

RESUMEN

Introducción: La glándula tiroides es un órgano productor de hormonas que desempeñan un papel importante en el metabolismo. La clasificación TIRADS (Thyroid Imaging Reporting and Data Sistem) agrupa los patrones ecográficos para caracterizar de mejor manera entre nódulos benignos y malignos, esto supone una mejor selección de los pacientes que necesiten estudios de citología y cirugía.

Objetivos: Validar la clasificación ecográfica – TIRADS en los pacientes con patología tiroidea que acuden al Servicio de ecografía para valoración de glándula tiroides en Cuenca- Ecuador.

Materiales y métodos: Este estudio de validación de prueba diagnóstica, analizó la patología tiroidea por medio de la ecografía en relación con la citología como prueba de oro con técnica Punción aspiración con aguja fina.

Resultados: se estudiaron a 860 pacientes, de los cuáles 710 fueron mujeres y 150 hombres. Los valores de validación en este estudio fueron: sensibilidad 97.87%, especificidad 72.32%, valor predictivo positivo 30.26%, valor predictivo negativo 99.64%, test de Youden0.70, razón de verosimilitud positiva de 3.54 y razón de verosimilitud negativa de 0.03.

Conclusiones: La clasificación TIRADS es un método con alta sensibilidad que puede ser utilizado en los servicios de Imagenología de los hospitales estudiados.

PALABRAS CLAVE: Enfermedades de la tiroides-diagnóstico; Ultrasonografía-clasificación; Ultrasonografía-utilización; Valor Predictivo de las Pruebas; Sensibilidad y especificidad.

ABSTRACT

Introduction: The thyroid gland is an organ producing hormones that play an important role in metabolism. The classification TIRADS (Thyroid Imaging Reporting and Data System) brings sonographic patterns to characterize in a better way between benign and malignant nodules, this means a better selection of patients who need surgery and cytology studies.

Objectives: To validate the ultrasound classification - TIRADS in patients with thyroid disease who go to ultrasound for evaluation of thyroid gland in Cuenca, Ecuador.

Materials and methods: This validation study of diagnostic test, thyroid disease analyzed by sonography in relation to cytology as a gold with technical fine needle aspiration.

Results: We studied 860 patients, of whom 710 were women and 150 men. Validation values in this study were: sensitivity 97.87%, specificity 72.32%, 30.26% positive predictive value, negative predictive value 99.64%, Youden0.70 test, positive likelihood ratio of 3.54 and negative likelihood ratio of 0.03.

Conclusions: TIRADS classification is a highly sensitive method that can be used in services the hospitals Imaging studied.

KEYWORDS: Thyroid Diseases-diagnosis; Ultrasonography-classification; Ultrasonography-utilization; Predictive Value of Tests; Sensitivity and Specificity.

TABLA DE CONTENIDO

RESUMEN	1
ABSTRACT	2
INTRODUCCIÓN	9
PLANTEAMIENTO DEL PROBLEMA	11
JUSTIFICACIÓN	13
MARCO TEÓRICO	14
ECOGRAFÍA TIROIDEA	19
PATOLOGÍA DELA GLÁNDULA TIROIDES	20
Tirotoxicosis	20
Bocio difuso no tóxico (simple)	21
Neoplasias benignas	22
Cáncer de tiroides	22
Cáncer Papilar	22
Cáncer Folicular	23
Cáncer anaplásico de tiroides	23
Linfoma tiroideo	23
Carcinoma medular de tiroides	23
Nódulo tiroideo	24
Clasificación de TIRADS:	25
General:	44
Específicos:	44
DISEÑO METODOLÓGICO	45
CONCLUSIONES	59
RECOMENDACIONES	61
REFERENCIAS BIBLIOGRAFICAS	62

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, Md. Netty Paola Guevara Galarza, autora de la tesis "VALIDACIÓN ECOGRÁFICA – TIRADS EN PACIENTES CON PATOLOGÍA TIROIDEA. HOSPITAL VICENTE CORRAL MOSCOSO Y HOSPITAL JOSÉ CARRASCO ARTEAGA.CUENCA, 2012.", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Especialista en Imagenología. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autora.

Cuenca, Febrero del 2013

Md. Netty Pabla Guevara Galarza

Cl. 1803570645

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

UNIVERSIDAD DE CUENCA

Fundada en 1867

Yo, Md. Netty Paola Guevara Galarza, autor de la tesis "VALIDACIÓN ECOGRÁFICA – TIRADS EN PACIENTES CON PATOLOGÍA TIROIDEA. HOSPITAL VICENTE CORRAL MOSCOSO Y HOSPITAL JOSÉ CARRASCO ARTEAGA, CUENCA, 2012.", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, Febrero del 2013

Md. Netty Paola Guevara Galarza Cl. 1803570645

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Cludadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

UNIVERSIDAD DE CUENCA FACULTAD DE CIENCIAS MÉDICAS POSTGRADO DE IMAGENOLOGÍA

VALIDACIÓN ECOGRÁFICA – TIRADS EN PACIENTES CON PATOLOGÍA TIROIDEA. HOSPITAL VICENTE CORRAL MOSCOSO Y HOSPITAL JOSÉ CARRASCO ARTEAGA.CUENCA, 2012.

TESIS DE GRADO PREVIA A LA OBTENCIÓN DE TÍTULO ESPECIALISTA EN IMAGENOLOGÍA

AUTORA: MD. NETTY PAOLA GUEVARA GALARZA

DIRECTOR: DR. LUIS TIGSI.

ASESOR: DR. JAIME MORALES

CUENCA, 2013

DEDICATORIA

A mi abuelita "Mamá Maruja", es la principal fuente de inspiración para la elaboración de este estudio y para seguir adelante en mis proyectos de vida.

A mis padres por su apoyo.

LA AUTORA

AGRADECIMIENTO

A las autoridades del servicio de Imagenología del hospital Vicente Corral Moscoso y Hospital José Carrasco Arteaga por permitirme adquirir los conocimientos en la materia y a las áreas de Patología de estos hospitales por brindarme su colaboración.

A mis amigas Adriana, Valeria, Gislaine, Tatiana, por su apoyo ilimitadoen los años de mi post grado.

A Ángel Romo, por apoyarme y no dejarme caer.

LA AUTORA

INTRODUCCIÓN

La tiroides es un órgano glandular que se localiza en la región antero inferior del cuello, y puede ser el asiento de múltiples lesiones tanto benignas o malignas. La patología de la glándula tiroides es un problema en la salud pública, creando expectativas tanto para la población en general como para el médico en el interés del conocimiento precoz de enfermedades tiroideas y su adecuado tratamiento.

El uso de la ecografía para el diagnóstico de lesiones tiroideas ha sido muy útil por su rapidez, la ausencia de radiación ionizante, y su bajo costo, además, nos permite caracterizar la lesión como sólida, quística, hipervascular o invasiva. La citología tomada por punción aspiración con aguja fina (PAAF) es el mejor método para conocer si la lesión es benigna o maligna. El uso combinado de la ecografía más la punción aspiración aguja fina incrementan la sensibilidad y especificidad en el diagnóstico de malignidad, la PAAF dirigida por ecografía disminuye el rango de aspiraciones no diagnósticas, mejorando la precisión de punción del sitio de la lesión (37, 39).

Horwarth et al., en el año 2008, realizaron una publicación en donde categorizan los nódulos tiroideos de acuerdo a ciertos patrones ecográficos que permite caracterizar una lesión de la glándula tiroidea como benigna o maligna, otorgando una herramienta importante para conocer el manejo de los pacientes, si requieren seguimiento clínico, realización de PAAF o tratamiento quirúrgico; esto hace una mejor selección del paciente para manejos posteriores, evitando los procedimientos innecesarios, además de realizar un intento de unificación de lenguaje entre radiólogos, internistas, endocrinólogos y cirujanos (17, 37, 39, 42).

El presente estudio pretende validar la clasificación TIRADS(Thyroid Imaging Reporting and Data Sistem)en los pacientes que presentan lesiones de la glándula tiroidea detectada por ecografía y relacionarlas con citología obtenida con técnica de punción aspiración aguja fina, tomando en cuenta la importancia

que tiene un diagnóstico adecuado para el manejo del paciente y anhelando que sea una base para futuras investigaciones.

PLANTEAMIENTO DEL PROBLEMA

El nódulotiroideoes detectado por ecografía en un 19-67% en individuos estudiados al azar, es una zona de agrandamiento o desorganización localizada en la glándula tiroides, éstos nódulos se asocian a diversas patologías como quistes simples y hemorrágicos, bocio nodular, tiroiditis, adenomas, carcinomas tiroideos, linfomas, sarcomas, metástasis⁽³⁾.

El ultrasonido además de ser una técnica simple, de bajo costo, rápida y sin dosificación de radiación, determina si un nódulo es tiroideo o extratiroideo y las características ecográficas que pueden establecerla diferencia entre nódulos tiroideos benignos y malignos^(2, 3).

La citología tomada por Punción aspiración con aguja fina (PAAF) es un método invasivo de elección para diferenciar entre nódulos benignos y malignos^(3,42), tiene una sensibilidad del 65-98%, y especificidad del 72-100%. Es utilizada para tomar una muestra de la glándula tiroides y estudiar la citología. Con el uso ecográfico para la caracterización de los nódulos y como guía para la punción, mejora el diagnóstico, beneficiando al paciente por su precisión ⁽¹⁷⁾.

Horwarth et al., estadificaron ciertos patrones ecográficos de la glándula tiroides para la evaluación de lesiones benignas y malignas, denominado TIRADS, con una sensibilidad del 88%, especificidad de 49%, valor predictivo negativo 88%, valor predictivo positivo 49%⁽³⁹⁾. Esta clasificación ayuda a disminuir las punciones innecesarias cuando existe la presencia de lesiones caracterizadas como benignas por ecografía según esta clasificación.

A pesar de conocer las particularidades ecográficas de tipo benigna y maligna de una lesión tiroidea, actualmente no existe un protocolo definido en los hospitales para la realización de punciones tiroideas, lo que dificulta la optimización de recursos materiales y humanos, es por esto que se pretende validar los patrones ecográficos de acuerdo a la clasificación TIRADS que permite estudiar las particularidades ecográficas de la glándula tiroides como las lesiones benignas o

malignas y relacionarlas con el estudio de citología tomada con técnica punción aspiración con aguja fina, para conocer si realmente se puede aceptar esta clasificación en nuestros hospitales, beneficiando así al seguimiento de nuestros pacientes.

En base a lo indicado se plantean las siguientes preguntas:

- ¿Cuál es la capacidad diagnóstica de la clasificación TIRADS en los pacientes estudiados en los hospitales Vicente Corral Moscoso y José Carrasco Arteaga de la ciudad de Cuenca - Ecuador?
- ¿Cuál es la sensibilidad, especificidad, valor predictivo positivo, valor predictivo negativo, índice de Youdem, razón de verosimilitud negativo y razón verosimilitud positivo de la clasificación TIRADS?
- ¿Qué validez tiene la clasificación TIRADS para la glándula tiroides?
- ¿Cuáles son las características generales de los pacientes según nuestro estudio?

JUSTIFICACIÓN

Estudios epidemiológicos muestran la prevalencia de nódulos tiroideos palpables en aproximadamente 5% en mujeres y 1% en hombres que habitan en áreas con suficiente yodo, sin embargo el ultrasonido de alta resolución puede detectar nódulos tiroideos en 19-67% de individuos elegidos al azar, con elevada frecuencia en mujeres⁽⁴²⁾.

En más del 80% los nódulos tiroideos son de naturaleza benigna y la mayoría corresponde a nódulos coloideos. Su punción indiscriminada aumenta costos y genera ansiedad a los pacientes ⁽⁴²⁾.

La constante mejoría de las técnicas de imágenes como el ultrasonido para la guía procedimientos, acompañado por avances en técnicas anatomopatológicas ha logrado un mejoramiento continuo de la efectividad y seguridad en el diagnóstico de las lesiones de la glándula tiroides⁽⁴²⁾.

La clasificación TIRADS, tomando como modelo la sistematización BIRADS en patología mamaria, propone agrupar las características ecográficas de las lesiones tiroideas con un porcentaje propio de malignidad, esto disminuiría la necesidad de punciones de nódulos benignos⁽³⁹⁾.

Esta clasificación propone una mejor selección de los nódulos tiroideos lo que unifica el lenguaje entre especialistas mejorando el manejo del paciente, sin embargo al ser una estandarización nueva existe poca bibliografía sobre su validez^(17, 39).

MARCO TEÓRICO

TIROIDES.- ANATOMÍA

La glándula tiroides se desarrolla a partir del suelo de la faringe primitiva en la tercera semana de gestación, se dirige por el conducto tirogloso para alcanzar su ubicación definitiva a la séptima semana, la producción de hormonas empieza a las 11 semanas de gestación⁽¹⁾.

Éste órgano, de secreción interna, está ubicada en la región antero inferior del cuello, anterior a los primeros cartílagos de la tráquea y a las partes laterales de la laringe, en la región infrahioidea, es de color pardo rojizo y de consistencia blanda^(2, 3, 4, 5, 6).

El volumen de la glándula tiroides varía en hombres y mujeres, su tamaño y fisiología puede relacionarse con el envejecimiento⁽⁷⁾. Su peso medio es de 12 a 20 gramos, se reconocen dos lóbulos, derecho e izquierdo unidos por un istmo que mide de 4 a 6 mm en sentido anteroposterior. En el adulto la glándula tiroides mide 40 a 60 mm en sentido longitudinal, el diámetro anteroposterior es de 13 a 18 mm^(2, 3, 4).

En los lóbulos laterales de la tiroides se reconocen 5 caras: antero externa, interna, posterior, base y vértice^(13, 14,16).La cara antero externa está recubierta por la aponeurosis anterior y los músculos infrahioideos, de la misma manera que el istmo. La cara interna se halla en relación con los cinco o seis primeros anillos traqueales, con el cartílago tiroideo y con la cara lateral del cricoides. Esta cara contacta en profundidad con el esófago, la faringe y los nervios recurrentes. El paquete vásculonervioso se relaciona con la cara posterior. La base está relacionada con los vasos tiroideos ^(3,4,8).

En el borde superior del itsmo se puede observar en autopsias una prolongación de tejido tiroideo inconstante llamado lóbulo piramidal de Lalouette^(3, 4,8).

La tiroides se encuentra irrigada por las arterias superiores (rama de la carótida externa) e inferiores (rama del tronco tirocervical) y la arteria Ima (procedente de la arteria braquiocefálica o del cayado aórtico), las venas a nivel de su superficie forma un plexo tiroideo de donde parten las venas tiroideas superiores, tiroideas medias y las inferiores (figura 1)^(3,4,8).

Los nervios proceden de los nervios laríngeos recurrentes que se origina del nervio vago y se ubica en el ángulo formado entre la tráquea, el esófago y el lóbulo tiroideo que atraviesan los bordes laterales de la glándula. Próximo a este nervio se encuentra la glándula paratiroidea inferior^(3, 4).

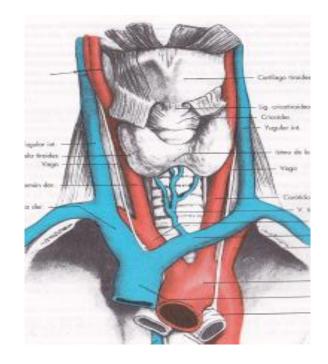
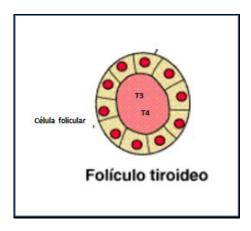


Figura 1. Anatomía de la glándula tiroides


Fuente. Rouviere H. Anatomía Humana, descriptiva, topográfica y funcional (4).

Histológicamente está cubierta por una cápsula de tejido conectivo y una cápsula verdadera del que parten prolongaciones en forma de tabiques y la dividen en lóbulos y lobulillos poco precisos; el folículo es la unidad estructural de la glándula

tiroides, compuestos por células foliculares tiroideas que rodean una sustancia coloidea que a vez contiene grandes cantidades de tiroglobulina (Figura 2)^(1,3).

Figura 2. Histología de la glándula tiroides

Kasper, D. Braunwal, E. Hauser, S. Fauci, A Longo, D. Jameson, J. et al. Harrison Principios de Medicina interna. 16 a ed. Madrid: Mc Graw Hill; 2002 (1).

Niveles del cuello

Es importante conocer la situación de la glándula tiroides y de sus órganos adyacentes como el sistema linfático por la sintomatología que puede provocar cuando existe patología, específicamente metástasis primarias de la glándula tiroides, para este propósito citaremos los niveles del cuello (Figura 3).

Los vasos linfáticos superiores laterales e inferiores laterales drenan a los nódulos linfáticos cervicales laterales profundos, los superiores alcanzan los nódulos linfáticos retrofaríngeos, y los inferiores van a los ganglios pre laríngeos y pre traqueales^(3, 4, 8).

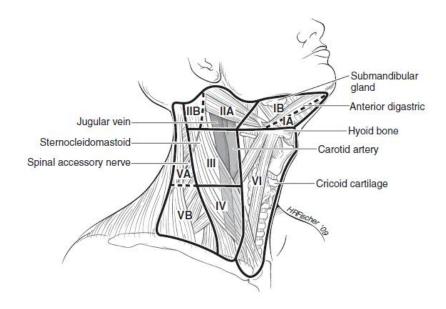
Nivel I.- Región submentoniana, limitada por el hueso hiodeo y el milohioideo, se subdivide en la localizado entre los vientres anteriores del músculo digástrico y lb que está posterolateral al nivel 1 a (9,10, 11).

Nivel II.- Submandibular, localizados junto al borde inferior del músculo omohioideo, posterior a la glándula submaxilar y anterior al músculo

esternocleidomastoideo y por tanto del bulbo carotídeo hasta el itsmo tiroideo, este nivel podría ser dividido en lla que bordea la vena yugular interna y llb que es posterior a la vena yugular interna^(9,10,11).

Nivel III.- Se extiende desde el borde inferior del cartílago cricoides anterior al esternocleidomastoideo y bulbo carotídeo hasta el itsmo carotídeo (9,10,11).

Nivel IV.- Son los ganglios linfáticos que se distribuyen desde el borde inferior del cartílago cricoides hasta la clavícula y de la línea mediana anterior hasta el margen anterior del músculo esternocleidomastoideo^(9,10, 11).


Nivel V.- Posterior al esternocleidomastoideo, desde la base del cráneo hasta la clavícula. Éste puede ser subdividido en Va, que va de la base del cráneo hasta el cartílago cricoides y Vb desde el cartílago cricoides a la clavícula (9,10,11).

Nivel VI.- Localizado entre las carótidas, desde el hueso hioides al manubrio esternal (9,10, 11).

Nivel VII.-Localizado entre las carótidas por debajo del borde del manubrio^(9,10,11). A la altura de la clavícula lateral a la carótida común se observan los linfáticos supraclaviculares, y los linfáticos retrofaríngeos localizados medial a las carótidas internas^(9,11).

Figura 3. Compartimento de los nódulos linfáticos del cuello por niveles

Fuente. Sipos, J. Advances in Ultrasound for the Diagnosis and Management of Thyroid Cancer (9).

FISIOLOGÍA

La glándula tiroides produce hormonas que desempeñan un papel importante en la regulación de la homeostasis corporal, como en el sistema cardiovascular, corazón, piel, temperatura, crecimiento, metabolismo⁽¹²⁾.La hormona estimulante de tiroxina(TSH) es secretada por la adenohipófisis en las células tirotropas, la hormona reguladora de TSH (TRH)hipotalámica induce la producción de TSH, que estimulan la síntesis y secreción de las hormonas tiroideastriyodotiroxina (T3) y tetrayodotiroxina (T4)⁽¹³⁾, estas dos últimas derivan de unas glucoproteínas yodadas de gran tamaño⁽¹⁾.

Para la síntesis de hormonas tiroideas el yodo es un micronutriente importante^(14, 15, 16). El I ingerido se une a las proteínas del suero en especial a la albúmina, es llevado hacia la glándula tiroides, la captación de I esta mediada por los simportadoresNa/I localizados en la membrana de las células foliculares, el yoduro con la participación de la TPO y peróxido de hidrógeno se organifica para posteriormente acoplarse a las yodotirosinas de la tiroglobulina formándose T3 y T4 ⁽¹⁾.

En el torrente sanguíneo circula con mayor concentración la T4 que la T3, pero lo hace con mayor afinidad a las proteínas como albúmina, transtiretina y globulina de unión a la tiroxina, provocando niveles más concentrados de T3 libre, solo la hormona libre es biológicamente disponible para los tejidos ⁽¹⁾. La T4 se puede convertir en T3 por las desyodinasas⁽¹⁾. Las hormonas tiroideas se unen a los receptores de la hormona tiroides alfa y beta que son receptores de las hormonas tiroideas expresados en la mayor parte de los diferentes tejidos del organismo⁽¹⁾.

ECOGRAFÍA TIROIDEA

La ecografía se basa en el principio de transmisión y reflexión de un sonido a través de un medio, para desarrollar un diagnóstico ecográfico; una fuente de vibración por medio de un transductor, es puesto en la superficie de la piel, estas vibraciones se llaman ondas sonográficas y se mueven a través de los tejidos que

son reflejados de acuerdo a su densidad, es un método seguro por no tener emisión de radiaciones^(2, 17, 18, 19).

La glándula tiroides al estudio ecográfico es de ecogenicidad homogénea media a alta, a menudo se observa una capa hiperecogénicalisa y homogénea que rodea la misma^(2, 3, 5, 8).

PATOLOGÍA DELA GLÁNDULA TIROIDES

Existen varias enfermedades que se deben a la sobreproducción o subproducción de hormonas tiroideas (1,3).

El déficit de yodo es la causa más frecuente de hipotiroidismo en el mundo y nuestro país no es la excepción⁽⁵⁾.

De acuerdo al informe de la OMS en la 60^a Asamblea Mundial de la Salud en mayo del 2007, alrededor del 31% de la población mundial (2 billones de personas) aún se mantienen con una ingesta insuficiente de yodo^(16, 20).

El hipotiroidismo inmunitario o tiroiditis de Hashimoto afecta a cuatro por mil mujeres y uno por mil varones, es más frecuente en la población japonesa probablemente por causas genéticas o alta dieta de yodo⁽¹⁾. Otras causas de hipotiroidismo son la administración de algunos fármacos como la amiodarona, litio, interferón alfa ⁽¹⁾.Las enfermedades psiquiátricas han sido asociadas con alteración de estas hormonas en los pacientes ⁽²¹⁾.

Tirotoxicosis

La tirotoxicosis es el exceso de hormonas tiroideas que puede causar hipertiroidismo, entre las enfermedades más frecuentes tenemos: La enfermedad de Graves, bocio multinodular tóxico y adenoma tóxico⁽¹⁾.

La tiroiditis aguda es un proceso poco frecuente debido a la infección supurativa de la glándula tiroides⁽¹⁾.

La tiroiditis sub aguda o tiroiditis De Quervain se ha relacionado a numerosos virus. La incidencia máxima ocurre entre 30 y 50 años de edad, la incidencia en las mujeres es tres veces superior a los hombres ⁽¹⁾.

La tiroiditis indolora, o tiroiditis "silenciosa", aparece en pacientes con enfermedad tiroidea autoinmunitaria subyacente. El trastorno es tres veces más frecuente en mujeres con diabetes mellitus del tipo 1 o durante la gestación ^(1, 22).

La tiroiditis por medio de la ecografía se puede observar como aumento o no del tamaño glandular, con ecogenicidad disminuida por edema o puede tener una presentación de ecogenicidad heterogénea⁽³⁾. En una tiroiditis bacteriana se hallará por ultrasonido una imagen hipoecogénica o anecogénica de bordes irregulares mal delimitados conecos en su interior para lo cual es necesario su diagnóstico histopatológico ⁽³⁾. En la tiroiditis de Quervain se podría revelar alteraciones focales en la ecogenicidad.

Bocio difuso no tóxico (simple)

Es un aumento de tamaño difuso de la glándula tiroides en ausencia de hipertiroidismo. El bocio difuso en todo el mundo se debe con mayor frecuencia al déficit de yodo y recibe el nombre de bocio endémico. En general, el bocio es más frecuente en las mujeres que en los varones, probablemente por la mayor prevalencia de enfermedad autoinmunitaria subyacente y el aumento de las necesidades de yodo asociado a la gestación ⁽¹⁾.

Ecográficamente se puede observar una glándula incrementada de tamaño con lesiones de bordes isoecogénicos, con halo hipoecogénico, se han observado ecogenicidades altas en el bocio difuso ⁽²⁷⁾, además de encontrar necrosis, quistes simples o mixtos ⁽³⁾.

Neoplasias benignas

Estas lesiones son frecuentes (5 a 10% de los adultos) y a menudo múltiples, especialmente cuando se valoran mediante técnicas sensibles como la ecografía. (1)

Cáncer de tiroides

El carcinoma de la glándula tiroides es la neoplasia maligna más frecuente del sistema endocrino^(1, 18).

La incidencia de cáncer de la glándula tiroides (casi 9/100 000 por año) aumenta con la edad y alcanza una meseta después de los 50 años aproximadamente. El cáncer de tiroides en sujetos jóvenes (<20 años) o ancianos (>65 años) tiene peor pronóstico. El cáncer de tiroides es tres veces más frecuente en las mujeres que en los hombres⁽²³⁾, pero en el sexo masculino el pronóstico es menos favorable⁽¹⁾.La exposición a la radiación aumenta el riesgo de nódulos tiroideos benignos y malignos^(1, 24, 25, 26, 27, 28, 29, 30, 31). Los cánceres de tiroides no son raros en la enfermedad de Graves⁽³²⁾.

Cáncer Papilar

Es la forma más común del cáncer de la glándula tiroides^(33, 34). Constituye el 70 a 90% de los tumores malignos bien diferenciados, suele ser multifocal e invadir localmente la glándula tiroidea y extenderse a través de la cápsula tiroidea invadiendo las estructuras adyacentes del cuello⁽¹⁾, tiene un pronóstico favorable si su diagnóstico es temprano⁽³⁵⁾. En la ecografía se observa una masa sólida hipoecogénica con pequeños focos ecogénicos con calcificaciones, al estudio doppler es hipervascular y puede provocar metástasis hacia los ganglios cervicales en estadíos tardíos^(2, 3, 36, 37).

Cáncer Folicular

Es más frecuente en las regiones con déficit de yodo⁽¹⁾. La ecografía puede demostrar márgenes tumorales irregulares, con halo irregular y grueso, además de hipervascularidad tortuosa en su interior ^(2, 3, 29, 34).

Cáncer anaplásico de tiroides

Es un cáncer agresivo poco diferenciado. El pronóstico es desfavorable y la mayoría de los pacientes fallece a los seis meses posteriores al diagnóstico. Se puede observar por ecografía masas hipoecogénicas, invasión de estructuras vasculares y musculares^(1,2).

Linfoma tiroideo

A menudo se origina de una tiroiditis de Hashimoto. Una masa tiroidea de expansión rápida debe hacer sospechar este diagnóstico⁽¹⁾. Se puede identificar por ecografía como una masa lobulada, hipoecogénica, con necrosis avascular y encapsulación tumoral de estructuras vasculares adyacentes⁽²⁾.

Carcinoma medular de tiroides

Es un tumor neuroendócrino de crecimiento lento originado de las células parafoliculares C ⁽³⁸⁾. Puede ser esporádico o familiar y representa cerca de 5 a 10% de los cánceres de tiroides. Presenta una incidencia familiar y es componente de los síndromes de neoplasia endócrina múltiple^(1, 2, 39). Ecográficamente es similar al carcinoma papilar; la invasión regional y metástasis ganglionares son frecuentes⁽²⁾.

Nódulo tiroideo

Un nódulo tiroideo es un agrandamiento difuso o focal de la glándula tiroides. Los nódulos son más frecuentes en las regiones con déficit de yodo, en las mujeres y con el envejecimiento. Existen métodos de detección de mayor sensibilidad, como la ecografía tiroidea. La ecografía de la glándula tiroides detecta hasta el 67% de nódulos tiroideos no palpables⁽³⁹⁾. Estos hallazgos han suscitado numerosos debates en torno a la cuestión de cómo detectar los nódulos y cuáles de ellos deben estudiarse con mayor detenimiento. El estudio citológico tiene una buena sensibilidad y especificidad cuando la realizan médicos familiarizados con este procedimiento. La diferenciación entre lesiones foliculares benignas y malignas no siempre es posible utilizando exclusivamente la citología^(1,39).

En diversos estudios a gran escala, las citologías con PAAF han proporcionado los siguientes hallazgos:70% benignas; 10% malignas o posiblemente malignas; y 20% no diagnósticas o material insuficiente para el diagnóstico⁽¹⁾, se puede realizar una técnica con no aspiración⁽⁴⁰⁾.

La ecografía se utiliza cada vez con mayor frecuencia para las biopsias iniciales en un intento de potenciar la localización de los nódulos y la exactitud de la toma de muestras.

La evaluación de un nódulo tiroideo provoca estrés a la mayoría de los pacientes. Aunque no lo verbalicen, les preocupa la posibilidad de que se trate de un cáncer de la glándula tiroides⁽³⁹⁾.

La ecografía de la glándula tiroides es usado para confirmar la presencia o ausencia del nódulo tiroideo detectado por la palpación, identifica los nódulos adicionales y mide el tamaño de ellos, también puede evaluar su composición por medio de la ecogenicidad^(1, 2,17).

Dada la alta prevalencia de nódulos tiroideos en la población general la ecografía no debe ser usada como una herramienta de screening en pacientes que no tengan riesgo de cáncer de la glándula tiroides (17).

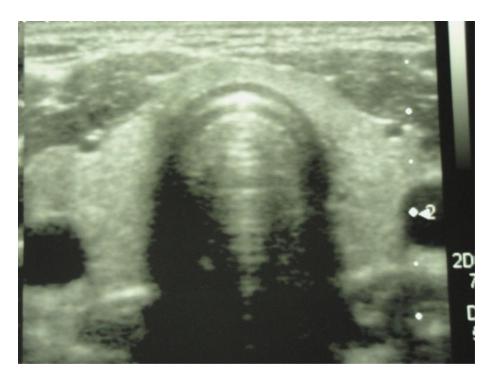
Kim orienta la malignidad de una lesión tiroidea de acuerdo a las características ecográficas como tamaño contorno, presencia o ausencia de cápsula, ecogenicidad, vascularidad y microcalcificaciones⁽¹⁷⁾.

CLASIFICACIÓN TIRADS

En el año 2008, Horwarth et al., en un intento por estadificar los nódulos tiroideos y siguiendo el patrón BIRADS de patología mamaria, diseñaron el sistema TIRADS (Thyroid Imaging Reporting and Data Sistem) que se basa en la asociación de varios criterios ecográficos de la glándula tiroides como estructura de nódulo, ecogenicidad de la lesión con relación al parénquima subyacente, forma, márgenes, transmisión del sonido, presencia de halo hipoecogénico y el uso del doppler color ^(3, 17, 41).

Clasificación de TIRADS:

- 1.- Glándula normal 0% de malignidad. No requiere seguimiento (39).
- 2.-Lesión benigna 0% de malignidad. Control anual⁽³⁹⁾.
- 3.- Nódulo probablemente benigno, 5% de malignidad. Control a los 6 meses y/o PAAF⁽³⁹⁾.
- 4.- Nódulo sospechoso hasta el 80% de malignidad. Requiere PAAF⁽³⁹⁾.
 - 4 a.- Malignidad entre el 5 y 10%. Es necesario realizar PAAF para su diagnóstico⁽³⁹⁾.
 - 4d.- Malignidad entre el 10 y 80%⁽³⁹⁾.
- 5.- Lesión probablemente maligna en más del 80%. Pueden ser de tipo b y c⁽³⁹⁾.
- 6.- Lesión maligna comprobada, 100% de malignidad⁽³⁹⁾.



Horwarthet al., realizaron un estudio prospectivo en 1959 lesiones tiroideas en tres estadíos, en el tercer estadío se estudiaron 1097 nódulos, de los cuales 703 fueron nódulos benignos,238 son lesiones foliculares y 156 nódulos correspondieron a carcinomas. La sensibilidad fue de 88%, especificidad de 49%, valor predictivo positivo de 49% y valor predictivo negativo 94%⁽³⁹⁾.

Las características ecográficas de la clasificación TIRADS se realiza de la siguiente manera:

TIRADS 1.- Glándula tiroidea normal sin lesiones focales, su control ecográfico se realiza de acuerdo a los análisis clínicos y de laboratorio que presenten los pacientes⁽³⁹⁾.

Figura 4. Ecografía de la glándula tiroides de aspecto normal, TIRADS 1.

Fuente. La autora

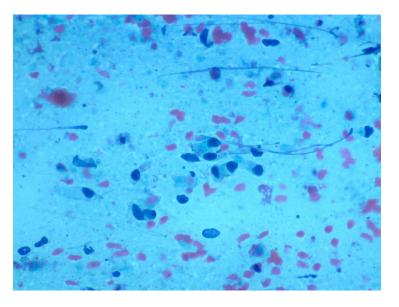


Figura 5: Citología normal de la glándula tiroides.

Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso

TIRADS 2.- Abarca las lesiones como nódulos coloideos tipo 1 y tipo 2, tiroiditis de Hashimoto, tiroiditis de Quervain, Graves Basedow, nódulos totalmente calcificados, nódulo benigno ya punzado en seguimiento y nódulos coloides fibrosos luego de una punción.

El nódulo coloide tipo 1 son lesiones anecogénicas bien delimitadas con puntos hipercogénicos en su interior denominados spots, son patognomónicos de lesión benigna, además se presentan con ausencia de flujos al doppler en su interior, esta lesión se puede confundir con un cáncer papilar por las calcificaciones sin embargo los spots se encuentran en la parte líquida del nódulo y las microcalcificaciones del cáncer papilar en la parte sólida del tumor^(39,40,41).

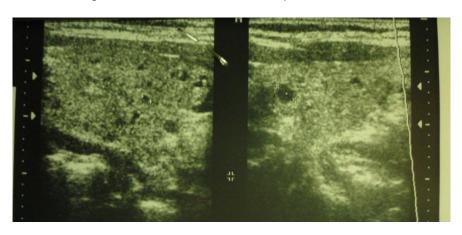


Figura 6. Quistes coloideos tipo, TIRADS 2.

Fuente. La autora

El nódulo coloide tipo 2 son imágenes quísticas con un patrón reticulado, llamado también nódulo espongiforme, estas lesiones se pueden observar hipervasculares, no deforman a la glándula a pesar de su tamaño y no poseen cápsula⁽⁴²⁾. La principal complicación que tiene es la hemorragia que se manifiesta con dolor⁽⁴¹⁾.

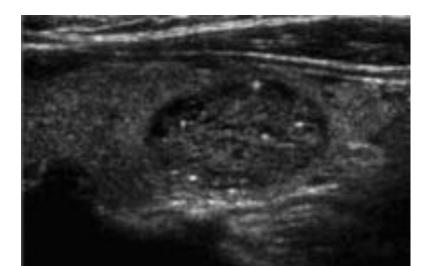


Figura 7. Quistes tiroideos coloides tipo 2. TIRADS 2.

Fuente. Horvath, E. Majlis, S. Rossi, R. Franco, C. Niedmann, J. Castro, A. et al. An Ultrasonogram Reporting System for Thyroid Nodules Stratifying Cancer Risk for Clinical Management. J.Clin. Endocrinol. Metab. 2009⁽³⁹⁾.

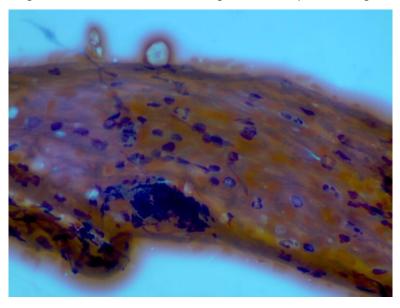
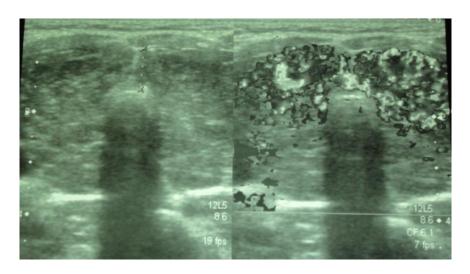


Figura 8. Quiste coloideo diagnosticado por citología.

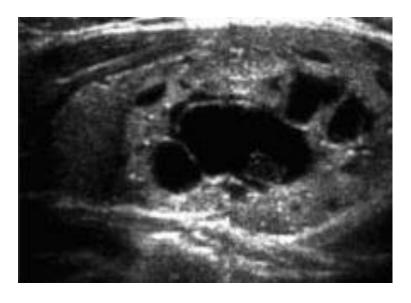
Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso


La tiroiditis de Hashimoto tiene una fase de hipertiroidismo seguido de una fase de hipotiroidismo, es la segunda causa de hipotiroidismo en la actualidad, se presenta con un patrón heterogéneo pseudonodular, de ecogenicidad disminuida parecida a la ecogenicidad de los músculos peritiroideos, su superficie es lobulada, hipervascular a los flujos doppler color, es más notorio al inicio de la enfermedad y disminuye a medida que progresa el proceso, el aspecto pseudonodular se debe a la fibrosis, puede acompañarse de linfonódulos de tipo inflamatorio en la glándula y en el itsmo^(13, 33, 43).

La tiroiditis de Quervain es de tipo estacional predomina en la mujeres produce dolor hipotiroidismo⁽¹⁾, la recuperación de glándula es de 2 a 6 meses, ecográficamente se observa focos hipoecogénicos mal definidos de bordes difuminados con tejido tiroideo normal adyacente que puede comprometer la totalidad de la glándula, el doppler inicialmente es bajo, posteriormente su vascularidad central está incrementada(infierno tiroideo), al doppler espectral la velocidad sistólica incrementa los 100cm/seg, llegando inclusive a los 180 cm/seg, se puede detectar adenitis y periadenitis, por el incremento de la ecogenidad de la glándula, a los pocos meses este proceso desaparece la tiroides se puede presentar normal o atrofiado por fibrosis, esta fibrosis está en los dos tercios

superiores o dos tercios inferiores de la glándula tiroides y se presentan como focos hipoecogénicos de bordes irregulares^(3, 39, 41).

Figura 9. Ecografía tiroidea con incremento de su tamaño e hipervascularidad de forma difusa (tormenta tiroidea), TIRADS 2.


Fuente. La autora

TIRADS 3.-Se refiere a los nódulos coloideos mixtos tipo 3, lesiones que miden desde 2 a 3 cm, pseudonódulos de Hashimoto y los nódulos con calcificación periférica^(39, 40, 41).

Los nódulos coloideos tipo 3 no poseen cápsula, desplazan al tejido adyacente, deforman el sector donde se alojan, presentan vascularidad en la porción sólida, el sector sólido es isoecogénico respecto al resto de la glándula, en la porción líquida se observan spots. Representa el 80% de los nódulos mixtos, se debe hacer el diagnóstico diferencial con el adenoma folicular, el carcinoma folicular con degeneración quística y el carcinoma papilar intraquístico, en este último se observan microcalcificaciones en su porción sólida que son los cuerpos de psamoma y tienden a ser de forma esférica, a diferencia del nódulo coloideo que son ovalados^(39, 40, 41).

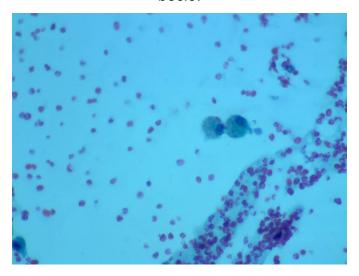
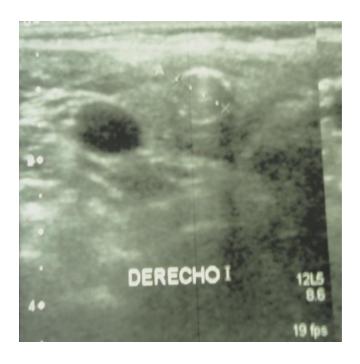


Figura 10. Nódulo mixto bien delimitado sin cápsula definida, TIRADS 3.

Fuente. Horvath, E. Majlis, S. Rossi, R. Franco, C. Niedmann, J. Castro, A. et al. An Ultrasonogram Reporting System for Thyroid Nodules Stratifying Cancer Risk for Clinical Management. J.Clin. Endocrinol. Metab. 2009⁽³⁹⁾.

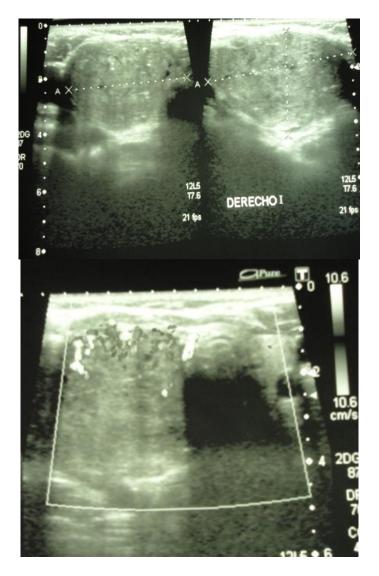
Figura 11. Células epiteliales espumosas bien diferenciadas características de bocio.



Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso

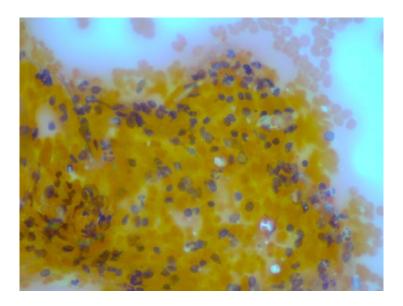
El pseudonódulo de Hashimoto en realidad no son nódulos sino acúmulos de las células de HURTLE queso presentan como nódulos ecogénicos de pequeño tamaño en una tiroides con tiroiditis de Hashimoto ⁽³⁾.

Figura 12. Nódulo tiroideo de bordes calcificados en cáscara de huevo, TIRADS 3.


Fuente. La autora

TIRADS 4.- Son patrones sugerentes de malignidad, se refiere a todos los nódulos hipoecogénicos con patrones de malignidad tipo a y d, nódulos con patrón neoplásico, microcalcificaciones o calcificaciones groseras, o nódulos sólidos o mixtos que miden entre 3 y 4 cm⁽³⁹⁾.

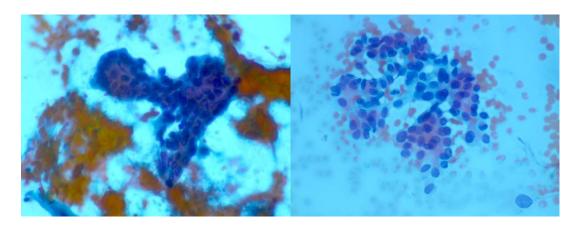
El patrón de malignidad tipo 4 a, son hipoecogénicos de bordes mal definidos contornos irregulares, microcalcificaciones con vasos penetrantes que indican malignidad, se encuentran en el 70 % de los casos de patrones de malignidad⁽³⁹⁾.


Figura 13. Gran nódulo sólido con microcalcificaciones en su interior, vascularidad interna al doppler color, nódulo sospechoso de malignidad, TIRADS 4 a.

Fuente. La autora

Figura 14. Citología del paciente de la figura 13 que muestra células con núcleos hipercromáticos sospechosos de malignidad.

Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso


Figura 15. Nódulo duro sólido con microcalcificaciones en su interior. TIRADS 4 d.

Fuente. La autora

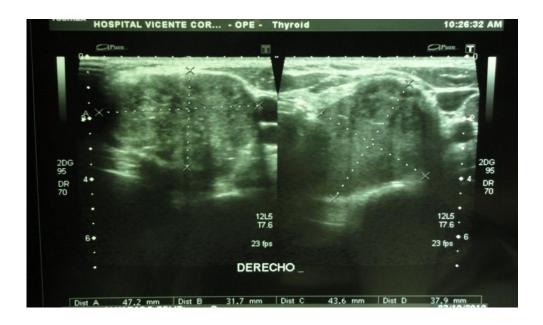
Figura 16. Paciente al estudio citológico muestra láminas de células foliculares anaplásicas y con organización papilar. Diagnóstico citológico cáncer papilar de la glándula tiroides.

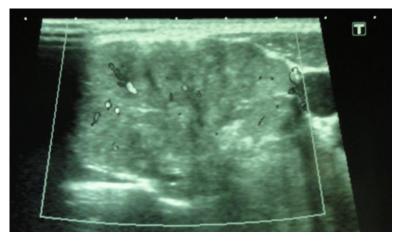
Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso

Los patrones de malignidad tipo d son similares a los nódulos de tiroiditis de Quervain aislados lo que es importante conocer la clínica del paciente, el patrón neoplásico puede ser una lesión nodular isoecogénica, hipoecogénica o hiperecogénica que presenta un halo irregular y de grosor aumentado, con vascularidad central y periférica, calcificaciones groseras o microcalcificaciones⁽³⁹⁾.

TIRADS 5.- Se refiere a las lesiones que tienen patrones de malignidad de tipo b y c, o nódulos con adenopatías sospechosas ipsilaterales y nódulos hipoecogénicos en el lecho operado⁽³⁹⁾.

El nódulo de malignidad b son nódulos sólidos con calcificaciones, vascularizados al doppler color⁽³⁹⁾.


El patrón de malignidad c es menos frecuente, puede presentarse con patrones mixtos con la porción sólida isoecogénica, no se observan los spots pero tienen calcificaciones en el sector sólido con vascularidad importante al doppler color⁽³⁹⁾.


Las adenopatías sospechosas son características del TIRADS 5⁽³⁹⁾.

Los compartimentos de los nódulos linfáticos afectados por carcinoma de tiroides son los centrales, laterales y mediastínicos, según los niveles de cuello más afectado en un carcinoma tiroideo son los III, IV, V, ipsilaterales, menos frecuentes la afectación en el nivel II. La detección de las adenopatías determina la extensión de enfermedad y predice el pronóstico de los pacientes, los criterios ecográficos de sospecha de extensión de enfermedad hacia los linfáticos son según Antonelli et al: nódulos de más de 1 cm, patrón hipoecogénico o heterogéneo, áreas quísticas irregulares, calcificaciones internas y el incremento del ángulo anteroposterior (9, 37).

Figura 17. Lesión sólida de la glándula tiroides con cápsula bien delimitada, microcalcificaciones y presencia de flujos doppler en su interior.

Fuente. La autora

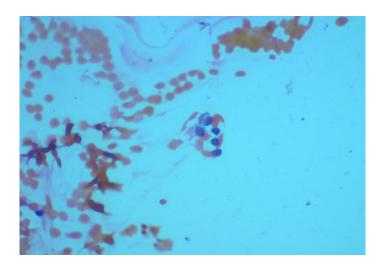
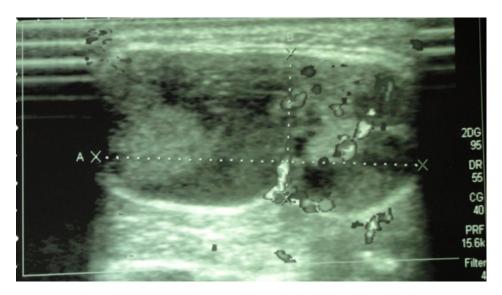


Figura 18. El paciente mencionado anteriormente (figura 17) que presenta adenopatías en región cervical del mismo lado de la lesión nivel de cuello III derecho.

Fuente. La autora

Figura 19. Estudio citológico del paciente observado en la figura 17 y 18, se observan células con núcleos grandes hipercromáticos positivos para cáncer papilar de tiroides

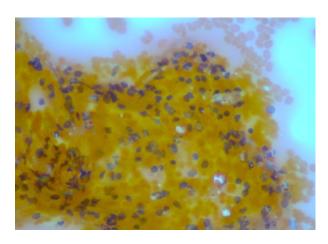
Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso.


TIRADS 6.- Son los nódulos de características malignas comprobados histológicamente o de recidivas con enfermedad residual punzada con citología positiva, o pacientes con cáncer de la glándula tiroides comprobada y que presentan una nueva lesión (éstas lesiones categorizadas como TIRADS 6 hasta confirmar su naturaleza benigna por citología)⁽³⁹⁾.

El seguimiento ecográfico de los pacientes operados con carcinomas tiroideos no debe ser realizado dos meses posteriores a la cirugía por el gran edema regional post quirúrgico^(3, 39).

Se debe buscar recidiva tumoral, adenopatías de aspecto maligno o fibrosis en el lecho quirúrgico⁽³⁹⁾.

El control se realiza cada 6 a 12 meses posterior al procedimiento quirúrgico ⁽³⁹⁾. El seguimiento debe ser anual durante 5 años de la intervención quirúrgica ⁽³⁹⁾.


Figura 20. Paciente femenino con diagnóstico citológico de adenocarcinoma en glándula tiroides acude por nuevo control ecográfico prequirúrgico, TIRADS 6.

Fuente. La autora

Figura 21. Paciente de la figura 20, al estudio citológico muestra núcleos irregulares hipercromáticos, diagnóstico citológico de adenocarcinoma.

Cortesía: Servicio de Patología Hospital Vicente Corral Moscoso

Tabla 1: Características ecográficas de los nódulos tiroideos, uso de los patrones con su malignidad y categoría TIRADS.

Descripción de patrones	Patrones ecográficos	TIRADS
Anecogénico con punto hiperecogénico no vascularizado.	Coloide tipo 1	2 Benignos
No encapsulado, no expansivo con puntos hiperecogénicos, lesión vascular en	Coloide tipo 2	
red (nódulo espongiforme).		
No encapsulados heterogéneos con porciones sólidas isoecogénico,	Coloide 3	3 Probable-
expansible, nódulo vascular con spots hiperecogénicos.		mente benigno
Hiperecogénicos, isoecogénicos o hipoecogénicos, nódulo parcialmente	Pseudonódulo	
encapsulado con vascularidad periférica (tiroiditis de Hashimoto).	Hashimoto	
Nódulo heterogéneo isoecogénico, o nódulo hipoecogénico con cápsula fina.	Patrón simple	4 a No
Nódulo hipoecogénico con bordes mal definidos sin calcificaciones.	neoplásico	determinado
Nódulo hiperecogénico, isoecogénico, hipoecogénico, hipervascular, nódulo		
encapsulado con gruesa cápsula con calcificaciones o micro calcificaciones.		4d
Hipoecogénico no encapsulado con bordes irregulares y márgenes penetrando		Sospechoso de
los vasos con o sin calcificaciones.		malignidad
Nódulos isoecogénicos o hipoecogénicos no encapsulados con	Maligno	5 Sospechoso
microcalcificaciones periféricas e hipervascularidad.		malignidad
Nódulo isoecogénico no encapsulado con o sin calcificaciones,	Cáncer confirmado	6 Maligno
hipervasculares sin spots hiperecogénicos estudiados anteriormente.		

Fuente: Reporting System for Thyroid Nodules Stratifying Cancer Risk for Clinical Management; The Journal of Clinical Endocrinology & Metabolism⁽³⁹⁾.

Utilidad de la ecografía en el diagnóstico de lesiones tiroideas

La ecografía ha mostrado tener una alta sensibilidad pero baja especificidad para detectar el cáncer de tiroides, existen ciertas característicasecográficas que se asocian con malignidad como los márgenes mal definidos, forma irregular, ecoestructura sólida, lesiones hipoecogénicas, sin halo periférico, micro calcificaciones, y patrón vascular ya sea intranodular o hipervascular ^(17, 37). La presencia de finas calcificaciones es la característica que más ha mostrado tener malignidad, cuando los nódulos malignos tienen más de dos características se asocian a mayor malignidad⁽¹⁷⁾.

Las ventajas de la ecografía se basan en la ausencia de la exposición de radiaciones, además de ser económica, segura, rápida y no invasiva, sus indicaciones son para pacientes con seguimiento de lesiones tiroideas, punciones difíciles a la palpación y reaspiración para toma de muestras citológicas ⁽¹⁰⁾.

Dada la alta prevalencia de nódulos benignos en la población general la ecografía tiroidea no debe ser usada como una herramienta de Screening en la población general por lo que constituye un incremento de costos hospitalarios, sin embargo es mandatorio realizar un estudio de valoración ecográfica de la glándula tiroides ante la presencia de factores de riesgo como edades extremas (menores de 20 o mayores de 60 años), exposición a la radiación particularmente durante la niñez, historia familiar de cáncer tiroideo medular o papilar, antecedentes de poliposis familiar, crecimiento rápido de un nódulo en el cuello, Disfonía, dificultad respiratoria descartando patología pulmonar, disfagia⁽¹⁷⁾.

El 50% de las lesiones palpables tienen concordancia con la identificación de nódulos por medio de la ecografía, además el riesgo de cáncer es similar en las lesiones multinodulares que en nódulos solitarios⁽¹⁷⁾.

Diversos estudios han demostrado que la ecografía por si sola tiene una alta sensibilidad pero una baja especificidad en demostrar lesiones malignas; la punción con aguja fina por medio de la palpación tiene una sensibilidad del 65% al

98% y una especificidad del 72-100%, falsos positivos del 0%- 7.7% y falsos negativos del 2%-11.5%. La ecografía conjuntamente con el estudio de citología con técnica de punción aspiración aguja fina es muy útil en las lesiones que no son palpables, nódulos profundos, nódulos mixtos o glándulas heterogéneas ^(10, 17), además debido a la alta incidencia de lesiones malignas en nódulos de más de 4 cm (26%) que deben ser resecados quirúrgicamente, se realiza punción con guía ecográfica como planeamiento preoperatorio ⁽¹⁷⁾.

Se ha demostrado un incremento de sensibilidad y especificidad en lesiones puncionadas con aguja fina que han sido guiadas por ecografía, un estudio tiene un incremento significativo (68%) de punciones guiadas por eco vs 48% lesiones guiadas por la palpación (p< 0.05) (17, 36).

Citología por punción aspiración aguja fina (PAAF)

La aspiración con aguja de la glándula tiroides se realizó por primera vez en 1930 por Martin, ganando aceptación hasta convertirse en un método de referencia, con su uso incrementado han disminuido las tiroidectomías de 89,9% en 1980 a un 46,6% en 1990, las tiroides con lesiones malignas extirpadas incrementaron su frecuencia de un 14,7% a 32,9% ⁽¹⁰⁾.

Su procedimiento se realiza con una jeringa de 10 a 20 ml y una aguja de 22, 23 0 25 G, el nódulo se asegura fijamente entre los dedos y se realiza una suave succión de tejido, la succión se libera antes de salir del nódulo o cuando se observa material en la jeringuilla ⁽¹⁰⁾.

El procedimiento para la obtención de muestra de citología tiene complicaciones bajas como hematoma, dolor localizado o irradiado hacia el oído persistente inclusive hasta semanas^(10, 36), la PAAF se debe realizar después de la evaluación de tiroglobulina ya que puede determinar una elevación transitoria ⁽¹⁰⁾.

Los reportes citológicos se estandariza según las cuatro categorías definidas por la sociedad de Papanicolao de citología que son: maligno (3,4%- 5%), benigno

(60%-75%), sospechoso (7,2 - 30%), e insuficiente (7% - 29,5%) ⁽¹⁰⁾. Una adecuada muestra consiste en 5 a 6 grupos de células foliculares cada una de las cuáles con al menos 10 células, la toma una muestra adecuada depende de la experiencia del médico, lesiones quísticas, calcificaciones, nódulos menores de 1 cm, necrosis, fibrosis ^(10, 36, 44).

En los estudios de validación de pruebas diagnósticas para la clasificación TIRADS, las lesiones foliculares o sospechosas de malignidad se incluyen como lesiones positivas para malignidad, conociendo que el 80% de éstas lesiones son adenomas, considerados como un grupo de alto riesgo en la categorización en la patología de mama ⁽³⁹⁾.

La ecografía como guía para PAAF tiene los rangos más bajos de falsos negativos comparados con la toma de muestra solo con la palpación, (1% vs 2,3%), las mediciones de tiroglobulina por reacción de cadena de polimerasa en lesiones quísticas y nódulos linfáticos afectados es más sensible que la citología por si sola y no es afectada por la presencia de anticuerpos de tiroglobulina en el suero⁽³⁶⁾. Se han comprobado otros métodos que vuelve más sensible a lacitología por PAAF en lesiones quísticas como la identificación de mutación genética y la medida de expresión de muestras asociadas con RNA mensajero y micro RNAs ⁽³⁶⁾.

Otros Estudios complementarios de la Glándula Tiroides

Los estudios nucleares también son importantes en la evaluación de las lesiones tiroideas, se utilizan con frecuencia el TC⁹⁹ y el I¹²³ (45), el 80% al 85% de los nódulos son fríos en gammagrafía, de éstos el 14%-22% tienden a ser malignos, 5% son calientes y el restante 10-15 % son indeterminados en Gammagrafía, la sensibilidad en detectar nódulos malignos es del 89 al 93%, pero su especificidad es del 5%, con un valor diagnóstico positivo del 10% (10). Se realiza gammagrafía cuando la THS está disminuida, como hallazgo dudoso en la PAAF y para detectar recurrencias en el seguimiento (10).

La tomografía tiene un papel limitado en el manejo inicial de los nódulos tiroideos, pero durante su estadificación en la evaluación de zonas mediastinales y adenopatías cervicales, es preferible obtener inicialmente una tomografía inicial sin contraste para no retrasar otros exámenes por la saturación del tejido tiroideo al yodo (10).

La resonancia magnética es menos importante en la evaluación del nódulo tiroideo y es más costosa que la tomografía y la ecografía, puede identificar la invasión extraglandular y compromiso de los vasos del cuello, la sensibilidad y especificidad de detectar nódulos tiroideos malignos es del 42% al 76% respectivamente, Tancredo et al., concluyeron que los estudios con resonancia magnética pueden ser útiles para los nódulos de más de 5 mm si la punción con aguja fina es sospechosa de malignidad, disminuyendo el número de cirugías ⁽¹⁰⁾.

OBJETIVOS

General:

 Validar la capacidad diagnóstica de la clasificación ecográfica – TIRADS en los pacientes que acuden al Servicio de ecografía para valoración de glándula tiroides en el Hospital Vicente Corral Moscoso y José Carrasco Arteaga. Cuenca- Ecuador durante el periodo de Enero hasta Julio del 2012.

Específicos:

- 1. Determinar características generales de los pacientes: edad, sexo, residencia.
- Determinar la sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo, índice de Youden e índice de verosimilitud de los criterios de los patrones ecográficos de la clasificación TIRADS.
- 3. Proponer un protocolo sobre los criterios ecográficos para punción de lesiones de la glándula tiroidea en los hospitales estudiados.

DISEÑO METODOLÓGICO

TIPO DE ESTUDIO

Es un estudio de validación de pruebas diagnósticas que compara la caracterización ecográfica de la glándula tiroides por medio de la clasificación TIRADS con la citología tomada con técnica de punción aspiración aguja fina como prueba de oro.

UNIVERSO Y MUESTRA

El universo del presente estudio estuvo constituido por todos los pacientes provenientes de la consulta externa y hospitalización que acudieron para investigación ecográfica de la glándula tiroides y los que desearon ser evaluados la glándula tiroides ecográficamente en el servicio de Imagenología de los hospitales Vicente Corral Moscoso y José Carrasco Arteaga de la ciudad de Cuenca, durante el periodo de Enero a Junio del 2012.

El estudio trabajó en una muestra cuyo tamaño se calculó por medio del programa Epidat, se utilizaron los siguientes criterios: Sensibilidad del 88%, especificidad del 49%, prevalencia de la patología tiroidea que es del 19%⁽¹³⁾,precisión del 5%, Intervalo de confianza del 95%; obteniéndose una muestra de 858 pacientes.

CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN

Se seleccionó a los pacientes mayores de 20 años que desearon colaborar en el estudio, los que acudieron para control ecográfico de la glándula tiroides, y aquellos con probables problemas de patología tiroidea en los servicio de Imagenología del Hospital José Carrasco Arteaga y Vicente Corral Moscoso de la ciudad de Cuenca, durante el periodo de seis meses (Enero – Junio 2012).

Se excluyeron los pacientes con probable alteración en la coagulación comprobado por datos de laboratorio como TP, TTP, INR, plaquetas.

Con estos criterios se incluyeron a 860 pacientes en el estudio.

PROCEDIMIENTOS, TÉCNICAS E INSTRUMENTOS

Posterior a la aprobación del protocolo de investigación, y con la autorización de los líderes los servicios de Imagenología de los hospitales Vicente Corral Moscoso y José Carrasco Arteaga, se procedió a la recolección de la muestra.

Los pacientes que cumplieron con los criterios de inclusión, firmaron una hoja de consentimiento informado autorizando los procedimientos a realizarse; además se aplicó un cuestionario a cada paciente sobre sus características generales como el nombre, edad, sexo y residencia.

Inicialmente se estudió la glándula tiroides por medio de la palpación manual para determinar la probabilidad de lesión; con el paciente en decúbito supino con hiperextensión del cuello y utilizando una almohada bajo los hombros se realizó cortes ecográficos transversales y longitudinales de la glándula tiroides con un transductor de 7-10 Mhz.

Los equipos, Toshiba modelo Xario del servicio de Imagenología del Hospital Vicente Corral Moscoso, y el ecógrafo Medison del servicio de Imagenología del Hospital José Carrasco Arteaga, sirvieron para la caracterización de las glándulas tiroides de los pacientes con la clasificación TIRADS, categorizadas como: 1-glándula normal; 2- Lesión benigna; 3- Lesión probablemente benigna; 4- se subdivide en a y c y son lesiones probablemente malignas; 5- se subdivide en b y d y son lesiones malignas; 6- lesiones malignas comprobadas.

En el presente estudio se consideró negativas para malignidad de tiroides a través de ecografía a quienes fueron clasificados como TIRADS 1 y 2.

Los pacientes clasificados como TIRADS 3, 4 a y d, 5 b y c y 6 tienen mayor probabilidad de tener lesiones malignas por lo que les agrupó como positivas para malignidad.

La prueba de oro fue la Citología obtenida con técnica PAAF, la misma que clasificó los resultados de los pacientes que tienen lesiones positivas para malignidad y negativas para malignidad.

La punción ecográfica se realizó bajo normas de asepsia y antisepsia, con una aguja de 21 G, y una jeringuilla de 10cc, con técnica de aspiración con presión negativa; la muestra se colocó en un portaobjetos y se fijó, una vez que la placa estuvo seca luego de la fijación, se envió las muestras al laboratorio de cada hospital para el estudio citológico. Los resultados citológicos de los pacientes se clasificaron en: negativo para malignidad, positivo para malignidad, sospechoso de malignidad. Las muestras que fueron catalogadas como insuficientes, fueron puncionadas nuevamente para un nuevo estudio citológico.

ANÁLISIS

El análisis de las características generales de los pacientes se realizó mediante estadística descriptiva. El valor diagnóstico de la ecografía evaluó la sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo, test de Youdem, valor de verosimilitud negativo y valor de verosimilitud positivo.

Para su cálculo se utilizó una tabla de 2 x 2 que distribuye los resultados de la siguiente manera:

Tabla Nº 2.Resultados de prueba y existencia de enfermedad.

		Prueba de Oro		
		Enfermo	No enfermo	Total
Prueba diagnóstica	Positivo	а	b	a+b
	Negativo	С	d	c+d
	Total	a+c	b+d	a+b+c+d

En donde:

a = número de pacientes con la enfermedad diagnosticados como "positivos" por las dos pruebas – verdaderos positivos (VP).

b = número de pacientes sin la enfermedad diagnosticados como "positivos" por la nueva prueba, y negativo por la prueba de oro – falsos positivos (FP).

c = número de pacientes con la enfermedad diagnosticados como "negativos" por la nueva prueba y positivos por la prueba de oro – falsos negativos (FN).

d = número de pacientes sin la enfermedad diagnosticados como "negativos" por las dos pruebas – verdaderos negativos (VN).

Los estimadores de las probabilidades descritas son:

Sensibilid ad =
$$\frac{Verdadercs\ positivos}{Total\ de\ enfermos} = \frac{VP}{VP + FN} = \frac{a}{a+c} \times 100$$

Especifici dad =
$$\frac{Verdaderos\ negativos}{Total\ de\ no\ enfermos} = \frac{VN}{VN + FP} = \frac{d}{b+d} \times 100$$

$$Valor\ predictivo\ positivo = \frac{Verdaderos\ positivos}{Total\ de\ positivos} = \frac{VP}{VP + FP} = \frac{a}{a+b} \hspace{0.5cm} X\ 100$$

$$Valor \ predictivo \ negativo = \frac{Verdaderos \ negativos}{Total \ de \ negativos} = \frac{VN}{VN + FN} = \frac{d}{c+d} \ \ X \ 100$$

Índice de Youden (IJ) = S+E-1 = S-(1-E)

Razón de Verosimilitud Positivo:

$$RV + = \frac{P(T + \mid Enf)}{P(T + \mid No \; Enf)}$$

Razón de Verosimilitud negativo:

$$RV - = \frac{P(T - | Enf)}{P(T - | No Enf)}$$

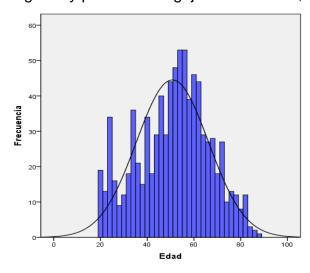
TABULACIÓN DE DATOS

Se creó una base de datos en el programa Microsoft Office Excel 2010, la información fue procesada en el programa epidat, versión 3.0 La redacción se realizó en Microsoft Word 2010.

Operacionalización de variables:

VARIABLE	DEFINICIÓN CONCEPTUAL	DIMENSIÓN	INDICADOR	ESCALA
Citología por	Estudio citológico de la	Física:	Clasificación	Ordinal:
punción	lesión tiroidea	Citológica	Sociedad de	Negativo para malignidad
Aspiración			Citopatología	Sospechoso de malignidad
aguja fina				Positivo para malignidad
(PAAF)				Muestra insuficiente
Lesiones	Imagen de alteración del	Física:	Reporte de	Ordinal:
Tiroideas	patrón ecográfico del	Ecográfica	TIRADS	1 Normal
detectadas por	tejido glandular tiroideo			2 Benigno
				3 Probablemente
Ecografía	evaluado a través de			benigno
	TIRADS			4 Probablemente maligno
				5 Maligno
				6 Maligno comprobado
				Cualitativa
Residencia	Zona geográfica donde	Física:	Zona referi-	dicotómica
	viven las personas en la	Lugar de	da por el	urbano/ rural
	Actualidad	Residencia	entrevistado	
Edad	Tiempo transcurrido desde	Temporal	Años	Numérica
	el nacimiento de un		cumplidos	20-30 años
	individuo hasta la fecha de			31-40 años
	ingreso al estudio			41-50 años
				51-60 años
				Mayor de 60 años
				Cualitativa
Sexo	Características físicas	Física	Fenotipo	dicotómica
				masculino/
	externas de un paciente			femenino
	de acuerdo al género			

RESULTADOS


CARACTERÍSTICAS GENERALES DE LOS PACIENTES

Edad

En este estudio se evaluaron a 860 pacientes de los hospitales Vicente Corral Moscoso y José Carrasco Arteaga de la ciudad de Cuenca; la media de la edad fue 50.76 años (IC 49.72 – 51.79) con una Desviación estándar (DS) de 15.40 y una mediana de 52. El valor mínimo fue de 20 años y el máximo de 88. De la muestra estudiada 150 fueron hombres (17.4%) y 710 mujeres(82.6%). En el sexo femenino, la media de la edad fue de 50.73 años (IC 49.64 – 51.82) con una desviación estándar de 14.79; la edad menor en este grupo fue 20 años, y la máxima 88, con una mediana de 52. En el sexo masculino la media de la edad fue de 50.87 años (IC 47.95 – 53.78) con un mínimo de 20 años, un máximo de 83, la desviación estándar fue de 18.08 y una mediana de 54.00.

La distribución de la edad gráficamente fue de la siguiente manera:

Grafico 1. Distribución de la edad de 860 pacientes evaluados de tiroides a través de ecografía y punción de aguja fina. Cuenca, 2012.

Elaborado por: La autora

Residencia de los pacientes

El 75.5% de los pacientes residen en zonas urbanas del total de la muestra, de las cuales 83% eran mujeres, y 16.7% hombres. En el área rural residen el 24.5%;80% fueron mujeres y 19.4%hombres.

Resultados diagnósticos

Realizada la evaluación ecográfica, 301 (35%) pacientes presentaron una glándula tiroidea normal; a la punción con aguja fina, todas las muestras fueron negativas para malignidad.255 pacientes fueron clasificados con TIRADS 2;las lesiones con PAAF negativa para malignidad se encontró en 245 casos, las lesiones clasificadas como positivas para malignidad a la PAAF fueron 2; 8 pacientes tuvieron al inicio una muestra insuficiente, se procedió a una nueva punción resultando negativas para malignidad.

Las lesiones probablemente benignas o TIRADS 3 se catalogaron en 179 pacientes, 155 fueron lesiones benignas a la PAAF, 13 sospechosas de malignidad, se encontraron 3 lesiones positivas para malignidad y 8 muestras insuficientes que al puncionarles por segunda ocasión se encontraron todas negativas para malignidad.

En los 54 pacientes con lesiones ecográficas TIRADS 4 a, a la PAAF, 35 muestras fueron negativas para malignidad, 8 sospechosas de malignidad, 6 positivas para malignidad, 5 muestras fueron insuficientes, al puncionar por segunda ocasión ninguna fue positiva para malignidad.

En TIRADS 4 d, 38 muestras fueron obtenidas, 4 negativas para malignidad, de éstas 3 fueron puncionadas dos ocasiones ya que la primera punción resultaron insuficientes, 12 muestras fueron sospechosas de malignidad y 19 muestras fueron positivas para malignidad.

En la clasificación ecográfica TIRADS 5 b, se observaron 10 muestras, una sospechosa de malignidad y 9 positivas para malignidad. En TIRADS 5 c obtuvimos 5 pacientes, 1 con sospecha de malignidad y 4 con resultado de punción positiva para malignidad.

En TIRADS 6, se estudiaron a 18 pacientes, las punciones con resultados malignos para malignidad fueron 2 y 16 pacientes positivos para malignidad.

Tabla Nº3. Resultados diagnósticos de ecografía y citología en 860 pacientes evaluados de tiroides. Cuenca, 2012.

Resultados	Resultado	s diagn	•		gnidad a	través		
diagnósticos	Negat	ivo	de citológía Sospechoso Positi		vo	Total		
TIRADS	No.	%	No.	%	No.	%	No.	%
TIRADS 1	301	35.0	0	0.0	0	0.0	301	35.0
TIRADS 2	253	29.4	0	0.0	2	0.2	255	29.7
TIRADS 3	163	19.0	13	1.5	3	0.3	179	20.8
TIRADS 4a	40	4.7	8	0.9	6	0.7	54	6.3
TIRADS 4d	7	0.8	12	1.4	19	2.2	38	4.4
TIRADS 5b	0	0.0	1	0.1	9	1.0	10	1.2
TIRADS 5c	0	0.0	1	0.1	4	0.5	5	0.6
TIRADS 6	2	0.2	0	0.0	16	1.9	18	2.1
TOTAL	766	89.1	35	4.1	59	6.9	860	100

Elaborado por: La autora

Tabla Nº 4. Resultados diagnósticos de ecografía y citología en 860 pacientes evaluados según la clasificación TIRADS. Cuenca, 2012.

Resultados diagnósticos para malignidad a través de citología							
Resultados		Negat	tivo	Sospecl	noso	Positi	vo
TIRADS	Total	Nº	%	Nº	%	Nº	%
1	301	301	100,0	0	0,0	0	0,0
2	255	253	99,2	0	0,0	2	0,8
3	179	163	91,1	13	7,3	3	1,7
4a	54	40	74,1	8	14,8	6	11,1
4d	38	7	18,4	12	31,6	19	50,0
5b	10	0	0,0	1	10,0	9	90,0
5c	5	0	0,0	1	20,0	4	80,0
6	18	2	11,1	0	0,0	16	88,9

Elaborado por: La autora

Fuente: Formularios de recolección de la información

La categorización TIRADS 2 es considerada para lesiones benignas, por lo que los dos casos identificados como malignos en estos resultados, pueden ser considerados como error en la interpretación ecográfica.

Para la evaluación de la ecografía como prueba diagnóstica para lesiones malignas de la glándula tiroides, los casos con resultados sospechosos de malignidad en el estudio citológico fueron considerados positivos.

La distribución de los hallazgos en la tabla de 2 x 2 para la evaluación de la ecografía frente a la citología en lesiones malignas de la glándula tiroides, se mostró de la siguiente manera:

Tabla Nº 5. Tabla de contingencia para los resultados diagnósticos de ecografía y citología en 860 pacientes evaluados de tiroides. Cuenca, 2012.

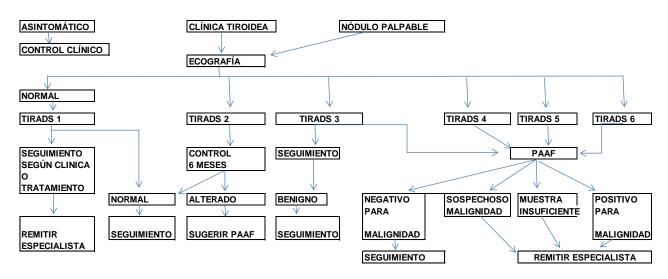
Resultados diagnósticos citológicos Positivo Negativo **TOTAL** Positivo 92 304 212 Resultados diagnósticos **TIRADS** Negativo 2 554 556 **TOTAL** 94 766 860

Elaborado por: La autora

Fuente: Formularios de recolección de la información

Tabla Nº 6. Resultados de la evaluación de la ecografía como prueba diagnóstica de lesiones malignas de glándula tiroides en relación con la citología como prueba de oro en 860 pacientes evaluados de tiroides. Cuenca, 2012.

DRUEDA	Valor del	Intervalo de Co	nfianza al 95%
PRUEBA 	resultado	Inferior	Superior
Prevalencia (%)	10,93	8,79	13,07
Sensibilidad (%)	97,87	94,42	100
Especificidad (%)	72,32	69,09	75,56
Valor predictivo + (%)	30,26	24,93	35,59
Valor predictivo - (%)	99,64	99,05	100
Índice de validez (%)	75,12	72,17	78,06
Índice de Youden	0,7	0,66	0,75
Razón de verosimilitud +	3,54	3,14	3,98
Razón de verosimilitud -	0,03	0,01	0,12


Elaborado por: La autora

Fuente: Formularios de recolección de la información

De acuerdo a la categorización TIRADS se propone un algoritmo, obtenido a partir de lo observado en el presente trabajo.

PROTOCOLO PATOLOGÍA TIROIDEA SEGÚN TIRADS

Elaborado por: La autora

Discusión

La prevalencia de las lesiones malignas en el estudio fue del 10.93% (IC 8.79-13.07). La bibliografía, en estudios realizados en Chile, Los Ángeles, y en el consenso realizado en Washington - EE. UU, se refiere que ésta va entre 5 y 10%^(17, 39, 41)lo que concuerda con lo obtenido.

El 100% de los pacientes con TIRADS 1 son negativas para malignidad, en TIRADS 2 el 99.2% son lesiones benignas; el 91.1% de los pacientes con TIRADS 3 son negativas para malignidad; los pacientes con TIRADS 4 a y b la probabilidad de ser lesiones benignas es en un 74% y 18% respectivamente, en TIRADS 5 ningún paciente tiene probabilidad de ser lesiones negativas para malignidad; por último los pacientes categorizados como TIRADS 6 en nuestro estudio el 11,1% son pacientes con lesiones negativas para malignidad.

En el estudio, la capacidad que tuvo la categorización TIRADS en detectar a los pacientes enfermos con lesiones malignas es del 97.87% (IC 94.42-100). Para detectar a los pacientes que no tienen lesiones malignas, la categorización mostró un 72.32% (IC 69.09-75.56). Estos resultados son mayores a los encontrados por Horwarth et al. (17, 39), la sensibilidad encontrada por la autora fue de 88% con una especificidad de 49%. La autora incluyó en su estudio pacientes con TIRADS 2 al 6. Se debe considerar que la categorización utilizada no está dirigida únicamente para las personas que presenten franca patología tiroidea, de allí que se incluyan también clasificaciones para personas con glándula tiroidea normal; no se consideró conveniente eliminar estos pacientes del análisis; a la vez, la inclusión de estos pacientes también influyó sobre la especificidad que termina por ser alta en los pacientes del Hospital Vicente Corral Moscoso y José Carrasco Arteaga.

La mencionada autora estableció un valor predictivo positivo del 49% y un valor predictivo negativo del 88%. En la investigación realizada, el VPP fue del 30.26% (IC 24.93-35.59); el VPN fue de 99.64% (IC 99.05 – 100). La prevalencia condiciona los valores predictivos; en los hospitales ésta es mayor que cuando se considera a la población en conjunto, sin embargo, a pesar que el presente

estudio se realizó en estas casas asistenciales, la inclusión de pacientes aparentemente sin patología tiroidea maligna, favorece los resultados del VPN, disminuyendo el VPP.

El índice de validez, eficacia total de la prueba o promedio de aciertos fue de 75.1 (IC 72.17 – 78.06), es decir, la proporción de individuos clasificados correctamente en el estudio fue alta.

El Índice de Youden refleja la diferencia entre la tasa de verdaderos positivos y la de falsos positivos, el valor referencia es 1 que mostraría una prueba perfecta. Horwarth et al., no reporta este dato. El encontrado entre los pacientes de los Hospitales Vicente Corral Moscoso y José Carrasco Arteaga de la Ciudad de Cuenca es de 0.70 (IC 0.66 – 0.75) que muestran una importante eficacia de la prueba.

En cuanto se refiere a razones de verosimilitud o coeficiente de probabilidades, en la que independiente de la prevalencia, se encontró una razón de verosimilitud positiva (RV+) de 3.54 (IC 3.14 – 3.98); la razón de verosimilitud negativa (RV-) fue de 0.03 (IC 0.01 – 0.12). La razón de verosimilitud positiva en este estudio quiere decir que esta prueba es válida ya que es 3.54 veces probable que siendo positiva para la prueba tenga la enfermedad comparado a que siendo positiva no tenga la enfermedad.

El valor de verosimilitud negativa en el presente estudio, significa que siendo negativa para la prueba es 0.03 veces positiva que siendo negativo no tenga la enfermedad.

De acuerdo a esto, la probabilidad de que la prueba sea positiva en enfermos tiroideos con patología maligna también se muestra importante, si a ello se suma que la probabilidad de obtener un test negativo entre los enfermos es baja, se tiene un rendimiento favorable de la prueba. Horwarth et al., tampoco reporta estos valores, quizá porque estos indicadores no son de uso común.

CONCLUSIONES

El diagnóstico es considerado como el resultado más importante de la práctica médica, el cual conduce a un tratamiento y pronóstico adecuado. El desarrollo de novedosos elementos tecnológicos ha permitido incorporar en la práctica clínica varios instrumentos que contribuyen con el trabajo médico, sin embargo la tendencia de su uso indiscriminado es alta.

Las pruebas diagnósticas pretenden determinar la presencia de alguna condición patológica, y de la estimación de los aciertos o errores de las pruebas, en el presente estudio se han analizado los siguientes resultados:

La mayoría de los pacientes que sufren patología tiroidea son mujeres.

La validación ecográfica – TIRADS en pacientes con patología tiroidea, dados los resultados obtenidos (S 97.87% IC 94.42-100; E 72.32% IC 69.09-75.56; VPP 30.26% IC 24.93-35.59; VPN 99.64% IC 99.05 – 100; índice de validez, eficacia total de la prueba 75.1 IC 72.17 – 78.06, Índice de Youden 0.70 IC 0.66 – 0.75; RV+ 3.54 IC 3.14 – 3.98, RV- 0.03 IC 0.01 – 0.12) hacen recomendable la prueba para los pacientes con sospecha clínica de patología tiroidea maligna, en especial, para quienes presentan factores de riesgo asociados como edades extremas, historia familiar de cáncer de tiroides medular o papilar, exposición a la radiación, poliposis familiar, nódulo de origen tiroideo de crecimiento rápido, disfonía, disfagia, dificultad respiratoria.

Esto es porque la prueba tiene resultados de sensibilidad y especificidad altos pero con el valor predictivo positivo bajo, es decir que de los pacientes enfermos la probabilidad de que sean realmente enfermos es baja, esto puede deberse a la inclusión de pacientes sanos al estudio, clínicamente la clasificación TIRADS es útil para prueba de tamizaje.

La probabilidad de tener lesiones benignas en esta clasificación es mayor mientras menor sea el número estandarizado en la clasificación TIRADS.

El sistema TIRADS es un método muy valioso que nos permite clasificar adecuadamente a las lesiones benignas y malignas según su patrón ecográfico para su seguimiento periódico o su punción según lo requiera la lesión.

Con este sistema disminuyen las punciones innecesarias esto optimiza los recursos hospitalarios, en lo que se resume que las lesiones con valor ecográfico según TIRADS 1 y 2 no se deben puncionar ya que la mayoría de ellas obtendremos resultados negativos para malignidad, en las lesiones tipo TIRADS 3 se sugiere realizar un seguimiento estricto a los 6 meses para confirmar cambios ecográficos de la lesión o puncionar, ya que muchas veces la punción puede disminuir la ansiedad del paciente. Se observa que son pocas las lesiones encontradas como TIRADS 4 y 5, pero al presentarse es mandatorio una confirmación citológica para descartar malignidad; las lesiones tipo TIRADS 6 son pacientes con un diagnóstico confirmado de cáncer de tiroides en control por lo que es necesario seguimientos ecográficos aun después de los procedimientos quirúrgicos.

Para mejor entendimiento se realizó un esquema de protocolización de las lesiones ecográficas según el sistema TIRADS, esto servirá de guía para los residentes en formación de radiología y médicos especialistas en el manejo de las lesiones tiroideas en nuestros hospitales.

RECOMENDACIONES

Es necesario fomentar más estudios sobre la patología tiroidea en nuestro medio, su diagnóstico temprano tanto en el área de radiología como en los consultorios de especialidad, especialmente con pacientes con clasificación TIRADS 3, 4 y 5.

Es importante la capacitación permanente para mejorar las habilidades y destrezas en el manejo ecográfico, así como la obtención de la muestra por punción de aguja fina con el fin de obtener resultados cada vez más fiables.

REFERENCIAS BIBLIOGRAFICAS

- 1.- Kasper, D. Braunwal, E. Hauser, S. Fauci, A Longo, D. Jameson, J. et al. Harrison Principios de Medicina interna. 16 aed. Madrid: Mc Graw Hill; 2002.
- 2.- Rumack, C. Wilson,S. Charboneau, W. Diagnóstico por ecografía.2 a ed.Madrid: Marban;2006.
- 3.- Lafranchi, M. Ecografía de tiroides. 1 a ed. Madrid: Marbán; 2001.
- 4.- Rouviere, H. Anatomía Humana, descriptiva, topográfica y funcional. 10 a ed. Barcelona: Masson; 1990.
- 5.- Hernández, P. Evaluación de la punción aspiración de tiroides con aguja fina ecodigirida frente a la histología post operatoria para el diagnóstico de la patología tiroidea Hospital José Carrasco Arteaga (IESS) Cuenca 2007-2008; Universidad Estatal de Cuenca; 2009. Doi 139.
- 6.- Liu, Y. Qiang, W. Jun Liu, X. Xu, L. Guo, H. Wu, L. et al. Association of insulin-like growth factor-1 with thyroid nodules. OncologyLetters. 2011;2: 1297-1301, disponible enhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406504/pdf/OL-02-06-1297.pdf. Fecha de acceso: 22 de Agosto del 2012.
- 7.- Ajish, T. Jayakumar, R. Geriatric thyroidology: An update. Indian J EndocrinolMetab. Jul-Aug 2012; 16(4): 542–547. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401753/. Fecha de acceso: 22 de Agosto del 2012.
- 8.- Ryan, S. Anatomía para el diagnóstico radiológico. 2 a ed. Madrid: Marbán; 2002.
- 9.-Sippos, J. Advances in Ultrasound for the Diagnosis and Management of Thyroid Cancer. Thyroid. 2009;19(12): 1363-1373. Disponible en http://www.pubmed.org. Fecha de acceso 25 de Enero del 2011.
- 10.- Pedrosa, A. Manejo del nódulo tiroideo: revisión de la literatura; Rev. Colomb. Cir. 2008; 23(2):100-111. Disponible en http://www.pubmed.org. Fecha de acceso 6 de Septiembre del 2010.

- 11.- Cásio, O. Cerri, G. Ultrasonografía de pequeñas partes.1 a ed. Amolca; 2008.
- 12.-Ertaş, F. Kaya, H. Soydinç, M. Low serum free triiodothyronine levels are associated with the presence and severity of coronary artery disease in the euthyroid patients: an observational study. AnadoluKardiyolDerg. 2012;1.12(7). Disponible en http://www.anakarder.com/eng/sayilar/32/Eyl%C3%BCl%202-3%207-Low.pdfFecha de acceso: 22 de Agosto del 2012.
- 13.-Gesing, A. Bartke, A. Masternak, M. Lewinski, A. Decreased thyroid follicle size in dwarf mice may suggest the role of growth hormone signaling in thyroid growth regulation. Thyroid Research. 2012; 5:7. Disponible en:

http://www.thyroidresearchjournal.com/content/pdf/1756-6614-5-7.pdf. Fecha de acceso 22 de Agosto del 2012.

- 14.- Limbert, E. Prazeres, S. São Pedro, M. Madureira, D. Miranda, A. Ribeiro, M. et al. Aporte do Iodo nas Crianças das Escolas em Portugal. Acta Med Port. Jan-Feb 2012;25(1):29-36. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22883246. Fecha de acceso: 22 de Agosto del 2012.
- 15.- Cranston M, Ryan M, Smith T, Sevick C, Brodine S. Hypothyroidism among military infants born in countries of varied iodine nutrition status. BMC Endocrine Disorders.2010;10(2). Disponible en http://www.biomedcentral.com. Fecha de acceso 30 de Junio del 2011.
- 16.- Galve, J. Prevención del retraso psicomotor causado por déficit de yodo en la infancia. PrevInfad (AEPap)/PAPPS infancia y adolescencia; Diciembre 2005.
- 17.-Lilah, M. Ragavendra, N. Yeh, M. Evidence-Based Assessment of the Role of Ultrasonography in the Management of Benign Thyroid Nodules. World J Surg. 2008; 32: 1253–1263.Disponible en http://www.pubmed.org. Fecha de acceso. 25 de Enero del 2011.
- 18.- Pérez, C. Arango, B. Vélez, M. Raez, L. Santos, E. Emerging role of multikinase inhibitors for refractory thyroid cancer. Biologics. Targets and Therapy

- 2012;6:257–265. Disponible en http://dx.doi.org/10.2147/BTT.S24465. Fecha de acceso: 22 de Agosto del 2012.
- 19.- Bonilla, I. Utilidad del ultrasonido para el diagnóstico temprano de nódulos tiroideos malignos: estudio transversal realizado en el Consultorio Médico de Imágenes Dr. Ignacio Bonilla (Ambato) y en el Instituto Oncológico Nacional SOLCA (Guayaquil).USFQ. 2008.RC 280 .T6 B66 2008. Disponible en http://repositorio.usfq.edu.ec/handle/23000/504. Fecha de acceso 17 de Julio del 2012.
- 20.- Prettel, E. Yodo y calidad de vida: Eliminación de la deficiencia de yodo en el Perú. Acta Med Per.2008;25(4): 197-198. Disponible en http://www.pubmed.org. Fecha de acceso 26 de Junio del 2011.
- 21.- Steiblienė, V. Mickuvienė, N. Prange, A. Bunevičius, R. Concentrations of Thyroid Axis Hormones in Psychotic Patients on Hospital Admission: the Effects of Prior Drug Use. Medicina (Kaunas) 2012;48(5):229-34. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22864269. Fecha de acceso: 22 de Agosto del 2012.
- 22.- Alavi, A. Adabi, K. Nekuie, S. Kazemi, E. Solati, M. Sobhani, A. Thyroid Dysfunction and Autoantibodies Association with Hypertensive Disorders during Pregnancy. Journal of Pregnancy 2012; Article ID 742695, 5. Disponible en http://www.hindawi.com/journals/jtr/2012/847108/Fecha de acceso: 22 de Agosto del 2012.
- 23.- Grande, E. Díez, J. Zafon, C. Capdevila, J. Thyroid Cancer:Molecular Aspects and New Therapeutic Strategies. Journal of Thyroid Research. 2012, Article ID 847108, 10 pages. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403487/pdf/JTR2012-847108.pdfFecha de acceso: 22 de Agosto del 2012.
- 24.- Medalia, J. The Japanese Nuclear Incident: Technical Aspects.Congressional Research Service. March 2011; 31. Disponible en http://www.crs.gov. Fecha de acceso 28 de Junio del 2011.
- 25.- Hayashi, Y. Lagarde, F. Tsuda, N. Funamoto, S. Preston, D. Koyama, K. Papillary Microcarcinoma of the Thyroid among Atomic BombSurvivors: Tumor

Characteristics and Radiation Risk. Cancer 2010;116(7):1646–1655. Disponible en http://www.cncr.com. Fecha de acceso 28 de Junio del 2011.

- 26.- Mihailescu, D. Schneider, A. Size, Number, and Distribution of Thyroid Nodules and the Risk of Malignancy in Radiation-Exposed Patients Who Underwent Surgery. J. ClinEndocrinolMetab.2008;93(6):2188–2193. Disponible en http://www.pubmed.org. Fecha de acceso 28 de Junio del 2011.
- 27.-Ahmed, S. Johnson, P. Horton, K. Lai, H, ZaheerAf, T. et al. Prevalence of unsuspected thyroid nodules in adults on contrast enhanced 16- and 64-MDCT of the chest. World.J.Radiol. July 2012;28(7): 311-317. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419864/pdf/WJR-4-311.pdf. Fecha de acceso 22 de Agosto del 2012.
- 28.- Abend, M. Pfeiffer, R. Ruf, C. Hatch, M. Bogdanova, T. Tronko, M. et al. Iodine-131 Dose Dependent Gene Expression in Thyroid Cancers and Corresponding Normal Tissues Following the Chernobyl Accident.Plosone. 2012;7(7)e39103. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405097/pdf/pone.0039103.pdf.
- 29.-Hernandez, B. Morita, S. Wilkens, L. Thyroid Cancer: Rising Incidence and Ethnic Disparities. Hawai'l Journal of Medicine & Public Health. August 2012: 71(8): 240-241. Disponible en http://www.ncbi.nlm.nih.gov/pubmed/22900242. Fecha de acceso: 22 de Agosto del 2012.
- 30.- Hayashi, Y. Lagarde, F.Tsuda, N. Funamoto, S. Dale, B.Preston, L.Koyama, K.et al. Papillary Microcarcinoma of the Thyroid among Atomic Bomb Survivors: Tumor Characteristics and Radiation Risk. Cancer. April 2010; 116(7): 1646–1655. Disponible en http://:www.ncbi.nlm.nih.gov/pubmed/20120034. Fecha de acceso 28 de Marzo del 2012.
- 31.-Hall, E. Brenner, D. Cancer risks from diagnostic radiology; The British Journal of Radiology.2008;81:362–378.Disponible en http://www.bmj.com. Fecha de acceso 28 de Junio del 2011.
- 32.- Gopalakrishnan, N.Pradeep, J.Babu, M. Menon, R. Toxic thyroid carcinoma: A new case. Indian J Endocrinol Metab. Jul-Aug 2012; 16(4): 668–670. Disponible

Fecha de acceso: 22 de Agosto del 2012.

en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401787/. Fecha de acceso 22 de Agosto del 2012.

33.-Jeong, J. Kim, H. Lee, C. Park, S. Park, J. Kang, S. et al. Coexistence of Chronic Lymphocytic Thyroiditis with Papillary Thyroid Carcinoma: Clinical Manifestation and Prognostic Outcome. J KoreanMedSci. 2012; 27: 883-889. Disponible en:

http://www.jkms.org/Synapse/Data/PDFData/0063JKMS/jkms-27-883.pdf. Fecha de acceso: 22 de Agosto del 2012.

34.-Wartofsky, L. Highlights of the American Thyroid AssociationGuidelines for Patients with Thyroid Nodules or Differentiated Thyroid Carcinoma: The 2009 Revision. Thyroid.2009; 19(11):1139- 1143. Disponible en http://www.pubmed.org. Fecha de acceso 25 de Enero del 2011.

35.-Kim, Y. Park, W. Clinical predictors of right upper paraesophageal lymph node metastasis from papillary thyroid carcinoma. World Journal of Surgical Oncology. 2012; 10:164. Disponible en http://www.wjso.com/content/pdf/1477-7819-10-164.pdf. Fecha de acceso 22 de Agosto del 2012.

36.- Tae, H. Lim, D. Baek, K. Park, W. Lee, Y. Choi, J. et al. Diagnostic Value of Ultrasonography to Distinguish Between Benign and Malignant Lesions in the Management of Thyroid Nodules. Thyroid. 2007;17(5). Disponible en http://www.pubmed.org. Fecha de acceso 25 de Enero del 2011.

37.- Ito Y, Amino N, Miyauchi A. Thyroid Ultrasonograph. World J Surg. 2010; 34:1171–1180.Disponible en http://www.pubmed.org. Fecha de acceso. 25 de Enero del 2011.

38.- Treglia, G. Rufini, V. Salvatori, M. Giordano, A. Giovanella, L. PET Imaging in Recurrent Medullary Thyroid Carcinoma. International Journal of Molecular Imaging.2012; Article ID 324686:1-9. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407631/pdf/IJMI2012-324686.pdf. Fecha de acceso: 22 de Agosto del 2012.

39.- Horvath, E. Majlis, S. Rossi, R. Franco, C. Niedmann, J. Castro, A. et al. An Ultrasonogram Reporting System for Thyroid Nodules Stratifying Cancer Risk for

Clinical Management. J.Clin. Endocrinol. Metab. 2009; 94(5): 1748-1751.Disponible en http://www.pubmed.org. Fecha de acceso. 10 de Noviembre del 2010.

- 40.-Ramachandra, L. Kudva, R. Rao, A. Agrawal, S. A Comparative Study of Fine Needle Aspiration Cytology (FNAC) and Fine Needle Non-aspiration Cytology (FNNAC) Technique in Lesions of Thyroid Gland.Indian J Surg (July–August 2011) 73(4):287–290. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144357/pdf/12262_2011_Article_2 83.pdf. Fecha de acceso: 22 de Agosto del 2012.
- 41.-Frates, M. Benson, C. Charboneau, J. Cibas, E. Clark, O. Coleman, B. Management of Thyroid Nodules Detected at US: Society of Radiologists in Ultrasound Consensus Conference Statement; Radiology. 2005;237:794–800. Disponible en http://www.rsna.org. Fecha de acceso 25 de Enero del 2011.
- 42.- Howart, E. Majlis, S. Franco, C. Soto, E. Niedmann. J. ¿Existen nódulos coloideos tiroideos que no requieren punción diagnóstica?. Chil Radiol.2008;14(1): 5-12. Disponible en http://www.scielo.com. Fecha de acceso 5 de Febrero del 2011.
- 43.-Koprowski, R. Ziele, W. Wróbel, Z. Ma, J. St, B. Wójcik, W. Assessment of significance of features acquired from thyroid ultrasonograms in Hashimoto's disease. BioMedical Engineering OnLine.2012; 11:48. Disponible en http://www.biomedical-engineering-online.com/content/pdf/1475-925X-11-48.pdfFecha de acceso 22 de Agosto del 2012.
- 44.-Chow, L. Gharib, H. Goellner, J. Heerden, J. Nondiagnostic Thyroid Fine-Needle Aspiration Cytology: Management Dilemmas. Thyroid.2001;11(12):1147-1151.Disponible en http://www.pubmed.org. Fecha de acceso 25 de Enero del 2011.

Anexos

Anexo 1

CONSENTIMIENTO INFORMADO

Yo, Md. Netty Paola Guevara Galarza solicito de manera muy comedida a los pacientes de los hospitales Vicente Corral Moscoso y José Carrasco Arteaga, participar en el estudio de tesis sobre "VALIDACIÓN ECOGRÁFICA – TIRADS EN PACIENTES CON PATOLOGÍA TIROIDEA. HOSPITAL VICENTE CORRAL MOSCOSO Y HOSPITAL JOSÉ CARRASCO ARTEAGA. CUENCA, 2012.", el cual pretende valorar las características ecográficas de los nódulos tiroideos y comparar con estudios citológicos.

Procedimiento:

Usted no necesita preparación previa, se le realizará un cuestionario sobre sus datos personales.

Durante el estudio en el cual usted permanece acostado/a, se ejecutará una ecografía de tiroides que durará 15 minutos aproximadamente; luego, se desinfecta el sitio de la punción, se realizará una punción de la glándula tiroides con una jeringuilla de 10 cc para toma de muestra de células, sólo se obtendrá una cantidad necesaria para colocar en un portaobjetos fijarla y enviarla a estudio citológico, la punción puede causar ligero dolor, hematoma, sangrado o infección, en caso de haber estas complicaciones serán tratados por el médico responsable, no hay riesgos de atentar contra la vida del paciente que se realice el estudio.

Usted se favorecerá del estudio ya que con el mismo se podrá conocer si la lesión a estudiar es de tipo benigna o maligna y se podrá establecer un diagnóstico y tratamiento adecuado. Estos estudios son de rutina en los hospitales. Los datos obtenidos serán tratados con absoluta confidencialidad.

Declaración del consentimiento:

Después de haber leído detenidamente la hoja de consentimiento, me he informado y escuchado las respuestas a mis inquietudes, en forma voluntaria autorizo a que se me tomen los datos necesarios y se me realice el estudio correspondiente.

Voluntariamente acepto mi participación en este estudio y entiendo que tengo el derecho a retirarme en cualquier momento sin que esto signifique ningún perjuicio para mi persona.

Apellidos y nombres	
Teléfono de contacto	Fecha
Firma	CI

Anexo 2

Datos de paciente

Nombre de Paciente:
Sexo
Edad
Residencia
CARACTERÍSTICAS ECOGRÁFICAS:
TIRADS:
Resultado de Punción

Anexo No 3

TABLAS:

TABLA 1. PORCENTAJE DE DISTRIBUCIÓN DE LA POBLACIÓN ESTUDIADA POR SEXO

SEXO	NÚMERO	PORCENTAJE (%)
HOMBRES	150	17,4
MUJERES	710	82,6
TOTAL	860	100

Elaborado por: La autora

Fuente: Formularios de recolección de la información

TABLA 2. PORCENTAJE DE DISTRIBUCIÓN DE PACIENTES POR EDAD

EDAD (AÑOS)	PACIENTES	PORCENTAJE %
20-30	102	11,9
31-40	126	14,7
41-50	152	17,7
51-60	243	28,3
MAYOR A 61	237	27,6
TOTAL	860	100

Elaborado por: La autora

TABLA 3. LUGAR DE RESIDENCIA DE LA POBLACIÓN ESTUDIADA

ZONA	NÚMERO	PORCENTAJE (%)
URBANO	649	75,5
RURAL	211	24,5
TOTAL	860	100

Elaborado por: La autora

Fuente: Formularios de recolección de la información

TABLA 4. DISTRIBUCIÓN DE LOS PACIENTES QUE VIVEN EN ZONAS URBANAS POR SEXO

SEXO	NÚMERO	PORCENTAJE (%)	
MUJERES	540	83.2	
HOMBRES	109	16.8	
TOTAL	649	100	

Elaborado por: La autora

TABLA 5. DISTRIBUCIÓN DE LOS PACIENTES QUE VIVEN EN ZONAS RURALES POR SEXO

SEXO	NÙMERO	PORCENTAJE (%)	
MASCULINO	41	19,4	
FEMENINO	170	80,6	
TOTAL	211	100	

Elaborado por: La autora

Anexo 4

Glosario

Adenopatía: el término que se usa en medicina para referirse a un trastorno inespecífico de los ganglios linfáticos^(1,2).

Anecogénico:son imágenes producidas por estructuras que no reflejan sino que transmiten las ondas. Se observan gras en la pantalla. Ej. vejiga, quistes^(2,3).

Citología: rama de la biología que estudia las células en lo que concierne a su estructura, sus funciones y su importancia en la complejidad de los seres vivos ⁽¹⁾.

Efecto Doppler: cambio aparente en la frecuencia de una onda emitida por una fuente en movimiento^(2,3).

Ecogenicidad: Intensidad del brillo de una imagen obtenida en ecografía, relacionada con la capacidad de reflexión que presentan los tejidos^(2,3).

Ecografía: también llamada ultrasonografía o ecosonografía, es un procedimiento de diagnóstico que emplea el ultrasonido para crear imágenes bidimensionales o tridimensionales^(2,3).

Hipercromático: Tinción más oscura de los núcleos. Mayor concentración de proteínas asociadas a ADN⁽¹⁾.

Hiperecogénico:se refiere a las imágenes producidas por órganos que reflejan todos o casi todos los ultrasonidos y se observarán blancos en la pantalla del monitor. Ej. Tejido óseo, tejido fibroso, cálculos, calcicaciones^(2,3).

Hipoecogénico: Im á g e n e s o r i ginadas por tejidos blandos que reflejan parcialmente el haz de ultrasonido produciendo ecos de menor intensidad, los cuales van a originar puntos menos brillantes para mostrar una escala de grises en la pantalla ^(2,3).

Índice de resistencia: La resistencia al flujo arterial originado por el lecho microvascular distal al sitio de la medición^(2,3).

Isoecogénica: que tiene una capacidad de reflexión de las ondas de ultrasonido similar a la normal o a la tomada como referencia^(2,3).

Quiste: es una bolsa cerrada con una membrana propia que se desarrolla anormalmente en una cavidad o estructura del cuerpo^(2,3).

Radiación: propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material⁽¹⁹⁾.

Simportador: el transporte de las sustancias se da por acople con otra sustancia⁽¹⁾.

Spot: Imagen hiperecogénica en un fondo anecogénico, son lesiones benignas^{(39,} 42)

Sonido:recorrido de la energía mecánica a través de la materia en forma de onda que produce fenómenos de compresión y rarefacción ⁽²⁾.

TIRADS: Thyroid Imaging Reporting and Data Sistem. Sistema de clasificación de lesiones tiroideas ⁽³⁹⁾.

Transductor: Aparato que convierte una forma de energía en otra, en el caso de los ultrasonidos convierte la energía eléctrica en energía mecánica y viceversa ^(2, 3).