Facultad de Ingeniería Maestría en Ingeniería en Vialidad y Transportes III Cohorte

"Diseño geométrico y diseño de la estructura de pavimentos de la vía de acceso a Yunquil desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km" en el cantón Saraguro de la provincia de Loja".

Trabajo de titulación previo a la obtención del título de Magíster en Ingeniería en Vialidad y Transportes.

Autora:

Ing. Martha Azucena Loja Suconota

CI: 0105548697

Correo electrónico: ing.marthaloja@gmail.com

Director:

Ing. Eduardo Tejeda Piusseaut, Ph.D

CI: 0963616453

Cuenca, Ecuador 06-septiembre-2022

Resumen:

El presente trabajo de titulación forma parte del Convenio de Cooperación Interinstitucional para realizar los "Estudios y Diseños definitivos de las vías a la cabecera parroquial de Yúluc, Uchucay- Sumaypamba-Playas de Sumaypamba, vía a Yunquil y vías de la Urbanización de los Precaristas del cantón Saraguro, Provincia de Loja", entre la Empresa Electro Generadora del Austro, ELECAUSTRO S.A, el Gobierno Autónomo Descentralizado de la Provincia de Loja, el Gobierno Autónomo Descentralizado Parroquial de San Sebastián de Yuluc, el Gobierno Autónomo Descentralizado Parroquial de Sumaypamba, la Universidad de Cuenca, y la Empresa Pública de la Universidad de Cuenca UCUENCA EP.

Una de las bases para suscribir dicho convenio es el objetivo principal del presente trabajo de titulación: Solucionar el acceso al sector denominado Yunquil. Actualmente no existe una vía de acceso a dicho sector y esta es la problemática que los lugareños han presentado a la Empresa Electro Generadora del Austro (ELECAUSTRO S.A.). ELECAUSTRO se encuentra ejecutando el "Proyecto Eólico Minas de Huascachaca" ubicado en el cantón Saraguro de la provincia de Loja. Dentro de las consideraciones del proyecto, debido a las políticas de responsabilidad social de la empresa, ésta se ha comprometido con las comunidades aledañas con el objetivo de impulsar su desarrollo económico y social. Como contribución a las mejoras de la infraestructura vial e impulso a la economía local se plantea el estudio de una vía hasta el sector Yunquil.

Se ha cumplido con el objetivo general y con el desarrollo de los tres objetivos específicos (cada uno se abarca en un capítulo independiente). Por ejemplo, con el estudio topográfico se obtuvo como resultado la topografía a detalle en base a la cual se desarrolla, en el siguiente capítulo, el diseño geométrico horizontal y vertical de la vía desde la abscisa 0+000,00 km que es en la vía a San Sebastián de Yuluc hasta la abscisa 4+250,00 km en dirección al sector denominado Yunquil. El último objetivo específico se aborda en otro capítulo en el que, en base de los ensayos de laboratorio de suelos, se diseñan 3 alternativas de pavimento.

Como alternativa número uno se ha considerado un diseño de la estructura de pavimento en dos etapas, 30 cm de mejoramiento, 15 cm de base y carpeta de 3 pulgadas con una proyección de diez años. Para la segunda etapa se plantea una colocación de 0.5 pulgadas adicionales de carpeta asfáltica. La alternativa dos se ha considerado el diseño de una estructura única de pavimento, de 28 cm de mejoramiento, 15 cm de base y carpeta asfáltica de 3.5 pulgadas con una proyección de 20 años. Finalmente, para la alternativa tres, se propone un diseño de la estructura de pavimento en dos etapas, 27cm de mejoramiento, 16 cm de base y una capa de Doble tratamiento superficial bituminoso (D.T.S.B) para proteger la capa de rodadura con una proyección de diez años. La segunda etapa consistirá en la colocación de una capa de carpeta asfáltica de 1 pulgadas. Para cada una de las alternativas, la recomendación es que se realicen varias evaluaciones superficiales previo al mantenimiento rutinario, un inventario de condición cada año y uno de rugosidad cada dos años. De igual forma la realización de evaluaciones estructurales, deflexiones al menos cada 4 años y sellos asfálticos cada 3 o 4 años.

En resumen, el alcance del presente proyecto de titulación es la elaboración de los estudios básicos de topografía, suelos y tráfico, así como la realización del diseño geométrico de la vía y el diseño de pavimentos.

Palabras claves: Diseño geométrico. Diseño de pavimentos. Topografía. Convenio Elecaustro S.A.

Abstract:

The present work of titling is part of the Inter-institutional Cooperation Agreement to carry out the "Estudios y Diseños definitivos de las vías a la cabecera Parroquial de Yúluc, Uchucay- Sumaypamba-Playas de Sumaypamba, Vía a Yunquil y Vías de la Urbanización de los Precaristas, del Cantón Saraguro, Provincia de Loja", between the Electro Generadora del Austro, ELECAUSTRO SA Compañy, the Autonomous Decentralized Government of the Province of Loja, the Autonomous Decentralized Parish Government of San Sebastián de Yuluc, the Autonomous Decentralized Parish Government of Sumaypamba, the University of Cuenca, and, on the other hand, the Public Company from the University of Cuenca UCUENCA EP.

One of the bases for signing this agreement is the main objective of this degree work "Solving access to the sector called Yunquil", because there is currently no access road to Yunquil. This, in turn, is the problem that the locals have asked the ELECAUSTRO SA Compañy, to be given a solution. ELECAUSTRO is executing the "Proyecto Eólico Minas de Huascachaca" located in the Saraguro canton of the Province of Loja and within the considerations of the project, as well as due to the social responsibility policies of the company, ELECAUSTRO has acquired several commitments with the communities, with the aim of promoting their economic and social development, among which is considered the study of a road to the sector called Yunquil, as a contribution to road infrastructure improvements and boosting the local economy.

The general objective has been met, with the development of each of the specific objectives. There are three specific objectives that are each covered in a separate chapter. For example, the topographic study as results obtained the topography in detail on the basis of which the horizontal and vertical geometric design of the road is developed in the following chapter from the abscissa 0 + 000.00 km that is on the road to San Sebastián de Yúluc to the abscissa 4 + 250.00 km in the direction of the sector called Yunquil. And the last specific objective is addressed in another chapter in which based on soil laboratory tests, 3 pavement alternatives are designed.

Alternative 1 has been considered a pavement structure design in 2 stages, 30cm of prepared subgrade, 15 cm of base and asphalt surface of 3 inches with a projection of 10 years. The second stage of placing 0.5 inches asphalt surface. Alternative 2 has been considered the pavement structure design of a unique, 28cm of prepared subgrade, 15 cm of base and asphalt surface of 3.5 inches with a projection of 20 years and for alternative 3 has been considered a pavement structure design in 2 stages, 27cm of prepared subgrade, 16 cm of base and a surface of D.T.S.B to protect the rolling layer with a projection of 10 years. The second stage placed a 1" asphalt surface. For each of the alternatives, the recommendation is that superficial evaluations be carried out prior to routine maintenance. Condition inventory every year, and roughness every two years. Structural evaluations, deflections at least every 4 years and asphalt seals every 3 or 4 years.

In summary, the scope of this degree project is the elaboration of the basic studies of topography, soils and traffic, as well as the realization of the geometric design of the road and the pavement design.

Keywords: Geometric road design. Pavement design. Topography. Agreement ELECAUSTRO S.A.

INDICE GENERAL

1	INT	ROI	DUCCIÓN	. 23
	1.1	Ant	ecedentes	. 23
	1.2	Est	ado del Arte	. 24
	1.3	Pro	blemática	. 27
	1.4	Obj	etivo General	. 28
	1.5	Obj	etivos Específicos	. 29
	1.5	.1	Vía a Yunquil	. 29
	1.6	Alca	ance	. 29
	1.6	.1	Vía a Yunquil	. 30
	1.7	Met	odología	. 30
	1.8	Ubi	cación:	. 31
	1.8	.1	Coordenadas	. 31
	1.8	.2	Clima de la zona	. 34
	1.8	.3	Geología de la zona	. 38
	1.8	.4	Características socioeconómicas de la zona	. 44
	1.9	Car	acterísticas generales de la vialidad existente en la zona de estudio	. 45
	1.9	.1	Poblaciones conectadas	. 47
2	ES	TUD	IO TOPOGRÁFICO	. 49
	2.1	Obj	etivo	. 49
	2.2	Alca	ance	. 49
	2.3	Met	odología	. 49
	2.4	Car	ta Topográfica	. 49
	2.5	Lev	antamiento topográfico	. 52
	2.5	.1	Puntos de partida	. 52
	2.5	.2	Puntos de referencia	. 54
	2.5	.3	Red de puntos GPS (placa e hitos)	. 58
	2.5	.4	Equipos utilizados para el levantamiento topográfico	. 59

	2.6	Res	sultados del Estudio Topográfico	62
	2.6.1 2.6.2 2.6.3		Planificación Del Área De Vuelo	62
			Altura de vuelo y traslapes	64
			Postprocesamiento de datos	64
	2.6	.4	Características topográficas del terreno	69
3	3. [DISE	ÑO GEOMÉTRICO	70
	3.1	Obj	etivo	70
	3.2	Alc	ance	70
	3.3	Me	todología	70
	3.4	Nor	ma de Diseño	70
	3.5	Dis	eño Vial Tridimensional	71
	3.6	Crit	erios de diseño	71
	3.6	.1	Vehículo de diseño	71
	3.6	.2	Características del proyecto	73
	3.6	.3	Tráfico	74
	3.6	.4	Clase de carretera	77
	3.6	.5	Velocidad de diseño	78
	3.7	Dis	eño Geométrico Horizontal	79
	3.7	.1	Radio mínimo de curvas horizontales	79
	3.7	.2	Radio mínimo a partir del cual no se requiere utilizar curvas de transición	81
	3.7	.3	Distancia de visibilidad	82
	3.7	.4	Peralte	85
	3.7	.5	Tangente intermedia mínima	89
	3.7	.6	Sobreancho	90
	3.8	Dis	eño Geométrico Vertical	92
	3.8	.1	Pendientes	92
	3.8	.2	Curvas verticales	93
	3.9	Sec	cciones típicas adoptadas	97
	3.9	.1	Ancho de la sección transversal típica	97
	3.10	C	Combinación de Alineamientos Verticales y Horizontales	99

4	ES	TUD	IO DE SUELOS Y DISEÑO DE PAVIMENTOS	100				
	4.1 Obje		etivos					
4.2 Alca			cance					
	4.3	Met	odología	100				
	4.4	Ens	nsayos de laboratorio					
	4.5	Det	erminación del tránsito de diseño para diseño de pavimento flexible	103				
	4.5 en		Ecuación del número de ejes simples equivalentes acumulados de vehí rril de diseño y en el periodo de diseño					
	4.5	5.2	Cálculo del TPDA	103				
	4.5	5.3	Cálculo del Factor de distribución por dirección (FD)	103				
	4.5	5.4	Cálculo del Factor de distribución por carril (FL)	104				
	4.5	5.5	Cálculo del Factor de proyección (Fp)	104				
	4.5	5.6	Cálculo del Factor de equivalencia de carga o factor camión FEc	105				
	4.5	5.7	Cálculo de tránsito de diseño para pavimento flexible	108				
	4.6	Det	erminación del módulo resiliente de la subrasante	108				
	4.6	6.1	Cálculo del CBR característico	108				
	4.6	6.2	Cálculo del módulo resiliente de la subrasante	109				
	4.7	Red	querimiento de mejoramiento en la subrasante	110				
	4.8	Mód	dulo resiliente del material de mejoramiento	110				
	4.9	Det	erminación del Módulo resiliente de la subbase	111				
	4.10	D	eterminación del Módulo resiliente de la Base	112				
	4.11	С	aracterísticas de la base estabilizada con cemento	113				
	4.12	С	aracterísticas de Doble Tratamiento Superficial	114				
	4.13	D	eterminación del número estructural SN	115				
	4.1	3.1	Ecuación de la AASHTO para pavimentos flexibles	115				
	4.1	3.2	Cálculo de nivel de confiabilidad ZR	116				
	4.1	3.3	Determinación de la desviación estándar So	116				
	4.1	3.4	Cálculo del cambio total en el índice de servicio	117				
	4.1	3.5	Cálculo del Número estructural	117				
	4.1	3.6	Coeficiente de drenaje (m)	119				

	4.13	3.7	Módulo Resiliente (MR)	121
	4.14	Cál	culo de Espesores de las capas del pavimento	121
	4.14	4.1	Alternativa 1	122
	4.14	4.2	Alternativa 2	123
	4.14	4.3	Alternativa 3	124
	4.15	Rel	nabilitación y Mantenimiento	125
5	CO	NCLU	SIONES Y RECOMENDACIONES	126
	5.1	Conc	lusiones	126
	5.2	Reco	mendaciones	127
6	BIB	LIOGI	RAFÍA	129
	6.1	Biblio	grafíagrafía	129
7	ANI	EXOS		132
	7.1	Anex	o 1	132
	7.2	Anex	0 2	133
	7.3	Anex	0 3	135
	7.4	Anex	0 4	138

INDICE DE FIGURAS

Figura 1-1 Estructura Metodológica
Figura 1-2 Ubicación de la vía en estudio (Tomado de (Google Earth Pro, 2021)) 32
Figura 1-3 Ubicación de Yunquil dentro de la Parroquia San Sebastián de Yúluc (Tomado
de (GAD Parroquial de San Sebastián de Yúluc, 2020))
Figura 1-4 Mapa de Zonas de Temperatura. Fuente: (GAD Parroquial de San Sebastián
de Yúluc, 2020)
Figura 1-5 Vegetación propia de clima seco, en el sector Yunquil
Figura 1-6 Vegetación propia del clima seco, en el sector Yunquil36
Figura 1-7 Mapa Geológico del Ecuador Hoja N°55 de SARAGURO 38
Figura 1-8 Leyenda Mapa Geológico del Ecuador Hoja N°55 de SARAGURO40
Figura 1-9 Mapa Geológico de la Parroquia San Sebastián de Yúluc. (Tomado de (GAD
Parroquial de San Sebastián de Yúluc, 2020))41
Figura 1-10 Geología de la zona, Sector Yunquil
Figura 1-11 Geología de la zona, Sector Yunquil
Figura 1-12 Geología de la zona, Sector Yunquil
Figura 1-13 Productos de sector Yunquil
Figura 1-14 Trocha abierta km 0+000.00
Figura 1-15 Trocha abierta km 1+500.00
Figura 1-16 Punto de Inicio
Figura 1-17 Punto final
Figura 2-1 Carta Topográfica MANU con referencia de trasado de la vía Yúnquil (Instituto

Geográfico Militar Ecuador, 2021)	50
Figura 2-2 Cartografía Básica Huascachaca , para línea de ceros	52
Figura 2-3 Puntos de partida, en el tramo de interés	54
Figura 2-4 Punto de referencia - Cilindro de hormigón HITO	55
Figura 2-5 Punto de referencia – Placa sobre base de hormigón PLACA	55
Figura 2-6 Puntos de referencia	56
Figura 2-7 Placas colocadas como referencia	57
Figura 2-8 Mojones de hormigón, BMs	58
Figura 2-9 Receptor geodesic GPS-GNSS TOPCON HIPER II	60
Figura 2-10 GPS-GNSS HI-TARGET V60	61
Figura 2-11 Dron DJI Phantom 4 pro PPK Drone DJI Phantom 4 pro RTK/PPK E	MLID M+
	62
Figura 2-12 Planificación del área del vuelo	63
Figura 2-13 Altura de vuelo	64
Figura 2-14 Postprocesamiento de datos	65
Figura 2-15 Postprocesamiento de datos	66
Figura 2-16 Ortofoto generada	67
Figura 2-17 Modelo de elevaciones	68
Figura 2-18 Curvas de nivel generadas	69
Figura 3-1 Dimensiones del vehículo tipo. Fuente: (Norma Ecuatoriana Vial	NEVI-12-
MTOP, 2013)	72

Figura 3-3 Inclinaciones de talud de corte recomendadas por tipo de terreno (Castillo
Ingeniería de Suelos en las Vías Terrestres, 1984)98
Figura 3-4 Dimensiones de la sección transversal
Figura 4-1 Calicata PCA # 01
Figura 4-2 Ubicación de la calicata PCA # 01
Figura 4-3 Resultados de ensayos de clasificación de calicata N°1 102
Figura 4-4 Resultados de ensayos CBR, calicata N°1
Figura 4-5 Resultados de ensayos Próctor, calicata N°1
Figura 4-6. TPDA de diseño
Figura 4-7. Factor de distribución por dirección Fuente: (American Association of State
Highway and Transportation Officials, 1993) 104
Figura 4-8 Factor de distribución por carril. Fuente: (American Association of State
Highway and Transportation Officials, 1993) 104
Figura 4-9 Ábaco para la obtención de Módulo Resiliente y coeficiente estructural de la
Subbase. (American Association of State Highway and Transportation Officials, 1993)
Figura 4-10 Abaco para la obtención de Módulo Resiliente y coeficiente estructural de la
Base (American Association of State Highway and Transportation Officials, 1993) 113
Figura 4-11 Abaco para la obtención de Módulo Resiliente y coeficiente estructural de la
Base Estabilizada con Cemento. (American Association of State Highway and
Transportation Officials, 1993)
Figura 4-12 Procedimiento para la determinación de espesores de capa usando un

análisis	de	capa.Fuente:	(American	Association	of	State	Highway	and	Transportation
Officials	, 19	93)							118

INDICE DE TABLAS

Tabla 1-1 Coordenadas de referencia de vía
Tabla 1-2. Información climática. Fuente: INAHMI (Tomado de (GAD Parroquial de San
Sebastián de Yúluc, 2020))
Tabla 1-3 Estaciones con información histórica en el área de influencia del proyecto.
Fuente: Anuarios Meteorológicos del INAMHI (Tomado de Estudios Complementarios de
Diseño de la Vía de Acceso a Yunquil – Estudio Hidrológico)
Tabla 1-4 Registros de Precipitaciones máximas en 24 horas (mm). Fuente: Anuarios
Meteorológicos del INAMHI (Tomado de Estudios Complementarios de Diseño de la Vía
de Acceso a Yunquil – Estudio Hidrológico)
Tabla 2-1 Coordenadas de los Puntos de partida, en el tramo de interés 53
Tabla 2-2 Red de puntos GPS (Placa e hitos)59
Tabla 2-3 Clasificación del terreno por la topografía (NEVI-12)
Tabla 3-1 Vehículo de diseño seleccionado72
Tabla 3-2 Características iniciales del proyecto
Tabla 3-3 TPDS al año 2021. Fuente (Vanegas Ortiz, 2022)
Tabla 3-4 Factor semanal75
Tabla 3-5 Factor Mensual76
Tabla 3-6 TPDA 202176
Tabla 3-7 TPDA de diseño
Tabla 3-8 Clasificación de carreteras en función del tráfico proyectado. Fuente (MTOP M.
d., 2003)

Tabla 3-9 Relación Función, Clase MOP y Tráfico. Fuente: (MTOP M. d., 2003)77
Tabla 3-10 Velocidad de diseño de acuerdo con el tipo de carretera y el tipo de terreno.
Fuente: (MTOP M. d., 2003)
Tabla 3-11 Radios mínimos en función del peralte "e" y del coeficiente de fricción lateral
"f". Fuente: (MTOP M. d., 2003)
Tabla 3-12 Radios mínimos a partir de los cuales no se requiere curvas de transición.
Fuente: (MTOP M. d., 2003)
Tabla 3-13 Distancia mínima de visibilidad de rebasamiento. Fuente: (MTOP M. d., 2003)
Tabla 3-14 Radios mínimos para peraltes específicos, dada la velocidad de diseño y un
peralte máximo e_(máx)=10%. Fuente: (AASHTO, 2004)86
Tabla 3-15 Gradiente longitudinal (i) necesaria para el desarrollo del peralte. Fuente:
(MTOP M. d., 2003)
Tabla 3-16 Valor de C, que corresponde al ancho de la calzada, para el cálculo del
sobreancho. Fuente: (MTOP M. d., 2003)
Tabla 3-17 Valores de diseño de las gradientes longitudinales máximas (%). Fuente:
(MTOP M. d., 2003)
Tabla 3-18 Coeficiente K para curvas convexas mínimas. Fuente: (MTOP M. d., 2003)94
Tabla 3-19 Valores mínimos de diseño del coeficiente K para determinación de curvas
verticales convexas mínimas. Fuente: (MTOP M. d., 2003)94
Tabla 3-20 Coeficiente K para curvas cóncavas mínimas. Fuente: (MTOP M. d., 2003)96
Tabla 3-21 Valores mínimos de diseño del coeficiente K para determinación de curvas

verticales cóncavas mínimas. Fuente: (MTOP M. d., 2003)
Tabla 3-22 Anchos de calzada. Fuente: (MTOP M. d., 2003)
Tabla 4-1 Tasas de crecimiento vehicular recomendadas MTOP
Tabla 4-2 Proyección de la tasa de crecimiento
Tabla 4-3 Tipos de vehículos motorizados, pesos y dimensiones Fuente: Artículo 4. de
Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte y Obras Públicas, 2016) 10
Tabla 4-4 Cálculo del factor de equivalencia de carga 10
Tabla 4-5 Cálculo del factor camión
Tabla 4-6 Cálculo de número de ejes equivalentes (N ó ESALs)
Tabla 4-7 Resumen de resultados CBR
Tabla 4-8 Límites para la selección de resistencia
Tabla 4-9 Cálculo del CBR característico
Tabla 4-10 Categorías de subrasante según el CBR (Ministerio de Transporte
Comunicaciones del Perú, 2014)
Tabla 4-11Coeficientes de capas diseño estructural de pavimentos flexibles, basados en
la normativa AASHTO. (American Association of State Highway and Transportation
Officials, 1993)
Tabla 4-12 CBR de mínimo subbase (normativa (Ministerio de Transporte y Obras
Públicas del Ecuador, 2003))11
Tabla 4-13 CBR de mínimo base (MTOP M. d., 2003)
Tabla 4-14 Coeficientes Estructurales de las Capas del Pavimento ai (Ministerio de
Transporte y Comunicaciones del Perú, 2014)11:

Tabla 4-15 Niveles de confiabilidad sugeridos para diferentes carreteras ((American
Association of State Highway and Transportation Officials, 1993))116
Tabla 4-16 Coeficientes estructurales por capa119
Tabla 4-17 Coeficiente de drenaje (American Association of State Highway and
Transportation Officials, 1993)119
Tabla 4-18 Calidad de drenaje (American Association of State Highway and
Transportation Officials, 1993)121
Tabla 4-19 Resumen de parámetros establecidos para el cálculo de la estructura de
pavimento
Tabla 4-20 Cálculos de espesores de las capas de la estructura de pavimento, alternativa
1
Tabla 4-21 Cálculos de espesores de las capas de la estructura de pavimento, alternativa
2
Tabla 4-22 Cálculos de espesores de las capas de la estructura de pavimento, alternativa
3

INDICE DE ANEXOS

Anexo 1 Resumen de los pesos y dimensiones de los buses y camiones. Fuente	e (MTOF
M. d., 2003)	132
Anexo 2 Tabla Nacional de peso bruto vehicular y dimensiones máximas pero	misibles.
Fuente: Artículo 4. del Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte	y Obras
Públicas, 2016)	133
Anexo 3. Ensayos de Laboratorio de Suelos	135
Anexo 4. Planos de Diseño Geométrico	138

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Martha Azucena Loja Suconota en calidad de autora y titular de los derechos morales y patrimoniales del trabajo de titulación "DISEÑO GEOMÉTRICO Y DISEÑO DE LA ESTRUCTURA DE PAVIMENTOS DE LA VÍA DE ACCESO A YUNQUIL DESDE LA ABSCISA 0+000.00 KM HASTA LA ABSCISA 4+250.00 KM" EN EL CANTÓN SARAGURO DE LA PROVINCIA DE LOJA", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 06 de septiembre de 2022

Martha Azucena Loja Suconota

C.I: 0105548697

Cláusula de Propiedad Intelectual

Martha Azucena Loja Suconota, autora del trabajo de titulación "DISEÑO GEOMÉTRICO Y DISEÑO DE LA ESTRUCTURA DE PAVIMENTOS DE LA VÍA DE ACCESO A YUNQUIL DESDE LA ABSCISA 0+000.00 KM HASTA LA ABSCISA 4+250.00 KM" EN EL CANTÓN SARAGURO DE LA PROVINCIA DE LOJA", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 06 de septiembre de 2022

Martha Azucena Loja Suconota

C.I: 0105548697

AGRADECIMIENTO

Quiero agradecer en primer lugar a Dios y a la Virgen por la vida. A la Universidad de Cuenca por ser el alma máter en mi formación profesional. A las instituciones que han hecho posible la realización del convenio mediante el cual he podido elaborar mi trabajo de titulación, en especial al lng. Gonzalo Clavijo Campos. De igual manera al lng. Eduardo Tejeda, mi director de tesis y al lng. Gerardo Arbito por su apoyo incondicional para culminar con éxito mi trabajo de titulación.

Ing. Martha Loja

DEDICATORIA

Dedico el presente trabajo de titulación a mi papá (+), pues en mi vida ha sido ejemplo de dedicación en la formación profesional, de nunca dejar de aprender, pero sobre todo de nunca rendirse. Con profundo amor dedico también a mi familia, mi esposo Diego por su apoyo cada día y mis pequeños hijos: Xavy y Pauli, es por ellos que emprendo cada uno de los proyectos en mi vida. A mi mami, a quien le debo la vida y mis hermanos pues sin ellos no hubiese sido posible tan siquiera empezar este camino.

Ing. Martha Loja

INTRODUCCIÓN

1.1 Antecedentes

El ámbito de la vialidad es de gran importancia porque es sinónimo de desarrollo y progreso. El presente trabajo de titulación está basado en la arista de Vialidad de la Maestría en Ingeniería en Vialidad y Transportes, Tercera cohorte.

Las siguientes tesis están directamente relacionadas al presente trabajo de titulación. En (Vanegas Ortiz, 2022) se ejecutan los estudios de ingeniería para el mejoramiento de la vía a la cabecera parroquial de San Sebastián de Yúluc desde la abscisa 0+000.00 km a 5+500.00 km, ubicada en el cantón Saraguro de la provincia de Loja. En esta tesis se hace mención al Convenio de Cooperación interinstitucional (Empresa Electro Generadora del Austro ELECAUSTRO S.A., 2021) para realizar los "Estudios y Diseños definitivos de las vías a la cabecera Parroquial de Yúluc, Uchucay- Sumaypamba-Playas de Sumaypamba, Vía a Yunquil y Vías de la Urbanización de los Precaristas, del Cantón Saraguro, Provincia de Loja", entre ELECAUSTRO S.A, el Gobierno Autónomo Descentralizado de la Provincia de Loja, el Gobierno Autónomo Descentralizado Parroquial de San Sebastián de Yúluc, el Gobierno Autónomo Descentralizado Parroquial de Sumaypamba, la Universidad de Cuenca, y la UCUENCA EP. Como resultados en la tesis de (Vanegas Ortiz, 2022) se presenta el levantamiento de una franja topográfica, diseño geométrico y de pavimentos.

El presente trabajo de titulación forma parte del convenio mencionado al igual que la tesis de (Cabrera Luna, 2022) que realiza la "Elaboración de estudios definitivos de ingeniería para el mejoramiento de la vía "Uchucay-Sumaypamba-Playas De Sumaypamba" de 6,50 km. de longitud aproximada, ubicada entre las parroquias San Sebastián de Yúluc y Sumaypamba del cantón Saraguro, provincia de Loja". Como resultado en esta tesis se presenta el estudio de una franja topográfica de 30m de ancho, el diseño geométrico basado en la Normativa MTOP 2003 y el diseño de pavimentos.

1.2 Estado del Arte

Dentro de la elaboración del presente documento se encontraron algunas tesis como (Castillo Villavicencio & Montenegro Reinoso, 2019) que realiza el diseño de la vía periurbana Las Cuadras - Capillapamba, para Chordeleg. En esta tesis se destaca la importancia de la vía en estudio para el desarrollo urbano del mencionado cantón y se presenta el diseño geométrico de la vía, diseño de pavimentos, análisis de movimiento de tierras y estudio de costos.

En (Mora Cabrera, 2019) se realizan los estudios y diseños definitivos para el mejoramiento de la vía Playa de Fátima – Cachi – Jerusalén, cantón Biblián, provincia del Cañar. En esta tesis se analizan los problemas de tránsito y se presentan alternativas de solución desde el punto de vista técnico – económico y de seguridad vial. Se contempla también la ampliación, rectificación y mejoramiento de la vía.

En (Castillo Moncayo, 2019) se desarrolla los diseños definitivos de la vía comprendida desde el ingreso Ayancay hasta la comunidad San Alfonso. En esta tesis se presenta el diseño geométrico y de pavimentos, diseño hidráulico bajo la Normativa MTOP 2003.

Una de las características comunes de los trabajos mencionados es que se busca mejorar la calidad y nivel de vida de las personas optimizando los tiempos y costos de viaje al transportar productos agrícolas, pecuarios y artesanías.

En algunas de las tesis relacionadas con el diseño geométrico de carreteras se expone el hecho de que la clasificación de las carreteras se realiza en función del tráfico proyectado TPDA, tal como se ilustra en la Norma de Diseño Geométrico de Carreteras 2003. En la Norma se establece 6 categorías de carreteras numeradas desde la categoría V con menos Tráfico Proyectado hasta la categoría R-I o R-II con más Tráfico

Proyectado. En la categoría V se encuentran las carreteras que tienen menos de 100 vehículos equivalentes como TPDA proyectado a 15 o 20 años, mientras que en la categoría R-I o R-II se encuentran las carreteras que tienen más de 8000 vehículos equivalentes como TPDA proyectado a 15 o 20 años, para este caso se debería considerar la posibilidad de construir una autopista.

Para el caso particular de las carreteras que se encuentran en la Categoría IV, son aquellas que se encuentran con un rango de 100 a 300 vehículos equivalentes como TPDA proyectado a 15 o 20 años.

Otra característica de la clasificación de las carreteras es por su función, pudiendo ser estas clasificadas como carreteras de corredor arterial, carreteras colectoras o caminos vecinales. Las carreteras clasificadas como caminos vecinales se encuentran en la categoría V o IV o de menor TPDA proyectado, mientras que las carreteras clasificadas como corredores arteriales son aquellas que se encuentran clasificadas como categoría I, II o R-I R-II autopistas por su TPDA proyectado mayor a 8000.

Para el caso particular de las carreteras que se encuentran en la Categoría IV, son aquellas que se encuentran en la clasificación de categoría I, II, III o IV y funcionalmente se encuentran definidas como VÍAS COLECTORAS.

La definición de Vía Colectora que presenta la Norma de Diseño Geométrico de Carreteras 2003 se tiene que están destinadas a recibir el tráfico de los caminos vecinales y que sirven a poblaciones que no están en el Sistema arterial nacional.

En los estudios de diseño de carreteras, tesis y documentos revisados se muestra que es de suma importancia la determinación de la categoría de la carretera pues de ésta

clasificación se derivan varios parámetros de diseño, entre ellos: la velocidad de diseño, y éste parámetro a su vez interfiere en el diseño del alineamiento horizontal en parámetros como: radio mínimo, peraltes, longitudes de transición, distancias de visibilidad, etc. De igual forma interfiere en la determinación de factores de diseño del alineamiento vertical como: gradientes longitudinales, longitud de curvas verticales, etc. En cuanto a la franja de levantamiento de topografía en la bibliografía se describe que para realizar el levantamiento de información topográfica se debe en primer lugar realizar un reconocimiento de la zona, para así determinar los lugares de interés entre los cuales se debe establecer el trazado vial y también otros puntos de importancia como son: poblados, ríos, quebradas, lugares patrimoniales, viviendas, zonas ambientales protegidas, etc. La misma Norma establece en un acápite específico denominado "Topografía y características físicas del relieve" que se deben realizar diferentes reconocimientos del terreno una vez que se hayan establecido las posibles alternativas de rutas, se pueden realizar reconocimientos como: reconocimiento aéreo, reconocimiento terrestre. También indica que la fotointerpretación facilita el estudio de la zona del proyecto.

Por otro lado, en diferentes estudios realizados para diseños de carreteras, sobre todo en aquellos que se realizan con entidades públicas, la determinación del ancho de la franja del levantamiento topográfico se encuentra determinado en los términos de referencia que se elaboran previos a la contratación del estudio de diseño de la carretera. La determinación de este ancho se realiza sobre el eje preliminar, dicho eje se puede diseñar en base a cartas topográficas o en base a topografía existente de la zona a mayor

escala.

El ancho establecido de la franja topográfica suele ser de 60m, 30m a cada lado del eje preliminar y de 80m de ancho de franja 40m a cada lado del eje preliminar en las curvas. Para el diseño de la carretera motivo del presente trabajo de titulación se estableció un ancho de franja de 100 m, 50 m a cada lado desde el eje preliminar, con la finalidad de no tener inconvenientes para realizar el diseño de la vía.

Cabe resaltar que, en cada estudio de diseño vial y tesis la metodología de diseño relaciona el trabajo de campo con la aplicación de las Normativas para que los parámetros de diseño cumplan con las normas establecidas. Es ahí en donde cada proyecto se vuelve particular y único, porque cada uno presenta realidades independientes en campo.

1.3 Problemática

La necesidad de contar con diseños y estudios técnicos es amplia en nuestro país. Por tanto, se considera que en varias provincias, cantones y parroquias existen requerimientos para la elaboración de estudios de diseño en el ámbito vial. Sin embargo, como los recursos son limitados, estos diseños se deben elaborar desde lo macro, a nivel nacional, hasta lo micro a nivel parroquial e ir coordinando planes de movilidad a nivel nacional hasta la menor escala jerárquica vial. O en su defecto, realizar los estudios y diseños viales, como es el caso del presente trabajo de titulación, bajo convenios suscritos entre entidades gubernamentales.

La motivación para suscribir el convenio del cual forma parte este trabajo es que la Empresa Electro Generadora del Austro (ELECAUSTRO) se encuentra ejecutando el "Proyecto Eólico Minas de Huascachaca" ubicado en el cantón Saraguro de la Provincia

de Loja. Dentro de las consideraciones del proyecto, así como debido a las políticas de la empresa, ELECAUSTRO ha adquirido varios compromisos con las comunidades aledañas, con el objetivo de impulsar su desarrollo económico y social, entre los cuales se considera el estudio de una vía hasta el sector denominado Yunquil, como contribución a las mejoras de la infraestructura vial e impulso a la economía local, porque no existe una vía de acceso a dicho sector.

Las personas propias del lugar refieren que el sector de Yunquil, en años anteriores, era muy productivo, catalogándolo como el sector que mejores productos producía. Refieren además que se cultivaba en el lugar, pero con gran dificultad se podían transportar los productos. Únicamente se puede realizar por medio de mulas, y como se han aperturado carreteras que conectan la cabecera parroquial con otros centros poblados, se ha ido relegando la actividad productiva en el sector. A petición de los lugareños dentro del Convenio de Cooperación interinstitucional se toma en consideración la elaboración de los estudios básicos: topográficos, diseño vial y de pavimentos de la vía de acceso a Yunquil.

1.4 Objetivo General

• Solucionar el acceso al sector de Yunquil en un tramo desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km, desde la vía a San Sebastián de Yúluc, mediante el proyecto de una carretera de categoría cuatro.

1.5 Objetivos Específicos

1.5.1 Vía a Yunquil

- Desarrollar los estudios básicos de suelos, topografía y tránsito, necesarios para la elaboración del proyecto vial de acceso a Yunquil desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km.
- Diseñar el trazado de una carretera de categoría 4 para el tramo de la vía de acceso a Yunquil desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km, teniendo en cuenta las particularidades topográficas del terreno.
- Diseñar la estructura de pavimento flexible para la vía de acceso a Yunquil desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km.

1.6 Alcance

Dentro de un proyecto de diseño de un tramo vial, existe la intervención multidisciplinaria de varios profesionales que aportan con su contingente dentro de su área de experticia. En los estudios entregados a la Empresa ELECAUSTRO S.A bajo el convenio suscrito se encuentran los siguientes componentes: Generalidades y Estudio Topográfico, Diseño Geométrico, Estudio de Suelos y Diseño de Pavimentos, Estudio Hidráulico e Hidrológico, Obras de arte menor, Estudio de Seguridad Vial y Señalización, Estudio Ambiental, Planificación Arquitectónica de la Urbanización "Los Precaristas" y Presupuesto, todos estos componentes, forman parte integral del estudio de la vía a Yunquil.

De manera sucinta, en el presente trabajo de titulación se abarcan las áreas inherentes a la Maestría en Ingeniería en Vialidad y Transporte y que han sido la base para establecer los objetivos específicos del mismo, como son: Estudios básicos de suelos, topografía y tránsito, Diseño geométrico y Diseño de Pavimentos. Además, es importante resaltar que dentro del Convenio de Cooperación interinstitucional para realizar los "Estudios y Diseños definitivos de las vías a la cabecera Parroquial de Yúluc, Uchucay-Sumaypamba-Playas de Sumaypamba, vía a Yunquil y vías de la Urbanización de los Precaristas, del cantón Saraguro, provincia de Loja" se indica que luego de contar con

los diseños concluidos, ELECAUSTRO S.A evaluará la factibilidad técnica, financiera y económica para su intervención. Por tanto, el alcance del presente trabajo de titulación se limita a lo siguiente:

1.6.1 Vía a Yunquil

Levantamiento de la franja topográfica en un ancho de 100 m, tomando como referencia el eje preliminar de la vía, 50 m a cada lado del eje de la vía, misma que contendrá información planimétrica y taquimétrica, mediante el empleo de instrumentos topográficos; diseño del proyecto geométrico horizontal y vertical considerando la topografía del terreno; estudios de suelos; diseño de la capa de rodadura de pavimento flexible.

1.7 Metodología

La metodología empleada en el desarrollo del presente trabajo de titulación involucra trabajo de campo y trabajo de oficina. En el trabajo de campo se consideran las actividades que se realizan ya sea en el sitio mismo de la ubicación de la vía o fuera de la oficina, por ejemplo, el trabajo en el laboratorio de suelos. Si bien la extracción de las muestras se realiza en la ubicación de la vía, los ensayos de laboratorio se realizan en el laboratorio de suelos.

El trabajo de oficina implica investigar, interpretar, analizar y diseñar adecuadamente la carretera y la estructura de pavimentos propuesta.

Por tanto, se tiene para el presente trabajo de titulación la siguiente estructura metodológica. Figura 1-1

Figura 1-1 Estructura Metodológica

1.8 Ubicación:

1.8.1 Coordenadas

El sector de Yunquil se encuentra localizado hacia el sureste de la parroquia San Sebastián de Yúluc, en el cantón Saraguro perteneciente a la provincia de Loja en las coordenadas WGS84-UTM- Z17Sur que se indican en la Tabla 1-1 y en la Figura 1-2 y la Figura 1-3.

Tabla 1-1 Coordenadas de referencia de vía

	1 abia 1-1 (Joordenadas de referencia de via	
	II.	NFORMACIÓN GEOGRÁFICA	
	Si	stema de Referencia: WGS84 Proyección: UTM	4
		Zona: 17	
		Sector: Sur	
Punto	Coordenada Este (m)	Coordenada Norte (m)	Altura (m)
Yunquil	677740	9623466	2148

Figura 1-2 Ubicación de la vía en estudio (Tomado de (Google Earth Pro, 2021))

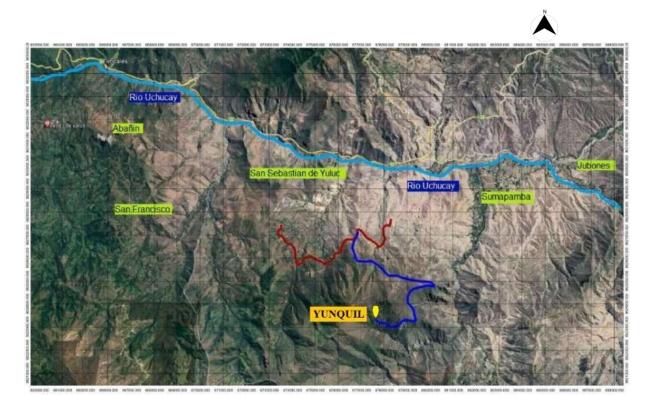
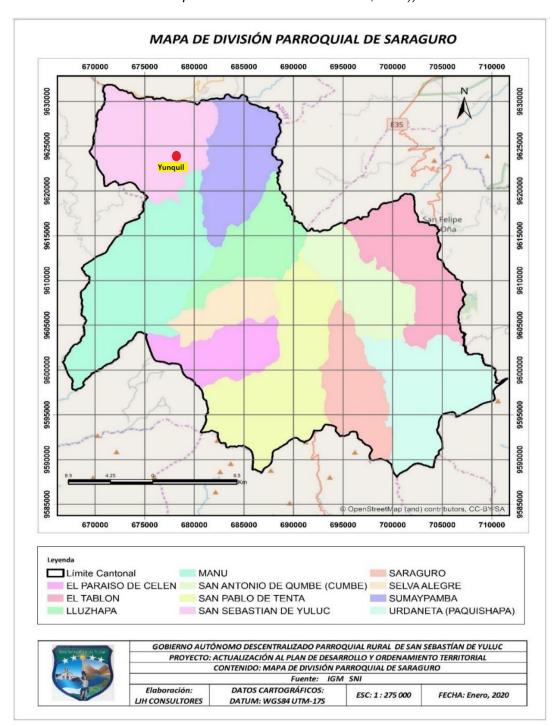



Figura 1-3 Ubicación de Yunquil dentro de la Parroquia San Sebastián de Yúluc (Tomado de (GAD Parroquial de San Sebastián de Yúluc, 2020))

1.8.2 Clima de la zona

El clima de la zona, percibido durante los recorridos realizados, es un clima seco, como se puede observar en la Tabla 1-2 en donde se encuentra la información climática de la Parroquia. En la Figura 1-4 se indica que la Temperatura de Yunquil oscila entre 18°C – 20°C y en la Figura 1-5 y Figura 1-6 se muestran fotografías de Yunquil en donde se observa vegetación herbácea propia del clima seco. En la literatura (Cachi Calderón & Sánchez Cuellar, 2019) se resalta la importancia de considerar el clima en la etapa de diseño de una infraestructura vial para mejorar el funcionamiento de la misma.

Tabla 1-2. Información climática. Fuente: INAHMI (Tomado de (GAD Parroquial de San Sebastián de Yúluc, 2020))

INFORMACIÓN CLIMÁTICA				
Variable	Descripción			
Precipitación	Precipitación: 50 – 600 mm			
Temperatura	10 – 22 °C			
Pisos climáticos	Ecuatorial mesotérmico seco			
Humedad	80 – 88 %			

Figura 1-4 Mapa de Zonas de Temperatura. Fuente: (GAD Parroquial de San Sebastián de Yúluc, 2020)

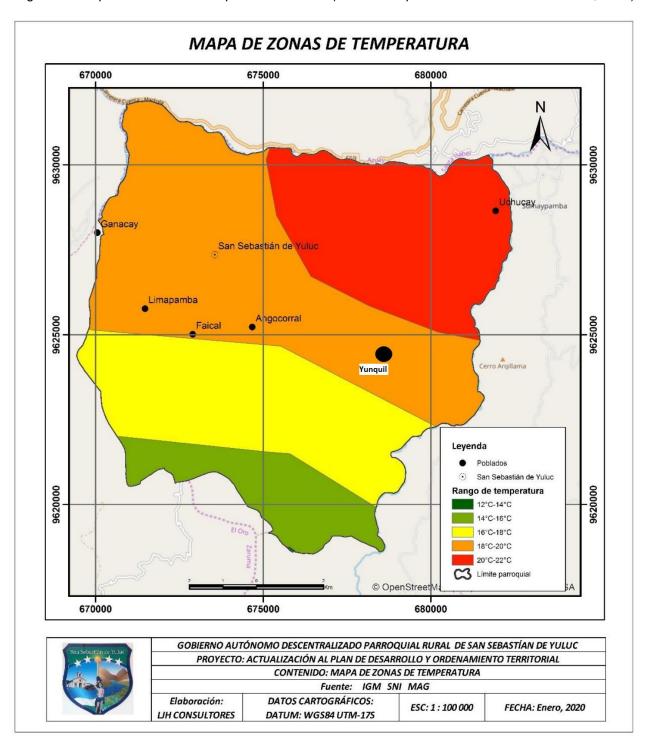


Figura 1-5 Vegetación propia de clima seco, en el sector Yunquil

Figura 1-6 Vegetación propia del clima seco, en el sector Yunquil

En el caso particular de la vía de Acceso a Yunquil, en el tramo de la abscisa Km 0+000.00 hasta la abscisa Km 4+250.00, al tener un clima seco durante varios meses en

el año se tiene una ventaja en el componente hidráulico, la lluvia no será perjudicial para la vía y, por tanto, no se deben prever soluciones a este factor.

Las precipitaciones se han obtenido de la estación Santa Isabel, que es la estación dentro del área de influencia del proyecto (Tabla 1-3).

Tabla 1-3 Estaciones con información histórica en el área de influencia del proyecto. Fuente: Anuarios Meteorológicos del INAMHI (Tomado de Estudios Complementarios de Diseño de la Vía de Acceso a Yunquil – Estudio Hidrológico)

Estación	Código	Tipo	Fuente	Serie Disponible	Número de Años	Cota m s.n.m
Santa Isabel	M-032	Climatológica	INAMHI	1964-2008	26	1550

Tabla 1-4 Registros de Precipitaciones máximas en 24 horas (mm). Fuente: Anuarios Meteorológicos del INAMHI (Tomado de Estudios Complementarios de Diseño de la Vía de Acceso a Yunquil – Estudio Hidrológico)

	Santa		Santa
Año	Isabel	Año	Isabel
1964	20.2	1979	40.2
1965	37.9	1980	38.9
1966	13.3	1981	29.2
1969	43.7	1982	30.6
1970	27.3	1983	35.3
1971	35.5	1984	35.3
1972	25.6	1985	22.0
1973	33.2	1986	21.4
1974	24.0	1987	26.8
1975	23.7	2008	41.9
1976	19.2	2009	22.6
1977	27.8	2010	36.5
1978	21.4	2011	42.0

1.8.3 Geología de la zona

De manera general la Geología de la zona se observa en el Mapa Geológico del Ecuador en la Hoja N°55 de SARAGURO (Instituto de Investigación Geológico y Energético (IIGE)) (Figura 1-7).

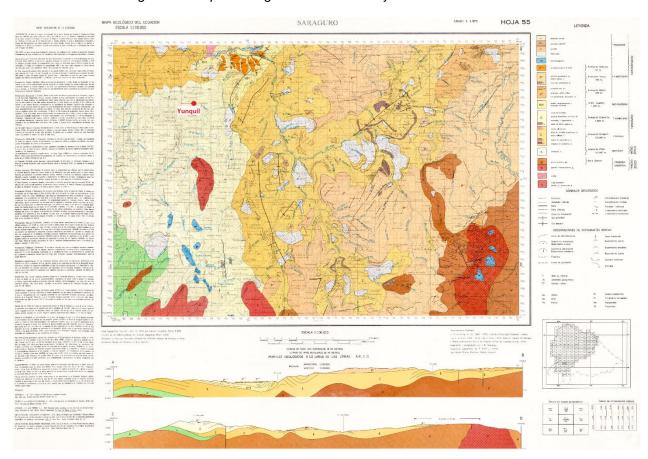
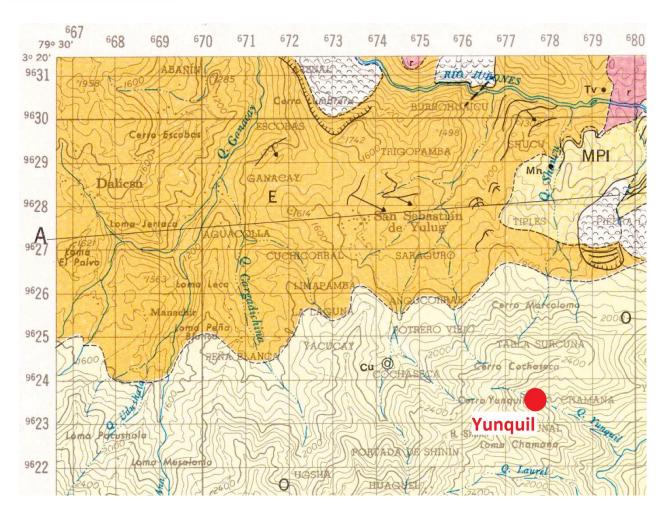
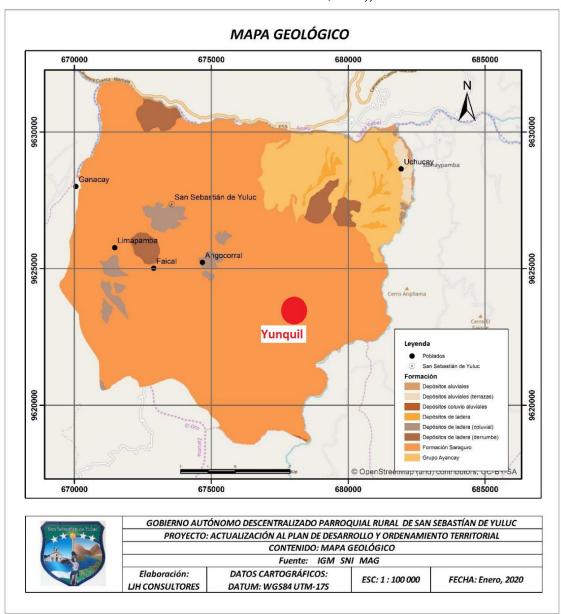



Figura 1-7 Mapa Geológico del Ecuador Hoja N°55 de SARAGURO

En la Figura 1-8 se encuentra la Leyenda del Mapa Geológico del Ecuador de la Hoja N°55 de SARAGURO en donde se identifica que de manera general la Geología del sector de Yunquil se encuentra dentro de la Formación Chinchillo con rocas volcánicas, pórfido cuarcífero, toba, andesita, ignimbrita y capa de lutita negra.

LEYENDA depósito aluvial c depósito coluvial HOLOCENO derrumbe CUATERNARIO gd depósito glacial Formación Uchucay P''' conglomerado y limolita 50 m. porfido cuarcífero, o; **PLEISTOCENO** Formación Tarqui P" toba riolítica, h; 750 m. capa de sedimento, s. pr pr piroclásticas, pr; Formación Nabón 450 m. arenisca, lutita, toba, P conglomerado, diatomita, d. Grupo Ayancay arcilla, conglomerado y MIO-PLIOCENO MPI arenisca tobácea 1.500 m. rocas volcánicas: pórfido cuarcífero, o; toba, h; Formación Chinchillo 0 ? OLIGOCENO andesita, n; ignimbrita, i. 1,500 m. capa de lutita negra, lu. rocas volcánicas toba, h; pórfido cuarcífero, o; Formación Saraguro E toba riolítica, r; ? EOCENO 0-3.000 m capas de ignimbrita, i; coladas de andesita, n.


Figura 1-8 Leyenda Mapa Geológico del Ecuador Hoja N°55 de SARAGURO

Además del Mapa Geológico del Ecuador, se tiene información del PDOT (GAD Parroquial de San Sebastián de Yúluc, 2020) en donde se expone el Mapa Geológico de la Parroquia (Figura 1-9) en donde se indica de manera más específica que Yunquil se encuentra dentro de la Formación Saraguro. En el mismo documento del Plan de Desarrollo y Ordenamiento Territorial, se describe a la Formación Saraguro como:

"Formación Volcánicos Saraguro.- secuencia de lavas andesilicas y piroplásticos, recubiertas por la formación Chinchillo (Loja – Saraguro), que incluye lavas de andesilicas

a rioliticas con escaso piroclasticos. La potencial total del grupo sobrepasa los 1.500 metros (loma blanca), quizá alcanza hasta los 2.000 metros (Saraguro Chinchillo) y está recubierto por sedimentos del Mioceno inferior a medio en algunas cuencas intermontañas, pero está cubierto principalmente por volcánicos más jóvenes". (GAD Parroquial de San Sebastián de Yúluc, 2020)

Figura 1-9 Mapa Geológico de la Parroquia San Sebastián de Yúluc. (Tomado de (GAD Parroquial de San Sebastián de Yúluc, 2020))


Y en los recorridos realizados a la zona de implantación del proyecto vial de la vía de acceso a Yunquil, en el tramo de la abscisa Km 0+000.00 hasta la abscisa Km 4+250.00, se observa que la geología del lugar está conformada por un material granular grueso, como se observa en la Figura 1-10 y en la Figura 1-11. Esta información será corroborada por los ensayos de laboratorio que se realicen a las muestras que se obtienen en campo (Figura 1-12).

La importancia de conocer y realizar estudios para determinar las características de los materiales predominantes en la zona radica en la falta de uniformidad de la geología. Se puede entender el concepto de geodiversidad como "la variedad de rocas, minerales, fósiles, formas terrestres, sedimentos y suelos, junto con los procesos naturales que los forman y modifican" (Directrices para la aplicación de las categorías de gestión de áreas protegidas, 2008). En la Figura 1-11 se observan fósiles de caracoles que forman parte de la historia geológica del sector.

Figura 1-10 Geología de la zona, Sector Yunguil

Figura 1-11 Geología de la zona, Sector Yunquil

La diversidad de la geología se corrobora con los resultados de laboratorio de suelos. En términos generales se trata de suelos de grano grueso. En la calicata específica realizada

en la coordenada WGS84-UTM-Z17Sur (678300.9 E, 9625547.8N) se tiene clasificación de suelo como: gravas arcillosas, arenas arcillosas y arenas limosas. Para el diseño de infraestructura vial es importante realizar indagaciones y muestreos pertinentes porque puede ocurrir que en un tramo del sector se presenten rocas muy difíciles de romper en la etapa constructiva y en otro tramo arcillas blandas. Estas características geológicas se deben tomar en consideración en la etapa de diseño con la finalidad de dar soluciones técnicas, aunque dicha información se aleja de los objetivos del presente trabajo de titulación.

1.8.4 Características socioeconómicas de la zona

Otro factor importante al momento de diseñar una carretera, desde el ámbito social, son las características socioeconómicas de la zona, entendiéndose a éstas como la finalidad de la vía o el uso que se le vaya a dar a la misma.

Como se indicó en el acápite 1.2, el problema a resolver mediante el presente trabajo de titulación es el transporte de productos agrícolas. En el Plan de Desarrollo y Ordenamiento Territorial (GAD Parroquial de San Sebastián de Yúluc, 2020) se enlista algunos de los productos agrícolas que se cultivan en el sector como: cebolla roja, pimiento, tomate, fréjol, maíz. El cultivo de cebolla se menciona que es el único producto que puede superar la época de la sequía, fuertes vientos y heladas. Se indica además que a pesar de que la Parroquia está rodeada por un escenario desértico y rocoso, cuenta con zonas altamente productivas que se configuran en microclimas subtropicales con condiciones ideales para la producción de todo tipo de cultivos. A diferencia de otros sectores de la Parroquia San Sebastián de Yúluc, en Yunquil en la actualidad no se realiza una gran actividad productiva, y a pesar de ello en los recorridos que se realizaron se observaron algunos productos como se observa en la Figura 1-13.

Figura 1-13 Productos de sector Yunquil

La agricultura es el principal medio de vida de la Parroquia, por tanto, se define dentro de las características socioeconómicas a los habitantes del sector como agricultores. Y dentro del diseño de la vía que se analiza se puede decir que el uso que en lo posterior se dará a la vía será para transportar productos agrícolas.

1.9 Características generales de la vialidad existente en la zona de estudio

Actualmente no existe una vía de acceso al sector denominado Yunquil. Existe una trocha abierta desde la actual vía de ingreso al centro parroquial de San Sebastián de Yúluc (Figura 1-14), de 1.9 km aproximadamente. El ancho actual de la trocha abierta es de un ancho aproximado de 3.50 m y a 1.5 km aproximadamente la pendiente de la trocha abierta es muy pronunciada que imposibilita el ingreso por medios motorizados (Figura 1-15).

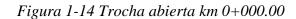


Figura 1-15 Trocha abierta km 1+500.00

Dicha trocha abierta no es usada dentro del presente diseño vial por tema de pendiente, la cota inicial (1577 m.s.n.m) y final del proyecto (2148 m.s.n.m) presentan un desnivel

(571 m) que si se sigue el trazado de la trocha abierta se tendría pendientes muy elevadas sobre el 35%. Por tal razón, se ha realizado otro trazado respetando únicamente los primeros metros de la trocha abierta actualmente existente.

1.9.1 Poblaciones conectadas

La vía motivo de estudio conectará la actual vía de ingreso al centro parroquial de San Sebastián de Yúluc abscisa km 0+000.00 (Figura 1-16) y el sector Yunquil abscisa km 9+205.00 (Figura 1-17). Para realizar el diseño geométrico de la vía se consideran estos dos puntos obligados, sin embargo, en el presente trabajo de titulación se presenta los componentes desde la abscisa 0+000,00 km hasta la abscisa 4+250,00 km.

Figura 1-16 Punto de Inicio

Figura 1-17 Punto final

ESTUDIO TOPOGRÁFICO

2.1 Objetivo

Desarrollar estudios de topografía.

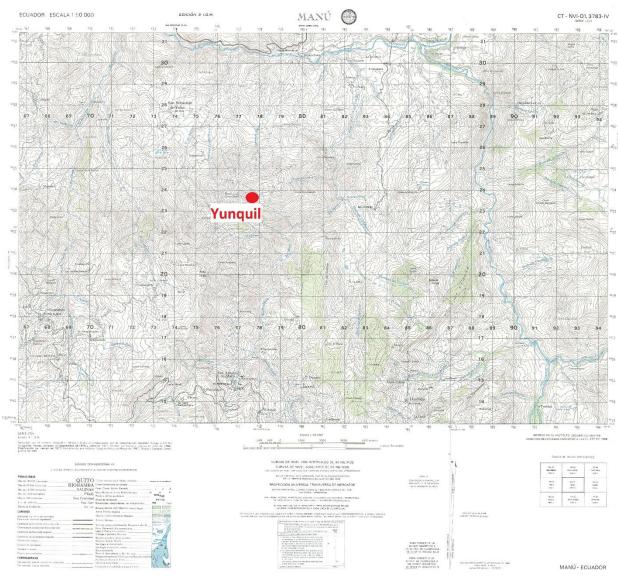
El presente capítulo contribuirá al desarrollo del objetivo específico número uno sobre el desarrollo de estudios básicos de topografía.

2.2 Alcance

Levantamiento de franja de 100m de ancho

El alcance del presente capítulo es realizar el levantamiento de la franja topográfica en un ancho de 100 m, tomando como referencia el eje preliminar de la vía, 50 m a cada lado del eje de la vía, mismo que contendrá información planimétrica y taquimétrica, mediante el empleo de instrumentos topográficos.

2.3 Metodología


Dentro de la metodología expuesta en el presente documento se tiene que el estudio de topografía es un trabajo de campo y también de oficina.

La misma normativa vigente, (MTOP M. d., 2003) Normas de Diseño Geométrico de carreteras – 2003, en el acápite correspondiente a topografía, recomienda realizar recorridos de reconocimiento del terreno, aéreos y terrestres.

2.4 Carta Topográfica

Previo a los recorridos aéreos, se ha realizado la revisión en la Carta topográfica del Ecuador del Instituto Geográfico Militar de Ecuador, carta topográfica MANÚ Figura 2-1 (Instituto Geográfico Militar Ecuador, 2021) y adicionalmente un archivo que contiene la topografía del sector a mayor escala entregado por ELECAUSTRO S.A. El archivo, denominado Cartografía Básica Huascachaca (Figura 2-2), sirvió de base sobre el cual se realizó el trabajo de la línea de ceros para colocar en campo los hitos y mojones necesarios. Posterior a ello se realizó el levantamiento de información topográfica a mayor detalle con drones.

Figura 2-1 Carta Topográfica MANU con referencia de trasado de la vía Yúnquil (Instituto Geográfico Militar Ecuador, 2021)

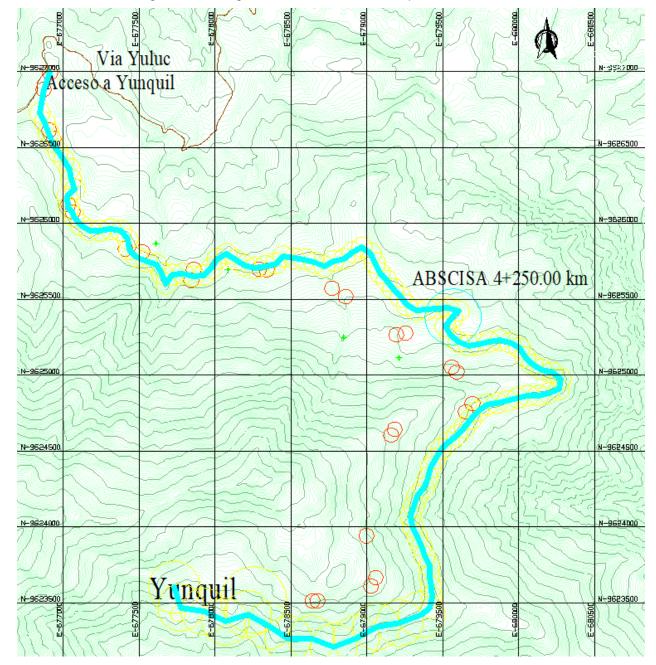


Figura 2-2 Cartografía Básica Huascachaca, para línea de ceros

2.5 Levantamiento topográfico

2.5.1 Puntos de partida

Como se expuso anteriormente, el trabajo de línea de ceros se realiza en función de un

punto inicial y final, en este caso la actual vía a San Sebastián de Yúluc y el sector denominado Yunquil respectivamente. Se establece una pendiente longitudinal inicial que se encuentra dentro de lo establecido en la Normativa vigente. Y se traza sobre cada curva de nivel un punto que permita la unión éstos formar la línea de ceros. La pendiente inicial se puede ir modificando hasta lograr unir los puntos inicial y final del proyecto mediante la línea de ceros. De forma específica el tramo de vía que se presenta en el trabajo de titulación parte desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km. Por tanto, para el levantamiento topográfico se tiene las siguientes coordenadas como punto de inicio y como punto final del tramo (Tabla 2-1).

Tabla 2-1 Coordenadas de los Puntos de partida, en el tramo de interés

INFORMACIÓN GEOGRÁFICA			
	Sistem	a de Referencia: WGS8 Proyección: UTM	4
		Zona: 17	
	Sector: Sur		
COORDENADAS	Punto	Coordenada Este	Coordenada Norte (m)
INICIO ABSCISA	ACCESO A	676897	9627001
0+000.00 km	YUNQUIL		
FIN	ABSCISA	679567	9625381
ABSCISA 4+250.00 km	4+250.00		
	km		

En la Figura 2-3 se observa los puntos de interés del tramo en análisis, el acceso a la vía de Yunquil abscisa km 0+000,00 y la abscisa km 4+250,00.

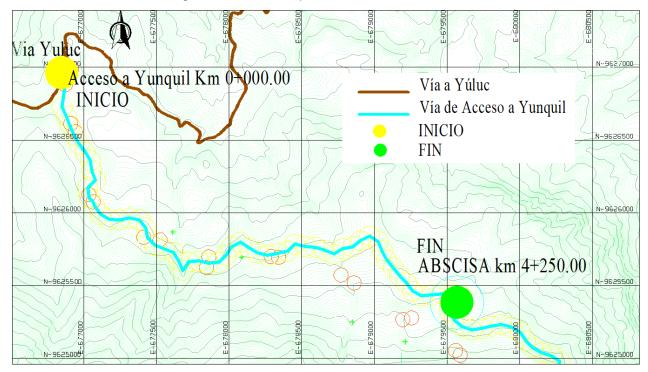


Figura 2-3 Puntos de partida, en el tramo de interés

2.5.2 Puntos de referencia

Colocación de los puntos de referencia en campo, se ha colocado dos tipos de puntos de referencia, cilindros de hormigón denominados HITOS (Figura 2-4) y placas sobre la base de hormigón denominadas PLACAS (Figura 2-5).

Figura 2-4 Punto de referencia - Cilindro de hormigón HITO

Figura 2-5 Punto de referencia – Placa sobre base de hormigón PLACA

Mediante el método de posicionamiento NTRIP usando la base BHEC, se ha establecido varios puntos de control marcados e identificados, en su gran mayoría como puntos control azimutales para la georreferenciación de estaciones totales usadas y así formar poligonales abiertas, brindando la posibilidad de reducir enormemente la generación de errores por acumulación, ya que el posicionamiento mediante NTRIP el error es puntual

y no acumulativo. Y otros puntos para utilizar como base de levantamiento RTK. Resumiendo, se tiene para la zona de trabajo 4 puntos de control fijos para posicionamiento, puntos de color verde (placas) Figura 2-6 y cerca de 16 puntos de control fotogramétrico, puntos de color rojo (hitos) Figura 2-6.

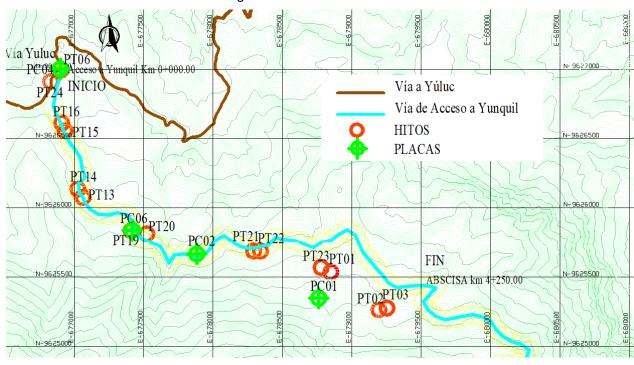


Figura 2-6 Puntos de referencia

Los puntos se encuentran bajo los parámetros y normativa que establece como sistema de proyecciones UTM-WGS84 ZONA 17 SUR, usando como elipsoide WGS84 y para el cálculo de la altura Ortométrica el geoide EGM96 a través del software TRIMBLE BUSSINES CENTER (TBC v5).

Estos puntos son de control topográfico. Los puntos indicados de color verde corresponden a la colocación de placas (como la de la Figura 2-7), que en su grabado contienen la leyenda:

Figura 2-7 Placas colocadas como referencia

Y los puntos de color rojo de la Figura 2-6 son los hitos o mojones de hormigón colocados en campo como se observan en la Figura 2-8.

Figura 2-8 Mojones de hormigón, BMs

El tiempo de lectura en cada punto es de aproxidamente de 60 segundos, y el parámetro PDOP obtenido es de valores de 1.0 a 2.0.

2.5.3 Red de puntos GPS (placa e hitos)

La red de puntos GPS se ha observado mediante la técnica de posicionamiento RTK por método NTRIP (Red de Transporte de datos en formato RTCM a través Protocolo de Internet), lo que conlleva que tenemos una corrección diferencial en tiempo real vía un servidor "caster" que para este caso es la estación de monitoreo continuo de Santa Isabel, la zona de estudio presenta cobertura móvil intermitente pero que permite el acceso por datos móviles al servidor por lo cual se garantiza que los puntos colocados están anclados al sistema REGME del Instituto Geográfico Militar, es decir las placas colocadas y los hitos de hormigón colocados en campo que se ilustran en la Figura 2-6, se encuentran representados por las siguientes coordenadas (Tabla 2-2):

Tabla 2-2 Red de puntos GPS (Placa e hitos)

TIPO	PUNTO	ESTE	NORTE	ALTURA ORTOMÉTRICA	ALTURA ELIPSOIDAL
ніто	PT01	678848.974	9625536.240	1868.980	1886.729
HITO	PT02	679195.196	9625264.711	1931.293	1949.065
HITO	PT03	679255.195	9625277.982	1914.371	1932.148
HITO	PT06	676907.099	9626994.348	1581.917	1599.528
НІТО	PT13	677061.613	9626077.321	1646.615	1664.218
HITO	PT14	677025.944	9626136.337	1645.246	1662.847
HITO	PT15	676932.837	9626556.485	1607.054	1624.657
HITO	PT16	676908.654	9626613.252	1604.898	1622.500
ніто	PT19	677408.268	9625836.258	1693.724	1711.352
HITO	PT20	677520.196	9625813.614	1678.109	1695.747
HITO	PT21	678292.685	9625690.527	1776.174	1793.878
HITO	PT22	678342.338	9625690.498	1781.843	1799.551
HITO	PT23	678778.449	9625570.544	1850.498	1868.242
HITO	PT24	676829.893	9626911.316	1578.738	1596.340
PLA	PC01	678761.979	9625349.924	1908.552	1926.289
PLA	PC04	676869.771	9627002.635	1717.807	1735.474
PLA	PC05	678951.143	9623649.934	2346.624	2364.334
PLA	PC06	677417.798	9625835.958	1691.355	1708.984

2.5.4 Equipos utilizados para el levantamiento topográfico

El levantamiento topográfico se ha decidido realizar mediante la técnica de RTK que significa "Real Time Kinematic o Cinemático en Tiempo Real" (Ferreccio, 2006), y también mediante tecnología de drones, que son "aeronaves no tripuladas" o, por sus siglas en inglés, UAV "Unmanned Aerial Vehicle" (Valencia Sierra, 2015)

Los equipos utilizados son los siguientes: Figura 2-9,

Figura 2-10 y Figura 2-11.

Figura 2-9 Receptor geodesic GPS-GNSS TOPCON HIPER II

Número de canales		72 canales universales	
Señales seguidas GPS GLONASS SBAS		L1 CA, L1/L2 Código-P, L2C L1/L2 CA, L1/L2 Código-P WAAS, EGNOS, MSAS	
PRECISIÓN POSICI	ONAMIENTO*1		
Estático	L1+L2 Solo L1	H: 3 mm + 0.5 ppm V: 5 mm + 0.5 ppm H: 3 mm + 0.8 ppm V: 4 mm + 1 ppm	
Cinemático	L1+L2	H: 10mm + 1 ppm V: 15mm + 1 ppm	
RTK	L1+L2	H: 10mm + 1 ppm V: 15mm + 1 ppm	
DGNSS		<0.3 m	

Figura 2-10 GPS-GNSS HI-TARGET V60

MEDICIÓN

- 220 Canales
- Avanzado chip Pacific Crest Maxwell 6 GNSS topográfico personalizado
- · Correlador múltiple de alta precisión para medidas de pseudodistancia GNSS
- Sin filtrado, datos de medidas de pseudodistancia sin suavizado, para lograr un bajo ruido, pocos errores por trayectoria múltiple, una correlación de dominio de bajo tiempo y respuesta de alta dinámica
- \bullet Muy bajo ruido en las medidas de fase de la portadora GNSS con precisión de < 1mm en un ancho de banda de 1 Hz
- Relaciones de señal-ruido se señalan en dB-Hz
- · Probada tecnología de rastreo de baja elevación de Pacific Crest

Señales de satélite rastreado en simultáneo

GPS	L1C/A, L2C, L2E, L5
GLONASS	L1C/A, L1P, L2C/A (GLONASS M sólo), L2P
SBAS	L1 C/A, L5
Galileo	L1 BOC, E5A, E5B, E5AltBOC1
BDS/Compass(opcional)	B1, B2 ²
QZSS	L1 C/A, L1 SAIF, L2C, L5

FUNCIONAMIENTO DURANTE EL POSICIONAMIENTO³

Medición Estática y Estática Rápida GNSS

Horizontal	2.5mm+0.5ppm RMS
Vertical	5mm+0.5ppm RMS

Medición GNSS Cinemática con Posprocesamiento (PPK / Stop & Go) Horizontal 1cm+1ppm RMS Vertical 2.5cm+1ppm RMS Tiempo de inicialización tipico 10 minutos para próvil

base mientras 5 minutos para móvi**l** Fiabillidad en la inicialización......típica de > 99.9%

Medición Cinemática en Tiempo Real (RTK)

Horizontal 8mm+1ppm RMS
Vertical
Tiempo de inicialización típico de < 8 segundos
Fiabilidad en la inicializacióntípica de > 99.9%

Posicionamiento GNSS de Código Diferencial

Horizontal	25cm+1ppm RMS
Vertical	50cm+1ppm RMS
SBAS ⁴ 0.50m Horizon	ntal, 0.85m Vertical

Figura 2-11 Dron DJI Phantom 4 pro PPK Drone DJI Phantom 4 pro RTK/PPK EMLID M+

AIRCRAFT	PHANTOM 4 PRO V2.0	PHANTOM 4 PRO
Product Position	Entry-Level Professional Drone with Powerful Obstacle Avoidance	Entry-Level Professional Drone with Powerful Obstacle Avoidance
Weight (Battery & Propellers included)	1375 g	1388 g
Max Flight Time	Approx. 30 minutes	Approx. 30 minutes
Vision System	Forward Vision System Backward Vision System Downward Vision System	Forward Vision System Backward Vision System Downward Vision System
Obstacle Sensing	Front & Rear Obstacle Avoidance Left & Right Infrared Obstacle Avoidance	Front & Rear Obstacle Avoidance Left & Right Infrared Obstacle Avoidance
Camera Sensor	1"CMOS Effective pixels: 20 M	1"CMOS Effective pixels: 20 M
Max. Video Recording Resolution	4K 60P	4K 60P
Max Transmission Distance	FCC: 4.3 ml	FCC: 4,3 mi
Video Transmission System	OcuSync	Lightbridge
Operating Frequency	2.4 GHz/5.8 GHz *5.8 GHz transmission is not available in some regions due to local regulations.	2.4 GHz/5.8 GHz *5.8 GHz transmission is not available in some regions due to local regulations.

Posicionamiento

Estático horizontal	5 mm + 1 ppm
Vertical estático	10 mm + 2 ppm
Cinemática horizontal	7 mm + 1 ppm
Vertical cinemática	14 mm + 2 ppm

Conectividad

Radio LoRa (se vende por separad	lo)
Rango de frecuencia	868/915 MHz
Distancia	Hasta 8 km
Wifi	802.11b/g/n
Bluetooth	4.0 / 2.1 EDR
Puertos	USB, UART, evento

Datos

Correcciones	NTRIP, VRS, RTCM3
Salida de posición	NMEA, LLH / XYZ
Registro de datos	RINEX con eventos ización de hasta 14 Hz
Almacenamiento interno	8 GB

GNSS

Señal rastreada	GPS / QZSS L1, GLONASS G1 BeiDou B1, Galileo E1, SBAS		
Número de canales	72		
Tasas de actualización	14 Hz / 5 Hz		
IMU	9DOF		

2.6 Resultados del Estudio Topográfico

2.6.1 Planificación Del Área De Vuelo

El área de vuelo se determinó en base al primer análisis de la ruta, con lo cual se procedió

a establecer que es necesario cubrir una franja de por lo menos 100 metros a cada margen y que también cubra los hitos colocados previamente, puesto que estos llegaran a ser parte de los puntos de control y GPC (Ground point control).

El plan de vuelo se lo realiza con aplicaciones móviles de suscripción para IOS, la cual permite hacer vuelos con Terrain Awareness (Coincidencia de terreno), lo que permite llevar un tamaño de pixel relativamente constante haciendo que las líneas de vuelo mantenga una altura constante respecto a la forma del terreno. Cabe destacar que las líneas de vuelo se las realiza sin hacer cuadricula o líneas cruzadas ya que esta metodología aplica para vuelos en los que se tenga edificaciones de altura con la finalidad de obtener una nube de puntos densa en la que se pueda captar puntos laterales de dichas edificaciones lo cual no aplica para el caso de estudio siendo basto líneas en un solo sentido (Figura 2-12).

Figura 2-12 Planificación del área del vuelo

2.6.2 Altura de vuelo y traslapes

Se ha determinado que para las condiciones del lugar se requiere un producto con escala inferior a 1:1000, lo que representa que el GSD (Ground sampling distance), sea inferior a 10cm por lo cual para el equipo en uso se determina que la altura de vuelo debe ser 275m sobre el terreno y siguiendo los parámetros recomendados por la aplicación de vuelo, nos recomienda un traslape frontal del 75% y un traslape lateral del 70%, parámetros bastamente superiores a los recomendados en la normativa del IGM para generación de orto fotos.

Figura 2-13 Altura de vuelo

2.6.3 Postprocesamiento de datos

Por medio de software fotogramétrico se realiza el procesamiento de las fotos, en el cual se carga todas las fotos obtenidas alineándolas y generando una nube de puntos dispersa usando un tamaño de pixel completo, esto se considera como paso inicial, en este procedimiento se evidencia si existe el suficiente traslape entre fotografías (Figura 2-14).

Number of overlapping images: 1 2 3 4 5+

Figura 2-14 Postprocesamiento de datos

Posterior a este proceso inicial se ingresa los GPC Ground Control Points para los cuales se han considerado los mismos hitos monumentados que son fotoidentificables y adicionalmente marcas colocadas con cinta amarilla de peligro y estructuras encontradas a lo largo del trayecto como muros de piedra, se ha marcado un total de 19 GPC en 3D lo cual nos da ajuste en X,Y y Z aportando precisión al modelo final (Figura 2-15).

Figura 2-15 Postprocesamiento de datos

Ground Control Points

GCP Name	Accuracy XY/Z [m]	Error X[m]	Error Y[m]	Error Z[m]	Projection Error [pixel]	Verified/Marked
1 (3D)	0.020/ 0.020	0.006	0.004	0.057	0.170	3/3
2 (3D)	0.020/ 0.020	-0.002	0.009	-0.017	0.089	5/5
5 (3D)	0.020/ 0.020	-0.009	-0.009	-0.030	0.123	5/5
12 (3D)	0.020/ 0.020	0.006	0.005	-0.009	0.574	7/7
13 (3D)	0.020/ 0.020	-0.008	-0.005	-0.017	0.542	3/3
14 (3D)	0.020/ 0.020	0.009	0.007	0.019	0.258	9/9

RMS Error [m]		0.009699	0.013545	0.040854		
Sigma [m]		0.009579	0.013544	0.040852		
Mean [m]		-0.001521	-0.000072	-0.000385		
10 (3D)	0.020/ 0.020	0.002	0.003	0.011	0.086	6/6
33 (3D)	0.020/ 0.020	-0.003	-0.034	-0.111	0.043	2/2
32 (3D)	0.020/ 0.020	0.001	-0.005	0.010	0.209	13/13
31 (3D)	0.020/ 0.020	-0.004	0.007	0.006	0.311	18 / 18
30 (3D)	0.020/ 0.020	0.006	-0.006	-0.009	0.339	17 / 17
28 (3D)	0.020/ 0.020	-0.006	-0.008	0.030	0.277	6/6
27 (3D)	0.020/ 0.020	0.014	0.019	-0.024	0.384	10 / 10
25 (3D)	0.020/ 0.020	-0.001	-0.005	-0.007	0.180	6/6
21 (3D)	0.020/ 0.020	0.008	0.035	0.071	0.012	2/2
20 (3D)	0.020/ 0.020	-0.001	0.001	-0.012	0.253	3/3
19 (3D)	0.020/ 0.020	-0.008	-0.013	-0.023	0.522	4/4
18 (3D)	0.020/ 0.020	-0.004	0.003	-0.028	0.216	3/3
15 (3D)	0.020/ 0.020	-0.032	-0.009	0.076	0.357	5/5

Productos generados

Como proceso secundario se obtiene una nube de puntos densa la cual se clasifica en varias categorías como:

- Ruido
- Suelo
- Vegetación baja
- Vegetación alta
- Edificaciones

A partir de esta clasificación se depura la información entre el MDS modelo que contiene elevaciones de todo tipo y el MDT que es el modelo que representa solo la categoría suelo, el cual se emplea para la generación de curvas de nivel para diseño.

En el proceso final se obtiene la ortofoto de la Figura 2-16, modelo de elevaciones de la Figura 2-17 y curvas de nivel de la Figura 2-18.

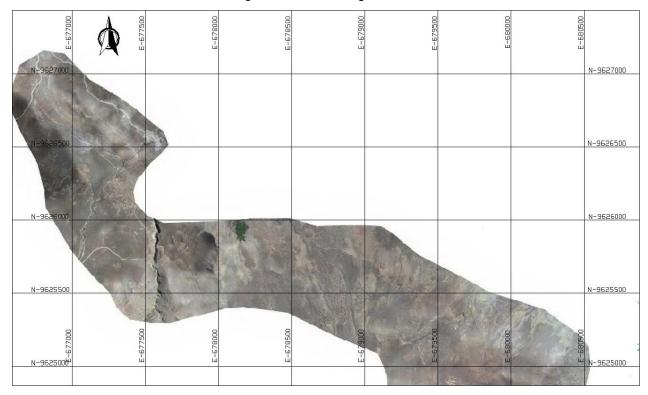


Figura 2-16 Ortofoto generada

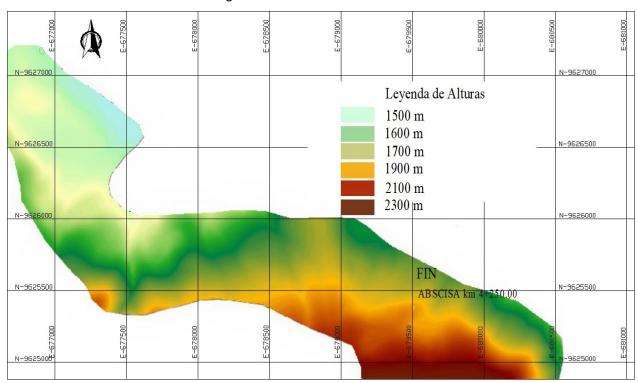


Figura 2-17 Modelo de elevaciones

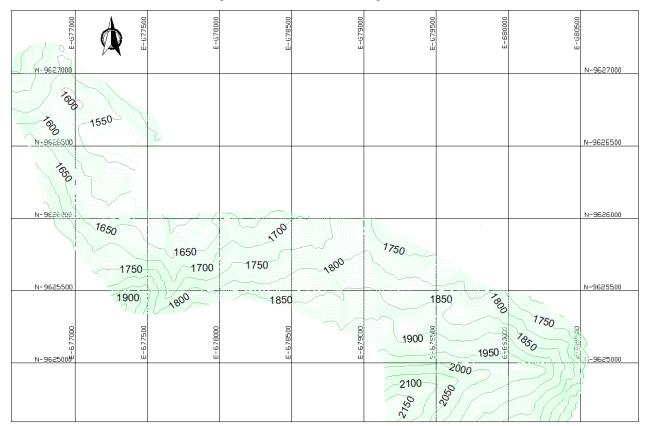


Figura 2-18 Curvas de nivel generadas

2.6.4 Características topográficas del terreno

Del estudio topográfico se concluye que el terreno tiene una pendiente que en algunos casos llega al 42%. Siendo esta una pendiente muy pronunciada y determinando así la clasificación del terreno como Montañoso y Escarpado según la Normativa (Tabla 2-3). Lo cual dentro del diseño geométrico nos indica que la gradiente longitudinal será entre 6% y 8% o que pudiera llegar a tener más del 8% como gradiente longitudinal.

Tabla 2-3 Clasificación del terreno por la topografía (NEVI-12)

Categoría	Pendiente Transversal	Movimiento de Tierra	Gradiente Longitudinal	
Terreno Plano	PT ≤ 5%	Mínimo movimiento de tierras	Menor al 3%	
Terreno Ondulado	$5\% \le PT \le 12\%$	Moderado movimiento de tierras	Del 3% al 6%	
Terreno Montañoso	$12\% \le PT \le 40\%$	Grandes movimientos de tierras	Del 6% al 8% son comunes	
Terreno Escarpado	PT ≥ 40%	Máximo movimiento de tierras	Mayor al 8%	

3. DISEÑO GEOMÉTRICO

3.1 Objetivo

Diseñar el trazado de una carretera de categoría cuatro.

Este acápite contribuirá al desarrollo del objetivo específico número dos que es el diseñar el trazado de una carretera de categoría cuatro para el tramo de la vía de acceso a Yunquil desde la abscisa 0+000,00 km hasta la abscisa 4+250,00 km.

3.2 Alcance

Diseño del proyecto geométrico horizontal y vertical.

El alcance del presente capítulo es realizar el diseño del proyecto geométrico horizontal y vertical considerando la topografía del terreno.

3.3 Metodología

Dentro de la metodología expuesta en el presente documento se encuentra el diseño del proyecto geométrico horizontal y vertical. Este trabajo de oficina (diseño geométrico) es importante por cuanto se relaciona con el trabajo en campo previamente realizado (Colocación de hitos para estudio topográfico y extracción de muestras para suelos). Si únicamente los diseños viales se basaran en un trabajo netamente de oficina, todos serían iguales, sin embargo, la relación entre la misma topografía del terreno, la geología del lugar y los ensayos de laboratorio y otros aspectos propios de cada lugar es lo que dan una particularidad a cada uno de los diseños viales.

3.4 Norma de Diseño

Las normas utilizadas en el presente diseño son las Normas de Diseño Geométrico de Carreteras 2003 del Ministerio de Transporte y Obras Públicas (MTOP M. d., 2003)

3.5 Diseño Vial Tridimensional

Cada diseño vial es particular pues forma parte de un entorno tridimensional único. Sin embargo, para facilidad de diseño, los componentes tridimensionales se los analiza y diseña de manera independiente. Así, el diseño horizontal es el diseño de la carretera en planta, el diseño vertical es el diseño de la carretera en perfil y el diseño transversal es el diseño del ancho de la carretera.

3.6 Criterios de diseño

3.6.1 Vehículo de diseño

Con respecto a las características geométricas del vehículo, el (MTOP M. d., 2003) presenta un cuadro resumen de los pesos y dimensiones de buses y camiones, el cual se encuentra en el Anexo 1, las cuales deberán estar de acuerdo con las normas internacionales. Es por ello que se hace referencia a la norma internacional de la (AASHTO, 2011), en donde se señala que, es preciso examinar todos los tipos de vehículos, establecer agrupamientos de clases y seleccionar vehículos de tamaños representativos de cada clase (AASHTO, 2011).

De acuerdo con la normativa vigente, para el diseño geométrico se cuenta con el Acuerdo Ministerial 018 – 2016 (Ministerio de Transporte y Obras Públicas, 2016). Mismo que en su cuarto artículo presenta la tabla nacional de pesos y dimensiones (Anexo 2). Por tanto, para el presente trabajo de titulación, se considera un vehículo tipo camión de dos ejes: un eje frontal simple y uno posterior tándem, tipo SU-12 (AASHTO, Geometric Design of Highways and Streets, 2018), muy similar a un camión tipo 3A de los recomendados por el MTOP (Norma Ecuatoriana Vial NEVI-12-MTOP, 2013), por ser el de mayores dimensiones de su tipo. Las dimensiones de este camión se encuentran ilustradas en la Figura 3-1 y se observan en la Tabla 3-1.

Figura 3-1 Dimensiones del vehículo tipo. Fuente: (Norma Ecuatoriana Vial NEVI-12-MTOP, 2013)

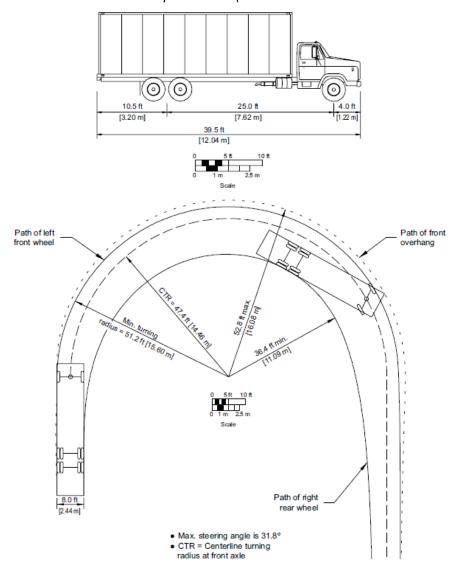


Tabla 3-1 Vehículo de diseño seleccionado

TIPO	DISTRIBUCIO MÁXIMA DE CARGA POR EJE		DESCRIPCIÓN	PESO MÁXIMO PERMITIDO	LONGITUDES MAXIMA PERMITIDAS (METRO				
						(TON)	LARGO	ANCHO	ALTO
3A	2A 7 20		I	II	Camión de 3 ejes	27	12.04	2.44	4.10

3.6.2 Características del proyecto

El presente proyecto tiene como fines académicos realizar el diseño geométrico de una vía en una franja topográfica asignada. En el acápite 1.8 se tiene como datos que la ubicación de la franja topográfica es en la zona de la sierra. Al establecer las características geométricas de un camino se lo hace en función de las características topográficas del terreno: llano, ondulado y montañoso, este, a su vez, puede ser suave o escarpado. Un terreno es de topografía llana cuando en el trazado del camino no gobiernan las pendientes. Es de topografía ondulada cuando la pendiente del terreno se identifica, sin excederse, con las pendientes longitudinales que se pueden dar al trazado. Y finalmente, un terreno es de topografía montañosa cuando las pendientes del proyecto gobiernan el trazado, siendo de carácter suave cuando la pendiente transversal del terreno es menor o igual al 50% y de carácter escarpada cuando dicha pendiente es mayor al referido valor (Ministerio de Transporte y Obras Públicas MTOP, 2003).

En el acápite 2.6.4 se menciona que la franja topográfica asignada tiene una pendiente transversal del terreno que en algunos casos es hasta del 42%, por tanto, el relieve es montañoso. La distancia entre los puntos inicio 0+000.00 km y final del tramo de interés es de 4,250.00 m. En la Tabla 3-2 se presenta un resumen de las características del proyecto.

Tabla 3-2 Características iniciales del proyecto

LONGITUD APROXIMADA DE LA VÍA	4,250.00 m
RELIEVE DEL PROYECTO	Relieve montañoso
TIPO DE PROYECTO	Vía nueva

3.6.3 Tráfico

i) Tráfico promedio diario semanal

Como se indicó en el acápite 1.9.1 el punto de inicio de la vía es el punto de la actual trocha abierta al sector Yunquil y la actual vía a San Sebastián de Yuluc (Figura 3-2). Como se trata de una vía nueva, para relacionar el tráfico que se puede generar en la vía motivo de diseño, se ha considerado los datos del tráfico de la vía a San Sebastián de Yuluc, publicados en (Vanegas Ortiz, 2022), tesis que también forma parte del convenio de cooperación interinstitucional.

Figura 3-2 Punto de Inicio

En (Vanegas Ortiz, 2022) se indica que el conteo de vehículos se ha realizado desde los días 12 al 18 del mes de julio del año 2021. Obteniéndose como resultado la siguiente Tabla 3-3:

Tabla 3-3 TPDS al año 2021. Fuente (Vanegas Ortiz, 2022)

AÑO	LIVIANOS	(TPDS		
		2DA	2DB	3A	4C	
2021	73	7	7	1	1	89

ii) Estimación del tráfico promedio diario anual (TPDA)

Como **DATOS** se tiene:

El tráfico observado durante el conteo (Tabla 3-3).

Por tanto, con la fórmula del tráfico:

$$TPDA = TPO * Fs * Fm$$

En donde:

TPDA= Tráfico promedio diario anual

TO= Tráfico promedio semanal Observado

Fs = Factor semanal

Fm = Factor mensual

El Factor semanal, se obtiene de la Tabla 3-4:

Tabla 3-4 Factor semanal

Meses	Días	Semai	nas Fs	
Enero		31	4,429	1,069
Febrero		29	4,143	1,000
Marzo		31	4,429	1,069
Abril		30	4,286	1,034
Mayo		31	4,429	1,069
Junio		30	4,286	1,034
Julio		31	4,429	1,069
Agosto		31	4,429	1,069
Septiembre		30	4,286	1,034
Octubre		31	4,429	1,069
Noviembre		30	4,286	1,034
Diciembre		31	4,429	1,069
	FS	;		1,069

El Factor mensual, se obtiene de la Tabla 3-5:

Tabla 3-5 Factor Mensual

Meses	Diesel 2	Diesel	Súper	Extra	Ecopais	Total
		Premium				
Enero	54081.00	1827421.00	225156.00	1050995.00	1167285.00	4324938.00
Febrero	53740.00	1674170.00	221169.00	990126.00	1072134.00	4011339.00
Marzo	56629.00	1773927.00	254614.00	1105979.00	1171525.00	4362674.00
Abril	55676.00	1807167.00	248107.00	1074169.00	1159266.00	4344385.00
Mayo	54448.00	1906812.00	248057.00	1109729.00	1226096.00	4545142.00
Junio	54938.00	1828269.00	215085.00	1053701.00	1165245.00	4317238.00
Julio	57833.00	1992918.00	215232.00	1114724.00	1247014.00	4627721.00
Agosto	55738.00	2023077.00	236217.00	1130949.00	1285283.00	4731264.00
Septiembre	56093.00	1920412.00	198499.00	1058770.00	1188604.00	4422378.00
Octubre	44836.00	1752819.00	193837.00	967581.00	1142663.00	4101736.00
Noviembre	57926.00	1950317.00	215275.00	1075563.00	1200297.00	4499378.00
Diciembre	61002.00	2009442.00	236738.00	1167443.00	1322673.00	4797298.00
TOTAL	662940.00	22466751.00	2707986.00	12899729.00	14348085.00	53085491.00
	(Consumo Promed	io Mensual 201	.9		4423790.92
		Consumo M	es de Julio			4627721.00
		FN	1			0.956

Se obtiene un valor de factor Fm = 0.956

Reemplazando los valores en la ecuación se obtiene el TPDA 2021 (Tabla 3-6).

Tabla 3-6 TPDA 2021

AÑO	LIVIANOS	(TPDS			
		2DA	2DB	3A	4C	
2021	75	7	7	1	1	89

Mediante el factor de proyección y considerando lo que indica la norma, que se debe incluir un 10% por concepto de tráfico atraído y 20% adicional por tráfico generado, se tiene como TPDA para el período de diseño la siguiente Tabla 3-7:

Tabla 3-7 TPDA de diseño

AÑO	LIVIANOS	(CAMIONES						
		2DA	2DB	3A	4C				
2021	93	9	9	1	1	110			
2023	100	9	9	1	1	120			
2033	133	11	11	1	1	157			
2043	173	12	12	1	1	199			

3.6.4 Clase de carretera

Para el diseño de carreteras en el país se recomienda la clasificación en función del pronóstico de tráfico para un período de 15 o 20 años, como se muestra en Tabla 3-8.

Tabla 3-8 Clasificación de carreteras en función del tráfico proyectado. Fuente (MTOP M. d., 2003)

CLASE DE CARRETERA	Tráfico proyectado TPDA *
R-IoR-II	Más de 8000
I	De 3000 a 8000
II	De 1000 a 3000
III	De 300 a 1000
IV	De 100 a 300
V	Menos de 100

^{*} El TPDA indicado es el volumen del tráfico promedio diario anual proyectado a 15 o 20 años. Cuando el pronóstico de tráfico para el año 10 sobrepasa los 7000 vehículos debe investigarse la posibilidad de construir una autopista. Para la determinación de la capacidad de una carretera, cuando se efectúa el diseño definitivo, debe usarse tráfico en vehículos equivalentes.

La vía se clasifica como tipo IV

La Tabla 3-9 presenta la relación entre la función jerárquica y la clasificación de las carreteras según el (MTOP M. d., 2003):

Tabla 3-9 Relación Función, Clase MOP y Tráfico. Fuente: (MTOP M. d., 2003)

FUNCION	CLASE DE CARRETERA (según MOP)	TPDA(1) (Año final de diseño)
	R – I o R – II (2)	Más de 8000
CORREDOR ARTERIAL	1	De 3000 a 8000
COLECTORA	II	De 1000 a 3000
COLECTORA	III	De 300 a 1000
VECINAL	[IV	De 100 a 300
VECINAL	V	Menos de 100
Notas:		
1) De acuerdo al nivel de servic	o aceptable al final de la vida útil.	
2) RI – RII - Autopistas		

La vía se clasifica como colectora tipo IV

En el caso específico del presente diseño, la vía se clasifica como *VIA COLECTORA DE CLASE IV*.

3.6.5 Velocidad de diseño

La velocidad de diseño es la velocidad máxima a la cual los vehículos pueden circular con seguridad sobre un camino cuando las condiciones atmosféricas y del tránsito son favorables. Esta velocidad se elige en función de las condiciones físicas y topográficas del terreno, de la importancia del camino, los volúmenes del tránsito y uso de la tierra, tratando de que su valor sea el máximo compatible con la seguridad, eficiencia, desplazamiento y movilidad de los vehículos. Con esta velocidad se calculan los elementos geométricos de la vía para su alineamiento horizontal y vertical (MTOP M. d., 2003).

De acuerdo con la Tabla 3-10, según se definió el terreno como montañoso en párrafos anteriores, y de acuerdo con el TPDA, se tiene como velocidad de diseño 25 km/h.

Tabla 3-10 Velocidad de diseño de acuerdo con el tipo de carretera y el tipo de terreno. Fuente: (MTOP M. d., 2003)

CATEGORIA DE LA VIA TPDA ESPERADO				VELOCIDAD DE DISEÑO Km/h												
				BAS	SICA				PERM	1ISIBLE EN T	RAMOS D	AMOS DIFICILES				
				(RELIEVE	LLANO)			(RELIEVE C	NDULADO	0)		(RELIEVE M	ONTAÑOS	O)		
			los elen trazado	cálculo de nentos del o del perfil itudinal	cálcul elemer se transver depend	da para el lo de los ntos de la cción rsal y otros lientes de locidad	los elen trazado	cálculo de nentos del o del perfil itudinal	cálcul elemer se transver depend	da para el o de los ntos de la cción rsal y otros lientes de locidad	los elen trazado	cálculo de nentos del del perfil tudinal	cálcul elemer sec transver depend	da para el lo de los ntos de la cción rsal y otro dientes de locidad		
			Recom	Absoluta	Recom	Absoluta	Recom	Absoluta	Recom	Absoluta	Recom	Absoluta	Recom	Absolut		
R-I o R-II	(Tipo)	> 8000	120	110	100	95	110	90	95	85	90	80	90	8		
I	Todos	3000 - 8000	110	100	100	90	100	80	90	80	80	60	80	6		
П	Todos	1000 - 3000	100	90	90	85	90	80	85	80	70	50	70	9		
Ш	Todos	300 - 1000	90	80	85	80	80	60	80	60	60	40	60	4		
IV	5.5E6 y 7	100 - 300	80	60	80	60	60	35	60	35	50	25	50	2		
V	4 y 4E	< 100	60	50	80	50	50	35	50	35	40	25	40	2		

Los valores recomendados se emplearán cuando el TPDA es cercano al límite superior de la respectiva categoría de vía.

Los valores absolutos se emplearán cuando el TPDA es cercano al límite inferior de la respectiva categoría de vía y/o el relieve sea difícil o escarcapo.

La categoría IV incluye además los caminos vecinales tipo 5.5E6 y 7 contenidos en el manual de caminos vecinales y categoría V son los caminos vecinales 4 y 4E. En zonas con perfiles de meteorización profunda (estribaciones) requerirán de un diseño especial considerando los aspectos geológicos.

Para la categoría IV y V en caso de relieve escarpado se podrá reducir la Vd min 20 km/h

Notas

3.7 Diseño Geométrico Horizontal

3.7.1 Radio mínimo de curvas horizontales

El radio mínimo de la curvatura horizontal es el valor más bajo que posibilita la seguridad en el tránsito a una velocidad de diseño dada en función del máximo peralte (e) adoptado y el coeficiente (f) de fricción lateral correspondiente (MTOP M. d., 2003).

i) Peralte máximo

Se recomienda para vías de dos carriles un peralte máximo del 10% para carreteras y caminos con capas de rodadura asfáltica, de concreto o empedrada para velocidades de diseño mayores a 50 Km/h; y del 8% para caminos con capa granular de rodadura (caminos vecinales tipo 4, 5 y 6) y velocidades hasta 50 Km/h (MTOP M. d., 2003). Por tanto, se considera que el peralte que cumple con la normativa vigente. **Peralte emáx = 10%.**

ii) Coeficiente de fricción lateral recomendado

El coeficiente de fricción lateral máximo se observa en la Tabla 3-11 para diferentes velocidades de diseño. Para la velocidad de diseño de 25 km/h el coeficiente de fricción fmáx = 0.32

Tabla 3-11 Radios mínimos en función del peralte "e" y del coeficiente de fricción lateral "f". Fuente: (MTOP M. d., 2003)

Ra	Radios mínimos en función del peralte "e" y del coeficiente de fricción lateral "f"													
Velocidad	f	Ra	dio Mínimo	Calculad	0	Radio Mínimo Recomendado								
de Diseño	máximo		е											
(km/h)		0,1	0,08	0,06	0,04	e=0,10	e=0,08	e=0,06	e=0,04					
20	0,350		7,32	7,68	8,08		18	20	20					
25	0,315		12,46	13,12	13,86		20	25	25					
30	0,284		19,47	20,60	21,87		25	30	30					
35	0,266		27,88	29,59	31,52		30	35	35					
40	0,221		41,86	44,83	48,27		42	45	50					
45	0,200		56,95	61,33	66,44		60	65	70					
50	0,190		72,91	78,74	85,59		75	80	90					
60	0,165	106,97	115,70	125,98	138,28	110	120	130	140					
70	0,150	154,33	167,75	183,73	203,07	160	170	185	205					
80	0,140	209,97	229,06	251,97	279,97	210	230	255	280					
90	0,134	272,56	298,04	328,76	366,55	275	300	330	370					
100	0,130	342,35	374,95	414,42	463,18	350	375	415	465					
110	0,124	425,34	467,04	517,80	580,95	430	426	520	585					
120	0,120	515,39	566,93	629,92	708,66	620	520	630	710					

fmáx = 0.32

La fórmula para el cálculo del radio mínimo es:

$$R = \frac{V^2}{127 * (e+f)} = 12.31 \, m \sim 13 \, m$$

Fuente: (MTOP M. d., 2003)

En donde:

R = radio mínimo de una curva horizontal, m.

V= velocidad de diseño, km/h

f= coeficiente de fricción lateral

e= peralte de la curva, m/m (metro por metro ancho de la calzada)

Por tanto, el Rmin calculado = 12.31 m y el Rmin asumido = 13 m.

3.7.2 Radio mínimo a partir del cual no se requiere utilizar curvas de transición

i) En función de retranqueo y la longitud de la espiral

Considerando el factor de comodidad se establece que, si el desplazamiento "P" retranqueo del arco circular es menor a 0,10 m, no se requiere de curva de transición para desarrollar el peralte, ya que el vehículo describirá por si una transición sin apartarse más que de 0,10 m del eje de su carril (MTOP M. d., 2003).

$$P = \frac{Le^2}{24 * R}$$

Fuente: (MTOP M. d., 2003)

En donde:

P= retranqueo

Le= longitud de la espiral

R= radio de la curva circular

ii) En función de las velocidades de diseño

El radio mínimo que no requeriría transición en función de las velocidades de diseño se lo obtiene con la siguiente fórmula:

$$Rmin = 0.098 * V^2$$

Fuente: (MTOP M. d., 2003)

En la siguiente tabla (Tabla 3-12) se indica para cada velocidad de diseño, los radios mínimos a partir de los cuales no es imprescindible introducir transiciones:

Tabla 3-12 Radios mínimos a partir de los cuales no se requiere curvas de transición. Fuente: (MTOP M. d., 2003)

VD km/h	Rmin par transicio	ra no introducir nes, m
	30	90
4	10	160
!	50	250
(50	400
7	70	500
:	30	700
9	90	800
10	00	1000
1:	LO	1200
1	20	1500

Rmin 60m a partir del cual no se requiere transición

3.7.3 Distancia de visibilidad

i) Distancia de visibilidad de parada

La mínima distancia de visibilidad (d) para la parada de un vehículo es igual a la suma de dos distancias; una, la distancia (d1) recorrida por el vehículo desde el instante en que el conductor avizora un objeto en el camino hasta la distancia (d2) de frenaje del vehículo, es decir, la distancia necesaria para que el vehículo pare completamente después de haberse aplicado los frenos (MTOP M. d., 2003)

$$d = d1 + d2$$

Fuente: (MTOP M. d., 2003)

En donde:

d= distancia de visibilidad de parada

d1= distancia recorrida durante el tiempo de percepción más reacción

d2= distancia de frenaje sobre la calzada a nivel

$$d\mathbf{1} = \frac{VD*t}{3.6}$$

Fuente: (MTOP M. d., 2003)

En donde:

d1= distancia recorrida durante el tiempo de percepción más reacción

Vd= velocidad de diseño, expresada en km/h

t= tiempo de percepción más reacción en seg. 2.5seg según la (AASHTO, 2004)

$$d2 = \frac{Vc^2}{254*(f \mp G)}$$

Fuente: (MTOP M. d., 2003)

En donde:

d2= distancia de frenaje sobre la calzada a nivel, expresada en m

f= coeficiente de fricción longitudinal

Vd= velocidad de diseño, expresada en km/h

G= gradiente longitudinal, tanto por ciento del gradiente dividido para 100 con el signo correspondiente; esto es, signo positivo para gradientes cuesta arriba y signo negativo para gradientes cuesta abajo.

$$f = \frac{1.15}{Vd^{0.3}}$$

Fuente: (MTOP M. d., 2003)

En donde:

f= coeficiente de fricción longitudinal, fórmula para pavimentos mojados

Vd= velocidad de diseño, expresada en km/h

ii) Distancia de rebasamiento

La distancia de visibilidad para el rebasamiento se determina en base a la longitud de carretera necesaria para efectuar la maniobra de rebasamiento en condiciones de seguridad (MTOP M. d., 2003). Esta distancia de visibilidad para rebasamiento está constituida por la suma de cuatro distancias parciales que son:

EN CONDICIONES DE SEGURIDAD PARA CARRETERAS DE DOS CARRILES

d1= distancia recorrida por el vehículo rebasante en el tiempo de percepción/reacción y durante la aceleración inicial hasta alcanzar el carril izquierdo de la carretera.

d2 = distancia recorrida por el vehículo rebasante durante el tiempo que ocupa el carril izquierdo.

d3= distancia entre el vehículo rebasante y el vehículo que viene en sentido opuesto, al final de la maniobra.

Asumir de 30 m a 90 m.

d4= distancia recorrida por el vehículo que viene en sentido opuesto durante dos tercios del tiempo empleado por el vehículo rebasante, mientras usa el carril izquierdo; es decir, 2/3 de d2. Se asume que la velocidad del vehículo que viene en sentido opuesto es igual a la del vehículo rebasante.

Es decir, la distancia de visibilidad para el rebasamiento de un vehículo es igual a:

$$dr = d1 + d2 + d3 + d4$$

Fuente: (MTOP M. d., 2003)

En donde:

$$d1 = 0.14t_1 * (2V - 2m + at_1)$$

$$d2 = 0.28 * V * t_2$$

$$d3 = 30 m a 90m$$

$$d4 = 0.18 * V * t_2$$

Fuente: (MTOP M. d., 2003)

d1, d2, d3 y d4 = distancias, expresadas en metros.

t1 = tiempo de la maniobra inicial, expresado en segundos.

t2 = tiempo durante el cual el vehículo rebasante ocupa el carril del lado izquierdo, expresado en segundos.

V = velocidad promedio del vehículo rebasante expresada en Kilómetros por hora.

m = diferencia de velocidades entre el vehículo rebasante y el vehículo rebasado, expresada en km/hora. Esta diferencia se la considera igual a 16 km/h promedio a = aceleración promedio del vehículo rebasante, expresada en km/hora/s.

Tabla 3-13 Distancia mínima de visibilidad de rebasamiento. Fuente: (MTOP M. d., 2003)

V _D , Km/h	VELOCIDADI	ES DE LOS	DISTANCIA M	IÍNIMA	DE		
	VEHICULOS,	Km/h.	REBASAMIENTO, METROS				
	REBASADO	REBASANTE	CALCULADA	RECC	MENDADA		
25	24	40			(80)		
30	28	44			(110)		
35	33	49			(130)		
40	35	51	268	270	(150)		
45	39	55	307	270	(150)		
50	43	59	345	270	(150)		
60	50	66	412	270	(150)		
70	58	74	488	270	(150)		
80	66	82	563	270	(150)		
90	73	89	631	640			
100	79	95	688	690			
110	87	103	764	830	*		
120	94	110	831	830			

En la Tabla 3-13 se exponen valores recomendados para la distancia mínima de rebasamiento, misma que se asume de 80m.

3.7.4 Peralte

Aquellas curvas con radios mayores que el radio mínimo se les debe asignar un peralte menor en forma tal que la circulación sea cómoda, tanto para los vehículos lentos como para los rápidos (Cárdenas Grisales, 2013). La AASHTO recomienda el uso de una proporción parabólica como sigue para distribuir e y f de todas las curvas con radios mayores que los radios mínimos de caminos rurales, autopistas urbanas y calles urbanas de alta velocidad.

$$e = emax - emax(\frac{R - Rmin}{R})^2$$

Fuente: (AASHTO, 2004)

La (AASHTO, 2004) propone los datos de la Tabla 3-14:

Tabla 3-14 Radios mínimos para peraltes específicos, dada la velocidad de diseño y un peralte máximo e_(máx)=10%. Fuente: (AASHTO, 2004)

						Metric						
	Vd=20	Vd=30	Vd=40	Vd=50	Vd=60	Vd=70	Vd=80	Vd=90	Vd=100	Vd=110	Vd=120	Vd=130
e(%)	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)	R(m)
NC	197	454	790	1110	1520	2000	2480	3010	3690	4250	4960	5410
RC	145	333	580	815	1120	1480	1840	2230	2740	3160	3700	4050
2.2	130	300	522	735	1020	1340	1660	2020	2480	2860	3360	3680
2.4	118	272	474	669	920	1220	1520	1840	2260	2620	3070	3370
2.6	108	249	434	612	844	1120	1390	1700	2080	2410	2830	3110
2.8	99	229	399	564	778	1030	1290	1570	1920	2230	2620	2880
3.0	91	211	368	522	720	952	1190	1460	1720	2070	2440	2690
3.2	85	196	342	485	670	887	1110	1360	1670	1940	2280	2520
3.4	79	182	318	453	626	829	1040	1270	1560	1820	2140	2370
3.6	73	170	297	424	586	777	974	1200	1470	1710	2020	2230
3.8	68	159	278	398	551	731	917	1130	1390	1610	1910	2120
4.0	64	149	261	374	519	690	866	1060	1310	1530	1810	2010
4.2	60	140	245	353	490	652	820	1010	1240	1450	1720	1910
4.4	56	132	231	333	464	617	777	953	1180	1380	1640	1820
4.6	53	124	218	315	439	586	738	907	1120	1310	1560	1740
4.8	50	117	206	299	417	557	703	864	1070	1250	1490	1670
5.0	47	111	194	283	396	530	670	824	1020	1200	1430	1600
5.2	44	104	184	269	377	505	640	788	975	1150	1370	1540
5.4	41	98	174	256	359	482	611	754	934	1100	1320	1480
5.6	39	93	164	243	343	461	585	723	896	1060	1270	1420
5.8	36	88	155	232	327	441	561	693	860	1020	1220	1370
6.0	33	82	146	221	312	422	538	666	827	976	1180	1330
6.2	31	77	138	210	298	404	516	640	795	941	1140	1280
6.4	28	72	130	200	285	387	496	616	766	907	1100	1240
6.6	26	67	121	191	273	372	476	593	738	876	1060	1200
6.8	24	62	114	181	261	357	458	571	712	846	1030	1170
7.0	22	58	107	172	249	342	441	551	688	819	993	1130
7.2	21	55	101	164	238	329	425	532	664	792	963	1100
7.4	20	51	95	156	228	315	409	513	642	767	934	1070
7.6	18	48	90	148	218	303	394	496	621	743	907	1040
7.8	17	45	85	141	208	291	380	479	601	721	882	1010
8.0	16	43	80	135	199	279	366	463	582	699	857	981
8.2	15	40	76	128	190	268	353	448	564	679	834	956
8.4	14	38	72	122	182	257	339	432	546	660	812	932
8.6	14	36	68	116	174	246	326	417	528	641	790	910
8.8	13	34	64	110	166	236	313	402	509	621	770	888
9.0	12	32	61	105	158	225	300	386	491	602	751	867
9.2	11	30	57	99	150	215	287	371	472	582	731	847
9.4	11	28	54	94	142	204	274	354	453	560	709	828
9.6	10	26	50	88	133	192	259	337	432	537	685	809
9.8	9	24	46	81	124	179	242	316	407	509	656	786
10.0	7	19	38	68	105	154	210	277	358	454	597	739

iii) Desarrollo del Peralte

Cada vez que se pasa de una alineación recta a una curva, se tiene que realizar una transición de una sección transversal, de un estado de sección normal al estado de sección completamente peraltada o viceversa, en una longitud necesaria para efectuar el desarrollo del peralte.

El desarrollo o transición del peralte puede efectuarse con una curva de enlace, que regule la trayectoria del vehículo durante su recorrido en la transición, o sin curva de enlace.

a) Haciendo girar la calzada alrededor de su eje (para terrenos montañosos) (MTOP M. d., 2003)

El cálculo de la longitud total del desarrollo del peralte se lo realiza de la siguiente manera:

b) Se determina si la transición del peralte la hacemos a lo largo de una curva de enlace. Si es así, se calcula la longitud de esta curva con la ecuación:

$$Lc = \frac{\pi * R * \alpha}{180}$$

Fuente: (MTOP M. d., 2003)

c) Se calcula el valor de la sobreelevación que produce el peralte "e"

$$*h = e * b$$

Fuente: (MTOP M. d., 2003)

* Para el caso de giro alrededor del eje,

En donde:

h= sobreelevación, m

e= peralte, %

d) Se calcula la longitud "L" de desarrollo del peralte en función de la gradiente de borde "i", cuyo valor se obtiene en función de la velocidad de diseño y se representa en la Tabla 3-15.

Tabla 3-15 Gradiente longitudinal (i) necesaria para el desarrollo del peralte. Fuente: (MTOP M. d., 2003)

GRADIENTE LONGITUDINAL (i) NECESARIA PARA EL DESARROLLO DEL
PERALTE

	PERALIE	
VD km/h	Valor de i (%)	Máxima pendiente equivalente
20	0.800	1:125
25	0.775	1:129
30	0.750	1:133
35	0.725	1:138
40	0.700	1:143
50	0.650	1:154
60	0.600	1:167
70	0.550	1:182
80	0.500	1:200
90	0.470	1:213
100	430	1:233
110	400	1:250
120	370	1:270

i=0.775

$$L = \frac{h}{2*i} = \frac{e*b}{2*i}$$

Fuente: (MTOP M. d., 2003)

En donde:

L= longitud de desarrollo del peralte

e= peralte

b= ancho de calzada

i= gradiente

- e) Se estable la relación entre "L" y "Le' y se asume como longitud de la transición el valor que sea mayor, de los dos. En donde Le es la longitud de la espiral, en caso de que la transición se realice mediante una curva de transición.
- f) Se calcula la longitud de la transición del bombeo, en la sección normal, para lo cual se determina la diferencia de nivel del eje al borde de la vía:

$$S = \frac{b * p}{2}$$

Fuente: (MTOP M. d., 2003)

En donde:

S= Diferencia de nivel de eje al borde de la vía, en metros.

P = Pendiente transversal del camino, %.

b = Ancho de la calzada, m.

g) Se establece a continuación la longitud necesaria, dentro de la tangente, para realizar el giro del plano del carril exterior hasta colocarlo a nivel con la horizontal.

$$x = \frac{S}{i}$$

Fuente: (MTOP M. d., 2003)

h) Finalmente se establece la longitud total de transición.

$$LT = L + X$$

Fuente: (MTOP M. d., 2003)

Cuando el desarrollo del peralte se lo hace sin la curva de enlace, la longitud de transición se ubica 2/3 en la alineación recta y el 1/3 dentro de la curva circular. Para casos difíciles (sin espirales), el peralte puede desarrollarse la mitad (0.5 L) en la recta y la mitad en curva circular (MTOP M. d., 2003)

iv) Longitud de transición

Valor considerado como mínimo absoluto que puede utilizarse solamente para caminos con relieve montañoso difícil, especialmente en las zonas de estribaciones y cruce de la cordillera de los Andes.

$$Lmin = 0.56 * VD km/h$$

Fuente: (MTOP M. d., 2003)

Por tanto, la longitud de transición mínima Lmin= 14 m

Con las fórmulas descritas anteriormente se calcula la longitud de transición en función de cada radio de cada curva, y se escoge la longitud mayor comparándola con la longitud de transición mínima absoluta de 14m.

3.7.5 Tangente intermedia mínima

Es la distancia entre el fin de la curva anterior y el inicio de la siguiente

$$TIM = \frac{2L1}{3} + \frac{2L2}{3} + X1 + X2$$

Fuente: (MTOP M. d., 2003)

Donde:

TIM = Tangente intermedia mínima, m

L 1,2 = Longitud de transición, m

X 1,2 = Longitud tangencial, m

La tangente intermedia mínima para condiciones extremas: peralte máximo, gradiente i máximo. Con los radios seleccionados para cada curva, se calcula el valor de la TIM y luego se verifica que la tangente intermedia real, es decir la diferencia de las abscisas PC de la curva menos PT de la curva anterior, sea mayor.

3.7.6 Sobreancho

El objeto del sobreancho en la curva horizontal es el de posibilitar el tránsito de vehículos con seguridad y comodidad, para determinar la magnitud del sobreancho debe elegirse un vehículo representativo del tránsito de la ruta. La Norma del (MTOP M. d., 2003) hace referencia para el cálculo del sobreancho a la Norma de la (AASHTO, 2004) en el que intervienen los siguientes factores:

1.- El ancho del vehículo de diseño

$$U = u + R - \sqrt{R^2 - L^2}$$

Fuente: (MTOP M. d., 2003)

u = Ancho normal de un vehículo, en el acápite 3.6.1 se tiene las dimensiones del vehículo de diseño. = 2.44 m

L = La distancia entre el eje anterior y el eje posterior, en el acápite 3.6.1 se tiene las dimensiones del vehículo de diseño. = 7.62 m

R = Radio de la curva

2.- El espacio lateral que necesita cada vehículo se asume:

Tabla 3-16 Valor de C, que corresponde al ancho de la calzada, para el cálculo del sobreancho. Fuente: (MTOP M. d., 2003)

ANCHO DE LA CALZADA (m)	VALOR C	
6.00		0.60
6.50		0.70
6.70		0.75
7.30		0.90
C=0.60)	

C= distancia lateral libre entre vehículos, y entre estos y el borde de la calzada.

Como para el presente diseño se tiene un ancho de calzada de 6m, por tanto, se tiene el valor de C, C=0.6.

3.- El avance del voladizo delantero del vehículo sobre el carril adyacente mientras gira.

$$FA = \sqrt{R^2 + A(2L + A)} - R$$

Fuente: (MTOP M. d., 2003)

FA= diferencia radial entre la trayectoria de la esquina exterior del vuelo delantero y la trayectoria de la rueda exterior delantera.

A= Longitud desde la parte delantera del vehículo hasta el eje delantero = 1.22m L = distancia entre el eje anterior y el eje posterior, = 7.62m

4.- El sobreancho adicional de seguridad que depende de la velocidad de diseño y el radio de curva.

$$Z = \frac{V}{10\sqrt{R}}$$

Fuente: (MTOP M. d., 2003)

Si el ancho requerido para la calzada en la curva es Ac y el establecido para los tramos rectos es Ar el sobreancho será:

$$Sa = Ac - Ar$$

Fuente: (MTOP M. d., 2003)

El ancho de la calzada de dos carriles en la curva debe ser:

$$Ac = 2(U+C) + FA + Z$$

Fuente: (MTOP M. d., 2003)

El (MTOP M. d., 2003) recomienda por temas económicos que el valor mínimo del sobreancho con proyectos con velocidades de hasta 50 km/h, sea de 30cm. En cuanto al máximo sobreancho, como se ha indicado, cada proyecto es particular. Además, el presente estudio está sujeto a las aprobaciones de las entidades gubernamentales, por tanto, el criterio que los técnicos encargados de la revisión es que por temas económicos el sobreancho sea de 2 m máximo.

3.8 Diseño Geométrico Vertical

3.8.1 Pendientes

i) Pendientes Máximas

De acuerdo con la velocidad de diseño, la muestra, las gradientes medias máximas que pueden adoptarse:

Tabla 3-17 Valores de diseño de las gradientes longitudinales máximas (%). Fuente: (MTOP M. d., 2003)

Valores de diseño de las gradientes longitudinales máximas											
(Porcentaje)											
	Clase de Carretera Valor Valor										
					Re	com	endable	Ab	solu	to	
					L	0	М	L	0	М	
R - <u>lo</u>	R - II	>	8.000	TPDA	2	3	4	3	4	6	
1	3.000	а	8.000	TPDA	3	4	6	3	5	7	
Ш	1.000	а	3.000	TPDA	3	4	7	4	6	8	
Ш	300	а	1.000	TPDA	4	6	7	6	7	9	
IV	100	а	300	TPDA	5	6	8	6	8	12	
V	Menos	de de	100	TPDA	5	6	8	6	8	14	

Gradiente máxima = 12%

ii) Pendientes Mínimas

La gradiente longitudinal mínima usual es de 0,5 por ciento. Se puede adoptar una gradiente de cero por ciento para el caso de rellenos de 1 metro de altura o más y cuando el pavimento tiene una gradiente transversal adecuada para drenar lateralmente las aguas de lluvia (MTOP M. d., 2003)

3.8.2 Curvas verticales

i) Curvas verticales convexas

La longitud mínima de las curvas verticales se determina en base a los requerimientos de la distancia de visibilidad para parada de un vehículo, considerando una altura del ojo del conductor de 1,15 metros y una altura del objeto que se divisa sobre la carretera igual a 0,15 metros. Esta longitud se expresa por la siguiente fórmula:

$$L = \frac{A * S^2}{426}$$

Fuente: (MTOP M. d., 2003)

En donde:

L = longitud de la curva vertical convexa, expresada en metros.

A = diferencia algébrica de las gradientes, expresada en porcentaje.

S = distancia de visibilidad para la parada de un vehículo, expresada en metros.

La longitud de una curva vertical convexa en su expresión más simple es:

$$L = K * A$$

Fuente: (MTOP M. d., 2003)

En la Tabla 3-18 y Tabla 3-19 se muestran los valores mínimos de K para curvas verticales convexas.

Tabla 3-18 Coeficiente K para curvas convexas mínimas. Fuente: (MTOP M. d., 2003)

Curvas verticales convexas mínimas							
Velocidad de diseño	distancia de visibilidad para		ciente K = S)/426				
km/h	parada "s" (m)	Calculado	Redondeado				
20	20	0.94	1				
25	25	1.47	2				
30	30	2.11	2				
35	35	2.88	3				
40	40	3.76	4				
40	42.67	4.27	4				
40	43	4.34	4				
45	50	5.87	6				
50	55	7.1	7				
60	70	11.5	12				
70	90	19.01	19				
80	110	28.4	28				
90	135	42.78	43				
100	160	60.09	60				
110	180	76.06	80				
120	220	113.62	115				

K=2

Tabla 3-19 Valores mínimos de diseño del coeficiente K para determinación de curvas verticales convexas mínimas. Fuente: (MTOP M. d., 2003)

	Valores minimos de diseño del coeficiente K para determinacion de curvas verticales covexas minimas										
	К										
	Clase d	e Ca	rretera		١	/alor			Valor	•	
					Recor	nend	able	Αl	osolu	to	
					L	0	М	L	0	М	
R-	R - II	>	8.000	TPDA	115	80	43	80	43	28	
lo											
ı	3.000	а	8.000	TPDA	80	60	28	60	28	12	
Ш	1.000	а	3.000	TPDA	60	43	19	43	28	7	
Ш	300	а	1.000	TPDA	43	28	12	28	12	4	
IV	100	а	300	TPDA	28	12	7	12	3	2	
V	Meno	S	100	TPDA	12	7	4	7	3	2	
	de										

K=2

L = Terreno llano.

O = Terreno ondulado.

M = Terreno montañoso.

La longitud mínima absoluta de las curvas verticales convexas, expresada en metros, se indica por la siguiente fórmula:

$$Lmin = 0.60 * VD = 15m$$

Fuente: (MTOP M. d., 2003)

ii) Curvas verticales cóncavas

Por motivos de seguridad, es necesario que las curvas verticales cóncavas sean lo suficientemente largas, de modo que la longitud de los rayos de luz de los faros de un vehículo sea aproximadamente igual a la distancia de visibilidad necesaria para la parada de un vehículo (MTOP M. d., 2003). Esta longitud se expresa por la siguiente fórmula:

$$L = \frac{A * S^2}{122 + 3.5 * S}$$

Fuente: (MTOP M. d., 2003)

La fórmula anterior se basa en una altura de 60 centímetros para los faros del vehículo y un grado de divergencia hacia arriba de los rayos de luz con respecto al eje longitudinal del vehículo.

La longitud de una curva vertical cóncava en su expresión más simple es:

$$L = K * A$$

Fuente: (MTOP M. d., 2003)

En la Tabla 31 y Tabla 32 se muestran los valores mínimos de K para curvas verticales cóncavas.

Tabla 3-20 Coeficiente K para curvas cóncavas mínimas. Fuente: (MTOP M. d., 2003)

Curvas verticales cóncavas mínimas								
Velocidad de diseño	distancia de visibilidad para	Coeficiente K = (S*S)/(122+3.5*S)						
km/h	parada "s" (m)	Calculado	Redondeado					
20	20	2.08	2					
25	25	2.98	3					
30	30	3.96	4					
35	35	5.01	5					
40	40	6.11	6					
40	42.67	6.71	7					
40	43	6.79	7					
45	50	8.42	8					
50	55	9.62	10					
60	70	13.35	13					
70	90	18.54	19					
80	110	23.87	24					
90	135	30.66	31					
100	160	37.54	38					
110	180	43.09	46					
120	220	54.26	54					

K=3

Valores mínimos de diseño del coeficiente K para

Tabla 3-21 Valores mínimos de diseño del coeficiente K para determinación de curvas verticales cóncavas mínimas. Fuente: (MTOP M. d., 2003)

determinación de curvas verticales cóncavas mínimas										
K										
	Clase d	e Ca	rretera		\	/alor			Valo	-
					Recor	nend	able	Al	osolu	to
					L	0	М	L	0	М
R-	R - II	>	8.000	TPDA	115	80	43	80	43	28
lo										
1	3.000	а	8.000	TPDA	80	60	28	60	28	12
Ш	1.000	а	3.000	TPDA	60	43	19	43	28	7
Ш	300	а	1.000	TPDA	43	28	12	28	12	4
IV	100	а	300	TPDA	28	12	7	12	3	2
V	Meno	S	100	TPDA	12	7	4	7	3	2
	de									

K=2

L = Terreno Ilano, O = Terreno ondulado, M = Terreno montañoso. La longitud mínima absoluta de las curvas verticales convexas, expresada en metros, se indica por la siguiente fórmula:

$$Lmin = 0.60 * VD = 15m$$

Fuente: (MTOP M. d., 2003)

3.9 Secciones típicas adoptadas

3.9.1 Ancho de la sección transversal típica

El ancho de la sección transversal típica está constituido por el ancho de:

- a. Calzada.
- b. Espaldones.
- c. Taludes interiores.
- d. Cunetas.

extendiéndose hasta el límite de los taludes exteriores

i) Calzada

En la Tabla 3-22, se indican los valores de diseño para el ancho del pavimento en función de los volúmenes de tráfico. El valor asumido es de 6m de ancho de calzada

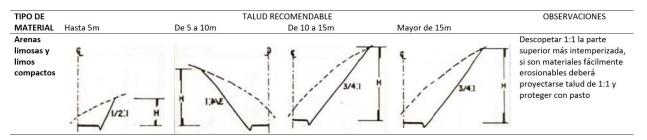
Tabla 3-22 Anchos de calzada. Fue	ente: (MTOP M. d 2	003)
-----------------------------------	--------------------	------

	Clase d	le C	arretera	Ancho de la calzada (m)			
				_	Recomendable	Absoluto	
R -	R - II	>	8.000	TPDA	7.3	7.3	
lo							
I	3.000	а	8.000	TPDA	7.3	7.3	
Ш	1.000	а	3.000	TPDA	7.3	6.5	
Ш	300	а	1.000	TPDA	6.7	6	
IV	100	а	300	TPDA	6	6	
V	Menc	S	100	TPDA	4	4	
	de						

Ancho de calzada asumido =6m

ii) Espaldones

A solicitud de los técnicos encargados de la revisión del proyecto, no se incluye espaldones en la sección transversal, por el factor económico.


iii) Taludes de corte y relleno

La sección transversal también está compuesta por taludes de corte y relleno que están

en función del tipo de suelo. En el caso específico del presente trabajo de titulación: suelo de grano grueso, entre gravas arcillosas, arenas arcillosas y arenas limosas. En el capítulo correspondiente se indican los resultados de los ensayos de laboratorio realizados.

En la Figura 3-3 se observan recomendaciones para inclinaciones de taludes en función del tipo de suelo y la altura del talud (Castillo, Ingeniería de Suelos en las Vías Terrestres, 1984).

Figura 3-3 Inclinaciones de talud de corte recomendadas por tipo de terreno (Castillo, Ingeniería de Suelos en las Vías Terrestres, 1984)

iv) Cunetas

Las cunetas adoptadas para el presente trabajo son de longitud de 70cm. La sección transversal estaría conformada por un ancho total de 7.40 m distribuidos de la siguiente manera, como se observa en la Figura 3-4:

Ancho total	7.40 m.
Carril	3.00 m.
Espaldón	0.00 m.
Cuneta	0.70 m.

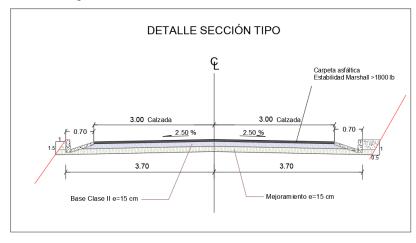


Figura 3-4 Dimensiones de la sección transversal

En el Anexo 4 se encuentran los planos de los detalles del diseño geométrico horizontal, diseño geométrico vertical y la sección transversal de la vía.

3.10 Combinación de Alineamientos Verticales y Horizontales

El Ministerio de Transporte y Obras públicas (MTOP M. d., 2003) recomienda:

- Evitar un emplazamiento horizontal con pendientes y curvas de grandes radios a cambio de gradientes largas y empinadas, y viceversa. El diseño correcto tiene que guardar relación con ambos criterios para lograr seguridad, capacidad, facilidad y uniformidad de operación de los vehículos.
- 2. No deben introducirse curvas horizontales agudas en o cerca de la cima de curvas verticales convexas pronunciadas.
- 3. Evitar curvas horizontales agudas en o cerca del punto más bajo de curvas verticales cóncavas pronunciadas.
- 4. En carreteras de 2 carriles prevalece la necesidad de proveer tramos de rebasamiento de vehículos a intervalos frecuentes, sobre la conveniencia de la composición de los alineamientos horizontal y vertical.
- 5. Preferiblemente emplear curvas horizontales con grandes radios y gradientes suaves en las inmediaciones a intersecciones de carreteras.

ESTUDIO DE SUELOS Y DISEÑO DE PAVIMENTOS

4.1 Objetivos

- Desarrollar los estudios básicos de suelos
- Diseñar la estructura de pavimento flexible.

Este acápite contribuirá al desarrollo del objetivo específico número uno y tres que es el desarrollar los estudios básicos de suelos y diseñar la estructura de pavimento flexible para el tramo de la vía de acceso a Yunquil desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km

4.2 Alcance

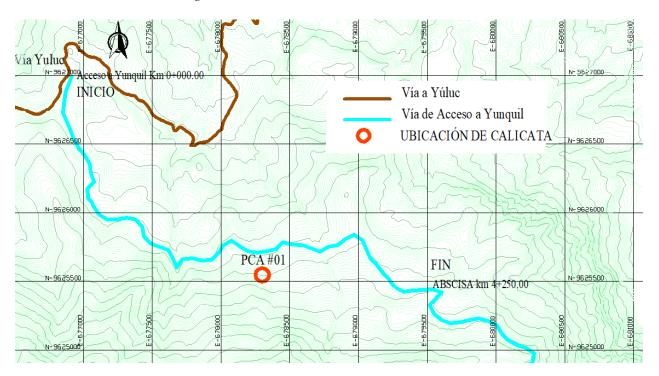
• Estudio de suelo y diseño de la capa de rodadura con pavimento flexible.

El alcance del presente capítulo es realizar los ensayos de laboratorio pertinentes para el diseño de la capa de rodadura con pavimento flexible.

4.3 Metodología

Dentro de la metodología expuesta en el presente documento se tiene que el estudio de suelos es un trabajo de campo (al igual que la colocación de hitos para estudio topográfico) y luego de la elaboración de ensayos de laboratorio con el análisis de los resultados, se realiza trabajo de oficina para el diseño de pavimentos. Los ensayos de laboratorio realizados son: Clasificación de suelos, Límite líquido, límite plástico, humedad, próctor modificado. Una vez más se indica que es de gran importancia conocer el sitio de estudio, y en este caso corroborar lo visto en campo con los ensayos de laboratorio para posterior a ello, con los criterios adecuados, poder realizar un correcto diseño.

4.4 Ensayos de laboratorio


En el Anexo 3 se encuentran los ensayos de laboratorio de la calicata realizada en el tramo comprendido de la abscisa 0+000.00 km hasta la abscisa 4+250.00 km.

La calicata realizada se muestra en la Figura 4-1 y en la Figura 4-2 se ilustra la ubicación de la extracción en relación a la vía.

Figura 4-1 Calicata PCA # 01

Figura 4-2 Ubicación de la calicata PCA # 01

PCA: Pozo a cielo abierto

Coordenadas WGS84-UTM-Z17Sur (678 300,9 E; 9 625 547,8 N)

La profundidad de la calicata es de 1.50 m y se puede identificar un tipo de material grueso. La calicata se realizó en la abscisa 2+000 de la vía de estudio. No se identifica nivel freático. Se extraen muestras de los materiales para ensayos de clasificación, y CBR, cuyos resultados se resumen a continuación:

Figura 4-3 Resultados de ensayos de clasificación de calicata N°1

Calicata	Profundidad	Gradación			Límites de Atterberg			Clasificación			
		Grava	Arena	Finos	LL	LP	ΙP	Hum	SUCS	AASHTO	TIPO
N°	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
1	1.5	47	27	26	33.8	17.8	16	7.3	GC	A-2-6	Grava
										(0)	arcillosa

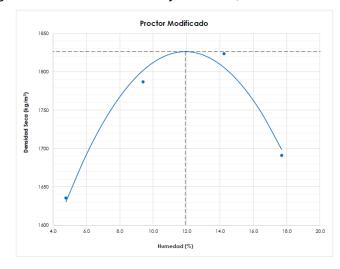

Los resultados de los ensayos de CBR, se muestran en la Figura 4-4.

Figura 4-4 Resultados de ensayos CBR, calicata N°1

Y los resultados del ensayo Próctor Modificado, se muestran en la Figura 4-5

Figura 4-5 Resultados de ensayos Próctor, calicata N°1

Humedad Óptima: 11.9 %

Densidad Seca Máxima: 1826 kg/m3

Al igual que en el trazado de la línea de ceros se consideraba los puntos inicial y final del eje de la vía trazado. De la misma manera, en el área de suelos se han realizado 3 calicatas en toda la longitud de la vía y de los resultados de las 3 calicatas se obtendrá un CBR característico.

4.5 Determinación del tránsito de diseño para diseño de pavimento flexible

4.5.1 Ecuación del número de ejes simples equivalentes acumulados de vehículos en el carril de diseño y en el periodo de diseño

$$N = TPDA * FD * FL * Fp * FEc * 365$$

En donde:

N= número de ejes simples equivalentes acumulados de vehículos en el carril de diseño y en el periodo de diseño.

TPDA= Tránsito promedio diario anual inicial.

FD= Factor de distribución por dirección

FL= Factor de distribución de carril

Fp= Factor de proyección

FEc= Factor de equivalencia de carga o factor camión

4.5.2 Cálculo del TPDA

Anteriormente en el capítulo de Diseño Geométrico, se determinó el TPDA, cuyo resumen se muestra en la Figura 4-6.

ΑÑΟ LIVIANOS **TPDA CAMIONES** 2DB 2DA ЗА 4C 2021 93 9 9 1 1 110 2023 100 9 9 1 1 120 2033 133 1 157 11 11 1

12

1

1

199

12

Figura 4-6. TPDA de diseño

4.5.3 Cálculo del Factor de distribución por dirección (FD)

173

Como **DATO** se tiene:

La vía tiene dos carriles

2043

Por tanto, de la Figura 4-7, se tiene el factor de distribución por dirección de 50%

Figura 4-7. Factor de distribución por dirección Fuente: (American Association of State Highway and Transportation Officials, 1993)

Número de carriles en ambas direcciones	% de vehículos en el carril de diseño			
2	50			
4	45			
6 o más	40			

4.5.4 Cálculo del Factor de distribución por carril (FL)

Como **DATO** se tiene:

vía/carretera local de dos carriles

Por tanto, 1 carril en cada dirección, de la Figura 4-8 se tiene el **factor de distribución por carril de 100%**.

Figura 4-8 Factor de distribución por carril. Fuente: (American Association of State Highway and Transportation Officials, 1993)

Número de carriles en cada dirección	% de vehículos en el carril de diseño
1	100
2	80 - 100
3	60 - 80
4	50 - 75

4.5.5 Cálculo del Factor de proyección (Fp)

Como **DATO** se tiene:

El periodo de diseño es de 20 años

El Factor de proyección de la AASHTO:

$$Fp = \frac{(1+r)^n - 1}{r}$$

En donde:

Fp: Factor de proyección

r= tasa anual de crecimiento del tránsito

n= período de diseño (20 años)

Aplicando las tasas de crecimiento de la Tabla 4-1, se obtiene la Tabla 4-2:

Tabla 4-1 Tasas de crecimiento vehicular recomendadas MTOP

	Tasa de crecimiento vehicular						
Periodo	Liviano	Bus	Camión				
2010 - 2015	4,47	2,22	2,18				
2016 - 2020	3,97	1,97	1,94				
2021 - 2025	3,57	1,78	1,74				
2026 - 2030	3,25	1,62	1,58				

Tabla 4-2 Proyección de la tasa de crecimiento

Proyección de la tasa de crecimiento						
Año	Tasa cre	ecimiento				
	Livianos	Camiones				
2021 - 2025	3.57%	1.74%				
2026 - 2030	3.25%	1.58%				
2031 - 2035	3.05%	1.47%				
2036 - 2040	2.91%	1.39%				
2041 - 2045	2.86%	1.35%				

4.5.6 Cálculo del Factor de equivalencia de carga o factor camión FEc

Como **DATO** se tiene:

- Tipos de vehículos, número de ejes y toneladas por eje, Tabla 4-3
- El índice final de servicio es de pt= 2.5

Tabla 4-3 Tipos de vehículos motorizados, pesos y dimensiones Fuente: Artículo 4. del Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte y Obras Públicas, 2016)

TIPO		DESCRIPCIÓN	PESO MÁXIMO	LONGITUDES MÁXIMAS PERMITIDAS (metros)		
IIFO	DISTRIBUCION MAXIMA DE CARGA PO	REJE	PERMITIDO (TON)	Largo	Ancho	Alto
2D	₽ ₽	T Camión de 2 ejes pequeño	7	5,5	2,6	3
2DA	Z DA	Camión de 2 ejes medianos	10	7,5	2,6	3,5
2DB	2 00	Camión de 2 ejes grandes	18	12,2	2,6	4,1
3-A	3Å 8-00	Camión de 3 ejes	27	12,2	2,6	4,1
4-C	4C 0	Camión de 4 ejes	31	12,2	2,6	4,1

La fórmula para el factor de equivalencia de carga para pavimentos flexibles es:

$$\bullet \quad \frac{w_x}{w_{18}} = \left[\frac{L_{18} + L_{2s}}{L_X + L_{2x}}\right]^{4.79} * \left[\frac{10^{\frac{G}{\beta_X}}}{10^{\frac{G}{\beta_{18}}}}\right] * [L_{2x}]^{4.33}$$

Fuente: (American Association of State Highway and Transportation Officials, 1993)

En donde:

W= aplicación de carga inverso al factor de equivalencia

W18= número de cargas de ejes simples de 18.000 lb o 80 kN.

Lx= carga del eje evaluado (kips)

L18= carga del eje estándar (18 kips)

L2= código de configuración del eje

1= eje simple, 2= eje tándem, 3= eje tridem; s=eje simple (1), x= tipo de eje siendo evaluado

$$G = \log(\frac{4.2 - p_t}{4.2 - 1.5})$$

pt= índice de servicio final

$$\beta_{x} = 0.4 + \left(\frac{0.081*(L_{X} + L_{2x})^{3.23}}{(SN+1)^{5.19}*L_{2x}^{3.23}}\right)$$

SN= Número estructural

Se aplica la fórmula con un índice de servicio final pt= 2.5

Y un número estructural SN impuesto SN=3

Y se obtiene la Tabla 4-4, que muestra los valores del Factor de equivalencia de carga:

Tabla 4-4 Cálculo del factor de equivalencia de carga

Tipo de eje		Simple	Simple	Simple	Simple	Tandem	Tridem
Carga del eje evaluado	Lx [ton] =	3	4	7	11	20	24
	Lx [kips] =	6.6	8.8	15.4	24.2	44.0	52.8
Código de configuración de ejes:	L2x =	1.0	1.0	1.0	1.0	2.0	3.0
Factores fórmula	G	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09
	Вх	0.4	0.5	0.9	2.4	1.9	1.2
Número Estructural inicial asumido:	SN	3.0	3.0	3.0	3.0	3.0	3.0
Índice final de servicio:	Pt =	2.0	2.0	2.0	2.0	2.0	2.0
Relación Wx/W18 =	Wx/W18 =	60.0	18.7	1.9	0.3	0.3	0.7
Factor de equivalencia de carga:	FEc =	0.017	0.054	0.523	3.556	3.231	1.509

Así como la Tabla 4-5, que contiene el cálculo del Factor camión:

Tabla 4-5 Cálculo del factor camión

TIPO DE VEHÍCULO	EJE							
	D	elanter)	Posterior				
	Tipo	Peso	FEc	Tipo	Peso	FEc		
2DA	Simple	3	0.017	Simple	7	0.523	0.540	
2DB	Simple	7	0.523	Simple	11	3.556	4.079	
3A	Simple	7	0.523	Tandem	20	3.231	3.754	
4C	Simple	7	0.523	Tridem	24	1.509	2.032	

4.5.7 Cálculo de tránsito de diseño para pavimento flexible

Como **DATO** se tiene:

Considerar para el diseño TODOS los vehículos

Con los datos obtenidos en los acápites 4.5.2 – 4.5.6 se aplica la fórmula de 4.5.1 para cada tipo de vehículo y se obtiene la Tabla 4-6:

Tabla 4-6 Cálculo de número de ejes equivalentes (N ó ESALs)

TIPO DE VEHÍCULO	TPDA (2023)	FD	FC	FEc	- 1	FP		N ESALs	
	Solo vehículos comerciales				2033	2043	2033 (Etapa 1)	2043 Etapa 2)	
2DA	9	50.00%	100.00%	0.540	10.69	22.78	9480	20207	
2DB	9	50.00%	100.00%	4.079	10.69	22.78	71604	152638	
3A	1	50.00%	100.00%	3.754	10.69	22.78	7323	15609	
4C	1	50.00%	100.00%	2.032	10.69	22.78	3964	8449	
						TOTAL	92371	196903	

La sumatoria del número de ejes simples equivalentes acumulados de cada tipo de vehículos da como resultado el tránsito de diseño:

N= tránsito de diseño para pavimento flexible = 92.347 y 196.903 ejes simples equivalentes acumulados en el carril y periodo de diseño respectivamente.

4.6 Determinación del módulo resiliente de la subrasante

4.6.1 Cálculo del CBR característico

De los resultados de los ensayos de laboratorio analizados anteriormente, se tiene la Tabla 4-7

Tabla 4-7 Resumen de resultados CBR

DATOS DE EXPLORACIÓN CLASIFICACIÓN							
ID	MHECTDA	PROF.	SUCS	AASHTO	CBR		
ID	MUESTRA	(m)			%		
PCA # 01	PCA # 01 -01	0.30-1.50	GC	A-2-6 (0)	4.30		
PCA # 02	PCA # 02 -01	0.30-1.50	SC	A-2-7 (4)	0,90		
PCA # 03	PCA # 03 -01	0.30-1.50	sm	A-2-7 (0)	2.90		

Como <u>INFORMACIÓN CALCULADA</u> se tiene el número de ejes simples equivalentes acumulados en el carril y periodo de diseño

Por tanto, se debe calcular el CBR característico:

Los datos proporcionados se ordenan de menor a mayor y se determina el número y el porcentaje de valores iguales o mayores (Tabla 4-9), y con el valor del número de ejes simples equivalentes, se tiene la Tabla 4-8 que presenta los límites para la selección de resistencia:

Tabla 4-8 Límites para la selección de resistencia

Número de ejes de 8.2 ton en el carril de diseño		Percentil para seleccionar la resistencia	
0.0E+00	1.0E+04	60	
1.0E+04	1.0E+06	75	
1.0E+06	1.0E+14	87.5	

Tabla 4-9 Cálculo del CBR característico

CBR (%)	CBR ordenado de menor a mayor (%)	Valores mayores o iguales	% de valores mayores
4.30	0.90	3	100.00
0.90	2.90	2	66.67
2.90	4.30	1	33.33

De la Tabla 4-9 se obtiene para un percentil de 75% el valor de CBR de la subrasante de 2.40%

4.6.2 Cálculo del módulo resiliente de la subrasante

Se calcula el módulo resiliente de la subrasante mediante la siguiente ecuación:

$$Mr = 1500 * CBR$$

(American Association of State Highway and Transportation Officials, 1993)

En donde:

Mr= módulo resiliente de la subrasante (psi)

CBR= valor del CBR característico de la subrasante, valor directo no en porcentaje

Por tanto, se tiene:

Módulo resiliente de la subrasante = Mr= 3600 psi.

4.7 Requerimiento de mejoramiento en la subrasante

En la Tabla 4-10, se observa una clasificación dada por el (Ministerio de Transporte y Comunicaciones del Perú, 2014), en la que se describe a la subrasante como inadecuada, que sería nuestro caso particular porque se tiene un CBR menor a 3%, hasta excelente cuando una subrasante tiene un CBR mayor a 30%

Tabla 4-10 Categorías de subrasante según el CBR (Ministerio de Transporte y Comunicaciones del Perú, 2014)

CATEGORIAS DE SUBI	RASANTE CBR
S0: Sub rasante Inadecuada	CBR < 3%
S1: Sub rasante Insuficiente	De CBR ≥ 3% a CBR < 6%
S2: Sub rasante Regular	De CBR ≥ 6% a CBR < 10%
S3: Sub rasante Buena	De CBR ≥ 10% a CBR < 20%
S4: Sub rasante Muy buena	De CBR ≥ 20% a CBR < 30%
S5: Sub rasante Excelente	De CBR ≥ 30%

4.8 Módulo resiliente del material de mejoramiento

En el documento del (Ministerio de Transporte y Obras Públicas, 2002), se encuentran las características del material de mejoramiento. Se indica que el valor de CBR no sea menor a 20%. Se calcula el módulo resiliente del mejoramiento mediante la siguiente ecuación:

$$Mr = 4326 \times \ln(CBR) + 241$$

Se obtiene Mr = 13201 psi.

Para el valor de coeficiente de capa se emplea la Tabla 4-11, multiplicando el valor por 2.54 para transformar a pulgadas.

Tabla 4-11Coeficientes de capas diseño estructural de pavimentos flexibles, basados en la normativa AASHTO. (American Association of State Highway and Transportation Officials, 1993)

	ENTE DE CAPAS L DE PAVIMENTOS FLEXIBLES				
MÉTODO AASHTO					
CLASE DE MATERIAL	COEF. (cu)				
CAPA DE SUPERFICIE					
Concreto Asfáltico	EST. DE MARSHALL 1000-1800 LBS	0.134 - 0.173			
Arena Asfáltica	EST. DE MARSHALL 500-800 LBS	0.0079 - 0.118			
Carpeta Bituminosa Mezclada en Camino	EST. DE MARSHALL 300-600 LBS	0.059 - 0.098			
CAPA DE BASE					
Agregados triturados graduados uniformemente	P.I. 0-4, CBR > 100%	0.047 - 0.055			
Grava graduada uniformemente	P.I. 0-4, CBR > 30 - 80%	0.028 - 0.051			
Concreto Asfáltico	EST. DE MARSHALL 1000 – 1600 LBS	0.098 - 0.138			
Arena Asfáltica	EST. DE MARSHALL 500 – 800 LBS	0.059 - 0.098			
Agregado Grueso Estabilizado con cemento	RESIST. A LA COMP. 28 – 46 KG/CM2	0.079 - 0.138			
Agregado Grueso Estabilizado con cal	RESIST. A LA COMP. 7KG/CM2	0.059 - 0.118			
Suelo Cemento	RESIST. A LA COMP. 18 – 32 KG/CM2	0.047 - 0.079			
CAPA DE SUB-BASE					
Arena – Grava, graduada uniformemente	P.I. 0-6, CBR > 30 +%	0.035 - 0.043			
Suelo - Cemento	RESIST. A LA COMP. 18 – 32 KG/CM2	0.059 - 0.071			
Suelo - Cal	RESIST. A LA COMP. 5KG/CM2	0.059 - 0.071			
MEJORAMIENTO DE LA SUBRASANTE					
Arena o Suelo seleccionado	P.I. 0-10	0.020 - 0.035			
Suelo con cal	3% MIN. DE CAL EN PESO DE LOS SUELOS	0.028 – 0.039			

4.9 Determinación del Módulo resiliente de la subbase.

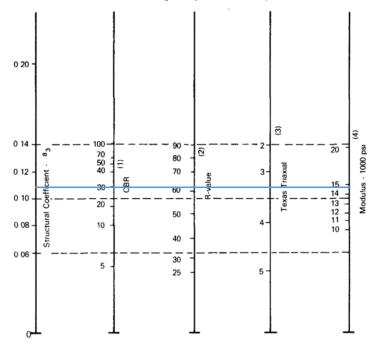

El C.B.R. del material de subbase considerado para el cálculo, se basa en las especificaciones del MTOP (Ministerio de Transporte y Obras Públicas, 2002), con el siguiente valor mínimo:

Tabla 4-12 CBR de mínimo subbase (normativa (Ministerio de Transporte y Obras Públicas del Ecuador, 2003))

Material	CBR especificación MTOP %		
SUBBASE	30		

De acuerdo con el CBR de 30% asumido y el siguiente Abaco (Figura 4-9), se obtiene un módulo resiliente de la subbase de 15000 psi o lb/pulg².

Figura 4-9 Ábaco para la obtención de Módulo Resiliente y coeficiente estructural de la Subbase. (American Association of State Highway and Transportation Officials, 1993)

4.10 Determinación del Módulo resiliente de la Base

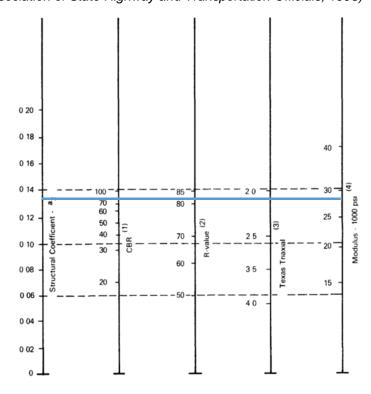
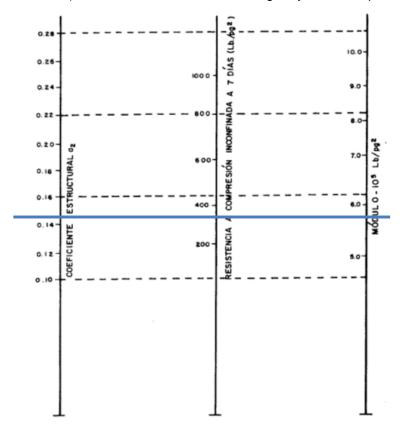

El CBR del material de base considerado para el cálculo, se basa en las especificaciones del MTOP (Ministerio de Transporte y Obras Públicas), con el siguiente valor mínimo:

Tabla 4-13 CBR de mínimo base (MTOP M. d., 2003)

Material	CBR especificación MTOP %
Base	80

Con un CBR de 80% se obtiene un módulo resiliente de 29000 psi según la Figura 4-10.

Figura 4-10 Abaco para la obtención de Módulo Resiliente y coeficiente estructural de la Base (American Association of State Highway and Transportation Officials, 1993)


4.11 Características de la base estabilizada con cemento

Dado que se plantea un tipo de capa de rodadura con doble tratamiento con un aporte estructural mínimo o casi nulo, se ha previsto la colocación de una base rígida que soporte dicha carpeta, considerando una base estabilizada con cemento. Para la base estabilizada con cemento el MTOP, la literatura específica y distinta normativas recomiendan una resistencia de 35 kg/cm² (497.8 lb/pulg²), medida a los 7 días. Con este valor se obtiene el coeficiente estructural de capa a2 de 0.172 y un módulo resiliente de 650000 psi, en función de la

Figura 4-11, propuesto en la metodología AASHTO 93 para bases estabilizadas con

cemento, y cuyos valores se obtienen en función a la resistencia a la compresión.

Figura 4-11 Abaco para la obtención de Módulo Resiliente y coeficiente estructural de la Base Estabilizada con Cemento. (American Association of State Highway and Transportation Officials, 1993)

4.12 Características de Doble Tratamiento Superficial

Para el doble tratamiento superficial, considerando que es una capa de impermeabilización y cobertura, y que no presenta mayor espesor para tener un aporte estructural al conjunto de elementos, no se obtiene elementos de resistencia o deformación. Lo señalado se puede comprobar en el Manual de carreteras de Perú (Ministerio de Transporte y Comunicaciones del Perú, 2014), en el cual no se asigna un coeficiente estructural de capa en el cuadro 12.13, página 129, y que se presenta en la

Tabla 4-14:

Tabla 4-14 Coeficientes Estructurales de las Capas del Pavimento ai (Ministerio de Transporte y Comunicaciones del Perú, 2014)

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL ai (cm)	OBSERVACIÓN
CAPA SUPERFICIAL			
Carpeta Asfáltica en caliente, módulo 2.965 MPa (430.000 PSI) a 20°C (68°F)	a ₁	0.170 / cm	Capa superficial recomendada para todos los tipos de Tráfico. Este ES un valor Máximo y de utilizarse como tal, el expediente de ingeniería debe ser explícito en cuanto a pautas de cumplimiento obligatorio como realizar: -Un control de calidad riguroso -Indicar un valor de estabilidad Marshall, superior a 1000 kf-f -Alertar sobre la susceptibilidad al fisuramiento térmico y por fatiga (AASHTO 1993)
Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión	a ₁	0.125 / cm	Capa Superficial recomendada para tráfico ≤ 1′000.000 EE
Micropavimento 25mm	a ₁	0.130 / cm	Capa Superficial recomendada para tráfico ≤ 1'000.000 EE
Tratamiento superficial Bicapa	a ₁	(*)	Capa Superficial recomendada para tráfico ≤ 500.000 EE. No aplica en tramos con pendientes mayor a 8%; y, en vías con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
Lechada asfáltica (<u>slurry seal</u>) de 12mm	a ₁	(*)	Capa superficial recomendada para tráfico ≤ 500.000 EE. No aplica en tramos con pendientes mayor a 8% y en tramos que obliguen al frenado de vehículos
(*) no se considera por tener aporte estructural	a ₁		

4.13 Determinación del número estructural SN

4.13.1 Ecuación de la AASHTO para pavimentos flexibles

Para el diseño de pavimentos flexibles el método de la AASHTO 1993, se emplea la siguiente ecuación:

$$log_{10}(W_{18}) = z_R s_o + 9.36 \, log_{10}(SN+1) - 0.20 + \frac{log_{10}\left(\frac{\Delta PSI}{4.2-1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \, log_{10}(MR) - 8.07$$

Ecuación 4.1 (American Association of State Highway and Transportation Officials, 1993)

En donde:

W18= tránsito de diseño, número de ejes simples equivalentes acumulados en el carril y periodo de diseño

ZR= Nivel de confiabilidad

So= Desviación estándar

SN= Número estructural

 ΔPSI = Cambio total en el índice de servicio = Nivel de servicio inicial (Po) – nivel de servicio final (Pt)

MR= Módulo resiliente de la subrasante

4.13.2 Cálculo de nivel de confiabilidad ZR.

Como **DATO** se tiene:

- Diseñar el pavimento para una vía/carretera local
- Vía rural

Por tanto de la Tabla 4-15, se tiene el Coeficiente de confiabilidad de 65%, como un promedio entre los valores 50 y 80. Y por lo tanto el valor inverso de la distribución normal estándar, **ZR = -0.385** (considerando que ZR debe ser un negativo)

Tabla 4-15 Niveles de confiabilidad sugeridos para diferentes carreteras ((American Association of State Highway and Transportation Officials, 1993))

Clasificación	Nivel de confiabilidad recomendado		
	Urbana Rural		
Autopistas interprovinciales y otras	85 – 99.9	80 – 99.9	
Arterias principales	80 – 99	75 – 95	
Colectoras de tránsito	80 – 95	75 – 95	
Carreteras locales	50 – 80	50 – 80	

4.13.3 Determinación de la desviación estándar So

Según (American Association of State Highway and Transportation Officials, 1993), se tiene que: "Los valores de desviación estándar (So) desarrollados por la AASHO Road Test no incluyen error por el tránsito. El error de la predicción del comportamiento desarrollado en el tramo de ensayo fue de 0.35 para pavimentos flexibles, lo cual corresponde a una desviación estándar total de 0.45. Valores típicos de So son de 0.4 a 0.5 para pavimentos flexibles y de 0.35 a 0.40 para pavimentos

rígidos."

Por lo tanto, se considera un valor de So= 0.35

4.13.4 Cálculo del cambio total en el índice de servicio

Como **DATO** se tiene:

El índice final de servicio es de 2.5

Y según la teoría, se tiene que: "Para la determinación del índice de servicio inicial, del ensayo AASHO se obtuvo el valor de 4.2 para pavimentos flexibles 4.5 para pavimentos rígidos"

Por lo tanto:

$$\Delta PSI = Po - Pt = 2$$

En donde:

 ΔPSI = Cambio total en el índice de servicio Po = Nivel de servicio inicial (4.2) Pt = Nivel de servicio final (2.2)

4.13.5 Cálculo del Número estructural

El cálculo del número estructural de las capas del pavimento flexible se calcula mediante las siguientes fórmulas:

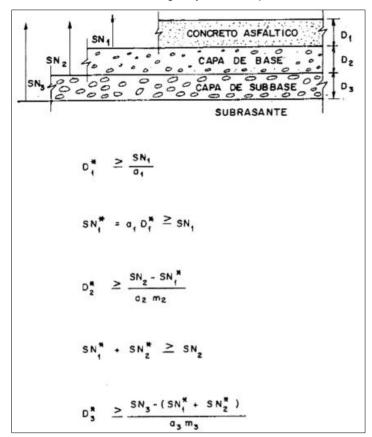
$$SN_1 = a_1 * D_1$$
 Ecuación 4.2
 $SN_2 = SN_1 + a_2 * D_2 * m_2$ Ecuación 4.3
 $SN_3 = SN_2 + a_3 * D_3 * m_3$ Ecuación 4.4

En donde:

 $SN_1=N$ úmero estructural mínimo requerido a nivel de la capa de base granular $SN_2=N$ úmero estructural mínimo requerido a nivel de la capa de Mejoramiento $SN_3=N$ úmero estructural mínimo requerido a nivel

de la Subrasante Natural

En donde:


ai = coeficiente estructural de cada capa, dependiendo del tipo de material.

mi = coeficiente de drenaje para cada capa.

Di = espesor de las diferentes capas.

En la Figura 4-12 se observa un esquema de la estructura de pavimentos, para el cálculo del número estructural.

Figura 4-12 Procedimiento para la determinación de espesores de capa usando un análisis de capa. Fuente: (American Association of State Highway and Transportation Officials, 1993)

i) Coeficiente estructural (ai)

En la metodología AASHTO 1993 se establecen los valores para el coeficiente estructural (ai) que se deben adoptar de acuerdo con el módulo resiliente de cada material. Es así

como se tienen los gráficos: Figura 4-9 y Figura 4-10, expuestos anteriormente, para la determinación de los coeficientes estructurales de las capas de Subbase y Base, respectivamente.

Para obtener el coeficiente de capa (ai) del material de mejoramiento se utiliza la Tabla 4-11.

De esta manera se obtienen los valores para coeficiente estructural que se muestran en la Tabla 4-16:

Tabla 4-16 Coeficientes estructurales por capa

Сара	Coeficientes de capa (a)		
Doble tratamiento superficial			
Base estabilizada con cemento	0.145		
Base	0.137		
Subbase	0.11		
Material de mejoramiento	0.09		

4.13.6 Coeficiente de drenaje (m)

Como **DATO** se tiene:

El clima del sector es un clima seco.

El valor Cd se obtiene de la Tabla 4-17 y la Tabla 4-18;

Tabla 4-17 Coeficiente de drenaje (American Association of State Highway and Transportation Officials,

1993)

Calidad del drenaje	% de tiempo de exposición de la estructura del pavimento a nivel de						
	humedad próximos a la saturación						
	< 1% 1 - 5 % 5 - 25 % >25 9						
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20			
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00			
Aceptable	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80			
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60			
Muy pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40			

Para la vía en estudio se considera para cada capa, descritas desde la capa inferior, los siguientes coeficientes de drenaje:

- •Para el material de mejoramiento se adopta coeficiente de drenaje (m3) de 0.80
- •Para las capas de Base y Subbase se adopta coeficiente de drenaje (m2) de 1.00
- •Para la base estabilizada con cemento se adopta coeficiente de drenaje (m3) de 1.20

Tabla 4-18 Calidad de drenaje (American Association of State Highway and Transportation Officials, 1993)

Calidad del drenaje	Tiempo en que tarda el agua en ser evacuada	
Excelente	2 horas	
Buena	1 día	
Aceptable	1 semana	
Pobre	1 mes	
Muy pobre	(el agua no drena)	

4.13.7 Módulo Resiliente (MR)

Corresponde a los valores de Módulo Resiliente, establecidos previamente para cada tipo de material en el presente informe.

4.14 Cálculo de Espesores de las capas del pavimento

En la Tabla 4-19 se muestra un resumen de los valores antes descritos, los cuales intervienen en la fórmula (ecuación 4.1) para el cálculo de la estructura del pavimento.

Tabla 4-19 Resumen de parámetros establecidos para el cálculo de la estructura de pavimento.

DISEÑO DE PAVIMENTO FLEXIBLE POR METODO DE LA ASSHTO 1993					
No. Repeticiones (ESALs o W18)	Etapa 1	92371			
	Etapa 2	196903			
Confiabilidad	Confiabilidad	80.00%			
	Zr	-0.84			
Desviación Estándar	So	0.35			
	Material	CBR (%)	Mr (psi)	Coef. Dren. "m"	
	Subrasante	2.40	3600		
	Mejoramiento	20.00	13201	0.8	
Parámetros de resistencia de los materiales	Subbase	30.00	15000	1	
materiales	Base	80.00	29000	1	
	Base estabiliz. Cem.		580000	1.2	
	Carpeta asf.		400000		
Pérdida de Serviciabilidad	Po	4.2			
	Pt	2			
	ΔPSI	2.2			

Aplicando el procedimiento de cálculo descrito para obtener el diseño de la estructura de pavimento, se han determinado tres (3) alternativas para los espesores de las capas de pavimento:

4.14.1 Alternativa 1

Para la alternativa 1 se ha considerado un diseño de la estructura de pavimento en 2 etapas, como se muestra en la Tabla 4-20.

Tabla 4-20 Cálculos de espesores de las capas de la estructura de pavimento, alternativa 1

	CÁLCULO	D DEL NÚME	RO ESTRUCTU	RAL				
Parámetro fórmula	Etapa	1 (2023 – 20	033)	Etapa	2 (2033 – 20)43)		
Parametro formula	Mejoramiento	Base	Carpeta asf.	Mejoramiento	Base	Carpeta as		
Mr capa	13201	29000	400000	13201	29000	400000		
Zr * So	-0.29	-0.29	-0.29	-0.29	-0.29	-0.29		
9.36*log10(SN+1)	5.33	3.98	3.18	5.68	4.32	3.51		
-0.2	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20		
Log10(ΔPSI/(4.2- 1.5))/(0.4+1094/(SN+1)^5.19))	-0.06	-0.01	0.00	-0.08	-0.02	-0.01		
2.32*log10(MR)-8.07	0.18	1.49	2.28	0.18	1.49	2.28		
SN	2.72	1.66	1.19	3.05	1.89	1.37		
CALCULO DE ESPESORES								
	Etapa	1 (2023 – 20	033)	Etapa	2 (2033 – 20	043)		
PARÁMETRO	SN3	SN2	SN1	SN3	SN2	SN1		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mejoramient o	Base	Carpeta asf.	Mejoramiento	Base	Carpeta as		
Coeficiente estructural (ai)	0.09	0.14	0.42	0.09	0.14	0.42		
Coeficiente de Drenaje (mi)	0.80	1.00		0.80	1.00			
Número estructural SN1 = a1*D1 SN2 = SN1 + a2*m2*D2 SN3 = SN2 + a3*m3*D3	2.72	2.07	1.26	2.93	2.28	1.47		
Espesor adoptado D1', D2', D3'	30.00 cm	15.00 cm	3.0 <u>pulg</u> .	30.00 cm	15.00 cm	3.5 pulg.		
SN corregido	2.28	1.86	1.05	2.70	2.28	1.47		
Comprobación	Cumple	Cumple	Cumple	Cumple	Cumple	Cumple		

Como se puede observar, en la etapa 1 se determina una estructura de pavimento con 3 capas, la primera de espesor de 30 centímetros de material de mejoramiento, sobre la cual se asienta la segunda capa de espesor de 15 centímetros de material de base, y finalmente, una carpeta asfáltica de 3 pulgadas. Como se indicó anteriormente, esta primera etapa tiene un período de proyección de 10 años, comprendidos entre el año 2023 al 2033.

Para la segunda etapa, se determina la necesidad de la colocación de una carpeta asfáltica de 0.5 pulgadas, para obtener una capa de rodadura final de 3.5 pulgadas. De todas maneras, se recomienda que al final de la primera etapa se realice un análisis estructural del pavimento con el objeto de determinar las condiciones de "vida remanente" de la estructura. De esta manera se podrá establecer con mayor precisión la estructura necesaria a construirse para la segunda etapa.

4.14.2 Alternativa 2

Para la alternativa 2 se ha considerado el diseño de una única estructura de pavimento, en el período comprendido entre el año 2023 al año 2043 (20 años de vida útil), cuyos valores se muestran en la Tabla 4-21.

Tabla 4-21 Cálculos de espesores de las capas de la estructura de pavimento, alternativa 2

CÁLCULO DEL NÚMERO ESTRUCTURAL									
Parámetro fórmula	Mejoramiento	Base	Carpeta asf.						
Mr capa	13201	29000	400000						
Zr * So	-0.29	-0.29	-0.29						
9.36*log10(SN+1)	5.68	4.32	3.51						
-0.2	-0.20	-0.20	-0.20						
Log10(ΔPSI/(4.2- 1.5))/(0.4+1094/(SN+1)^5.19))	-0.08	-0.02	-0.01						
2.32*log10(MR)-8.07	0.18	1.49	2.28						
SN	3.05	1.89	1.37						
CALCU	CALCULO DE ESPESORES								
PARÁMETRO	SN3	SN2	SN1						
	Mejoramiento	Base	Carpeta asf.						
Coeficiente estructural (ai)	0.09	0.14	0.42						
Coeficiente de Drenaje (mi)	0.80	1.00							
Número estructural SN1 = a1*D1 SN2 = SN1 + a2*m2*D2 SN3 = SN2 + a3*m3*D3	3.05	1.89	1.37						
Espesor adoptado D1', D2', D3'	28.00 cm	15.00 cm	3.5 pulg.						
SN corregido	3.07	2.28	1.47						
Comprobación	Cumple	Cumple	Cumple						

Para la alternativa 2 se ha considerado el diseño de una estructura única de pavimento, de 28cm de mejoramiento, 15 cm de base y carpeta asfáltica de 3.5" con una proyección de 20 años. Para esta alternativa 2, también se recomienda realizar a los 10 años un análisis estructural del pavimento con el objeto de determinar las condiciones de "vida remanente" de la estructura. De esta manera se podrá establecer con mayor precisión las condiciones de la estructura y las acciones necesarias para conservar en buen estado el activo vial.

4.14.3 Alternativa 3

Para la alternativa 3, se ha considerado el diseño de la estructura del pavimento en dos etapas, como se muestra en la. Tabla 4-22

Tabla 4-22 Cálculos de espesores de las capas de la estructura de pavimento, alternativa 3

	CÁLCI	JLO DEL NÚMEF	RO ESTRUCTU	JRAL			
Parámetro fórmula	Eta	apa 1 (2023 – 20	33)	Etapa 2 (2033 – 2043)			
	Subbase	Base estabilizad a con cemento	D.T.B.S.	Mejoramient o	Base estabilizad a con cemento	Carpeta asj	
Mr capa	15000	580000		15000	580000	400000	
Zr * So	-0.29	-0.29		-0.29	-0.29	-0.29	
9.36*log10(SN+1)	5.33	3.85		5.68	4.19	0.49	
-0.2	-0.20	-0.20		-0.20	-0.20	-0.20	
Log10(ΔPSI/(4.2- 1.5))/(0.4+1094/(SN+1)^5.19))	-0.06	-0.01		-0.08	-0.02	0.00	
2.32*log10(MR)-8.07	0.18	1.49		0.18	1.49	2.28	
SN	2.72	1.58	3.05		1.80	0.13	
		CALCULO DE E	SPESORES				
PARÁMETRO	Etap	a 1 (2023 – 2	(033)	Etapa 2 (2033 – 2043)			
			SN3	SN2	SN1		
	Subbase	Base estabilizad a con cemento	D.T.B.S.	Subbase	Base estabilizad a con cemento	Carpeta as	
Coeficiente estructural (ai)	0.11	0.21		0.11	0.21	0.42	
Coeficiente de Drenaje (mi)	1.00	1.20		1.00	1.20		
Número estructural SN1 = a1*D1 SN2 = SN1 + a2*m2*D2 SN3 = SN2 + a3*m3*D3	2.72	1.58		3.05	1.80	0.13	
Espesor adoptado D1', D2', D3'	27.00 cm	16.00 cm	D.T.S.B.	27.00 cm	16.00 cm	1.0 pulg.	
SN corregido	2.76	1.59		3.18	2.01	0.42	
Comprobación	Cumple	Cumple		Cumple	Cumple	Cumple	

4.15 Rehabilitación y Mantenimiento

Para establecer el tipo de mantenimiento rutinario e intervenciones se utiliza el manual de carreteras del Perú (Ministerio de Transporte y Comunicaciones del Perú, 2014), sección suelos y pavimentos, que estipula lo siguiente:

- Evaluaciones superficiales del pavimento: Inventario de Condición, se efectúa al menos una vez cada año; y Rugosidad, al menos una medición cada dos años.
- Evaluaciones Estructurales del Pavimento: Deflexiones, se efectuará al menos una medición cada cuatro años.
- Efectuar Renovación Superficial periódicamente mediante Sellos Asfálticos (cada 3 a 4 años)

Como se puede observar, en la etapa 1 se determina una estructura de pavimento con 2 capas: la primera de espesor de 27 centímetros de material de mejoramiento, sobre la cual se asienta la segunda capa de espesor de 16 centímetros de material de Base Granular, y finalmente se recomienda la construcción de una capa de Doble Tratamiento Superficial Bituminoso (D.T.B.S.) que proteja la capa de rodadura de la estructura de pavimento, dado que la misma estaría conformada solamente por material de Base Granular. Como se indicó anteriormente, esta primera etapa tiene un período de proyección de 10 años, comprendidos entre el año 2023 al 2033. Para la segunda etapa, se determina la necesidad de la colocación de una carpeta asfáltica de 1 pulgadas.

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- El presente trabajo de titulación forma parte del Convenio de Cooperación Interinstitucional para realizar los "Estudios y Diseños definitivos de las vías a la cabecera Parroquial de Yúluc, Uchucay- Sumaypamba-Playas de Sumaypamba, Vía a Yunquil y vías de la Urbanización de los Precaristas, del cantón Saraguro, provincia de Loja", entre la Empresa Electro Generadora del Austro, ELECAUSTRO S.A, el Gobierno Autónomo Descentralizado de la Provincia de Loja, el Gobierno Autónomo Descentralizado Parroquial de San Sebastián de Yuluc, el Gobierno Autónomo Descentralizado Parroquial de Sumaypamba, la Universidad de Cuenca, y la Empresa Pública de la Universidad de Cuenca UCUENCA EP.
- El presente trabajo de titulación tiene como objetivo elaborar los estudios técnicos para solucionar el acceso al sector denominado Yunquil en un tramo desde la abscisa 0+000.00 km hasta la abscisa 4+250.00 km, desde la vía a San Sebastián de Yúluc. Luego de presentados los diseños definitivos, ELECAUSTRO S.A evaluará la factibilidad técnica, financiera y económica para su intervención.
- Las particularidades de cada proyecto vial vienen dadas por su entorno. Se determinó que el clima del área de estudio es un clima seco. La geología de la zona es caracterizada por sus suelos de grano grueso. La realidad socioeconómica del sector se observa en el número de personas agricultores que requieren la vía para el transporte de sus productos.
- Dentro de los objetivos del trabajo de titulación se tiene la realización de los estudios básicos de topografía, suelos y tráfico. Los estudios de topografía se realizaron mediante tecnología de drones y rtk. El presente proyecto se encuentra ubicado en un terreno que tiene una pendiente promedio de 42%.
- Los estudios de suelos indican que en el sector predomina los suelos de grano grueso, entre los que se encuentran: gravas arcillosas, arenas arcillosas, arenas limosas. Parámetros determinados mediante los ensayos de laboratorio:

Clasificación de suelos, Límite líquido, límite plástico, humedad, próctor modificado.

- El estudio de tráfico es realizado en la vía a la cual se conecta el actual proyecto en la abscisa 0+000.00 km, es decir, en la vía a San Sebastián de Yúluc mediante otra tesis que también forma parte del convenio de cooperación interinstitucional. Se tiene un TPDA en el año 2021 de 116 vehículos y al año 2043 se proyecta un TPDA de 203 vehículos.
- De los cálculos realizados se obtiene que la subrasante requiere material de mejoramiento, pues se encuentra catalogada como inadecuada por tener un valor de CBR menor al 3%.
- Se determinan 3 alternativas de diseño para la estructura de pavimento.
- Para la alternativa 1 se ha considerado un diseño de la estructura de pavimento en 2 etapas, 30cm de mejoramiento, 15 cm de base y carpeta de 3" con una proyección de 10 años. La segunda etapa colocación de 0.5" de carpeta asfáltica.
- Para la alternativa 2 se ha considerado el diseño de una estructura única de pavimento, de 28cm de mejoramiento, 15 cm de base y carpeta asfáltica de 3.5" con una proyección de 20 años.
- Para la alternativa 3 se ha considerado un diseño de la estructura de pavimento en 2 etapas, 27cm de mejoramiento, 16 cm de base y una capa de DTSB para proteger la capa de rodadura con una proyección de 10 años. La segunda etapa colocación una capa de carpeta asfáltica de 1".

5.2 Recomendaciones

- Se recomienda que se sigan realizando más convenios de cooperación interinstitucional pues resultan ser un medio adecuado de fusionar los conocimientos académicos con proyectos de interés social
- Luego de la elaboración de estudios y diseños viales es recomendable realice una evaluación de factibilidad técnica, financiera y económica. Esto permitirá que los recursos económicos sean invertidos óptimamente.

- Se recomienda que los levantamientos topográficos sean realizados en la medida de lo posible con técnicas y equipos actualizados, pues esta área tecnológica tiene un crecimiento bastante rápido.
- Es importante conocer el entorno de la zona de emplazamiento del proyecto vial.
 Este entorno, tanto sus características geológicas, topográficas, socioeconómicas,
 le otorga una particularidad al proyecto.
- Se recomienda colocar material de mejoramiento sustituyendo el suelo de la subrasante con la finalidad de que la misma alcance valores de CBR mayores a los que actualmente tiene (3%).
- Para la alternativa 1 de diseño para la estructura de pavimento se recomienda que al final de la primera etapa se realice un análisis estructural del pavimento con el objeto de determinar las condiciones de "vida remanente" de la estructura. De esta manera, se podrá establecer con mayor precisión la estructura necesaria a construirse para la segunda etapa.
- Para la alternativa 2 de diseño de la estructura de pavimento se recomienda que a los 10 años se realice un análisis estructural del pavimento con el objeto de determinar las condiciones de "vida remanente" de la estructura. De esta forma, se podrán establecer con mayor precisión las condiciones de la estructura y las acciones necesarias para conservar en buen estado el activo vial.
- Para la alternativa 3 de diseño para la estructura de pavimento se recomienda que al final de la primera etapa se realice un análisis estructural del pavimento con el objeto de determinar las condiciones de "vida remanente" de la estructura. De esta manera se podrá establecer con mayor precisión la estructura necesaria a construirse para la segunda etapa.
- Se recomienda además que se realicen evaluaciones superficiales previo al mantenimiento rutinario, un inventario de condición cada año y uno de rugosidad cada dos años. Se aconseja realizar evaluaciones estructurales, de deflexiones al menos cada 4 años y sellos asfalticos cada 3 o 4 años.

BIBLIOGRAFÍA

6.1 Bibliografía

- AASHTO. (2004). Geometric Design of Highways and Streets.
- AASHTO. (2011). LIBRO VERDE AASHTO 2011 POLITICA SOBRE DISEÑO GEOMETRICO

 DE CAMINOS Y CALLES.
- AASHTO, A. A. (2018). Geometric Design of Highways and Streets. Washington D.C.
- American Association of State Highway and Transportation Officials. (1993). AASHTO Guide For Desing of Pavemente Structures 1993. New York, Washington D.C, EEUU: American Association of State Highway and Transportation Officials.
- Cabrera Luna, R. S. (2022). "Elaboración de estudios definitivos de ingeniería para el mejoramiento de la vía "Uchucay-Sumaypamba-Playas De Sumaypamba" de 6,50 km. de longitud aproximada, ubicada entre las parroquias San Sebastían de Yuluc y Sumaypamba del cantón Saraguro, provincia. Cuenca: Universidad de Cuenca.
- Cachi Calderón, K., & Sánchez Cuellar, N. (2019). *CAMBIO CLIMÁTICO Y RESILIENCIA EN CARRETERAS*. Lima: Universidad Ricardo Palma.
- Cárdenas Grisales, J. (2013). Diseño Geométrico de Carreteras. Bogotá, D.C.: Ecoe Ediciones.
- Castillo Moncayo, C. R. (2019). *Diseños definitivos de la vía comprendida desde el ingreso Ayancay hasta la comunidad de San Alfonso*. Obtenido de http://dspace.ucuenca.edu.ec/handle/123456789/32231
- Castillo Villavicencio, P. F., & Montenegro Reinoso, D. J. (2019). *Diseño de la vía periurbana*Las Cuadras Capillapamba, para el cantón Chordeleg. Cuenca. Obtenido de
 http://dspace.ucuenca.edu.ec/handle/123456789/32176

- Castillo, A. R. (1984). Ingeniería de Suelos en las Vías Terrestres. México D.F: Editorial Limusa.
- (2008). Directrices para la aplicación de las categorías de gestión de áreas protegidas. Suiza: Unión Internacional para la Conservación de la Naturaleza.
- Empresa Electro Generadora del Austro ELECAUSTRO S.A. (2021). *CONVENIO N° 2021 0024*.

 Cuenca.
- Ferreccio, N. (2006). Análisis de la técnica RTK. Buenos Aires, Argentina: Universidad de la Plata.
- Google Earth Pro. (2021). Google Earth Pro. Obtenido de https://earth.google.com/
- Instituto Geográfico Militar Ecuador. (2021). *Geoportal IGM*. Obtenido de http://www.geoportaligm.gob.ec
- Ministerio de Transporte y Comunicaciones del Perú. (2014). *Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos, seección suelos y Pavimentos*. Lima.
- Ministerio de Transporte y Obras Públicas. (2016). Acuerdo Ministerial 018 2016.
- Ministerio de Transporte y Obras Públicas del Ecuador. (2003). *Normas de Diseño Geométrico de Carreteras 2003*. Quito, Ecuador.
- Ministerio de Transporte y Obras Públicas MTOP. (2003). Normas de Diseño Geométrico de carreteras 2003.
- Ministerio de Transporte y Obras Públicas, M. (2002). Especificaciones generales para la construcción de Caminos y Puentes. Quito.
- Mora Cabrera, C. A. (2019). Estudios y diseños definitivos para el mejoramiento de la vía Playa de Fátima Cachi Jerusalén, cantón Biblián, provincia del Cañar. Obtenido de http://dspace.ucuenca.edu.ec/handle/123456789/32158
- MTOP, M. d. (2003). Normas de Diseño Geométrico de Carreteras. Quito.

Norma Ecuatoriana Vial NEVI-12-MTOP. (2013). *Ministerio de Transporte y Obras Públicas del Ecuador*. Quito.

Valencia Sierra, J. (2015). TECNOLOGÍA DRONE EN LEVANTAMIENTOS TOPOGRÁFICOS.

Bogotá: Escuela de Ingenieros Militares. Obtenido de https://dlwqtxts1xzle7.cloudfront.net/40714250/TECNOLOGIA_DRONE_EN_LEVAN TAMIENTOS_TOPOGRAFICOS-with-cover-page-v2.pdf?Expires=1652322236&Signature=TaFexqjvFxNFocH7hwx3YQaUsTXCd4MHY 7KHTxYDEjm08t7RP4bu3LYlJDFk8IGJ3cdFfETjOU8AHpqXNtkvV0tQco2RAKfCEn yk~pmhIn-j

Vanegas Ortiz, J. A. (2022). Elaboración de estudios de ingeniería para el mejoramiento de la vía a la cabecera parroquial de San Sebastián de Yuluc desde la abscisa 0+000 a 5+500, ubicada en el cantón Saraguro de la provincia de Loja. Universidad de Cuenca. Obtenido de http://dspace.ucuenca.edu.ec/handle/123456789/38944

ANEXOS

7.1 Anexo 1

Anexo 1 Resumen de los pesos y dimensiones de los buses y camiones. Fuente (MTOP M. d., 2003)

DIMENSIONES DE CAMIONES Y BUSES	PROYECTO DE REFORMA	VIGENTES MOP
DIMENSIONES DE CAMIONES I BOSES	SEGÚN MOP	VIOLIVIES MICI
	SEGUN WOF	
Ancho camión	2.60 m	2.60 m
Ancho bus	2.60 m	2.60 m
Alto camión	2.60 m 4.10 m	2.60 m 4.10 m *
Alto bus Largo Camión rígido (1,2 o 3 ejes en el	4.10 m 11,50 m(con 2 ejes)	4,10 m 12.00 m
		12.00 m
sem irem olque	12,20 m (con 3 ejes)	40.00/000 0000
Largo tracto camión +semiremolque(1,2,3 ejes)	17,50m (2S!; 2S2,2S3,3S1)	18,00(3S2 y 3S3)
en el semiremolque)	18,3 m (3S2,3S3)	
Largo semiremolque	9,0 m (1 eje)	9.0 (1 EJE)
	12,3 m (2 ejes)	12.3 (2 EJES) *
	13,0 m(3 ejes)	13.0 (3 EJES)
Largo remolque	10,00 m	10.00 m.
Largo camión + remolque	18,30 m	18:30 m.
Largo tracto camión + semiremolque + remolque	18,30 m	18.3 m.
	Convencional 13,3m	
Largo bus larga distancia	Semi integral 15,0 m hasta	
	con 3 ejes	
	Integral 15,0m hasta 4	
	ejes direccionales	
Largo bus articulado	18,3m	-
Largo bus urbano/suburbano	-	-
Ancho vehículos especiales	-	-
Alto Vehículos especiales	-	-
Largo de vehículos especiales (1)	21	21 *
Separación para ejes compuestos	-	m in 1.2m
, , , ,		max. 1.6m
PESOS CA	MIONES	
Eje trasero simple rodado simple (2r)	6.00t	6.00t
Eje trasero simple rodado dobre (1r)	11.00t	12,00t
Eje trasero doble rodado simple (4r)	12,00t	12,00t
Eje trasero doble rodado simple y doble (6r)	15.50t	,
Eje trasero doble rodado doble (8r)	19,00t	20,00t
Eje trasero triple rodado simple (6r)	18.00t	-
Eje trasero triple 1 rodado simple y 2 dobles (10r)	24.00t	-
Eje trasero triple 3 rodados dobles (12r)	24,00t	24.00t
Peso Bruto Total admitido	48.00	46,00t *
i coo brato i otal adminido	500 Kg. para eje delantero	40,000
	y 1000 Kg para cualquiera	
Tolerancias de pesos	de los ejes posteriores	
i olerancias de pesos	No existe tolerancia para	
	el P.B.V.	·
Relación potencia de pesos	6,5 IIP/t	8IIp/t y 6,5IIP/t
* En estudio el cambio de valores	0,5 117/1	onp/t y o,511P/t
Lii estudio el cambio de valores		

7.2 Anexo 2

Anexo 2 Tabla Nacional de peso bruto vehicular y dimensiones máximas permisibles. Fuente: Artículo 4. del Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte y Obras Públicas, 2016)

TIPO	DISTRIBUCION	DESCRIPCIÓN	PESO MÁXIMO	LONGITUDES MÁXIMAS PERMITIDAS (metros)			
				PERMITIDO (TON)	Largo	Ancho	Alto
2D	20 20 P	- II	Camión de 2 ejes pequeño	7	5.5	2.6	3
2DA	2 DA	I I	Camión de 2 ejes medianos	10	7.5	2.6	3.5
2DB	205	5— I Ī	Camión de 2 ejes grandes	18	12.2	2.6	4.1
3-A		- I II	Camión de 3 ejes	27	12.2	2.6	4.1
4-C	46	6 oo I <u>II</u>	Camión de 4 ejes	31	12.2	2.6	4.1
4-0 OCTOP US	4-0	 II I	Camion con tamdem direccional y tamden	34	12.2	2.6	4.1
V2DB	41	I Ī	Volqueta de 2 ejes	18	12.2	2.6	4.1
V3A		5—∞ I II	Volqueta de 3 ejes	27	12.2	2.6	4.1
T2	72 7 31	g ⊸ II	Tracto camión de 2 ejes	18	8.5	2.6	4.:
Т3	7 20	Coo III	Tracto camión de 3 ejes	27	8.5	2.6	4.:
R2	R2	~~~ I I	Remolque de 2 ejes	14	10	2.6	4.:
R3	7 14	I II	Remolque de 3 ejes	21	10	2.6	4.:
S1	51		Semiremolque de 1 ejes	11	13.2	2.6	4.1
S2	52 P 20	·	Semiremolque de 2 ejes	20	13.2	2.6	4.1
S3	53		Semiremolque de 3 ejes	24	13.2	2.6	4.1
B1	51		Remolque balanceado de 1 eje	7	10	2.6	4.1
B2	52	 II	Remolque balanceado de 2 ejes	14	10	2.6	4.:
В3	53	777	Remolque balanceado de	21	10	2.6	4.:

Tabla Nacional de peso bruto vehicular y dimensiones máximas permisibles. Fuente: Artículo 4. del Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte y Obras Públicas, 2016)

TIPO	DISTRIBUCION MAXIMA DE CARGA POR EJE		DESCRIPCIÓN	PESO MÁXIMO	LONGITUDES MÁXIMAS PERMITIDAS (metros)			
				PERMITIDO (TON)	Largo	Ancho	Alto	
2S1	251 7 11 11	ਰਹਿਰ I‼ ੀ	Tracto camión de 2 ejes y semiremolque de 1 eje	29	20.5	2.6	4.3	
2S2	252 7 11 20	do oo II <u>II</u>	Tracto camión de 2 ejes y semiremolque de 2 ejes	38	20.5	2.6	4.3	
253	253 7 11 24	g o coo I i iii	Tracto camión de 2 ejes y semiremolque de 3 ejes	42	20.5	2.6	4.3	
3S1	7 20 11	8 ∞ o I II I	Tracto camión de 3 ejes y semiremolque de 1 eje	38	20.5	2.6	4.3	
3S2	352 7 20 20	Coo oo I ∰ ∭	Tracto camión de 3 ejes y semiremolque de 2 ejes	47	20.5	2.6	4.3	
3S3	353 7 20 24	6 33 333 I !!! !!	Tracto camión de 3 ejes y semiremolque de 3 ejes	48	20.5	2.6	4.3	
2R2	2 DB ZR2	6	Camión remolcador de 2 ejes y remolque de 2 ejes	32	20.5	2.6	4.3	
2R3	7 11 7 13	€ ~ ~ · · · · I I I	Camión remolcador de 2 ejes y remolque de 3 ejes	39	20.5	2.6	4.3	
3R3	3A 3R3	 IIII	Camión remolcador de 3 ejes y remolque de 3 ejes	48	20.5	2.6	4.3	
3R2	3A 3R2	6	Camión remolcador de 3 ejes y remolque de 2 ejes	41	20.5	2.6	4.3	
2B1	7 11 7	6 I I	Camión remolcador de 2 ejes y remolque balanceado de 1 eje	25	20.5	2.6	4.3	
2B2	2 DB 252	6 I I	Camión remolcador de 2 ejes y remolque balanceado de 2 ejes	32	20.5	2.6	4.3	
2B3	7 11 21	6	Camión remolcador de 2 ejes y remolque balanceado de 3 ejes	39	20.5	2.6	4.3	
3B1	3A 351 7 .20 7	€	Camión romoleador do 2	34	20.5	2.6	4.3	
3B2	3A 382 7 20 14	€	Camión remolcador de 3 ejes y remolque balanceado de 2 ejes	41	20.5	2.6	4.3	
3B3	3A 3B3		Camión remolcador de 3 ejes y remolque balanceado	48	20.5	2.6	4.3	

Tabla Nacional de peso bruto vehicular y dimensiones máximas permisibles. Fuente: Artículo 4. del Acuerdo Ministerial 018 - 2016 (Ministerio de Transporte y Obras Públicas, 2016)

7.3 Anexo 3

Anexo 3. Ensayos de Laboratorio de Suelos

Prof.: 0.00 - 1.50 m

10.00

CURVA GRANULOMÉTRICA

CLASIFICACION DE SUELOS - ASTM 2487

Muestra: Calicata #1

Ubicación: Yunquil

Estudio Vía de Acceso a Yunquil, Calles

Proyecto: Urb. "Los Precaristas"

Solicitado por: Ing. Marta Loja, Ing. Gustavo Washima Fecha: 01/09/2021

	LÍMITE LÍQUIDO			LÍN	LÍMITE PLÁSTICO			HUM.NATURAL			HUM. GRANULOM.			
Número de tarro	99	187	107	132		191	141	202	117	43	153	157	173	122
Muestra húmeda + tarro (gr)	28.66	25.76	27.62	26.50		21.61	20.33	22.95	68.72	69.57	72.49	82.39	66.85	82.02
Muestra seca + tarro (gr)	25.46	22.81	24.23	23.53		20.71	19.54	22.03	65.18	66.36	68.04	79.84	64.76	79.39
Peso de tarro (gr)	15.58	13.98	14.32	15.38		15.64	15.12	16.80	16.82	14.24	15.62	16.26	15.16	15.72
Peso de agua (gr)	3.20	2.95	3.39	2.97		0.90	0.79	0.92	3.54	3.21	4.45	2.55	2.09	2.63
Peso muestra seca (gr)	9.88	8.83	9.91	8.15		5.07	4.42	5.23	48.36	52.12	52.42	63.58	49.60	63.67
Porcentaje de humedad	32.4%	33.4%	34.2%	36.4%		17.8%	17.9%	17.6%	7.3%	6.2%	8.5%	4.0%	4.2%	4.1%
Número de golpes - Promedio	34	27	23	15			17.8%			7.3%			4.1%	

20

$D_{30} =$	0.176
D ₆₀ =	7.616
C _U =	
C- =	- 1

D₁₀ =

% Grava	47%
% Arena	27%
% Finos	26%

L. Líquido	33.8%
L. Plástico	17.8%
I. Plasticidad	16.0%
H. Natural	7.3%
I. Liquidez	-0.65

SUCS GC

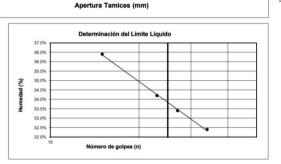
AASHTO A-2-6 (0)

LUIS	
ANTONIO	
MATUTE	
DIAZ	

Firmado digitalmente por LUIS ANTONIO MATUTE DIAZ Fecha: 2021.09.22 08:58:01 -05'00'

Ing. Luis Matute D. JEFE DE LABORATORIO

DA	CCI	ION	CD	UFS/


	Annahum	Done set	Danasat	D
Peso seco	total después	del ensayo (gr)	2447
Humedad	de material qu	ue pasa # 4		4.1%
Error				0.16%
Peso hum	edo total desp	ués del ensay	ro (gr)	2496
Peso hum	edo total ante	s del ensayo (gr)	2500

Peso seco	total después	del ensayo (gr)	2447		
Tamiz	Apertura Tamiz (mm)	Peso ret. parcial (gr)	Peso ret. correg. (gr)	Peso ret. acumu. (gr)	% retenido	% que pasa
3"	76.20	0	0	0	0.0	100.0
2"	50.80		0	0	0.0	100.0
11/2"	38.10	224	224	224	9.2	90.8
1"	25.40	207	207	431	17.6	82.4
3/4"	19.10	81	81	512	20.9	79.1
1/2"	12.70	222	222	734	30.0	70.0
3/8"	9.52	139	139	873	35.7	64.3
1/4"	6.35	192	192	1065	43.5	56.5
Nº 4	4.76	91	91	1156	47.2	52.8
PASA Nº 4		1340	1344			

l° 4	1340	1344	
FRACCION	FINA		
			-

Peso para lavado de material que pasa #4 (gr)	500
Peso seco antes de lavado (gr)	480.31
Peso seco después de lavado (gr)	242.50
Peso seco total después del ensayo	242.90

Tamiz	Apertura Tamiz (mm)	Peso ret. parcial (gr)	Peso ret. correg. (gr)	Peso ret. acumu. (gr)	Porcentaje retenido	Porcentaje que pasa	Liga % que pasa
Nº 8	2.38	41.7	41.7	41.7	8.7	91.3	48.2
Nº 10	2.00	12.7	12.7	54.4	11.3	88.7	46.8
Nº 40	0.42	106.7	106.3	160.7	33.5	66.5	35.1
N° 50	0.297	21.3	21.3	182.0	37.9	62.1	32.8
Nº 100	0.149	33.1	33.1	215.1	44.8	55.2	29.1
Nº 200	0.075	26.6	26.6	241.7	50.3	49.7	26.2
FONDO		0.8	238.6	480.3	100.0		

0.10

Nota: Para la granulometrías de serie fina y serie gruesa se considera la humedad de granulometría.

Luis Sarmiento 1-86 y Miguel Cordero

Cuenca - Azuay - Ecuador

geolabcuenca@gmail.com

Teléfono: +593 7 403 9379

ENSAYO DE CBR - ASTM D 1883

Muestra: Calicata # 1 Ubicación: Yunquil Profundidad: 0.00-1.50 m Estudio Vía de Acceso a Yunquil, Calles Urb. "Los **Proyecto:** Precaristas"

Solicitado por: Ing. Marta Loja, Ing. Gustavo Washima Fecha: 1-sep.-21

MOLDE #:	9	8	7			
Diámetro del Molde (pulg):	5.98	5.97	5.98			
Altura del Molde (pulg):	4.96	4.96	4.96			
Área del Molde (pulg²):	28.13	28.00	28.13			
Volumen de molde (pulg³):	139.63	139.02	139.63			
Area de pistón (pulg2):	3.00					
Tasa de deformación (pula/min)	0.05					

													Tasa de deform	nación (pulg/mir	ı)	0.05
							DATOS DE	ESPONJAMIENTO								
			MOLI	DE #: 9	Cant. golpes	55		MOL	DE #: 8	Cant. golpes	25		MOL	DE #: 7	Cant. golpes	12
FECHA	DIAS EN AGUA	HORA	LECT. DIAL	ALT. MUEST.	ESPONJA	AMIENTO	HORA	LECT. DIAL	ALT. MUEST.	ESPONJAMIENTO		HORA	LECT. DIAL	ALT. MUEST.	ESPONJA	MIENTO
			0.001pulg	pulg	pulg	%		0.001 pulg	pulg	pulg	%		0.001pulg	pulg	pulg	%
5-ago2018	0.0	11:10	0	5.971	0.000	0.00	11:10	0	5.971	0.000	0.00	11:10	0	5.971	0.000	0.00
6-ago2018	1.0	11:10	130	6.101	0.130	2.18	11:10	70	6.041	0.070	1.17	11:10	110	6.081	0.110	1.84
9-ago2018	4.0	12:00	390	6.361	0.390	6.53	12:00	280	6.251	0.280	4.69	12:00	310	6.281	0.310	5.19
10-ago2018	4.9	8:00	400	6.371	0.400	6.70	8:00	300	6.271	0.300	5.02	8:00	320	6.291	0.320	5.36
								DATOS DE PENETR	ACIÓN							
			MOLI	DE #: 9	Nro. de golpes	55		MOL	DE #: 8	Nro. de golpes	25		MOL	DE #: 7	Nro. de golpes	12
TIEMPO	PENETRACIÓN	CARGA	PRESIÓN	PRESIÓN CORREG	PRESIÓN ESTÁND.		CARGA	PRESIÓN	PRESIÓN CORREG	PRESIÓN ESTÁND.		CARGA PRESIÓN	PRESIÓN	PRESIÓN CORREG	PRESIÓN ESTÁND.	
						C.B.R.				C.B.R.						C.B.R.
min	0.001 pulg	Lbs	Lbs/pulg ²	Lbs/pulg ²	Lbs/pulg ²		Lbs	Lbs/pulg ²	Lbs/pulg ²	Lbs/pulg ²		Lbs	Lbs/pulg ²	Lbs/pulg ²	Lbs/pulg ²	
0.00	0.0	0	0.0				0	0.0				0	0.0			
0.25	12.5	28	9.3				17	5.7				7	2.3			
0.50	25.0	45	15.0				35	11.7				14	4.7			
0.75	37.5	68	22.7				51	17.0				21	7.0			
1.00	50.0	96	32.0				67	22.3				26	8.7			
1.25	62.5	115	38.3				81	27.0				29	9.7			
1.50	75.0	135	45.0				90	30.0				31	10.3			
1.75	87.5	154	51.4				101	33.7				34	11.3			
2.0	100	170	56.7	56.7	1000	5.7	114	38.0	38.0	1000	3.8	38	12.7	12.7	1000	1.3
2.5	125	203	67.7				132	44.0				43	14.3			
3.0	150	221	73.7				145	48.4				50	16.7			
3.5	175	241	80.4	05.4	1500	5.7	161	53.7		1500	3.9	54	18.0		1500	
4.0	200	256	85.4	85.4	1500	5./	174	58.0	58.0	1500	3.9	60	20.0	20.0	1500	1.3
5.0	250	281	93.7				189	63.0				70	23.3			
6.0	300	307	102.4				202	67.4				77	25.7			
7.0	350	329	109.7				218	72.7				87	29.0			
8.0	400	353	117.7				225	75.0				94	31.3			
9.0	450	376	125.4				236	78.7				100	33.3			
10.0	500	395	131.7				245	81.7				108	36.0			

LUIS ANTONIO LUIS ANTONIO MATUTE DIAZ

MATUTE DIAZ

Firmado digitalmente por DIAZ
DIAZ
DIAZ
0500'

Ing. Luis A. Matute Díaz - JEFE DE LABORATORIO

Luis Sarmiento 1-86 y Miguel Cordero Cuenca - Azuay - Ecuador geolabcuenca@gmail.com

Teléfono: +593 7 403 9379

ENSAYO DE COMPACTACIÓN PROCTOR MODIFICADO - ASTM D1557 - AASHTO T-180

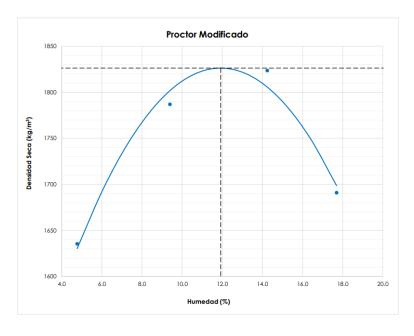
Volumen Molde: 2107.73 cm³

Profundidad: 0.00-1.50 m **Proyecto:** Estudio Vía de Acceso a Yunquil, Calles Urb. "Los Precaristas" Muestra: Calicata # 1

Descripción: Grava arcillosa Solicitado por: Ing. Marta Loja, Ing. Gustavo Washima

> Características del Ensayo Características del Molde Método: D Molde No.: 1 Material Pasante: 3/4" Peso Molde: 6550 gr Peso Martillo: 10 lbs Diámetro Molde: 15.184 cm Altura Molde: 11.64 cm Altura de caída: 18 pulg # de Capas: 5 Área Molde: 181.08 cm² Golpes por Capa: 56

Datos Ensayo


Muestra No.	1	2	3	4	
Molde + Suelo Húmedo (gr)	10161	10670	10941	10745	
Peso Suelo Húmedo (gr)	3611	4120	4391	4195	
Densidad Húmeda (kg/m³)	1713	1955	2083	1990	

Humedades

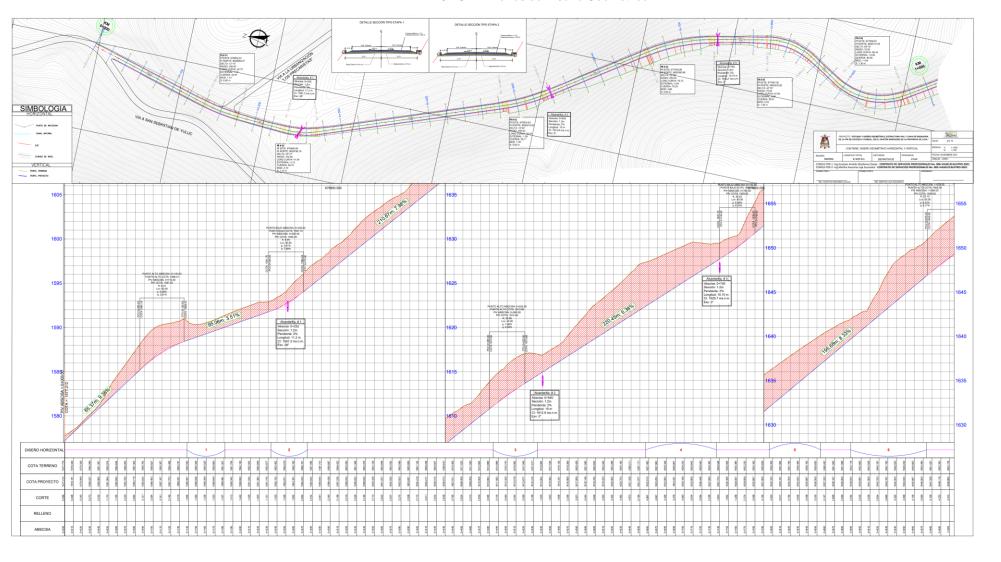
Cápsula #:	191	99	177	158	132		138	175	25	20		
Cápsula + Suelo Húmedo (gr)	78.34	74.44	67.60	67.86	70.66		60.44	68.51	47.16	44.95		
Cápsula + Suelo Seco (gr)	75.41	71.95	65.08	63.29	65.94		54.88	61.93	41.08	39.23		
Peso de la Cápsula (gr)	15.65	15.58	14.80	15.39	15.38		16.06	15.66	6.48	7.17		
Peso de Agua (gr)	2.93	2.49	2.52	4.57	4.72		5.56	6.58	6.08	5.72		
Peso de Suelo Seco (gr)	59.76	56.37	50.28	47.90	50.56		38.82	46.27	34.60	32.06		
Contenido de Humedad (%)	4.9	4.4	5.0	9.5	9.3		14.3	14.2	17.6	17.8		

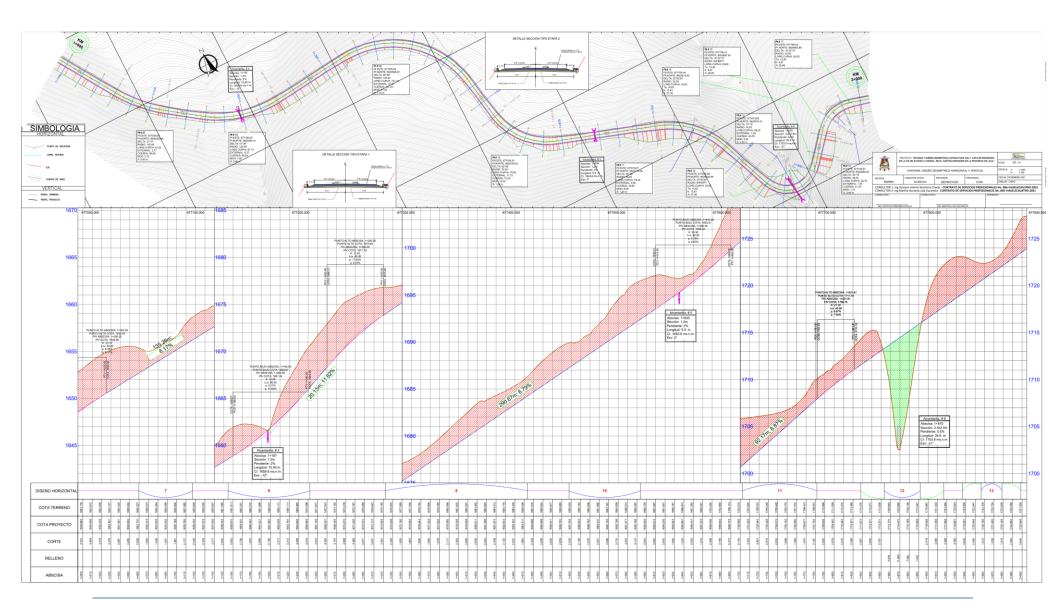
Resultados

Humedad Promedio (%)	4.8	9.4	14.3	17.7	
Densidad Seca (kg/m³)	1635	1787	1823	1691	

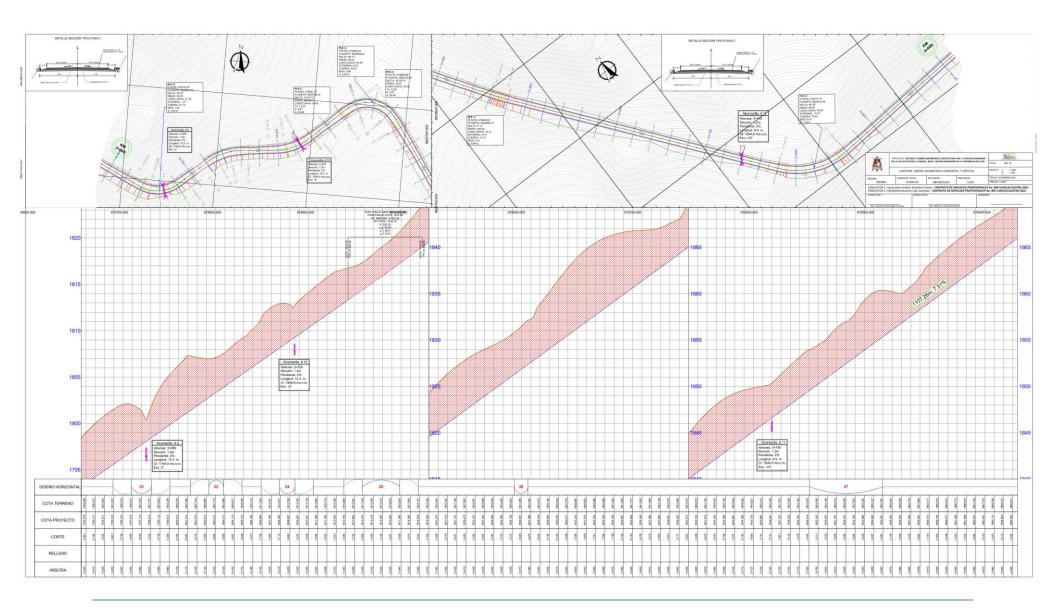
Humedad Óptima: 11.9 %

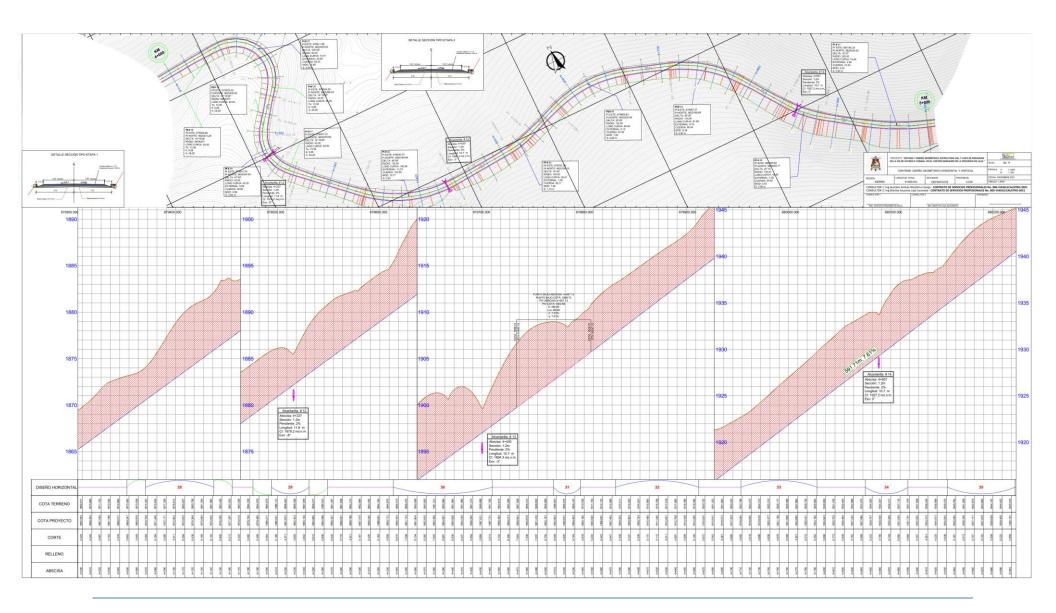
Densidad Seca Máxima: 1826 kg/m³


LUIS Firmado digitalmente por LUIS ANTONIO MATUTE DIAZ FACA: 2021.10.19
MATUTE DIAZ FACA: 2021.10.19
13:13:39-05'00'


Ing. Luis A. Matute Díaz, MS Jefe de Laboratorio


geolabcuenca@gmail.com Luis Sarmiento 1-86 y Miguel Cordero +593 (7) 403 9379 Cuenca - Azuay - Ecuador +593 98 499 5966


7.4 Anexo 4


Anexo 4. Planos de Diseño Geométrico

