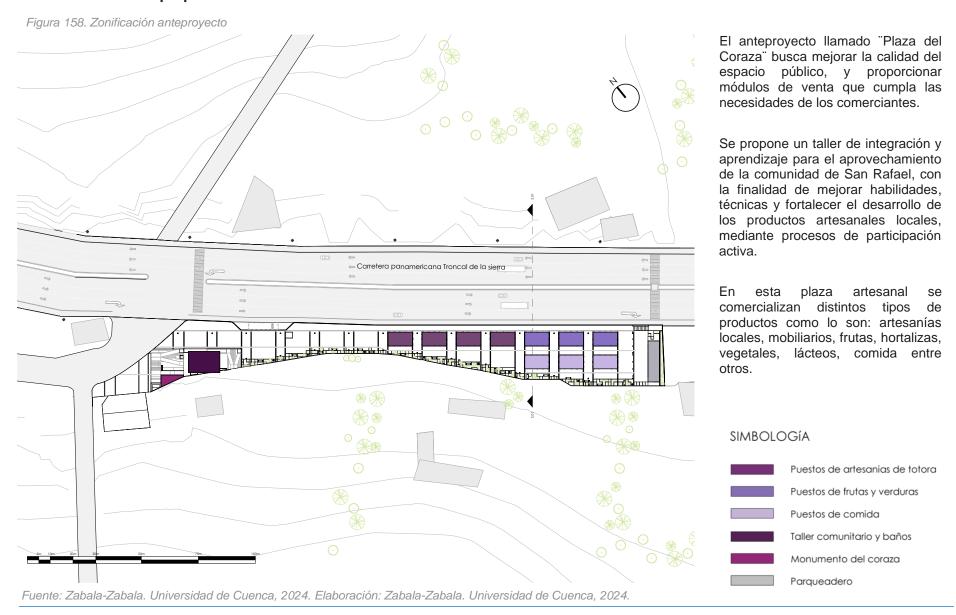


4.1 Programa arquitectónico

4.1.1 Estado Actual

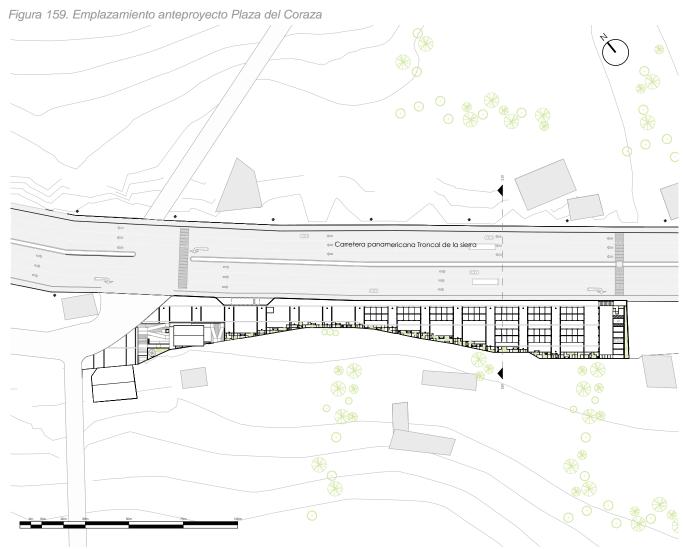
4.1.2 Cuadro de áreas

Tabla 23. Cuadro de áreas estado actual


Ítem	Espacio	Número (#)	Área(m2)	Área Total (m2)	
1	Puestos artesanías totora (Módulo I)	8	13,26	106,08	
2	Puestos artesanías totora (Módulo II)	2	23,87	47,74	
3	Puestos frutas y verduras	7	13,26	92,82	
4	Puestos de comida (Módulo I)	5	13,26	66,30	
5	Puestos de comida (Módulo II)	1	61,50	61,50	
6	Puestos desocupados	5	13,26	66,30	
7	Baños	Baños 1 18,75		18,75	
8	Bodegas	1	50,00	50,00	
			Total	509,49	

Fuente: Zabala-Zabala. Universidad de Cuenca, 2024. Elaboración: Zabala-Zabala. Universidad de Cuenca, 2024.

Tabla 24. Cuadro de áreas propuesta anteproyecto


Ítem	Espacio	Número (#)	Área(m2)	Área Total (m2)	
1	Puestos artesanías totora (Módulo I)	8	12,50	100,00	
2	Puestos artesanías totora (Módulo II)	4	25,00	100,00	
3	Puestos frutas y verduras (Módulo I)	6	12,50	75,00	
4	Puestos frutas y verduras (Módulo II)	3 25,00		75,00	
5	Puestos de comida (Módulo I)	4	25,00	100,00	
6	Puestos de comida (Módulo II)	1	50,00	50,00	
7	Baños	Baños 1 22,50		22,50	
8	Bodegas	1	75,00	75,00	
			Total	597,50	

4.1.3 Zonificación propuesta

4.2 Propuesta anteproyecto arquitectónico

4.2.1 Planta de emplazamiento

La propuesta contempla en generar 26 puestos de comercialización, distribuidos en 10 módulos. Cada módulo está compuesto por entre dos y cuatro puestos de comercio, destinándose 3 módulos a la venta de comida preparada, 4 módulos para la exhibición y venta de artesanías y 3 módulos para el comercio de frutas, verduras y hortalizas.

Estos espacios son flexibles y adaptables a las necesidades y usos individuales de cada comerciante. El módulo tiene una dimensión de 10 x 5 metros en los ejes, y cuenta con 4 frentes de exhibición.

La propuesta comprende espacios de estancia y descanso, utilizando mobiliario de espera, vegetación baja que produzca sombra y suelos permeables que incorporen zonas de área verde.

El diseño de piso unifica el nivel de la plaza con la calzada, garantizando una accesibilidad universal al proyecto, se emplean adoquines y se delimita el área de los módulos mediante una textura en el piso que los distinga claramente.

4.2.2 Plantas arquitectónicas

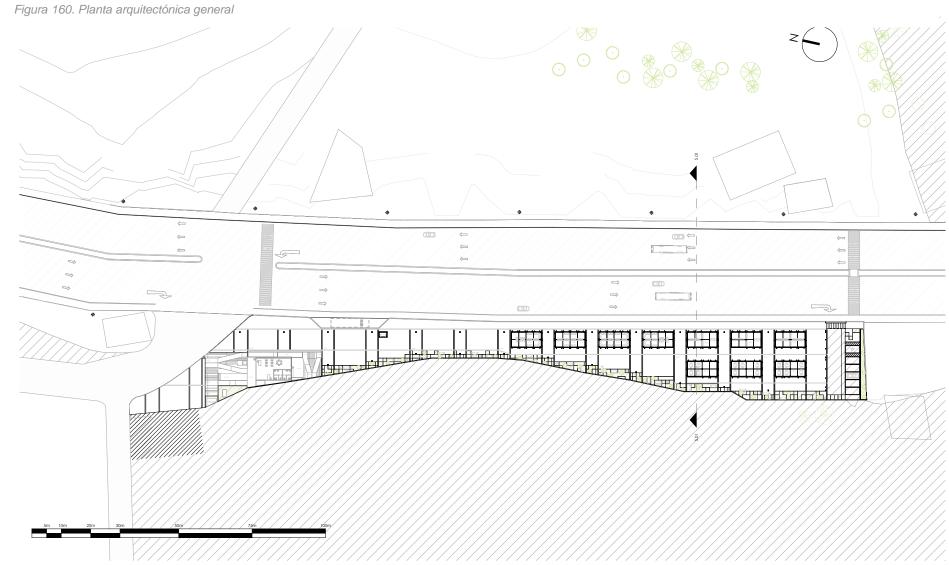


Figura 161. Planta baja parcial: plaza, baños y taller comunitario

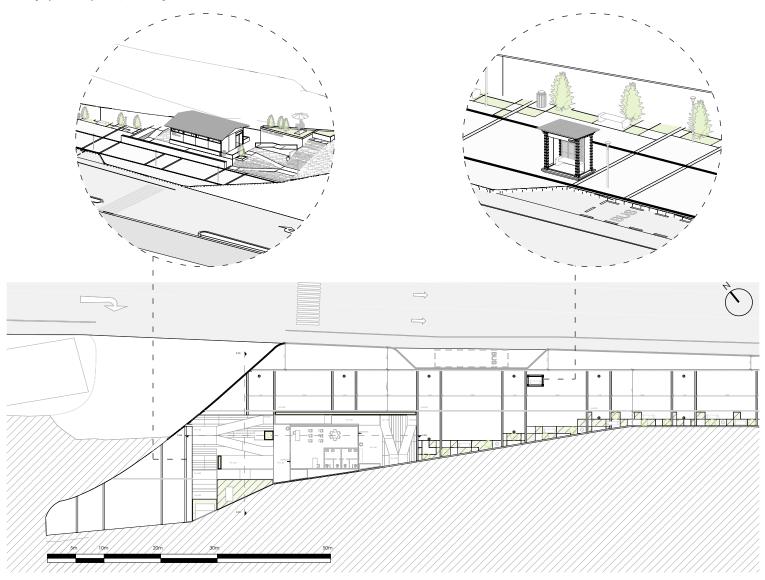


Figura 162. Planta baja parcial: plaza, módulos de comercialización y parqueadero

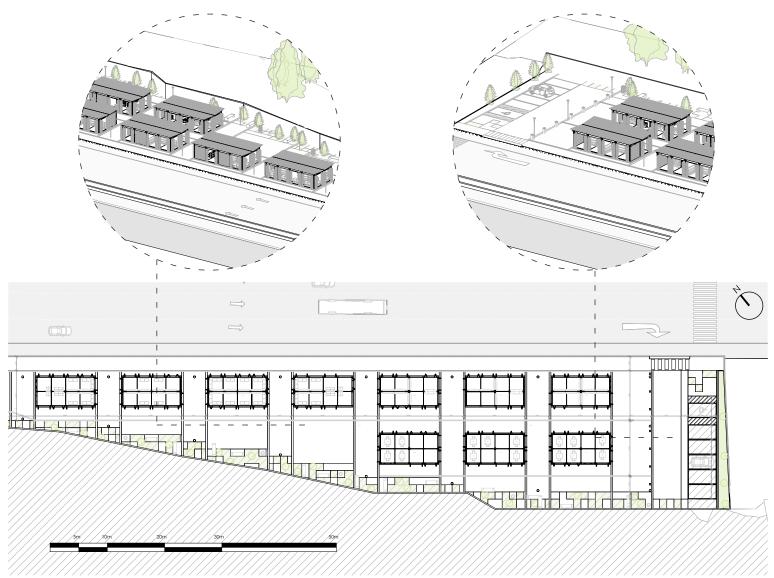
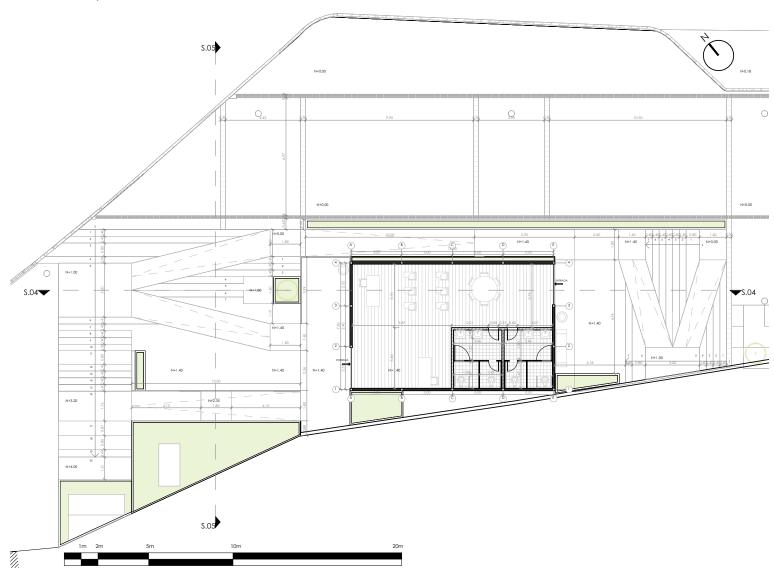
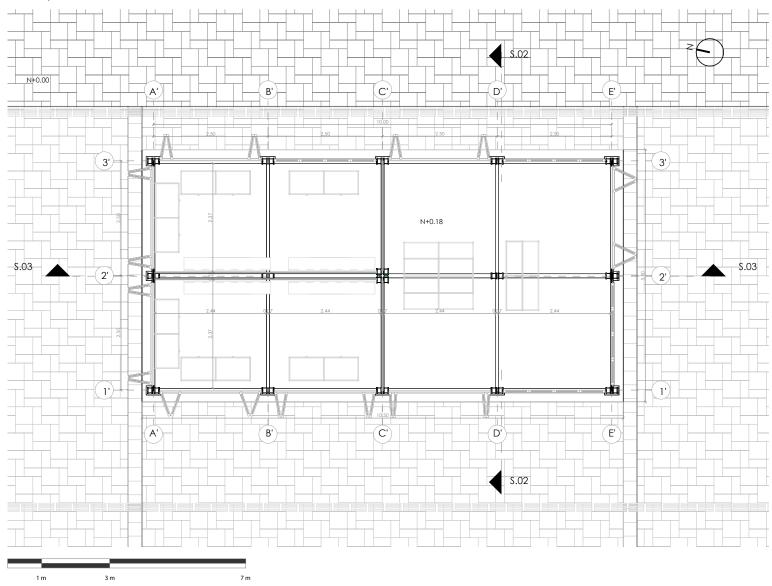
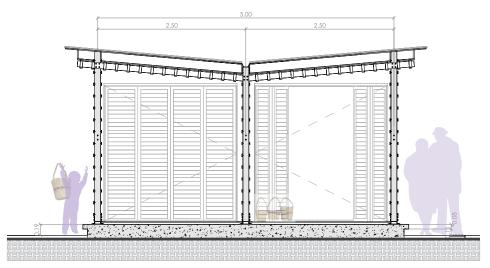


Figura 163. Planta arquitectónica taller comunitario


Figura 164. Planta arquitectónica módulo de comercio

4.2.3 Elevaciones y secciones

Figura 165. Elevación lateral y frontal módulos de comercio

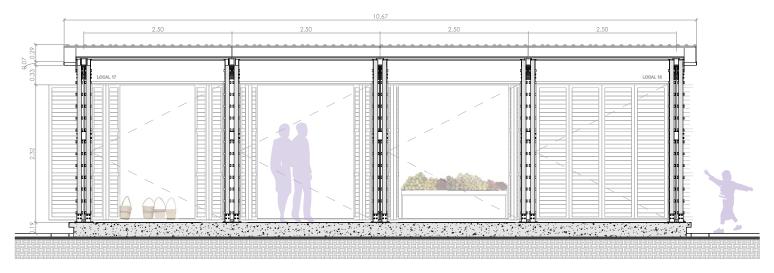
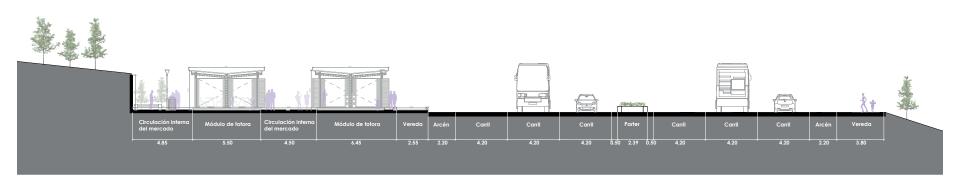



Figura 166. Sección axonométrica y vinculación con la calle

Sección S.01

Planta Corte axonométrico

Figura 167. Sección S.04

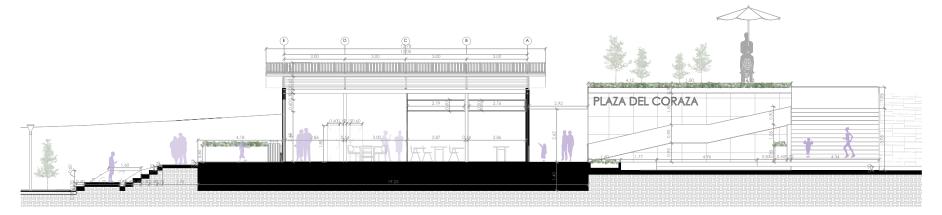
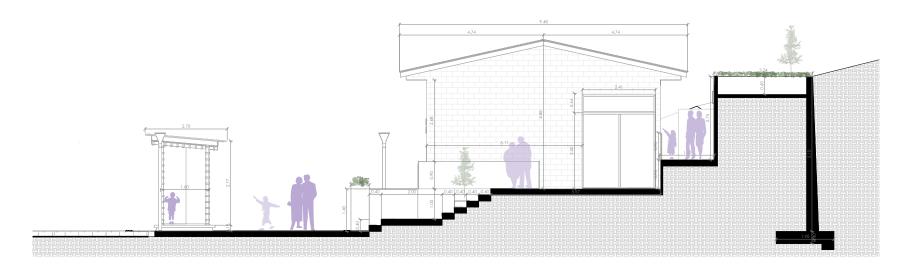



Figura 168. Sección S.05

4.2.4 Adaptabilidad módulos de comercialización

Figura 169. Adaptabilidad módulos de comercialización puestos de artesanías

Tres puestos para el comercio de artesanías

2 Dos puestos para el comercio de artesanías

Cuatro puestos para el comercio de artesanías

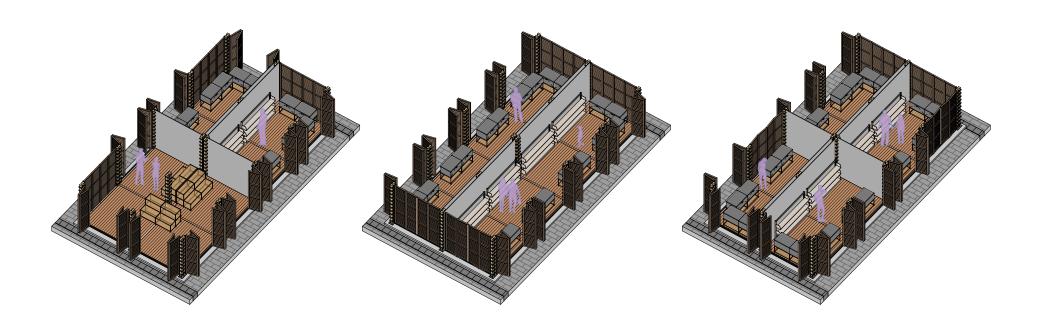
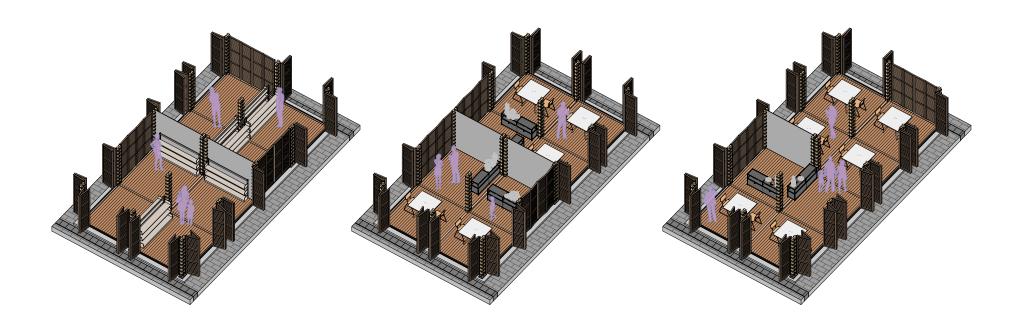



Figura 170. Adaptabilidad módulos de comercialización puestos de alimentos

Dos puestos para el comercio de frutas, verduras y hortalizas

- Dos puestos para el comercio de comida: cañas, pan, helados, etc.
- Un puesto para el comercio de comida: almuerzos, fritadas, etc.

4.3 Propuesta de detalles y proceso constructivo

4.3.1 Cálculo estructural de columnas

Figura 171. Distribución de cargas por área tributaria

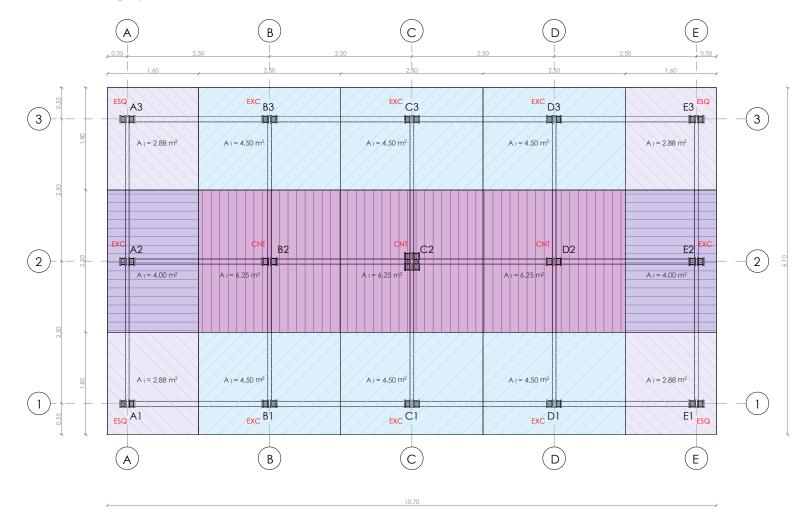


Tabla 25. Determinación de cargas vivas y variables en cubierta

CARGAS PERMANENTES

Descripción del material	Carga unitaria kN/m2 (kg/m2)		
Cielo raso de yeso sobre listones de madera (incluye listones)	0,20 (20,39)		
Chapa ondulada de acero galvanizado	0,14 (14,28)		
CARGAS VARIABLES			
Ocupación o uso	Carga unitaria kN/m2 (kg/m2)		
Cubierta consideración carga por ceniza o granizo	1,00 (101,97)		
Carga Total	136,64		

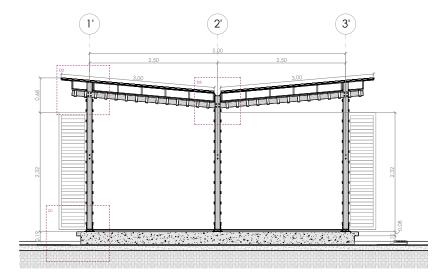
Fuente: NEC-SE-CG Cargas No Sísmicas. Elaboración: Zabala-Zabala. Universidad de Cuenca, 2024.

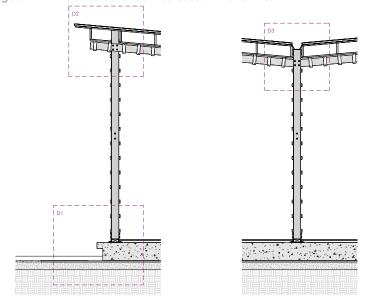
Tabla 26. Cálculo de cargas por área tributaria aplicada en columnas

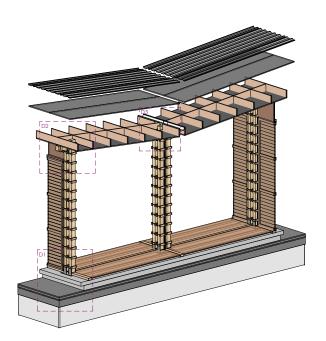
Tipo	Eje	Área tributaria (m2)	Peso Cubierta (kg/m2)	Peso por A. _T (Kg)	Sección Columna (cm)	Esfuerzo columna lab. (kg/cm2)	Resistencia columna (kg)	# Columnas por eje	Resistencia total por eje (kg)	Comprobación
Esq	A1-A3 E1-E3	2,88	136,64	393,52	7,5 x 10	7,75	581,25	2	1162,5	Si cumple
Exc	B1-B3 C1-C3 D1-D3	4,50	136,64	614,88	7,5 x 10	7,75	581,25	2	1162,5	Si cumple
Exc	A2-E2	4,00	136,64	546,56	7,5 x 10	7,75	581,25	2	1162,5	Si cumple
Cnt	B2-D2	6,25	136,64	854,00	7,5 x 10	7,75	581,25	2	1162,5	Si cumple
Cnt	C2	6,25	136,64	854,00	7,5 x 10	7,75	581,25	4	2325,00	Si cumple

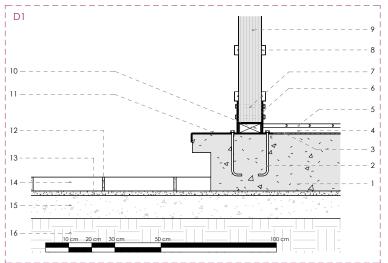
4.3.2 Secciones constructivas

Figura 172. Sección S.02






Figura 173. Sección S.03



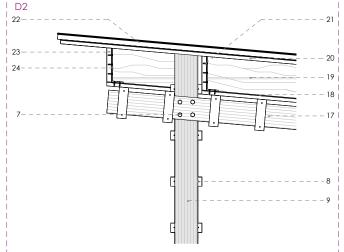

4.3.3 **Detalles constructivos**

Figura 174. Detalles constructivos sección transversal

Leyenda

- 1. Losa de hormigón f'c=210 kg/cm2
- Varilla de anclaje
 Impermeabilizante para piso e=8mm
- 4. Tira de madera 4x5 cm
- 5. Duela de madera 10 cm
- 6. Perfil de acero para anclaje
- 7. Perno de anclaje 8. Tira de madera 14x4 cm @ 20cm
- 9. Columna de totora 10x7.5 cm
- 10. Solera inferior 9x4 cm
- 11. Angulo de acero
- 12. Junta de arena e=10mm
- 13. Capa de arena para adoquin 20mm
- 14. Adoquin gris 30x30 cm aparejo español 15. Suelo mejorado e=10 cm
- 16. Suelo
- 17. Viga secundaria de totora 5x7.5 cm 18. Tablero de gypsum e=18mm
- 19. Listones de madera 2x15cm @ 45cm
- 20. Tablero OSB e= 18mm + tela asfáltica impermeabilizante
- 21. Tornillo autoperforante
- 22. Lámina galvanizada 23. Litón de madera 2x15cm
- 24. Herraje estructural de aluminio

Fuente: Zabala-Zabala. Universidad de Cuenca, 2024. Elaboración: Zabala-Zabala. Universidad de Cuenca, 2024.

Figura 174. Detalles constructivos sección transversal

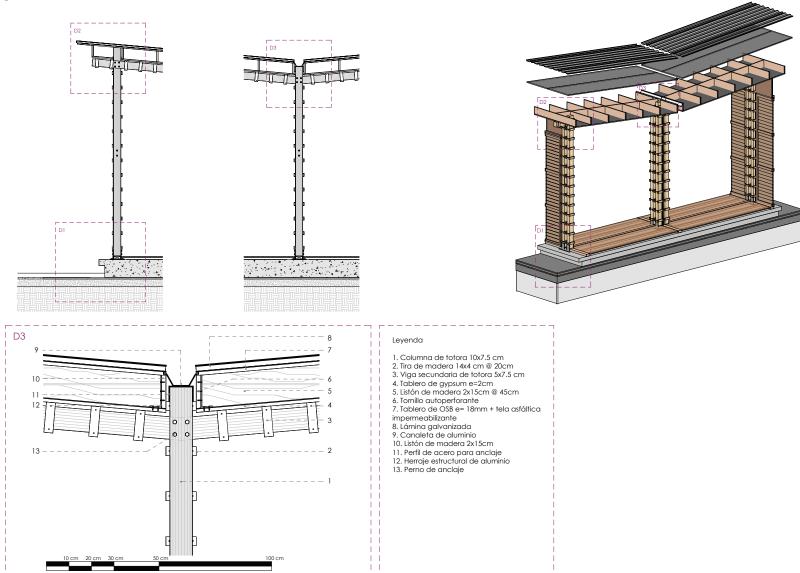
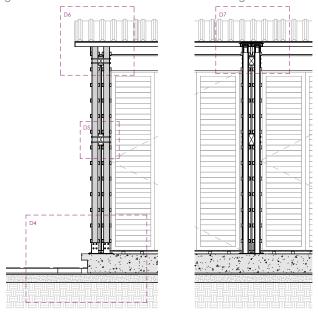
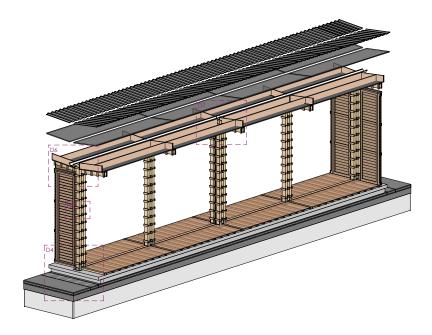
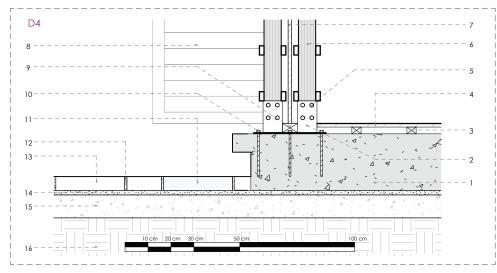
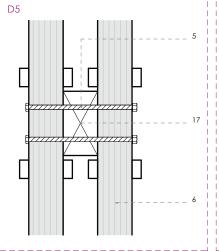
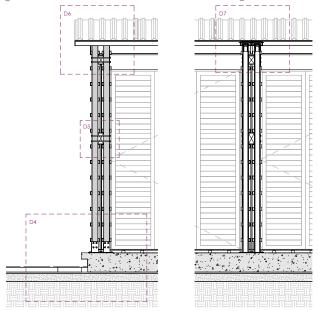
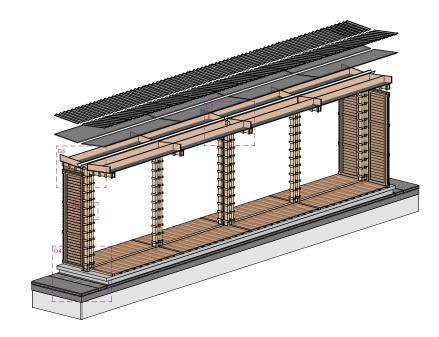






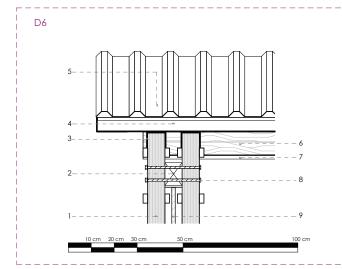
Figura 175. Detalles constructivos sección longitudinal

Leyenda

- 1. Losa de hormigón fc=210 kg/cm2 2. Perfil de acero para anclaje 3. Tira de madera 4x5 cm


- 4. Duela de madera 10 cm
- 5. Perno de anclaje
- 6. Columna de totora 10x7.5 cm 7. Tablero OSB e=20mm


- 8. Puerta plegable 9. Solera inferior 9x4 cm
- 10. Varilla de anclaje


- 11. Adoquin 30x30 cm color terracota 12. Junta de arena e=10mm 13. Adoquin gris 30x30 cm aparejo
- español 14. Capa de arena para adoquin 20mm
- 15. Suelo mejorado e=10 cm
- 16. Suelo 17. Rigidizador de madera 14x7.5 cm

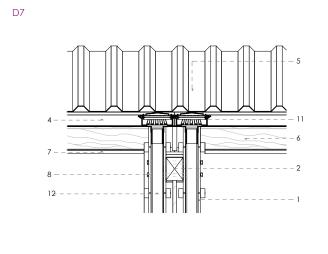

Fuente: Zabala-Zabala. Universidad de Cuenca, 2024. Elaboración: Zabala-Zabala. Universidad de Cuenca, 2024.

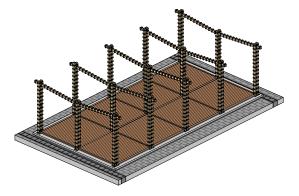
Figura 175. Detalles constructivos sección longitudinal

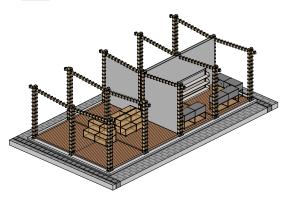
Leyenda

- 1. Columna de totora 10x7.5 cm 2. Viga secundaria de totora 5x7.5 cm
- 3. Perfil de acero para anclaje
- Canaleta de aluminio
 Lámina galvanizada

- 6. Tira de madera 14x4 cm 7. Tablero de gypsum e=2cm 8. Perno de anclaje
- 9. Tablero OSB e=20mm
- 10. Rigidizador de madera 14x7.5 cm 11. Drenaje para techo
- 12. Tubería de PVC

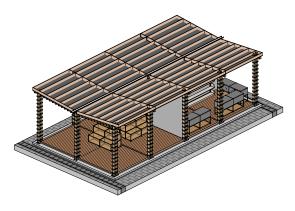
Fuente: Zabala-Zabala. Universidad de Cuenca, 2024. Elaboración: Zabala-Zabala. Universidad de Cuenca, 2024.

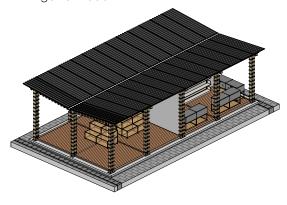

4.3.4 Esquema proceso constructivo módulo de totora


Figura 176. Esquema del proceso constructivo

- Fundición de losa, colocación perfiles de anclaje para columnas y armado soleras de piso
- 2 Disposición de pórticos de totora e instalación duelas de madera

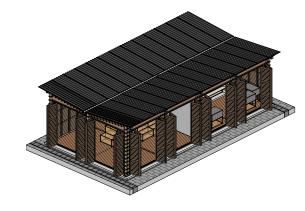
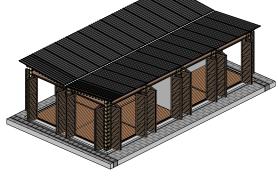
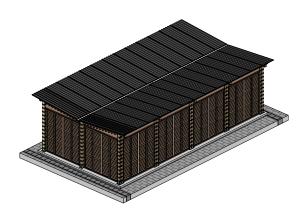
Distribución muros interiores divisorios y mobiliario para exhibición de productos

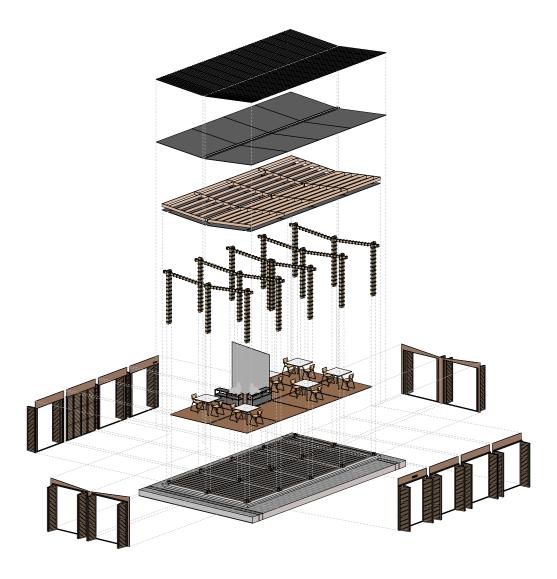




- Instalación cielo raso, listones de madera para cubierta y bajantes de agua lluvia
- Colocación tableros OSB en cubiertas, tela asfáltica impermeabilizante y lámina galvanizada

6 Instalación de montantes y riel para puertas corredizas plegables


Figura 177. Propuesta final módulo de comercio, axonometría explotada

7 Módulo final abierto

8 Módulo final cerrado

4.4 Visuales exteriores e interiores del anteproyecto

Figura 178. Perspectiva exterior 01

Figura 179. Perspectiva exterior 02

Figura 180. Perspectiva exterior 03

Figura 181. Perspectiva exterior 04

Figura 182. Perspectiva exterior 05

Figura 183. Perspectiva exterior 06

Figura 184. Perspectiva exterior 07

Figura 185. Perspectiva exterior 08

Figura 186. Perspectiva exterior 09

Figura 187. Perspectiva exterior 10

Figura 188. Perspectiva exterior 11

Figura 189. Perspectiva exterior 12

Figura 190. Perspectiva exterior 13

Figura 191. Perspectiva exterior 14

Figura 192. Perspectiva interior 01

Figura 193. Perspectiva interior 02

Figura 194. Perspectiva interior 03

Figura 195. Perspectiva interior 04

4.5 Conclusiones y recomendaciones

- Se identificó que ninguno de los prototipos experimentó roturas, por lo que se mantuvo la carga hasta alcanzar una deformación similar al peralte del prototipo. Tanto en los ensayos de flexión como en las de compresión, se aplicó una carga de 75 mm/min.
- Durante los ensayos, se observó que los elementos recuperaron casi por completo su forma original después de retirar la carga aplicada. Para obtener una comprensión más profunda, es esencial realizar ensayos más detallados, como el ensayo de carga cíclica, con el fin de determinar el grado de fatiga del material.
- La fuerza de torque para el prensado de la totora fue una variable importante a considerar. Para los prototipos se utilizaron fuerzas de toque que fueron desde los 7,5 kg.cm hasta 20 kg.cm. Se observó que los prototipos mejoraban su resistencia con una fuerza de torque mayor, por lo que se recomienda utilizar valores de toque mínimos de 15kg.cm.
- En el prototipo ensayado a compresión P.03, se determinó que las fibras internas de estas secciones al ser mayores no lograron obtener una cohesión suficiente entre los tallos, por lo que presentaron valores más bajos a los de secciones menores, lo que indica que secciones mayores de 15x15 cm empiezan a tener problemas de cohesión.
- Del modelo de regresión lineal entre las variables y la resistencia a compresión se concluyó que las variables densidad y distancia entre prensas tienen una relación significativa en su resistencia.
- Del modelo de regresión lineal entre las variables y la resistencia a flexión se concluyó que la variable torque tiene una relación significativa en su resistencia.

- El uso de adhesivos es una posibilidad a estudiarse en estos prototipos, limitando así el movimiento longitudinal entre los tallos de totora, lo que puede proporcionar un aumento considerable en su resistencia a flexión y compresión.
- El diseño del anteproyecto representa una aproximación del producto final, considerando su aplicación en construcciones livianas. Sin embargo, resulta necesario complementar este enfoque con nuevos estudios estructurales que aborden la propuesta de manera integral. Analizar mediante simulación las cargas propias de la estructura, los pórticos, uniones y anclajes; este enfoque permitirá comprender más a profundidad el comportamiento y alcance de este sistema constructivo.
- La totora, al ser un recurso abundante en la zona y de fácil renovación, se presenta como una opción sustentable para la comunidad de San Rafael, debido a que la conformación de estas estructuras no demanda recursos tecnológicos excesivos, por tanto, podrían ser replicadas y reparadas con facilidad, ofreciendo así una solución practica y respetuosa con el entorno.
- Es importante explorar nuevas alternativas constructivas basadas en la fibra totora, dado que esto puede generar beneficios significativos en términos ambientales, sociales, culturales y económicos para San Rafael.

Referencias

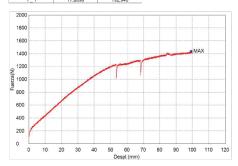
- ADESU. (2001). 21.03 Técnicas de reimplante de totora ámbito Boliviano.

 Recuperado de http://www.alt-perubolivia.org/Web_Bio/PROYECTO/Docum_bolivia/21.03 VOL1.pdf
- Albornoz, B. (2009). Plaza Rotary. Recuperado de https://www.borisalbornoz.com/plaza-rotary/
- Aza-Medina, L. C. (2016). La totora como material de aislamiento térmico: Propiedades y potencialidades (Tesis de master). Universitat Politécnica de Catalunya. Recuperado de http://hdl.handle.net/2117/88419
- Culcay, A. (2014). Experimentación con la fibra de totora. Universidad del Azuay. Recuperado de http://dspace.uazuay.edu.ec/handle/datos/3903
- De Lange, P. J.; Gardner, R. O.; Champion, P. D.; y Tanner, C. C. (2008). "Schoenoplectus californicus (Cyperaceae) in New Zealand". New Zealand Journal of Botany, 36(3), 319–327. Recuperado de https://doi.org/10.1080/0028825X.1998.9512573
- Echeverría, M. (2017). Caracterización de un material con matriz de resina poliéster y refuerzo con fibra natural de totora (Schoenoplectus Californicus), mediante simulación a partir de microfotografía. Repositorio ESPE. recuperado de http://repositorio.espe.edu.ec/xmlui/handle/21000/13283
- Enríquez Criollo, L. T. (2015). Estudio de mercados alternativos para las artesanías de totora y los mecanismos de comercialización que generen oportunidades comerciales para la provincia de Imbabura (Tesis de pre-grado). Universidad Politécnica Estatal del Carchi. Recuperado de http://repositorio.upec.edu.ec/handle/123456789/399

- Foros Ecuador. (2018). Vestimenta Kichwa Traje típico de hombres y mujeres de Otavalo. Recuperado de https://www.forosecuador.ec/forum/ecuador/educaci%C3%B3n-y-ciencia/149922-vestimenta-de-otavalo-traje-t%C3%ADpico-de-hombres-y-mujeres-de-otavalo
- Franco, J. (2012). Mercado Yusuhara. Recuperado de https://www.archdaily.cl/cl/02-144130/yusuhara-marche-kengo-kuma-asociados
- Franco, J. (2016). The totora cube investigates the techniques of incan-era craftsmanship. Recuperado de http://www.archdaily.com/802481/the-totora-cube-investigates-the-techniques-of-incan-era-craftsmans
- Gobierno Autónomo Descentralizado Municipal del cantón Otavalo. (2020-2021). Ordenanza del Plan de Uso y Gestión del Suelo 2020 2021. Recuperado de http://esacc.corteconstitucional.gob.ec/storage/api/v1/10_DWL_FL/ey_JjYXJwZXRhljoicm8iLCJ1dWlkljoiMzlxM2ZhOTktYjRINS00MzBlLWFiY2YtNThmNTYwNDJhOWU0LnBkZiJ9
- Gobierno Autónomo Descentralizado Municipal del cantón Otavalo. (2023). Historia del cantón Otavalo. Recuperado de http://www.otavalo.gob.ec/web/historia
- González, A. (2001). Morfología de planta vasculares. Tema 11: Parénquima. Recuperado de http://www.biologia.edu.ar/botanica/tema11/11-4aerenquima.htm
- González Suarez, F. (1910). Los Aborígenes de Imbabura y del Carchi: Investigación arqueologicas sobre los antiguos pobladores de las provincias del Carchi y de Imbabura en la República del Ecuador. Recuperado de http://dspace.ucuenca.edu.ec/handle/123456789/5321

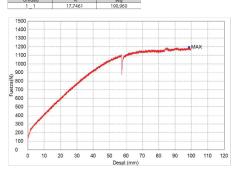
- González, I. (2012). Reseña histórica de la plaza de San Francisco de la ciudad de Cuenca, Ecuador.
- Guerra, D. (2013). La gastronomía tradicional y su incidencia en el desarrollo turístico de la parroquia Atocha-ficoa. Recuperado de https://repositorio.uta.edu.ec/bitstream/123456789/6761/1/FCHE-TH-164.pdf
- Hidalgo, P., Hidalgo, J. F., & García Navarro, J. (2019). Estudio del comportamiento físico-mecánico de rollos de totora amarrados: influencia de la tensión de amarre, diámetro y longitud. Recuperado de https://revistas.uazuay.edu.ec/index.php/daya/article/view/219
- Hidalgo C., J. F. (2007). Totora, material de construcción. Repositorio Universidad de Cuenca. Recuperado de http://dspace.ucuenca.edu.ec/handle/123456789/6180
- Hidalgo Cordero, J. F., y García Navarro, J. (2018). "Totora (Schoenoplectus californicus (C.A. Mey.) Soják) and its potential as a construction material". Industrial Crops and Products, 112, 467–480. Recuperado de https://doi.org/10.1016/j.indcrop.2017.12.029
- Hugo, A. (2018). Totora: paneles prefabricados para cubiertas mediante el uso de resina de poliéster. Repositorio Universidad Católica de Cuenca.
 Recuperado de https://dspace.ucacue.edu.ec/handle/ucacue/1751
- INEC. (2010). Instituto Nacional de Estadística y Censos. Recuperado de https://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda-2010/
- Jara, O. (2020). Aplicación de la fibra natural totora en diseño de materiales y construcción sostenible. Recuperado de https://issuu.com/oscarjaravinueza/docs/articulo_rev_camicon_febr_marz_2021

- Jaramillo, H. (2006). Por las calles de Otavalo De arriba abajo. Recuperado de https://biblio.flacsoandes.edu.ec/libros/digital/55917.pdf
- La hora. (2016). La fiesta del Coraza, una tradición indígena. Recuperado de https://www.lahora.com.ec/secciones/la-fiesta-del-coraza-una-tradici-n-ind-gena/
- Molina, V; Jara, O. (2018). Artes y oficios (constructivos en totora) como vinculación material al diseño y detalle arquitectónico. Recuperado de: http://repositorio.uta.edu.ec/jspui/handle/123456789/28762
- Narváez, E. (2006). La fiesta del Yamor Crónicas de un testigo.


 Recuperado de https://biblio.flacsoandes.edu.ec/libros/digital/55913.pdf
- Natura Futura Arquitectura. (2023). Centro Productivo comunitario Las Tejedoras. Recuperado de: https://www.archdaily.cl/cl/999634/centro-de-desarrollo-productivo-comunitario-las-tejedoras-natura-futura-arquitectura-plus-juan-carlos-bamba
- Norma ecuatoriana de la construcción. (2014). Cargas No sísmicas. NEC-SE-CG Recuperado de https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/1.-NEC-SE-CG-Cargas-No-Sismicas.pdf
- Norma ecuatoriana de la construcción. (2014). Estructuras de madera. NEC-SE-MD Recuperado de https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/11.-NEC-SE-MD-Estructuras-Madera.pdf
- PDOT San Rafael de la Laguna. (2011). Plan de Desarrollo y Ordenamiento Territorial de la Parroquia San Rafael 2011 2015. Recuperado de https://es.scribd.com/document/421191279/Plan-de-Desarrollo-y-Ordenamiento-Territorial-de-La-Parroquia-San-Rafael-de-La-Laguna

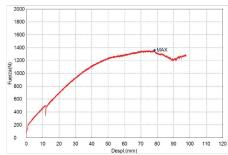
- PELT, y ADESU. (2003). Plantación de totora en comunidades. Recuperado de http://www.alt-perubolivia.org/Web_Bio/PROYECTO/Docum_bolivia/21.04.pdf
- PDOT San Rafael. (2015). Plan de Desarrollo y Ordenamiento Territorial de la Parroquia San Rafael 2015 2019. Recuperado de https://www.imbabura.gob.ec/phocadownloadpap/K-Planes-programas/PDOT/Parroquial/PDOT%20SAN%20RAFAEL.pdf
- PDOT San Rafael de la Laguna. (2019). Plan de Desarrollo y Ordenamiento Territorial de la Parroquia San Rafael de la Laguna 2019 2023. Recuperado de https://gadsanrafaeldelalaguna.gob.ec/imbabura/wp-content/uploads/2022/03/PDOTP-SRL-2019-2023-APROBADO-1.pdf
- Plan de desarrollo turístico Otavalo. (2020). Plan de desarrollo turístico del cantón Otavalo 2020 2025 Recuperado de https://amevirtual.gob.ec/wp-content/uploads/2021/01/PLAN-DE-DESAROLLO-TURISTICO-OTAVALO-2020 compressed.pdf
- Plan de vida de Otavalo. (2001). Plan de vida para el cantón Otavalo 2001. Recuperado de https://es.slideshare.net/ssuser3cce52/plan-de-vida1otavalo-2000pdf
- Rodas, M., Toledo, J. (2021). Espacio público comercial. Análisis comparativo del uso y diseño de las Plazas San Francisco y Rotary del Centro Histórico de Cuenca. Recuperado de https://dspace.uazuay.edu.ec/handle/datos/10920
- Rondon, X.J., Banack, S.A. & Diaz-Huamanchumo, W. (2003). Ethnobotanical investigation of Caballitos (Schoenoplectus californicus: cyperaceae) in Huanchaco, Peru. https://doi.org/10.1663/0013-0001(2003)057[0035:EIOCSC]2.0.CO;2
- Rueda, D. (2022). 11 Leyendas de nuestra tierra Otavalo. Recuperado de https://elmundodelareflexion.com/index.php/escritores-2/642-tradiciones-de-otavalo-2

- Simbaña, A. (2001). Usos y aprovechamiento actual de la totora (Schoenoplectus californicus) en imbabura.
- Simbaña, A. (2003). Hacia el aprovechamiento sustentable de la totora (Schoenoplectus californicus), en el Imbakucha provincia de Imbabura (Tesis de maestría). Pontificia Universidad Católica del Ecuador Sede Ibarra
- Vergara, E. (2022). Suelos blandos: tradición constructiva de las islas flotantes de los Uros. Recuperado de https://www.archdaily.cl/cl/02-345104/suelos-blandos-tradicion-constructiva-de-las-islas-flotantes-de-los-uros
- Zambrano, M. (2018). Totora: análisis de su comportamiento como material en la construcción para futuras aplicaciones. Repositorio Universidad Católica de Cuenca. Recuperado de https://dspace.ucacue.edu.ec/handle/ucacue/1750

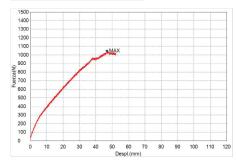

ANEXO_ A (Prototipo 01.1 @ 10cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1435,60	2,55217	99,3876
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		
1 1	17 0000	102.040		

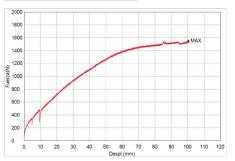
ANEXO_B (Prototipo 01.1 @ 15cm)


Nombre Parametros Unidad 1 _ 1	M.Elastico Fuerza 10 - 20 N N/mm2	MaxFuerza Calc. at Entire Areas N 1193,37	MaxTension Calc. at Entire Areas N/mm2 2,12154	MaxDesplazamiento Calc. at Entire Areas mm 98,5895
Nombre Parametros Unidad	MaxDeformacion Calc. at Entire Areas %	MaxTiempo Calc. at Entire Areas seg		

Anexos

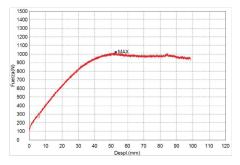

(Prototipo 01.2 @ 10cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1361,21	2,41993	78,4056
Nombre Parametros Unidad	MaxDeformacion Calc. at Entire Areas	MaxTiempo Calc. at Entire Areas		
	96	seg		
1_1	14,1130	152,270		
2000				


(Prototipo 01.2 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1045,23	1,85818	46,8761
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		
1_1	8,43770	91,5800		

(Prototipo 01.3 @ 10cm)

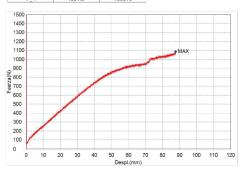

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	1/2	1550,67	2,75676	100,401
Nombre Parametros	MaxDeformacion Calc. at Entire Areas	MaxTiempo Calc. at Entire Areas		
Unidad	96	seg		
1 1	18.0723	194,580	7	

(Prototipo 01.3 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1023,61	1,81975	52,9188
Nombre	MaxDeformacion	MaxTiempo	1	

Nombre	waxDeformacion	waxnempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	96	seg	
1_1	9,52538	103,160	

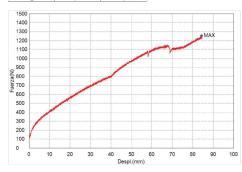
ANEXO_ C (Prototipo 01.1 @ 20cm)


 Nombre
 M.Elastico
 Max_Fuerza
 Max_Tension
 Max_Desplazamiento

 Parametros
 Fuerza 10 - 20 N
 Calc. at Entire Areas
 Calc. at Entire Areas
 Areas

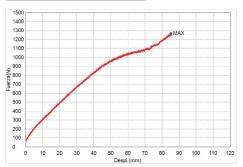
 Unidad
 N/mm2
 N
 N/mm2
 mm

 1_1
 24803,4
 1085,28
 1,92399
 87,6315


Nombre	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	96	seg	
1 1	15,7737	169,910	

ANEXO_ D (Prototipo 02.1 @ 10cm)

Nombre Parametros	M.Elastico Fuerza 10 - 20 N	MaxFuerza Calc. at Entire Areas	MaxTension Calc. at Entire Areas	Max. _Desplazamiento Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1253,45	1,34298	84,3235


Noninore	Max_Deloillacion	wax_nempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1_1	14,1664	165,800

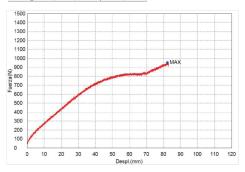
(Prototipo 01.2 @ 20cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	1/2	1265,53	2,24982	85,1700
Nombre	MaxDeformacion	MaxTiempo		

Nombre	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	%	seg	
1_1	15,3306	165,110	

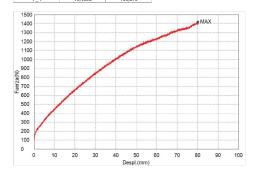
(Prototipo 02.2 @ 10cm)

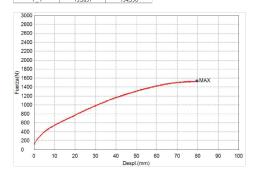
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	52	1497,59	1,60456	80,3128
Nombre	MaxDeformacion	MaxTiempo		


Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1_1	13,4925	156,350

(Prototipo 01.3 @ 20cm)

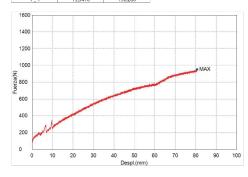
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	22	953,992	1,69599	82,3309


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	14.8196	159,660

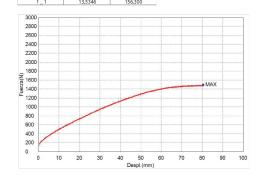

(Prototipo 02.3 @ 10cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
		4400.00	4.500.47	00 4535

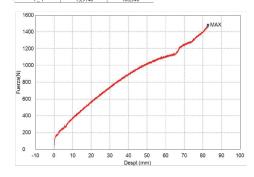
Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
	12.4650	155 670


ANEXO_ E (Prototipo 02.1 @ 15cm)

ANEXO_ F (Prototipo 02.1 @ 20cm)

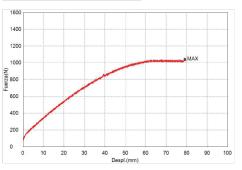

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	- 72	950,178	1,01804	80,6013
Nombre	Max. Deformacion	Max. Tiempo	1	

	Nombre	MaxDeformacion	MaxTiempo	
	Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
- 1	Unidad	96	seg	
- [1 1	12 5410	156 200	


(Prototipo 02.2 @ 15cm)

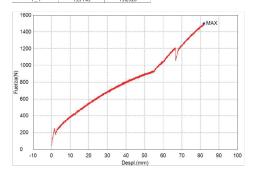
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	100	1492,18	1,59876	80,5629
Nombre	Max. Deformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		

(Prototipo 02.2 @ 20cm)


Nombre	M.Elastico	MaxFuerza	MaxTension	_Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	100	1480,42	1,58616	82,8253
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		
1 1	13 01/16	160 540		

(Prototipo 02.3 @ 15cm)

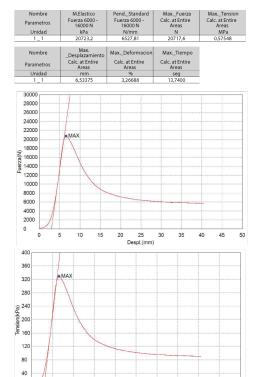
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	55	1043,00	1,11750	79,1455
Nombre	Max. Deformacion	Max. Tiempo		
Nombre				
Parametros	Calc. at Entire	Calc. at Entire		

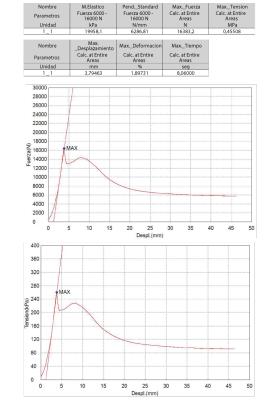

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1_1	13,2964	153,510

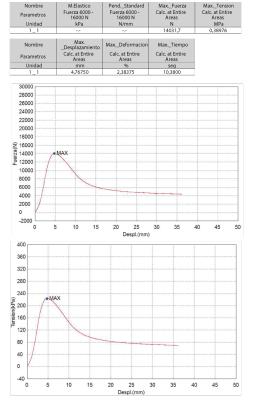
(Prototipo 02.3 @ 20cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1 1		1499.49	1.60659	81.9910

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	12 7745	159,020

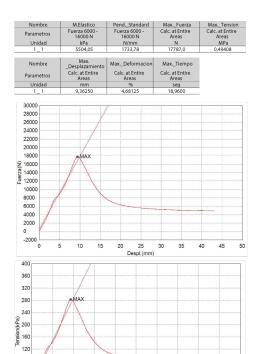


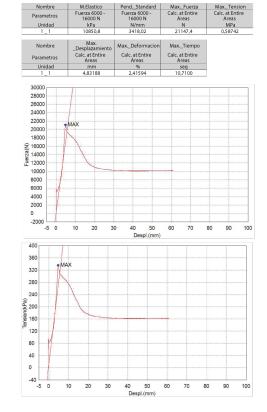

5 10 15 20 25 30 35 40 45


ANEXO_ G (Prototipo 03.1 @ 10cm)

(Prototipo 03.2 @ 10cm)

(Prototipo 03.3 @ 10cm)


80


10 15 20 25 30 35 40 45

ANEXO_ H (Prototipo 03.1 @ 15cm)

(Prototipo 03.2 @ 15cm)

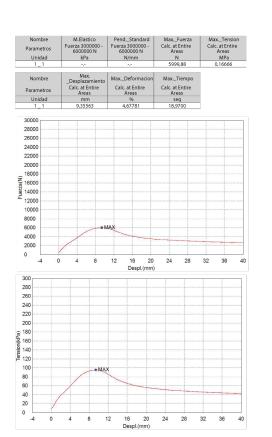
(Prototipo 03.3 @ 15cm)

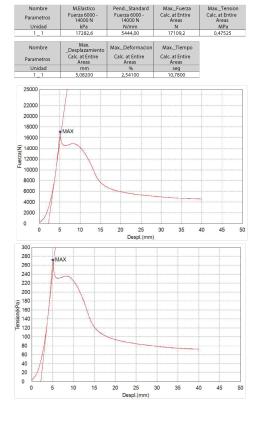
Non	mbre		M.Elasti			Standard		c_Fuerza	M	laxTens	ion
Param	netros	F	uerza 60			6000 -		at Entire	Ca	Ic. at Enti	ire
	idad		16000 l kPa	N		000 N 'mm	,	Areas N		Areas MPa	
	1		Krd 			·	19	5409,2		0,42803	
	-							/4-			
Non	mbre		Max. Desplazar			eformacion		Tiempo	>		
Param		(alc. at En Areas		Ar	t Entire eas		at Entire Areas			
	idad		mm			96		seg			
- 1,	_1		6,2755	0	3,1.	3775	1.	2,8200			
25000											
22000											
20000				-							
18000											
16000		/	MAX								
14000		1	-								
12000	l		1								
10000		1		1							
8000		1		1							
				1							
6000		f									
4000		-									
2000	/_	4									
0	0	4	8	12	16	20	24	28	32	36	40
		-		12		Despl.(mm)		20	32	30	40
300	1					1	1				
280											
260		- 1	IAX			-	4				
240		N	AX				-	-			
220		<i>(</i>	·				-				
200											
180			1								
160			\								
140				\							
				/							
120			7	1			7	1			
100			1				1		1		
80			+	-		-					
60			·			-	-			-	
40	1						4				
20	/										
	/										

16 20 24 28 32 Despl.(mm)

12

ANEXO_I (Prototipo 03.1 @ 20cm)

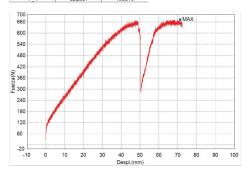

Nombre M.Elastico Pend._Standard Max._Fuerza Max._Tension


(Prototipo 03.2 @ 20cm)

(Prototipo 03.3 @ 20cm

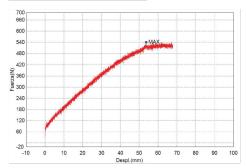
Parametros Unidad	Fuerza 6000 - 16000 N kPa	Fuerza 6000 - 16000 N N/mm	Calc. at Entire Areas N	Calc. at Entire Areas MPa
1_1			14519,4	0,40331
Nombre Parametros	Max. _Desplazamiento Calc. at Entire Areas	MaxDeformacion Calc. at Entire Areas	MaxTiempo Calc. at Entire Areas	
Unidad	mm	96	seg	
1_1	5,26088	2,63044	11,4900	
25000 22000 20000 18000 18000 18000 18000 10000	12 18 24	30 36 42	48 54 60	66 72 80
		Despl.(mm)		
300 280 260 240 220 200 200 200 200 2100 2100 2100				
0	12 18 24	30 36 42	48 54 60	66 72 80

Despl.(mm)



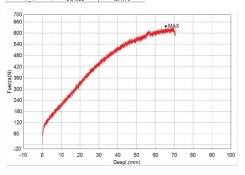
ANEXO_ J (Prototipo 04.1 @ 10cm)

Nombre MElastico Max_Fuerza Max_Tension Max_Desplazamento Parametros Fuerza 10 - 20 N Calc. at Entire Aceas Calc. at Entire Areas Unidad N/mm2 N N/mm2 mm 1_1 - 672.658 0.59703 71,3208

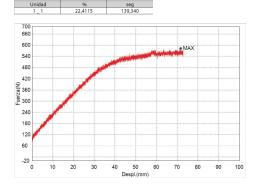

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	22.2521	120 210

(Prototipo 04.2 @ 10cm)

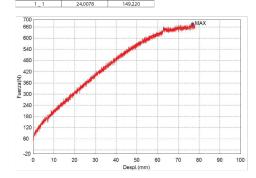
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	177	540,098	0,47938	53,6524
Nombre	MaxDeformacion	MaxTiempo		


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1_1	16,7395	104,270

(Prototipo 04.3 @ 10cm)

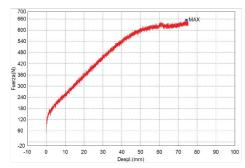

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	100	636,101	0,56459	65,5520

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	20.4522	127.170


ANEXO_ K (Prototipo 04.1 @ 15cm)

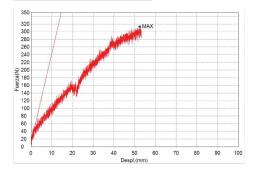
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	1/2	581,741	0,51634	71,8318
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	O/			

(Prototipo 04.2 @ 15cm)

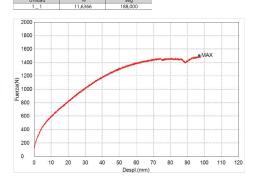

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	**	678,698	0,60239	76,9481
			1	
Nombre	MaxDeformacion	MaxTiempo		
B	Calc. at Entire	Calc. at Entire		

(Prototipo 04.3 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire
Unidad	N/mm2	N N	N/mm2	mm
1_1	5.5	654,221	0,58067	74,2821

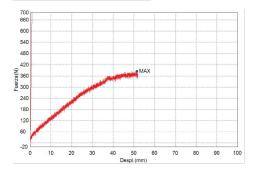

Nombre	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	96	seg	
1_1	23,1760	144,050	

ANEXO_ L (Prototipo 04.1 @ 20cm)



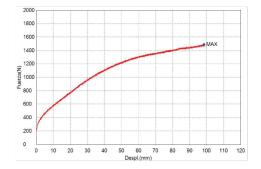
Nombre	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	96	seg	
1 1	16 3970	102.750	

ANEXO_ M (Prototipo 05.1 @ 10cm)


	Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
	Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
	Unidad	N/mm2	N	N/mm2	mm
П	1_1	1/2	1501,40	4,00373	96,9719
-					
	Nombre	MaxDeformacion	MaxTiempo		
	Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
- 1	Unidad	96	can		

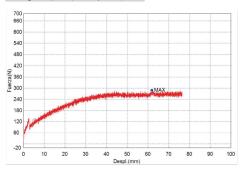
(Prototipo 04.2 @ 20cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	261,855	384,649	0,34140	51,4419
Nombra	May Deformacion	May Tiempo		


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	16,0499	100,330

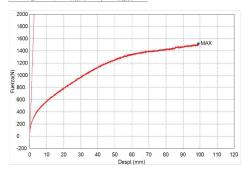
(Prototipo 05.2 @ 10cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	2.5	1486,14	3,96304	98,4138
Nombre	May Deformacion	May Tiempo	1	

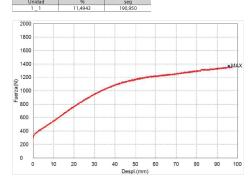

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1_1	11,8097	190,640

(Prototipo 04.3 @ 20cm)

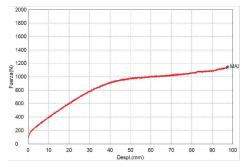
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	5.5	288,645	0,25619	61,9259


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	19,3209	120,400

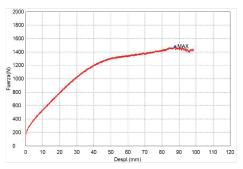
(Prototipo 05.3 @ 10cm)


Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1 1	2614.90	1515.07	4.04018	99 0993

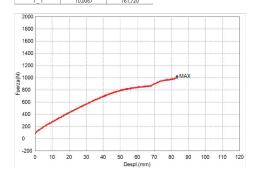
- 11	Nombre	MaxDeformacion	MaxTiempo
	Parametros	Calc. at Entire Areas	Calc. at Entire Areas
	Unidad	%	seg
П	1 1	11.8919	192.030


ANEXO_ N (Prototipo 05.1 @ 15cm)

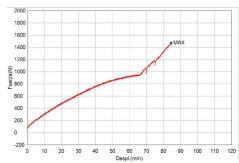
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1		1367,89	3,64770	95,7860
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		


(Prototipo 05.2 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamier
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	10	1149,50	3,06533	97,5874
Nombre Parametros	MaxDeformacion Calc. at Entire Areas	MaxTiempo Calc. at Entire Areas		
Unidad	96	seg		
1_1	11,7105	190,630		

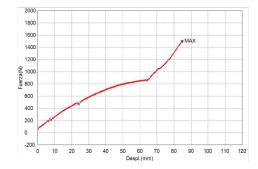

(Prototipo 05.3 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	52	1478,83	3,94354	87,7876
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		
1_1	10,5345	170,890		


ANEXO_ Ñ (Prototipo 05.1 @ 20cm)

Nombre Parametros Unidad	M.Elastico Fuerza 10 - 20 N N/mm2	MaxFuerza Calc. at Entire Areas N	MaxTension Calc. at Entire Areas N/mm2	Max. _Desplazamiento Calc. at Entire Areas mm
1_1	57	1018,84	2,71690	83,3889
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		

(Prototipo 05.2 @ 20cm)

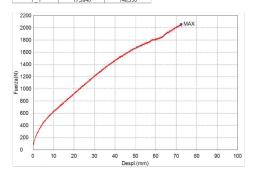

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	55	1469,29	3,91810	84,4901
			1	
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		
Unidad	96	seg		

(Prototipo 05.3 @ 20cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	5.5	1501,72	4,00458	84,9139
Nombre	MaxDeformacion	MaxTiempo		

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	%	seg
1 1	10.1897	164.570

Nombre

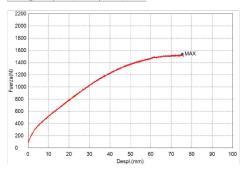

ANEXO_ O (Prototipo 06.1 @ 10cm)

Max_Tension Max _Desplazamiento Calc. at Entire Areas Calc. at Entire Areas Avm2 mm 2,74318 72,4335

Nombre	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	96	seg	
1_1	17,3840	146,550	

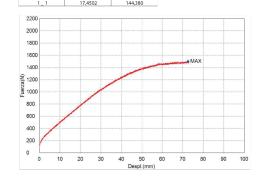
M.Elastico

Fuerza 10 - 20 N

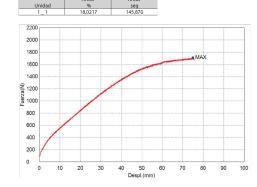

Max. Fuerza

Calc. at Entire Areas N

ANEXO_P (Prototipo 06.1 @ 15cm)

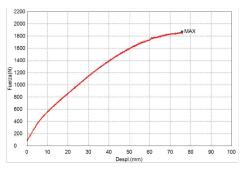

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	200	1536,69	2,04892	75,4803

Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	18.1153	146,790


(Prototipo 06.2 @ 10cm)

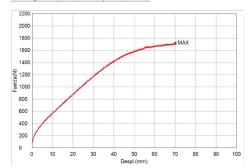
Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	- 10	1496,95	1,99593	72,7091
Nombre Parametros	MaxDeformacion Calc. at Entire	MaxTiempo Calc. at Entire		

(Prototipo 06.2 @ 15cm)


Nombre	M.Elastico	MaxFuerza	MaxTension	_Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	52	1707,71	2,27964	75,0903
Nombre	MaxDeformacion	MaxTiempo		
Parametros	Calc. at Entire Areas	Calc. at Entire Areas		

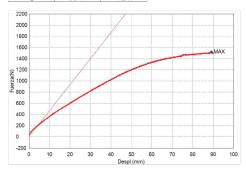
(Prototipo 06.3 @ 10cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1_1	55	1870,16	2,49354	75,8220
Nombre	MaxDeformacion	MaxTiempo]	


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	18 1973	148 770

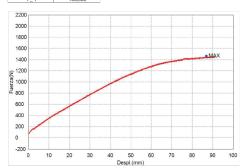
(Prototipo 06.3 @ 15cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1 1		1715.02	2.28669	70.1613


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	16,8387	136,290

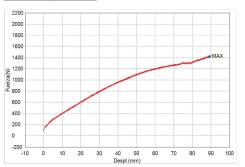
ANEXO_Q (Prototipo 06.1 @ 20cm)

Nombre	M.Elastico	MaxFuerza	MaxTension	Max. _Desplazamiento
Parametros	Fuerza 10 - 20 N	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N/mm2	N	N/mm2	mm
1 1	19.3412	1519.52	2.02602	89,2089


Nombre	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	96	seg
1 1	21.4101	172.960

(Prototipo 06.2 @ 20cm)

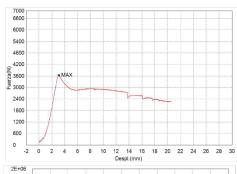
Nombre	MaxFuerza	MaxTension	Max. _Desplazamiento	MaxDeformacion
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N	N/mm2	mm	%
1_1	1461,98	1,94930	86,9630	20,8711

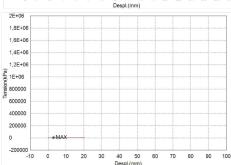

Nombre	MaxTiempo
Parametros	Calc. at Entire Areas
Unidad	seg
1 1	168 680

(Prototipo 06.3 @ 20cm)

Nombre	MaxFuerza	MaxTension	Max. _Desplazamiento	MaxDeformacion
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	N	N/mm2	mm	96
1_1	1422,88	1,89717	89,3521	21,4445

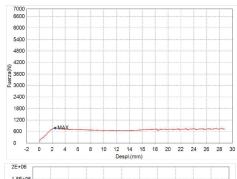
	Nombre	MaxTiempo
	Parametros	Calc. at Entire Areas
ı	Unidad	seg
	1_1	173,290

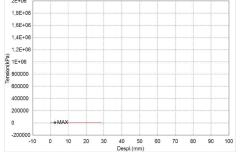



ANEXO_R (Prototipo 07.1 @ 10cm)

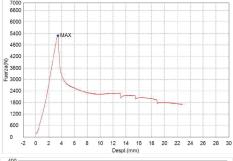
(Prototipo 07.2 @ 10cm)

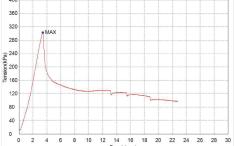
(Prototipo 07.3 @ 10cm)


Nombre	M.Elastico	PendStandard	MaxFuerza	MaxTension
Parametros	Fuerza 50000 - 200000 N	Fuerza 50000 - 200000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1		2,0	3630,64	0,96817
Nombre	Max. _Desplazamiento	MaxDeformacion	MaxTiempo	
		Calc. at Entire	Calc. at Entire	
Parametros	Calc. at Entire Areas	Areas	Areas	
Parametros Unidad				



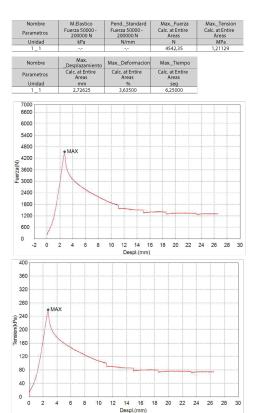
Nombre	M.Elastico	PendStandard	MaxFuerza	MaxTension
Parametros	Fuerza 50000 - 200000 N	Fuerza 50000 - 200000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1	7/2	1/2	777,245	0,20726


Nombre	Max. _Desplazamiento	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	mm	96	seg
1_1	2,44075	3,25433	5,74000



Nombre	M.Elastico	PendStandard	MaxFuerza	MaxTension
Parametros	Fuerza 50000 - 200000 N	Fuerza 50000 - 200000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1			5285,26	1,40940

Nombre	Max. _Desplazamiento	MaxDeformacion	MaxTiempo
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	mm	96	seg
1_1	3,41075	4,54767	7,60000



ANEXO_S (Prototipo 07.1 @ 15cm)

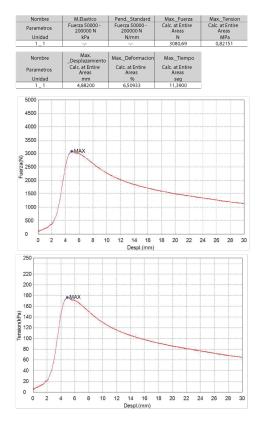
(Prototipo 07.2 @ 15cm)

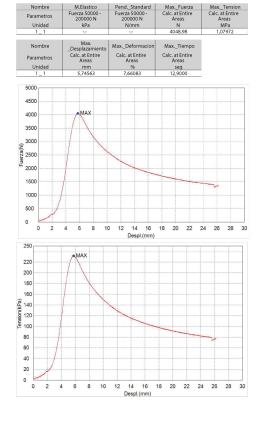
(Prototipo 07.3 @ 15cm)

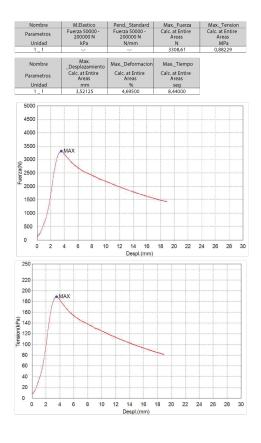
Parametros	Fuerza 50000 - 200000 N	Fuerza 50000 - 200000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1			3021,24	0,80566
	Max.			
Nombre	_Desplazamiento	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire	Calc. at Entire	Calc. at Entire	
Unidad	Areas mm	Areas %	Areas seg	
1_1	2,63475	3,51300	6,06000	
7000				
6600	++			
6000				
F400				
5400				
4800				
4200				
3				
3600 3000				
3000	MAX			
2400				
1800				
1800				
1200				
1200				
1200 600 0	2 4 6 0	10 12 11 16	10 20 20	24 26 20 2
1200	2 4 6 8	10 12 14 16	18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8	10 12 14 16 Despl.(mm)	i 18 20 22	24 26 28 3
1200 600 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		i 18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0	2 4 6 8		18 20 22	24 26 28 3
1200 600 0 -2 0			18 20 22	24 26 28 3
1200 600 0 -2 0			18 20 22	24 26 28 3
1200 600 0 -2 0 400 360 320 280 240 200			18 20 22	24 26 28 3
1200 600 0 -2 0			i 18 20 22	24 26 28 3
1200 600 0 -2 0 400 360 320 280 240 200			18 20 22	24 26 28 3
1200 600 0 -2 0 400 360 320 240 240 200 160 120 80			18 20 22	24 26 28 31
1200 600 0 -2 0 400 360 320 280 240 200 160			18 20 22	24 26 28 3
1200 600 0 -2 0 400 360 320 220 240 200 160 80			18 20 22	24 26 28 3

Nombre M.Elastico Pend._Standard Max._Fuerza Max._Tension

Parametros	Fuerza 50000 - 200000 N	Fuerza 50000 - 200000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1			3150,94	0,84025
Nombre	Max. _Desplazamiento	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	mm	96	seq	
1_1	2,62688	3,50250	6,03000	
7000 6600				
6000				
5400				ļļ
4800				
4200	+	+		
3600 3000				
3000	MAX			
2400	1			
1800	1			
1200	/			
600		_		
0				
-2 0	2 4 6 8	10 12 14 16	18 20 22	24 26 28
		Despl.(mm)		
400				1 1
360				
320				
280				
	AX			
	AX			
	AX			
240 200 160	AX			
240 200 160 120	AX			
240 200 160 120 80	AX			


Nombre M.Elastico Pend._Standard Max._Fuerza Max._Tension
Fuerza 50000 - Fuerza 50000 - Calc. at Entire Calc. at Entire


ANEXO_T (Prototipo 07.1 @ 20cm)

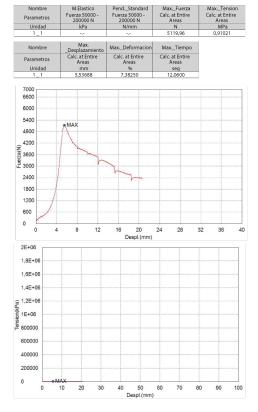

(Prototipo 07.2 @ 20cm)

Nombre

(Prototipo 07.3 @ 20cm)

ANEXO_ U (Prototipo 08.1 @ 10cm)

(Prototipo 08.2 @ 10cm)

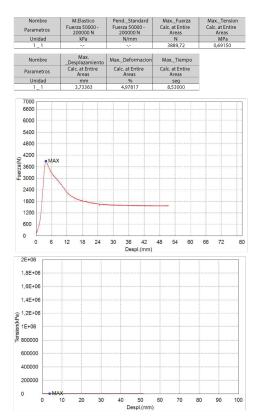

(Prototipo 08.3 @ 10cm)

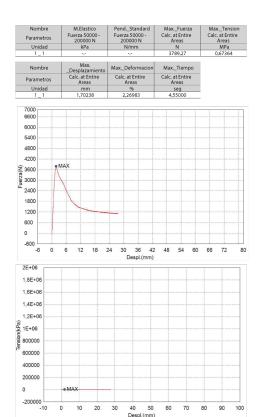
Unic		200000		200000 N	Areas	Areas	
		kPa		N/mm	N	MPa	
1_	1			12	5909,60	1,05059	
NI.	h	Max.		Man Defance :	Man Tin		
Nom	DIG	_Desplazan		MaxDeformacion	MaxTiempo		
Parame	etros	Calc. at En	tire	Calc. at Entire Areas	Calc. at Entire Areas		
Unic		mm		96	seg		
1_	1	1,8827	5	2,51033	5,14000		
7000 6600 5400 4800 4200 (\$\hat{2}\text{3}\tex	M						
0	2	4	6	8 10 Despl.(mm)	12 14	16 18	2
			-			-	
2E+06							
2E+06 1,8E+06	3		-				-
1,8E+06	3						
1,8E+06 1,6E+06	3						
1,8E+06 1,6E+06	3						
1,8E+06 1,6E+06	3						
1,8E+06 1,6E+06	3						
1,8E+06 1,6E+06 1,4E+06 1,2E+06 1E+06 800000	3						
1,8E+06 1,6E+06 1,4E+06 1,2E+06 1E+06 800000	3						
1,8E+06 1,6E+06 1,4E+06 1,2E+06 1E+06 800000 400000	3						

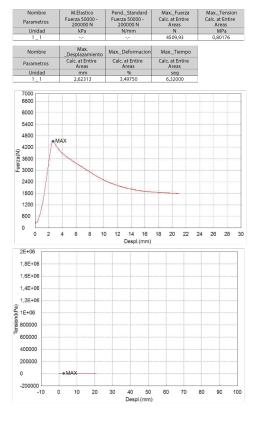
Paramet		M.Elas Fuerza 50 20000	0000 - 0 N	Fuerza 2000	000 N	Calc.	Fuerza at Entire kreas		laxTens alc. at Ent Areas	
Unida		kPa			mm		N		MPa	
1_1		*,*		-	_	4	196,49		0,74604	
Nomb	re	Max _Desplaza	miento		formacion		_Tiempo	•		
Paramet Unida		Calc. at E Area mn	S		t Entire eas %	- /	at Entire \reas seg			
1 1		2,750			5733		71000			
		-,,		-,-						
7000					-				-	_
6600										
0000										
6000										
5400						-	-			
4800						-				
<u>4200</u>		MAX								
3600	/	1	~							
ne ne ne	/		2							
₫ 3000						-				
2400	-/-						_	_		
1800										
1200	1					-				
600	/									
0										
0	2	4	6	8	10	12	14	16	18	20
	_				espl.(mm)	-				_
2E+06										
22.00										
								-	-	
1,8E+06										
1,8E+06 1,6E+06										
									_	
1,6E+06 1,4E+06										
1,6E+06 1,4E+06										
1,6E+06 1,4E+06										
1,6E+06 1,4E+06										
1,6E+06 1,4E+06										
1,6E+06 1,4E+06 (g) 1,2E+06 1E+06 1E+06 800000										

20 30 40 50 60 70 80 90 100

Despl.(mm)

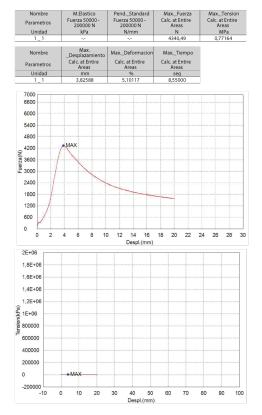





ANEXO_V (Prototipo 08.1 @ 15cm)

(Prototipo 08.2 @ 15cm)

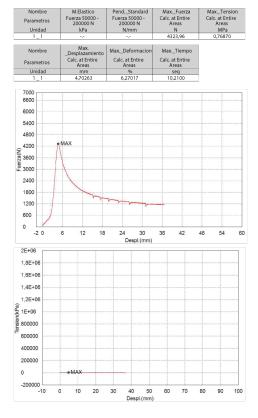
(Prototipo 08.3 @ 15cm)



ANEXO_W (Prototipo 08.1 @ 20cm)

(Prototipo 08.2 @ 20cm)

(Prototipo 08.3 @ 20cm)



Nombr Parametr Unida	os Fuerz	Elastico za 50000 - 10000 N kPa	PendStandard Fuerza 50000 - 200000 N N/mm	MaxFuerza Calc. at Entire Areas N	Calc. at	Tension Entire eas 1Pa
1_1				5887,03	1,04	4658
Nombr Parametr	os Calc	Max. olazamiento . at Entire Areas	MaxDeformacion Calc. at Entire Areas	MaxTiempo Calc. at Entire Areas		
Unida		mm	% 5,03867	seg		
1_1		,77900	5,0386/	8,47000		
7000 6600						
5400	MAX					
4800	+H					
4200						
3000						
2400						
1800						
1200						
600	-					
0 0	2 4 6	8 10	0 12 14 16 Despl.(mm)	18 20 22	24 26	28 30
				1 1	-	
2E+06						
2E+06 1,8E+06		-				
1,8E+06						
1,8E+06 1,6E+06 1,4E+06						
1,8E+06 1,6E+06 1,4E+06						
1,8E+06 1,6E+06 1,4E+06						
1,8E+06 - 1,4E+06 - 1,2E+06 - 1,2E+0						

-200000

10 20 30

40 50 60 70 80 90 100

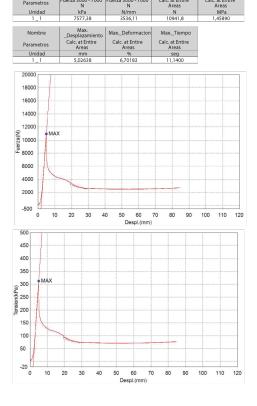
ANEXO_ X (Prototipo 09.1 @ 10cm)

(Prototipo 09.2 @ 10cm)

(Prototipo 09.3 @ 10cm)

Nombre

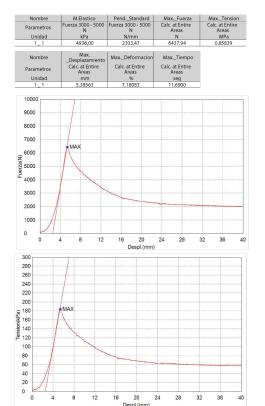
No	mbre		W.Elas				_Stanc			axFu			Max	Tensio	n
Parar	netros	Fuerz	a 200 N	0 - 500	00 Fu	erza 2	000 - 5 N	000	Cal	c. at E Area	ntire	(Talc. a	t Entir eas	e
	idad		kP.			N	l/mm			Area N	,			eas 1Pa	
	1	_	5951		_		77,33	_		6091,	75	_		1223	
		_											-,,-		
No	mbre			amien	to	_	eform			axTie					
	netros	Cal	Area				at Entii ireas	re	Cal	c. at E Area	ntire				
	iidad 1		4,392		-		% 85650			seg 10,02	20				
			4,39,	238	_	5,0	50000			10,02	00				
10000)	_	1	_	-		-	_		-			-		_
9000			-	_	4	4	4		4		_	_	4		
8000					-	_	4	_	4			_	_	_	
7000															
6000		Į.	AAX				_			_			_		
		1	1												T-1/2/2014
5000 A000								+	+						
3000			1												
2000															
2000	/														
1000	1					-							-		
	11														
-500	1	-					7	1	-		i		1		17.00
-300	0 2	4	6	8	10	12	14 Deepl	16 .(mm)	18	20	22	24	26	28	30
							Despi	.(imin)							
250		1					1	1					-		
220		1			ļ	ļ				ļ	4	.ļ	4		
200		-			ļ	-	-				4				
180		MAX	,			-		ļ			1	1	4		
160		MAX		1	1	1		1	<u> </u>	1	1	1	1	1	
		1													
120			-	-	-	-	-								
120				1	1	1	T		-	-	-	T	1	1	
100	-++					-	-	-	-	+	+	+	-		
80											-		-		
60				ļ	ļ	ļ				4		.ļ	4	_	
40	1														
	//														
20	11			-	1	1	-	1		1	1	7	-	-	
0															

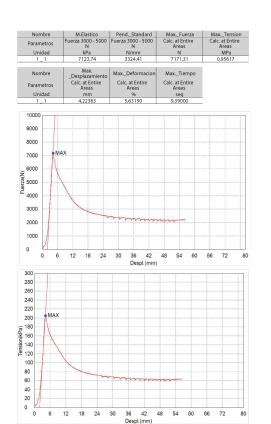

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

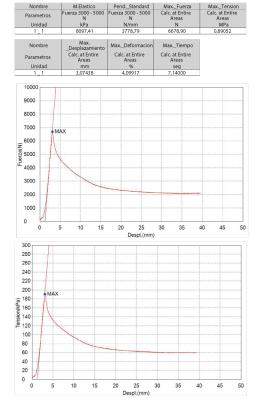
Despl.(mm)

Nombre M. Electico Rend Standard May Fuerza May Tension

Nombre	M.Elastico	PendStandard	MaxFuerza	MaxTension
Parametros	Fuerza 3000 - 7000 N	Fuerza 3000 - 7000 N	Calc. at Entire Areas	Calc. at Entire Areas
Unidad	kPa	N/mm	N	MPa
1_1	7027,01	3279,27	10491,4	1,39885
Nombre	Max. _Desplazamiento	MaxDeformacion	MaxTiempo	
Parametros	Calc. at Entire Areas	Calc. at Entire Areas	Calc. at Entire Areas	
Unidad	mm	96	seg	
1_1	4,98788	6,65050	11,0600	
20000				
20000				
18000				
16000	/			
14000				
12000	/			
ĝ	MAX			
10000	1			
₹ 8000				1
	/\			
6000				
4000	1			+
2000	<i>f</i>			
-500				
0 2	4 6 8 1	10 12 14 16 Despl.(mm)		24 26 28 30
500	1 1 / 1 1			
450				
400				
350				
300	MAX			
2	/			
250	71			
250 250 200	/			
150				
100				
50				
M				

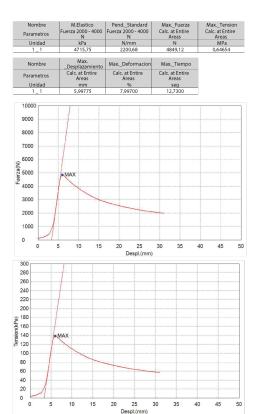

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Despl.(mm)

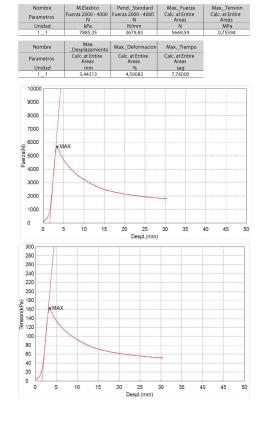




(Prototipo 09.2 @ 15cm)

(Prototipo 09.3 @ 15cm)




ANEXO_Z (Prototipo 09.1 @ 20cm)

(Prototipo 09.2 @ 20cm)

Nombre

(Prototipo 09.3 @ 20cm)

Parametro	s Fue	N	4000		2000 - 4000 N	Calc.	at Entire Areas	Ca	lc. at Enti Areas	re
Unidad 1_1		kPa 9220,5	0		N/mm 302,90	6	N 575,40		MPa 0,89005	
			_		302,30		373,40		0,00000	_
Nombre		Max. Desplazan			Deformacion		Tiempo			
Parametro	s	alc. at En Areas	tire	Caic.	at Entire Areas	Caic.	at Entire Areas			
Unidad		mm			96		seg			
1_1		4,7085)	6,	27800	1 1	0,1700			
10000	1	-	-	_			-			
9000									-	
8000										ya. 10, p. 10
7000	• MAX	×								
6000		`								
5000 S 5000										
5000	1					-				
₽ 4000	1	1								
		1								
3000	1		_							
2000										
	1									
1000	1									
0	4	_					i			
0	5	10	15	20	25	30	35	40	45	5
					Despl.(mm	1)				
300	7		1	-	1	1				
			+							
280	-									
280 260			-		-					
280 260 240			-							
280 260 240 220										
280 260 240 220 200	eMAX									
280 260 240 220 200	e MAX									
280 260 240 220 200	MAX									
280 260 240 220 200	MAX									
280 260 240 220 200 180 160 140	MAX									
280 260 240 220 200	• MAX									
280 260 240 220 200 180 160 140	a MAX									
280 260 240 220 200 (8 180 3 160 140 120 100	a MAX									
280 260 240 220 200 (B. 180 160 140 120 100 80	a MAX									
280 260 240 220 200 (B) 180 160 140 100 80 60	a MAX									
280 260 240 220 200 180 180 100 100 80 60 40		10	15	20	25	30	35	40	45	50

Nombre M.Elastico Pend._Standard Max._Fuerza Max._Tension