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ABSTRACT

Background: Hundreds of adipokines have been identified, and their extensive range of
endocrine functions—regulating distant organs such as oral tissues—and local
autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly
known proteins in the dental pulp; few of them have been studied despite their large
number. This study reviews recent advances in the investigation of dental-pulp
adipokines, with an emphasis on their roles in inflammatory processes and their potential
therapeutic applications.

Highlights: The most recently identified adipokines in dental pulp include leptin,
adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous
physiological and pathological functions in the pulp tissue: they are closely related to pulp
inflammatory mechanisms and actively participate in cell differentiation, mineralization,
angiogenesis, and immune-system modulation.

Conclusion: Adipokines have potential clinical applications in regenerative endodontics
and as biomarkers or targets for the pharmacological management of inflammatory and
degenerative processes in dental pulp. A promising direction for the development of new
therapies may be the use of agonists/antagonists to modulate the expression of the most

studied adipokines.

Keywords: Adipokines. Dental pulp disease. Inflammation mediators. Regenerative
endodontics. Leptin.
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1. Introduction

For years, adipose tissue was underestimated as just an energy reservoir [1-7]; however,
it is now acknowledged as an endocrine organ producing numerous multifunctional
bioactive proteinaceous molecules, known as adipokines [2,3,8—-11]. Recent studies have
identified >700 types, with diverse chemical structures, in the secretome of adipose
tissue[12—-15]. Hence, they have even been catalogued in other molecular families, such
as cytokines, growth factors, hormones, and complement proteins [1,2,16,17].

Adipokines are predominantly produced by adipocytes [16], which form part of
white and brown adipose tissue [4,9,18], constituting a key station as a multilevel network
regulating human physiology [2,4]. Cells such as fibroblasts, osteoblasts, neutrophils,
monocytes, macrophages, T lymphocytes, and natural killer (NK) lymphocytes also
secrete adipokines [8,16]. However, the location, origin, and function of many of them
remain unknown. Adipokines were considered exclusively associated with pathological
processes, as they are linked to obesity, diabetes, cardiovascular diseases, and
inflammation, among other pathologies [1,2,4,8,16,17,19]. However, adipokines also
orchestrate a multitude of physiological processes [4,20], such as regulation of metabolic
homeostasis, food intake, sleep functions, and anti-inflammatory activity [1,8,18,21-23].

Ubiquitous in nature, they are located throughout the body, and the oral tissues
are no exception. Several studies have demonstrated the role of visfatin, chemerin, leptin,
and omentin in temporomandibular joint disorders [24—29]. Adiponectin, leptin, resistin,
chemerin, omentin, vaspin, and visfatin play active roles in bone remodeling [30]. Leptin
and adiponectin promote osteogenesis through differentiation of mesenchymal stem cells
into preosteoblasts and the proliferation and maturation of osteoblasts. Contrarily,
omentin-1 is a proposed biomarker of metabolic disorders, including bone pathologies
[31].

Adipokine quantity in periodontal tissues correlates with certain systemic
conditions [30,32]. In obese patients, leptin and adiponectin levels are increased and
decreased in the periodontal ligament (PDL) and gingival crevicular fluid, respectively
[33,34]. Conversely, higher levels of vaspin and visfatin were identified in the crevicular
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fluid of patients with periodontal disease, than in healthy individuals [35,36]. Furthermore,
adiponectin [37] and leptin [30] protect the periodontium by neutralizing the effects of
lipopolysaccharides (LPS) of the periodontal pathogenic bacteria, inhibiting cell
apoptosis, inducing antimicrobial peptide expression, and increasing growth factors that
promote the proliferation of PDL cells, improving healing in vitro [30,34,37-39].

Although these biomolecules are crucial for multiple organic functions, information
on the influence of adipokines on the dental pulp is limited. Most studies were performed
in animals [8,28,40-44]. Therefore, although their results should be extrapolated to
humans with caution, these studies open a window for research in humans. In the pulp
tissue, few adipokines have been isolated with a pro-or anti-inflammatory effect [45-47].
Adipokines mediate pulp tissue mineralization and repair [30,41,48-53], making them a
suitable target for new regenerative therapies combined with the currently available
bioactive materials [41,52]. Nevertheless, to date, no studies have integrated information
on the role of adipokines in physiological and pathological processes in dental pulp and
their potential clinical application in pulp therapy. Therefore, this review aimed to explore

the physiological, pathological, and potential therapeutic roles of adipokines in the dental

pulp.
2. Materials and Methods

Available literature was searched in PubMed and Scopus databases to identify relevant
articles published until February 28, 2021, using the keywords dental pulp, odontoblasts,
pulp fibroblasts, adipokines, leptin, adiponectin, visfatin, resistin, ghrelin, and chemerin.
Articles focusing on adipokines in the dental pulp were selected. Additionally, to ensure
that the information obtained was comprehensive, a manual search was performed on

the reference lists of the articles initially selected.
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3. Adipokines in dental pulp

The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin,
ghrelin, oncostatin, chemerin, and visfatin. Table 1 summarizes these aspects. This

article reviews their origins, receptors, synthesis, physiologic and pathologic functions,

and potential therapeutic roles in the dental pulp tissue.

Table 1 Summary of data available on adipokines in the dental pulp

Stimulation (S) or

Adipokine Origin Receptor Receptor expression Functions Influences on inflammation
inhibition (1)

Leptin Pulp fibroblasts, Neuropeptides (S) Ob-Rb [18,59— High expression in the Stimulates the differentiation of Regulates innate and adaptive
odontoblasts [54]. 61]. dental pulp [30]. DPSC into odontoblast-like cells immune response [9,65],
[42,51,54,55]. IL-1B, IL-6, TNF-a, Odontoblasts [30]. [49]. Proinflammatory [9,65], promotes

and LPS (S) [56,57]. Inhibits adipogenic differentiation the differentiation of TH1 cells,
Heat exposure (S), of PDLSC and DPSC [49]. stimulates the oxidative burst of
Cold exposure (1) Stimulates the secretion of DSPP monocytes and macrophages
[58]. and DMP-1 [41,52,55], promotes [66,67].
the formation of dentin bridges Production of proinflammatory
[30,41,45,49,62]. cytokines, such as TNF-a, IL-1, IL-2,
Induces angiogenesis [41,52,63,64]. IL-6, IL-8 and CC chemokine ligands
Induces maturation of tooth germ [9,49,51,65,68-70].
during odontogenesis [42]. Dose-dependent anti-inflammatory
effect [30,41].

Adiponectin Lymphocytes, Heat exposure (l), AR1 and AR2 AR1 and AR2 receptors Facilitates osteoblast proliferation Anti-inflammatory effect by
neutrophils, and Cold exposure (S) [72-74]. are expressed in and differentiation [75,76]. regulating immune cells such as
endothelial cells [58]. dental pulp [43]. Promotes reparative dentin macrophages and inducing secretion
[71,72]. formation by increasing DSPP and of anti-inflammatory ILs [79].

DPP expression and stimulating Inhibits TLR-4 expression [80].
hydroxyapatite crystals formation

[43,77].

Induces angiogenesis [78].

Resistin Monocytes and IL-1, IL-6 and TNF-a Not identified N/A Functions not clarified [82,87]. Proinflammatory; induces the
macrophages (S) [81]. [83], although production of cytokines such as IL-
[81]. EDM (S) [82]. potential 6, IL-1, IL-12, and TNF-a [88,89].

candidates Counteracts the anti-inflammatory
have been effects of adiponectin by promoting
ascribed  [84— the expression of VCAM, ICAM, and
86]. pentraxin 3 [87,90].
Inflammaging [83]
Chemerin Dental pulp cells Obesity, diabetes CMKLR1, also Odontoblasts [91], Differentiation of odontoblasts and Proinflammatory, it incites the
such as and cardiovascular known as immune cells such as ameloblasts [91,98]. release of proinflammatory
odontoblasts disease (S) [92-94] ChemR23 or immature Induces calcium mobilization, cytokines such as TNF-a, IL6 and IL-
[91]. IL-1B (S) [93,95] DEZ [96]. plasmacytoid dendritic during odontogenesis [91]. 1[100,101].

cells, myeloid dendritic
cells, macrophages,

and NK cells [44,97].

Induces angiogenesis [99].

Anti-inflammatory, mediated by the
release of NO and inhibition of

VCAM-1 expression [16,102].
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Ghrelin Preodontoblasts,
odontoblasts
and blood

vessels [40,50].

Oncostatin Odontoblasts,
fibroblasts,
endothelial and
inflammatory
cells [46],
neutrophils
[112,113],
dendritic  cells
[114].

Visfatin Neutrophils

[124,125).

UNIVERSIDAD DE CUENCA

Obesity (1) [103]. GHSR [104]. Suspected to be found
in odontoblasts
[105,106].

IL-1a, TNF-a and IL- OSMR [117]. Pulp stem cells [118].

6 (S) [115,116] and

bacterial LPS (S)

[114].

FK866: visfatin Not identified N/A

inhibitor (1) [126]. [16,127,128].

Stimulation of GHSR expression
[104].

Stimulates proliferation,
differentiation, bone metabolism
and regulates osteoblast apoptosis
[107-109].

Regulates development and
formation of hard tissues, such as
bones and teeth [40].

Influences dentinogenesis [40,110].
Increases chondrogenic, adipogenic
and osteogenic differentiation of
dental pulp stem cells [118].
Regulates growth, differentiation,
gene expression, immune response
and tissue remodeling processes

[118,119].

Inhibits neutrophil apoptosis and
increases neutrophil inflammatory
response [124].

Pulpal aging, through cellular
senescence [47].

It creates chronic proinflammatory
microenvironments that favor pulp

pathology [47].

Anti-inflammatory, inhibits the
production of proinflammatory

cytokines [111].

Proinflammatory, through induction
of cytokines and MMP [116,120—
123].

Production of proinflammatory
cytokines, such as IL-1B, TNF-a, IL-6,
and co-stimulatory molecules, by
CD14+ monocytes [124].

Increases the expression of ICAM-1

and VCAM-1 [129].

AR, adiponectin receptor; DMP, dentin matrix protein; DPP, dentin phosphoprotein; DPSC, dental pulp stem cell; DSPP, dentin sialophosphoprotein; ICAM, intercellular adhesion molecule;

IL: interleukin; LPS, lipopolysaccharides; N/A: no information available; MMP, matrix metalloproteinase; NK, natural killer; NO, nitric oxide; OSM, oncostatin M; OSMR, receptor for

oncostatin M; Ob-Rb, leptin receptor (b isoform); PDLSC, periodontal ligament stem cell; TLR-4, toll-like receptor-4; TH1 I, T helper 1 cell; TNF, tumor necrosis factor; VCAM, vascular cell

adhesion molecule

3.1 Leptin

Discovered in 1994, Leptin is a 16 kDa protein [5,130] encoded by the Ob gene [1,5]. Its
Ob-R receptor has six isoforms, Ob-Rb being the main isoform [18,59-61]. It is distributed
in almost all tissues, explaining the pleiotropic function of leptin [51,131-133]. Although
predominantly produced by adipocytes [30,134,135], it is produced on a smaller scale by
skeletal muscle [136], placenta [137], gastric epithelium [138], liver, brain, and pituitary
gland [139-141]; it is also synthesized and secreted by ameloblasts, pulp odontoblasts,

and fibroblasts [54,61]. Dental pulp and periodontal tissues are important sources of
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leptin, both locally and systemically, because the expression of leptin in these tissues is
equivalent or higher than that in the bone marrow [30,42].

Leptin and its receptors are expressed in human dental pulp cells and are involved
in various pathophysiological processes. In vitro, odontoblasts have shown higher
expression of leptin and its receptors than that by cells of the pulp core; even some
cytoplasmic processes of odontoblasts extending into the dentinal tubules have shown
leptin immunoreactivity [30]. The involvement of leptin in the differentiation of odontoblast-
like cells from PDL stem cells (PDLSCs) and dental pulp stem cells (DPSCs) has been
shown [49], indicating its role in the regeneration and repair of impaired dental structures
[142] through formation of dentinal bridges protecting pulp tissue [30,41,45,49,62].
Furthermore, leptin reduces adipogenesis in DPSCs and PDLSCs, preventing their
differentiation into adipocytes, thereby acting as an important modulator of dental stem
cell differentiation [49].

Leptin stimulates odontoblasts by increasing the secretion and expression of
dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) [41,52,55], which
are important for odontogenic differentiation and dentin mineralization [143]. Additionally,
if we consider odontoblasts the first line defense against microorganisms and their by-
products, leptin may inevitably contribute to autocrine/paracrine signaling pathways for
repair, mineralization, and tertiary dentin formation.

Leptin has proangiogenic effects [63,64] and increases the expression of vascular
endothelial growth factor (VEGF) and fibroblast growth factor, positively influencing
proliferation, differentiation, mineralization, neovascularization, and reparative dentin
formation in pulp tissue, as demonstrated both in vitro and in vivo [30,42,52,144]. These
growth factors are synergistic with leptin for the stimulation of angiogenesis [145], crucial
for the recruitment and mobilization of stem cells to the site of pulp injury [41] and for tooth
development [146].

During odontogenesis, intense expression of leptin and VEGF in ameloblasts, cells
of the stratum intermedium, odontoblasts, and some cells of the dental papilla, induce
angiogenesis in the tooth germ and support its maturation [42]; similar expression was

found in human and rat dental germs [42,147,148]. Additionally, leptin expressed by these
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cells promotes tooth development by facilitating endothelial cell recruitment and blood
vessel branching [42], leading to the release of leptin from specialized cells of the gingival
epithelium [30].

However, similar to its systemic effect, leptin is proinflammatory in dental pulp and
regulates both innate and adaptive immune responses under normal and pathological
conditions [9,65,149]. Leptin expression is increased in inflammatory conditions [68,149],
additionally promoting the secretion of other acute phase reactant cytokines, such as
interleukin IL-1, IL-2, IL-6, IL-8, tumor necrosis factor alpha (TNF-a), and CC chemokine
ligands (CCL3, CCL4, and CCL5) [9,49,51,68-70]. Like other proinflammatory cytokines,
leptin promotes T helper 1 (TH1) cell differentiation, stimulates the oxidative burst in
macrophages [66,67], influences the proliferation, differentiation, activation, and
cytotoxicity of NK cells [150], and modulates the initiation and progression of autoimmune
responses [134,151]. This shows that high local leptin levels stimulate the immune system
[152], modulating its development, proliferation, maturation, and activation [65,68].
Further, leptin is associated with increased expression of CCL20 [153], allowing the
recruitment of memory T cells and immature dendritic cells [154,155] and lymphocyte
trafficking, magnifying pulpal inflammatory response [68].

Further, physiologically, neuropeptides induce leptin release, whereas in a
pathological state, IL-1, IL-6, TNF-a, infectious and inflammatory stimuli, such as LPS,
do so [56,57], triggering greater production of neuropeptides that increase the release of
leptin and cytokines, thereby increasing inflammatory process. Despite the
proinflammatory nature of leptin [68,149], it likely induces a dose-dependent, anti-
inflammatory effect [41,51]. Though this has not been well elucidated, it may be assumed
that leptin increases the recruitment of lymphocytes and macrophages to the dental pulp
and, together with its angiogenic, mineralizing, and differentiating effects, it promotes the
repair and regeneration of the pulp-dentin complex, thus protecting it from infection and
inflammation [30,41,55].
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3.2 Adiponectin

Isolated in 1995, adiponectin is a 30 kDa protein [2], encoded by the ADIPOQ gene [156],
and mainly produced by adipocytes. However, it was recently reported to be synthesized
also by Ilymphocytes, neutrophils [71,72], myocytes, endothelial cells, and
cardiomyocytes [157]. Two distinct isoforms have been identified: a full-length, low-
molecular-weight adiponectin that functions primarily in the brain, and a globular form that
functions in the liver, which act as ligands for the receptors, adipoR1 and adipoR2 [72—
74]. The first is expressed ubiquitously, but predominantly in skeletal muscle, while the
second is expressed mainly in the liver [74,158]. Both types of receptors have been

isolated within pulp tissue, with a higher affinity for the full-length isoform [43].

Although known primarily as an anti-inflammatory adipokine, recent studies have
indicated that their biological functions differ according to the isoform. Full-length
adiponectin blocks endotoxin-induced IL-6 secretion and induces anti-inflammatory
interleukins secretion [79]. However, the globular form triggers cytokine production,
making it proinflammatory [159]. This is evidenced in skeletal joints, where adiponectin
plays a proinflammatory role by inducing release of IL-6 and metalloproteinase 1 from
synovial fibroblasts involved in matrix degradation; higher amount of adiponectin was
found in the synovial fluid of rheumatoid arthritis and osteoarthritis patients [160,161].
Further studies may clarify this dual biological effect.

Adiponectin plays a major role in two important hard tissues. In bone, adiponectin
promotes osteoblast proliferation and differentiation [75,76] and protects against bone
resorption [162,163]. However, an in vitro study performed on rat pulp cells determined
that the application of 10 ug/ml adiponectin for 12 days significantly improved pulp tissue
mineralization, which is assumed to occur because adiponectin increases the expression
of DSPP and dentin phosphoprotein, forming complexes with type | collagen and
promoting the formation of hydroxyapatite crystals, resulting in reparative dentin

formation. However, no significant differences were observed on previous days and at
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different concentrations, indicating the importance of concentration and time in tissue
mineralization [43,77].

Adiponectin induces the synthesis of anti-inflammatory mediators in immune cells,
primarily targeting macrophages [80]. Adiponectin inhibits the activation of M1
macrophages (proinflammatory), promotes the proliferation of M2 macrophages (anti-
inflammatory) [164—166] and its production of interleukin 10 (IL-10) [167], and inhibits the
expression of Toll-like receptor 4, preventing the activation of NF-kB [80]. These anti-
inflammatory mechanisms may also occur in the dental pulp; however, clinical application

of adiponectin requires further research.

3.3 Resistin

Resistin is a 12.5 kDa dimeric protein, first identified in 2001 [88,168]. In humans, it is
predominantly produced by macrophages and monocytes, induced by proinflammatory
cytokines, such as IL-1, IL-6, and TNF-a [81]. It circulates throughout the bloodstream in
the organism because of its affinity for vascular endothelial cells [87], though
concentrating in inflamed areas [37,88]. The resistin receptor remains unknown [83],
although potential candidates have been ascribed [84—86].

The biological function of resistin remains ambiguous [87]; nevertheless, it has a
predominantly proinflammatory function, due to increased concentration in inflamed
areas [169]. It induces the release of proinflammatory cytokines, such as IL-6, IL-1, IL-
12, and TNF-a [88,89], and directly counteracts the anti-inflammatory effects of
adiponectin in vascular endothelial cells by promoting the expression of vascular
adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), and pentraxin 3
[87,90]. Moreover, resistin was recently shown to severely influence aging due to its
proinflammatory function as it always increases during inflammaging [83].

In cells of mesenchymal origin, including human dental pulp cells, enamel matrix-
derived proteins (EDM) dramatically increase the expression of resistin, indicating that
part of the biological effects of EDM on tissue regeneration may involve resistin [82].

Although EDM has been successfully used in periodontal regeneration and root surgery
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for its antimicrobial and mineralization capabilities [170,171], its role in dental pulp
remains unclear because of its ability to increase resistin levels, which are
proinflammatory at high concentrations [82]. Therefore, further exploration is necessary

before the clinical application of resistin.
3.4 Chemerin

Chemerin, a chemotactic protein whose weight varies according to its state of activity (16
kDa) or inactivity (18 kDa), was discovered in 2007 [96,172]. It acts as a ligand for the G
protein-coupled receptor CMKLR1 (ChemR23 or DEZ) [96]. The presence of chemerin
and its receptor is established in odontoblasts and ameloblasts [91]; the chemerin
receptor is also expressed in several immune cells, such as immature dendritic cells,
myeloid dendritic cells, macrophages, and NK cells [44,97].

Chemerin plays a dual role, in both proinflammatory and anti-inflammatory
activities, in the body. It triggers chemotaxis of immature dendritic cells and macrophages
and promotes the release of proinflammatory cytokines such as TNF, IL-6, and IL-1
[100,101,173,174]. Its anti-inflammatory action on vascular endothelial cells could be due
to nitric oxide (NO) release via activation of endothelial NO synthase, and inhibition of
TNF-a-induced VCAM-1 expression in endothelial cells [16,102].

Though the biological function of chemerin within dental pulp is not yet known, it
has been suggested to participate in angiogenesis [99]; during odontogenesis, it is
assumed to promote the differentiation of ameloblasts and odontoblasts through the
Chem23 signaling pathway [91,98]. This was corroborated in vitro in mice, where
chemerin and its receptor were found to be expressed during odontogenesis, allowing the
differentiation of mesenchymal and epithelial cells. Chemerin is the first receptor
expressed at a later stage of tissue differentiation, leading to the assumption that in early
stages, chemerin binds to other receptors (GPR1 and CCRL2) to induce calcium

mobilization for hard tissue formation [91].
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3.5 Ghrelin

Ghrelin is a 3.3 kDa peptide hormone with two major forms (acylated and deacylated
[biologically inactive]) [104,175,176]. First identified in 1999 as an endogenous ligand for
the growth hormone secretagogue receptor (GHSR) [104], ghrelin is an anti-inflammatory
adipokine that inhibits proinflammatory cytokines [111]. Though produced predominantly
by the stomach, it is also expressed in tissues such as the placenta, pancreas,
hematopoietic cells, liver, kidneys, lungs [104,177,178], mammary tissue, and pulp cells
[50,179,180]. The presence of ghrelin has been reported in many biological fluids, such
as blood [104,177], cerebrospinal fluid [181], breast milk [179,182], and saliva [183—-186].

Several studies demonstrated the presence of ghrelin mRNA in human
osteoblasts, stimulating autocrine and/or paracrine proliferation, differentiation
mechanisms, and bone metabolism [107-109]. As dental tissue shares several functional,
developmental, and anatomical similarities with bone, ghrelin activity might be similar in
them [187]. Its presence in human dental pulp, especially in the odontoblast layer, where
it is speculated to influence dentinogenesis, healing, regeneration [105,106], and
mineralization [50], was identified in vitro. Another study in rats demonstrated decreased
ghrelin tissue levels in obesity, in organs including the tongue and teeth, corroborating
the presence of ghrelin in the dental pulp [103]. However, the presence of ghrelin
receptors in teeth has not yet been established [50].

Although ghrelin can reach dental pulp via the bloodstream, it was proposed to be
produced in situ by odontoblasts or blood vessels [50]. An analysis on extracted teeth
showed ghrelin levels of 26.4 fmol/mg and 28.2 fmol/mg in the pulp of canines and molars,
respectively. This represents low ghrelin levels compared with those in the gastric
mucosa [104], but higher than that in many other tissues, as detected by RT-PCR [180].
It could be speculated that teeth constitute an important source of ghrelin, locally and
systemically.

The presence of ghrelin during odontogenesis was determined in embryonic and
postnatal mice by detecting the acylated form in ameloblasts and odontoblasts. In the

initial stages of tooth formation, ghrelin was evidently expressed in the enamel organ
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epithelium and mildly in the underlying mesenchyme. In advanced and postnatal stages,
ghrelin is expressed preferentially in preameloblasts, preodontoblasts, ameloblasts, and
odontoblasts, related to the synthesis of dentin and enamel matrices [40], indicating the
importance of this adipokine in tooth development.

The function of ghrelin-induced GH needs to be determined, as it can reportedly
promote bone and tooth development through the GH/insulin-like growth factor-1 axis
[110,188]. Furthermore, as ghrelin functions through GHSR, the presence of GHSR in

ameloblasts and odontoblasts should be determined.

3.6 Oncostatin

Oncostatin M (OSM) is a 28 kDa pleiotropic cytokine related to the interleukin-6 family
[189,190]. Its receptor (OSMR) is a signal transduction receptor for IL-6-type cytokines
[117]. OSM contributes to inflammation and tissue remodeling and is involved in
regulating growth, differentiation, gene expression, and immune response. [117,191,192].
Detected in several inflammatory processes in the oral cavity, such as chronic
periodontitis [193,194] and epithelialized apical periodontitis lesions [123], OSM is part of
their cytokine network [112].

OSM mRNA presence in dental pulp tissue was demonstrated in vitro, showing an
increased expression (2.36 times) during inflammatory processes, compared to clinically
healthy pulp. This adipokine was identified in the cytoplasm of odontoblasts, fibroblasts,
inflammatory cells, and endothelial cells; therefore, the cytosol of these cells is a reservoir
of OSM, which might be released during certain stages of inflammation [46]. Moreover,
neutrophils are potent cellular sources of OSM biosynthesis and release under
inflammatory conditions [113,114], and bacterial LPS induces its expression in dendritic
cells [115]. OSM alone can stimulate IL-6 production, or act synergistically to increase the
production of matrix metalloproteinases (MMP-1, MMP-8, MMP-13) and IL-6
[116,120,121], playing an important role in pulpal pathogenesis [122,123,195-197].
Therefore, the expression of OSM in inflamed pulp is induced directly by bacteria or

indirectly by inflammatory cytokines from resident cells [46].
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OSM was shown to act on dental pulp stem cells (DPSCs) in extracted
supernumerary teeth, showing the potential to differentiate into chondrogenic,
adipogenic, and especially osteogenic lineages, by increasing the production of bone
morphogenetic proteins BMP2, BMP4, BMP6, osteopontin, transcription factor RUNX2,
and alkaline phosphatase [118]. This demonstrates the potential of this adipokine for
stimulation of DPSC differentiation.

3.7 Visfatin

Visfatin, also known as nicotinamide phosphoribosyltransferase (Nampt), or as pre-B cell
colony enhancing factor, is a 52 kDa adipokine identified in 2005 [2] secreted
predominantly by adipose tissue and in low levels by neutrophils in response to
endotoxins via TLR4. It plays a crucial role in regulating the production of proinflammatory
cytokines, contributing to various inflammatory disorders [124,125]. Though the specific
receptor for visfatin is not yet identified [16], some of its actions have been ascribed to its
intrinsic Nampt enzymatic activity [127,128]. It is believed to show proinflammatory
activity through the production of IL-1B, TNF-a, IL-6, and co-stimulatory molecules in
CD14+ monocytes [124].

Visfatin, strongly proinflammatory by promoting the expression of cell adhesion
molecules such as ICAM-1 and VCAM-1 [129], increases neutrophil inflammatory
response. It inhibits the apoptosis of these cells in a dose-dependent manner by
decreasing the activity of caspase-3 and 8 [124], enhancing oxidative burst activity, and
reactive oxygen species (ROS) generation [16].

Visfatin may be involved in cellular senescence in several tissues, including the
dental pulp [47,126]. However, it protects the retina from senescence, suggesting that its
effect is tissue-dependent. Cellular senescence is characterized by reduced alkaline
phosphatase activity, indicating impaired regeneration of injured pulp tissue [47,198],
telomere damage in vascular endothelial cells [47], irreversible growth arrest, and
acquisition of the senescence-associated secretory phenotype (SASP) [126,199].
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Upon acquiring the SASP phenotype, the cells secrete inflammatory cytokines,
chemokines, growth factors, MMPs (MMP-1, MMP-3, MMP-10) [200], and enzymes with
autocrine/paracrine activity [198,201], which causes tissue remodelling and local
inflammation [47,201]. Hence, at the pulp level, DNA damage induced by oxidative stress
through SASP creates a chronic inflammatory microenvironment, causing Vvisible
inflammatory pathologies such as pulpitis and fibrosis, and pulpal aging. A visfatin
inhibitor (FK866) diminished this response in the dental pulp [126], not only by annulling
its effect, but also by other independent mechanisms, such as the inhibition of oxidative
stress produced by ROS and decreased expression of SASP-producing genes. Thus,
FK866 interrupts the aging process through anti-inflammatory, anti-tumorigenic, and
antioxidant mechanisms [126,202]. Studies should be continued on visfatin as a possible
therapeutic target, and on its inhibitor, that can decrease the aging of dental pulp tissues

and maintain its viability [47].

4. Therapeutic potential

It is evident that adipokines are closely related to pulp inflammatory mechanisms and
thereby useful in regenerative procedures and vital pulp therapy, as they actively
participate in cell differentiation, mineralization, angiogenesis, and modulation of the
immune system [30,41].

Although many adipokines promote inflammation, leptin was demonstrated in vivo
to promote pulp regeneration [41] depending on the type of tissue [47]. Leptin, applied
directly to exposed rat pulp tissue in vivo, induces mineralization and dentin bridging,
protecting the dentin-pulp complex [41]. This could be dose-dependent, since leptin, when
applied through a collagen scaffold, showed a favorable inflammatory response and a
greater capacity to induce angiogenesis, odontogenic differentiation, and mineralization
at concentrations of 10 mmol/L, than at concentrations of 1 mmol/L [41].

In rats, leptin improved the gene expression of collagen types I and Ill when applied
topically on wounds, stimulating collagen synthesis [203]. Additionally, it has been

determined that the exogenous application of leptin by intraperitoneal injections in rats
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provides a therapeutic effect by decreasing burn-induced inflammation. This inhibits the
passage of neutrophils, which are responsible for the release of substances that destroy
normal cells and dissolve the connective tissue [204], indicating the possible use of leptin
in pulp regeneration.

Adiponectin also has high potential for the regeneration of dental tissues, despite
the limited information available. In dental pulp, its increase promotes dentin
mineralization by inducing the expression of DSPP [43] and generating a suitable
environment for the formation of dentin bridges, thereby providing protection against pulp
exposure [77]. This mineralization could be complemented with that of leptin and both
adipokines could be used together for clinical application, while considering their
proangiogenic effects [63,64,78,145].

A benefit of adiponectin, in PDL cells, is the ability to accelerate wound closure.
This was demonstrated in vitro, by removing the first layers of PDL cells and directly
applying adiponectin (3 pg/ml). This resulted in accelerated healing as adiponectin
increased cell proliferation and the expression of certain growth factors and extracellular
matrix, which underscores its favorable role in periodontal homeostasis and soft and hard
tissue healing [34]. Although not yet clinically applied in pulp therapy, these data suggest
that if adiponectin was placed on exposed pulp, it could have a similar favorable action,
especially considering the results of a previously mentioned study [43] that demonstrated
mineralization of pulp tissue.

Contrarily, evidence indicates that ghrelin promotes the synthesis and secretion of
dentin and enamel matrices, as it is present in odontoblasts and ameloblasts during tooth
development and after eruption [40,50]. Hence, it influences hard tissue mineralization in
the tooth, and could be used when mineralized tissue formation is required in the form of
dentin bridges, as in direct pulp protection. However, GH and ghrelin promote the
proliferation and differentiation of primary osteoblasts and inhibit their apoptosis
[108,109,205], suggesting that they could help form bone tissue in large periapical
lesions.

OSM functions as an inflammatory mediator [112] and acts with other cytokines
and MMPs to amplify the inflammatory cycle [46]. However, the capacity of OSM to induce
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differentiation of DPSCs towards chondrogenic, adipogenic, and osteogenic lineages (in
conjunction with BMP2, BMP4, BMP6) have been demonstrated in vitro, showing its
potential in developing craniofacial regenerative therapies and alveolar bone
regeneration [118,119]. Therefore, it is important to clarify the conditions necessary to
clinically apply this adipokine in regenerative endodontics [118].

The therapeutic potential of chemerin is not yet clear, due to its dual effect
(proinflammatory and anti-inflammatory). However, since it has been found within the
odontogenic process, it could be assumed to be of great importance for dental tissue
engineering [91]. Contrarily, it has been shown that in pulp fibroblasts, its receptor
ChemR23 has affinity for resolvin E1 as a ligand, which allows an anti-inflammatory effect
in the early stages of pulpitis [44,98]. The mechanism by which this effect is achieved is
the suppression of the proinflammatory activity of pulp fibroblasts [44]. It must be
considered that this latter cell can remove the survival signals, normalize the chemokine
gradients, and facilitate the apoptosis of the infiltrating leukocytes or their elimination
through the lymphatics; by inhibiting these functions of the fibroblast, the regeneration of
the pulp tissue would be favored [206]. Additionally, chemerin exhibits potent angiogenic
effects and can induce the production of MMP-2 and MMP-9 and key cell survival and
angiogenic cascades in endothelial cells [99].

5. Future perspectives

The use of different adipokines as biomarkers to determine the health status of patients
has been proposed. A study focused on the potential of visfatin to predict mortality in
critically ill patients and found it to be strongly associated with disease severity and organ
failure. Hence, it could also be used as a biomarker to determine the presence of pulp
degradation in future research [207].

A main concern while applying adipokine-based pulp regeneration techniques is
obtaining them. Fat auto-transplantation techniques are widely used in aesthetic
procedures and have shown potential for wound healing [208]. Recently, it was

demonstrated that adipose tissue obtained from lipoaspirates, using the Coleman or
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Shippert technique, employing centrifugation and sedimentation processes, contains
significant amounts of adipokines, such as leptin and adiponectin, and growth factors
relevant to wound healing [208,209]. Therefore, lipoaspirates could be extracted and
cryopreserved for potential endodontic therapeutic uses without significant loss of their
biological activity [208].

The biological mechanisms of regulation and adaptation of adipokines can be
systematically exploited for pulp therapy. Leptin secretion increases during the day
[210,211], while that of adiponectin, resistin, and visfatin, during the night [212,213].
Moreover, modifications in the sleep schedule [214] and diet [215] can desynchronize the
circadian rhythm, which increases leptin production when it is usually low [216]. Thus, by
combining treatment with an adequate diet, sleep rhythm, and application period, it would
be possible to stimulate/inhibit adipokine secretion at defined times to enhance the
desired therapeutic effect.

Conversely, many cells can adapt to extreme conditions [217], and adipocytes
exposed to heat shock modify the production of adipokines as an adaptive response
[218]. It has been shown that when the temperature is raised to 41 °C, production of leptin
increases and that of adiponectin decreases as a compensatory measure. An increase in
leptin can protect the tissue against aggression by increasing energy, tissue metabolism,
and induction of apoptosis. Meanwhile, the decrease in adiponectin is derived from
protein synthesis reduction, favoring the induction of the response to heat shock [58].
Contrarily, low temperatures decrease leptin expression and increase adiponectin
expression [58]. Hence, the response of dental pulp cells to heat shock could be similar
to that of adipocytes, since the pulp tissue is exposed to multiple thermal stimuli during
mastication [219,220] and dental procedures [221-223]. To date, no studies have
determined these possible changes in the expression of adipokines in the dental pulp that
could clarify their functions in physiological and pathological states.

Finally, although proteomic profiling studies have identified hundreds of adipokines
in the secretome of adipose tissue [12-15] and, recently, have even identified new
adipokines [224], the human adipokinome has not yet been fully characterized [12].

Secretomics could unveil new biological, pathological, and homeostasis mechanisms of
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adipokines in pulp tissue. Furthermore, the precise mechanisms leading to the secretion
of many adipokines requires investigation.

6. Conclusion

Adipokines carry out several physiological and pathological functions in the pulp tissue.
Though scarcely studied with limited understanding of their actions, they are potential
therapeutic agents to be researched in the management of inflammatory disorders of the
dentin-pulp complex and regenerative endodontics. The use of agonists/antagonists
modulating the expression of the most studied adipokines may be promising in developing
new therapeutic agents; taking into consideration the available evidence on their use and
their unique characteristics and functions, such as angiogenesis and reparative dentin
formation, leptin and adiponectin seem to be the best candidates for use as therapeutics.
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