado por el canal.

b1

|

Capa densa
Sigmoide

b2

|

T

Capadensa
Sigmoide

bk

|

DNN

T

Capa densa
Sigmoide

DNN

T

DNN

y1 y2 yk
y1,1 y2,1 yk, 1
y1,2 y2,2 yk,2

Figura 3.5: Estructura del decodificador de experimento 1y 2.

El gréfico de arriba muestra que el decodificador toma los bits de las secuencias
recibidas y los toma de tres en tres en este caso, puesto que se esta trabajando con
una tasa de 1/3. Estos tres bits ingresan a un par de capas lineales completamente
conectadas entre si y termina con una funcidén de activacion de tipo sigmoide. Para
este punto hay que mencionar que la salida de la red tiene valores reales, esto para
que la funcién de entropia cruzada binaria pueda calcular la pérdida y el optimizador
sea capaz de ajustar los pesos correspondientes. Aun asi la salida final corresponde

a la salida de una funcion de tipo heaviside, que permite obtener valores binarios.

También hay que destacar que como parte de experimentacién y por limitaciones de
cbdigos a una sola tasa, se practico diversas modificaciones pequenas a la estructura
para obtener una tasa de bits transmitidos (rate) diferente. Por ejemplo, para 1/2, la
Unica diferencia a considerar con respecto a la Figura 3.4, es que el codificador ahora
genera un solo bit redundante y al momento de armar la trama de envia el bit original

y el de codificacidén obteniendo una tasa de 1/2.

Igualmente, para el decodificador, simplemente se ajusta el numero de entradas, pues
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ahora se reciben los bits de dos, en consecuencia, del cambio de tasa de codificacion.

3.3.3.2. Experimento 2

En este experimento el objetivo es hacer que la red neuronal genere todos los bits a

ser transmitidos. La estructura se muestra en la Figura 3.6.

cl,1:c1,2;c1,3  c2,1:c2,2; c2,3 ck,1; ck,2; ck,3

DNN DNN| - - - |DNN
f f |

cl c2 ck

Figura 3.6: Estructura del codificador de experimento 2 (E2).

La diferencia en esta estructura es que para cada bit de informacién que ingresa al
codificador, mismo que previamente pasa por un proceso de sefalizacidén antipodal, la
red genera una salida con 3 bits codificados, es decir, el bit del mensaje original no se
incluye en la trama de informacién codificada. Con este enfoque se busca identificar

cémo construye la trama el codificador tras el proceso de aprendizaje.

Las tramas generadas por el decodificador se envian por el canal binario simétrico y
llega al decodificador. La estructura que se emplea para el decodificador es la misma
que se muestra en la Figura 3.5, pues ingresan los 3 bits, el cual por dentro posee 2
capas lineales conectadas entre si y produce una salida que pasa por una funcion de
activacion sigmoide (para el calculo de la funcién de pérdida) y posteriormente una

funcion heaviside para generar la salida definitiva del decodificador.

En este experimento también se realiza una modificacion para el cambio de la tasa de
codificacion, la consideracion que se debe tener en la Figura 3.6, es que ahora la red
saca 2 bits y estos son enviados por el canal. Después el decodificador también sufre
un cambio en la entrada para recibir unicamente los 2 bits codificados, en general el

resto de la estructura es la misma.
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3.3.3.3. Experimento 3

Para el tercer y ultimo experimento de cédigos sin feedback, se ha cambiado ligera-
mente la arquitectura y la tasa de codificacion usadas tanto para el codificador como
para el decodificador. De la misma manera que en el primer experimento, se han
realizado varias pruebas modificando parametros como tamanos de lote, tasas de
aprendizaje, numero de épocas, tamanos de bloque, etc. Nuevamente, los mejores

resultados se presentan en la Tabla 3.3.

La arquitectura usada para el codificador de este tercer experimento la podemos ver

en la Figura 3.7.

cl c4 ck
c2 5 ck+1
3 (o] ck+2 c1,1 2,1 ck,1
FY A

i 1 | |

2%-T || 2%-1 -+ | 2%-1 DNN DNN| --- |DNN

1 | 1 1 ) 1
b1 b4 bk cl 4 ck
b2 bs bk+1 2 5 cik+1)
b3 b6 bk+2 €3 6 clk+2)

Figura 3.7: Estructura del codificador del tercer experimento (E3).

La arquitectura de este experimento se muestra de forma simplificada. Como primer
paso, se transforman los bits a una representacion en sefalizacién antipodal, ya que,
como se menciond anteriormente, al existir valores de 0, estos no se ven afectados
por la red neuronal y, por lo tanto, no son codificados correctamente. Una vez que
se tienen los bits en forma antipodal, se arman tramas de 3 bits y se ingresan al
codificador lineal, el cual, a su salida, entrega un bit de codificacion. Esto se hace con

todos los bits del mensaje, tomandolos en tramas de 3 bits.

Posteriormente, se concatenan los bits de codificacion al final de la palabra original y
se transmiten a través del canal binario simétrico, donde seran afectados por el ruido
del canal. Finalmente, los bits afectados por el canal seran introducidos al decodifica-

dor, cuya estructura se presenta en la Figura 3.8.
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b1,1 b2,1 bk,1

b1,12 b2,12 bk,12
Capadensa Capa densa . . . |capadensa
Sigmoide Sigmoide Sigmoide

T T T

DNN DNN| - - - | DNN

T T T
DNN| [DNN| - - - |DNN

y1,1 y2,1 yk,1

y1,16 y2.16 yk,16

Figura 3.8: Estructura del decodificador del tercer experimento (E3).

La estructura del decodificador tiene como entrada la palabra codificada completa, es
decir, los 16 bits (en caso de que se codifiquen 12 bits), y tiene como salida una pa-
labra de 12 bits, los cuales seran tratados como el mensaje decodificado. Finalmente,
este mensaje decodificado sera comparado con el mensaje original para comprobar
el rendimiento del codificador/decodificador. Este experimento resulta interesante de-
bido a dos factores. El primer factor es el hecho de que forzamos al codificador a
encontrar algun tipo de relacidén para codificar 3 bits en uno solo, y el segundo factor
es que se entrega libertad al decodificador de hallar relaciones entre toda la palabra
codificada y no solo en ciertas porciones para llegar a la palabra decodificada de 12
bits.

3.3.4. Incorporacion de retroalimentacion (feedback)

La motivacion para usar canales de retroalimentacion es que siempre ha sido esen-
cial para mejorar el rendimiento de un canal de comunicacion. La disponibilidad de un
canal para retroalimentacién brinda la posibilidad de contar con informacién sobre el
estado de la transmisién de datos, esto ayuda a ajustar y optimizar algunos parame-

tros los cuales ayudan a garantizar una comunicacion eficiente y confiable. Existen
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algunas maneras para hacer uso del canal de retroalimentacién, pero la idea general
siempre es que este aporte informacion acerca del canal de comunicacién y realizar

mejoras en codificacion que permitan aumentar mejorar el BER del canal.

Al realizar codificacién con retroalimentacion, es decir, codificacidon que cuenta con
acceso a la informacion que llegé al decodificador, es necesario aprovechar esta in-
formacién de la menor manera. Para ello se hace uso de redes neuronales recurrentes
tanto en codificador como en decodificador. Note que es importante recalcar que el
canal de retroalimentacion en la practica es ruidoso (aunque un feedback perfecto
puede considerarse también para la determinacién de los limites teéricos de la co-
municacioén). El nivel de ruido en el canal de retro alimentacion también es relevante,
puesto que de éste depende si el canal puede en realidad contribuir a disminuir los
valores de BER o en el peor de los casos exacerbarlos, lo cual es motivo de interés

académico y continua investigacion.

Usando la retroalimentacién de la transmision para alimentar a las redes neuronales
se han generado mas experimentos los cuales se asemejan a los realizados en la
Seccién 3.3.3. De esta manera se puede llevar a cabo una comparacion entre los
cbdigos obtenidos con y sin retroalimentacién y asi evaluar la influencia de la retroali-

mentacion.

La Figura 3.9 muestra un esquema simplificado de la estructura utilizada, en ella se
puede observar tanto el canal usado para la transmision de datos como el canal usado

para la retroalimentacion.

Encoder Canal forward: BSC Decoder

RNN BSC(q) RNN

Canal feedback: BSC
BSC(q,)

Figura 3.9: Arquitectura del escenario experimental con retroalimentacion.

3.3.4.1. Experimento 4

En la Figura 3.10, se presenta la estructura del codificador para este escenario con

retroalimentacién. La idea tal como se observa es que tenga dos fases, en la primera
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se envia el bit de informacién del mensaje original, teniendo a consideraciéon que tanto
el canal hacia adelante como el de retroalimentacion no experimentan ningun retardo,
el codificador tiene acceso a feedback instantdneo. En otras palabras, en la siguiente
ronda (uso del canal i+ 1) es posible que el codificador disponga del valor que entrega

el canal de retroalimentacién para cada bit transmitido en el uso de canal i.

Existe un problema evidente para el caso del primer bit a ser codificado, y del cual no
se tiene feedback, por lo que las entradas de la red recurrente para este se comple-
tan con ceros. A partir del segundo bit, ya se dispone de la retroalimentacién de los
bits de codificacion empleados en la ronda anterior. De esta manera, al codificador
ingresan tanto el bit de informacién, como la retroalimentacién de ese bit y también la
retroalimentacidn de los bits de codificacidén anteriores, donde el bit de informacion se
denota como ¢y, la retroalimentacion de ese bit como 7, y la retroalimentacién de los

bits de codificacion anteriores como 7, ; ¥ 71.2. Esto se refleja en la Figura 3.10:

cl c2 ck c1,1;¢1,2 €2,1;¢2,2 ck,1;ck,2

{ 1 f f f f
2X-T[|2%-1]---|2x-1| [RNN |[—={RNN |—---—|RNN

f 1 f ! f !

b1 b2 bk cl 2 ck
91 52 K
0 y1.1 yk-1,1
0 y1,2 yk-1,2

Figura 3.10: Estructura del codificador de experimento 4 (E4).

Al igual que en los otros experimentos se aplica el proceso de cambio a sefalizacion
antipodal para las sefales que ingresan al codificador se ejecuta de manera similar por
la misma razon que se explicd con anterioridad. El decodificador tiene una estructura

que se presenta en la Figura 3.11.
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b1 b2 bk
Capa densa Capa densa . e Capadensa
Sigmoide Sigmoide Sigmoide

T I 7
RNN || RNN [ - «|RNN
T I f
RNN || RNN |-+ </ RNN

y1 y2 yk
y1,1 y2,1 yk,1
y1.2 y2,2 yk,2

Figura 3.11: Estructura del decodificador de experimento 4 (E4).

Note en la Figura 3.11 que al igual que en caso sin retroalimentacion, el decodifica-
dor toma los bits de entrada en grupos de tres, puesto que se emplea una tasa de
1/3. Estos bits ingresan en multiples capas construidas con neuronas recurrentes de
tipo GRU. El objetivo de este enfoque es que estas capas vayan guardando la infor-
macién de procesos anteriores (aprovechando la retroalimentacion) y empleen esa

informacion para llevar a cabo un mejor proceso de decodificacion.

Después que la informacion pasa por la capa de neuronas recurrentes entra a una
capa lineal densa donde la salida que produce resulta del uso de una funcion de acti-
vacion sigmoide son valores cercanos a cero o uno. Es muy importante entender que
el hecho de que la salida no sea binaria no afecta en realidad al escenario de canal bi-
nario simeétrico que planteamos, puesto que esa informacion de salida jamas vuelve a
entrar al canal de vuelta, por lo que se mantiene concordancia con el objetivo principal
del experimento, que es evaluar el comportamiento de las redes en este tipo de cana-
les. Es asi que las senales atraviesan una funcion de salida dura (heaviside) antes de

ingresar a los canales hacia adelante (forward) y de retroalimentacion (feedback).

También debe considerarse que en el decodificador la capa de red recurrente es bidi-
reccional, esto implica que se usan dos capas GRU en cada paso de tiempo, una de
ellas procesa la secuencia de entrada en la direccién temporal normal y la otra proce-

sa en la direccidn opuesta. También se debe tener en cuenta que el bias se encuentra
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activado, esto permite que la funcidén de activacion no se encuentre anclada al origen,

por lo que es capaz de ajustarse mejor a los datos.

En este experimento, también se lleva a cabo modificaciones para obtener una tasa
de 1/2 con el objetivo de contrastar los resultados con codigos convencionales. Con
base en la Figura 3.10, se debe considerar que solo se tienen 3 entradas, una es
el bit del mensaje original, otra corresponde a su retroalimentacion y finalmente, la
retroalimentacién de un bit redundante codificado. La salida del codificador entrega
un solo bit de codificacidon. La palabra creada por el codificador consiste entonces del
bit original y el codificado, de esta manera, el decodificador recibe 2 bits y entrega

como resultado un solo bit decodificado.

Asi mismo se realizan cambios en cuanto a la estructura de las redes, pues revisando
el estado del arte, se pudo apreciar que las redes LSTM tienen una mayor cantidad
de almacenamiento interno en sus capas, por lo que se nos hizo interesante realizar
las mismas pruebas pero con redes que tengan este tipo de capas. Para realizar esto,

simplemente se llevé a cabo el cambio respectivo de las redes con uso de la libreria.

De igual forma, se realiza el cambio para probar a tasas de codificacion 1/2 'y 1/3, la

forma de realizarlo es exactamente la misma que ya se describié para RNN.

3.3.4.2. Experimento 5

Para el quinto experimento se ha utilizado una arquitectura similar a la vista en el
experimento 3. Esta también tiene una tasa de codificacion 3/4, es decir que por cada
3 bits de informacién, se tiene uno de codificacion. El esquema de la arquitectura

usada para el codificador de este experimento la podemos ver en la Figura 3.12.

Se puede divisar de forma sencilla como se conforma la red que sirve como codifica-
dor. En primer lugar y de forma analoga al experimento 3, se transforman los bits a
una presentacién antipodal para un mejor funcionamiento de la red. Posteriormente
se arman tramas de 7 bits los cuales incluyen 3 bits de informacién, la retroalimenta-
cién recibida al enviar esos 3 bits y por ultimo la retroalimentacion correspondiente a
la transmision del bit de codificacion. La salida de este codificador es 1 bit de codifi-

cacion para asi mantener la tasa (rate) de 3/4.
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cl 4 ck

2 5 ck+1

3 6 ck+2 1,1 2,1 ck,1

1 1 f 1 1 f

2x-1][2x-1] -+ [2x-1 GRU|—|GRU |~ --—|GRU

f f f 1 1 !

b1 b4 bk cl c4 ck

b2 b5 bk+1 2 5 c(k+1)

b3 b6 bk+2 a c6 c(k+2)
y1 y4 vk
y2 y5 y(k+1)
y3 ¥6 y(k+2)
0 y1,1 y(k-1),1

Figura 3.12: Estructura del codificador del quinto experimento (E5).

Después de codificar la informacién se concatenan los bits de codificacién al final de
la palabra original y asi se transmiten a por medio del canal de comunicacién. Final-
mente, los bits afectados por el ruido del canal seran introducidos al decodificador,

cuya estructura se presenta en la Figura 3.13.

b1,1 b2,1 bk,1

b1,12 b2,12 bk,12
Capa densa Capa densa e Capa densa
Sigmoide Sigmoide Sigmoide

1 I T

GRU || GRU |+ - —| GRU

1 T T
GRU |« [GRU |+ --- «| GRU

y1,1 y2,1 vk, 1

y1.16 y2.16 yK16

Figura 3.13: Estructura del decodificador del quinto experimento.

Este decodificador tiene como entrada todos los bits que salen del canal, es decir, la
palabra codificada completa y como salida entrega una palabra de 12 bits. Estos 12
bits seran tratados como el mensaje decodificado. Finalmente y de forma similar al
resto de experimentos, este mensaje decodificado sera comparado con el mensaje
original para comprobar el rendimiento del codificador/decodificador. Este experimen-
to resulta interesante debido a que ademas de los dos factores descritos en el expe-

rimento 3, se puede observar si el canal de retroalimentacion tiene influencia en la
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codificacién.

3.3.5. Entrenamiento de los modelos

El proceso de entrenamiento en general de las redes planteadas en cada uno de
los cinco experimentos explicados anteriormente se ejecuta de manera similar y si-
guiendo ciertos lineamientos. Como se menciona en el Capitulo 2, especialmente en
la Seccion 2.5.5, existe un proceso estandar que se debe considerar para entrenar

redes neuronales de manera exitosa.

En primer lugar, se debe considerar la fuente de los datos, cuyo proceso de construc-

cién de la informacion se muestra en la Figura 3.14.

La fuente se divide en

lotes de informacioén 50 bits
—>

Wi

©

|

Fuente de C
datos de —_—) > g
100000 o
palabras o
de 50 bits =

Generacién aleatoria Cada uno de estos Totes
posee 100 palabras

de palabras de 50 bits

Figura 3.14: Construccidn de la informacion.

La fuente de informacion se obtiene generando aleatoriamente 100000 mensajes co-
dificados en binario plano correspondiente a palabras de 50 bits (sin embargo, se
debe considerar que la Unica diferencia con tasa de codificacion 3/4, es que el tama-
no de las palabras es de 12 bits). La idea general es dividir ese bloque de informacion
en lotes de 100 palabras de 50 bits, lo que da un total de 1000 lotes que poseen 100
palabras de 50 bits.

Se tiene que considerar que, de igual manera, que antes de ingresar al entrenamiento,
debe crearse una fuente de informacién de ruido en concordancia con la tasa de
codificacion que se esté trabajando. Los lotes de ruido se generan de manera aleatoria
usando una distribucion de probabilidad Bernoulli, con una probabilidad de error ¢,
correspondiente a la probabilidad de entrenamiento. Basicamente, se sigue la misma

idea ilustrada en la Figura 3.14, con la diferencia que se usa una distribucién Bernoulli
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para la generacion de ruido en cada bit de cada una de las palabras. Este lote de
informacion de ruido se usa para modelar el canal como un simple modelo aditivo en

modulo-2.

Cada ronda de entrenamiento utiliza uno de estos lotes, cuando termina el lote se
realiza el célculo de la funcién de pérdida, especificamente, la entropia binaria cru-
zada, la cual es ampliamente empleada para redes neuronales que poseen salidas
sigmoidales como este caso. El uso de esta funcién da como resultado un valor, el
cual ingresa al optimizador Adam, correspondiente a un algoritmo de optimizacion de
gradiente estocastico usado para el entrenamiento de redes neuronales profundas.
Este optimizador mezcla dos métodos de optimizacion, el AdaGrad y RMSProp [63],
brindando de esta forma un método eficiente para ajustar parametros del modelo. El
ultimo paso del entrenamiento, consiste en reajustar los pesos. Este proceso se repite
hasta terminar con todos los lotes y posteriormente con cada una de las épocas de
entrenamiento en la que se ingresa un nuevo bloque de datos. En la Figura 3.15, se

puede apreciar de manera grafica este proceso.

Lote de informacion

Lotes de informacion
: recuperado

y ruido

—

> —>

Funcion de
entrog]a cruzada
inaria

Lotes de informacidn
recuperado vy
original

Reajuste de pesos

valor de
pérdida

F 3

Figura 3.15: Entrenamiento y ajuste de pesos.

Se debe enfatizar que se realiza un entrenamiento simultaneo del codificador y deco-
dificador. El modelo se planteé de esta manera ya que tomamos como inspiracion la
metodologia de entrenamiento empleada en [7] en el que fundamentalmente se sigue
la metodologia de los auto-codificadores. Ademas que el codificador es dependiente
de la informacién que obtiene el decodificador, existe una correlacion implicita entre

las dos estructuras de redes neuronales lo que obliga a una optimizacion simultanea.
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3.3.6. Evaluacion de los modelos.

Para poner a prueba los modelos obtenidos tras el entrenamiento de las redes neuro-
nales, se realiza un proceso similar a aquel usado para la optimizaciéon en cuanto al
tratamiento de la informacién. La principal diferencia con el periodo de entrenamiento,
es gque ya no se realiza ninguna clase de reajuste de pesos a las estructuras internas,
sino simplemente evaluar la salida para un determinado valor de entrada y estimar
cuantos bits experimentaron errores de decodificacion. En la Figura 3.16, se presenta

la arquitectura de prueba para el modelo.

Todo esto se repite para un numero de épocas deseado

Lotes de informacién Lote de informacion
v ruido recuperado
—
- Suma de
L errores
Lotes de informacion
recuperado y
original ~_“ se calcula el BER para
e ¥ o cada probabilidad de
prueba

Este proceso se repite hasta que
el Tote de informacién se termine y
para cada probabilidad

Figura 3.16: Proceso de prueba del modelo entrenado.

El calculo del BER es uno de los puntos mas importantes, puesto que se constituye
como una de las mejores métricas para comparar el desempefio que tiene el mo-
delo para corregir errores. Para ello, se debe entender la cantidad de datos que se

comparan y como se calcula.

En primer lugar, sabemos tenemos definida una variable “num block”, que indica el
namero de palabras en la fuente de informacion, en este caso 100000. El “num block”
se divide en lotes con un numero de palabras denominado “batch size”, que en los
escenarios planteados es de 100. Es decir, la cantidad de lotes existentes es de “num

block/batch size”.

Cada lote posee un numero de palabras dado por “batch size”, como ya se mencion6
y cada mensaje posee 50 bits. Por ende, cuando se suman los errores se sigue este

proceso. Se compara con el lote original y se marcan los bits con error como 1. Luego
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se suman los 50 bits de cada palabra, esto da como resultado un arreglo con 100 filas

y una columna con la suma de errores de cada palabra.

Luego se suman los errores de todas las palabras, obteniendo de esta forma un valor
de errores por lote. Este valor se va sumando a una variable que almacena el valor
de error de cada uno de los lotes de prueba. De esta manera se obtienen los errores
totales para una probabilidad. Por lo que el BER para esa probabilidad esta dado

como muestra en (3.3).

Total de errores
(block len) - (batch size) - (num block)

batch size

BER =

Lo que se simplifica a (3.4).

Total de errores
BER = (block len) - (num block) (34)

La ecuacion (3.4), indica que la multiplicacion de la longitud del bloque, por el nUmero
de palabras totales en la fuente de informaciéon no es mas que la totalidad de los bits
de informacién enviados, por ello, la funcién de BER empleada puede ser reescrita

como se presenta en (3.5).

Total de errores

BER = Total de bits enviados

(3.5)

Claramente, la ecuacion (3.5) corresponde a la definicién del BER, que es el nimero
de bits erroneos, sobre el numero total de bits que se transmitieron. De esta mane-
ra, aseguramos que las medidas de BER que se obtengan en los resultados tienen

coherencia respecto al proceso que se ha planteado.

3.3.7. Ajuste paramétrico de los modelos.

Este proceso, que se lleva a cabo de manera experimental esta orientado a afinar el
modelo para obtener los mejores resultados. A partir de los modelos de red propues-
tos para cada experimento se procede a la modificacién de pardmetros hasta obtener

la combinaciéon con mejores resultados.
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Previo a la modificacion de parametros, se tuvo que tomar algunas decisiones. La
primera de ellas fue la seleccién de la probabilidad de error en el BSC que se utiliza
durante el entrenamiento, asi como también aquellas probabilidades del BSC utilizado
para las pruebas. En este contexto, nos basamos en el articulo [5], Figura 2.11, en la
que el intervalo de prueba en canales binarios simétricos, tiene como maximo 0.15 de
probabilidad de error ¢ en el BSC. De esta manera creamos un marco de referencia
para poder ejecutar el contraste de resultados. Con base en este antecedente se rea-
lizan multiples pruebas con diferentes probabilidades de error en el BSC durante el
entrenamiento, registrando los resultados con el fin de determinar la mas adecuada.
En este procedimiento se asume que la probabilidad de error del canal no deberia ser
muy alta como 0.15 porque existirian demasiado errores o muy baja como 0.0001 por-
que no habria una buena cantidad de errores a corregir. En la Tabla 3.1, se presenta

el resultado obtenido de probar diferentes probabilidades de entrenamiento.

Tabla 3.1: Analisis de mejor probabilidad de entrenamiento

Probabilidades Tasa de éxito
de entrenamiento | de entrenamiento
0.0008 20 %

0.001 25%
0.0015 35%

0.005 10 %

0.01 10 %

En la Tabla 3.1, se menciona el término tasa de éxito de entrenamiento, en este con-
texto hace referencia al porcentaje de las 20 veces que se intenté entrenar la red con
cada probabilidad y se logré entrenar dicho modelo, por ejemplo, tomando el caso de
probabilidad de error g 0.0015, este posee 35 % como tasa de éxito de entrenamiento,
lo que quiere decir, que de 20 veces que se intentd entrenar la red, en 7 ocasiones
la red presentd signos positivos sobre su entrenamiento y no un estancamiento en un

determinado valor de pérdida.

Para obtener estas tasas de éxito de entrenamiento en funcién de la probabilidad,
se realiz6 un entrenamiento repetido 20 veces en la red neuronal propuesta en el
experimento 1, luego se cuenta las veces que el modelo muestra signos donde el

entrenamiento esta convergiendo a un resultado exitoso, siendo uno de estos signos
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que el BER disminuya y también analizando que la pérdida no se mantenga oscilando
en algun punto del experimento. Cada vez que se notaba una mejora en la funcién de
pérdida se contaba como un entrenamiento exitoso. Con base en esto, la probabilidad
de entrenamiento con mejor resultado fue 0.0015, ya que presenta la mayor tasa de

éxito de entrenamiento.

Puesto que se observo una tasa de éxito de entrenamiento no tan positiva, entonces,
no puede tomarse como unico parametro de ajuste, también se considero los valores
iniciales de los pesos con los que comenzaba el modelo. Por ello, el siguiente paso
a tomar fue guardar los valores de los pesos iniciales cuando existia un buen entre-
namiento, lo que nos llevd a identificar experimentalmente, valores de pesos iniciales
para los experimentos 1 y 2 a tasa 1/3. Al guardar esos pesos, la tasa de éxito de
entrenamiento subi6 al 100 % para esos casos. Es decir, al cargar esos pesos como

iniciales a esos modelos, siempre lograba entrenarse de forma correcta.

Para el resto de modelos, los valores iniciales de los pesos resultan irrelevantes, por
lo que simplemente se adopta como el mejor valor de probabilidad para entrenar la
red que es 0.0015.

Por otra parte, el intervalo de probabilidades de error para el canal en el proceso de
evaluacién los modelos, se eligié considerando como minima probabilidad 0.0001 y
como maxima 0.15, esto en base a los articulos revisados como [5] en los que se pre-
senta resultados comparables para BSC. Ademas, el proceso experimental demostro
que al utilizar probabilidades de error en el canal més altas ocasiona que el canal sea
intratable y por ende la informacion que se capturaba ya no era de interés. De esta
manera, se procedié a las pruebas de los diferentes parametros, los valores usados

para cada parametro se resumen en la Tabla 3.2.

Note que los valores de prueba para cada parametro mostrados en la Tabla 3.2 se
realizaron en cada una de las redes planteadas en los experimentos. Se realizaron 10
repeticiones con cada valor de cada uno de los parametros. Luego en base al BER
resultante para el intervalo de prueba se promedia las 10 salidas que se obtuvieron
con cada uno de los valores de los parametros y se fue clasificando por categoria
los resultados. Por ejemplo, en funcion del promedio del BER que se obtuvo con un

“patch size"de 25, 50, 100 y 200, se analizé en cual se tuvo mejores resultados y
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Tabla 3.2: Parametros y valores de prueba.

Parametros Valores de prueba

Batch size 25 50 100 200 - -

Num Epoch 10 50 100 500 1000 | 2000

Num Block 500 | 5000 | 10000 | 25000 | 50000 | 100000
Learning rate 0.01 | 0.001 | 0.00085 | 0.0001 - -
Num neuronas 100 | 300 500 - - -

Tasa de codificacion | 1/2 1/3 1/5 1/7 1/9 3/4
Num Capas 2 3 10 25 50 -

el valor con mejor rendimiento fue el que se seleccion6 de manera definitiva para
entrenar al modelo final. En base a esta explicacion, en la Tabla 3.3, se presenta los

mejores parametros obtenidos para el entrenamiento de los modelos.

Tabla 3.3: Mejores valores de los parametros para entrenamiento de los modelos.

Parametro Valores 6ptimos
Batch size 100
Para todos los
experimentos: 10
Num Epoch A excepcion de
experimento 4 con : 100
Num Block 100000
Learning Rate 0.00085
Num Neuronas 100
Tasa de codificacion 1/2,1/3 6 3/4
Para experimentos
Num Capas RNN 4y5:2

En funcion de los resultados presentados en la Tabla 3.3 se deduce lo siguiente: el
valor de batch size o tamarno de lote es el mismo para todos los modelos debido a
que, durante el proceso de experimentacion, al evaluar distintos valores de prueba
no existid una diferencia sustancial en los valores de BER que pueda sugerir una
inclinacidén hacia un valor determinado para este parametro, por lo que se seleccioné
el valor de 100. Es importante mencionar que en los experimentos presentados en [7],
el batch size es de 200, mientras que en [8] es de 2000, sin embargo, sus resultados
demuestran que el batch size no es un parametro que influya significativamente el

desempeiio de los modelos.

Por otro lado, el parametro Num Epoch, se seleccion6 de manera similar para todos
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los experimentos a excepcion del experimento 4. Esta diferencia surge como conse-
cuencia del tipo de capas que posee dicho experimento, donde se hace uso de las
RNN que pueden ser de tipo GRU o LSTM. En estas redes mas complejas, al poseer
capas ocultas y funciones de memoria a corto y largo plazo, se asume que se nece-
sitan mas muestras para alcanzar una mejora en el rendimiento general del modelo.
Sin embargo, incrementar el numero de épocas no implica que en todos los casos
que se obtendra un mejor resultado y finalmente la eleccion de este parametro nace
netamente de un trabajo de prueba y error hasta alcanzar un valor adecuado experi-
mentalmente. Para el resto de casos, este parametro se mantuvo dado que se observo
experimentalmente que el desempeno del modelo no mejord sustancialmente para un

nuamero mayor a 10 épocas de entrenamiento.

Para el parametro de Num Block, se proyectaba de que el mejor valor para este para-
metro debia ser alto, esto debido a lo revisado en [8], donde indican que el tamario del
mensaje deja de ser relevante para lotes de entrenamiento mas grande, ademas bajo
la asuncion de que mensajes cortos no producen buenos cddigos como se afirma en
[8]. Este hecho pudo verificarse en el proceso experimental. Cabe destacar que entre
valores seleccionados de 50000 y 100000, no existi6 mayor diferencia en el rendi-
miento del modelo, sin embargo, se optd por utilizar el valor de 100000, esperando
que posteriormente en la etapa de entrenamiento, y en combinacién con otros para-
metros, el resultado que se obtenga mejore a consecuencia de tener mas muestras

de entrenamiento.

El parametro de Learning Rate es un parametro critico para el entrenamiento de un
modelo, pues si se elige uno muy alto, la fluctuacién entre los pesos de la red cuando
se ajusten serd muy grande y esto podria resultar en que nunca se alcance el valor
optimo de los pesos. Si el valor de este parametro es muy pequeno, la fluctuacion ya
no sera tan grande, sin embargo, el tiempo para alcanzar el valor 6ptimo sera mayor.
Por ello, la eleccidn de este parametro también nace netamente de una accién expe-
rimental. Para cada experimento el valor de este pardmetro que resulté en un mejor
desempeiio de los modelos fue 0.00085, esto debido a que, al probar con los valores
mas grandes mostrados en la Tabla 3.2, la redes no presentaron mejoria, a excepcion

del valor 0.001, donde ocasionalmente si se obtuvo una mejora. Por otro lado, al pro-

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo



UCUENCA 110

bar con el valor mas pequeno (0.0001), las redes se entrenaron exitosamente, pero
el tiempo y el nUmero de muestras necesarias para alcanzar una mejoria incremento
notablemente. A partir de ello, una evaluacion experimental entre valores de 0.001 a
0.0001, se alcanz6 el valor de 0.00085, para el cual se hicieron las respectivas 10
repeticiones para descartar cualquier tipo casualidad y se eligi6 como el valor éptimo

para el entrenamiento de las redes.

En relacién al nimero de neuronas, se debe dos puntos relevantes: en primer lugar,
este parametro se refiere al nimero de neuronas en la capa intermedia en los dos
modelos, tanto para el codificador y como para el decodificador; en segundo lugar, se
tiene la seleccion de 100 neuronas para todos los experimentos como un resultado
experimental, tras evaluar los modelos con 300 y 500 neuronas. Estos valores no pro-
dujeron alguna mejoria significativa, pero si un aumento de la carga computacional
para el entrenamiento de los modelos, incrementando considerablemente los tiempos
de ejecucion de los experimentos. Lo propio ocurre en relacién al numero de capas
ocultas, en particular para el caso de los experimentos 4 y 5 que poseen retroalimen-
tacion, pues al probar con un mayor nimero de capas no se apreciaron mejorias y el
uso de mas recursos produjo un mayor tiempo de entrenamiento que no se tradujo en

mejores resultados de los modelos.

Finalmente, se debe mencionar que la tasa de codificacién (rate) no constituye en un
parametro de afinacién de los modelos sino mas bien, que se escoge en funcion del
interés practico y de resultados previos disponibles para cédigos convencionales. A
consecuencia de que la implementacidén de cédigos convencionales se ejecutd exito-
samente para tasas de 1/2, 1/3 y 3/4, se optd por evaluar estas mismas tasas para los
modelos neuronales. Note que estas tasas se emplean habitualmente en diferentes

trabajos para evaluar diferentes cédigos.

3.4. Procesamiento y generacion de resultados

Para poder comprobar y analizar el desemperio de las redes neuronales propuestas
en los experimentos mencionados, se crean graficas que muestran el BER obtenido

para diferentes valores de la probabilidad de error del canal q. Dado que se realizan
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numerosas simulaciones es necesario calcular la media aritmética de todos los valo-
res de BER obtenidos para cada una de los valores de probabilidad de error del canal
evaluada. Adicionalmente, se calcula su intervalo de confianza que se basa en la dis-
tribucidn t de Student, y se obtiene inicialmente el Standard Error of the Mean (SEM),
definido como:

SEM = - 3.6
NG (3.6)

donde s es la desviacién estandar muestral y n es el tamafo de la muestra. Pos-
teriormente, con el valor de SEM, se calcula el intervalo de confianza utilizando la

expresion:
S

TEta q (%) (3.7)

Aqui, z representa la media muestral, ¢/, 4 €s el valor critico de la distribucion t de
Student para un nivel de confianza del 95% y df son los grados de libertad. s es el

error estandar de la media y n es el tamano de la muestra.

Una vez obtenidos estos datos, se genera un archivo de tipo “.xIsx” que contiene tres
columnas: la primera con los valores de probabilidad de error, la segunda con los
valores medios de BER y la tercera con los valores del intervalo de confianza. Este
archivo se utiliza finalmente, para generar las figuras. Estos archivos se procesan en
MATLAB, donde se grafica BER vs ¢ configurando el eje donde se encuentran los

valores de BER como logaritmico.

3.5. Herramientas y Entorno de Desarrollo

Para desarrollar los experimentos aqui descritos, ha sido necesario utilizar herramien-
tas que faciliten y agilicen los tiempos de ejecucion de los programas. Una de las
dificultades comunes al entrenar redes neuronales es enfrentan tiempos de entrena-
miento excesivamente grandes. Este fendmeno se debe principalmente a que estas
porciones de cédigo realizan de manera iterativa miles de operaciones matriciales,
lo que genera una carga computacional bastante alta para un computador coman.
Como consecuencia de esta alta carga computacional, los tiempos de ejecucidén son
extremadamente elevados, llegando algunos a ser de varias horas e incluso dias, de-

pendiendo de los parametros de simulacion. En este punto, hemos contado con dos
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aliados:

El primero de ellos es la libreria utilizada para la generacion de las redes neuronales,
PyTorch, que incluye compatibilidad con la herramienta Compute Unified Device Ar-
chitecture (CUDA), la cual permite ejecutar cédigo en la GPU. CUDA es sumamente
util debido a que las unidades de procesamiento grafico estan disefiadas para reali-
zar operaciones matriciales de gran magnitud en cortos periodos de tiempo, ya que
estan pensadas para procesamiento de video principalmente, como por ejemplo vi-
deojuegos. Obviamente, esto hace que los tiempos de entrenamiento y prueba de la

red neuronal sean mucho mas rapidos.

El segundo aliado corresponde a la plataforma Google Colab. Esta plataforma ha per-
mitido disponer de un servidor para ejecutar el codigo de las redes neuronales por un
médico pago. Este servidor cuenta con una CPU potente; sin embargo, lo mas impor-
tante ha sido las caracteristicas de la GPU con la que cuenta. El entorno de ejecucion
de GPU tiene gran potencia y, al pagar la suscripcidn, se dispone de un modo de
memoria Random Access Memory (RAM) ampliada, lo que acelera aun mas la ejecu-
cioén de los cédigos. Esto ha hecho posible que los tiempos de entrenamiento bajen
al punto de permitir experimentar con varios parametros en las redes, obteniendo las
respuestas en tiempos de entrenamiento relativamente cortos, como se presenta en
la siguiente Subseccién que detalla los tiempos de entrenamiento medidos utilizando

la herramienta Colab para diferentes experimentos.

3.5.1. Tiempos de ejecucion en la plataforma Google Colab

Esta seccion se enfoca en la medicién de los tiempos de ejecucién de los distintos ex-
perimentos presentados en este trabajo. En particular, se utiliza la plataforma Google
Colab ' para todos las ejecuciones, asegurandose que todas cuenten con las mis-
mas condiciones de hardware. Los tiempos de entrenamiento de los experimentos sin
feedback se presentan en la Figura 3.17, que muestra cdmo los experimentos con una
tasa de codificacion menor toman una mayor cantidad de tiempo en entrenarse. Esto
se justifica ya que la red neuronal debe crear una mayor cantidad de bits al codificar

una palabra y asi mismo descartar una mayor cantidad de bits al decodificar una pa-

1 https://colab.research.google.com/
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labra codificada (en el receptor). Esto se puede apreciar de mejor forma al observar

que el tiempo de entrenamiento del experimento 3 (E3) es sustancialmente reducido

en comparacién con aquel reportado para los demas experimentos sin feedback. Note

que la tasa de codificacion del experimento 3 es la menor de todas teniendo una tasa

de 3/4 y codificando Unicamente palabras de 12 bits.

Tiempos referenciales de entrenamiento de los experimentos sin feedback
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Figura 3.17: Tiempos de entrenamiento de experimentos sin feedback.

Con respecto a los experimentos con feedback, se tiene tiempos de entrenamiento

mayores ya que estos usan redes neuronales mas complejas como GRU y LSTM.
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Figura 3.18: Tiempos de entrenamiento de experimentos con feedback.

En la Figura 3.18 se aprecia un ligero cambio en el comportamiento de los tiempos
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de simulacién. Nétese que los experimentos realizados con redes LSTM tienen un
tiempo de duracién en promedio mas largo que los realizados con GRU, esto debido
a un mayor requerimiento de memoria de las redes LSTM. Adicionalmente se ratifica
que la red con el menor tiempo de entrenamiento es aquella con la mayor tasa de

codificacion (experimento 5 —ES5).
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Capitulo 4 Experimentacion, resultados y analisis

En esta Seccion se presentan los resultados de cada una de las implementaciones
de codigos convencionales y también cada experimento que se menciond en la Sec-
cién 3, con el fin de obtener conclusiones, observaciones y analizar el desempefio de

nuestra propuesta.

Para los experimentos de los modelos ya entrenados, se emplea la metodologia ex-
plicada en la Seccion 3.3.6, en la que se lleva a cabo la prueba de 20 épocas (o
iteraciones), en cada época se prueba la transmisién de 100000 mensajes. El resulta-
do de cada época se obtiene 20 valores de Bit Error Rate (BER) por cada probabilidad
de error de canal evaluada. Estos valores se promedian y también se calculan sus res-
pectivos intervalos de confianza. El nUumero de épocas se establecié con base en el

tiempo de ejecucién de cada experimento.

En contraste, para las implementaciones de los cddigos convolucionales (a diferen-
tes rates) se utiliza una cantidad reducida de datos en comparacion a los modelos
neuronales. En particular, la fuente de datos con ese cddigo convencional es de 5000
palabras, debido a la alta complejidad computacional que tiene este programa, el cual
limita en tiempo la ejecucion de épocas con mayor cantidad de palabras. Para el resto
de codigos convencionales también se usan 100000 palabras. En relacién al nimero
de épocas, también se realizan 20, de esta manera se promedian y se obtienen los

intervalos de confianza.

Luego de tener los resultados, se procede a realizar las graficas de BER frente a
probabilidades de error, esto en funcidon de las tasas de codificaciéon y al tipo de expe-
rimento realizado. Algo a destacar es el uso de la herramienta “automeris.io” que se
puede encontrar en [64]. Este recurso fue empleado para la extraccidn precisa de da-
tos de algunas imagenes presentadas en el marco teérico, con el objetivo de generar

una comparaciéon de resultados mas completa para ciertos cédigos convencionales.
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4.1. Evaluacion de redes sin retroalimentacion con diferentes tasas de codifica-

cion frente a codigos convencionales

Rate = 1/2

Los primeros modelos a evaluar son los mencionados en los Experimentos 1 y 2
con tasa de codificacion 1/2. El resultado de estos modelos se compara con cédigos
polares, convolucionales y datos enviados sin codificacion. El resultado obtenido se

muestra en la Figura 4.1.

Comparativa redes neuronales sin feedback (rate = 1/2)

—— Datos sin codificacion

—— Cédigos convolucionales

—— Cédigos polares N=128 K=64
—— Cadigos polares N=2048 K=1024

Red neuronal (Experimento 1)
Red neuronal (Experimento 2)

u

3',/

0.02 0.04 0.06 0.10 0.12 0.14

0.08
Probabilidad de error de bit

Figura 4.1: Comparativa redes neuronales sin retroalimentacién con rate 1/2.

Puede observarse con colores cyan y amarillo, el resultado de los Experimentos 1y
2 respectivamente. Se puede ver que el uso de redes neuronales en este caso no
presenta mayores mejoras, pues en color azul se presenta el resultado de enviar la
informacion sin codificar y podemos apreciar que estas tres curvas tienen un desem-
peno similar. Ademas de eso, observamos que los cédigos polares y convolucionales
tienen un mejor rendimiento. Sin embargo, esto pasa solo hasta una probabilidad de
0.08 para los polares, después de eso, enviar sin codificar resulta mejor, a excepcion
de los cddigos convolucionales, pues estos si tienen mejor rendimiento casi hasta el

final del intervalo de prueba.
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En resumen, para una tasa de codificacion de 1/2, el uso de redes neuronales no
es viable para un BSC con las arquitecturas propuestas, debido a que no se aprecia
ninguna mejora a comparacion de enviar los datos sin codificar y los codigos conven-

cionales tienen un mejor rendimiento.

Cabe mencionar que a pesar de que los codigos convolucionales exhiben un mejor
resultado, el punto negativo se encuentra en la eficiencia de estos para la codificacion,
pues este tipo de codificadores son los que mas tiempo y complejidad para el proceso
de codificacion demostraron en nuestros experimentos, teniendo que bajar el tamaro

de la fuente de datos para que sea viable la simulacién.

Rate = 1/3

La siguiente evaluacion a realizar es con una tasa de 1/3, en este escenario se tiene
algunos codigos convencionales para la comparacion, estos son los codigos espinales
con y sin perforacion, codigos de repeticion, los turbo cédigos y el resultado de los mo-
delos de redes neuronales entrenados. En la Figura 4.2, se presenta la comparacion

con los codigos convencionales.

Comparativa redes neuronales sin feedback (rate = 1/3)

BER

—— Datos sin codificacion

—— Gadigos convolucionales 1/3
—— Cadigos espinales con perforacion
1076 4 —— Codigos espinales sin perforacion
—— Cadigo de repeticion

Turbo cédigos

Red neuronal (Experimento 1)
10774 —— Red neuronal (Experimento 2)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probabilidad de error de bit

Figura 4.2: Comparativa redes neuronales sin retroalimentacion con rate 1/3.

Enla Figura 4.2, en color cyan y rojo, se observa la curva de BER de los Experimentos
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1 y 2 anteriormente mencionados. En esto se logra distinguir que los resultados de
estos dos se encuentran sobrepuestos en la curva de BER del cddigo por repeticion
de tasa 1/3. Es decir, que se puede interpretar que las redes neuronales tanto para el
Experimento 1 y 2 descubrieron un codigo que tiene un comportamiento similar a un
codigo de repeticion en el canal binario simétrico. El analisis sobre el descubrimiento

que hizo el codificador se desarrollara en la Seccion 4.4.

El resultado de la Figura 4.2 frente las graficas de los cédigos convencionales hacen
ver que, para probabilidades de error en el canal, relativamente bajas, el uso de los c6-
digos tradicionales evidentemente es mejor, a pesar de ello, para el caso de los turbo
cbdigos cuando superan la probabilidad de aproximadamente 0.07, tiene un desem-
pefo por debajo que los cédigos descubiertos por las redes neuronales y los cédigos
de repeticién. Los que se quedan fuera de competencia son los codigos espinales,
pues estos tienen el peor desempeno, tanto asi que para una probabilidad mayor a
0.07 en el caso de cddigos espinales sin perforacién y para mayores de 0.09 para los

que poseen perforacion, es mejor enviar la informacion sin codificar.

En este escenario, también se aprecia que el uso de técnicas de aprendizaje automa-
tico efectivamente contribuye a mejorar el proceso de comunicacién sobre un BSC.
Esta mejora que realiza, si bien se asemeja a los resultados de usar un cédigo de
repeticion, demuestra que supera a los turbo codigos y en una pequena seccién a los

convolucionales para probabilidades de error de canal mas altas.

Es importante analizar otros factores, uno de ellos la complejidad computacional de
cada uno de estos codigos, pues al final el uso de redes neuronales, una vez ya en-
trenadas, se reduce a simples combinaciones lineales de las entradas a los modelos,
mientras que el disefio de un turbo codificador o un codificador convolucional repre-

senta un esfuerzo mayor.

Asi mismo, a nivel de desempenio en las pruebas realizadas para los modelos basados
en redes neuronales se demoran en promedio 8 minutos, considerando una ejecucion
para 100000 palabras durante 20 épocas. En contraste, el turbo codificador se demora
un dia entero (aproximadamente 24 horas) mientras que el convolucional un par de
dias (aproximadamente 48 h), por ende, en este sentido, usar el modelo basado en

redes neuronales es mejor. Recuérdese también que las palabras a codificar tienen
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una longitud de 50 bits.

A pesar de estas observaciones experimentales, consideramos que se podria reali-
zar un mecanismo hibrido para que los turbo cédigos o los convolucionales trabajen
mientras que la probabilidad de error del canal esté por debajo de cierto valor para

que luego de ese umbral entren en accién los modelos de redes neuronales.

Al analizar con mas detenimiento los codigos con repeticidon se puede concluir que
practicamente los resultados son similares, por lo que la decisiéon de usar uno u otro
dependeria mucho de la dificultad de implementacién de los cédigos. Si bien, en el
codigo repeticidon la parte decisiva se encuentra en el decodificador que elige el re-
sultado por votacién, las redes neuronales son cajas negras que tienen entradas y
dentro realizan combinaciones lineales para dar un resultado, entonces, la eleccion

podria quedar a opinién del usuario.

Rate = 3/4

Por ultimo, se evalua el modelo disefiado para una tasa de codificacién de 3/4, para la
comparacion se consiguié implementar un cédigo de Hamming (11,15), de una tasa
de codificacién similar, aproximadamente de 3/4. Asi mismo, se enviaron los datos sin

codificar y el resultado obtenido es el que se presenta en la Figura 4.3.

Comparativa redes neuronales sin feedback (rate = 3/4)

—— Datos sin codificacion
—— Cédigos Hamming (rate 11/15 = 0.73333)
—— Red neuronal (Experimento 3)

BER

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probabilidad de error de bit

Figura 4.3: Comparativa redes neuronales sin retroalimentacién con rate 3/4.
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De la Figura 4.3, se tiene un resultado esperado, pues al final aqui la red por si sola
no influye altamente para la proteccion de errores, pues solo envia 1 bit por cada 3 de
informacion, por ello, en este experimento era esperable que la red neuronal tenga el
mismo que resultado que enviar la informacion sin codificar o peor, sin embargo, en

este caso la red no empeoro la situacién, pero tampoco la mejoro.

Por otro lado, aqui los c6digos de Hamming son evidentemente mejores, pero sigue
el mismo patron que experimentos anteriores, en cierto punto, correspondiente a una
probabilidad de error de canal de 0.09, es preferible enviar la informacién sin codificar.
Por ello, quiza la busqueda de otras arquitecturas de redes neuronales para mejorar
esa necesidad que presentan los codigos convencionales en canales binarios simé-

tricos sea importante a considerar.

4.2. Evaluacion de redes con retroalimentacion con diferentes tasas de codifi-

cacion frente a cédigos convencionales

Esta Seccién presenta los resultados de evaluacién de los modelos de redes neurona-
les cuando se dispone de retroalimentacion. Claramente, para hacer las evaluaciones
se han dividido las redes neuronales por su tasa de codificacion. Cabe aclarar que en
todos los experimentos realizados con retroalimentacion se ha utilizado una probabi-
lidad de error en el canal de feedback de 0.0000001.

Rate = 1/2

En primer lugar, se ha evaluado la red neuronal con retroalimentacién para una tasa
de 1/2. Esta se ha comparado con diversos codigos convencionales, los cuales se

muestran en la Figura 4.4.
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Comparativa redes neuronales con feedback (rate = 1/2)

—— Datos sin codificacion
—— Cédigos convolucionales
—— Cédigos polares N=128 K=64
Cédigos polares N=2048. K=1024 e

01+ Red neurenal LSTM (Experimento 4) | ‘____“__J‘__J,_—__n—-#:r—:"'_
e //

T T T T T T T
0.02 0.04 0.06 0.08 010 012 0.14
Probabilidad de error de bit

Figura 4.4: Comparativa de redes neuronales con retroalimentacion con tasa 1/2.

Observe que el desempefo de las redes neuronales utilizadas en el experimento 4
es muy similar al desempeno de los datos sin codificar. Es decir, en estos casos
tanto el codificador como el decodificador no estan aprovechando el bit de codificacién
para mejorar la robustez del cddigo ante el ruido del canal. No obstante, al observar
el comportamiento de todos los cédigos presentados en la Figura 4.4, podemos ver
que para probabilidades superiores a ¢ = 0.08 estos codigos se comportan de una
mejor manera que los cddigos polares. Esto no demuestra la utilidad de los cédigos
descubiertos en esta Seccidn, ya que unicamente indica que en esos casos es mejor

enviar la informacién sin ningun tipo de codificacion.

Rate = 1/3

En cuanto a la tasa de codificacién de 1/3, se puede ver en la Figura 4.5 las distintas

curvas de BER tanto para las redes neuronales como para cédigos convencionales.
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Comparativa redes neuronales con feedback (rate = 1/3)

BER

—— Datos sin codificacion

—— Cadigos convolucionales 1/3

—— Cédigos espinales con perforacion

—— Cébdigos espinales sin perforacion
Cédigo de repeticion

—— Turbo codigos

—— Red neuronal LSTM (Experimento 4)
Red neuronal GRU (Experimento 4)

T

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probabilidad de error de bit

Figura 4.5: Comparativa de redes neuronales con retroalimentacién con tasa 1/3.

Podemos observar que los resultados son un poco mas alentadores que los hallados
en la Figura 4.4 para un rate mayor (1/2). Si miramos la gréafica del experimento reali-
zado con una red Gated Recurrent Unit (GRU), podemos notar que esta red no tiene
buenos resultados. Sin embargo, al observar la curva de BER generada por los resul-
tados obtenidos al utilizar una red Long Short-Term Memory (LSTM), podemos notar
una ligera mejora en comparacién con los datos sin codificar. Esta mejora se extiende
a medida que la probabilidad de error baja, presentando aproximadamente el 75 % de

los errores que presentan los datos transmitidos sin codificacion.

Rate = 3/4

Por ultimo, se puede observar en 4.6 cdbmo se comparan los cédigos generados con

una red neuronal ante los cédigos Hamming en un canal binario ruidoso.
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Comparativa redes neuronales con feedback (rate = 3/4)

—— Cédigos Hamming (rate 11/15 = 0.73333)
—— Datos sin codificacion
—— Red neuronal (Experimento 3)

Reaccidn del bit de codificacién

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14
Numero de bit

Figura 4.6: Comparativa de redes neuronales con retroalimentacion con tasa 3/4.

Podemos observar un resultado similar al obtenido con la red con tasa 1/2. Note que
la curva de desempeno del cédigo generado con una red neuronal que usa retroali-
mentacion esta sobrepuesta a la curva de los datos enviados sin codificacién. Ob-
viamente, la curva de desempefio de los cdédigos Hamming esta muy por debajo de
ambas. Esto quiere decir que, para esta arquitectura y esta tasa de codificacion, las
redes neuronales no son funcionales. Cabe mencionar también que el tiempo utiliza-
do para la obtencién de datos de las redes neuronales es significativamente mayor
al tiempo tomado por el codificador y decodificador de los cdédigos Hamming (15,11).
Es necesario aclarar que la comparacién puede resultar un poco extrafia debido a la
diferencia de tasas; sin embargo, consideramos que la comparacion es relativamente

justa ya que la diferencia de tasas es de un valor aproximado de 0.01666.

4.2.1. Analisis sobre el uso del canal de retroalimentacion

Con los resultados presentados en esta Seccidn se considera valioso hacer una com-
paracidon entre los cédigos descubiertos con el uso de retroalimentacion y sin el uso

de la misma, esto lo podemos ver de mejor forma en la Figura 4.7.
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Evaluacion del funcionamiento de la retroalimentacion (rate = 1/3)

—— Red neuronal (Experimento 1)

Red neuronal (Experimento 2)
10714 Red neuronal LSTM (Experimento 4)
—— Red neuronal GRU (Experimento 4)

BER

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probabilidad de error de bit

Figura 4.7: Evaluacién de la inclusion de retroalimentacion (tasa = 1/3).

Claramente puede notarse la diferencia de resultados entre usar retroalimentacion rui-
dosa y no usarla. De manera sorpresiva, el hecho de utilizar retroalimentaciéon genera
resultados de menor desempefio que aquellos generados con redes sin retroalimenta-
cion. Tal como se puede notar, las redes sin retroalimentacion funcionan mucho mejor
que las redes con retroalimentacion. A pesar que el experimento realizado con una
red LSTM presenta una ligera mejora no es suficiente como para que esta supere a

las redes sin retroalimentacion.

Otro punto importante es el tiempo de ejecucion. Las redes neuronales con retroali-
mentacion se toman un tiempo considerablemente mayor tanto en su etapa de entre-
namiento como en su etapa de prueba, esto evidentemente se debe a la complejidad
que presentan las redes neuronales recurrentes, sin embargo, esta mayor cantidad

de tiempo utilizado en el entrenamiento no se vio reflejada en los resultados finales.

El hecho de que la disponibilidad de retroalimentacion no contribuya en el proceso
de codificacion para mejorar los resultados de BER constituye un objeto de investi-
gacion futura. En particular, las dificultades inherentes presentadas por un BSC en el
proceso de entrenamiento incorporan retos que requieren un proceso de analisis mas
profundo y que deja abierta las puertas para extender el trabajo presentado en este

documento. Entre las dificultades acarreadas por el modelo de canal se puede men-
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cionar la necesidad de utilizar funciones de salida dura (como heaviside) para acoplar
las senales a las restricciones propias del canal (las entradas solo pueden ser 0 o
1, y no numeros reales). En nuestra opiniéon estas funciones de activacion imponen
dificultades adicionales en los modelos de entrenamiento basados en aprendizaje su-
pervisado puesto que contribuyen a los problemas de desvanecimiento de gradientes

durante su proceso su propagacion hacia atras para la correccién y ajuste de pesos.

4.3. Evaluacién de los tiempos de procesamiento de codificadores basados en

Deep Learning y codificadores convencionales

En esta seccidn se analiza los tiempos de procesamiento de los codificadores basa-
dos en Deep Learning que presentaron un resultado comparable con los codificadores

tradicionales, como se presentd en las Secciones 4.1y 4.2.

Con un enfoque experimental, se mide el tiempo que tarda en codificar y decodificar
cada modelo con el objetivo de percibir el esfuerzo computacional en la ejecucion
completa del proceso de codificacién y decodificacién. Se considera entonces el pro-
cesamiento de un batch de 100 palabras para cada uno de los codificadores, este pro-
ceso se repete 100 veces en cada uno de los modelos y codificadores tradicionales
que fueron implementados. Estos tiempos se promediaran y se obtiene el respectivo
intervalo de confianza para la generacién de graficas comparativas. Asi mismo, para
que sea una comparacion justa, tanto los modelos basados en Deep Learning co-
mo los codificadores tradicionales se ejecutan en Google Colab empleando un CPU,

asegurando asi una igualdad de recursos disponibles para cada escenario.

Con base en los resultados de BER, los experimentos 1 y 2 con un rate de 1/3 y el
experimento 4 con rate 1/3 y empleando capas LSTM fueron los que presentaron una
mejora frente a el envio de mensajes sin codificar. En funcién a esto se elige para
esta prueba los codificadores convolucionales, turbo cédigos y repeticién con un rate
de 1/3 para llevar a cabo la evaluacién de los tiempos de procesamiento. La Figura
4.8, muestra el tiempo que le toma a cada experimento, los procesos de codificar y

decodificar un batch de 100 palabras.
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Figura 4.8: Tiempos de procesamiento para codificacidon y decodificacion de un batch
de 100 palabras para cada experimento y codificador tradicional.

En la Figura 4.8, se observa que el codificador con el menor tiempo de procesamiento
para codificar y decodificar un batch de 100 palabras es el de repeticién con rate 1/3,
seguido de los 3 experimentos que presentaron resultados (E1, E2 Y E4) y dejando
en evidencia que el uso de capas LSTM y obviamente, que la inclusion del canal de
retroalimentacion en el experimento 4 producen un aumento considerable en el tiem-
po de procesamiento, que se incrementa de 0.04 segundos en el experimento 2 a
0.48 segundos por lote. Este incremento se traduce como un incremento notable del
esfuerzo computacional en la ejecucion del experimento. En contraste, la ejecucion
de codificacion y decodificacion para Turbo Cédigos (T-C) y para codigos convolu-
cionales (Conv) exhiben tiempos de ejecucion de tres o hasta cuatro veces el tiempo
de procesamiento del experimento 4 para un lote (batch) de 100 palabras, llevando a

inferir que la complejidad computacional aumenta de manera importante.

Este breve andlisis del tiempo de procesamiento provee una percepcion tangible de
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los niveles de complejidad computacional de cada una de las implementaciones y evi-
dencia que los codificadores basados en Deep Learning (una vez entrenados) poseen
un mejor desempeno en términos de carga computacional y tiempos de codificacion
y decodificacion. Este hecho se justifica en que los modelos basados en redes neu-
ronales una vez optimizados se reducen a un conjunto de combinaciones lineales
que se realizan en funcion de una entrada y que brindan una salida, lo cual constitu-
ye operaciones matematicas mas simples a aquellas comparadas con un codificador
convolucional o un codificador basado en Turbo Codigos, los cuales se sustentan en

una operacion significativamente mas intrincada.

4.4. Interpretacion del comportamiento de codificadores entrenados

En esta Seccion se presenta nuestra interpretacion o entendimiento de lo que en
general, realiza el codificador resultado de los experimentos y del entrenamiento para
aquellos casos en los que se cuenta con resultados positivos o demuestran algun

intento por corregir errores de transmisién.

Para el Experimento 1 con tasa de codificacién 1/3, en la Figura 4.2, pudimos observar
un comportamiento de desemperio en términos del BER parecido al de un codificador
por repeticion de 1/3. Esto podria sugerir que el codificador descubierto por el proceso

de entrenamiento es efectivamente el cddigo de repeticion.

Para aclarar esta hipétesis, realizamos un nuevo experimento, donde se envian men-
sajes que estan codificados Unicamente con ceros o Unicamente con unos. Este en-
foque facilitaria la observacién de como responde el codificador frente a las dos posi-

bilidades de entrada.

Se podria pensar que enviar tramas de informacidén con solo ceros o solo unos podria
sesgar de alguna forma los resultados que se obtienen, sin embargo, puesto que
la probabilidad de error para cada bit es independiente con respecto a la anterior y
puesto que el modelo ya se encuentra entrenado, entonces, no modifica de ninguna

manera el escenario de prueba o el comportamiento del modelo.

Tras explicar esto, observe la Figura 4.9, en la que se presenta el comportamiento

del codificador, donde la idea es presentar de cada 100 palabras transmitidas, qué
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es lo que hace el codificador con cada uno de los bits. Por ejemplo, considere que
cada palabra enviada tiene 50 bits; si para el bit 1 transmitido de cada 100 palabras,
su correspondiente el bit redundante codificado ¢4 1 resulta “1” en 30 ocasiones y “0”
en 70 ocasiones, entonces, se esperaria que en esa posicion la tonalidad de color
azul sea de un 30% y la de cero sea un 70 %, lo que indicaria que se enviaron mas
ceros que unos. Es decir que la intensidad de azul refleja si se enviaron mas unos que

ceros.

Bits enviado = 1, Bit de codificacién = C1 Bits enviado = 1, Bit de codificacién = C2

=
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Figura 4.9: Funcionamiento del codificador del Experimento 1, en funcién de la infor-
macién de ingreso.

De la Figura 4.9, se puede notar en las imagenes superiores la reaccion del codifi-
cador al entregar los bits redundantes (de codificacién) obtenido por la red neuronal
C11 Y Cq2 cuando la fuente de informacion son palabras de 50 bits donde cada bit es
“1”. Aqui se puede ver que el codificador establece el bit de codificaciéon ¢ 1 como un
“0” en el 100 % de las ocasiones y en “1” el bit de codificacion ¢4 ». En otras palabras,

descubrié que lo mejor que puede hacer para protegerse de los errores es alternar
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ceros y uno en los bits de codificacion.

Por otro lado, en las imagenes de abajo en la Figura 4.9 la fuente de informacién posee
palabras de 50 bits, pero donde todos los bits son “0”. Aqui el codificador funciona al
reves, por lo que el bit de codificacion ¢4 1 siempre envia “1” y en el bit de codificacion

Cy2 envia “0”.

Esto es interesante, porque este resultado sugiere que el codificador de alguna forma
etiqueta al bit de informacion con valor “1” como “101” y al bit con valor de informacion
“0” como “010” y realizando esto, consigue una curva de BER similar a la de un cédigo

de repeticion.

Este proceso que realiza tiene mucho sentido, pues, para que un “1”, que codificado
corresponde a “101”, cambie a “0” debe cambiar en sus tres bits para convertirse
en “010”. Ahora analizando de manera un poco mas detalladamente, el cédigo “010”
también puede cambiar a “101”, cambiando sus tres bits, sin embargo, observando
cuantos errores es capaz de soportar sin que se confunda el “0” o el “1”, nos damos
cuenta que solo puede resistir el error, de un solo bit de los 3. Esto se puede ver en la
Tabla 4.1.

Tabla 4.1: Posibilidades de cambio de palabras codificadas si hay un error en los
simbolos resultantes del experimento 1.

Si 101 cambia | Si 010 cambia
en un solo bit | en un solo bit
111 110
100 000
001 011

Como se puede ver en la Tabla 4.1, esas son todas las posibilidades existentes si
se presenta un error en un solo bit para cada palabra. Observamos que, de alguna
manera, si existe un solo error, el decodificador podra identificar si se trata de un “1”

o un “0”.

Lamentablemente, si existen dos errores, estas posibles combinaciones se mezclan,
por ejemplo, si “101”, cambia a “110”, posiblemente de decodificaria un “0” y por ende

un error.

Esto sugiere una explicacidn plausible de por qué la curva de BER es similar al c6-
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digo de repeticion, y es por qué al igual que en repeticion, solo se puede resolver un
error, es decir, tienen la misma capacidad para solventar las pérdidas de informacion.
Ademas de esto, es interesante ver como el codificador asigna un simbolo a un bit
con valor de “1” y otro simbolo un bit con valor de “0”, de tal forma la distancia de

Hamming entre las 2 palabras sea la mayor en una familia de palabras de 3 bits.

El mismo andlisis se lleva a cabo para el codificador del experimento 2 con tasa de
codificacion 1/3. En la Figura 4.10 se presenta el comportamiento del modelo bajo el

mismo escenario de prueba que el modelo del Experimento 1.

Bits enviado = 1, Bit de codificacion = C1 Bits enviado = 1, Bit de codificacién = C2
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Figura 4.10: Funcionamiento del codificador del experimento 2, en funcién de la infor-
macién de ingreso.

En la Figura 4.10, observamos que ahora el modelo asigna al bit con valor de “1”
como el codigo “110” y al bit con valor de “0” se le asigna “001”. La distancia de
Hamming entre estas 2 palabras es 3, es decir, la maxima en la familia de palabras
de 3 bits. Esto logra un mismo resultado que la red del Experimento 1, pues si ahora

seguimos la Tabla 4.2, observamos que el modelo es capaz de resolver un error por
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bit transmitido.

Tabla 4.2: Posibilidades de cambio de palabras codificadas si hay un error en los
simbolos resultantes del Experimento 2.

Si 110 cambia | Si 001 cambia
en un solo bit | en un solo bit
111 110
100 000
001 011

Observando que para esta red se encuentra un comportamiento similar al descrito
arriba, notamos que, de hecho, los simbolos que se pueden asignar al bit de valor
“0” o al bit con valor “1” en una familia de palabras de 3 bits, deben cumplir con la
condicion de tener la distancia de Hamming mas alta de la familia de palabras de tres
bits, es decir, la distancia debe ser 3. Con este hecho, aseguramos un cédigo capaz

de resolver un error por cada simbolo de tres bits enviados.

Al igual que el Experimento 1, este experimento posee una curva de BER similar a un
codigo de repeticidon, debido a que tiene la misma capacidad para solventar errores,
sin embargo, la metodologia que aplica para lograr esto es diferente, pues para las
redes neuronales no siempre se repiten los unos o los ceros, sino que se asigna un
par de simbolos con distancia de Hamming 3, debido a que es la distancia mas grande

en una familia de palabras de 3 bits.

De hecho, podriamos indicar que de cierta manera para la tasa de codificacion de 1/3,
el cédigo de repeticién es un caso puntual del cédigo descubierto por los modelos,
pues la distancia de Hamming entre “111” y “000”, también es 3, entonces, son 2

posibles simbolos que se pueden asignar.

Por ultimo, se analiza el cédigo descubierto en el Experimento 4, donde se usa un
canal de retroalimentacién, por lo que este seria un cédigo de canales binarios simé-
tricos con retroalimentacion. El resultado obtenido del trabajo que realiza la red, con
la misma metodologia realizada para los Experimentos 1y 2, se presenta en la Figura
4.11.
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Figura 4.11: Funcionamiento del codificador del experimento 4 con redes LSTM , en
funcion de la informacion de ingreso.

Tal como se presentd en la Subseccion 4.2, al usar el escenario con retroalimentacion
e implementando capas tipo LSTM , se obtuvo una pequefia mejora frente a enviar
los datos sin codificar. Con base en este hecho, en la Figura 4.11, se puede observar
que independientemente si el bit enviado es un “0” o un “1”, el bit de codificacion cy 1,
siempre se mantiene en 1. Lo interesante esta en el bit de codificacion ¢, pues al
realizar varias pruebas, se ha repetido el mismo patron. De igual manera, si la pala-
bra contiene solo ceros, el patrén también es el mismo. Es decir, de alguna manera,
informacion que llega de la retroalimentacién ayuda a mejorar un poco en el proceso

de codificacion, sobre todo en probabilidades de error de canal bajas.

Claramente, el codigo que se descubrié cuando se dispone de feedback no es muy
bueno, sin embargo, hay que considerar que en un canal binario simétrico la cantidad
de informacion que se pierde es demasiada ya que solo se tiene dos estados (cero

y uno). Esto de alguna manera puede hacer que a pesar que la informacién de re-
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troalimentacién llegue por un canal incluso perfecto, no sea de mucha ayuda durante
el entrenamiento de un modelo neuronal. N6tese que al usar algoritmos basados en
retropropagaciéon del gradiente, dada la naturaleza binaria del canal, el gradiente no
brinda suficiente informacion para poder realizar un mejor trabajo. A pesar de ello el
hecho de que exista alguna mejora, lleva a pesar que implementando otras arquitectu-

ras o utilizando diferentes métodos de entrenamiento los resultados puedan mejorar.

De la Figura 4.11, la mejor interpretacién que podemos dar es que la retroalimentacién
intenta ayudar a la modificacion del bit de codificacion ¢ 2, y que de hecho, contribuye
para que el BER se reduzca ligeramente en comparacion con el envio de datos sin
codificacién. Una generalidad es que, al enviar bits con valor de “1” como informacion,
la mayoria de veces el bit de codificacion ¢4, es “1”, y lo mismo pasa si la informacion
responde a un bit de valor “0”, con la diferencia que ese bit de codificacién en mayor
proporcién es cero. Esto podria llevar a encontrar algin patrén mas complejo, sin em-
bargo, consideramos que se requiere un mayor analisis sobre nuestra interpretacion

del comportamiento del codificador del Experimento 4 con redes LSTM.

4.5. Limitaciones y complicaciones en el contexto de un BSC.

La principal limitacién encontrada en el desarrollo de este trabajo y al implementar la
red neuronal utilizada en esta tesis ha sido la dificultad de optimizarla para el modelo
de canal objeto del estudio: Binary Symmetric Channel (BSC). El problema radica en
la cantidad de informacién que se entrega a la red neuronal para su aprendizaje con-
siderando el proceso retropropagacion. Al utilizar un canal binario simétrico, se tienen
unicamente valores binarios tanto a la entrada como a la salida, por lo que la funcidn
de activacion utilizada, a la entrada del canal debe ser obligatoriamente un escalén
unitario que genere Unicamente bits, es decir, valores de 0 o 1. En este punto, surge
la dificultad de que la funcién de escalén unitario no tiene una derivada definida en la
libreria utilizada, y esta derivada es imprescindible para la retropropagacion de la red
neuronal. Como solucion, optamos por mantener funciones de activacién no lineales,
como la funcién sigmoide, seguida de la funcién “heaviside” que proporcionaba los

valores binarios necesarios para nuestro propésito.
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Sin embargo, esta no fue una solucién definitiva, ya que, al tener Unicamente valores
binarios a la salida de las redes neuronales utilizadas tanto para el codificador como
para el decodificador, toda la informacion recibida por la red para su entrenamien-
to tenia una forma binaria lo que dificulta un ajuste mas preciso de las conexiones
sinapticas de los elementos de procesamiento neuronales de la red. Es decir, este
hecho complica la determinacion de qué tanto fallaba la red o cuanto acertaba du-
rante el aprendizaje supervisado, y mas bien, se orienta hacia determinar solamente
si su comportamiento era correcto o no. Esto evidentemente complica el proceso de
optimizacién de la red, ya que no se le entregaba suficiente informacién. Con la red
configurada de esa forma, el entrenamiento generaba resultados desalentadores, por
lo que se tomaron ciertas decisiones para facilitar el entrenamiento y mejorar los re-

sultados de la red.

La primera medida fue eliminar la funciéon “heaviside” a la salida del decodificador.
Esto se hizo porque no presentaba ningun conflicto con el hecho de tener un canal
binario, ya que lo Unico necesario para mantener la binariedad de la informacion que
ingresa al canal es la funcién “heaviside” colocada a la salida del codificador. Una
vez hecho esto, la cantidad de informacién entregada a la red para su entrenamiento
aumentd considerablemente, lo cual se reflejo en los resultados de BER. Al eliminar
la segunda funcion “heaviside”, la salida de la red permitia que la herramienta usada
para la medicion del error pudiera precisar mejor la cantidad de error encontrado. Por
supuesto, esto se hace unicamente para el computo de la funcién de pérdida, puesto
que las palabras decodificadas finalmente, si experimentan una binarizacién basada

en una funcién heaviside.

Otra de las decisiones acertadas en el proceso de construccion del codificador y de-
codificador es la de convertir los bits de cada mensaje a transmitir en una sefalizacion
antipodal. Similar a una modulacién Binary Phase Shift Keying (BPSK). Esta modula-
cidn no genera constelaciones con valores en fase ni cuadratura, sino que unicamente
presenta los bits de manera que tengan valores opuestos en términos de presenta-
cién. Aunque este pueda parecer un cambio sutil, es sumamente util al utilizar la red,
ya que los parametros y valores de las neuronas y sus conexiones no seran multiplica-

dos por valores de cero (en caso de tener ese valor en la cadena de bits enviada), sino
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que seran multiplicados por valores de “—1”. Esto permite que la red actie de mejor
forma, influyendo asi de manera mas efectiva en la informacion para su codificacion o
decodificacion. Después de tomar estas dos decisiones los resultados obtenidos por

parte de la red mejoraron de forma considerable, dando asi paso a la experimentacion.

Otra limitacién que se present6 al entrenar la red neuronal fue el tiempo de entrena-
miento puesto que estos procesos suelen ser muy exigentes a nivel de hardware, lo
que resulté en tiempos bastante extensos de entrenamiento y prueba del autoencoder.
Afortunadamente, PyTorch cuenta con Compute Unified Device Architecture (CUDA)
implementado, lo cual permitié realizar las simulaciones usando una Graphics Pro-

cessing Unit (GPU) en lugar de una Central Processing Unit (CPU).

Finalmente, una limitacion que de igual forma gener6 problemas fue la implementa-
cion de cbddigos convencionales. La complejidad que conlleva implementar algunos de
los cédigos utilizados hizo atractiva la idea de buscar librerias o codigos ya implemen-
tados. No obstante la mayoria de cédigos no estan implementados para canales BSC
lo que conllevd problemas para adaptarlos al modelo seleccionado en este trabajo.
El problema principal que se tenia era que al momento de utilizar los codigos en un
canal BSC, no se obtenian buenos resultados en principio. Este problema fue solucio-
nado al modular todos los bits en BPSK, lo que contribuy6 a que los codificadores y
decodificadores tengan un mayor efecto sobre los bits, es decir, nuevamente partir de

una sefalizacion antipodal.
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Capitulo 5 Conclusiones, recomendaciones y Lineas Futuras de Investigacion

En este trabajo de integracion curricular, se han evaluado diferentes enfoques y téc-
nicas de Deep Learning para llevar a cabo la codificacién del canal, especificamente
sobre un BSC. En particular, se us6 Deep Neural Network (DNN), Long Short-Term
Memory (LSTM) y Gated Recurrent Unit (GRU). El uso de estas técnicas se pue-
de evidenciar en diferentes escenarios experimentales. A partir de los resultados de
nuestros experimentos se determina que la técnica que mejores resultados produjo
fue el uso de DNN. Esta técnica consiguié que los modelos logren aprender un cédi-
go que presenta un desempeno similar a los cédigos de repeticion a una tasa (rate)

especifica en términos del Bit Error Rate (BER).

En el caso del uso de redes LSTM, en un escenario con retroalimentacion consiguié
una ligera mejoria frente al envio de datos sin codificar, sin embargo; dicha mejo-
ria no fue significativa e incluso la interpretacion del cddigo descubierto requiere de
continuar esta investigacion. En relacion al uso de redes GRU, los resultados no refle-
jan una mejoria sustancial a comparacion de métodos de codificacion tradicionales o
frente a otros modelos empleados en este mismo trabajo, particularmente se tenia la
hipotesis de que el uso de redes GRU genere mejores resultados ya que en presencia
de retroalimentacion (feedback) lo esperable es que la funcién de memoria GRU pue-
da mejorar el desempefio del modelo, tal como se evidenci6 en trabajos relacionados
como [7] y [8] para canales AWGN. Es importante mencionar que un canal AWGN,
si bien se construye con base en restricciones de potencia de transmisidn, tiene un
modelo matematico de canal que admite numeros reales, y con ello, que facilita el
proceso de entrenamiento y de retro-propagacién y descenso del gradiente usado en

modelos neuronales.

Los resultados experimentales de este trabajo ratifican las complicaciones y desafios
que representa el uso de un Binary Symmetric Channel (BSC). El hecho de que la
informacidn que ingresa y que sale del canal sea binaria, involucra una alteracién en
la informacion resultante de los codificadores hacia adelante y de retroalimentacion
(que corresponde a un numero real que se convierte en binario) que se transmite por
el canal. A partir de esto, nuestros resultados sugieren que para canales de una sola

via binarios, la mejor técnica a utilizar para implementar un modelo de codificacién de
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canal son las DNN (redes neuronales profundas totalmente conectadas).

A continuacién, respondemos brevemente a cada uno de los objetivos especificos
planteados en este proyecto, puntualizando como se consiguieron cubrir de manera

exitosa, y las conclusiones que se derivan de cada uno:

En respuesta a nuestro primer objetivo especifico, cabe mencionar que se disefa-
ron, implementaron, y evaluaron cinco experimentos basados en redes neuronales
de aprendizaje profundo, cuya descripcion se encuentra el Capitulo 3. El disefio de
estos experimentos ha requerido una revisiébn exhaustiva del estado del arte, en el
contexto del uso de técnicas de Deep Learning aplicadas a la codificacién de canal.
Este estudio comprende una etapa de aprendizaje a nivel conceptual, en primer lugar,
de los principios fundamentales del aprendizaje automatico, y seguidamente de su

aplicacién en nuestra area de interés.

Para la generacion de estos espacios de experimentacion se considerd una categori-
zacion en dos grupos amplios, estos son redes con retroalimentacion y redes sin retro-
alimentacion. En los experimentos generados se han utilizado distintas arquitecturas,
escenarios y tasas de codificacién. Después de observar y analizar los resultados de
los experimentos, podemos llegar a la conclusion de que para el modelo de canal
seleccionado (BSC) y tomando en cuenta las redes neuronales utilizadas, la mejor
opcién es emplear arquitecturas sin retroalimentacién, técnicas de redes neuronales
profundas y tasa de codificacién 1/3 para la creacion tanto del codificador como del

decodificador.

Independientemente de si el enfoque del codificador es generar dos bits redundantes
en adicién a cada bit de informacion o, si genera los tres bits que seran transmitidos,
esta es la opcidon que mejores resultados brindd. Ademas, tal como se mencioné se
han obtenido resultados ligeramente positivos con el uso de redes LSTM en escena-

rios con retroalimentacion.

Con respecto al segundo objetivo especifico se debe resaltar que cada uno de los
experimentos planteados se considera un sistema de aprendizaje profundo para el
descubrimiento de cédigos. En cada experimento se planted diferentes ideas que se

plasmaron en distintas arquitecturas y métodos que se orientan a buscar el mayor
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provecho de las técnicas de Deep Learning y con el objetivo de tener resultados sig-
nificativos. En este proceso la implementaciéon no solamente se enfocé en uno sino
en varios escenarios en los que diversos parametros deben ser considerados para
conseguir el objetivo propuesto. Uno de los parametros esenciales a modificar en los
diversos experimentos es la tasa de codificacidén (rate) con el fin de poder ubicar los
codigos descubiertos por nuestros modelos en una posicién comparable con otros
cbdigos convencionales. En cuanto a cambios estructurales que se presentaron en
los escenarios planteados se puede recalcar que el mas importante fue el uso o no
de un canal con retroalimentacion. Dado el modelo de canal escogido para este tra-
bajo (BCS) también se puede concluir que el uso de canales sin retroalimentacion
y empleando redes neuronales profundas logra efectivamente descubrir cddigos de
desempefio comparable con otros cédigos, tal como se indicé en el Capitulo 4 . Los
resultados arrojados con el enfoque planteado en este proyecto en el contexto del uso
de aprendizaje profundo mostraron que el codificador aprende codigos incipientes,
puesto que se descubrié que el codificador genera palabras bajo la premisa de que la
distancia de Hamming entre ellas sea la mayor posible en esa familia de palabras. Sin
embargo, no realiza acciones mas complejas o profundas que involucre la correlacion
entre bits de un mismo mensaje, como por ejemplo si lo hacen algunos cédigos con-
vencionales, como turbo cédigos, o convolucionales. Si bien esta es una interpretacion
valida, se requiere de mayor experimentacién para tener resultados concluyentes en

el caso de que se incluya un canal de retroalimentacion.

Finalmente, en respuesta al tercer objetivo especifico, como se evidencia en el Capi-
tulo 4, es imprescindible establecer una métrica comparable que permita contrastar el
desempenfo de los cddigos descubiertos con el enfoque planteado en este proyecto
con respecto a cédigos convencionales. Al observar los resultados, la conclusiéon a la
que se puede llegar es que generalmente el desempeno de los cddigos convencio-
nales es superior a la de los codigos descubiertos con redes neuronales en términos
del BER. También es importante notar cémo para probabilidades de error del canal
relativamente altas los codigos descubiertos funcionan mejor que los cédigos conven-

cionales con un desempeno similar a los cédigos de repeticion.

El desarrollo de este trabajo, nos ha ayudado a comprender a profundidad el mode-
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lo de un BSC, y a pesar que matematicamente es un canal simple, la funcionalidad
intrinseca de este provoca que emplearlo represente un reto en el contexto de la opti-
mizacion simultanea de un codificador y decodificador basado en técnicas de aprendi-
zaje profundo. Esto se debe a que un BSC suprime una gran cantidad de informacion
generada en el codificador al momento de generar las sefiales que pueden ingresar
a dicho canal. Por ejemplo, en el caso de escenarios que poseen retroalimentacion
es vital contar con un mecanismo que permita propagar el error hacia el codificador
en términos de numeros reales, de tal modo que el codificador entienda el estado del
medio por el que va a transmitir el mensaje y consiga realizar un ajuste. Sin embargo,
al ser un canal que modifica directamente la informacién de cero a uno o viceversa,
no se cuenta con la facilidad existente en otros canales como uno caracterizado por
Additive White Gaussian Noise (AWGN). En esos canales un canal de feedback pue-
de transportar informacién mas precisa sobre cuanto afect6 el ruido del canal a cada
transmision, puesto que no se requiere de funciones de activacion de salida dura pa-
ra acondicionar las sefales generadas por los modelos neuronales para poder ser
introducidas a los canales. Por ello, se indica que el uso en general de canales bina-
rios establece un desafio completamente distinto que debe ser analizado y con base
en ello, establecer diferentes escenarios o arquitecturas para el entrenamiento del
modelo. Debe recordarse que el mayor reto que existe al emplear técnicas de Deep
Learning para codificacién de canal es armar un buen escenario de entrenamiento del
modelo. El escenario debe ser armado en base a conocimientos sobre el canal que

se usa y sus limitaciones.

5.1. Aportes

En este trabajo se ha generado una contribucion importante en relaciéon al uso de
técnicas de Deep Learning para el descubrimiento de cddigos en canales BSC. Gra-
cias nuestro enfoque experimental se ha podido evidenciar, entre otras cosas, las
limitaciones encontradas en la implementar las redes neuronales enfocadas para la
codificacion de canal. La identificacién de estas limitaciones es de suma importancia
para futuras investigaciones que se realicen sobre este canal y el uso de este tipo de

herramientas. De esta manera, se tendra un contexto mas robusto sobre los desafios
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que representa un BSC y se podra tomar mejores decisiones en cuanto al disefio de
escenarios para el entrenamiento de los modelos. Claramente, durante el desarrollo
del proyecto y en este documento se ha buscado no solamente mostrar los resultados
de evaluacion de los codigos descubiertos por los modelos entrenados sino encontrar
una interpretacion que se ajuste a los conocimientos enmarcados en la Teoria de la

Codificacion.

Adicionalmente, la experiencia de desarrollar este trabajo, nos motivoé constantemente
a buscar diferentes metodologias para la implementacion de cddigos convencionales,
pues la literatura en el contexto de su aplicaciéon en canales BSC, es mas bien esca-
sa. Consideramos que asi mismo, constituye un aporte importante la implementacién
presentada de cddigos convencionales para este canal en particular dado que esto fa-
cilitara el desarrollo de nuevos proyectos que sigan en la misma linea de investigacion

experimental.

Puesto que el trabajo realizado posee una cantidad de informacién realmente Util para
otras investigaciones, se habilita un repositorio en Git Hub en [65] con todo el desarro-
llo ejecutado en este trabajo, de esta manera, todas las implementaciones de cédigos
convencionales o los modelos de redes neuronales quedan a disposicion de cual-
quier usuario que desee emplear como base este trabajo para iniciar o comparar sus

investigaciones en canales BSC.

5.2. Trabajos futuros

Como se mencioné en la Seccion 4.5, una de las mayores limitaciones que tiene el
canal BSC es que toda la informacidén que entra y sale del canal debe ser binaria.
Esta condicion obliga el uso de la funcién “heaviside” para la salida del codificador
(sea para el canal hacia adelante o para retroalimentacién), la cual causa dificulta-
des para el proceso de retropropagacion cuando se usa el método de descenso del
gradiente. Esto nos sugiere plantear la hipétesis de que el optimizador basado en el
descenso del gradiente no logra realizar el mejor de sus trabajos, dado el desafio que
representa el BSC. El desarrollo de este trabajo motivé la busqueda de herramientas

que permitan evaluar dicha hipétesis, que, aunque no corresponde al objetivo central
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del trabajo de titulacion, puede plantear futuras oportunidades de exploracion y me-
joramiento de los resultados observados en este documento. En particular creemos
que debe explorarse el uso de la libreria llamada “Nevergrad”, cuya documentacion
se puede encontrar en [66], y corresponde a una libreria de Python desarrollada por
Facebook Al Research (FAIR) y que sirve como plataforma de optimizacién versatil y
eficiente que usa un enfoque diferente el descenso del gradiente. Su objetivo princi-
pal es llevar a cabo procesos de optimizacién sin la necesidad del uso del gradiente,
para ello, Nevergrad posee una gran cantidad de algoritmos de optimizacién que se
encuentran libres de gradiente. Algunos de los métodos disponibles de optimizacion
sin gradiente son algoritmo genético, optimizacién de enjambre de particulas, recoci-
do simulado, adaptacién de la matriz de covarianza, entre otros. Si bien esta libreria
aun se encuentra en desarrollo, se espera que pueda ofrecer mejores resultados en

contextos como el planteado en este trabajo.

Asi mismo, creemos que puede continuarse el disefio de nuevos y diferentes escena-
rios y arquitecturas para el entrenamiento de las redes neuronales en canales bina-
rios. Dadas las limitaciones que se sefalaron en este documento, se tiene un punto
de partida mas claro para el planteamiento de nuevas estrategias de aprendizaje que
mejore los resultados obtenidos aqui. Para ello, se pueden tomar diferentes metodo-
logias para el entrenamiento de las redes, como el entrenamiento no simultaneo del
codificador y decodificador o el uso de heuristicas como la aplicacion de entrelazado-
res que por lo general mejoran el rendimiento para la transmisién de informacién por

el canal.

Finalmente, es también importante considerar otros tipos de canales. En particular
éste y muchos de los trabajos revisados en el estado del arte demuestran que el uso
de redes neuronales en cualquier area ha representado una evoluciéon importante, por
lo que el area de las comunicaciones no se queda atras. Sin duda, la capacidad para
adaptar estas técnicas en distintos escenarios de codificacion es lo mas complejo
puesto que existen canales altamente desafiantes, para los cuales seguramente se
debe considerar un sin numero de heuristicas que faciliten el entrenamiento de los
modelos. Es por ello, que el area de investigacién en este tema debe crecer y de esta

forma generar alternativas que ayuden a resolver el constante aumento en la demanda
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de velocidades de transmisién de informacion que requieren de canales con técnicas

de codificacidén mas confiables.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo



UCUENCA 143

Referencias

[1] W. Xiong y D. Matolak, “Performance of Hamming codes in systems employing
different code symbol energies,” in IEEE Wireless Communications and Networ-
king Conference, 2005, vol. 2, 2005, pp. 1055-1058 Vol. 2.

[2] M. Bersali, H. Ait-Saadi, y M. Bensebti, “Performance analysis of polar codes
vs turbo codes over AWGN channel,” in 2017 5th International Conference on

Electrical Engineering - Boumerdes (ICEE-B), 2017, pp. 1-6.

[3] A. A. Rodriguez, F. P. Gonzalez, J. C. Sueiro, R. L. Valcarce, C. M. Nartallo, y F. P.

Cruz, Comunicaciones digitales. Pearson, 2007.

[4] A.Li, S. Wu, Y. Wang, J. Jiao, y Q. Zhang, “Spinal Codes over BSC: Error Probabi-
lity Analysis and the Puncturing Design,” in 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), 2020, pp. 1-5.

[5] N. Kaur y A. P. S. Kalsi, “Implementation of polar codes over AWGN and binary

symmetric channel,” Indian Journal of Science and Technology, 2016.

[6] P. Isasi Vinuela, I. M. Galvan Ledn y otros, “Redes de neuronas artificiales: Un

enfoque practico,” 2004.

[7] H. Kim, Y. Jiang, S. Kannan, S. Oh, y P. Viswanath, “Deepcode: Feedback Codes
via Deep Learning,” IEEE Journal on Selected Areas in Information Theory, vol. 1,
num. 1, pp. 194-206, 2020.

[8] A. R. Safavi, A. G. Perotti, B. M. Popovic, M. B. Mashhadi, y D. Gunduz, “Deep
Extended Feedback Codes,” 2021.

[9] T. Google, “Pytorch, Keras, Tensorflow, Scipy - Explorar - Google Trends,” https:
/ltrends.google.es/trends/explore?cat=174&q=%2Fg%2F11gd3905v1,%2Fg
%2F11c1r2rvnp,%2Fg%2F11bwp1s2k3,%2Fm%2F01n25r&hl=es, Junio 2024,
(Accessed on 06/23/2024).

[10] J. Sensio, “SenslO,” https://juansensio.com/blog/027_pytorch_intro, Agosto
2020, (Accessed on 06/04/2024).

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://trends.google.es/trends/explore?cat=174&q=%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11bwp1s2k3,%2Fm%2F01n25r&hl=es
https://trends.google.es/trends/explore?cat=174&q=%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11bwp1s2k3,%2Fm%2F01n25r&hl=es
https://trends.google.es/trends/explore?cat=174&q=%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11bwp1s2k3,%2Fm%2F01n25r&hl=es
https://juansensio.com/blog/027_pytorch_intro

UCUENCA 144

[11] E. Stevens, L. Antiga, y T. Viehmann, Deep Learning with PyTorch. —Manning
Publications, 2020.

[12] C. E. Shannon, “A Mathematical Theory of Communication,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 5, num. 1, p. 3-55, jan 2001. [En linea]. Disponible:
https://doi.org/10.1145/584091.584093

[13] S. Liny D. J. Costello Jr, in Error control coding. Library of Congress, 1983.

[14] C. Berrou, A. Glavieux, y P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” in Proceedings of ICC '93 - IEEE Interna-

tional Conference on Communications, vol. 2, 1993, pp. 1064—1070 vol.2.

[15] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information
theory, vol. 8, num. 1, pp. 21-28, 1962.

[16] A. Viterbi, “Convolutional Codes and Their Performance in Communication Sys-
tems,” IEEE Transactions on Communication Technology, vol. 19, num. 5, pp.
751-772,1971.

[17] R. W. Hamming, “Error detecting and error correcting codes,” The Bell system

technical journal, vol. 29, num. 2, pp. 147-160, 1950.

[18] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-Achieving
Codes for Symmetric Binary-Input Memoryless Channels,” IEEE Transactions on
Information Theory, vol. 55, num. 7, pp. 3051-3073, 2009.

[19] H. Simon, “Sistemas de Comunicacién,” Madrid, Espana. Segunda edicion, Limu-
sa Wiley, 2001.

[20] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge

university press, 2003.

[21] B. Tahir, S. Schwarz, y M. Rupp, “BER comparison between Convolutional, Turbo,
LDPC, and Polar codes,” in 2017 24th International Conference on Telecommuni-
cations (ICT), 2017, pp. 1-7.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://doi.org/10.1145/584091.584093

UCUENCA 145

[22] M. Bersali, H. Ait-Saadi, y M. Bensebti, “Performance analysis of polar codes vs
turbo codes over awgn channel,” in 2017 5th International Conference on Electri-

cal Engineering - Boumerdes (ICEE-B), 2017, pp. 1-6.

[23] M. Jordan y R. Nichols, “The Effects of Channel Characteristics on Turbo Co-
de Performance,” in Proceedings of MILCOM °96 IEEE Military Communications
Conference, vol. 1, 1996, pp. 17-21 vol.1.

[24] J. W. Lee, R. L. Urbanke, y R. E. Blahut, “Turbo Codes in Binary Erasure Channel,”
IEEE Transactions on Information Theory, vol. 54, num. 4, pp. 1765-1773, 2008.

[25] E. C. Fernandez, “Google Colab, una nueva herramienta para |A y Data Analysis,”
https://www.tokioschool.com/noticias/google-colab/, Agosto 2022, (Accessed on
06/18/2024).

[26] A. Kolmogorov, “Logical basis for information theory and probability theory,” IEEE

Transactions on Information Theory, vol. 14, num. 5, pp. 662—664, 1968.

[27] W. Ryany S. Lin, Channel Codes: Classical and Modern. Cambridge university
press, 2009.

[28] A. B. Fontaine y W. W. Peterson, “On Coding for the Binary Symmetric Channel,”
Transactions of the American Institute of Electrical Engineers, Part I: Communi-

cation and Electronics, vol. 77, num. 5, pp. 638—-647, 1958.
[29] T. M. Cover, Elements of Information Theory. John Wiley & Sons, 1999.

[30] R. Gallager, Information Theory and Reliable Communication, ser. Courses and
lectures. Wiley, 1968. [En linea]. Disponible: https://books.google.com.ec/book
s?id=Uc3uAAAAMAAJ

[31] S. Lin y D. Costello, Error Control Coding: Fundamentals and Applications, ser.
Computer applications in electrical engineering series. Prentice-Hall, 1983. [En
linea]. Disponible: https://books.google.com.ec/books?id=autQAAAAMAAJ

[32] R. J. McEliece, The Theory of Information and Coding: Student Edition, ser. Ency-

clopedia of Mathematics and its Applications. Cambridge University Press, 2004.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://www.tokioschool.com/noticias/google-colab/
https://books.google.com.ec/books?id=Uc3uAAAAMAAJ
https://books.google.com.ec/books?id=Uc3uAAAAMAAJ
https://books.google.com.ec/books?id=autQAAAAMAAJ

UCUENCA 146

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

R. W. Hamming, “The Art of Doing Science and Engineering: Learning to Learn,”
1998.

G. Sanderson. (2020, September) Pero ;qué son los cédigos hamming?
El origen de la correccién de errores. 3Blue1Brown. [En linea]. Disponible:

https://www.youtube.com/watch?v=X8jsijhlllA&t=683s

A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm,” IEEE Transactions on Information Theory, vol. 13, num. 2,
pp. 260—269, 1967.

L. Lumburovska, A. Popovska-Mitrovikj, y V. Bakeva, “Comparison of Convolutio-
nal Codes and Random Codes Based on Quasigroups for transmission in BSC,”
Security & Future, vol. 5, num. 3, pp. 98—101, 2021.

D. Gligoroski, S. Markovski, y L. Kocarev, “Error-Correcting Codes Based on Qua-
sigroups,” in 2007 16th International Conference on Computer Communications
and Networks, 2007, pp. 165-172.

A. Popovska-Mitrovikj, S. Markovski, y V. Bakeva, “Increasing the Decoding
Speed of Random Codes Based on Quasigroups,” ICT innovations, pp. 93—102,
2012.

J. J. Bryson, “La ultima década y el futuro del impacto de la IA en la sociedad
| Openmind,” https://www.bbvaopenmind.com/articulos/la-ultima-decada-y
-el-futuro-del-impacto-de-la-ia-en-la-sociedad/, Febrero 2019, (Accessed on
06/23/2024).

R. R. Abril, “Retropropagacién del gradiente « Un articulo de LMO,” https://lama
quinaoraculo.com/deep-learning/la-retropropagacion-del-gradiente/, (Accessed
on 06/05/2024).

M. Minsky y S. A. Papert, Perceptrons: An Introduction to Computational
Geometry. The MIT Press, 09 2017. [En linea]. Disponible: https://doi.org/10.7
551/mitpress/11301.001.0001

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://www.youtube.com/watch?v=X8jsijhllIA&t=683s
https://www.bbvaopenmind.com/articulos/la-ultima-decada-y-el-futuro-del-impacto-de-la-ia-en-la-sociedad/
https://www.bbvaopenmind.com/articulos/la-ultima-decada-y-el-futuro-del-impacto-de-la-ia-en-la-sociedad/
https://lamaquinaoraculo.com/deep-learning/la-retropropagacion-del-gradiente/
https://lamaquinaoraculo.com/deep-learning/la-retropropagacion-del-gradiente/
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.7551/mitpress/11301.001.0001

UCUENCA 147

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

E. C. Fernandez, “Tipos de deep learning: Todo lo que debes saber | tokio school,”
https://www.tokioschool.com/noticias/tipos-deep-learning/, Marzo 2023, (Acces-
sed on 06/23/2024).

C. Arana, “Redes neuronales recurrentes: Analisis de los modelos especializados
en datos secuenciales,” https://www.econstor.eu/bitstream/10419/238422/1/797
.pdf, Junio 2021, (Accessed on 06/05/2024).

M. R. B. de Quirés, “Analisis de lineas de costa con redes neuronales LSTM,”
https://openaccess.uoc.edu/bitstream/10609/119692/6/mrivasbe TFM0620mem
oria.pdf, Junio 2020, (Accessed on 06/17/2024).

R. Dey y F. M. Salem, “Gate-variants of Gated Recurrent Unit (GRU) neural net-
works,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Sys-
tems (MWSCAS), 2017, pp. 1597—-1600.

“Redes neuronales profundas - Tipos y Caracteristicas - Cédigo Fuente,” https:
//www.codigofuente.org/redes-neuronales-profundas-tipos-caracteristicas/, Abril
2019, (Accessed on 06/18/2024).

T. O’Shea y J. Hoydis, “An Introduction to Deep Learning for the Physical Layer,”
IEEE Transactions on Cognitive Communications and Networking, vol. 3, num. 4,
pp. 563-575, 2017.

M. lbnkahla, “Applications of neural networks to digital communications — a
survey,” Signal Processing, vol. 80, num. 7, pp. 1185-1215, 2000. [En linea].
Disponible: https://www.sciencedirect.com/science/article/pii/S0165168400000
30X

T. J. O’Shea, K. Karra, y T. C. Clancy, “Learning to communicate: Channel auto-
encoders, domain specific regularizers, and attention,” in 2016 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), 2016,
pp. 223—-228.

E. Nachmani, Y. Beery, y D. Burshtein, “Learning to Decode Linear Codes Using

Deep Learning,” 2016.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://www.tokioschool.com/noticias/tipos-deep-learning/
https://www.econstor.eu/bitstream/10419/238422/1/797.pdf
https://www.econstor.eu/bitstream/10419/238422/1/797.pdf
https://openaccess.uoc.edu/bitstream/10609/119692/6/mrivasbeTFM0620memoria.pdf
https://openaccess.uoc.edu/bitstream/10609/119692/6/mrivasbeTFM0620memoria.pdf
https://www.codigofuente.org/redes-neuronales-profundas-tipos-caracteristicas/
https://www.codigofuente.org/redes-neuronales-profundas-tipos-caracteristicas/
https://www.sciencedirect.com/science/article/pii/S016516840000030X
https://www.sciencedirect.com/science/article/pii/S016516840000030X

UCUENCA 148

[51] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, y Y. Be’ery,
“Deep Learning Methods for Improved Decoding of Linear Codes,” IEEE Journal

of Selected Topics in Signal Processing, vol. 12, num. 1, pp. 119-131, 2018.

[52] S. Liao, C. Deng, M. Yin, y B. Yuan, “Doubly Residual Neural Decoder: Towards
Low-Complexity High-Performance Channel Decoding,” 2021.

[53] F.-L. Luo, Channel Coding with Deep Learning, 2020, pp. 265-285.
[54] R. Vargas, A. Mosavi, y L. Ruiz, “Deep Learning: A Review,” 2017.

[55] T. Elliott, “The State of the Octoverse: Machine Learning - The Github Blog,” https:
/lgithub.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/, Enero
2019, (Accessed on 04/03/2024).

[56] C. D. Costa, “Best Python Libraries for Machine Learning and Deep Learning | by
Claire D. Costa | Towards Data Science,” https://towardsdatascience.com/best-p
ython-libraries-for-machine-learning-and-deep-learning-bObd40c7e8c, Marzo
2020, (Accessed on 04/03/2024).

[57] D. R. Center, “Qué es Pytorch: una guia completa,” https://developer.oracle
.com/es/learn/technical-articles/what-is-pytorch, Mayo 2022, (Accessed on
06/23/2024).

[58] P. A. Parellada, “Deep Learning Techinques for LDPC shortening,” https://upco
mmons.upc.edu/handle/2117/334546, Agosto 2020, (Accessed on 06/04/2024).

[59] Qinbobai, “Algoritmo de estimacion de canales basado en aprendizaje profundo
a lo largo del tiempo Canales de desvanecimiento selectivo | revistas y revistas
ieee | exploracion ieee,” https://ieeexplore.ieee.org/abstract/document/8847452,
Marzo 2020, (Accessed on 06/04/2024).

[60] V. Taranalli, “Github - veeresht/Commpy: Digital Communication with Python,” ht
tps://github.com/veeresht/CommPy, Octubre 2022, (Accessed on 06/11/2024).

[61] F. Tarrés y M. Cabrera, “Codificacion de canal Il: codigos convolucionales,” 2012.

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c
https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c
https://developer.oracle.com/es/learn/technical-articles/what-is-pytorch
https://developer.oracle.com/es/learn/technical-articles/what-is-pytorch
https://upcommons.upc.edu/handle/2117/334546
https://upcommons.upc.edu/handle/2117/334546
https://ieeexplore.ieee.org/abstract/document/8847452
https://github.com/veeresht/CommPy
https://github.com/veeresht/CommPy

UCUENCA 149

[62] P. David, “Github - daulpavid/pyturbo: A simple reference implementation of turbo
codes for error correction in Python.” https://github.com/DaulPavid/pyturbo,
October 2018, (Accessed on 06/10/2024).

[63] D. P. Kingma y J. Ba, “Adam: A Method for Stochastic Optimization,” 2017.

[64] “automeris.io: Al assisted data extraction from charts using WebPIlotDigitizer,” ht
tps://automeris.io/, (Accessed on 06/18/2024).

[65] Alvarez-Bacuilima, “Github - tesisdeepcodeucuenca/tesis-deepcode-ucuenca:
Cédigo utilizado para la tesis “Uso de Deep Learning para la codificaciéon y deco-
dificacién en canales de una sola via.”,” https://github.com/TesisDeepcodeUcue

nca/Tesis-Deepcode-Ucuenca, Junio 2024, (Accessed on 06/23/2024).

[66] FAIR, “Nevergrad - A gradient-free optimization platform — nevergrad documen-

tation,” https://facebookresearch.github.io/nevergrad/, (Accessed on 06/17/2024).

Juan Sebastian Alvarez Villavicencio - Edgar Mateo Bacuilima Crespo


https://github.com/DaulPavid/pyturbo
https://automeris.io/
https://automeris.io/
https://github.com/TesisDeepcodeUcuenca/Tesis-Deepcode-Ucuenca
https://github.com/TesisDeepcodeUcuenca/Tesis-Deepcode-Ucuenca
https://facebookresearch.github.io/nevergrad/

UCUENCA 150

Anexos

Anexo A: Repositorio de implementaciones

En [65], se presenta el enlace a un repositorio de Git Hub donde se muestra cada uno

de los cbdigos desarrollados en el transcurso de este trabajo de titulacion.
La estructura del repositorio es la que se presenta en el siguiente mapa:

Repositorio/

— README.md

— Codigos convencionales/

— Codigos_Hamming_(15,_11)_y_datos_crudos.ipynb
— Convolucional_1_2.ipynb

— Convolucional_1_3.ipynb

— Cbdigos_de_repeticion.ipynb

— Turbo_cddigos. ipynb

— Experimentos/

— Con feedback/
Experimento_4.ipynb

Experimento_5.ipynb

— Sin feedback/
Experimento_1.ipynb
Experimento_2.ipynb

Experimento_3.ipynb

— Pruebas/
Graficar_BER_VS_PROBABILIDADES. ipynb
Graficar_BER_por_Bit.ipynb

Probar_Modelo_enviar_1_y_0.ipynb

En funcion de este mapa se puede encontrar cada experimento debidamente comen-
tado, incluyendo la implementacién de cddigos convencionales y pruebas realizadas

para cada programa desarrollado.
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