

Universidad de Cuenca

Facultad de Ingeniería
Carrera de Ingeniería Eléctrica

"PLANTEAMIENTO ÓPTIMO DE LA EXPANSIÓN DE LOS SISTEMAS ELÉCTRICOS DE SUBTRANSMISIÓN UTILIZANDO EL MODELO "AC" RESUELTO MEDIANTE ALGORITMO METAHEURÍSTICO"

> Trabajo de titulación previo a la obtención del Título de Magíster en Electricidad Mención Redes Eléctricas Inteligentes

Autor:

Carlos Gustavo Morocho Ortiz

Director:

Santiago Patricio Torres Contreras ORCID: 0 0000-0002-8803-6811

Cuenca, Ecuador

2023-08-16

Resumen

La Planificación de la Expansión de la Red de Transmisión (PET) busca los nuevos circuitos de transmisión que se deben agregar al Sistema Eléctrico de Potencia (SEP), para que, dentro de un horizonte de planificación dado, el SEP pueda atender la demanda futura minimizando inversiones y costos de operación. En esta investigación se estudia a detalle el comportamiento de un sistema real de subtransmisión, para este caso será el SEP de subtransmisión de la Empresa Eléctrica Regional Centro Sur C.A.(EERCS), con el fin de estudiar las nuevas alternativas que se debe incorporar en la topología actual del SEP de subtransmisión usando el modelo AC y como técnica de optimización una metaheurística. Para la determinación de la demanda o nueva carga se inicia con un proceso estadístico, con los datos proporcionados por la EERCS se determinó el incremento de demanda por año que asumirá cada subestación que interviene en la red, permitiendo así construir los cimientos, para realizar esta investigación. Para esta investigación se utilizó un método metaheurístico (DE-PBILc) para resolver el PET usando el modelo AC y se implementó en el software MATLAB, los datos necesarios para este estudio fueron proporcionados por la EERCS, estos son: Energía Eléctrica entregada por el Sistema Nacional Interconectado (SNI), generación distribuida, líneas de Interconexión entre nodos y subestaciones, la investigación está realizada para un periodo de 10 años. Finalmente, el programa determina qué infraestructura eléctrica, en qué lugar y en qué momento debe ser agregada a un sistema eléctrico de potencia dentro de un horizonte de tiempo determinado, para este caso de estudio dentro de 10 años y así optimizar la infraestructura de la EERCS, para obtener mayor calidad y confiabilidad de servicio eléctrico.

Palabras Claves:

Modelo AC, Optimización No Convexa, Metaheurística, Planeamiento de la expansión del sistema eléctrico, Planificación de potencia reactiva,

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Cuenca ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por la propiedad intelectual y los derechos de autor.

Repositorio Institucional: https://dspace.ucuenca.edu.ec/

2

Abstract

The Transmission Network Expansion Planning (TNEP) seeks the new transmission circuits that must be added to the electric power system (SEP), so that, within a given planning horizon, the EPS can meet the future demand while minimizing investment and operating costs.

In this research, the sub-transmission system of Empresa Eléctrica Regional Centro Sur C.A. (EERCS) will be used as a test case; the AC model and an optimization technique metaheuristic will used to provide the new sub-transmission additions in 10-years planning horizon.

In order to determine the future demand a statistical process is performed, in which, based on the data provided by EERCS, the increase in demand per year in each substation in the network was determined, thus allowing to build the foundations on which this research has been implemented.

For this research work, a metaheuristic method (DE-PBILc) was used to solve the TNEP using the AC model in the MATLAB environment. The necessary data for this study were provided by EERCS, such as: Electrical Energy delivered to the National Interconnected System (SNI), distributed generation, interconnection lines between nodes and substations, the research is conducted for a period of 10 years.

Keywords:

AC model, Non-Convex Optimization, Metaheuristics, Transmission Network Expansion Planning, Reactive Power Planning.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Cuenca ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por la propiedad intelectual y los derechos de autor.

Repositorio Institucional: https://dspace.ucuenca.edu.ec/

Índice de contenido

Resumen	1
Abstract	2
Índice de contenido	3
Introducción	8
Importancia y Justificación	10
OBJETIVOS	11
Capitulo I	12
Operación del SEP de subtransmisión de la EERCS	12
Importancia del SEP de subtransmisión para la EERCS	12
Área de concesión de la EERCS	13
Subestaciones	13
Clasificación	13
Subestaciones de interconexión	13
Subestaciones de elevación	14
Subestaciones de reducción	14
Ubicación	14
Líneas de Subtransmisión:	15
Comportamiento de la demanda en un sistema de subtransmisión	15
Capitulo II	18
Infraestructura De La Subtransmisión De La EERCS	18
Diagrama unifilar	18
Parámetros de líneas	18
Transformadores	18
Barras	18
Barra Slack	19
Capitulo III	20
Metaheurísticas	20
Metaheurísticas usadas en el PET	20
Capitulo IV	22
Metodología del problema	22
Introducción	22
Modelado	22
Formulación Matemática	22
Algoritmo de Optimización	26

UCUENCA

Evolución Diferencial (DE)	26
Aprendizaje Incremental Continuo Basado en la Población	26
Hibridación del DE y PBILc (DE-PBILc)	27
Implementación en el DPET usando DE-PBILc	27
Capitulo V	29
DPET de la EERCS	29
Cargabilidad del Sistema Eléctrico de Potencia	29
Cargabilidad en las líneas de subtransmisión de la EERCS	29
Cargabilidad Transformadores de Potencia	29
Cargabilidad del Sistema Nacional Interconectado	30
Proyección de la demanda periodo de 10 años	31
Diagnóstico de flujos de potencia para el periodo de estudio:	31
Cargabilidad en las líneas de subtransmisión de la EERCS	31
Cargabilidad Transformadores de Potencia	31
Cargabilidad del Sistema Nacional Interconectado	32
Pérdidas en el SEP de distribución de la EERCS	32
Capitulo VI	33
Resultados	33
Alternativas para la repotenciación del sistema de subtransmisión	33
Diagnóstico a Corto plazo	33
Diagnostico A Mediano y Largo Plazo	34
Análisis de caídas de tensión y cargabilidad del sistema de subtransmis con la nueva topología	
Caídas de Tensión en los nodos	36
Cargabilidad en el sistema de subtransmisión	36
Cargabilidad en líneas de subtransmisión	37
Cargabilidad en transformadores de potencia	37
Cargabilidad del Sistema Nacional Interconectado	37
Pérdidas en el Sistema Eléctrico.	38
Capitulo VII	39
Plan de Contingencia (N-1)	39
Histórico de fallas del sistema de subtransmisión de la EERCS	39
Alternativas para la repotenciación del SEP	40
Diagnostico A Corto plazo	40
Diagnostico A Mediano y Largo Plazo	41

UCUENCA	5
Análisis del SEP de subtransmisión	43
Caídas de Tensión en los nodos	43
Cargabilidad en el sistema de subtransmisión	43
Pérdidas en el Sistema Eléctrico.	43
apitulo VIII	44
Conclusiones y Recomendaciones	44
Conclusiones	44
Recomendaciones	45
Referencias	46
ANEXOS	49

6

Índice de figuras

Figura 1: Área de concesión de la CENTROSUR.	13
Figura 2:Curva De Carga Semanal De Un Sistema De Transmisión	16
Figura 3:Curva de carga aproximada de un transformador	16
Figura 4: Función lineal de costo para compensación de potencia reactiva en la etapa t.	26
Figura 5: Diagrama de flujo para resolver el problema DPET	28

Índice de tablas

Tabla 1: Ubicación Geográfica de Cada Subestación	14
Tabla 2: Parámetros De Tipos De Barras	19
Tabla 3: Cargabilidad en el SNI	30
Tabla 4: Cargabilidad en el SNI.	32
Tabla 5: Ingreso de Nueva Topología por Año Diagnostico a Corto Plazo	33
Tabla 6: Elemento a Ingresar en el Sistema Eléctrico Diagnostico a Corto Plazo	33
Tabla 7: Ingreso de Nueva Topología por Año a Mediano y Largo Plazo	34
Tabla 8: Elemento a Ingresar en el SEP Diagnostico a Mediano y Largo Plazo	35
Tabla 9: Cargabilidad del SNI con la Nueva Topología	37
Tabla 10: Histórico de Fallas de Líneas de Subtransmisión periodo 2019-2022	39
Tabla 11: Ingreso de Nueva Topología por Año Diagnostico a Corto Plazo	40
Tabla 12: Elemento a Ingresar en el SEP Diagnostico a Corto Plazo	40
Tabla 13 Cargabilidad en las líneas de subtransmisión	56
Tabla 14 Cargabilidad en Transformadores de Potencia	58
Tabla 15 Proyección de la Demanda por Subestación	60
Tabla 16 Cargabilidad en las líneas de subtransmisión.	61
Tabla 17 Cargabilidad en Transformadores de Potencia	63
Tabla 18 Pérdidas en el Sistema Eléctrico.	65
Tabla 19: Resultados tensiones en los nodos.	70
Tabla 20: Cargabilidad de Líneas de Subtransmisión con la Nueva Topología	72
Tabla 21: Cargabilidad de Transformadores de Potencia con Nueva Topología	74
Tabla 22: Pérdidas en el Sistema Eléctrico con la Nueva Topología	76
Tabla 23 Resultados tensiones en los nodos	81

Introducción

El origen de los SEP se remonta al siglo XVIII, en el cual se conocía la electricidad estática, en 1882 se inauguró la estación Pearl Street marcando el principio de la industria eléctrica; para los años posteriores la industria eléctrica creció notablemente, este crecimiento se basaba en reducciones en el precio de la electricidad, debido principalmente a los logros tecnológicos y a la creatividad de la ingeniería; hay que señalar que el gran desafío para las empresas de energía es la planificación de la expansión, debido a ciertos aspectos como: crecimiento poblacional, avance tecnológico, desarrollo de un país, entre otros.

Por tal motivo en la actualidad, se debe dar mucha importancia a la planificación de la expansión del SEP, ya que se requiere adecuar constantemente al sistema para garantizar el suministro de energía eléctrica en las mejores condiciones técnicas y económicas. El problema de Planificación de Expansión de Transmisión busca determinar dónde (ubicación), cuántos (el número) y cuándo (el momento) nuevos elementos deben agregarse en el sistema de transmisión con el fin de abastecer la demanda futura al menor costo y cumpliendo los criterios técnicos y económicos [1], [2], [3]. Estos nuevos elementos son principalmente nuevas líneas de transmisión que deben añadirse al SEP, aunque también podría ser equipos de compensación y transformadores.

La planificación de la expansión de sistemas de transmisión puede ser analizada de dos maneras: estática y dinámica. La planificación estática busca encontrar la mejor adición de líneas de transmisión que cumpla las restricciones del problema para un determinado horizonte de planeamiento (un solo periodo), por lo que el tiempo no es considerado como una variable de decisión. Mientras que, la planificación dinámica estática busca encontrar la mejor adición de líneas de transmisión que cumpla las restricciones del problema para un determinado horizonte de planificación, pero el cual está dividido en ciertas etapas (múltiples periodos), por lo que el tiempo es considerado como una variable de decisión [4], [5], [6], [7].

El problema de PET es de tipo combinatorial, cuyo modelo matemático, en su estructura más compleja, corresponde a un problema de programación no lineal, entero mixto y no convexo (PNLEM) [6], [8]. Este problema se puede dividir en dos componentes principales. La primera parte implica formular un modelo matemático para representar el sistema

eléctrico, mientras que la segunda parte consiste en desarrollar una metodología para resolver ese modelo [9].

Para modelar el PET existen diversos modelos, desde el modelo completo (modelo AC) [1], [6], [8], [9], el cual es muy difícil de resolver, hasta modelos simplificados o aproximados (modelo DC, modelo de transporte) que son más fáciles de resolver que el modelo AC [2], [10], [11], [12], [13]. En cuanto a los métodos de solución, se pueden clasificar en tres categorías: optimización matemática, heurística y metaheurística. En este trabajo se usará el modelo AC para representar el problema PET, usando formulación dinámica y como técnica de optimización una técnica metaheurística.

Importancia y Justificación

Si bien el PET dinámica ha sido tratado en sistemas de prueba, obteniendo resultados muy prometedores, en este trabajo se pretende usar el PET usando el modelo AC en un sistema real, donde automáticamente se podrá encontrar donde, cuantas y cuando las líneas de transmisión deben ser adicionadas para que en un horizonte de planificación el sistema pueda operar adecuadamente al menor costo posible tanto en condiciones normales como en condiciones de contingencias N-1. Además, aunque el uso del modelo AC es difícil de tratar, se justifica el uso de este modelo para representar el PET dinámica debido a que este modelo es el modelo ideal para representar un SEP ya que el plan final encontrado no requiere modificaciones adicionales.

OBJETIVOS

Objetivo General

Realizar un estudio de PET dinámica del SEP de subtransmisión de la EERCS usando el modelo AC, como técnica de optimización una metaheurística hibrida.

Objetivos Específicos

- 1. Realizar el PET dinámica del SEP de subtransmisión de la EERCS.
- 2. Emplear el modelo de flujo de carga AC para representar la red eléctrica.
- 3. Emplear como técnica de optimización la metaheurística hibrida DE-PBILc.
- 4. Aplicar el criterio N-1 al sistema a analizar.

Capitulo I

Operación del SEP de subtransmisión de la EERCS.

El SEP de subtransmisión de la EERCS es un conglomerado integrado por generación distribuida, líneas de interconexión, subestaciones y grandes consumidores de energía eléctrica, los voltajes pueden ser 22kV o 69kV.

La etapa de subtransmisión puede considerarse como un punto intermedio entre las etapas de transmisión y distribución, por lo tanto, es de vital importancia monitorear continuamente este sistema para tomar las decisiones más acertadas que garanticen su correcto funcionamiento y sobre todo su eficiencia.

Las líneas de subtransmisión de la EERCS están en proximidad de zonas urbanas, frecuentemente las líneas son de tipo aéreas de diseño de doble terna, si de ser el caso el espacio ocupado por una vieja línea o línea obsoleta debe ser aprovechado por una nueva con mejor capacidad de transporte (mejor tensión).

En este caso el diseño de líneas de subtransmisión, los conceptos que se aplican no son distintos de los que se emplean a líneas en general, ya que el objetivo es lograr un sistema confiable, que ocupe poco espacio y económico.

Importancia del SEP de subtransmisión para la EERCS

Como ya se mencionó antes, en el transporte de energía eléctrica interviene el sistema de subtransmisión siendo un elemento primordial que conforma un SEP. Es de vital importancia tener conocimiento de parámetros como lo son por ejemplo la configuración, disposición física y comportamiento del sistema.

Otro aspecto a tener en cuenta es que, dentro de un sistema eléctrico, las etapas funcionales de subtransmisión y subestaciones deben contar con la mejor confiabilidad y disponibilidad, de manera que se pueda asegurar el abastecimiento de la demanda actual y proyectada, por lo que es importante analizar la operación actual del sistema de subtransmisión y desarrollar un estudio, para el incremento de demanda.

Área de concesión de la EERCS.

El área geográfica de concesión para Distribución de Energía Eléctrica de la EERCS, tiene una extensión de 30.273 km², la cual comprende las Provincias de Azuay, Cañar y Morona Santiago y sirve alrededor de 300.000 clientes. [14].

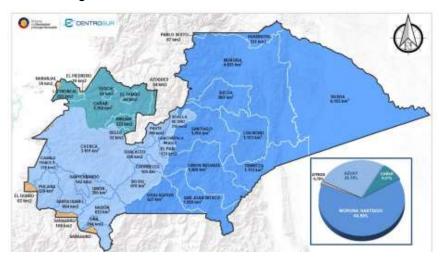


Figura 1: Área de concesión de la CENTROSUR.

Fuente: http://www.centrosur.com.ec/?q=node/11

Subestaciones

La EERCS cuenta con 20 subestaciones, las cuales distribuyen energía eléctrica a toda el área de concesión, los cuales pueden transportar hasta una potencia de 32 MVA, dependiendo del tipo de conductor y del nivel de voltaje; generalmente operan a tensiones que varían entre 138, 69, 22, 13.8 y 6.3 kV. [14]

Clasificación

Las subestaciones que conforman el SEP de subtransmisión de la EERCS, se pueden clasificar de acuerdo a la función que desempeñan:

Subestaciones de interconexión

Este tipo de subestaciones son las que sirven para la interconexión de las líneas de subtransmisión, los cuales vienen de los distintos puntos de generación, para

interconectarse con otras subestaciones, estos no tienen transformadores de potencia ni consumo de demanda, un ejemplo de este tipo es la subestación 19 "Subestación Corpanche".

Subestaciones de elevación

Estas subestaciones se encuentran instaladas junto a las centrales de generación y son las encargadas de elevar los niveles de tensión, además sirven para la interconexión con otras subestaciones como son la subestación 10 y 20.

Subestaciones de reducción

Las subestaciones de distribución son las que reciben energía a través de líneas de subtransmisión y reducen los niveles de tensión para que distribuyan la energía eléctrica a los distintos tipos de carga como por ejemplo las subestaciones 4 y 12 etc.

Ubicación

La ubicación de las subestaciones de distribución por lo general está en el centro de la zona en la que distribuyen energía por lo que el espacio es valioso y por eso debe ser bien aprovechado, debido a que muchas veces este espacio es preexistente y ya no puede ser ampliado. La zona en donde esté ubicada la subestación establece el tamaño de la zona que debe alimentar, deduciendo así que los alimentadores primarios deben llegar hasta los límites del área servida. A continuación, se presenta la Tabla 1 en donde se observa las subestaciones que posee la EERCS.

Tabla 1: Ubicación Geográfica de Cada Subestación.

Fuente: Empresa Eléctrica Regional Centro Sur C.A. (Actualizada hasta Enero-2021)

	LOCALIZACION GEOGRAFICA				
S/E	UBICACION	PARROQUIA	CANTON	PROVINCIA	NIVEL DE TENSIÓN (kV)
1	Luis Cordero	Vecino	Cuenca	Azuay	22/6.3
2	Benigno Malo	Gil Ramírez D.	Cuenca	Azuay	22/6.3

3	Monay	Monay	Cuenca	Azuay	69/22
4	Visorey	Vecino	Cuenca	Azuay	69/22
5	Arenal	Yanuncay	Cuenca	Azuay	69/22
6	Verdillo	Bellavista	Cuenca	Azuay	69/22
7	Ricaurte	Ricaurte	Cuenca	Azuay	69/22
8	Turi	Turi	Cuenca	Azuay	69/22
9	Guablincay	Azogues	Azogues	Cañar	69/22
EEAZ1	Azogues	Azogues	Azogues	Cañar	69/22
EEAZ2	Azogues	Azogues	Azogues	Cañar	69/22
12	Descanso	Nulti	Cuenca	Azuay	69/22
13	Chaullayacu	Tarqui	Cuenca	Azuay	69/22
14	Lentag	Abdón Calderón	Girón	Azuay	69/22
15	Ayaloma	Gualaceo	Gualaceo	Azuay	138/22
18	Cañar	Cañar	Cañar	Cañar	69/22
19	Corpanche	Checa	Cuenca	Azuay	69/69
21	Macas	Macas	Macas	M. Santiago	69/22
22	Méndez	Méndez	Méndez	M. Santiago	138/13.8
23	Limón	Limón	Limón	M. Santiago	138/13.8

Líneas de Subtransmisión:

Un elemento muy importante en los sistemas de subtransmisión es el análisis de la cargabilidad de los conductores, para el dimensionamiento de conductores se realiza en la etapa de diseño y su control durante el período de vida útil de los mismos, en estas dos etapas es importante considerar sus condiciones de cargabilidad, con el fin de obtener condiciones adecuadas de operación dentro de parámetros técnico económicos razonables.

Comportamiento de la demanda en un sistema de subtransmisión

La demanda varia ampliamente en corto plazo de manera que impacta de forma directa en los sistemas de generación, transmisión y subtransmisión.

La curva de carga semanal presenta similitudes en los días ordinarios y un comportamiento diferente los fines de semana y festivos, en la figura 2, se observa el comportamiento de la demanda energética en función del tiempo (semanas).

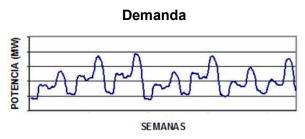


Figura 2:Curva De Carga Semanal De Un Sistema De Transmisión
Fuente: Materia De Sistemas Eléctricos De Potencia

En la curva de carga del SEP de subtransmisión de la EERCS, existe una demanda máxima y una demanda mínima, las cuales se pueden ver en la figura 3. (La curva de carga corresponde a un trasformador).

Figura 3:Curva de carga aproximada de un transformador Fuente: Materia de Sistemas Eléctricos de Potencia

En la gráfica anterior se puede observar que la hora critica es alrededor de las 19h00 horas, dado que los usuarios retornan de sus trabajos para realizar sus actividades cotidianas, el funcionamiento del TRANVIA y entra a funcionar el sistema de iluminación de la ciudad lo cual es una carga considerable incrementando así la demanda a su máximo valor, esforzando así al SEP y por ende al sistema de subtransmisión.

Es importante mantener un adecuado crecimiento de la capacidad de subtransmisión, siempre sobre el crecimiento de la demanda, de la misma manera en lo referente a las

líneas de subtransmisión, ya que en el caso de que la demanda supere el límite de capacidad de las líneas, la construcción de las mismas podrá ser ejecutada entre 1-2 años desde los diseños ejecutivos y financiamientos de las obras, por tal motivo es necesario una planificación que anticipe el crecimiento de la demanda. También se debe considerar que para mantener un adecuado índice de confiabilidad y vitalidad del sistema, se hace necesario tener una cierta redundancia de elementos en la red, tanto para el diseño del sistema como para su operación (circuitos en anillo o mallados, etc.)

Capitulo II

Infraestructura De La Subtransmisión De La EERCS

Es importante conocer como el SEP de subtransmisión de la EERCS opera actualmente, es por ello que en este capítulo se da a conocer todos los parámetros del sistema y de esta manera poder tener una idea clara de donde partir hacia el diagnostico de expansión.

Diagrama unifilar

El SEP de subtransmisión de la empresa eléctrica está constituido por la conexión entre subestaciones por medio de las líneas de subtransmisión tal como se verá en el diagrama unifilar (Anexo N°1), ahí se puede apreciar los elementos que componen cada subestación como los transformadores, barras, alimentadores y las líneas que conectan a las subestaciones entre sí.

Parámetros de líneas

Es de importancia considerar los parámetros de las líneas de subtransmisión (Anexo N°2), ya que de estas depende en su mayoría las pérdidas de energía y por ende dichos parámetros deben ser considerados para al análisis de expansión.

Transformadores

Los transformadores son el corazón de las subestaciones, por lo que son considerados los elementos de mayor importancia ya que si estos fallan, todo el sistema queda sin servicio, es por ello que es indispensable no saturarlos de carga para que así su rendimiento sea mayor y su funcionamiento sea óptimo. En el ANEXO 3, se presenta los parámetros de cada transformador de potencia y sus respectivas denominaciones.

Barras

En la tabla 2, se muestran las diferentes barras las cuales se diferencian por el nivel de tensión a la cual están sometidas. De cada tipo de barra se menciona la tensión línea-línea,

línea-tierra y los límites de tensión de estado estacionario a los cuales el sistema funciona correctamente.

Tabla 2: Parámetros De Tipos De Barras

Fuente: Empresa Eléctrica Regional Centro Sur. C.A.

TENSION	TENSION	LIMITES DE TENSION DE ESTADO ESTACIONARIO			
(LINEA-	(LINEA-	TENSION			
LINEA)	TIERRA)	MAX	TENSION MIN.	DELTA V	DELTA V
KV	KV	P.U.	P.U.	MAX	MIN.
22	12.70171				
69	39.83717	1.05	0.95	5%	-5%
138	79.67434				

Barra Slack

La barra slack, es una barra de generación específica, donde ingresa la mayor cantidad de energía al sistema eléctrico en el caso de la EERCS existen dos de este tipo de barras, la primera y más importante del sistema es la subestación Cuenca con una potencia de 150MVA, y la segunda es la subestación Synincay con una potencia de 166MVA, estas se encuentran conectadas al Sistema Nacional Interconectado (SNI) y satisface el 90% de la demanda requerida por el área de cobertura de la EERCS.

Capitulo III

Metaheurísticas

Un método heurístico para resolver problemas computacionales en general es la metaheurística, usando parámetros que proporcione el usuario sobre procedimientos genéricos y abstractos de una manera que el resultado sea eficiente. Normalmente, estos procedimientos son heurísticos. El nombre combina el prefijo griego "meta" ("más allá", aquí con el sentido de "nivel superior") y "heurístico" (de heuriskein, "encontrar") [15].

Las metaheurísticas en general son aplicables en problemas que no poseen de un algoritmo o heurística específica que encuentre una solución satisfactoria; o cuando es imposible implementar un método óptimo. El objetivo principal que tiene la mayoría de las metaheurísticas son los problemas de optimización combinatoria, pero, se pueden aplicar a problemas que puedan reformular en términos heurísticos, por ejemplo, optimización para la planificación de expansión de redes eléctricas [13], [9], [16].

La metaheurística tiene como objetivo principal encontrar un objeto matemático que maximice o minimice, dependiendo del problema, una función especificada por el usuario. A estos objetos se les llama estados, y al conjunto de todos los estados candidatos se le llama espacio de búsqueda. La naturaleza de los estados y del espacio de búsqueda son usualmente específicos del problema. Las técnicas metaheurísticas siguen un proceso iterativo de generación, evaluación y selección de soluciones candidatas, siguiendo reglas lógicas. Algunas desventajas de las técnicas metaheurísticas son la necesidad de ajustar parámetros y un proceso inicial de generación de población. Aunque las soluciones obtenidas no garantizan ser el óptimo global, estas técnicas permiten estudiar problemas de gran complejidad de forma más sencilla, obteniendo soluciones de buena calidad en tiempos de cálculo razonables [9].

Metaheurísticas usadas en el PET

Las técnicas de solución para PET se pueden dividir en dos categorías: optimización matemática y métodos metaheurísticos [17]. Las técnicas de optimización matemática pueden dar soluciones óptimas solo para problemas convexos. Sin embargo, el costo computacional podría ser alto para sistemas reales [17]. Por otro lado, las técnicas

heurísticas permiten encontrar soluciones razonables (no necesariamente óptimas, sino aproximadas) para sistemas de tamaño pequeño y mediano con un esfuerzo computacional relativamente bajo [17]. En [17] se presenta una extensa revisión de las técnicas de solución para PET. En cuanto a las técnicas meta-heurísticas para la Planificación de Expansión del Sistema de Subtransmisión Dinámica (DPET), en [18] se presenta un Algoritmo Genético (GA) eficiente. En [19], se propone un enfoque integrado de GA, Tabu Search y Simulated Annealing. En [20], la optimización de enjambre de partículas (PSO) se usa para resolver DSEP. Además, en [21] el problema del Sistema eléctrico de Potencia Dinámica (DSEP) se resuelve usando un PSO Evolutivo Discreto (DEPSO). En [22], el algoritmo optimizador de lobo gris se aplica como herramienta de optimización. Aunque algunas técnicas metaheurísticas clásicas muestran un buen desempeño, las metaheurísticas híbridas permiten identificar soluciones de buena calidad en menos iteraciones [23], [21]. En base a la ventaja anterior, se propone la combinación entre los algoritmos de Evolución Diferencial (DE) y Aprendizaje Incremental Basado en Población Continua (PBILc) (DE-PBILc). Esta metaheurística híbrida permite combinar la exploración (usando la metaheurística PBILc con su vector de probabilidad) y la explotación (usando la metaheurística DE con su mutación) del espacio de búsqueda.

Capitulo IV

Metodología del problema.

Introducción

El objetivo principal del sistema de subtransmisión es suministrar energía eléctrica a los consumidores en las mejores condiciones operativas, económicas y ambientales. Para lograr este objetivo, se requiere una adecuada PET. Resolver el problema de la PET estática solo responde a las preguntas sobre dónde y cuántos elementos del sistema de subtransmisión (transformadores o líneas de subtransmisión) se requieren agregar al sistema. Sin embargo, la variable tiempo también es necesaria para saber cuándo es el momento adecuado para incorporar la nueva infraestructura [4] [24]. Este problema se conoce como DPET, donde se incluye un parámetro de etapa (tiempo) en la formulación matemática que hace que la resolución del problema sea más compleja.

Modelado

Por lo general, se han utilizado modelos simplificados para representar el problema DPET. La referencia [25] propone un modelo disyuntivo lineal para resolver el problema DPET considerando las restricciones de seguridad. En las referencias [18] [20], [23] se utiliza el modelo DC para resolver el DPET. En [12], [26] se presenta un modelo de programación lineal entera mixta (MILP) para resolver el DPET. Además, [12] considera las pérdidas de energía, las restricciones de seguridad y el problema de planificación de energía reactiva (RPP) en el modelo DPET. Por otro lado, el uso del modelo AC brinda soluciones realistas, por lo tanto, este trabajo de investigación propone un enfoque para DPET basado en el modelo AC completo. Además, se considera el RPP.

Formulación Matemática

El modelo matemático del DPET se divide en dos problemas: el problema de expansión y el problema de operación [1]. El problema de expansión minimiza el costo total de adicionar líneas de subtransmisión, repotenciación de subestaciones o la creación de nuevas subestaciones.

UCUENCA 23

$$\min v = \sum\nolimits_{(t=1)}^{T_F} \left(\sum\nolimits_{(k,l) \in \Omega} \left(\frac{C_{kl}^t * n_{kl}^t}{(1+d)^{t-1}} + w^t \right) \right)_{s,a} \tag{1}$$

$$n^{0,t} \le n^t \le \bar{n}; \quad n \text{ (entero)}$$
 (2)

Donde v es el costo total de inversión, debido al incremento de nuevas líneas de subtransmisión o repotenciación de subestaciones o si es el caso de incremento de subestaciones, en la etapa t, C_{kl}^t corresponde al costo de incrementar nueva infraestructura entre los nodos $k\,y\,l$ en el escenario t, \bar{n} es un vector que contiene el número máximo de circuitos permitidos por derecho de vía, Ω es el conjunto de todos los derechos de vía donde es posible agregar nueva infraestructura de subtransmisión. Dado que el horizonte de planificación se divide en etapas de tiempo (T_F) , el costo de la nueva topología para cada etapa t debe descontarse a su valor actual con una tasa de descuento d. El termino w^t corresponde al costo operativo en cada etapa t.

Dado que el horizonte de planificación se divide en etapas de tiempo (t), el costo de operación, las adiciones de circuitos y las pérdidas para cada etapa t deben descontarse a su valor presente utilizando una tasa de descuento d. w^t , calculado por 3, corresponde a los costos tanto de potencia activa como reactiva no suministrada, bajo el caso base y condiciones de contingencia (N-1) (de una lista de contingencias), en cada etapa w^t .

$$w^{t} = \sum_{(m=0)}^{nl} w^{m,t} + n_{c}^{t} p_{2}^{m,t}$$
 (3)

donde m=0 corresponde a la condición de operación normal (caso base) para cada estado t y m=1,...nl corresponde al sistema con contingencias de un solo circuito en cada etapa t. El costo de la potencia activa y reactiva no suministrada se determina utilizando el modelo de flujo de potencia óptimo presentado en (4)-(13) que minimiza la cantidad de potencia activa y reactiva no suministrada w^t para un paso de tiempo dado t y contingencia m. En el modelo de optimización, la potencia activa y reactiva no suministrada se modelan utilizando generadores ficticios $r_{Pk}^{m,t}$ y $r_{Qk}^{m,t}$. El modelo de flujo de potencia óptimo correspondiente es no lineal y no convexo y se puede resolver de manera eficiente utilizando solucionadores de puntos interiores.

•
$$\min w^t = \sum_{(k \in \Lambda)} \left(\alpha_1^{m,t} r_{P_k}^{m,t} \phi_1 + \frac{\alpha_2^{m,t} * r_{Qk}^{m,t}}{(1+d)^{t-1}} \right)_{S,a}$$
 (4)

•
$$P(V, \theta)^{m,t} - P_G^{m,t} + (P_D^{m,t}) - r_P^{m,t} = 0$$
 (5)

•
$$Q(V, \theta)^{m,t} - Q_G^{m,t} + (Q_D^{m,t}) - r_Q^{m,t} - r_Q^{m,t-1} = 0$$
 (6)

•
$$\underline{P}_{G}^{t} \leq P_{G}^{m,t} \leq \overline{P}_{G}^{t}$$
 (7)

$$\bullet \qquad \underline{Q}_G^t \leq Q_G^{m,t} \leq \overline{Q}_G^t \tag{8}$$

•
$$\underline{\mathbf{r}}_{P}^{t} \leq \mathbf{r}_{P}^{m,t} \leq \overline{\mathbf{r}}_{P}^{t}$$
 (9)

$$\bullet \qquad \underline{r}_{Q}^{t} \leq r_{Q}^{m,t} \leq \overline{r}_{Q}^{t} \tag{10}$$

•
$$\underline{V} \le V^{m,t} \le \overline{V}$$
 (11)

•
$$S^{\text{from,m,t}} \leq \overline{S}$$
 (12)

•
$$S^{\text{to,t}} \leq \overline{S}$$
 (13)

Donde α_1^t es el costo de desconexión de carga activa en la etapa $t;\ r_P^t$ es la desconexión de carga activa en la etapa $t;\ \alpha_2^t$ es el costo de compensación shunt en la etapa $t;\ r_Q^t$ es la desconexión de carga reactiva en la etapa t, en esta formulación también se representa la compensación de potencia reactiva necesaria en algunos buses, y de la misma forma el costo de líneas. El costo de la compensación shunt debe descontarse de su valor actual. El termino r_Q^{t-1} de la ecuación (5) corresponde a la compensación shunt requerida en la etapa t-1 que se instalará en el sistema en el escenario t. Tenga en cuenta que para el escenario $t=1,\ r_Q^{t-1}=0$ de la ecuación (5); V^t es el valor de la magnitud del vector de voltajes en la etapa t con los limites máximo y mínimo de tensión de entre 105% y 95% del valor nominal, respectivamente; θ es el valor del vector de ángulos de fase; P_G^t y Q_G^t son los vectores de generación activa y reactiva existentes en la etapa t, P_D^t y Q_D^t son los vectores de demanda activa y reactiva en la etapa t, \overline{P}_G^t , \overline{Q}_G^t , \overline{V} y \underline{P}_G^t , \overline{Q}_G^t , \underline{V} son los valores de los limites máximos y

mínimos de potencia activa, potencia reactiva y magnitudes de tensión en la etapa t, respectivamente. $S^{from,t}$, $S^{to,t}$ y \overline{S} son los vectores de flujo de potencia aparente (MVA) por los ramales en ambas terminales y sus límites en cada etapa t, respectivamente; y, Λ es el conjunto de todos los nodos de carga. En esta formulación, el crecimiento continuo de la demanda (activa y reactiva) se aproxima mediante aumentos discretos durante las etapas de planificación dinámica, asumiendo que, durante cada estado dinámica, la demanda no se altera.

Criterio de Seguridad (N-1)

Para los casos en que no se obtenga una solución factible del modelo de optimización, se introduce el término $n_c^t * p_2^{m,t}$ en, donde n_c^t corresponde al número de veces que se utiliza el generador ficticio dentro del conjunto de nl contingencias. $p_2^{m,t}$ es un factor de penalización alto cuando no se obtiene una solución factible al modelo de flujo de potencia óptimo, y $p_2^{m,t}$ en caso contrario. Con este enfoque, las topologías de red en las que es necesario utilizar generadores ficticios para encontrar una solución factible al problema operativo se vuelven menos atractivas en comparación con aquellas que utilizan solo la generación existente (w=0). En [1] se describe la metodología detallada para penalizar las contingencias que conducen a estados del sistema no factibles. Tenga en cuenta que en este trabajo se ha utilizado un conjunto predefinido de contingencias de línea crítica, que permanece igual en todos los puntos de tiempo.

Compensación de potencia reactiva

En el problema operativo ((3)-(12)), la compensación shunt se modela mediante el término de carga reactiva $\alpha_2^t * r_{Qk}^t$ en (3). El costo de la compensación shunt se modela usando una función lineal, que proporciona costos aproximados para la potencia reactiva capacitiva e inductiva necesaria en los nodos de carga en cada etapa t; es importante tener en cuenta que los costos de compensación se modelan para que sean positivos, por lo que cuando se obtiene la compensación capacitiva (inyección de potencia positiva), el coeficiente de costo α_2^t se modela como positivo, mientras que cuando se obtiene compensación inductiva (inyección de potencia negativa), el coeficiente de costo α_2^t se modela como negativo. Se puede encontrar una explicación detallada del modelo de compensación de potencia reactiva en [27].

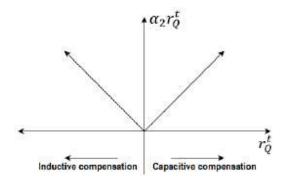


Figura 4: Función lineal de costo para compensación de potencia reactiva en la etapa t.

Dado que la formulación del modelo DPET propuesto considera condiciones de contingencia, la compensación reactiva necesaria en cada nodo \$k\$ es la compensación capacitiva máxima y la compensación inductiva mínima que permite condiciones de operación factibles entre todas las contingencias consideradas. La compensación de potencia reactiva requerida se representa matemáticamente por

$$r_{Q_{k\in\Lambda}}^{m,t} = \max\left(r_{Q_{k,C}}^{0,t}, r_{Q_{k,C}}^{1,t}, ..., r_{Q_{k,C}}^{nl,t}\right) + \min\left(r_{Q_{k,L}}^{0,t}, r_{Q_{k,L}}^{1,t}, ..., r_{Q_{k,L}}^{nl,t}\right) \, (14)$$

donde $r_{Q_{k,C}}^{0,t}$ y $r_{Q_{k,L}}^{0,t}$ representan la potencia reactiva capacitiva e inductiva generada por el generador ficticio en el nodo k para el caso base m=0 en cada etapa t, respectivamente; $r_{Q_{k,C}}^{m>0,t}$ y $r_{Q_{k,L}}^{m>0,t}$ representan la potencia reactiva capacitiva e inductiva generada en el nodo k para m>0 en cada etapa t, respectivamente.

Algoritmo de Optimización

Evolución Diferencial (DE)

Este algoritmo se basa en poblaciones, donde cada individuo dentro de la población es modificado por los operadores de cruce y mutación antes de competir con los individuos de la generación actual [9].

Aprendizaje Incremental Continuo Basado en la Población

El Aprendizaje Incremental Continuo Basado en la Población (PBILc) se basa en el aprendizaje competitivo, donde el algoritmo aprende de las características relevantes de los individuos y genera nuevos individuos a través del muestreo [9].

Hibridación del DE y PBILc (DE-PBILc)

DE-PBIL se propone para crear nuevas soluciones mediante una combinación de metaheurísticas DE y PBILc, y para explorar el espacio de búsqueda de manera más eficiente [1], [24], [9]. En cada iteración k, la población está compuesta por m individuos $x^k = [x_1^k, ..., x_i^k, ..., x_m^k]$, donde cada individuo i es un vector n-dimensional $x_i^k = [x_{i,1}^k, x_{i,2}^k, ..., x_{i,n}^k]$ que representa una solución candidata. Para crear nuevas soluciones, una probabilidad de combinación (pcomb \in [0,1]) se establece, donde cada individuo se genera utilizando DE si un número generado aleatoriamente r ([0,1]) no excede (pcomb); de lo contrario, el individuo se generará utilizando PBILc. Adicionalmente, cuando se utiliza DE para generar un individuo, al momento de aplicar la mutación diferencial, es posible decidir entre dos tipos de mutación en base a un criterio de probabilidad (pdoble — mut \in [0,1]). Las dos mutaciones diferenciales aplicadas son: DE/best/2 y mutación trigonométrica [9].

Implementación en el DPET usando DE-PBILc

La figura 5, muestra el diagrama de flujo de la implementación meta-heurística para resolver el problema DPET.

- 1) Datos de red: Los datos del sistema de prueba utilizan información específica en cada etapa dinámica t. Esta información son los datos del modelo de prueba, número máximo de circuitos por derecho de vía $x_{max,t}$ y topología base del sistema de prueba $x_{min,t}$.
- 2) Parámetros generales: Los parámetros relacionados con el proceso de optimización son: tamaño de la población (m) y número máximo de iteraciones (I_{max}). Los parámetros de la metaheurística se establecen en la siguiente sección.
- 3) Soluciones Iniciales: la mejor solución obtenida del DPET se utiliza como la población inicial (x_t^0) para t=1 y x_t^0 para cada etapa t \neq 1 se genera aleatoriamente. Después se realiza una modificación a cada individuo $x_{i,t}^0$, en el cual entre el 65-95% (seleccionado al azar) de las n-posiciones de cada individuo i tomará nuevamente el valor de la topología inicial (etapa t-1). Por lo tanto, la construcción de soluciones iniciales permitirá que el algoritmo de optimización se inicie en regiones más cercanas a los valores óptimos.

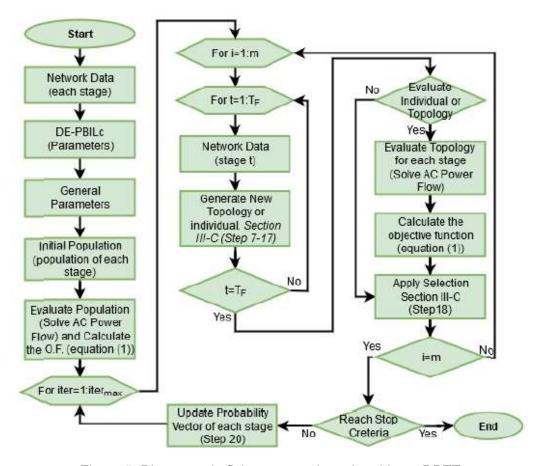


Figura 5: Diagrama de flujo para resolver el problema DPET

- 4) Evaluación de costos: Una vez que la población de m-individuos se genera en cada etapa, la meta-heurística evalúa el costo de cada individuo a través de la función objetivo (1). Las mejores soluciones tienen los valores más bajos de la función objetivo.
- 5) Evaluar Individuo: Cuando se obtiene la función objetivo de cada individuo, se emplea el método presentado en [9] con el fin de reducir los flujos de potencia óptimos y acelerar el proceso de optimización.
- 6) Criterios de Parada: El criterio de parada utilizado en este trabajo fue el número máximo permitido de iteraciones.

Capitulo V

DPET de la EERCS.

En este capítulo, se realiza el análisis de flujo óptimo de potencia del sistema de subtransmisión de la EERCS, para determinar que no exista sobrecargas permanentes ni sobrepasar las temperaturas máximas permisibles de los equipos que intervienen en el Sistema Eléctrico de Potencia, por tal motivo constataremos si la actual topología se encuentra dentro de los límites permisibles y analizar si es capaz de soportar el incremento de demanda del periodo de estudio, caso contrario se realizará un análisis metaheurístico, para poder constatar donde es necesario incrementar algún elemento dentro del DPET y así obtener un Sistema Confiable.

Para la determinación de necesidades de ampliación en el DTEP, se utiliza como criterio, que la cargabilidad de los equipamientos existentes se encuentren por encima de la capacidad FA (80% de la capacidad máxima).

Cargabilidad del Sistema Eléctrico de Potencia.

Para realizar el diagnóstico actual del DPET de subtransmisión, se realizó la simulación del flujo óptimo de potencia, para constatar que la cargabilidad de los elementos que intervienen en el sistema eléctrico se encuentren por debajo del 80% de su máxima capacidad.

Cargabilidad en las líneas de subtransmisión de la EERCS.

En la tabla 3 (ANEXO N°4), se puede apreciar que la cargabilidad actual de las líneas de subtransmisión se encuentran por debajo del 80%, con una novedad, que la línea Verdillo (06)-El_Arenal (05) se encuentra con una cargabilidad del 76.74%, esto indica que es necesario tomar énfasis en dicha línea ya que se aproxima al 80% de su máxima capacidad.

Cargabilidad Transformadores de Potencia

De la mima manera como se analizó en el punto 5.1.1., la cargabilidad de los transformadores de potencia deben estar por debajo del 80%, caso contrario se debe

realizar la repotenciación, para satisfacer la demanda actual como también para la futura demanda, en la tabla 4 (ANEXO N°4), se puede apreciar que existe dos transformadores sobrecargados estos son T072 y T081, de la misma manera existen dos transformadores que se encuentran por encima del 80% de su máxima capacidad permisible estos son T061 y T071, por tal motivo se realizara los respectivos análisis para concluir con un Sistema Eléctrico de Potencia óptimo.

Cargabilidad del Sistema Nacional Interconectado

La EERCS recibe Energía Eléctrica del SNI por dos lados, la primera y muy importante es la Subestación Cuenca, que actualmente se encuentra con una Cargabilidad del 53.53%, y la segunda es la Subestación Synincay que se encuentra con una cargabilidad del 42.41%, hay que tomar mucha precaución en estas subestaciones ya que son las encargadas de entregar el 93% de la demanda consumida por los clientes conectados al sistema de la EERCS.

Tabla 3: Cargabilidad en el SNI

Subestación (SNI)				
	Demanda	Demanda	Cargabilidad	
Descripción	Máxima	(MVA) Año		
	(MVA) 0		%	
S/E CUENCA	150	80.297	53.53%	
S/E SYNINCAY	166	70.398	42.41%	
TOTAL	316	150.695	47.69%	

En resumen, actualmente el sistema eléctrico de potencia de la EERCS, debe realizar algunos correctivos para obtener un sistema eléctrico confiable y de calidad.

Para esto es necesario realizar el análisis con el incremento de demanda para los 10 años de estudio.

Proyección de la demanda periodo de 10 años.

Basándose en el historial del comportamiento de la demanda por subestación se realizó la proyección anual por 10 años. En la tabla 6 (ANEXO N°4), se presenta la tasa de incremento por subestación.

Diagnóstico de flujos de potencia para el periodo de estudio:

Como ya se había mencionado, es de considerable importancia realizar una proyección para un futuro observar cómo funcionará el SEP de subtransmisión y poder trabajar lo antes posible y obtener un sistema confiable, para esto se realizó el análisis de flujo de potencia para determinar si la topología actual es capaz de soportar el ingreso de las nuevas demandas energéticas.

Cargabilidad en las líneas de subtransmisión de la EERCS.

En la tabla 7 (ANEXO N°4), se puede apreciar que al ingresar la nueva demanda en el año 10 de estudio la cargabilidad de las líneas de subtransmisión Verdillo(06)-El_Arenal(05) y Verdillo(06)-P.Industrial(04) se encuentran por encima del 80% de su máxima capacidad, esto indica que es necesario tomar correctivos para que el sistema eléctrico de potencia sea confiable y de calidad.

Cargabilidad Transformadores de Potencia

De la mima manera como se analizó en el punto 5.3.1., la cargabilidad de los transformadores de potencia deben estar por debajo del 80%, caso contrario se debe realizar la repotenciación de los mismo para satisfacer el incremento de demanda, en la tabla 8, se puede apreciar que existe transformadores de potencia sobrecargados estos son T041, T042, T061, T071, T072, T081, T131, T151 y T221, por tal motivo es necesario realizar los respectivos análisis para concluir con un SEP óptimo, confiable y de calidad.

Cargabilidad del Sistema Nacional Interconectado

Como se explicó en el punto 5.1.3. la EERCS recibe Energía Eléctrica del SNI por dos lados, la primera y muy importante es la Subestación Cuenca y la segunda es la Subestación Synincay, las dos subestaciones se encuentran por debajo del límite máximo que es el 80%.

Subestación (SNI) Demanda Demanda Cargabilidad Descripción Máxima (MVA) Año % (MVA) 10 S/E 102.539 68.36% 150 **CUENCA** S/E 166 108.17 65.16% **SYNINCAY** TOTAL 316 210.709 66.68%

Tabla 4: Cargabilidad en el SNI.

En resumen, se puede constatar que la topología del Sistema Eléctrico de Potencia de la EERCS, en diversa infraestructura no es capaz de soportar el ingreso de la nueva demanda, por tal motivo realizaremos el planeamiento de la expansión del sistema eléctrico de subtransmisión utilizando el modelo AC resuelto mediante algoritmo metaheurístico.

Pérdidas en el SEP de distribución de la EERCS.

Es necesario realizar el análisis de pérdidas en la red de subtransmisión de la EERCS, debido a que es importante cumplir con la Regulación Nro. CONELEC 009/00, emitida el 30 de octubre del 2000, en su numeral 2.3, establece los límites de las pérdidas eléctricas tanto técnicas como no técnicas a considerar para la elaboración de los pliegos tarifarios; cuyo límite máximo, en una zona predominantemente rural corresponde el 16%, para una zona urbana - rural el 14% y para una zona predominantemente urbana el 12%, para el caso de la EERCS se tomaría el 14% de pérdidas técnicas ya que cubre las zonas urbanas – rurales.

La tabla 10 (ANEXO N°4), indica que el sistema de subtransmisión con la actual topología cumple con la regulación, ya que el porcentaje de pérdidas es inferior al permitido.

Capitulo VI

Resultados

Como se observó en el capítulo anterior, el incremento de la demanda en el sistema de subtransmisión es considerable a lo largo de los años, por lo que se requiere un análisis de posibles alternativas que debería tomar la EERCS para que ésta pueda satisfacer toda la demanda, es por ello que en este capítulo se presentará alternativas para optimizar el sistema eléctrico y así repotenciar los elementos de subtransmisión.

Alternativas para la repotenciación del sistema de subtransmisión.

Diagnóstico a Corto plazo

Utilizando la metaheurística explicada en el Capítulo IV, nos reflejó los siguientes resultados:

Tabla 5: Ingreso de Nueva Topología por Año Diagnostico a Corto Plazo.

NODO		AÑO DE ESTUDIO	
De	Hasta	2022 202	
S/E 06	S/E 05	1	0
S/E 07	TR1	0	1

En lo que nos indica que se debe realizar los siguientes trabajos:

Tabla 6: Elemento a Ingresar en el Sistema Eléctrico Diagnostico a Corto Plazo.

		Año de
ITEM	DESCRIPCIÓN	Construcción
1	Construcción y funcionamiento de la S/E 17 los cerezos	2022
	Incremento de la capacidad de la S/E 07 con el reemplazo de TR1 de	2023
2	12,5MVA por un transformador de 24/32MVA 69/22kV	

1. Es necesario que la EERCS, actúe a corto plazo, debido a que la actual topología no es capaz de soportar la nueva demanda energética, la línea de subtransmisión que une la S/E

06 con la S/E 05 como también la S/E 05 serán las más afectadas, debido a que su cargabilidad están al límite permitido que es el 80% de su capacidad total, esto se debe a que asume cargas no solo residenciales sino comerciales e industriales, esta última es la que consume alrededor del 75% de la capacidad, por tal motivo es necesario tomar a tiempo los correctivos necesarios y que la energía eléctrica llegue a todos los usuarios con altos porcentajes de calidad y confiabilidad.

Para cumplir con este objetivo es necesario la construcción y funcionamiento de una nueva Subestación, y así disminuir una parte de demanda que actualmente posee la S/E 05, la subestación a construir por su necesidad se debe ubicar en el intermedio de la línea de subtransmisión que une la S/E 06 con la S/E 05, este lugar será por el sector de los cerezos donde existe la mayor demanda de la S/E 05 y además existe terrenos disponibles para la construcción de dicha S/E, con el funcionamiento de la S/E los Cerezos, ayudará disminuir notablemente la cargabilidad de la S/E 05.

2. Para el año 2023 es necesario incrementar la capacidad de la S/E 07 con el reemplazo del transformador TR1 de 12,5MVA por un transformador de 24/32MVA 69/22kV, ya que la nueva demanda supera la capacidad de energía actual.

Costo de implementación A Corto Plazo

Como vimos en el capítulo 4, el programa no solo nos entrega los resultados de la nueva topología, además también nos proporciona el valor que se necesitara para implementar la nueva infraestructura, para el caso a Corto Plazo, para el año 1, la EERCS necesitara una inversión de USD 3'123.253,48 dólares, para satisfacer los requerimientos necesarios y optar con buena calidad de energía eléctrica.

Diagnostico A Mediano y Largo Plazo

Tabla 7: Ingreso de Nueva Topología por Año a Mediano y Largo Plazo.

NODO		AÑO DE ESTUDIO		DIO
De	Hasta	2026	2028	2031
S/E 03	S/E 02	1	0	0
S/E AZ1	TR 01	0	1	0

S/E 06	TR 01	0	1	0
S/E 07	TR 02	1	0	0
S/E 15	TR 01	0	0	1

En lo que nos indica que se debe realizar los siguientes trabajos:

Tabla 8: Elemento a Ingresar en el Sistema Eléctrico por Año Diagnostico a Mediano y Largo Plazo.

		Año de
ITEM	DESCRIPCION	Construcción
1	Incremento de la capacidad de la S/E 07 con el reemplazo de TR2 de	2026
	12,5MVA por un transformador de 24/32MVA 69/22kV	
2	Construcción de la línea S/E 03 a la S/E 02 en paralelo a la existente	2026
3	Repotenciación de la S/E AZOGUES 1	2028
4	Incremento de la capacidad de la S/E 06 con el reemplazo de la unidad de	2028
	7,52MVA por un transformador de 24/32MVA 69/22kV	
5	Incremento de la capacidad de la S/E 15 con el reemplazo de la unidad de	2031
	16MVA por un transformador de 24/32MVA 69/22kV	

- 1. Para el año 2026 es necesario intervenir en la repotenciación del TR2 de la S/E 07 con el reemplazo del actual transformador por uno de 24/32MVA, de la misma manera es necesario la construcción de la línea S/E 03 a la S/E 02 en paralelo a la existente.
- 2. Para el año 2028 es necesario la repotenciación de la S/E Azogues 1 y el Incremento de la capacidad de la S/E 06 con el reemplazo de la unidad de 7,52MVA por un transformador de 24/32MVA 69/22kV.
- 3. Para el año 2031 es necesario el Incremento de la capacidad de la S/E 15 con el reemplazo de la unidad de 16MVA por un transformador de 24/32MVA 69/22kV.

Con todos estos cambios la entrega de energía a los usuarios será de calidad y confiabilidad, obteniendo un sistema óptimo.

Costo de implementación A Mediano y Largo Plazo

La EERCS necesitará una inversión de USD 2'280.784,72 dólares para implementar la nueva infraestructura, con esto el sistema eléctrico de potencia podrá satisfacer los requerimientos necesarios y optar con buena calidad de energía eléctrica.

Análisis de caídas de tensión y cargabilidad del sistema de subtransmisión con la nueva topología.

Es necesario realizar el análisis del flujo de potencia con la nueva topología, debido a que debe cumplir la normativa en el que las caídas de tensión en los nodos se encuentren en el rango de 0.95-1.05 por unidad, si no cumple la normativa no se podría decir que la solución encontrada es la óptima.

Caídas de Tensión en los nodos

En esta sección se realizará la comparativa del estado actual de la EERCS y con las nuevas topologías, tanto en el año 1 como en el año 10, debido a que las caídas de tensión deben estar dentro del rango 0.95-1.05 por unidad, con esto llegaríamos a obtener un sistema confiable y así poder suministrar energía eléctrica de calidad.

Como se pudo constatar en la tabla 19 (ANEXO N°4), las tensiones en los nodos se encuentran dentro de los rangos establecidos, concluyendo que la nueva topología cumple con los parámetros establecidos por la normativa.

Cargabilidad en el sistema de subtransmisión.

En el largo plazo no se permitirán sobrecargas permanentes, en tanto que en el corto y muy corto plazo se pueden fijar límites de sobrecarga definidos en función de la duración de dicha condición. En cualquier caso, no se sobrepasarán las temperaturas máximas permisibles de los equipos de tal forma de evitar disminuciones en su vida útil. Para la determinación de necesidades de ampliación de capacidad de transformación, se utiliza como criterio la condición de que la cargabilidad de los equipamientos existentes tanto líneas de subtransmisión como transformadores de potencia haya alcanzado el 80% de la capacidad máxima.

Cargabilidad en líneas de subtransmisión.

Como se explicó en el punto anterior, no se permitirá que a largo plazo la sobrecarga sea superior al 80% de su máxima capacidad, si sobrepasa es necesario buscar una mejor alternativa para obtener un sistema óptimo y de calidad, para satisfacer con confiabilidad los requerimientos de los clientes, en la tabla 20 (ANEXO N°4), se puede apreciar que la cargabilidad de las líneas de subtransmisión se encuentran por debajo de 80% de su máxima capacidad por tal motivo se puede concluir que la nueva topología se encuentra en óptimas condiciones para satisfacer las nuevas cargas.

Cargabilidad en transformadores de potencia.

Debido a que no se permitirá que a largo plazo la sobrecarga sea superior al 80% de su máxima capacidad, se analizó si el sistema con las mejoras realizadas cumple con el requisito de sobrecarga, en la tabla 21, se puede apreciar que la cargabilidad de los transformadores de potencia se encuentran por debajo de 80% de su máxima capacidad, por tal motivo se puede concluir que la nueva topología se encuentra en óptimas condiciones para satisfacer las nuevas cargas.

Cargabilidad del Sistema Nacional Interconectado

Las dos subestaciones primordiales para satisfacer la demanda energética se encuentran por debajo del límite máximo que es el 80%, con esto se puede concluir que el sistema se encuentra en óptimas condiciones.

Tabla 9: Cargabilidad del SNI con la Nueva Topología.

Subestación (SNI)									
	Demanda	Demanda	Cargabilidad						
Descripción	Máxima	(MVA) Año							
	(MVA)	10	%						
S/E CUENCA	150	112.10	74.73%						
S/E SYNINCAY	166	114.25	68.82%						
TOTAL	316	226.35	71.63%						

Pérdidas en el Sistema Eléctrico.

De la misma manera como se analizó en el punto 5.4, en la tabla 22 se observa el porcentaje de pérdidas está en el 13.96%, por lo tanto, al realizar las respectivas adecuaciones en el sistema eléctrico la EERCS cumple la norma explicada en el punto antes mencionado.

Comparando con la actual topología el incremento de pérdidas técnicas es de 0.44%, esto indica que al ingresar la nueva infraestructura la EERCS sigue cumpliendo la regulación Nro. CONELEC 009/00.

Capitulo VII

Plan de Contingencia (N-1)

En términos generales, el sistema debe estar diseñado para soportar, sin consecuencias graves, contingencias simples (condición N-1) para líneas de subtransmisión.

Una contingencia (N-1) consiste en la pérdida de un elemento o componente del SEP, estos pueden ser: generador, transformador o línea de subtransmisión. El SEP actual de la EERCS debe ser capaz de operar en condiciones de operación normales luego de que presente una contingencia N-1, donde uno de sus elementos falla por un corto periodo de tiempo, respetando los niveles mínimos y máximos de operación de los generadores y los límites térmicos de las líneas de subtransmisión sin desconexión forzada de la carga.

En este capítulo analizaremos si el SEP de subtransmisión es capaz de operar en condiciones normales luego de que presente una contingencia (N-1).

Histórico de fallas del sistema de subtransmisión de la EERCS.

Tabla 10: Histórico de Fallas de Líneas de Subtransmisión periodo 2019-2022 Fuente: Empresa Eléctrica Regional Centro Sur C.A.

	DESCRIPCIÓN	AÑO	FALLA	AÑO	FALLA	AÑO	FALLA	AÑO	FALLA		
ITEM	LINEA DE SUBTRANSMISIÓN	2019	%	2020	%	2021	%	2022	%	TOTAL	%
1	S/E14-S/E05	3	100%	5	63%	0	0%	2	50%	10	56%
2	S/E03-S/E02	0	0%	2	25%	0	0%	1	25%	3	17%
3	S/E04-ERCO	0	0%	0	0%	2	67%	0	0%	2	11%
4	S/E04-S/E01	0	0%	0	0%	0	0%	1	25%	1	6%
5	S/E06-S/E01	0	0%	1	13%	0	0%	0	0%	1	6%
6	S/E12-AZOGUES2	0	0%	0	0%	1	33%	0	0%	1	6%
	TOTAL	3	100%	11	100%	7	100%	4	100%	25	100%

Para realizar el plan de contingencia (N-1) es necesario conocer el histórico de fallas de cada línea de subtransmisión, en la tabla 10 se aprecia que existen seis líneas propensas

a sufrir desconexión no programadas, pero una de ellas es la que mayor probabilidad de falla tiene y esta es **S/E14-S/E05** con un 56% de probabilidad de falla, por tal motivo, para nuestro análisis realizaremos la planificación del SEP de subtransmisión desconectando la línea **S/E14-S/E05**, para conocer cuál será el comportamiento del sistema y si es necesario realizar una nueva topología o con la actual es capaz de soportar la demanda energética.

Cabe mencionar que la línea de subtransmisión S/E14-S/E05, intermedia a esta se deriva una línea a la S/E13, por tal motivo las líneas de subtransmisión S/E05-S/E13 y S/E13-S/E14 (Lentag), que son las que conforman la línea principal de subtransmisión, a estas líneas se les designará como desconectada.

Alternativas para la repotenciación del SEP.

Diagnostico A Corto plazo

De la misma manera se utiliza el algoritmo metaheurístico explicado en el Capítulo IV, reflejando los siguientes resultados:

Tabla 11: Ingreso de Nueva Topología por Año Diagnostico a Corto Plazo.

NO	DO	AÑO DE ESTUDIO				
De	Hasta	2022	2023			
S/E 05	S/E 13	1	0			
S/E 07	TR2	0	1			

En lo que nos indica que se debe realizar los siguientes trabajos:

Tabla 12: Elemento a Ingresar en el Sistema Eléctrico Diagnostico a Corto Plazo.

		Año de
ITEM	DESCRIPCION	Construcción
1	Construcción de la línea S/E 05 a la S/E 13 en paralelo a la existente	2022
	Incremento de la capacidad de la S/E 07 con el reemplazo de TR2 de	2023
2	12,5MVA por un transformador de 24/32MVA 69/22kV	

- 1. Es necesario que la EERCS, actúe a corto plazo, debido a que la actual topología no es capaz de soportar la nueva demanda energética y el plan de contingencia (N-1), la línea de subtransmisión que une la S/E 05 con la S/E 13 será la más afectada, debido a que esta línea es propensa a fallas y si no se construye una linea en paralelo a esta la S/E 13 quedará sin servicio dejando a una gran cantidad de clientes sin servicio energético.
- 2. Para el año 2023 es necesario incrementar la capacidad de la S/E 07 con el reemplazo del transformador TR2 de 12,5MVA por un transformador de 24/32MVA 69/22kV, ya que el plan de contingencia (N-1) y el ingreso de la nueva demanda supera la capacidad de energía actual.

Costo de implementación A Corto Plazo

Para el caso a Corto Plazo, la EERCS necesitará una inversión de USD 3'068.207,28 dólares, para satisfacer con los requerimientos necesarios y optar con buena calidad de energía eléctrica.

Diagnostico A Mediano y Largo Plazo

Tabla 13: Ingreso de Nueva Topología por Año a Mediano y Largo Plazo.

NOE	00	AÑO DE ESTUDIO						
De	Hasta	2026	2027	2028	2031			
S/E 03	S/E 02	1	0	0	0			
S/E 15	TR 01	0	0	0	1			
S/E AZ1	TR 01	0	0	1	0			
S/E 05	TR 01	0	1	0	0			
S/E 06	TR 01	0	0	1	0			
S/E 07	TR 01	0	0	1	0			

En la tabla 13 podemos ver los resultados obtenidos, de la misma manera en la tabla 14 se detalla los elementos del sistema eléctrico a intervenir:

Tabla 14: Elemento a Ingresar en el Sistema Eléctrico por Año Diagnostico a Mediano y Largo Plazo.

		Año de
ITEM	DESCRIPCION	Construcción
1	Construcción de la línea S/E 03 a la S/E 02 en paralelo a la existente	2026
2	Incremento de la capacidad de la S/E 15 con el reemplazo de la unidad de	2027
	16MVA por un transformador de 24/32MVA 69/22kV	
2	Repotenciación de la S/E AZOGUES 1	2028
3	Incremento de la capacidad de la S/E 06 con el reemplazo de la unidad de	2028
	7,52MVA por un transformador de 24/32MVA 69/22kV	
4	Incremento de la capacidad de la S/E 07 con el reemplazo de TR1 de	2028
	12,5MVA por un transformador de 24/32MVA 69/22kV	
5	Incremento de la capacidad de la S/E 15 con el reemplazo de la unidad de	2031
	16MVA por un transformador de 24/32MVA 69/22kV	

- 1. Para el año 2026 es necesario la construcción de una línea en paralelo desde la S/E 03 hasta la S/E 02.
- 2. Para el año 2027 es necesario el incremento de la capacidad en la S/E 15 con el reemplazo de la unidad existente por una de 24/32MVA 69/22kV.
- 3. Para el año 2028 se debe realizar tres labores la primera, la repotenciación de la S/E Azogues 1, segundo, el incremento de la capacidad de la S/E 06 con el reemplazo de la unidad por una de 24/32MVA 69/22kV y tercero el incremento de la capacidad de la S/e 07 con el reemplazo de la segunda unidad no intervenida por una de 24/32MVA 69/22kV.
- 4. Para el año 2031 es necesario el incremento de la capacidad de la S/E 15 con el reemplazo de la unidad de 16MVA por un transformador de 24/32MVA 69/22kV.

Con todos estos cambios la entrega de energía a los usuarios será de calidad y confiabilidad, obteniendo un sistema óptimo.

Costo de implementación A Mediano y Largo Plazo

La EERCS necesitará una inversión de USD 2'733.467,44 dólares para implementar la nueva infraestructura, con esto el sistema eléctrico de potencia podrá satisfacer los requerimientos necesarios y optar con buena calidad de energía eléctrica.

Análisis del SEP de subtransmisión.

Caídas de Tensión en los nodos

Con la nueva topología se puede apreciar que las caídas de tensión mínimas y máximas están entre 0.978 y 1.038, estos pertenecen a los nodos 85 (S/E 14) y 16 (S/E 01) respectivamente.

En la tabla 23 (Anexo 4), se observa los niveles de voltaje en los nodos del SEP de subtransmisión.

Cargabilidad en el sistema de subtransmisión.

Al ingresar la nueva topología los componentes eléctricos se encuentran en plenitud de cargabilidad siendo la carga máxima del 48.08%, esto nos indica que el SEP, soportara el ingreso de la nueva demanda para los 10 años.

Pérdidas en el Sistema Eléctrico.

El porcentaje de pérdidas está en el 9.15%, por lo tanto, al realizar las respectivas adecuaciones en el sistema eléctrico la EERCS cumple la la regulación Nro. CONELEC 009/00.

apitulo VIII

Conclusiones y Recomendaciones

Conclusiones

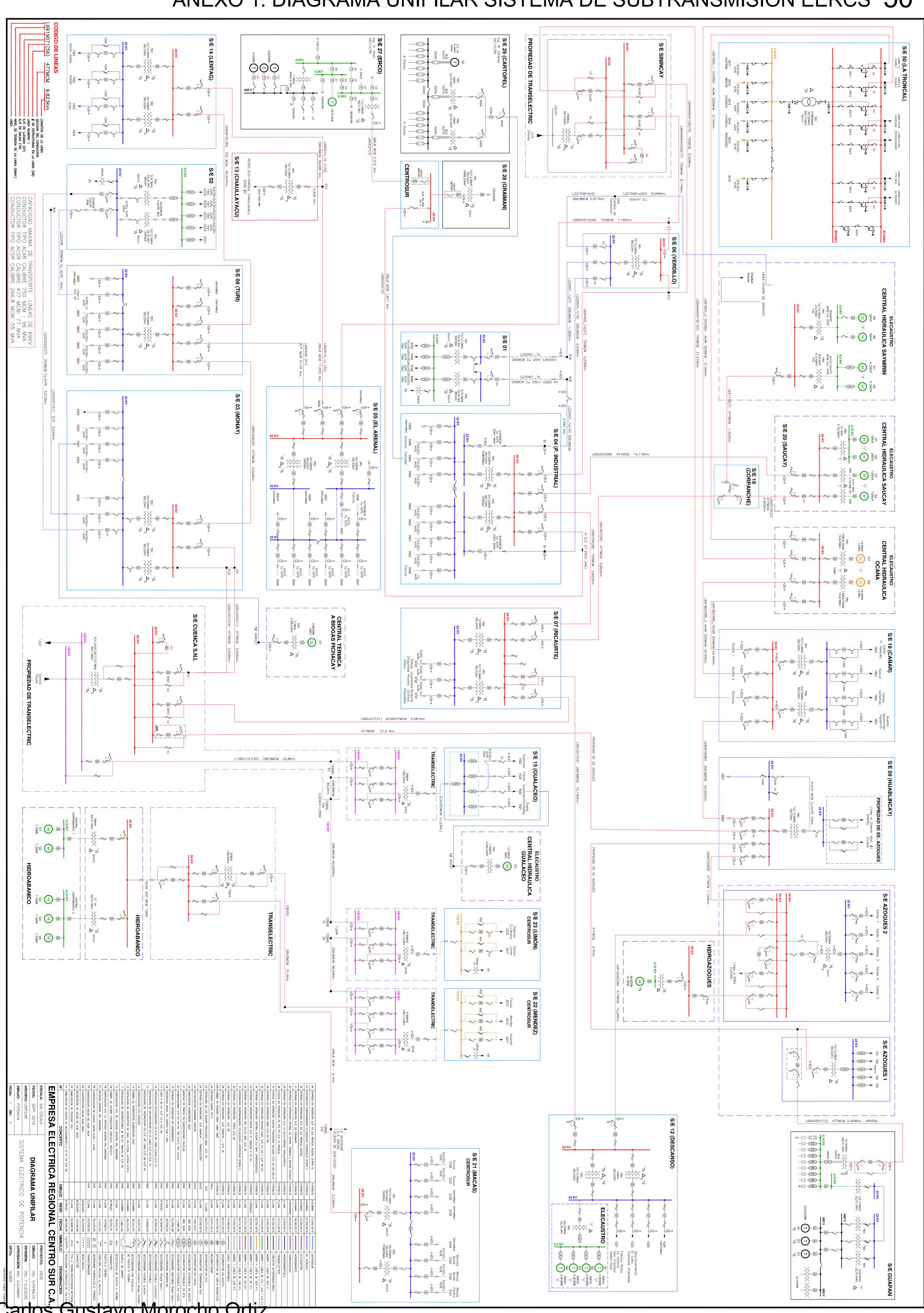
- Los algoritmos heurísticos son una gran herramienta para la DPET, para el caso de esta investigación resultó ser eficiente, debido a su alta tasa de éxitos y a la rapidez de resolución con un bajo número de iteraciones, debido a que se pudo conocer el momento y componente eléctrico a implementar en el SEP de distribución de la EERCS.
- Se realizaron diversos análisis de estudio, caso normal sin fallas en la red energética e implementando el plan de contingencia (N-1), concluyendo que la actual topología de la EERCS, no es capaz de soportar el ingreso de la nueva carga.
- Por tal motivo, los beneficios que obtenemos al usar la planeación dinámica frente al planeamiento estático son: inversión gradual y menor, adición progresiva de infraestructura eléctrica en base al incremento de la demanda, mayor confiabilidad y flexibilidad ante posibles escenarios no contemplados.
- Durante el periodo 2022-2031, se concluye que la EERCS deberá incrementar la capacidad de las subestaciones: S/E 07 (en 2023 y 2028), S/E 06 (en 2028) y S/E 15 (en 2027 y 2031); además tiene que construir una línea en paralelo a la existente que interconecte las subestaciones S/E 05 y S/E 13 (en 2022); construir una línea en paralelo a la existente que interconecte las subestaciones S/E 02 y S/E 03 (en 2026) y repotenciar la S/E Azogues 1 (en 2028). Para lo cual se requiere de una inversión de 5'801.674,70 USD, aproximadamente. Con esto se asegurará la operatividad y confiabilidad del sistema de subtransmisión de la EERCS.

Recomendaciones

- Desarrollar nuevas propuestas de trabajos de graduación para aprovechar las capacidades de los algoritmos metaheurísticos, pues nos facilita el DPET, ofreciendo un valioso ahorro de tiempo.
- Implementar los algoritmos metaheurísticos en las empresas eléctricas para que se puedan facilitar en los análisis de expansión, ya que hoy en día muchas de las empresas eléctricas siguen utilizando el método prueba y error.
- Además, se recomienda combinar metaheurísticas evolutivas empleadas en planificación con técnicas de búsqueda local, con el objetivo de obtener algoritmos meméticos más eficientes.

Referencias

- [1] E. G. Morquecho, S. P. Torres, F. Astudillo-Salinas, C. A. Castro, H. Ergun and Dirk Van Hertem, «Security constrained AC dynamic transmission expansion planning considering reactive power requirements,» Electric Power Systems Research, vol. 221, p. 109419, 2023.
- [2] E. Ehsan Naderi, Mahdi Pourakbari-Kasmaei y M. Lehtonen, «Transmission expansion planning integrated with wind farms: A review, comparative study, and a novel profound search approach,» International Journal of Electrical Power \& Energy Systems, 2020.
- [3] Sara Lumbreras y A. Ramos, «The new challenges to transmission expansion planning. Survey of recent practice and literature review,» Electric Power Systems Research, 2016.
- [4] L. E. d. Oliveira, J. T. Saraiva, P. V. Gomes y F. D. Freitas, «A three-stage multi-year transmission expansion planning using heuristic, metaheuristic and decomposition techniques,» IEEE Milan PowerTech, 2019.
- [5] A. R. Aldik y B. Venkatesh, «AC transmission network expansion planning using the line-wise model for representing meshed transmission networks,» IEEE Transactions on Power Systems, 2022.
- [6] Soumya Das, Ashu Verma y P. Bijwe, «Security constrained AC transmission network expansion planning,» Electric Power Systems Research, 2019.
- [7] A. Escobar, R. Gallego y R. Romero, «Multistage and coordinated planning of the expansion of transmission systems,» IEEE Transactions on Power Systems, 2004.
- [8] S. Torres y C. Castro, «Expansion planning for smart transmission grids using AC model and shunt compensation,» IET Generation, Transmission & Distribution, vol. 8, no. 5,, pp. 966-975, 2014.
- [9] Edgar G. Morquecho, Santiago P. Torres y Carlos A. Castro, «An efficient hybrid metaheuristics optimization technique applied to the AC electric transmission network expansion planning,» Swarm and Evolutionary Computation, 2021.
- [10] M. Mehrtash y Y. Cao, «A new global solver for transmission expansion planning with AC network model,» IEEE Transactions on Power Systems, 2021.


- [11] Tohid Akbari y M. T. Bina, «Approximated MILP model for AC transmission expansion planning: global solutions versus local solutions,» IET Generation, Transmission \& Distribution, 2016.
- [12] Leonardo H. Macedo, Cristiam V. Montes, John F. Franco, Marcos J. Rider y R. Romero, «MILP branch flow model for concurrent AC multistage transmission expansion and reactive power planning with security constraints,» IET Generation, Transmission \& Distribution, 2016.
- [13] I. d. J. Silva, M. R. 1, R. Romero, A. Garcia y C. Murari, «Transmission network expansion planning with security constraints,» IEE Proceedings-Generation, Transmission and Distribution, 2005.
- [14] EERCS, «CENTROSUR,» 2022. [En línea]. Available: http://www.centrosur.com.ec/?q=node/11.
- [15] K. Sörensen y F. Glover, «Metaheuristics,» Encyclopedia of operations research and management science, 2013.
- [16] Sergio D. Saldarriaga-Zuluaga, Jesús M. López-Lezama y F. Villada., «Transmission Network Expansion Planning Considering Security Constraints through Nodal Indexes.,» Engineering Letters, 2019.
- [17] N. G. Ude, H. Yskandar y R. C. Graham, «A comprehensive state-of-the-art survey on the transmission network expansion planning optimization algorithms,» IEEE Access, 2019.
- [18] A. H. a. G. R. A. a. R. R. Escobar, «Multistage and coordinated planning of the expansion of transmission systems,» IEEE Transactions on Power Systems, 2004.
- [19] Jagath Fonseka y V. Miranda, «A hybrid meta-heuristic algorithm for transmission expansion planning,» COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 2004.
- [20] Gholam-Reza Kamyab, Mahmood Fotuhi-Firuzabad y M. Rashidinejad, «A PSO based approach for multi-stage transmission expansion planning in electricity markets,» International Journal of Electrical Power \& Energy Systems, 2014.
- [21] P. V. Gomes y J. T. Saraiva, «Hybrid discrete evolutionary pso for ac dynamic transmission expansion planning,» IEEE International Energy Conference (ENERGYCON), 2016.

- [22] Alireza Moradi, Yousef Alinejad-Beromi y K. Kiani, «Application of grey wolf algorithm for multi-year transmission expansion planning from the viewpoint of private investor considering fixed series compensation and uncertainties,» International Transactions on Electrical Energy Systems, 2019.
- [23] Manuel Costeira da Rocha y J. T. Saraiva, «A multiyear dynamic transmission expansion planning model using a discrete based EPSO approach,» Electric power systems research, 2012.
- [24] E. G. Morquecho y S. Torres, «AC Dynamic Transmission Expansion Planning using a Hybrid Optimization Algorithm,» pp. 1-4, 2021.
- [25] E. F. d. Silva, M. Rahmani y a. M. J. Rider, «A Search Space Reduction Strategy and a Mathematical Model for Multistage Transmission Expansion Planning with N-1 N-1 Security Constrains,» Journal of Control, Automation and Electrical Systems, 2015.
- [26] C. A. Sima, G. C. Lazaroiu y V. Dumbrava, «Transmission expansion planning optimization for improving RES integration on electricity market,» International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2017.
- [27] S. Torres and C. Castro, «Specialized differential evolution technique to solve the alternating current model based transmission expansion planning problem,» International Journal of Electrical Power & Energy Systems, vol. 68, pp. 243-251, 2015.
- [28] F. V. y. E. Inga, «Planeación y dimensionamiento de redes eléctricas de distribución soterrda mediante un método metaheurístico,» Ingeniería y Ciencia, p. 1, 2019.
- [29] CONOCIMIENTOSWEB, «CONOCIMIENTOSWEB,» 25 MAYO 2013. [En línea]. Available: https://conocimientosweb.net/dcmt/ficha4843.html.
- [30] M. Wagner and A. Auger and M. Schoenauer, «A new robust estimation of distribution algorithms,» PHD thesis, INRIA, 2004.
- [31] S. Das y P. N. Suganthan, «Differential evolution: A servey of the state-of-the-art,» IEEE tranactions on evolutionary computation, vol 15, no. 1, pp. 4-31, 2010.

ANEXOS

ANEXO 2. PARÁMETROS ELÉCTRICOS LÍNEAS DE SUBTRANSMISIÓN

Descripción				LINEA DE SU	JBTRANS	SMISI	ÓN		
Descripcion	R ohm/km	X ohm/km	B uS/km	B S/km	km	VbL	Rlpu	Xlpu	Blpu
Abanico_Macas_a	0.13909	0.386478	3.119601	0.000003120	11.5	69	0.0335966184	0.0933521739	0.0017080283
Azogues(09)-Cañar(18)	0.250345	0.480071	2.911942	0.000002912	24.08	69	0.1266185171	0.2428084369	0.0033383924
Colectora-Alazán	0.12	0.357539	3.378155	0.000003378	11.04	69	0.0278260870	0.0829075942	0.0017756069
Cuenca 2 - Verdillo (06) 2	0.112565	0.405625	3.150389	0.000003150	8.008	69	0.0189334283	0.0682261080	0.0012011201
Cuenca 2 - Verdillo (06)	0.112565	0.405625	3.150389	0.000003150	8.17	69	0.0193164472	0.0696063064	0.0012254185
Cuenca-Gualaceo	0.251241	0.513814	2.714022	0.000002714	21.022	138	0.0277336080	0.0567181155	0.0108653962
Cuenca-Monay(03)-1	0.12648	0.41453	2.767429	0.000002767	3.425	69	0.0090988028	0.0298207362	0.0004512687
Cuenca-Monay(03)	0.139688	0.45824	3.056455	0.000003056	3.009	69	0.0088284224	0.0289612300	0.0004378631
Cuenca-Ricaurte(07)	0.140993	0.420277	3.405801	0.000003406	5.287	69	0.0156570046	0.0466709620	0.0008572880
Cuenca_S/E 09	0.14054	0.440807	2.998964	0.000002999	23.792	69	0.0702316253	0.2202831368	0.0033970378
EEAz-Guapán(28)	0.13909	0.44445	3.119601	0.000003120	2.547	69	0.0074409206	0.0237768147	0.0003782911
EEAz2-Colectora	0.12	0.357539	3.378155	0.000003378	23.64	69	0.0595841210	0.1775303919	0.0038021148
El Arenal(05)-SE 13	0.249345	0.474868	2.918226	0.000002918	11.055	69	0.0578976890	0.1102639307	0.0015359457
El Arenal(05)-Turi(08)	0.139489	0.443541	3.1573	0.000003157	5.134	69	0.0150417250	0.0478290169	0.0007717380
Graiman - Erco	0.249216	0.432027	3.206938	0.000003207	0.215	69	0.0011254241	0.0019509726	0.0000328267
Gualaceo (15) - Limón	0.263118	0.536851	2.850681	0.000002851	45.452	138	0.0627979381	0.1281293407	0.0246751495
Limón(23)-Méndez	0.248352	0.488681	2.797903	0.000002798	33.017	138	0.0430573303	0.0847236955	0.0175925355
M_69-HA_69	0.25141	0.46404	3.042633	0.000003043	0.1	69	0.0005280613	0.0009746692	0.0000144860

Monay(03)-	0.10101	0.113097	73.30373	0.000073304	1.535	22			
P.Centenario(02)s	0.10101	0.113091	73.30373	0.000073304	1.555	22	0.0320351963	0.0358685733	0.0005446027
Monay(03)-Turi(08)	0.139489	0.443541	3.1573	0.000003157	4.524	69	0.0132545313	0.0421461769	0.0006800434
Méndez(22)-Macas	0.246714	0.47527	2.83623	0.000002836	51.669	138	0.0669369128	0.1289473095	0.0279080618
Ocaña Cañar	0.12367	0.463647	3.003991	0.000003004	42	69	0.1090976686	0.4090143667	0.0060068405

PARÁMETROS ELÉCTRICOS LÍNEAS DE SUBTRANSMISIÓN

DESCRIPCIÓN	R ohm/km	X ohm/km	B uS/km	B S/km	km	VbL	Rlpu	Xlpu	Blpu
P.Industrial(04)-Graiman	0.249216	0.432027	3.206938	0.000003207	1.871	69	0.0097938067	0.0169779987	0.0002856686
P.Industrial(04)-Ricaurte(07)	0.112565	0.405625	3.150389	0.000003150	3.822	69	0.0090364089	0.0325624606	0.0005732619
P.Industrial(04)-Saucay(20)	0.139984	0.443827	3.151646	0.000003152	14.119	69	0.0415130035	0.1316192693	0.0021185541
Ricaurte(07)-	0.25141	0.46404	3.042633	0.000003043	10.15	69			
El_Descanso(12)	0.20111	0.10101	0.012000	0.000000010	10.10		0.0535982252	0.0989289225	0.0014703265
SE 13-Léntag	0.249345	0.474868	2.918226	0.000002918	36.496	69	0.1911383138	0.3640155961	0.0050706353
SE09 - EEAz1	0.14054	0.440807	2.998964	0.000002999	0.861	69	0.0025415866	0.0079717460	0.0001229342
SE09-EEAz2	0.14054	0.440807	2.998964	0.000002999	1.724	69	0.0050890771	0.0159620094	0.0002461539
SE12-EEAz2	0.14054	0.440807	2.998964	0.000002999	10.25	69	0.0302569838	0.0949017381	0.0014635019
SE_07-SE_19	0.139358	0.44627	3.111433	0.000003111	9.892	69	0.0289546174	0.0927221769	0.0014653546
SE_19-SE_11	0.146067	0.459325	3.321292	0.000003321	1.323	69	0.0040589507	0.0127638516	0.0002092016
SE_19-SE_20	0.139864	0.443332	3.147248	0.000003147	4.902	69	0.0144006160	0.0456461555	0.0007345180
Sinincay - SE18	0.112565	0.405625	3.150389	0.000003150	31.67	69	0.0748778313	0.2698202846	0.0047501839
Turi(08)-Lentag(14)	0.112565	0.405625	3.150389	0.000003150	45.647	69	0.1079238512	0.3889007430	0.0068465945

UCUENCA

Turi(08)-P.Centenario(02)	0.10101	0.113097	73.30373	0.000073304	4	22	0.0834793388	0.0934685950	0.0014191602
Verdillo(06)-Los cerezos(17)	0.112565	0.405625	3.150389	0.000003150	3.595	69	0.0084997096	0.0306284788	0.0005392141
Los cerezos(17)- El Arenal (05)	0.112565	0.405625	3.150389	0.000003150	3.595	69	0.0084997096	0.0306284788	0.0005392141
Verdillo(06)-P.Industrial (04)22kV	0.24041	0.466567	2.97823	0.000002978	3.056	22	0.1517960661	0.2945927174	0.0000440511
Verdillo(06)-P.Industrial(04)	0.112565	0.405625	3.150389	0.000003150	3.23	69	0.0076367349	0.0275187723	0.0004844678
Verdillo(06)-Secc 2	0.23119	0.43272	2.984513	0.000002985	1.389	22	0.0663477087	0.1241834876	0.0000200642

ANEXO 3. PARÁMETROS ELÉCTRICOS TRANSFORMADORES DE POTENCIA

POTENCIA BASE SIST	EMA MVA=	100			
Can	nbio de base	e transformac	dores de dos	devanados	
Descripción	S trafo	X p.u.	R p.u.	X p.u. N.Base	R p.u. N.Base
T Abanico	18	0.1017297	0.00588889	0.565165	0.032716
T Abanico b	27	0.1199204	0.00437037	0.444150	0.016187
T Ocaña 1	15	0.08495819	0.00266667	0.566388	0.017778
T Ocaña 2	15	0.08495816	0.00266667	0.566388	0.017778
T011	5	0.05909999	0.004	1.182000	0.080000
T012	10	0.05570915	0.0057	0.557092	0.057000
T021	5	0.05909999	0.004	1.182000	0.080000
T022	10	0.05570915	0.0057	0.557092	0.057000
T111	10	0.0895756	0.00873	0.895756	0.087300
T112	10	0.07683749	0.005	0.768375	0.050000
T121	20	0.1198499	0.006	0.599250	0.030000
T151	16	0.07012906	0.003155	0.438307	0.019719
T201	10	0.0895756	0.00873	0.895756	0.087300
T202	10	0.0895756	0.00873	0.895756	0.087300
T203	10	0.0895756	0.00873	0.895756	0.087300
T213	10	0.08978619	0.0062	0.897862	0.062000
T214	24	0.08086061	0.00475	0.336919	0.019792
T221	6.666	0.06928739	0.00757276	1.039415	0.113603
T231	6.666	0.06928739	0.00757276	1.039415	0.113603
TAlazán	10	0.07498908	0.00128	0.749891	0.012800
TEEAz	10	0.07432396	0.003363	0.743240	0.033630
TEEAz2	10	0.07432396	0.003363	0.743240	0.033630
THA 138	48	0.06718656	0.00134373	0.139972	0.002799

Nota: Datos a ingresar en Matlab

	Transformador conexión estrella (R,)										
Doscrinción		Devanados									
Descripción	H (pu)	H (pu) N.B.	M (pu)	M (pu) N.B.	L (pu)	L (pu) N.B.					
CUE RAYO 138	0.0002173300	0.0002173300	0.0005506700	0.0005506700	0.0003456300	0.0012801111					
T034	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					
T035	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					
T041	0.0026734750	0.0111394792	0.0024098550	0.0100410625	-0.0009852950	0.0123161875					
T042	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					
T051	0.0016798250	0.0069992708	0.0014868450	0.0061951875	-0.0004494150	0.0056176875					
T052	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					
T061	0.0026770450	0.0267704500	0.0023146950	0.0231469500	-0.0000197850	0.0005941441					
T071	0.0021805750	0.0218057500	0.0018154750	0.0181547500	0.0001472350	0.0044214715					
T072	0.0021724350	0.0173794800	0.0018231450	0.0145851600	0.0000644050	0.0016101250					
T081	0.0009086650	0.0037861042	0.0007566950	0.0031528958	0.0000602850	0.0007535625					
T091	0.0021805750	0.0218057500	0.0018154750	0.0181547500	0.0001472350	0.0044214715					
T122	0.0021805750	0.0218057500	0.0018154750	0.0181547500	0.0001472350	0.0044214715					
T123	0.0021719000	0.0217190000	0.0018241500	0.0182415000	0.0001548500	0.0046501502					
T131	0.0026770450	0.0267704500	0.0023146950	0.0231469500	-0.0000197850	0.0005941441					
T141	0.0021719200	0.0217192000	0.0018241300	0.0182413000	0.0001550600	0.0046564565					
T142	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					
T181	0.0021720150	0.0217201500	0.0018240350	0.0182403500	0.0001549650	0.0046536036					
T182	0.0017734750	0.0073894792	0.0015098550	0.0062910625	-0.0000852950	0.0010661875					

	Resultados							
		Transforn	nador conexión es	strella (X,)				
Descripción			Deva	nados				
Descripcion	H (pu)	H (pu) N.B.	M (pu)	M (pu) N.B.	L (pu)	L (pu) N.B.		
CUE RAYO 138	0.0467499500	0.0467499500	0.0222457700	0.0222457700	0.0459483400	0.1701790370		
T034	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		
T035	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		
T041	0.0574447000	0.2393529167	0.0233956300	0.0974817917	-0.0129967500	0.1624593750		
T042	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		
T051	0.0595040050	0.2479333542	0.0254369850	0.1059874375	-0.0149989150	0.1874864375		
T052	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		
T061	0.0563052550	0.5630525500	0.0304512550	0.3045125500	-0.0176686250	0.5305893393		
T071	0.0606841000	0.6068410000	0.0292271400	0.2922714000	-0.0162229000	0.4871741742		
T072	0.0642571650	0.5140573200	0.0301583250	0.2412666000	-0.0198334450	0.4958361250		
T081	0.0615691200	0.2565380000	0.0275152100	0.1146467083	-0.0170575700	0.2132196250		
T091	0.0620341000	0.6203410000	0.0278771400	0.2787714000	-0.0175729000	0.5277147147		
T122	0.0620341000	0.6203410000	0.0278771400	0.2787714000	-0.0175729000	0.5277147147		
T123	0.0574770900	0.5747709000	0.0324341500	0.3243415000	-0.0181853200	0.5461057057		
T131	0.0563052550	0.5630525500	0.0304512550	0.3045125500	-0.0176686250	0.5305893393		
T141	0.0574784300	0.5747843000	0.0324328100	0.3243281000	-0.0181826700	0.5460261261		
T142	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		
T181	0.0574784150	0.5747841500	0.0324328250	0.3243282500	-0.0181826550	0.5460256757		
T182	0.0574912500	0.2395468750	0.0234421800	0.0976757500	-0.0130433000	0.1630412500		

ANEXO 4: RESULTADOS

4.1. Cargabilidad en las líneas de subtransmisión de la EERCS.

Tabla 13 Cargabilidad en las líneas de subtransmisión

Líneas de Subtransmisión				
Descripción	Cargabilidad %			
Abanico_Macas_a	15.01%			
Azogues (09)-Cañar (18)	12.70%			
Colectora-Alazán	0.00%			
SYNINCAY - Verdillo (06) 1	33.99%			
SYNINCAY - Verdillo (06) 2	33.31%			
Cuenca-Gualaceo	15.91%			
Cuenca-Monay (03)-1	47.72%			
Cuenca-Monay (03)-2	49.15%			
Cuenca-Ricaurte (07)	49.38%			
Cuenca_S/E 09	0.00%			
EEAz-Guapán (28)	3.04%			
EEAz2-Colectora	0.25%			
El Arenal (05)-SE 13	16.89%			
El Arenal (05)-Turi (08)	7.42%			
Graiman - Erco	8.88%			
Gualaceo (15) - Limón	5.77%			
Limón(23)-Méndez	5.27%			
M_69-HA_69	17.68%			
Monay(03)-P.Centenario(02)s	0.00%			
Monay(03)-Turi(08)	40.32%			
Méndez(22)-Macas	5.36%			
Ocaña Cañar	2.49%			
P.Industrial(04)-Graiman	22.42%			
P.Industrial(04)-Ricaurte(07)	4.25%			
P.Industrial(04)-Saucay(20)	46.53%			

P.Industrial(04)-Secc	0.00%
Ricaurte(07)-EI_Descanso(12)	39.81%
SE 13-Léntag	13.55%
SE09 - EEAz1	10.30%
SE09-EEAz2	5.48%
SE12-EEAz2	9.30%
SE_07-SE_19	4.25%
SE_19-SE_11	2.81%
SE_19-SE_20	0.00%
Sinincay - SE18	14.74%
Turi(08)-Lentag(14)	8.90%
Turi(08)-P.Centenario(02)	41.01%
Verdillo(06)-El Arenal(05)	76.74%
Verdillo(06)-P.Industrial (04)22kV	0.00%
Verdillo(06)-P.Industrial(04)	37.02%

4.2. Cargabilidad en Transformadores de Potencia

Tabla 14 Cargabilidad en Transformadores de Potencia

Subestación EERCS				
Dogorinaión	UBICACIÓN	TRANSFORMADOR	Cargabilidad	
Descripción	UBICACION	DE POTENCIA	%	
S/E 01	Luis Cordero	T011	51.94%	
5/L 01	Luis Cordero	T012	41.25%	
S/E 02	Benigno	T021	63.30%	
3/L 02	Malo	T022	50.29%	
S/E 03	Monay	T034	41.75%	
0/2 00	Ivioriay	T035	41.75%	
S/E 04	Visorey	T041	65.33%	
0/2 04	Visorcy	T042	64.89%	
S/E 05	Arenal	T051	55.83%	
3/L 03	Alenai	T052	58.60%	
S/E 06	Verdillo	T061	83.92%	
S/E 07	Ricaurte	T071	87.07%	
3/L 0/	Micaurie	T072	103.55%	
S/E 08	Turi	T081	90.07%	
S/E 09	Guablincay	T091	26.27%	
S/E	Azogues	AAZ1	60.49%	
AZOGUES 1	7 20ga00	7 7 7 1	00.4070	
S/E	Azogues	AAZ2	30.52%	
AZOGUES 2	/ <u></u>	, , ,	00.027	
	Descanso	T121	0.00%	
S/E 12	GEN.		0.0075	
0,2 12	Descanso	T122	48.02%	
		T123	36.11%	
S/E 13	Chaullayacu	T131	12.83%	
S/E 14	Lentag	T141	33.57%	
0,217	Loniag	T142	37.28%	
S/E 15	Ayaloma	T151	74.73%	
·				

S/E 18	Cañar	T181	15.60%
0/L 10		T182	17.38%
S/E 21	Macas	T213	27.09%
0/2 21		T214	30.15%
S/E 22	Méndez	T221	58.87%
S/E 23	Limón	T231	26.08%

4.3. Proyección de la Demanda por Subestación

Tabla 15 Proyección de la Demanda por Subestación.

	POTENCIA	ENERGÍA	
Alimentador	Tasa de crecimiento	Tasa de crecimiento	
Aimentador	anual %	anual %	
S/E 01	0.34%	1.41%	
S/E 02	1.55%	2.64%	
S/E 03	4.20%	5.31%	
S/E 04	4.20%	5.31%	
S/E 05	4.20%	5.31%	
S/E 07	4.20%	5.31%	
S/E 08	4.20%	5.31%	
S/E 09	3.31%	4.41%	
EEAZ1	1.15%	1.19%	
EEAZ2	1.13%	1.15%	
S/E 12	2.50%	3.59%	
S/E 13	2.75%	3.68%	
S/E 14	5.76%	6.89%	
S/E 15	2.50%	3.59%	
S/E 18	2.50%	3.59%	
S/E 21	8.10%	13.47%	
S/E 22	8.10%	13.47%	
S/E 23	4.46%	9.65%	

4.4. Cargabilidad en las líneas de subtransmisión

Tabla 16 Cargabilidad en las líneas de subtransmisión.

Líneas de Subtransmisión			
Descripción	Cargabilidad %		
Abanico_Macas_a	13.88%		
Azogues(09)-Cañar(18)	16.84%		
Colectora-Alazán	0.00%		
Cuenca 2 - Verdillo (06) 1	53.51%		
Cuenca 2 - Verdillo (06) 2	52.45%		
Cuenca-Gualaceo	25.21%		
Cuenca-Monay(03)-1	61.14%		
Cuenca-Monay(03)-2	62.95%		
Cuenca-Ricaurte(07)	65.55%		
Cuenca_S/E 09	0.00%		
EEAz-Guapán(28)	3.85%		
EEAz2-Colectora	0.25%		
El Arenal(05)-SE 13	65.28%		
El Arenal(05)-Turi(08)	7.73%		
Graiman - Erco	11.15%		
Gualaceo (15) - Limón	10.92%		
Limón(23)-Méndez	9.58%		
M_69-HA_69	22.83%		
Monay(03)-P.Centenario(02)s	0.00%		
Monay(03)-Turi(08)	50.77%		
Méndez(22)-Macas	7.02%		
Ocaña Cañar	1.07%		
P.Industrial(04)-Graiman	57.90%		
P.Industrial(04)-Ricaurte(07)	15.15%		
P.Industrial(04)-Saucay(20)	10.70%		
Ricaurte(07)-El_Descanso(12)	49.61%		
SE 13-Léntag	26.44%		
SE09 - EEAz1	12.18%		

SE09-EEAz2	5.09%
SE12-EEAz2	9.58%
SE_07-SE_19	9.38%
SE_19-SE_11	6.26%
SE_19-SE_20	0.00%
Sinincay - SE18	20.11%
Turi(08)-Lentag(14)	13.69%
Turi(08)-P.Centenario(02)	36.73%
Verdillo(06)-El Arenal(05)	104.58%
Verdillo(06)-P.Industrial (04)22kV	0.00%
Verdillo(06)-P.Industrial(04)	84.81%

4.5. Cargabilidad en Transformadores de Potencia

Tabla 17 Cargabilidad en Transformadores de Potencia

Subestación EERCS				
Dogarinaián	UBICACIÓN	TRANSFORMADOR	Cargabilidad	
Descripción	UBICACION	DE POTENCIA	%	
S/E 01	Luis Cordero	T011	60.80%	
0/2 01	Luis Cordero	T012	48.50%	
S/E 02	Benigno	T021	56.65%	
0/2 02	Malo	T022	44.91%	
S/E 03	Monay	T034	55.18%	
0/2 00	Wionay	T035	55.14%	
S/E 04	Visorey	T041	81.32%	
0/2 04	Visorcy	T042	80.90%	
S/E 05	Arenal	T051	55.83%	
0/L 00	Alchai	T052	58.60%	
S/E 06	Verdillo	T061	99.41%	
S/E 07	Ricaurte	T071	86.97%	
0/2 0/	rtioduite	T072	103.59%	
S/E 08	Turi	T081	105.78%	
S/E 09	Guablincay	T091	33.78%	
S/E AZOGUES 1	Azogues	AAZ1	72.39%	
S/E AZOGUES 2	Azogues	AAZ2	38.06%	
S/E 12	Descanso GEN.	T121	0.00%	
0,2 12	Descanso	T122	71.74%	
	Doodanoo	T123	53.85%	
S/E 13	Chaullayacu	T131	105.72%	
S/E 14	Lentag	T141	50.48%	
0,2 17	Loniay	T142	56.03%	
S/E 15	Ayaloma	T151	104.14%	

S/E 18	Cañar	T181	20.30%
0/L 10		T182	22.63%
S/E 21	Macas	T213	35.25%
0/2 21		T214	39.19%
S/E 22	Méndez	T221	88.23%
S/E 23	Limón	T231	33.37%

4.6. Pérdidas en el SEP de la EERCS

Tabla 18 Pérdidas en el Sistema Eléctrico.

=====	=======	=======	=====	========
1	Branch	Data		1
=====	======	=======	=====	========
Brnch	From	To F	Loss (I^2 * Z)
#	Bus	Bus	(MW)	Q (MVAr)
1	2	5	0	0
2	28	23	0	0
3	11	10	0.288	0.8
4	90	59	0.143	0.27
5	8	9	0	0
6	6	44	0.157	0.57
7	6	45	0.154	0.55
8	1	87	0.004	0.01
9	5	28	0.086	0.28
10	5	28	0.089	0.29
11	2	49	0.2	0.6
12	2	59	0	0
13	63	66	0	0
14	9	65	0	0
15	38	78	0.019	0.04
16	55	38	0.032	0.1
17	32	31	0	0
18	109	87	0.135	0.25
19	107	109	0.116	0.23
20	10	105	0	0
21	21	19	0	0
22	23	55	0.244	0.78
23	12	107	0.271	0.55
24	69	90	0.235	0.88

25	30	32	0.015	0.03
26	49	30	0.027	0.1
27	99	30	0.063	0.2
28	29	17	0	0
29	49	72	0.059	0.11
30	78	82	0.038	0.07
31	17	15	0	0
32	18	15	0.012	0.02
33	59	63	0.002	0.01
34	65	59	0	0
35	72	65	0.003	0.01
36	95	49	0.007	0.02
37	100	95	0.001	0
38	95	99	0	0
39	90	6	0.009	0.03
40	55	82	0.069	0.25
41	19	54	0.047	0.05
42	45	38	0.153	0.57
43	44	45	0	0
44	43	29	0	0
45	44	30	0.033	0.12
46	43	18	0.021	0.04
47	14	11	0.05	1.37
48	13	11	0.045	0.78
49	69	67	0.01	0.31
50	69	68	0.01	0.31
51	15	16	0.003	0.04
52	15	16	0.008	0.08
53	19	20	0.004	0.06
54	19	20	0.014	0.14
55	100	101	0	0
56	100	102	0.012	0.19
57	71	70	0	0

58	87	88	0.025	0.56
59	99	96	0.016	0.16
60	99	97	0.016	0.16
61	99	98	0.016	0.16
62	105	103	0.004	0.06
63	103	104	0	0
64	105	104	0.009	0.16
65	107	106	0.013	0.12
66	109	108	0.003	0.02
67	7	8	0	0
68	63	62	0.011	0.25
69	65	64	0.003	0.07
70	10	12	0.012	0.58
71	1	3	0.021	4.5
72	3	2	0.053	2.14
73	3	4	0	0
74	21	22	0	0
75	23	24	0.007	0.23
76	24	21	0.006	0.09
77	24	25	0	0
78	23	26	0.007	0.23
79	26	22	0.006	0.09
80	26	27	0	0
81	30	33	0.026	0.56
82	33	29	0.022	0.22
83	33	34	0	0
84	30	35	0.017	0.55
85	35	29	0.014	0.21
86	35	36	0	0
87	38	39	0.025	0.87
88	39	37	0.021	0.36
89	39	40	0	0
90	38	41	0.029	0.93

UCUENCA

91	41	37	0.023	0.36
92	41	42	0	0
93	44	46	0.009	0.19
94	46	43	0.007	0.1
95	46	47	0	0
96	49	50	0.009	0.26
97	50	48	0.008	0.13
98	50	51	0	0
99	49	52	0.011	0.32
100	52	48	0.009	0.15
101	52	53	0	0
102	55	56	0.016	1.12
103	56	54	0.014	0.5
104	56	57	0	0
105	59	60	0.002	0.04
106	60	58	0.001	0.02
107	60	61	0	0
108	72	73	0.003	0.08
109	73	70	0.002	0.04
110	73	74	0	0
111	72	75	0.003	0.07
112	75	70	0.002	0.04
113	75	76	0	0
114	78	79	0	0.01
115	79	77	0	0
116	79	80	0	0
117	82	83	0.003	0.07
118	83	81	0.002	0.04
119	83	84	0	0
120	82	85	0.006	0.19
121	85	81	0.005	0.08
122	85	86	0	0
123	90	91	0.001	0.01

124	91	89	0	0.01
125	91	92	0	0
126	90	93	0.001	0.04
127	93	89	0.001	0.02
128	93	94	0	0
		Total:	3.408	28.28
		Total		
		(MVA):	28.48	
		% Pérdidas	13.52%	

4.7. Resultados tensiones en los nodos

Tabla 19: Resultados tensiones en los nodos.

CASC	OS DE ESTUD	IO	ı	Estado A	ctual	Añ	o 1	Año	10
Sube	stación	NODO	Te	nsión	Ang	Tensión	Ang	Tensión	Ang
#	Nombre	#	kV	pu	deg	Pu	deg	pu	deg
S/E 01	L. Cordero	15	22	1.0090	-8.232	1.008	-8.775	0.992	-6.237
0,201	L. Gordero	16	6.3	1.0310	-9.387	1.030	-9.942	1.016	-7.803
S/E 02	Centenario	19	22	0.9670	-10.099	0.966	-10.565	1.015	-7.729
0/2 02	Centenano	20	6.3	0.9840	-11.66	0.983	-12.153	0.988	-8.169
S/E 03	Monay	22	69	1.0150	-6.178	1.015	-6.513	0.986	-4.858
3/2 03	Wionay	23	22	0.9970	-4.321	0.997	-4.623	0.994	-3.018
S/E 04	P. Industrial	30	69	0.9960	-5.122	0.995	-5.588	0.975	-2.317
3/2 04	r. muusman	29	22	1.0050	-7.927	1.004	-8.441	0.976	-6.585
S/E 05	Arenal	38	69	0.9870	-5.734	0.987	-6.146	0.973	-3.414
0/2 00	Alchai	37	22	0.9960	-9.476	1.001	-9.140	0.996	-6.161
S/E 06	Verdillo	44	69	0.9990	-4.831	0.998	-5.339	0.979	-1.575
O/L 00	Veranio	43	22	1.0160	-7.657	1.015	-8.193	0.999	-5.415
S/E 07	Ricaurte	49	69	0.9950	-4.784	0.995	-5.184	0.980	-2.677
0,20,	Modulto	48	22	0.9770	-8.068	0.976	-8.572	0.950	-9.019
S/E 08	Turi	55	69	0.9890	-5.316	0.989	-5.680	0.983	-3.406
0/2 00	Tun	54	22	0.9750	-9.758	0.974	-10.219	1.022	-7.873
S/E 09	Guablincay	59	69	0.9870	-5.516	0.986	-5.984	0.957	-2.834
0/2 03	Guabilicay	58	22	0.9830	-6.874	0.983	-7.371	0.952	-5.025
S/E		63	69	0.9870	-5.553	0.986	-6.021	0.957	-2.888
AZOGUES 1	Azogues	62	22	1.0040	-7.956	1.003	-8.470	0.969	-6.440
S/E		65	69	0.9870	-5.516	0.986	-5.980	0.958	-2.908
AZOGUES 2	Azogues	64	22	1.0090	-6.756	1.008	-7.243	0.978	-4.730
S/E 12	Descanso	71	6.3	0.9850	-7.206	0.984	-7.701	0.958	-6.583
3/E 12	Descaile0	70	22	0.9850	-7.206	0.984	-7.701	0.958	-6.583

UCUENCA

		72	69	0.9890	-5.345	0.988	-5.785	0.965	-3.099
S/E 13 Ch	Chaullayacu	78	69	0.9840	-6.078	0.983	-6.520	0.951	-4.369
3/L 13	Cilauliayacu	77	22	1.0050	-6.705	1.003	-7.399	0.974	-10.375
S/E 14	Lentag	82	69	0.9730	-6.95	0.972	-7.392	0.950	-6.603
0/2 14	Lontag	81	22	0.9900	-8.683	0.989	-9.181	0.974	-9.985
S/E 15	Ayaloma	87	138	1.0100	0.129	1.010	0.104	1.047	-0.470
0/2 10	Ayaloma	88	22	1.0040	-2.671	1.003	-2.769	1.047	-4.138
S/E 18	Cañar	90	69	1.0010	-4.044	1.001	-4.548	0.972	0.633
0/2 10	Canai	89	22	1.0010	-4.841	1.000	-5.362	0.972	-0.699
S/E 19	Corpanche	95	69	0.9970	-4.521	0.996	-4.921	0.978	-2.106
S/E 21	Macas	105	69	1.0200	5.216	1.020	5.093	1.044	1.326
0/2 21	madad	104	22	1.0150	3.935	1.014	3.771	1.035	-0.586
S/E 22	Méndez	107	138	1.0210	2.016	1.020	1.937	1.049	-0.203
0/2 22	Mondoz	106	13.8	1.0170	0.062	1.016	-0.106	1.044	-3.467
S/E 23	Limón	109	138	1.0170	1.168	1.017	1.110	1.049	-0.408
0/2 20	Limon	108	13.8	1.0120	0.321	1.011	0.240	1.050	-1.651
S/E	CUENCA	1	138	1.0100	0	1.010	0.000	1.050	0.000*
CUENCA	OCENOA	2	69	1.0010	-3.822	1.001	-4.100	1.001	-2.626
S/E SYNINCAY	SYNINCAY	6	69	1.0100	-3.863	1.010	-4.379	0.991	0.666
S/E 17	LOS	110	69			0.992	-5.829	0.975	-2.636
5/L 17	CEREZOS	111	22			0.980	-8.198	0.966	-4.547

4.8. Cargabilidad de Líneas de Subtransmisión con la Nueva Topología

Tabla 20: Cargabilidad de Líneas de Subtransmisión con la Nueva Topología.

Líneas de Subtransmisión						
	Demanda	Demanda				
Descripción	Máxima	(MVA) Año	Cargabilidad %			
	(MVA)	10				
Abanico_Macas_a	64.536	25.400	39.36%			
Azogues(09)-Cañar(18)	54.975	22.770	41.42%			
Colectora-Alazán	76.487	0.000	0.00%			
SYNINCAY - Verdillo (06) 1	85.809	58.760	68.48%			
SYNINCAY - Verdillo (06) 2	85.809	57.610	67.14%			
Cuenca-Gualaceo	109.951	15.130	13.76%			
Cuenca-Monay(03)-1	56.580	31.340	55.39%			
Cuenca-Monay(03)-2	89.250	32.280	36.17%			
Cuenca-Ricaurte(07)	85.809	42.920	50.02%			
Cuenca_S/E 09	80.073	0.000	0.00%			
EEAz-Guapán(28)	80.073	3.370	4.21%			
EEAz2-Colectora	76.487	0.160	0.21%			
El Arenal(05)-SE 13	36.830	22.090	59.98%			
El Arenal(05)-Turi(08)	80.073	18.580	23.20%			
Graiman – Erco	54.975	6.060	11.02%			
Gualaceo (15) – Limón	109.951	1.530	1.39%			
Limón(23)-Méndez	109.951	4.690	4.27%			
M_69-HA_69	54.975	15.170	27.59%			
Monay(03)-P.Centenario(02)s	17.760	2.710	15.26%			
Monay(03)-P.Centenario(02)s	80.073	2.710	3.38%			
Monay(03)-Turi(08)	80.073	29.370	36.68%			
Méndez(22)-Macas	109.951	11.060	10.06%			
Ocaña Cañar	76.487	34.070	44.54%			
P.Industrial(04)-Graiman	54.975	19.580	35.62%			
P.Industrial(04)-Ricaurte(07)	63.240	22.680	35.86%			
P.Industrial(04)-Saucay(20)	53.650	30.890	57.58%			

UCUENCA

Ricaurte(07)-El_Descanso(12)	36.830	14.730	39.99%
SE 13-Léntag	36.830	9.020	24.49%
SE09 - EEAz1	80.073	11.470	14.32%
SE09-EEAz2	80.073	8.860	11.06%
SE12-EEAz2	80.073	7.180	8.97%
SE_07-SE_19	53.650	10.090	18.81%
SE_19-SE_11	80.073	10.010	12.50%
SE_19-SE_20	80.073	0.000	0.00%
Sinincay - SE18	85.809	6.890	8.03%
Turi(08)-Lentag(14)	85.809	16.460	19.18%
Turi(08)-P.Centenario(02)	36.830	17.240	46.81%
Verdillo(06)-Los Cerezos(17)	85.809	58.590	68.28%
Los Cerezos(17)-Arenal(05)	57.490	41.310	71.86%
Verdillo(06)-P.Industrial (04)22kV	17.528	0.000	0.00%
Verdillo(06)-P.Industrial(04)	60.250	46.120	76.55%

4.8. Cargabilidad de Transformadores de Potencia con la Nueva Topología

Tabla 21: Cargabilidad de Transformadores de Potencia con la Nueva Topología.

Subestación EERCS						
Descripción	UBICACIÓN	TRAFO. DE POTENCIA	Demanda Máxima (MVA)	Demanda (MVA) Año 10	Cargabilidad %	
S/E 01	Luis Cordero	T011	3.760	2.460	65.43%	
0,201	Edio Gordoro	T012	10.000	5.190	51.90%	
S/E 02	Benigno Malo	T021	10.000	7.780	77.80%	
0/2 02	Defligito Malo	T022	10.000	7.090	70.90%	
S/E 03	Monay	T034	32.000	19.500	60.94%	
3/2 03	Worlay	T035	32.000	19.500	60.94%	
S/E 04	Visorey	T041	32.000	23.310	72.84%	
3/2 04	Visorey	T042	32.000	23.210	72.53%	
S/E 05	Arenal	T051	24.000	13.440	56.00%	
3/2 03	Alenai	T052	24.000	14.110	58.79%	
S/E 06	Verdillo	T061	24.000	7.860	32.75%	
S/E 07	Ricaurte	T071	24.000	13.000	54.17%	
3/20/	Ricaurte	T072	24.000	15.490	64.54%	
S/E 08	Turi	T081	24.000	12.255	51.06%	
3/E 00	Turi	T082	24.000	12.255	51.06%	
S/E 09	Guablincay	T091	10.000	4.030	40.30%	
S/E AZOGUES	Azogues	AAZ1	12.500	8.600	68.60%	
S/E AZOGUES	Azogues	AAZ2	10.000	4.280	42.80%	
S/E 12	Descanso GEN.	T121	20.000	0.000	0.00%	
3/E 12	Descanso	T122	10.000	6.590	65.90%	
	Descarso	T123	10.000	6.570	65.70%	
S/E 13	Chaullayacu	T131	24.000	11.860	49.42%	
S/E 14	Lentag	T141	10	6.25	62.50%	

UCUENCA

		T142	24	16.68	69.50%
S/E 15	Ayaloma	T151	24	17.02	70.92%
S/E 17	San Sebastian	T171	24	18.06	75.25%
S/E 18	Cañar	T181	10	2.48	24.80%
3,2 .0		T182	24	6.63	27.63%
S/E 21	Macas	T213	10	4.28	42.80%
9,22.	madas	T214	24	11.41	47.54%
S/E 22	Méndez	T221	10	6.34	63.40%
S/E 23	Limón	T231	6	2.34	39.00%

4.9. Pérdidas en el Sistema Eléctrico con la Nueva Topología

Tabla 22: Pérdidas en el Sistema Eléctrico con la Nueva Topología.

=====	======	======	=======	========
Brnch	From	То	Loss (I^2 * Z)
#	Bus	Bus	P (MW)	Q (MVAr)
1	2	5	0	0
2	28	23	0	0
3	11	10	0.164	0.453
4	90	59	0.535	0.679
5	8	9	0	0
6	6	44	0.535	0.784
7	6	45	0.524	0.757
8	1	87	0.049	0.096
9	5	28	0.077	0.252
10	5	28	0.078	0.261
11	2	49	0.241	0.723
12	2	59	0	0
13	63	66	0.001	0
14	9	65	0	0
15	38	78	0.246	0.47
16	55	38	0.046	0.148
17	32	31	0	0
18	109	87	0.001	0
19	107	109	0.006	0.009
20	10	105	0.001	0
21	21	19	0.002	0
22	21	19	0.002	0
23	23	55	0.098	0.313
24	12	107	0.057	0.113
25	69	90	0.042	0.81
26	30	32	0.034	0.061

27	49	30	0.042	0.148
28	99	30	0.326	0.514
29	29	17	0	0
30	49	72	0.103	0.192
31	78	82	0.135	0.261
32	17	15	0	0
33	18	15	0.018	0.035
34	59	63	0.003	0.009
35	65	59	0.003	0.009
36	72	65	0.015	0.044
37	95	49	0.026	0.087
38	100	95	0.003	0.009
39	95	99	0	0
40	90	6	0.03	0.104
41	55	82	0.23	0.827
42	19	54	0.033	0.104
43	45	110	0.255	0.488
44	110	38	0.13	0.47
45	44	45	0	0
46	43	29	0	0
47	44	30	0.144	0.514
48	43	18	0.032	0.061
49	14	11	0.037	0.488
50	13	11	0.017	0.279
51	69	67	0.037	0.496
52	69	68	0.037	0.496
53	15	16	0.003	0.061
54	15	16	0.012	0.122
55	19	20	0.013	0.2
56	19	20	0.043	0.418
57	100	101	0	0
58	100	102	0.045	0.696
59	71	70	0	0

60	87	88	0.04	0.714
61	99	96	0.084	0.862
62	99	97	0.084	0.862
63	99	98	0.084	0.862
64	105	103	0.009	0.122
65	103	104	0	0
66	105	104	0.019	0.331
67	107	106	0.032	0.296
68	109	108	0.004	0.044
69	7	8	0	0
70	63	62	0.02	0.444
71	65	64	0.005	0.113
72	10	12	0.003	0.131
73	1	3	0.018	0.479
74	3	2	0.047	0.496
75	3	4	0	0
76	21	22	0	0
77	23	24	0.037	0.348
78	24	21	0.03	0.47
79	24	25	0	0
80	23	26	0.011	0.366
81	26	22	0.01	0.139
82	26	27	0	0
83	30	33	0.05	0.461
84	33	29	0.043	0.418
85	33	34	0	0
86	30	35	0.033	0.192
87	35	29	0.027	0.409
88	35	36	0	0
89	38	39	0.01	0.383
90	39	37	0.01	0.157
91	39	40	0	0
92	38	41	0.013	0.409

93	41	37	0.01	0.157
94	41	42	0	0
95	44	46	0.014	0.287
96	46	43	0.011	0.148
97	46	47	0	0
98	49	50	0.029	0.801
99	50	48	0.024	0.383
100	50	51	0	0
101	49	52	0.032	0.444
102	52	48	0.027	0.453
103	52	53	0	0
104	55	56	0.018	0.366
105	56	54	0.015	0.548
106	56	57	0	0
107	59	60	0.003	0.087
108	60	58	0.003	0.044
109	60	61	0	0
110	72	73	0.008	0.235
111	73	70	0.007	0.104
112	73	74	0	0
113	72	75	0.008	0.218
114	75	70	0.007	0.122
115	75	76	0	0
116	78	79	0.031	0.67
117	79	77	0.026	0.34
118	79	80	0	0
119	82	83	0.008	0.2
120	83	81	0.006	0.104
121	83	84	0	0
122	82	85	0.018	0.592
123	85	81	0.015	0.226
124	85	86	0	0
125	110	112	0.003	0.183
-	•			·

126	112	111	0.003	0.078
127	112	113	0	0
128	90	91	0.001	0.035
129	91	89	0.001	0.017
130	91	92	0	0
131	90	93	0.003	0.096
132	93	89	0.003	0.035
133	93	94	0	0
134	114	55	0.199	0.492
135	116	114	0.003	0
136	115	114	0.018	0.644
137	117	116	0.003	0.113
138	110	118	0.003	0.183
139	118	111	0.003	0.078
140	118	119	0	0
		Total:	5.797	31.052
		Total		
		(MVA):	31.59	
		% Pérdidas	13.96%	

4.10. Cargabilidad de Líneas de Subtransmisión

Tabla 23 Resultados tensiones en los nodos.

CASOS DE ESTUDIO			Año 10	
Subest	NODO	Tensión	Ang	
#	Nombre	#	pu	deg
S/E 01	L. Cordero	15	1.016	-6.106
		16	1.038	-7.113
S/E 02	Centenario	19	0.982	-7.875
3/2 02		20	1	-9.204
S/E 03	Monay	22	1.024	-4.649
3/2 03		23	1.004	-3.059
S/E 04	P. Industrial	30	1.003	-3.444
		29	1.015	-5.848
S/E 05	Arenal	38	0.998	-3.939
3/2 05		37	1.012	-7.192
S/E 06	Verdillo	44	1.006	-3.151
0/L 00		43	1.022	-5.613
S/E 07	Ricaurte	49	1.002	-3.373
O/L 0/		48	0.999	-6.297
S/E 08	Turi	55	0.999	-3.692
0/L 00	Turi	54	0.989	-7.587
S/E 09	Guablincay	59	0.992	-4.426
0/2 00		58	0.989	-5.647
S/E AZOGUES 1	Azogues	63	0.991	-4.471
0/L A2000L0 1		62	1.007	-7.359
S/E AZOGUES 2	Azogues	65	0.992	-4.404
0.27.200202		64	1.013	-5.905
S/E 12	Descanso	71	0.992	-5.705

		70	0.992	-5.705
		72	0.995	-4.066
S/E 13	Chaullayacu	78	0.996	2205.618
0/L 13		77	1.02	2205.622
S/E 14	Lentag	82	0.978	-6.011
3/2 14		81	0.996	-7.569
S/E 15	Ayaloma	87	1.012	-0.415
3/2 10		88	1.008	-2.665
S/E 18	Cañar	90	1.005	-3.118
3/2 10		89	1.005	-3.842
S/E 19	Corpanche	95	1.003	-3.231
S/E 21	Macas	105	1.006	-0.424
		104	1	-1.703
S/E 22	Méndez	107	1.011	-0.701
0.2.22		106	1.003	-2.266
S/E 23	Limón	109	1.012	-0.645
3/L 23		108	1.007	-1.411
S/E CUENCA	CUENCA	1	1.014	0.000*
0,2 002,10,1		2	1.007	-2.707
S/E SYNINCAY	SYNINCAY	6	1.016	-2.258*
S/E 17	LOS CEREZOS	110	1.002	-3.544
<u> </u>		111	1.002	-3.565