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Resumen: 

 

El tiempo medio de tránsito (MTT) del agua es un descriptor esencial de la generación 

de caudales y del almacenamiento de agua en las cuencas. La investigación sobre cómo 

fluctúan los MTTs a lo largo del tiempo y los factores que influyen en dicha variación es 

limitada. En este estudio se presentan datos isotópicos estables quincenales en la 

precipitación y el caudal, junto con registros diarios de la cantidad de precipitación, 

caudal e información climatológica. Los datos se recogieron durante un período de 8 

años en un sistema anidado de 8 cuencas alpinas tropicales en el Observatorio 

Ecohidrológico de Zhurucay, en el sur de Ecuador, situado a una altitud de 3400 a 3900 

m s.n.m. Los datos isotópicos se utilizaron para investigar la variabilidad temporal de los 

MTTs de los caudales estimados utilizando períodos anuales y una ventana móvil de 1 

mes (es decir, 81 MTTs calculados anualmente por cuenca). Los factores que controlan 

la variabilidad temporal de los MTTs se identificaron mediante modelos de regresión 

lineal simple y múltiple entre los MTTs estimados y las variables hidrometeorológicas. 

Los resultados revelan que los MTT de los caudales en todas las cuencas fueron cortos 

(<1 año) y variaron poco entre ellas (191.30±47.10 días), lo que sugiere que un lapso de 

tiempo anual para estimar la variabilidad temporal de los MTTs es apropiado. Una 

combinación de variables hidrometeorológicas (precipitación, caudal y coeficiente de 

escorrentía) durante periodos anteriores de hasta 1 año controlan la variabilidad temporal 

de los MTTs entre cuencas. En general, estos resultados apuntan a la prevalencia de 

condiciones de estado estacionario en el sistema hidrológico investigado. Nuestro 

estudio es clave para proporcionar información sobre los factores que controlan la 

variabilidad temporal de los MTTs de los caudales en las cuencas tropicales, superando 

las limitaciones de datos de las investigaciones anteriores. También proporciona un 

aumento en el conocimiento basado en procesos hidrológicos de las cuencas del Páramo 

alto andino, con implicaciones significativas para una mejor gestión del suministro de 

agua. 

 

 

 

 Palabras claves: Tiempos de tránsito. Isótopos estables. Hidrología de trazadores. 

Páramo. Variación temporal. Estado estable.  
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Abstract: 

 

The mean transit time (MTT) of water is an essential descriptor of streamflow generation 

and catchment water storage. Research on how MTTs fluctuate over time and the 

variables influencing such variation is limited. In this study bi-weekly stable isotopic data 

in precipitation and streamflow are presented, together with daily records of precipitation 

amount, streamflow, and climatological information. The data were collected over an 8-

year period in a nested system of 8 tropical alpine catchments in the Zhurucay 

Ecohydrological Observatory in southern Ecuador, situated at an elevation of 3400 to 

3900 m a.s.l. Isotopic data were used to investigate the temporal variability of streamflow 

MTTs estimated using yearly periods and a 1-month moving window (i.e., 81 yearly 

calculated MTTs per catchment). The factors controlling the temporal variability of MTTs 

were identified using simple and multiple linear regression models between estimated 

MTTs and hydrometeorological variables. Results reveal that streamflow MTTs at all 

catchments were short (<1 year) and varied little among catchments (191.30±47.10 

days), suggesting that a yearly time span for estimating the temporal variability of MTTs 

is appropriate. A combination of hydrometeorological variables (i.e., precipitation, 

streamflow, and runoff coefficient) over antecedent periods up to 1 year was found to 

control MTT temporal variability among catchments. Overall, these findings point to the 

prevalence of steady-state conditions in the investigated hydrological system. Our study 

is key to provide insights into the factors controlling the temporal variability of streamflow 

MTT in tropical catchments, overcoming data limitations of past investigations. It also 

provides an increase in the process-based knowledge of the hydrology of high Andean 

Páramo catchments, with significant implications for improved water supply management. 

 

 

 

 

 

 

 

Keywords: Transit time. Stables isotopes. Tracer hydrology. Páramo. Temporal variability. 

Steady-state. 



 

Karina Marlene, Larco Erazo Página 3 
 

 

 

 

 

Índice del Trabajo 

 
1. Introduction ........................................................................................................... 10 

2. Materials and methods ........................................................................................ 12 

2.1. Study area .......................................................................................................... 12 

2.2. Hydrometeorological information ........................................................................ 13 

2.3. Collection of water samples and laboratory analysis .......................................... 14 

2.4. Mean transit time modelling ............................................................................... 14 

2.5. Evaluation of factors controlling the temporal variability of MTTs ....................... 17 

3. Results .................................................................................................................... 19 

3.1. Hydrometeorological and isotopic characterization ........................................... 19 

3.2. Mean transit time modelling .............................................................................. 21 

3.3. Identification of factors controlling the temporal variability of MTTs ................... 24 

4. Discussion .............................................................................................................. 28 

4.1. Mean Transit Time Modelling ............................................................................ 28 

4.2. Identification of factors controlling temporal variability of MTTs ......................... 29 

5. Conclusion ............................................................................................................... 32 

6. References .............................................................................................................. 33 

S. Supplementary material ........................................................................................ 41 

S1. Simple Linear Regression .................................................................................. 41 

S2. Multiple Linear Regressions............................................................................... 47 

 

 

 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 4 
 

 

Índice de Figuras 

 

Figure 1. Nested system of catchments (M1-M8) and the distribution of rain gauges (P1-

P4) in the Zhurucay Ecohydrological Observatory located in southern Ecuador........... 13 

 

Figure 2. Time series of hydrometeorological and stable isotopic data in the period May 

2011 - December 2018. (a) Daily precipitation and streamflow; (b) daily 

evapotranspiration, and (c) δ18O isotopic composition of precipitation and streamflow of 

catchment M6 collected at event-based (sub-daily) and monthly frequency (the triangles 

show the δ18O isotopic data collected during rainfall events). The white/light gray shaded 

areas indicate yearly periods. ...................................................................................... 19 

 

Figure 3. Box plots of the hydrometric variables for each of the studied micro-catchments 

(M1-M8) during the period May 2011 - December 2018 using a monthly moving window. 

The box represents the median and the interquartile range, the whiskers represent 1.5 

times the interquartile range, and the black dots represent the outliers. Abbreviations: 

Qmn mean streamflow; Qmd median streamflow; Qmx maximum streamflow; Qmin 

minimum streamflow; Q10, Q20, Q30.…, Q90 streamflow rates as the frequency of non-

exceedance; Pmn mean precipitation; Pmd median precipitation; RC runoff coefficient.

 .................................................................................................................................... 21 

 

Figure 4. Observed and simulated δ18O streamflow isotopic composition during the 

period May 2011 - December 2018 for catchments: (a) M3, (b) M6, and (c) M7. The green 

shaded area represents the 5-95% confidence limits based on the MTT parameter values 

used in the simulations. The white/light gray shaded areas indicate yearly periods. .... 22 

 

Figure 5. Yearly estimated MTTs using a monthly moving window for catchment M6 (gray 

bars) during the period May 2011 - December 2018. The MTTs correspond to the 

parameter value that yielded the highest KGE value during the simulations (blue line). 

The dashed red line represents the KGE value of 0.45 considered in this study as a 

threshold between good (values above) and poor (values below) model predictions. The 

figure only shows the beginning date of each yearly moving window (i.e., the MTT and 

KGE values corresponding to August 2014 were obtained for the simulation period August 

2014 - July 2015). ........................................................................................................ 23 



 

Karina Marlene, Larco Erazo Página 5 
 

 

Figure 6. Box plots of the (a) yearly estimated MTTs using a monthly moving window for 

catchments M1-M8, and (b) their corresponding KGE values. The box represents the 

median and interquartile range, the whiskers represent 1.5 times the interquartile range, 

and the black dots represent the outliers. The red crosses represent the average of the 

distributions of MTT and KGE values. The dashed red line in subplot (b) represents the 

KGE value of 0.45 considered in this study as a threshold between good (values above) 

and poor (values below) model predictions. ................................................................. 24 

 

Figure 7. Multiple linear regression models for micro catchment M6 for the period May 

2011 - December 2018 using hydrological and meteorological variables as predictors. A1 

to A5 represents different models after incorporation of the explanatory variables. The 

number next to the hydrological variable indicates the corresponding moving window. 

Abbreviations: RC runoff coefficient; Qmin minimum streamflow; Qmx maximum 

streamflow; Pcum cumulative precipitation. The dashed line shows the 1:1 ratio relation.

 .................................................................................................................................... 25 

 

Índice de Tablas 

Table 1. Summary statistics of the δ18O isotopic composition in precipitation (P1) and 

streamflow (M1-M8) collected during the period May 2011 - May 2018. ...................... 20 

 

Table 2. Factors controlling the temporal variation of MTTs using multiple linear 

regression (MLR) with their respective statistical metrics for catchments M1-M8 during 

the period May 2011 - December 2018. ....................................................................... 27 

 

 

 

 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 6 
 

 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 7 
 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 8 
 

 

 

 

 

 

 

 

 

DEDICATORIA  

A Dios y mi familia por ser y siempre estar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 9 
 

 

 

 

 

 

 

 

 

 

AGRADECIMIENTOS 

 

A mi familia, mi razón de ser, por su amor, consejos y apoyo. A mis amigas y 

hermanas de vida, porque a pesar de la distancia el cariño sigue siendo infinito. A mis 

amigos en Cuenca, que me hicieron sentir como en casa. Y a mis profesores por 

acompañarme en el camino. En especial a mis profesores Giovanny Mosquera y Patricio 

Crespo, sin ellos no hubiera sido lo mismo.  

 

 

 

 

 

 

 

 

 

 



 

Karina Marlene, Larco Erazo Página 10 
 

1. Introduction 
One of the most common catchment descriptors in hydrologic studies is the mean 

transit time (MTT) of streamflow. MTT is defined as the mean age of water that entered 

a catchment during previous precipitation events at the time of exit at an outlet point (i.e., 

streams, springs, soils; Mcguire & Mcdonnell, 2006). This hydrological descriptor contains 

information about water storage and the flow paths water follows in a catchment (Mcguire 

& Mcdonnell, 2006). The MTT of stream water can also help to better understand 

catchment biogeochemical processes (Burns et al., 2003). Hence, the MTT is a key 

hydrological parameter for risk assessment, contaminant remediation, land-use change, 

climate change, and improved management of water resources (Landon, Delin, Komor, 

& Regan, 2000; Nystrom, 1985; Turner et al., 2006). 

The MTT can be calculated by modeling the relationship between input and output 

signals of conservative tracers such as water stable isotopes (2H and 18O; Mcguire & 

Mcdonnell 2006) or chloride (Kirchner, Tetzlaff, & Soulsby, 2010). Among the most 

common methods to estimate the MTT of water are the lumped convolution approach 

(LCA), the Fourier method, and the sine save method (Benettin, Rinaldo, & Botter, 2015). 

These methods take advantage of the damping of the isotopic composition of streamflow 

concerning the temporal variation of the isotopic composition of precipitation. The 

application of these methods could be difficult due to a range of uncertainties caused by 

the high spatial and temporal variability of the isotopic composition of water, the 

unavailability of long-term tracer records, and the low sampling frequency caused by 

financial and logistical constraints (Hrachowitz, Soulsby, Tetzlaff, Dawson, et al., 2009; 

Mcguire & Mcdonnell, 2006).  Notwithstanding, the study of MTT is crucial, since it 

enables a better understanding of the runoff generation process and the hydrological 

behavior of catchments. 

MTTs vary in time as a result of seasonal and annual changes in 

hydrometeorological conditions (Birkel et al., 2016; Hrachowitz, Soulsby, Tetzlaff, 

Dawson, et al., 2009; Ma & Yamanaka, 2016). Therefore, understanding such temporal 

variation and its controlling factors is relevant to grasp the change in hydrological behavior 

over time of a given catchment. To date, most of the studies investigating the temporal 

variability of streamflow MTT have been conducted in temperate regions. For example, 

Hrachowitz et al. (2009) applied a moving window approach to estimate the variability of 

streamflow MTTs over 8 years in two small catchments (~1 km2) in the Scottish Highlands. 

These authors found that the MTT temporal variability was influenced by precipitation 

amount. Applying a similar approach over 10 years, Ma & Yamanaka (2016) concluded 

that the temporal variation of MTT was similar for five temperate catchments (268-2173 

km2) in central Japan despite differences in slope, geology, and soil type. These authors 

reported that the estimated MTTs were longer during drier periods than during wetter 

periods, and mainly controlled by geology. Another investigation was carried out at a 

boreal catchment in north Sweden (0.47 km2) using a 10-year isotopic data record 

(Peralta-Tapia et al., 2016). The authors determined a strong correlation between annual 

rainfall and MTTs during snow-free periods. In another study conducted in 4 catchments 
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in southeast Australia (8.7-323 km2) using 3 years of data, MTTs were found to be 

correlated with runoff coefficient (Cartwright et al., 2020). 

In a tropical setting, Birkel et al. (2016) investigated the temporal variability of 

streamflow MTTs in a humid forested catchment (30 km2) in Costa Rica. These authors 

applied a lumped convolution model to a short-term isotopic tracer dataset (2-years) using 

a monthly moving window to estimate streamflow MTTs over 4-month time spans. Even 

though this study is, to our knowledge, the only one until today that investigated the 

temporal variability of MTTs in the tropics, the reported MTTs presented large 

uncertainties since many of the estimated MTTs were longer than the data records used 

for model calibration. This is most likely because the short time spans used to estimate 

the MTTs (<1 hydrologic year) violate the steady-state assumptions of the applied lumped 

convolution model (Mcguire & Mcdonnell, 2006). Based on those potentially biased MTT 

estimates, the reported finding of this research was that wind direction was the most 

important climatic variable influencing the temporal variability of MTTs. 

Considering the very limited information on the temporal variability of MTTs in the 

tropics, the factors controlling it, and the large uncertainties of past studies primarily due 

to data limitations, filling this knowledge gap is an essential for achieving improved water 

resources management in tropical montane regions. To this end, we took advantage of a 

unique long-term tracer dataset in precipitation and streamflow collected over 8 years 

across 8 nested tropical alpine (Páramo) catchments in Southern Ecuador with the 

following objectives: 

1) To estimate the temporal variability of MTTs across a nested system of tropical 

alpine catchments; and 

2) To identify the hydrometeorological conditions that control the temporal variability 

of MTTs across the catchments, if any. 

It is believed that the results obtained by this research are of crucial importance to 

better understand how the hydrological behavior of catchments varies over time, as the 

basis for the development of proper and efficient water conservation and management 

practices in the tropics. 
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2. Materials and methods 
 

2.1. Study area 
The study site is the Zhurucay Ecohydrological Observatory (ZEO) (3°4′S, 

79°14′W) located at the western slope of the Andean mountain range in southern Ecuador 

(Fig. 1). The observatory has a drainage area of 7.53 km2 with an elevation ranging 

between 3505-3900 m a.s.l. ZEO is located in a tropical alpine (Páramo) ecosystem. The 

local climate is primarily influenced by continental air masses stemming from the Amazon 

basin, which originate mainly in the Atlantic Ocean (Esquivel et al., 2019). Annual 

precipitation shows low seasonality and is mainly composed of drizzle (Padrón et al., 

2015). According to these authors, the wettest period lasts from March to May and the 

less wet period from August to October. At 3780 m.a.s.l., mean annual precipitation is 

1345 mm, mean annual temperature is 6ºC, mean relative humidity is 93.6% (Córdova et 

al., 2015), and the solar radiation is 4942 MJm−2 g/year (Carrillo-Rojas et al., 2019). 

Annual actual evapotranspiration is 622 mm (Ochoa-Sánchez, Crespo, Carrillo-Rojas, 

Sucozhañay, & Célleri, 2019). 

The geomorphology at the study site is U-shaped with an average slope of 17%, 

as a result of glacial activity (Mosquera et al., 2015). The geology is compacted and 

dominated by Quimsacocha and Turi formations, characterized by volcanic rock deposits 

compacted during the glacial activity of the last Ice Age (Coltorti & Ollier, 2000). Both 

formations date from the Late Miocene (Pratt, Figueroa, & Flores, 1997). Lithology in the 

Quimsacocha formation is composed of basaltic flows with plagioclases, feldspars, and 

andesitic pyroclasts, whereas the Turi formation is composed of tuffaceous andesitic 

breccias, conglomerates, and horizontally stratified sands (Hungerbühler et al., 2002). 

The main soil types in Zhurucay are classified as Andosols and Histosols (IUSS 

Working Group WRB, 2015), formed by the accumulation of volcanic ash in combination 

with the humid-cold climate conditions (Quichimbo et al., 2012). These soils of volcanic 

origin present a high content of organic matter, low bulk density, and high-water retention 

capacity, low pH, and low phosphorus availability (Buytaert, Deckers, & Wyseure, 2006; 

Marín et al., 2018). Andosols cover approximately 70% of the ZEO and are mainly located 

on the hillslopes, whereas the Histosols cover the remaining area and are mostly found 

at valley bottoms and flat areas (Mosquera et al., 2015). The vegetation type and the 

spatial distribution of the soils are highly correlated. Andosols are mainly covered by 

tussock grasses (Calamagostris sp) and Histosols are associated with the presence of 

cushion plants (Plantago rigida, Xenophyllum humile, and Azorella spp.) which grow in 

the valley bottoms in permanent wet zones, known as Andean wetlands. A small area 

(5%) of ZEO is covered by Polylepis and pine forests. Land use and management are 

limited to non-intensive livestock at the lower part of the observatory. 
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2.2. Hydrometeorological information 
A nested monitoring scheme was used for the collection of water level data at 

seven tributary micro-catchments (M1-M7) and the outlet of the ZEO (M8; Fig. 1). Each 

catchment (M1-M7) had a V-notch weir at its outflow, and the M8 catchment had a 

rectangular weir at its outlet to measure discharge. A Schlumberger DI500 water-level 

sensor (Kent, WA, USA) with an accuracy of ±5 mm was installed in each catchment. The 

Kindsvater-Shen Equation (U.S. Bureau of Reclamation, 2001) was used to convert water 

levels into discharge (Moore, 2004). Four Texas Electronics rain gauge tipping buckets 

TE-525MM (Dallas, TX, USA) were used to record precipitation with a resolution of 0.1 

mm. Water level and precipitation amount were recorded at 5-min intervals from May 

2011 to December 2018. The Thiessen Polygon Method was used to estimate 

precipitation amounts at each of the study catchments using the data from the rain 

gauges. 

 

Figure 1. Nested system of catchments (M1-M8) and the distribution of rain gauges (P1-P4) in the Zhurucay 
Ecohydrological Observatory located in southern Ecuador. 
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Meteorological variables were monitored using a Campbell Scientific 

meteorological station (Logan, UT, USA), which was placed at the same location where 

rain gauge P1 is located (Fig. 1). Air temperature and relative humidity were measured 

with a CS-215 probe, with an accuracy of ±0.3°C for temperature and ±2% for relative 

humidity. Wind speed was recorded with Met-One 034B Winset anemometer with an 

accuracy of ±0.11m*s-1 and solar radiation was recorded with an Apogee CS300 

pyranometer with an accuracy of ±5%. Meteorological variables were also collected at 5-

min intervals during the period from May 2011 to December 2018. These data were used 

to estimate daily reference evapotranspiration with the FAO-56 Penman-Monteith 

equation (Allen et al.,  1998). 

2.3. Collection of water samples and laboratory analysis 
Streamflow and precipitation water samples for isotopic analysis were collected 

from May 2011 to December 2018. During this period the samples were collected at an 

event-based (sub-daily) to biweekly frequency, except in 2016 when samples were 

collected monthly. Grab samples were collected directly from the streams at the same 

locations where water levels were measured (M1-M8; Fig. 1). Precipitation samples were 

collected using a circular funnel (16 cm of diameter) connected to a glass bottle of 1000 

mL at P1 (Fig. 1). The glass bottle was covered with aluminum foil for insulation of direct 

solar radiation to prevent isotopic fractionation by evaporation. A sphere of 4 cm of 

diameter was placed into the funnel and a 5 mm layer of vaseline oil was added to the 

glass bottle to minimize evaporation effects (IAEA, 1997). The precipitation and the 

streamflow water samples were collected in 2 ml amber glass containers, covered with 

parafilm, and stored unexposed to sunlight until laboratory analysis (Mook & Rozanski, 

2000). 

The stable isotopic composition of the collected water samples was measured 

using a cavity ring-down spectrometer L1102-I (Picarro, USA) with a precision of 0.1‰ 

for O18. Samples of the same water type were analyzed consecutively to minimize the 

memory effect (Penna et al., 2010). Six sample injections were carried out to determine 

the isotopic composition of the samples. Following the manufacturer's recommendation 

to further diminish the memory effect, the measurements from the first three injections 

were discarded. Of the last three injections, the maximum difference of δ18O was 

calculated and compared with the analytic precision of the equipment, as well as with the 

standard deviation of the isotopic composition of the standards used for analysis. Quality 

control of the results was carried out, and samples that presented measurement 

differences greater than those values were reanalyzed. Organic contamination of the 

isotopic signal was checked with the ChemCorrect 1.2.0 software (Picarro, 2010). In 

accordance with the Vienna Standard Mean Ocean Water, the results are provided in 

delta notation (δ) and expressed per mil ( ‰; Craig, 1960). 

2.4. Mean transit time modelling 
The MTT of streamflow was estimated using the lumped convolution approach 

(LCA), which assumes steady-state conditions in the hydrological system (Amin & 

Campana, 1996; Małoszewski & Zuber, 1982). To cope with this assumption, only water 
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samples collected during baseflow conditions were used for the analyses (i.e., samples 

collected during rainstorm events were discarded; McGuire, DeWalle, & Gburek, 2002). 

In recent years, alternative metrics have been developed to overcome the limitations of 

the steady-state assumption, as catchments do not always present stationary conditions 

(Kirchner, 2016a; Kirchner, 2016b). However, it has been demonstrated that the ZEO 

presents a high degree of homogeneity as a result of the low temporal variability of 

precipitation (Padrón et al., 2015), high atmospheric humidity throughout the year 

(approximately 94%; Córdova et al., 2015), compact geology, and relatively 

homogeneous distribution of the soils across the study catchments (Mosquera et al., 

2015). Consequently, the steady-state assumption of the LCA is considered valid for the 

study area. 

The LCA is based on the application of a predefined transit time distribution (TTD) 

that represents the transit times of all water molecules within the catchment storage. 

Mathematically can this be expressed by the convolution integral (Eq.1), which transforms 

the input tracer signal (precipitation) into the output tracer signal (streamflow; 

Małoszewski & Zuber, 1982): 

 

𝛿𝑜𝑢𝑡(𝑡)=∫ 𝑔
∞

0
(𝜏)𝛿𝑖𝑛 (𝑡 − 𝜏)𝑑𝜏 (Eq. 1) 

where 𝜏 is the integration variable representing the MTT of the tracer through the system, 

t is the time of interest, which means the time of exit from the system, 𝛿𝑜𝑢𝑡(𝑡) is the tracer 

composition at time t at the system’s outlet, 𝑔(𝜏) is the TTD, and 𝛿𝑖𝑛 (𝑡 − 𝜏) is the input 

tracer composition at the time(𝑡 − 𝜏). 

TTDs are theoretical transfer functions representing the flow system (Małoszewski 

& Zuber, 1982; Mcguire & Mcdonnell, 2006). A previous MTT investigation at the study 

area presented a detailed assessment of 5 different TTDs and identified the exponential 

model (EM) as the one that best represents the hydrological behavior of the ZEO 

catchments ( Lazo et al., 2019; Mosquera et al., 2016). The EM, which represents the 

hydrological system as a well-mixed reservoir (Eq. 2), was therefore used in this study. 

 

𝑔(𝜏) =
1

𝜏
 𝑒𝑥𝑝 (

−𝑡 

𝜏
) (Eq.2) 

where 𝜏 is the MTT of water in the system, being the only parameter calibrated for the 

EM. Given the different time resolutions at which data were collected (sub-daily to 

monthly), the model was run at the coarser resolution (i.e., monthly). This decision was  

made to homogenize the dataset to avoid introducing uncertainties by filling data gaps 

during periods when only monthly data were available (i.e., 2016) and/or estimating and 

comparing the MTTs using data collected at different temporal frequencies (Stockinger et 

al., 2016; Timbe et al., 2015). To this end, precipitation isotopic data collected at finer 

temporal resolution were volume-weighted using their corresponding rainfall amounts to 

be converted into a monthly time series. 



 

Karina Marlene, Larco Erazo Página 16 
 

A significant proportion of runoff in most watersheds is generated by water that 

does not carry the signal of recent rainfall (Renshaw et al., 2003), thus the stream tracer 

response depends on the actual tracer mass flux. For this reason, a mass-weighted input 

function was used to take into account water recharge to the catchments (Mcguire & 

Mcdonnell, 2006): 

 

𝛿𝑜𝑢𝑡(𝑡) =
∫ 𝑔

∞
0

(𝜏) 𝜔(𝑡−𝜏)𝛿𝑖𝑛(𝑡−𝜏)𝑑𝜏  

∫ 𝑔
∞

0
(𝜏)𝜔(𝑡−𝜏)𝑑𝜏  

 (Eq.3) 

where 𝜔(𝑡) is a recharge mass variation function. The recharge function was estimated 
using the precipitation amounts corresponding to the monthly δ18O composition of 

precipitation. 

The MTT evaluation was conducted for the whole study period (May 2011-

December 2018) and yearly periods using a monthly moving window at all catchments 

(M1-M8). The yearly time scale of analysis was chosen because MTTs at the ZEO are 

shorter than 1 year for all catchments (Mosquera et al., 2016). Thus, since the LCA 

assumes steady-state conditions, it is assumed that a 1-year period of analysis is enough 

to fulfill this assumption. Regarding the monthly moving window, the yearly MTTs were 

estimated for complete hydrologic years starting at different months. For example, if the 

first MTT was estimated for the period May 2011-April 2012, the following was estimated 

for the period June 2011-May 2012, and so on. This framework was adopted to 

investigate the temporal variability of MTTs for all catchments. 

The Kling-Gupta Efficiency Coefficient (KGE) was used to assess the model's 

performance. The KGE is a goodness of fit metric between the observed and simulated 

streamflow isotopic composition (Gupta et al., 2009). This metric was chosen because 

within a single objective function, it takes into consideration correlation, variability, and 

bias error. The KGE coefficient ranges from -∞ to 1, where negative values indicate a 

poor model performance, a value of zero indicates that the mean is a better representation 

of the system than the model, and a value of one indicates a perfect fit of the model to 

the observations. In the present study, models with KGE values higher than 0.45 were 

considered good predictions (Timbe et al., 2014). Initially, a Monte Carlo sampling 

procedure was employed to conduct 10.000 simulations using a 𝜏  parameter value 

randomly selected from a uniform distribution (Beven & Freer, 2001). Given that the stable 

isotopes of water permit estimating MTTs of water up to 5 years in age and the model 

was run at a monthly time scale, the range of 𝜏 values used for model calibration varied 

between 0 and 65 months (i.e., 0-5 years). Once the parameter value that yielded the 

highest KGE was identified, the model was run again using a narrowed parameter range 

until at least 1000 behavioral solutions, i.e., simulations with at least 95% of the highest 

KGE were obtained (Timbe et al., 2014). The Generalized Likelihood Uncertainty 

Estimation (GLUE) was used for quantifying the uncertainty of the model predictions 

(Beven & Binley, 1992) as the 5 and 95% limit bounds of the behavioral solutions (Timbe 

et al., 2014). 
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2.5. Evaluation of factors controlling the temporal variability of MTTs 
The analysis of the hydrometeorological factors controlling the temporal variability 

of MTTs was conducted for all catchments (M1-M8). The following variables were used 

as potential predictors of the MTT temporal variability: precipitation amount (maximum, 

median, cumulative, and average), runoff coefficient, specific discharge (maximum, 

minimum, median, cumulative, and average), and non-exceedance streamflow rates (Q10 

to Q90). The following meteorological variables were also assessed: air temperature 

(maximum, minimum, median, and average), relative humidity (maximum, minimum, 

median, and average), solar radiation (maximum, minimum, median, and average), and 

evapotranspiration (maximum, minimum, median, cumulative and average). Given the 

small drainage area of the ZEO catchment (<10 km2), it was assumed that the spatial 

variation of evapotranspiration is the same for all the catchments (M1-M8). This is 

because the spatial distribution of vegetation and soils is similar throughout the catchment 

(Mosquera et al., 2016). Previous research at the study area showed that net radiation 

related to temperature is the major factor controlling evapotranspiration (Ochoa-Sánchez 

et al. 2020). In addition, the variation of air temperature decreases with altitude with an 

average thermal gradient of 0.5 to 0.7° C per 100 m  (Van der Hammen & Hooghiemstra, 

2000; Castaño, 2002). Therefore, the variation in evapotranspiration among the 

catchments is expected to be minimal since the altitudinal difference across the ZEO is 

small (3505 and 3900 m a.s.l., Mosquera et al., 2016). 

Since the yearly-estimated MTTs can vary as a function of current and/or 

antecedent hydrometeorological conditions, the aforementioned variables were 

aggregated yearly not only for the same period in which the MTT estimation was 

conducted but also during antecedent periods corresponding to 1 to 12 months before 

the period in which the MTT estimation was conducted. For example, for the MTT 

estimated using the isotopic data for the period January 2017-December 2017, the 

hydrometeorological variables used for further evaluation were aggregated yearly for the 

following periods: the same period for which the MTT was estimated, the period October 

2016-September 2017 (i.e., 3 months before the MTT estimation period), July 2016-June 

2017 (i.e., 6 months before the MTT estimation period), and so on up to 12 months before 

the MTT estimation period. These hydrometeorological variables were also aggregated 

for periods that included the same period used for the estimation of the MTT plus 3, 6, 9, 

and 12 months back (0+15, 0+18, 0+21, and 0+24 months, respectively). For example, 

for the MTT estimated using the isotopic data for the period January 2017-December 

2017, the hydrometeorological variables were aggregated for the following periods: the 

period October 2016-December 2017 (i.e., 15 months since the beginning date of the 

MTT modelling or 0+15 months), the period July 2016-December 2017 (i.e., 18 months 

since the beginning date of the MTT modelling or 0+18 months), and so on until 24 months 

since the beginning date of the MTT modelling (0+24 months). Assuming steady-state 

conditions, and since MTTs at the ZEO during the period 2011-2014 were shorter than 1 

year (Mosquera et al., 2016), aggregation of the hydrometeorological variables up to 1-

year before the period in which MTTs were estimated were considered as the antecedent 

periods that could influence the MTTs of the catchments. 



 

Karina Marlene, Larco Erazo Página 18 
 

The aforementioned hydrometeorological variables were used as potential factors 

controlling the temporal variability of MTTs. As a first step, the Pearson correlation 

analysis (r) was conducted. The T-test at a 95% confidence level (p<0.05) was used to 

assess the statistical significance of the correlations. After performing the correlations, 

more than one predictor variable was found to be acceptably correlated (r>0.5) with the 

MTTs (further information provided in Supplementary material S1). In a second step, a 

multicollinearity analysis was carried out to prevent that two or more highly correlated 

explanatory variables might provoke unreliable predictions (Yu, Jiang, & Land, 2015). A 

correlation matrix among the independent variables was used to exclude redundant 

variables. For this purpose, a threshold of coefficient of determination (R2) greater than 

0.75 was applied (Siegel, 2016). Then the variance inflation factor (VIF) criteria equal to 

or less than 3 were applied to the remaining variables. This analysis allowed avoiding 

overfitting issues, which could potentially obscure important relations among variables 

(Lin, Foster, & Ungar, 2011). Following the multicollinearity analysis, the multiple linear 

regression (MLR) was carried out through a forward criterion using the root mean square 

error (RMSE) as objective function (Montgomery, Jennings, & Kulahci, 2015). The 

forward criterion starts without any predictor variables, and then adds additional variables 

one by one as the RMSE decreases (Derksen & Keselman, 1992). The MLR was 

implemented on R studio software version 4.0.2 using the Caret library. To assess the 

robustness of the MLR results, the leave-one-out cross-validation was applied (LOOCV; 

Efron & Gong, 1983; Stone, 1974). Given 57 MTT estimations were available for each 

study catchment for all antecedent conditions, MLR models up to 5 variables were 

considered since a threshold of one variable per ~10 observations is recommended 

(Austin & Steyerberg, 2015; Vittinghoff & McCulloch, 2007). 

The performance of the models was evaluated using R2 and adjusted R2 (R2
adj), 

the Akaike Information Criterion (AIC), p-values of the F-test and the mean absolute error 

(MAE). R2 assumes that every explanatory variable in the model helps explain the 

variance in the dependent variable, whereas R2
adj gives the percentage of variation 

explained by only those explanatory variables that affect the dependent variable and 

penalizes the addition of independent variables (Pham, 2019). As a criterion of 

information of the parsimony, the Akaike Information Criterion (AIC) was selected with the  

smallest values (Akaike, 1974). The F-test at a 95% confidence level (p<0.05) was used 

to assess the statistical significance of the regressions. After 5 models were tested, the 

model which accomplishes the following two criteria was chosen: adjusted R2 greater than 

0.5, and MAE around half the standard MTT variation (approximately less than 20% of 

the MTT variability; Santhi et al., 2001). 
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3. Results  

3.1. Hydrometeorological and isotopic characterization  

 
Figure 2. Time series of hydrometeorological and stable isotopic data in the period May 2011 - December 

2018. (a) Daily precipitation and streamflow; (b) daily evapotranspiration, and (c) δ18O isotopic composition 

of precipitation and streamflow of catchment M6 collected at event-based (sub-daily) and monthly frequency 

(the triangles show the δ18O isotopic data collected during rainfall events). The white/light gray shaded 

areas indicate yearly periods. 

Catchment M6 is representative of the hydrological behavior of the ZEO (Lazo et. 

al, 2019) and tropical alpine (Páramo) catchments in Southern Ecuador (Ramón et al., 

2021). Figures 2a and 2b show the hydrometeorological conditions of the ZEO during the 

period May 2011-December 2018. Precipitation was fairly evenly distributed throughout 

the year and streamflow response to precipitation inputs was flashy during study period 

(Fig. 2a). Mean annual precipitation (± standard deviation) for the entire period was 

1222±22 mm and ranged from 1335 to 1035 mm. The driest years were 2013 (1035 mm) 

and 2014 (1175 mm), while the wettest years were 2011 (1335 mm) and 2012 (1312 mm). 

Precipitation during the wettest months varied from 161 mm (February 2011 and May 

2014) to 236 mm (March 2017), while during the driest months precipitation ranged from 

24 mm (August 2016) to 51 mm (February 2014). Annual average streamflow (Fig. 2b) 

was 648±42 mm and varied from 548 mm (2018) to 780 mm (2011). The temporal 

variation of reference evapotranspiration (ET) for the study period is shown in Fig. 2b. 
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Mean annual ET was 694±64 mm, ranging between 791 mm (2013) and 589 mm (2018). 

The mean δ18O isotopic composition of precipitation during the study period was -

10.3±3.6 ‰ (max: -1.2 ‰; min: -24.9 ‰). It showed a large temporal variability, with 

isotopically depleted values during the wettest periods (March-May), and enriched values 

during the less wet ones (August-October; Fig. 2c). The δ18O isotopic composition in 

streamflow was more attenuated (-10.7±0.1 ‰; Table 1) than δ18O in precipitation. The 

isotopic variability of stream water was similar at all catchments, except for M7 whose 

isotopic composition strongly resembled that of precipitation given that it works as a 

shallow pounded wetland in which precipitation water leaves the catchment rapidly 

(Correa et al., 2018; Lazo et al., 2019; Mosquera et al., 2016). 

Table 1. Summary statistics of the δ18O isotopic composition in precipitation (P1) and 
streamflow (M1-M8) collected during the period May 2011 - May 2018. 

Sampling Station 
Altitude 
(m.a.s.l) 

# 
samples 

δ18O Streamflow (‰) 

Average SE Max Min 

M1 3840 349 -10.7 0.06 -6.8 -18.0 
M2 3840 359 -10.5 0.06 -7.2 -15.4 
M3 3800 329 -10.8 0.05 -8.7 -16.3 
M4 3800 382 -10.6 0.06 -8.1 -16.5 
M5 3800 307 -10.7 0.06 -8.6 -16.4 
M6 3780 293 -10.5 0.07 -8.4 -16.2 
M7 3820 286 -9.5 0.14 -5.4 -16.6 
M8 3700 404 -9.9 0.06 -7.5 -14.3 
P1 3779 310 -10.3 0.24 -1.2 -24.9 

                   Abbreviation: SE standard error. 

A total of 425 hydrometeorological variables were used to evaluate potential 

associations with the estimated MTTs for each catchment. Figure 3 shows the box plot of 

the hydrometric variables which were aggregated using the same time step as the MTTs 

for each of the studied catchments. Average streamflow (Qmn) was 1.87±0.30 and varied 

between 2.13±0.25 and 1.61±0.28 (Fig. 3a). Median streamflow (Qmd) was on average 

1.08±0.26, varying from 1.25±0.23 to 0.81±0.22, respectively (Fig. 3b). Average  

maximum streamflow (Qmx) was 18.65±3.19 and ranged from 21.29±3.41 to 15.59±2.69 

(Fig. 3c). Average minimum streamflow (Qmin) was 0.12±0.07 and varied from 0.05±0.02 

up to 0.30±0.13 (Fig. 3d). Catchments M3, M4, and M5 had the highest Qmin compared 

to the others. In catchment M4, Qmin increased by 50%, higher compared to catchments 

M3 and M5. Qmin variation was similar in catchments M1, M6, M7, and M8. Low flows 

(Q10-Q30) in catchments M3, M4 and M5 were higher than in the rest of the catchments 

(Fig. 3e-3g). Intermediate streamflow rates (Q40-Q60) varied from 0.70±0.06 to 1.22±0.13. 

For catchments, M1-M5 intermediate streamflow was approximately 50% higher than in 

the other catchments (Fig. 3h-j). High streamflow rates (Q70-Q90) were similar for all the 

catchments (Fig. 3k-3m). Their average values were 1.68±0.18, 2.77±0.26, and 

4.04±0.41, respectively. Mean (Pmn) and median (Pmd) precipitation were similar in all 

catchments, except in M7, where precipitation was 11% lower compared to the catchment 
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average (Fig. 3n-3o). The mean runoff coefficients (RC) of the catchments were 

0.56±0.06 and varied between 0.50 and 0.64, with the highest at catchment M5 and the 

lowest at catchment M8 (Fig. 3p).  

 

 
Figure 3. Box plots of the hydrometric variables for each of the studied micro-catchments (M1-M8) during 
the period May 2011 - December 2018 using a monthly moving window. The box represents the median 
and the interquartile range, the whiskers represent 1.5 times the interquartile range, and the black dots 
represent the outliers. Abbreviations: Qmn mean streamflow; Qmd median streamflow; Qmx maximum 
streamflow; Qmin minimum streamflow; Q10, Q20, Q30.…, Q90 streamflow rates as the frequency of non-
exceedance; Pmn mean precipitation; Pmd median precipitation; RC runoff coefficient. 

3.2. Mean transit time modelling 
Results of the MTT analysis for representative catchments using the whole dataset 

(i.e., May 2011-December 2018) are shown in Fig. 4. Catchments M3 (Fig. 4a), M4, and 

M5 had the longest MTT varying between 8.6 months (258.6 days) and 10.8 months 

(324.4 days). Intermediate MTT values were identified for catchments M1, M2, M6 (Fig. 

4b), and M8, varying between 5.3 months (158.9 days) and 8.1 months (244.2 days). 

Catchment M7 presented the shortest MTT (1.6 months or 49.1 days; Fig. 4c). All 

estimated MTTs were shorter than 1 year, and in all cases, the goodness of fit of the 

objective function was higher than the threshold for model acceptance (i.e., KGE>0.45; 

Fig. 4). 
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Figure 4. Observed and simulated δ18O streamflow isotopic composition during the period May 2011 - 
December 2018 for catchments: (a) M3, (b) M6, and (c) M7. The green shaded area represents the 5-95% 
confidence limits based on the MTT parameter values used in the simulations. The white/light gray shaded 
areas indicate yearly periods. 

 

Analysis of the MTTs estimated for yearly periods using a monthly moving window 

resulted in 81 fit models per study catchment. Results of this analysis for catchment M6 

are shown in Fig. 5. For this catchment, the average (±standard deviation) value of the 

MTTs were 5.9±1.4 months (175.5±41.7 days). KGE values of the associated simulations 

were higher than the threshold for model acceptance, ranging between 0.45 and 0.77 

(Fig.5). MTTs ≥4 months and <8 months accounted for 87.6%, 7.4% of them were higher 

than 8 months, and the remaining 5% were shorter than 4 months. The longest MTTs 

were observed from late-2014 to mid-2015, while the shortest occurred in early-2014 and 

from mid-2017 to the end of the study period (December 2018; Fig. 5). A similar temporal 

variability of MTTs was observed for the rest of the ZEO catchments using a monthly 

moving-window approach. 
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Figure 5. Yearly estimated MTTs using a monthly moving window for catchment M6 (gray bars) during the 
period May 2011 - December 2018. The MTTs correspond to the parameter value that yielded the highest 
KGE value during the simulations (blue line). The dashed red line represents the KGE value of 0.45 
considered in this study as a threshold between good (values above) and poor (values below) model 
predictions. The figure only shows the beginning date of each yearly moving window (i.e., the MTT and 
KGE values corresponding to August 2014 were obtained for the simulation period August 2014 - July 
2015). 

 

Yearly estimated MTTs for all study catchments indicated the dominance of short 

MTTs (i.e., 96% of them were shorter than 1 year) across the ZEO (Fig. 6a), associated 

to generally acceptable KGE values that varied between 0.51±0.15 and 0.82±0.05 (Fig. 

6b). Similar to the results using the complete dataset, catchments M3 (9.3±2.3 or 

278.1±68.3 days), M4 (7.9±2.1 months or 236.6±63.1 days), and M5 (8.0±1.9 months or 

239.9±56.0 days) presented the longest MTTs (Fig. 6a). Catchments M1 (7.1±2.1 months 

or 213.2±63.8 days), M2 (5.3±1.1 months or 159.1±33.9 days), M6 (5.9±1.4 months or  

175.5±41.7 days), and M8 (5.8±1.3 months or 175.3±37.5 days) showed intermediate 

MTT values. The shortest MTTs were found at M7 (1.8±0.4 months or 52.4±12.1 days).  
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Figure 6. Box plots of the (a) yearly estimated MTTs using a monthly moving window for catchments M1-
M8, and (b) their corresponding KGE values. The box represents the median and interquartile range, the 
whiskers represent 1.5 times the interquartile range, and the black dots represent the outliers. The red 
crosses represent the average of the distributions of MTT and KGE values. The dashed red line in subplot 
(b) represents the KGE value of 0.45 considered in this study as a threshold between good (values above) 
and poor (values below) model predictions. 

 

3.3. Identification of factors controlling the temporal variability of MTTs 
Linear correlation results showed that several hydrometeorological variables were 

at least acceptably correlated (r>0.5) with the yearly estimated MTTs for all analyzed 

catchments (Supplementary material S1; Fig S1). The subsequent VIF multicollinearity 

analysis allowed identifying between 8 and 11 independent variables which could 

significantly explain the MTT temporal variability of the catchments (more details in 

Supplementary material S2). Those variables were used to identify the main 

hydrometeorological factors controlling the temporal variability of baseflow MTTs through 

MLR analysis. Since the presented analysis was carried out at a monthly time scale, 

analysis for catchment M7 – which presented very short water ages (1-2 months) – could 

not be pursued as its MTT temporal variability is likely dependent on antecedent 

conditions on the order of days or weeks. For the rest of the catchments, Table 2 shows 

the results of the MLR models accomplishing the conditions for best model selection. That 

is, the MLR model with the least number of predictive variables fulfilling both criteria for 

best model selection in terms of error reduction (RMSE~0) and goodness of fit (R2
adj>0.5). 
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Figure 7. Multiple linear regression models for micro catchment M6 for the period May 2011 - December 

2018 using hydrological and meteorological variables as predictors. A1 to A5 represents different models 

after incorporation of the explanatory variables. The number next to the hydrological variable indicates the 

corresponding moving window. Abbreviations: RC runoff coefficient; Qmin minimum streamflow; Qmx 

maximum streamflow; Pcum cumulative precipitation. The dashed line shows the 1:1 ratio relation. 

 

Results of the MLR analysis for catchment M6 are shown in Fig. 7. Eight 

hydrometeorological variables were considered in the MLR models of this catchment after 

performing the collinearity analysis: ETmin6, Qmax0, Pcum0, RC7, Qmin12, RC12, Pcum15, 

and RC18. MLR models up to 5 variables were evaluated using these variables (models 

A1 to A5). Results of the 5 MLR models (A1 to A5) are described below. Model A1 

included RC12 as the only predictive variable and explained 22% of the dataset variance. 

Model A2 included two variables, namely RC7 and RC12, and allowed explaining 41% of 

the dataset variability. Model A3 included 3 variables, Qmin12, RC7, and RC12, explaining 

51% of the variance. Model A4 included all variables in model A3 and Qmax0, explaining 

57% of the MTTs temporal variation. Model A5 included all variables in model A4 and 

Pcum0 (5 variables in total) and accounted for 60% of the dataset variability. The 

difference in RMSE between the models decreased from 5.53 for model A1 to 1.36 for 
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model A5. Model A3 was selected as the one best resembling the temporal variability of 

MTTs for catchment M6 as it complied with the aforementioned conditions for model 

acceptance.  

The same analysis conducted for the remaining catchments indicated that the 

number of variables necessary to achieve model acceptance conditions for each of them 

varied between 2 and 5 (Table 2). Two predictive variables were used for catchments M1 

(Qmd8 and Qmin0+15), M2 (Qmin10 and Pcum0), and M3 (Q300+18+Qmd7). The MLR for 

catchment M4 required 3 predictive variables (Q300+18, RC9, and Qmx7). The models for 

catchments M5 and M8 required the largest number of predictive variable, 4 for the former 

(Qmd12, Qcum24, Pmx12, and Qcum9) and 5 for the latter (Qmin12, Pmd10, Pmx9, Qmx12, 

and Qcum0). All of these models presented relatively low RMSE (from 22.60 to 47.98). 

The models had R2
adj values ranging from 0.50 and 0.58 (Table 2), indicating that all 

models explain at least 50% of the MTT temporal variability for each catchment. The 

average AIC value among catchments was low (581±87), suggesting that the selected 

models are parsimonious. Results from the F-tests show that all models are significant at 

p<10-9. This means there is evidence of the existence of linear relationship between MTTs 

and hydrometeorological variables. 
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Table 2. Factors controlling the temporal variation of MTTs using multiple linear regression (MLR) with their respective 
statistical metrics for catchments M1-M8 during the period May 2011 - December 2018. 

Catchments Variables used in the MLR models n m RMSE MAE R2 R2
adj AIC p-value 

M1 Qmd8+Qmin0+15   8 42.29 32.50 0.59 0.58 596.64 2.53*10-11 
M2 Qmin10+Pcum0  10 22.60 17.00 0.52 0.50 525.21 2.74*10-09 
M3 Q300+18+Qmd7  8 47.98 35.03 0.59 0.57 611.03 4.15*10-11 
M4 Q300+18+RC9+Qmx7 57 9 47.63 35.41 0.55 0.52 612.20 2.80*10-09 
M5 Qmd12+Qcum0+24+Pmx12+Qcum9  9 41.03 32.87 0.56 0.53 597.19 7.97*10-09 
M6 RC12+RC7+Qmin12  8 31.58 22.97 0.53 0.51 565.34 7.72*10-09 
M8 Qmin12+Pmd10+Pmx9+Qmx12+Qcum0 

 
 11 28.46 22.41 0.54 0.50 557.47 9.01*10-08 

Abbreviations: Qmd median streamflow; Qmin minimum streamflow; Qcum accumulated streamflow; RC runoff coefficient; Pcum accumulated 

precipitation; Pmd median precipitation; n number of samples used for the multiple linear regressions; m the number of variables used for the 

Multiple Linear Regressions; RMSE root mean square error; MAE mean absolute error; AIC Akaike information criterion (Akaike, 1974). The number 

next to the hydrological variable indicates the corresponding moving window. * Catchment M7 did not take it into account because the MTTs are 

less than 1 month and the moving window used was for 1 month back, so this catchment did not yield good results.
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4. Discussion 
 

4.1. Mean Transit Time Modelling   
Taking advantage of an 8-year data set from a nested system of tropical Andean 

catchments, this study addresses one of the 23 unsolved problems in hydrology (Blöschl 

et al., 2019): how old is stream water and how water ages vary in time. To this end, it is 

necessary to evaluate the assumptions of the applied MTT modelling approach. One 

limitation of the LCA for estimating MTTs is the fulfillment of the assumptions of 

hydrological stationarity (i.e., invariance in time) and homogeneity of the studied 

catchments (J. Kirchner, 2016). Despite the variety of hydrometeorological conditions 

occurring at the ZEO during the 8-years study period, the temporal variability of MTTs 

across the catchments was small (191.30±47.10 days). Contrary to evidence of non-

stationary conditions in other tropical (Birkel et al., 2016) and non-tropical montane 

catchments (Peralta-Tapia et al., 2016), this observation supports the hypothesis that the 

ZEO catchments function under stationary conditions. This, as a result of homogeneous 

landscape characteristics (i.e., vegetation and soil distribution, topography, and geology) 

and low temporal variability of climate conditions (Correa et al., 2017; Lazo et al., 2019; 

Mosquera et al., 2016). This finding also suggests that the ZEO catchments meet the 

steady-state assumptions of the LCA applied to estimate the presented MTTs. In addition, 

the fact that the estimated MTTs were shorter than the yearly periods applied to 

investigate MTT temporal variability in this study indicates that our results can be 

considered reliable and robust as evidenced by the low uncertainty in the modelling 

results.  

These considerations are important to note since a previous evaluation of MTT 

temporal variability in a tropical setting yielded results with high uncertainty (Birkel et al., 

2016). This, most likely related to an incorrect application of the LCA as MTTs were 

calculated for periods shorter than a hydrological year (i.e., 4-months) in a highly seasonal 

montane catchment in Costa Rica, which violates the steady-state assumptions of the 

LCA. Furthermore, the estimated MTTs were often larger than the period of analysis, 

MTTs up to 1-year were reported, further emphasizing the need to carefully consider the 

assumptions of the methodology used to obtain reliable MTT estimations.  

The MTTs at ZEO were shorter than 1-year when modelled using both the 

complete dataset and yearly periods using a monthly moving window. These MTTs are 

consistent with typical values in pristine  catchments of less than 10 km2 in other regions  

(Tetzlaff et al., 2011; Hrachowitz et al., 2010; Soulsby et al., 2009). These values are also 

similar to prior MTT estimations in the same study area during the period 2011-2014 (up 

to 9 months; Mosquera et al., 2016). These findings support the idea of a rapid rainfall-

runoff dynamics and a minimum contribution of groundwater to streamflow (Stewart et al., 

2010; DeWalle et al., 1997). A rapid hydrologic response could be explained by the limited 

development of the soils (up to 1 m deep), presenting a porous and open soil structure 

with a high water storage capacity, particularly the riparian wetlands (Lazo et al., 2019). 
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Also, wetlands are hydrologically connected to slopes, especially during wet periods, and 

surface water does not evaporate strongly as humidity remains high throughout the year 

(>90%; Córdova et al., 2015) . The short MTTs are likely influenced by the increasing 

humidity and the increased connectivity of shallow subsurface flow paths (Segura et al., 

2012; Birkel et al, 2012a; Rinaldo et al, 2011). As a consequence, the soils remain wet 

most of the time, and  their high porosity results in a fast mobilization of water throughout 

the entire soil profile (Mosquera et al., 2020), allowing for a continuous recharge of 

riparian wetlands which sustain flow production year-round (Mosquera et al., 2015).  

In another study conducted in the Scottish Highlands, MTT temporal variability was 

assessed in two small catchments with different features (Hrachowitz et al., 2009). One 

of the catchments was characterized by low permeable gleyed soils overlying compacted 

geology. The second catchment was dominated by free-draining podzolic soils situated 

on deep extensively fractured bedrock. The former presented MTTs shorter than 1-year 

(135-202 days), agreeing well with our results as it presented similar conditions than the 

ZEO, and thus a comparable hydrological behavior in which soils remaining close to 

saturation favor a rapid response of streamflow via shallow subsurface with minimal 

contributions of groundwater. The latter had much longer MTTs (1830-1970 days) as a 

result of the dominance of a well-mixed groundwater reservoir in the system of bedrock 

fractures, differently from the ZEO. In other environments (i.e., temperate or boreal) MTTs 

show a large variability because groundwater influences them opposite to ZEO where 

MTTs vary little. In a study conducted in a temperate zone, MTTs were estimated using 

a 1-month moving window with a 10-year data set in five Japanese meso-catchments (Ma 

& Yamanaka, 2013, 2016). The average MTT across the catchments was 23.7 years, and 

the temporal variation was similar in the five sub-catchments ranging from 1.2 to 37 years. 

Contrary to our hydrological system, MTTs up to few decades reflect a delayed 

groundwater response and high water storage in the large groundwater reservoir of the 

Japanese catchments. In another study of a boreal catchment in Sweden MTTs ranged 

from 300 to 1400 days using a 10-year data set and a monthly moving window (Peralta-

Tapia et al., 2016). These results differed from our study area because of the older 

groundwater contributions to streamflow and the large temporal changes in stored water 

due to strong climate seasonality across the year, unlike in our study where the water 

storage is continuously high due to sustained rainfall inputs throughout the year. 

4.2. Identification of factors controlling temporal variability of MTTs 
The main factors controlling MTT temporal variability at the ZEO are precipitation, 

streamflow, and runoff coefficient. It is reasonable that precipitation is a driver of MTTs 

as it acts as a “force” that pushes water out of the soil matrix, whereas streamflow reflects 

the system’s response to water mobilization (i.e., mixture of precipitation and soil water). 

At the ZEO, the rapid filling of the soil water reservoir during rainfall events (Correa, 

Ochoa-Tocachi, & Birkel, 2019) and the soil’s high-water storage capacity  (Lazo et al., 

2019) result in a soil system being moist year-round. This hydrological dynamic helps 

supply baseflow to streams and support the shallow water table of the paramo areas 

around the south Ecuadorian highlands. As a consequence, the amount of water available 

to move through the ZEO is a representation of rapid subsurface flow in the shallow layer 
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of the soils which remains near saturation, explaining runoff coefficient as a key variable 

influencing baseflow MTTs. For these reasons, it is not surprising that antecedent 

conditions of these hydrological variables up to 1-year influence MTT temporal variability, 

with the longest antecedent conditions found for spring-dominated catchments because 

of their higher water storage capacity (Lazo et al., 2019). 

Similar results to our research were obtained in a boreal catchment in northern 

Sweden. In that catchment a strong correlation between annually estimated MTTs and 

yearly precipitation was found (Peralta-Tapia et al., 2016). The result obtained for this 

boreal catchment suggests MTTs are strongly influenced by precipitation. Precipitation 

variability had a marked influence on the resulting MTT estimates as it affects antecedent 

soil moisture conditions. In our study area, the longest MTTs occurred during the less wet 

periods (a period conditioned by lower input precipitation than average) and the shortest 

ones during the wettest ones in which rapid runoff was facilitated by soil rich in organic 

matter, high saturated hydraulic conductivity, and compacted underlying geologic layers. 

MTT variability was also found to be controlled by the amount of precipitation in two Zero-

Order catchments in the USA (Heidbüchel, Troch, & Lyon, 2013). Similar to our findings, 

these authors reported that precipitation events during the wettest periods caused the 

water storage capacity of soils to reach saturation, resulting in fast runoff composed of 

younger water. 

In contrast to our findings, the amount of stored groundwater was found as a 

primary control on MTTs temporal variation in a temperate meso-catchment in Japan (Ma 

& Yamanaka, 2016). These results differ from ours because deep groundwater 

contributions at the ZEO are almost negligible. Similar to our findings, MTTs were also 

found to be correlated with runoff coefficient in a semi-arid catchment in southeastern 

Australia ( Cartwright & Morgenstern, 2015; Cartwright et al., 2020). Nevertheless, 

different processes explain the identified relations in the Australian study site and ours.  

High evaporation and transpiration rates, low precipitation inputs, and hence a reduced 

rate of groundwater recharge help explain the temporal variability of MTTs in the semi-

arid environment. Differently, fairly sustained precipitation inputs (Padron et al., 2016) and 

low transpiration rates (Ochoa-Sánchez et al., 2020) in combination with almost negligible 

contributions of deep groundwater (Mosquera et al., 2020; Mosquera et al., 2016) likely 

explain the relation between MTTs and runoff coefficient at the ZEO catchments.  

The fact that evapotranspiration was not found as a factor controlling MTT temporal 

variability suggests that local climate has little to no influence on how water mixes in the 

subsurface. The latter most likely because of the high air humidity and limited available  

energy at ZEO year-round (Córdova et al., 2016; Ochoa-Sánchez et al., 2020). This 

finding is in line with a previous investigation in 20 Scottish highland catchments with 

similar landscape and climate conditions than at our study site (Hrachowitz et al., 2009).  

However, this finding contrasts with a previous investigation in a tropical catchment 

in Costa Rica in which wind speed was found to be strongly correlated with MTTs (Birkel 

et al., 2016). The authors attributed this observation to a relation between the origin of air 
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masses contributing to local precitipation, which in turns could influence the water storage 

of the catchment. Nevertheless, these findings are potentially biased given that the study 

was conducted using a short time series of isotopic data (2-years) and the 

aforementioned non-compliance with the assumptions of the LCA. The former relates to 

the lack of a suffiently long period of analysis to cover a wide range of 

hydrometeorological conditions, and the latter to the large uncertainties in the MTT 

calculations. Both of these factors raise some questions about the validity of the results, 

as they could have produced spurious correlations with meteorological variables. On the 

contrary, the fact that we used a dataset covering several hydrometeorological cycles and 

the identified variables influencing streamflow MTT variability comply reasonably with the 

conceptual model of the catchments further supports the robustness of our results and 

the validity of our findigs for improved decision making.     

Although there are similarities and differences among the findings of previous 

studies and ours, there are no investigations reporting the combination of streamflow, 

precipitation, and runoff coefficient to identify the factors controlling the temporal 

variability of MTTs in the tropics and elsewhere. This may result from the strong interplay 

between precipitation and streamflow dynamics, which controls subsurface water 

transport and mixing processes in our study area under the presence of riparian wetlands 

connected to the stream network and the virtually absent contribution of deep 

groundwater storages (Mosquera et al., 2015). 
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5. Conclusion 
 

This study contributes to improved understanding of the underlying causes of MTT 

temporal variability in montane catchments in remote regions. According to the obtained 

results it can be concluded that: 

• MTTs in tropical alpine catchments are shorter than 1-year and present a small 

temporal variation, indicating the prevalence of steady-state conditions and that 

lumped models represent a useful tool to investigate hydrological dynamics in the 

region. 

• The factors that control the temporal variability of MTT across the catchments 

were precipitation, streamflow, and runoff coefficient under different antecedent 

conditions up to 1-year, supporting previous conceptualizations of runoff 

generation in the study area that suggested a hydrological system dominated by 

the connectivity of subsurface flow paths through shallow organic soil layers. 

These results highlight the importance of testing the temporal variation of the MTTs before 

their application in strategies and planning-decisions in water management and climate 

adaptation measures. If moisture conditions change, shorter MTTs can impact nutrient 

removal and pollutant export. Changes in climate or land-use could also cause variations 

in the ages of stream water, and should be assessed in future investigations. Further 

research involving the factors controlling MTTs at larger spatial scale for tropical alpine 

catchments is also recommended. Also, it would be interesting to assess the influence of 

fog in the temporal variability of MTTs since this hydrological process has been observed 

to increase precipitation up to 20% in the study area. 
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S. Supplementary material 
 

The supplementary material provides additional information on simple and multiple 

linear regression models using hydrometeorological variables as predictors for 

catchments M1-M8. Besides, this auxiliary material includes figures for each catchment 

in the Zhurucay Ecohydrological Observatory (ZEO). The Pearson correlation coefficients 

(r) are considered strong when r≥0.50, moderate when 0.49≥r≥0.40, and weak when 

r≤0.39. Only the statistically significant results (p-value<0.05) are displayed. 

S1. Simple Linear Regression 
The results of the correlations for catchment M6 are shown in Table S1. The Qmn 

for periods of 1 to 8 months back had a moderate correlation, while Qmin had stronger 

correlations for periods of antecedent conditions, respectively for 3 to 10 months and for 

a period of yearly MTTs evaluation. The periods with the highest correlations were at 6, 

8 and 0+21 months, having a higher correlation (0.71) at 6 and 8 months back, and a 

correlation of 0.70 at 0+21 months back. No high or significant correlations were found 

with Qmx. Qcum had a moderate correlation with MTTs for 1 and 8 months of antecedent 

conditions. Qmn for periods of 2 to 9 months back, and 0+21 and 0+24 months (2 years) 

back depicted stronger correlations with MTTs. For base flow values (Q10-Q30) weak 

correlations were found between Q10 and MTTs in the 10 to 12 month back conditions. 

There were low correlations for moderate flow rates (Q40-Q60), and moderate to high 

correlations for high flow rates (Q70-Q90). Moderate to significant correlations were found 

for Pcum for periods of 0 to 10 months back, and moderately significant for the periods 

0+15 to 0+24 back. The highest correlation values were found at 2 and 3 months (r=0.5). 

Moderate to significant correlations were found for Pmn for 0 to 10 months back, and 

0+15 to 0+24, with the latter correlations being moderately significant; the highest 

correlation values were found for 2 and 3 months back (0.5). Pmx correlations were 

moderate to significant for periods of 0 to 10 months, and 0+15 to 0+24, with the latter 

correlations being moderately significant. The highest correlation values were found for 2 

and 3 months back (0.5). RC showed weak correlations from 5 to 8 and 12 to 0+21 months 

back; ETcum moderate negative correlations from 7 to 12 months back; ETmn weak 

negative correlations from 7 to 9 months back and moderate negative correlations for 10 

to 12 months back; and ETmx weak negative correlations for 5, 6, and 0+18 months back, 

moderate negative correlations for 7 to 9 months back, and strong negative correlations 

for 10 to 12, 0+21 and 0+24 months back. As for ETmn, weak negative correlations were 

found for 9 to 12 months back. With ETmin, weak correlations were obtained for 0, 6 to 

10, and 0+24, and moderate correlations for 1 to 5, 0+15 and 0+21 months back. 



 

Karina Marlene, Larco Erazo Página 42 
 

 

 

 

Table S 1. Pearson correlation coefficients (r) between the yearly estimated MTTs using a monthly moving window for catchment M6 during the period 
May 2011 to December 2018, and the hydrometeorological variables for different periods. For the latter, the variables correspond to the median 
annual value and for the same period the yearly MTTs were estimated (0 months), the median annual values for 1 to 12 months before the period the 
year MTTs were estimated (1-12 months), and median annual values for the same period the yearly MTTs were estimated adding 3, 6, 9 and 12 
months back (0+15-0+24). The values in bold indicate that the r coefficient is higher than 0.5 and statistically significant (p-value <0.05), and underlined 
values indicate that the r coefficient is lower than 0.5 but statistically significant (p-value <0.05). 

Months Qmn Qmin Qmx Qcum Qmd Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Pmn Pcum Pmd Pmx RC ETcum ETmn ETmx ETmd ETmin 

0  0.39 0.20 -0.10 0.38 0.48 0.05 0.04 0.05 0.07 0.13 0.22 0.27 0.33 0.40 0.41 0.38 0.47 -0.25 0.22 0.07 0.09 -0.17 0.19 0.39 

1 0.43 0.27 -0.06 0.43 0.49 0.04 0.03 0.04 0.07 0.14 0.22 0.27 0.34 0.41 0.47 0.47 0.50 -0.21 0.22 0.07 0.07 -0.19 0.18 0.46 

2 0.43 0.46 -0.11 0.43 0.50 0.07 0.05 0.05 0.09 0.16 0.22 0.28 0.35 0.42 0.51 0.51 0.53 -0.25 0.20 0.07 0.07 -0.21 0.18 0.46 

3  0.43 0.59 -0.11 0.43 0.50 0.09 0.07 0.07 0.11 0.19 0.24 0.29 0.37 0.43 0.50 0.50 0.53 -0.25 0.21 0.03 0.03 -0.21 0.14 0.43 

4  0.41 0.63 -0.12 0.41 0.50 0.11 0.09 0.09 0.13 0.21 0.25 0.30 0.38 0.44 0.45 0.45 0.48 -0.26 0.21 0.00 0.00 -0.21 0.11 0.41 

5  0.44 0.63 -0.12 0.44 0.51 0.14 0.11 0.11 0.16 0.23 0.26 0.31 0.40 0.45 0.46 0.46 0.47 -0.20 0.24 -0.06 -0.07 -0.28 0.05 0.40 

6  0.48 0.71 -0.09 0.48 0.57 0.16 0.13 0.12 0.17 0.25 0.27 0.31 0.41 0.46 0.46 0.46 0.48 -0.14 0.29 -0.16 -0.16 -0.36 -0.02 0.35 

7  0.49 0.66 -0.03 0.49 0.57 0.18 0.14 0.13 0.19 0.26 0.28 0.31 0.42 0.48 0.45 0.45 0.43 -0.07 0.33 -0.22 -0.23 -0.41 -0.09 0.31 

8  0.46 0.71 0.00 0.46 0.55 0.20 0.16 0.15 0.20 0.28 0.29 0.32 0.44 0.50 0.42 0.42 0.38 -0.01 0.30 -0.30 -0.31 -0.46 -0.18 0.27 

9  0.39 0.68 0.02 0.39 0.50 0.23 0.17 0.17 0.22 0.29 0.30 0.33 0.46 0.52 0.37 0.37 0.35 0.00 0.22 -0.35 -0.38 -0.49 -0.28 0.25 

10  0.22 0.61 0.02 0.22 0.38 0.26 0.19 0.19 0.24 0.31 0.31 0.34 0.48 0.54 0.27 0.27 0.25 0.02 0.04 -0.37 -0.40 -0.52 -0.33 0.20 

11  -0.01 0.46 -0.02 -0.01 0.20 0.28 0.21 0.20 0.25 0.32 0.32 0.34 0.49 0.55 0.11 0.11 0.14 -0.01 -0.16 -0.38 -0.41 -0.52 -0.37 0.18 

12  -0.21 0.27 -0.03 -0.21 0.01 0.32 0.24 0.22 0.27 0.34 0.33 0.36 0.51 0.55 -0.05 -0.05 -0.03 -0.07 -0.30 -0.38 -0.42 -0.50 -0.36 0.14 

0+15  0.35 0.40 0.00 0.35 0.38 -0.02 -0.03 -0.03 0.02 0.11 0.19 0.25 0.33 0.42 0.34 0.34 0.34 -0.31 0.29 -0.10 0.06 -0.19 0.15 0.43 

0+18  0.30 0.55 -0.05 0.30 0.40 0.07 0.05 0.06 0.10 0.18 0.24 0.29 0.37 0.44 0.27 0.27 0.33 -0.29 0.31 -0.15 -0.06 -0.36 0.04 0.40 

0+21  0.35 0.70 -0.09 0.35 0.56 0.18 0.14 0.14 0.18 0.25 0.30 0.34 0.41 0.47 0.34 0.34 0.46 -0.27 0.30 -0.11 -0.17 -0.55 -0.06 0.43 

0+24  0.15 0.40 -0.21 0.15 0.55 0.27 0.23 0.23 0.26 0.33 0.37 0.40 0.47 0.50 0.26 0.26 0.47 -0.31 -0.02 -0.04 -0.19 -0.64 -0.08 0.39 

Abbreviations: Qmn mean streamflow; Qmin minimum streamflow; Qmx maximum streamflow; Qcum accumulated streamflow; Qmd median streamflow; Q10, Q20, 

Q30…Q90. streamflow rates as the frequency of non-exceedance. Pmn mean precipitation; Pcum accumulated precipitation; Pmd median precipitation; Pmx 

maximum precipitation; RC runoff coefficient; RHmn relative humidity; SRmx maximum solar radiation; SRmin minimum solar radiation; Tmin minimum temperature; 

WSmx maximum wind speed; ETcum accumulated evapotranspiration; ETmn mean evapotranspiration; ETmx maximum evapotranspiration; ETmd median 

evapotranspiration; ETmin minimum evapotranspiration. 
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The results of the Pearson correlation (r) between hydro-meteorological 

variables and MTTs for the remaining catchments are presented in Figure S1, and it 

was found that Qmd (Fig. S1.a), Pmd (Fig.S1.b), and ETmx (Fig.S1.c) influence 

MTTs.  

The catchment M1 had correlations with MTTs larger than 0.5 for 5 to 6 

months back, stronger correlations between Pmd and MTTs were found for 0 to 6 

months of antecedent conditions. ETmx had stronger correlations for 0+21 to 0+24 

antecedent conditions, moderate correlations for 8 to 12 months back and weak 

correlations for the rest. For the M2 catchment, Qmd had only moderate correlations 

and the maximum correlation was 0.48 for 7-8 months back. Most of the correlations 

were significant, except for 11 to 0+15. Stronger correlations with Pmn were found 

for 0 to 2 months of antecedent conditions, while weak negative correlations with 

ETmx, but not for the others. The M3 catchment had stronger correlations with Qmd 

from 6 to 11 months, with 0.69 being the highest at 10 months. Moderate correlations 

between Pmd and MTTs were found for 0 to 3 months back, and a strong correlation 

for the 0+24 months back. Instead, ETmax had stronger correlations between 

months 9 to 12, and 0+21 and 0+24. For catchment M4, Qmd had stronger 

correlations for 6 to 7, and 0+24 months back, and Pmd for 1 to 3 and 0+24 months 

back. The correlations between ETmx and MTTs were weak for 5 to 7months and 

0+18, moderate for months 8 to 9 months back, and strong for months 10 to 12 and 

0+24 months back. In catchment M5, Qmd had stronger correlations for 0+21 and 

0+24. For Pmd there were no correlations greater than 0.5, however, the highest 

correlation was -0.38 for 12 months. ETmx had weak correlations from 0 to 1 months, 

the rest of the correlations were not significant. For the M7 catchment, Qmd had 

weak correlations from 7 to 0+15 months back. However, there were no correlations 

of MTTs with Pmd higher than 0.5, the highest value of correlation was 0.42 for 12 

months back. ETmx had moderate correlations from 8 to 11 and 0+24 months back. 

In the M8 catchment, Qmd obtained strong correlations from 1 to 7 months 

antecedent conditions. However, for Pmd only weak correlations were observed 

from 0 to 3 months back. ETmx had weak correlations from 1 to 6 months and 0+18 

months, moderate correlations from 7 to 12 months, and strong correlations for the 

periods 0+21 and 0+24. 
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Figure S 1. Pearson correlation coefficients (r) between the yearly estimated MTTs using a monthly 
moving window for the catchments M1-M8 during the period May 2011 - December 2018; subplot (a) 
median streamflow; (b) median precipitation and (c) maximum evapotranspiration for the periods 
shown in the x-axis. The streamflow, precipitation, and evapotranspiration variables correspond to 
the mean annual values for the same period the yearly MTTs were estimated (0 months), the mean 
annual values for 1 to 12 months before the period the year MTTs were estimated (1-12 months), and 
mean annual values for the same period the yearly MTTs were estimated adding 3, 6, 9 and 12 
months back (0+15…0+24). The horizontal red lines depicts for reference the r-value of 0.5. The 
asterisks represent non significative correlations (p-value <0.05). 

 

 



 

S2. Multiple Linear Regressions 
 

In all the multiple linear regression models 57 observations were used for the 

catchments M1-M8. The variables and the results for each of the catchments are 

detailed below. 

In the linear regression analysis for catchment M1, a total of 8 variables were 

used, respectively Qmx2, Pmx7, Qmd8, Qmin0+15, Pcum0+18, Qmin24, ETmin0, and 

Pcum0. Subsequently, MLRs were performed, and 5 models were obtained. Figure 

S2.1. shows all the derived models, and model A2 was selected as representative 

for this catchment. 

 
Figure S2. 1. Multiple linear regression models for catchment M1 for the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A5 represent different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations: Qmd median streamflow; Qmin 
minimum streamflow; Pmx maximum precipitation; Pcum accumulated precipitation. The dashed line 
corresponds to the linear regression and the gray line corresponds to the 1:1 ratio. 

 

In the linear regression analysis for catchment M2, a total of 10 variables were 

used: Qmin0, Pmx0, Pacum0, Qmx1, RC8, Qmin10, Qacum0+18, RC0+21, RC0+24, 

RC0+24, and ETmin6. MLRs were performed and 4 models obtained. Figure S2.2. 
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shows all the derived models, and model A2 was selected as representative for this 

catchment. 

 
Figure S2. 2. Multiple linear regression models for catchment M2 during the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A4 represents different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations: Qmin minimum streamflow; RC runoff 
coefficient; Pmx maximum precipitation; Pcum accumulated precipitation. The dashed line 
corresponds to the linear regression and the gray line corresponds to the 1:1 ratio. 

 

In the linear regression analysis for catchment M3, a total of 8 variables were 

used: Pcum0, Qmd7, Qmin11, Pcum0+18, Q300+18, RC0+18, ETmx3, and ETmin6. MLRs 

were performed and 5 models obtained. Figure S2.3. shows all the derived models, 

and model A2 was selected as representative for this catchment. 
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Figure S2. 3. Multiple linear regression models for catchment M3 during the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A5 represents different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations. Abbreviations: Q30 streamflow rates as 
the frequency of non-exceedance; Qmd median streamflow; RC runoff coefficient; Qmin minimum 
streamflow; Pmd median precipitation. The dashed line corresponds to the linear regression and the 
gray line corresponds to the 1:1 ratio. 

 

In the linear regression analysis for catchment M4, a total of 9 variables were 

used: Pcum0, RC3, Qmx7, RC9, RC0+18, Qcum0+24, RC0+24, ETmx0+18, Etomx12, and 

Q300+18. MLRs were performed and 4 models obtained. Figure S2.4. shows all the 

derived models, and model A3 was selected as representative for this catchment. 
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Figure S2. 4. Multiple linear regression models for catchment M4 during the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A4 represents different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations. Q30 streamflow rates as the frequency of 
non-exceedance; RC runoff coefficient; Qmx maximum streamflow. The dashed line corresponds to 
the linear regression and the gray line corresponds to the 1:1 ratio. 

 

In the linear regression analysis for catchment M5, a total of 9 variables were 

used: Qcum0+24, RC3, Qmin9, Qcum9, Qmd12, Pmx12, Qcum0+18, RC0+21, and ETmin0. 

MLRs were performed and 5 models obtained. Figure S2.5. shows all the derived 

models, and model A4 was selected as representative for this catchment. 
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Figure S2. 5. Multiple linear regression models for catchment M5 during the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A5 represents different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations: Qmd median streamflow; Qcum 
accumulated streamflow; Pmx maximum precipitation; Qmin minimum streamflow. The dashed line 
corresponds to the linear regression and the gray line corresponds to the 1:1 ratio. 
 

In the linear regression analysis for catchment M8, a total of 11 variables were 

used: Qcum0, Qmin3, Qmin12, Qmx12, Qcum0+18, ETmin0, Pmd8, Pmd10, Pmx12, 

Pmd12, and Pmx9. MLRs were performed and 5 models obtained. Figure S2.6. shows 

all the derived models, and model A5 was selected as representative for this 

catchment. 
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Figure S2. 6. Multiple linear regression models for catchment M8 during the period May 2011 to 
December 2018 using hydro-meteorological variables as predictors. A1 to A5 represents different 
models after incorporating explanatory variables. The number next to the hydrological variable 
indicates the corresponding moving window. Abbreviations: Qmin minimum streamflow; Pmd median 
precipitation; Pmx maximum precipitation; Qmx maximum streamflow; Qcum accumulated 
streamflow. i.eThe dashed line corresponds to the linear regression and the gray line corresponds to 
the 1:1 ratio. 
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