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ABSTRACT  

 

Background: Hundreds of adipokines have been identified, and their extensive range of 

endocrine functions—regulating distant organs such as oral tissues—and local 

autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly 

known proteins in the dental pulp; few of them have been studied despite their large 

number. This study reviews recent advances in the investigation of dental-pulp 

adipokines, with an emphasis on their roles in inflammatory processes and their potential 

therapeutic applications. 

Highlights: The most recently identified adipokines in dental pulp include leptin, 

adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous 

physiological and pathological functions in the pulp tissue: they are closely related to pulp 

inflammatory mechanisms and actively participate in cell differentiation, mineralization, 

angiogenesis, and immune-system modulation. 

Conclusion: Adipokines have potential clinical applications in regenerative endodontics 

and as biomarkers or targets for the pharmacological management of inflammatory and 

degenerative processes in dental pulp. A promising direction for the development of new 

therapies may be the use of agonists/antagonists to modulate the expression of the most 

studied adipokines. 
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1. Introduction 

 

For years, adipose tissue was underestimated as just an energy reservoir [1–7]; however, 

it is now acknowledged as an endocrine organ producing numerous multifunctional 

bioactive proteinaceous molecules, known as adipokines [2,3,8–11]. Recent studies have 

identified >700 types, with diverse chemical structures, in the secretome of adipose 

tissue[12–15]. Hence, they have even been catalogued in other molecular families, such 

as cytokines, growth factors, hormones, and complement proteins [1,2,16,17]. 

 Adipokines are predominantly produced by adipocytes [16], which form part of 

white and brown adipose tissue [4,9,18], constituting a key station as a multilevel network 

regulating human physiology [2,4]. Cells such as fibroblasts, osteoblasts, neutrophils, 

monocytes, macrophages, T lymphocytes, and natural killer (NK) lymphocytes also 

secrete adipokines [8,16]. However, the location, origin, and function of many of them 

remain unknown. Adipokines were considered exclusively associated with pathological 

processes, as they are linked to obesity, diabetes, cardiovascular diseases, and 

inflammation, among other pathologies [1,2,4,8,16,17,19]. However, adipokines also 

orchestrate a multitude of physiological processes [4,20], such as regulation of metabolic 

homeostasis, food intake, sleep functions, and anti-inflammatory activity [1,8,18,21–23]. 

 Ubiquitous in nature, they are located throughout the body, and the oral tissues 

are no exception. Several studies have demonstrated the role of visfatin, chemerin, leptin, 

and omentin in temporomandibular joint disorders [24–29]. Adiponectin, leptin, resistin, 

chemerin, omentin, vaspin, and visfatin play active roles in bone remodeling [30]. Leptin 

and adiponectin promote osteogenesis through differentiation of mesenchymal stem cells 

into preosteoblasts and the proliferation and maturation of osteoblasts. Contrarily, 

omentin-1 is a proposed biomarker of metabolic disorders, including bone pathologies 

[31]. 

 Adipokine quantity in periodontal tissues correlates with certain systemic 

conditions [30,32]. In obese patients, leptin and adiponectin levels are increased and 

decreased in the periodontal ligament (PDL) and gingival crevicular fluid, respectively 

[33,34]. Conversely, higher levels of vaspin and visfatin were identified in the crevicular 
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fluid of patients with periodontal disease, than in healthy individuals [35,36]. Furthermore, 

adiponectin [37] and leptin [30] protect the periodontium by neutralizing the effects of 

lipopolysaccharides (LPS) of the periodontal pathogenic bacteria, inhibiting cell 

apoptosis, inducing antimicrobial peptide expression, and increasing growth factors that 

promote the proliferation of PDL cells, improving healing in vitro [30,34,37–39]. 

 Although these biomolecules are crucial for multiple organic functions, information 

on the influence of adipokines on the dental pulp is limited. Most studies were performed 

in animals [8,28,40–44]. Therefore, although their results should be extrapolated to 

humans with caution, these studies open a window for research in humans. In the pulp 

tissue, few adipokines have been isolated with a pro-or anti-inflammatory effect [45–47]. 

Adipokines mediate pulp tissue mineralization and repair [30,41,48–53], making them a 

suitable target for new regenerative therapies combined with the currently available 

bioactive materials [41,52]. Nevertheless, to date, no studies have integrated information 

on the role of adipokines in physiological and pathological processes in dental pulp and 

their potential clinical application in pulp therapy. Therefore, this review aimed to explore 

the physiological, pathological, and potential therapeutic roles of adipokines in the dental 

pulp. 

 

2. Materials and Methods 

 

Available literature was searched in PubMed and Scopus databases to identify relevant 

articles published until February 28, 2021, using the keywords dental pulp, odontoblasts, 

pulp fibroblasts, adipokines, leptin, adiponectin, visfatin, resistin, ghrelin, and chemerin. 

Articles focusing on adipokines in the dental pulp were selected. Additionally, to ensure 

that the information obtained was comprehensive, a manual search was performed on 

the reference lists of the articles initially selected. 
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3. Adipokines in dental pulp 

 

The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, 

ghrelin, oncostatin, chemerin, and visfatin. Table 1 summarizes these aspects. This 

article reviews their origins, receptors, synthesis, physiologic and pathologic functions, 

and potential therapeutic roles in the dental pulp tissue. 

 

Table 1 Summary of data available on adipokines in the dental pulp  

Adipokine Origin 
Stimulation (S) or 

inhibition (I) 
Receptor  Receptor expression Functions Influences on inflammation 

Leptin Pulp fibroblasts, 

odontoblasts 

[42,51,54,55].  

Neuropeptides (S) 

[54].  

IL-1B, IL-6, TNF-α, 

and LPS (S) [56,57]. 

Heat exposure (S), 

Cold exposure (I) 

[58]. 

Ob-Rb [18,59–

61]. 

 

High expression in the 

dental pulp [30]. 

Odontoblasts [30]. 

Stimulates the differentiation of 

DPSC into odontoblast-like cells 

[49]. 

Inhibits adipogenic differentiation 

of PDLSC and DPSC [49]. 

Stimulates the secretion of DSPP 

and DMP-1 [41,52,55], promotes 

the formation of dentin bridges 

[30,41,45,49,62]. 

Induces angiogenesis [41,52,63,64]. 

Induces maturation of tooth germ 

during odontogenesis [42]. 

Regulates innate and adaptive 

immune response [9,65],  

Proinflammatory [9,65], promotes 

the differentiation of TH1 cells, 

stimulates the oxidative burst of 

monocytes and macrophages 

[66,67]. 

Production of proinflammatory 

cytokines, such as TNF-α, IL-1, IL-2, 

IL-6, IL-8 and CC chemokine ligands 

[9,49,51,65,68–70]. 

Dose-dependent anti-inflammatory 

effect [30,41]. 

Adiponectin Lymphocytes, 

neutrophils, and 

endothelial cells 

[71,72].  

Heat exposure (I), 

Cold exposure (S) 

[58]. 

 AR1 and AR2  

[72–74]. 

AR1 and AR2 receptors 

are expressed in 

dental pulp [43]. 

Facilitates osteoblast proliferation 

and differentiation [75,76]. 

Promotes reparative dentin 

formation by increasing DSPP and 

DPP expression and stimulating 

hydroxyapatite crystals formation 

[43,77]. 

Induces angiogenesis [78]. 

Anti-inflammatory effect by 

regulating immune cells such as 

macrophages and inducing secretion 

of anti-inflammatory ILs [79]. 

Inhibits TLR-4 expression [80].  

Resistin Monocytes and 

macrophages 

[81]. 

  

IL-1, IL-6 and TNF-α 

(S) [81]. 

EDM (S) [82]. 

Not identified 

[83], although 

potential 

candidates 

have been 

ascribed [84–

86]. 

N/A Functions not clarified [82,87]. 

 

Proinflammatory; induces the 

production of cytokines such as IL-

6, IL-1, IL-12, and TNF-α [88,89]. 

Counteracts the anti-inflammatory 

effects of adiponectin by promoting 

the expression of VCAM, ICAM, and 

pentraxin 3 [87,90]. 

Inflammaging [83] 

Chemerin Dental pulp cells 

such as 

odontoblasts 

[91]. 

Obesity, diabetes 

and cardiovascular 

disease (S) [92–94] 

IL-1B (S) [93,95] 

CMKLR1, also 

known as 

ChemR23 or 

DEZ [96]. 

Odontoblasts [91], 

immune cells such as 

immature 

plasmacytoid dendritic 

cells, myeloid dendritic 

cells, macrophages, 

and NK cells [44,97]. 

Differentiation of odontoblasts and 

ameloblasts [91,98]. 

Induces calcium mobilization, 

during odontogenesis [91]. 

Induces angiogenesis [99]. 

Proinflammatory, it incites the 

release of proinflammatory 

cytokines such as TNF-α, IL6 and IL-

1 [100,101]. 

Anti-inflammatory, mediated by the 

release of NO and inhibition of 

VCAM-1 expression [16,102]. 
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Ghrelin Preodontoblasts, 

odontoblasts 

and blood 

vessels [40,50].

  

Obesity (I) [103].  GHSR [104]. Suspected to be found 

in odontoblasts 

[105,106]. 

Stimulation of GHSR expression 

[104].  

Stimulates proliferation, 

differentiation, bone metabolism 

and regulates osteoblast apoptosis 

[107–109]. 

Regulates development and 

formation of hard tissues, such as 

bones and teeth [40]. 

Influences dentinogenesis [40,110]. 

Anti-inflammatory, inhibits the 

production of proinflammatory 

cytokines [111]. 

Oncostatin Odontoblasts, 

fibroblasts, 

endothelial and 

inflammatory 

cells [46], 

neutrophils 

[112,113], 

dendritic cells 

[114]. 

IL-1a, TNF-α and IL-

6 (S) [115,116] and 

bacterial LPS (S) 

[114]. 

OSMR [117]. Pulp stem cells [118]. Increases chondrogenic, adipogenic 

and osteogenic differentiation of 

dental pulp stem cells [118].  

Regulates growth, differentiation, 

gene expression, immune response 

and tissue remodeling processes 

[118,119].  

Proinflammatory, through induction 

of cytokines and MMP [116,120–

123].  

Visfatin Neutrophils 

[124,125]. 

FK866: visfatin 

inhibitor (I) [126].  

Not identified 

[16,127,128]. 

N/A Inhibits neutrophil apoptosis and 

increases neutrophil inflammatory 

response [124]. 

Pulpal aging, through cellular 

senescence [47]. 

It creates chronic proinflammatory 

microenvironments that favor pulp 

pathology [47]. 

Production of proinflammatory 

cytokines, such as IL-1β, TNF-α, IL-6, 

and co-stimulatory molecules, by 

CD14+ monocytes [124].  

Increases the expression of ICAM-1 

and VCAM-1 [129]. 

 

 

 

 

 

 

 

AR, adiponectin receptor; DMP, dentin matrix protein; DPP, dentin phosphoprotein; DPSC, dental pulp stem cell; DSPP, dentin sialophosphoprotein; ICAM, intercellular adhesion molecule; 

IL: interleukin; LPS, lipopolysaccharides; N/A: no information available; MMP, matrix metalloproteinase; NK, natural killer; NO, nitric oxide; OSM, oncostatin M; OSMR, receptor for 

oncostatin M; Ob-Rb, leptin receptor (b isoform); PDLSC, periodontal ligament stem cell; TLR-4, toll-like receptor-4; TH1 l, T helper 1 cell; TNF, tumor necrosis factor; VCAM, vascular cell 

adhesion molecule 

 

3.1 Leptin 

 

Discovered in 1994, Leptin is a 16 kDa protein [5,130] encoded by the Ob gene [1,5]. Its 

Ob-R receptor has six isoforms, Ob-Rb being the main isoform [18,59–61]. It is distributed 

in almost all tissues, explaining the pleiotropic function of leptin [51,131–133]. Although 

predominantly produced by adipocytes [30,134,135], it is produced on a smaller scale by 

skeletal muscle [136], placenta [137], gastric epithelium [138], liver, brain, and pituitary 

gland [139–141]; it is also synthesized and secreted by ameloblasts, pulp odontoblasts, 

and fibroblasts [54,61]. Dental pulp and periodontal tissues are important sources of 



 

María Isabel Bravo Guapisaca / Jonathan Francisco Gavidia Pazmiño 11 
 

leptin, both locally and systemically, because the expression of leptin in these tissues is 

equivalent or higher than that in the bone marrow [30,42].  

 Leptin and its receptors are expressed in human dental pulp cells and are involved 

in various pathophysiological processes. In vitro, odontoblasts have shown higher 

expression of leptin and its receptors than that by cells of the pulp core; even some 

cytoplasmic processes of odontoblasts extending into the dentinal tubules have shown 

leptin immunoreactivity [30]. The involvement of leptin in the differentiation of odontoblast-

like cells from PDL stem cells (PDLSCs) and dental pulp stem cells (DPSCs) has been 

shown [49], indicating its role in the regeneration and repair of impaired dental structures 

[142] through formation of dentinal bridges protecting pulp tissue [30,41,45,49,62]. 

Furthermore, leptin reduces adipogenesis in DPSCs and PDLSCs, preventing their 

differentiation into adipocytes, thereby acting as an important modulator of dental stem 

cell differentiation [49].  

 Leptin stimulates odontoblasts by increasing the secretion and expression of 

dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) [41,52,55], which 

are important for odontogenic differentiation and dentin mineralization [143]. Additionally, 

if we consider odontoblasts the first line defense against microorganisms and their by-

products, leptin may inevitably contribute to autocrine/paracrine signaling pathways for 

repair, mineralization, and tertiary dentin formation. 

 Leptin has proangiogenic effects [63,64] and increases the expression of vascular 

endothelial growth factor (VEGF) and fibroblast growth factor, positively influencing 

proliferation, differentiation, mineralization, neovascularization, and reparative dentin 

formation in pulp tissue, as demonstrated both in vitro and in vivo [30,42,52,144]. These 

growth factors are synergistic with leptin for the stimulation of angiogenesis [145], crucial 

for the recruitment and mobilization of stem cells to the site of pulp injury [41] and for tooth 

development [146].  

 During odontogenesis, intense expression of leptin and VEGF in ameloblasts, cells 

of the stratum intermedium, odontoblasts, and some cells of the dental papilla, induce 

angiogenesis in the tooth germ and support its maturation [42]; similar expression was 

found in human and rat dental germs [42,147,148]. Additionally, leptin expressed by these 
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cells promotes tooth development by facilitating endothelial cell recruitment and blood 

vessel branching [42], leading to the release of leptin from specialized cells of the gingival 

epithelium [30].  

 However, similar to its systemic effect, leptin is proinflammatory in dental pulp and 

regulates both innate and adaptive immune responses under normal and pathological 

conditions [9,65,149]. Leptin expression is increased in inflammatory conditions [68,149], 

additionally promoting the secretion of other acute phase reactant cytokines, such as 

interleukin IL-1, IL-2, IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and CC chemokine 

ligands (CCL3, CCL4, and CCL5) [9,49,51,68–70]. Like other proinflammatory cytokines, 

leptin promotes T helper 1 (TH1) cell differentiation, stimulates the oxidative burst in 

macrophages [66,67], influences the proliferation, differentiation, activation, and 

cytotoxicity of NK cells [150], and modulates the initiation and progression of autoimmune 

responses [134,151]. This shows that high local leptin levels stimulate the immune system 

[152], modulating its development, proliferation, maturation, and activation [65,68]. 

Further, leptin is associated with increased expression of CCL20 [153], allowing the 

recruitment of memory T cells and immature dendritic cells [154,155] and lymphocyte 

trafficking, magnifying pulpal inflammatory response [68].  

 Further, physiologically, neuropeptides induce leptin release, whereas in a 

pathological state, IL-1β, IL-6, TNF-α, infectious and inflammatory stimuli, such as LPS, 

do so [56,57], triggering greater production of neuropeptides that increase the release of 

leptin and cytokines, thereby increasing inflammatory process. Despite the 

proinflammatory nature of leptin [68,149], it likely induces a dose-dependent, anti-

inflammatory effect [41,51]. Though this has not been well elucidated, it may be assumed 

that leptin increases the recruitment of lymphocytes and macrophages to the dental pulp 

and, together with its angiogenic, mineralizing, and differentiating effects, it promotes the 

repair and regeneration of the pulp-dentin complex, thus protecting it from infection and 

inflammation [30,41,55]. 
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3.2 Adiponectin 

 

Isolated in 1995, adiponectin is a 30 kDa protein [2], encoded by the ADIPOQ gene [156], 

and mainly produced by adipocytes. However, it was recently reported to be synthesized 

also by lymphocytes, neutrophils [71,72], myocytes, endothelial cells, and 

cardiomyocytes [157]. Two distinct isoforms have been identified: a full-length, low-

molecular-weight adiponectin that functions primarily in the brain, and a globular form that 

functions in the liver, which act as ligands for the receptors, adipoR1 and adipoR2 [72–

74]. The first is expressed ubiquitously, but predominantly in skeletal muscle, while the 

second is expressed mainly in the liver [74,158]. Both types of receptors have been 

isolated within pulp tissue, with a higher affinity for the full-length isoform [43]. 

 

Although known primarily as an anti-inflammatory adipokine, recent studies have 

indicated that their biological functions differ according to the isoform. Full-length 

adiponectin blocks endotoxin-induced IL-6 secretion and induces anti-inflammatory 

interleukins secretion [79]. However, the globular form triggers cytokine production, 

making it proinflammatory [159]. This is evidenced in skeletal joints, where adiponectin 

plays a proinflammatory role by inducing release of IL-6 and metalloproteinase 1 from 

synovial fibroblasts involved in matrix degradation; higher amount of adiponectin was 

found in the synovial fluid of rheumatoid arthritis and osteoarthritis patients [160,161]. 

Further studies may clarify this dual biological effect. 

 Adiponectin plays a major role in two important hard tissues. In bone, adiponectin 

promotes osteoblast proliferation and differentiation [75,76] and protects against bone 

resorption [162,163]. However, an in vitro study performed on rat pulp cells determined 

that the application of 10 µg/ml adiponectin for 12 days significantly improved pulp tissue 

mineralization, which is assumed to occur because adiponectin increases the expression 

of DSPP and dentin phosphoprotein, forming complexes with type I collagen and 

promoting the formation of hydroxyapatite crystals, resulting in reparative dentin 

formation. However, no significant differences were observed on previous days and at 
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different concentrations, indicating the importance of concentration and time in tissue 

mineralization [43,77].  

 Adiponectin induces the synthesis of anti-inflammatory mediators in immune cells, 

primarily targeting macrophages [80]. Adiponectin inhibits the activation of M1 

macrophages (proinflammatory), promotes the proliferation of M2 macrophages (anti-

inflammatory) [164–166] and its production of interleukin 10 (IL-10) [167], and inhibits the 

expression of Toll-like receptor 4, preventing the activation of NF-κB [80]. These anti-

inflammatory mechanisms may also occur in the dental pulp; however, clinical application 

of adiponectin requires further research. 

 

3.3 Resistin 

 

Resistin is a 12.5 kDa dimeric protein, first identified in 2001 [88,168]. In humans, it is 

predominantly produced by macrophages and monocytes, induced by proinflammatory 

cytokines, such as IL-1, IL-6, and TNF-α [81]. It circulates throughout the bloodstream in 

the organism because of its affinity for vascular endothelial cells [87], though 

concentrating in inflamed areas [37,88]. The resistin receptor remains unknown [83], 

although potential candidates have been ascribed [84–86].  

 The biological function of resistin remains ambiguous [87]; nevertheless, it has a 

predominantly proinflammatory function, due to increased concentration in inflamed 

areas [169]. It induces the release of proinflammatory cytokines, such as IL-6, IL-1, IL-

12, and TNF-α [88,89], and directly counteracts the anti-inflammatory effects of 

adiponectin in vascular endothelial cells by promoting the expression of vascular 

adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), and pentraxin 3 

[87,90]. Moreover, resistin was recently shown to severely influence aging due to its 

proinflammatory function as it always increases during inflammaging [83].  

 In cells of mesenchymal origin, including human dental pulp cells, enamel matrix-

derived proteins (EDM) dramatically increase the expression of resistin, indicating that 

part of the biological effects of EDM on tissue regeneration may involve resistin [82]. 

Although EDM has been successfully used in periodontal regeneration and root surgery 
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for its antimicrobial and mineralization capabilities [170,171], its role in dental pulp 

remains unclear because of its ability to increase resistin levels, which are 

proinflammatory at high concentrations [82]. Therefore, further exploration is necessary 

before the clinical application of resistin.  

 

3.4 Chemerin 

 

Chemerin, a chemotactic protein whose weight varies according to its state of activity (16 

kDa) or inactivity (18 kDa), was discovered in 2007 [96,172]. It acts as a ligand for the G 

protein-coupled receptor CMKLR1 (ChemR23 or DEZ) [96]. The presence of chemerin 

and its receptor is established in odontoblasts and ameloblasts [91]; the chemerin 

receptor is also expressed in several immune cells, such as immature dendritic cells, 

myeloid dendritic cells, macrophages, and NK cells [44,97].  

 Chemerin plays a dual role, in both proinflammatory and anti-inflammatory 

activities, in the body. It triggers chemotaxis of immature dendritic cells and macrophages 

and promotes the release of proinflammatory cytokines such as TNF, IL-6, and IL-1 

[100,101,173,174]. Its anti-inflammatory action on vascular endothelial cells could be due 

to nitric oxide (NO) release via activation of endothelial NO synthase, and inhibition of 

TNF-α-induced VCAM-1 expression in endothelial cells [16,102].  

 Though the biological function of chemerin within dental pulp is not yet known, it 

has been suggested to participate in angiogenesis [99]; during odontogenesis, it is 

assumed to promote the differentiation of ameloblasts and odontoblasts through the 

Chem23 signaling pathway [91,98]. This was corroborated in vitro in mice, where 

chemerin and its receptor were found to be expressed during odontogenesis, allowing the 

differentiation of mesenchymal and epithelial cells. Chemerin is the first receptor 

expressed at a later stage of tissue differentiation, leading to the assumption that in early 

stages, chemerin binds to other receptors (GPR1 and CCRL2) to induce calcium 

mobilization for hard tissue formation [91].  
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3.5 Ghrelin  

 

Ghrelin is a 3.3 kDa peptide hormone with two major forms (acylated and deacylated 

[biologically inactive]) [104,175,176]. First identified in 1999 as an endogenous ligand for 

the growth hormone secretagogue receptor (GHSR) [104], ghrelin is an anti-inflammatory 

adipokine that inhibits proinflammatory cytokines [111]. Though produced predominantly 

by the stomach, it is also expressed in tissues such as the placenta, pancreas, 

hematopoietic cells, liver, kidneys, lungs [104,177,178], mammary tissue, and pulp cells 

[50,179,180]. The presence of ghrelin has been reported in many biological fluids, such 

as blood [104,177], cerebrospinal fluid [181], breast milk [179,182], and saliva [183–186].  

 Several studies demonstrated the presence of ghrelin mRNA in human 

osteoblasts, stimulating autocrine and/or paracrine proliferation, differentiation 

mechanisms, and bone metabolism [107–109]. As dental tissue shares several functional, 

developmental, and anatomical similarities with bone, ghrelin activity might be similar in 

them [187]. Its presence in human dental pulp, especially in the odontoblast layer, where 

it is speculated to influence dentinogenesis, healing, regeneration [105,106], and 

mineralization [50], was identified in vitro. Another study in rats demonstrated decreased 

ghrelin tissue levels in obesity, in organs including the tongue and teeth, corroborating 

the presence of ghrelin in the dental pulp [103]. However, the presence of ghrelin 

receptors in teeth has not yet been established [50]. 

 Although ghrelin can reach dental pulp via the bloodstream, it was proposed to be 

produced in situ by odontoblasts or blood vessels [50]. An analysis on extracted teeth 

showed ghrelin levels of 26.4 fmol/mg and 28.2 fmol/mg in the pulp of canines and molars, 

respectively. This represents low ghrelin levels compared with those in the gastric 

mucosa [104], but higher than that in many other tissues, as detected by RT-PCR [180]. 

It could be speculated that teeth constitute an important source of ghrelin, locally and 

systemically. 

 The presence of ghrelin during odontogenesis was determined in embryonic and 

postnatal mice by detecting the acylated form in ameloblasts and odontoblasts. In the 

initial stages of tooth formation, ghrelin was evidently expressed in the enamel organ 
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epithelium and mildly in the underlying mesenchyme. In advanced and postnatal stages, 

ghrelin is expressed preferentially in preameloblasts, preodontoblasts, ameloblasts, and 

odontoblasts, related to the synthesis of dentin and enamel matrices [40], indicating the 

importance of this adipokine in tooth development. 

 The function of ghrelin-induced GH needs to be determined, as it can reportedly 

promote bone and tooth development through the GH/insulin-like growth factor-1 axis 

[110,188]. Furthermore, as ghrelin functions through GHSR, the presence of GHSR in 

ameloblasts and odontoblasts should be determined. 

 

3.6 Oncostatin  

 

Oncostatin M (OSM) is a 28 kDa pleiotropic cytokine related to the interleukin-6 family 

[189,190]. Its receptor (OSMR) is a signal transduction receptor for IL-6-type cytokines 

[117]. OSM contributes to inflammation and tissue remodeling and is involved in 

regulating growth, differentiation, gene expression, and immune response. [117,191,192]. 

Detected in several inflammatory processes in the oral cavity, such as chronic 

periodontitis [193,194] and epithelialized apical periodontitis lesions [123], OSM is part of 

their cytokine network [112].  

 OSM mRNA presence in dental pulp tissue was demonstrated in vitro, showing an 

increased expression (2.36 times) during inflammatory processes, compared to clinically 

healthy pulp. This adipokine was identified in the cytoplasm of odontoblasts, fibroblasts, 

inflammatory cells, and endothelial cells; therefore, the cytosol of these cells is a reservoir 

of OSM, which might be released during certain stages of inflammation [46]. Moreover, 

neutrophils are potent cellular sources of OSM biosynthesis and release under 

inflammatory conditions [113,114], and bacterial LPS induces its expression in dendritic 

cells [115]. OSM alone can stimulate IL-6 production, or act synergistically to increase the 

production of matrix metalloproteinases (MMP-1, MMP-8, MMP-13) and IL-6 

[116,120,121], playing an important role in pulpal pathogenesis [122,123,195–197]. 

Therefore, the expression of OSM in inflamed pulp is induced directly by bacteria or 

indirectly by inflammatory cytokines from resident cells [46]. 
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OSM was shown to act on dental pulp stem cells (DPSCs) in extracted 

supernumerary teeth, showing the potential to differentiate into chondrogenic, 

adipogenic, and especially osteogenic lineages, by increasing the production of bone 

morphogenetic proteins BMP2, BMP4, BMP6, osteopontin, transcription factor RUNX2, 

and alkaline phosphatase [118]. This demonstrates the potential of this adipokine for 

stimulation of DPSC differentiation.  

 

3.7 Visfatin  

 

Visfatin, also known as nicotinamide phosphoribosyltransferase (Nampt), or as pre-B cell 

colony enhancing factor, is a 52 kDa adipokine identified in 2005 [2] secreted 

predominantly by adipose tissue and in low levels by neutrophils in response to 

endotoxins via TLR4. It plays a crucial role in regulating the production of proinflammatory 

cytokines, contributing to various inflammatory disorders [124,125]. Though the specific 

receptor for visfatin is not yet identified [16], some of its actions have been ascribed to its 

intrinsic Nampt enzymatic activity [127,128]. It is believed to show proinflammatory 

activity through the production of IL-1β, TNF-α, IL-6, and co-stimulatory molecules in 

CD14+ monocytes [124].  

 Visfatin, strongly proinflammatory by promoting the expression of cell adhesion 

molecules such as ICAM-1 and VCAM-1 [129], increases neutrophil inflammatory 

response. It inhibits the apoptosis of these cells in a dose-dependent manner by 

decreasing the activity of caspase-3 and 8 [124], enhancing oxidative burst activity, and 

reactive oxygen species (ROS) generation [16].  

 Visfatin may be involved in cellular senescence in several tissues, including the 

dental pulp [47,126]. However, it protects the retina from senescence, suggesting that its 

effect is tissue-dependent. Cellular senescence is characterized by reduced alkaline 

phosphatase activity, indicating impaired regeneration of injured pulp tissue [47,198], 

telomere damage in vascular endothelial cells [47], irreversible growth arrest, and 

acquisition of the senescence-associated secretory phenotype (SASP) [126,199]. 
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Upon acquiring the SASP phenotype, the cells secrete inflammatory cytokines, 

chemokines, growth factors, MMPs (MMP-1, MMP-3, MMP-10) [200], and enzymes with 

autocrine/paracrine activity [198,201], which causes tissue remodelling and local 

inflammation [47,201]. Hence, at the pulp level, DNA damage induced by oxidative stress 

through SASP creates a chronic inflammatory microenvironment, causing visible 

inflammatory pathologies such as pulpitis and fibrosis, and pulpal aging. A visfatin 

inhibitor (FK866) diminished this response in the dental pulp [126], not only by annulling 

its effect, but also by other independent mechanisms, such as the inhibition of oxidative 

stress produced by ROS and decreased expression of SASP-producing genes. Thus, 

FK866 interrupts the aging process through anti-inflammatory, anti-tumorigenic, and 

antioxidant mechanisms [126,202]. Studies should be continued on visfatin as a possible 

therapeutic target, and on its inhibitor, that can decrease the aging of dental pulp tissues 

and maintain its viability [47]. 

 

4. Therapeutic potential  

 

It is evident that adipokines are closely related to pulp inflammatory mechanisms and 

thereby useful in regenerative procedures and vital pulp therapy, as they actively 

participate in cell differentiation, mineralization, angiogenesis, and modulation of the 

immune system [30,41]. 

  Although many adipokines promote inflammation, leptin was demonstrated in vivo 

to promote pulp regeneration [41] depending on the type of tissue [47]. Leptin, applied 

directly to exposed rat pulp tissue in vivo, induces mineralization and dentin bridging, 

protecting the dentin-pulp complex [41]. This could be dose-dependent, since leptin, when 

applied through a collagen scaffold, showed a favorable inflammatory response and a 

greater capacity to induce angiogenesis, odontogenic differentiation, and mineralization 

at concentrations of 10 mmol/L, than at concentrations of 1 mmol/L [41].  

 In rats, leptin improved the gene expression of collagen types I and III when applied 

topically on wounds, stimulating collagen synthesis [203]. Additionally, it has been 

determined that the exogenous application of leptin by intraperitoneal injections in rats 
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provides a therapeutic effect by decreasing burn-induced inflammation. This inhibits the 

passage of neutrophils, which are responsible for the release of substances that destroy 

normal cells and dissolve the connective tissue [204], indicating the possible use of leptin 

in pulp regeneration. 

 Adiponectin also has high potential for the regeneration of dental tissues, despite 

the limited information available. In dental pulp, its increase promotes dentin 

mineralization by inducing the expression of DSPP [43] and generating a suitable 

environment for the formation of dentin bridges, thereby providing protection against pulp 

exposure [77]. This mineralization could be complemented with that of leptin and both 

adipokines could be used together for clinical application, while considering their 

proangiogenic effects [63,64,78,145].  

 A benefit of adiponectin, in PDL cells, is the ability to accelerate wound closure. 

This was demonstrated in vitro, by removing the first layers of PDL cells and directly 

applying adiponectin (3 μg/ml). This resulted in accelerated healing as adiponectin 

increased cell proliferation and the expression of certain growth factors and extracellular 

matrix, which underscores its favorable role in periodontal homeostasis and soft and hard 

tissue healing [34]. Although not yet clinically applied in pulp therapy, these data suggest 

that if adiponectin was placed on exposed pulp, it could have a similar favorable action, 

especially considering the results of a previously mentioned study [43] that demonstrated 

mineralization of pulp tissue.  

Contrarily, evidence indicates that ghrelin promotes the synthesis and secretion of 

dentin and enamel matrices, as it is present in odontoblasts and ameloblasts during tooth 

development and after eruption [40,50]. Hence, it influences hard tissue mineralization in 

the tooth, and could be used when mineralized tissue formation is required in the form of 

dentin bridges, as in direct pulp protection. However, GH and ghrelin promote the 

proliferation and differentiation of primary osteoblasts and inhibit their apoptosis 

[108,109,205], suggesting that they could help form bone tissue in large periapical 

lesions.  

 OSM functions as an inflammatory mediator [112] and acts with other cytokines 

and MMPs to amplify the inflammatory cycle [46]. However, the capacity of OSM to induce 
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differentiation of DPSCs towards chondrogenic, adipogenic, and osteogenic lineages (in 

conjunction with BMP2, BMP4, BMP6) have been demonstrated in vitro, showing its 

potential in developing craniofacial regenerative therapies and alveolar bone 

regeneration [118,119]. Therefore, it is important to clarify the conditions necessary to 

clinically apply this adipokine in regenerative endodontics [118]. 

 The therapeutic potential of chemerin is not yet clear, due to its dual effect 

(proinflammatory and anti-inflammatory). However, since it has been found within the 

odontogenic process, it could be assumed to be of great importance for dental tissue 

engineering [91]. Contrarily, it has been shown that in pulp fibroblasts, its receptor 

ChemR23 has affinity for resolvin E1 as a ligand, which allows an anti-inflammatory effect 

in the early stages of pulpitis [44,98]. The mechanism by which this effect is achieved is 

the suppression of the proinflammatory activity of pulp fibroblasts [44]. It must be 

considered that this latter cell can remove the survival signals, normalize the chemokine 

gradients, and facilitate the apoptosis of the infiltrating leukocytes or their elimination 

through the lymphatics; by inhibiting these functions of the fibroblast, the regeneration of 

the pulp tissue would be favored [206]. Additionally, chemerin exhibits potent angiogenic 

effects and can induce the production of MMP-2 and MMP-9 and key cell survival and 

angiogenic cascades in endothelial cells [99]. 

 

5. Future perspectives 

  

The use of different adipokines as biomarkers to determine the health status of patients 

has been proposed. A study focused on the potential of visfatin to predict mortality in 

critically ill patients and found it to be strongly associated with disease severity and organ 

failure. Hence, it could also be used as a biomarker to determine the presence of pulp 

degradation in future research [207].  

A main concern while applying adipokine-based pulp regeneration techniques is 

obtaining them. Fat auto-transplantation techniques are widely used in aesthetic 

procedures and have shown potential for wound healing [208]. Recently, it was 

demonstrated that adipose tissue obtained from lipoaspirates, using the Coleman or 
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Shippert technique, employing centrifugation and sedimentation processes, contains 

significant amounts of adipokines, such as leptin and adiponectin, and growth factors 

relevant to wound healing [208,209]. Therefore, lipoaspirates could be extracted and 

cryopreserved for potential endodontic therapeutic uses without significant loss of their 

biological activity [208]. 

 The biological mechanisms of regulation and adaptation of adipokines can be 

systematically exploited for pulp therapy. Leptin secretion increases during the day 

[210,211], while that of adiponectin, resistin, and visfatin, during the night [212,213]. 

Moreover, modifications in the sleep schedule [214] and diet [215] can desynchronize the 

circadian rhythm, which increases leptin production when it is usually low [216]. Thus, by 

combining treatment with an adequate diet, sleep rhythm, and application period, it would 

be possible to stimulate/inhibit adipokine secretion at defined times to enhance the 

desired therapeutic effect. 

 Conversely, many cells can adapt to extreme conditions [217], and adipocytes 

exposed to heat shock modify the production of adipokines as an adaptive response 

[218]. It has been shown that when the temperature is raised to 41 °C, production of leptin 

increases and that of adiponectin decreases as a compensatory measure. An increase in 

leptin can protect the tissue against aggression by increasing energy, tissue metabolism, 

and induction of apoptosis. Meanwhile, the decrease in adiponectin is derived from 

protein synthesis reduction, favoring the induction of the response to heat shock [58]. 

Contrarily, low temperatures decrease leptin expression and increase adiponectin 

expression [58]. Hence, the response of dental pulp cells to heat shock could be similar 

to that of adipocytes, since the pulp tissue is exposed to multiple thermal stimuli during 

mastication [219,220] and dental procedures [221–223]. To date, no studies have 

determined these possible changes in the expression of adipokines in the dental pulp that 

could clarify their functions in physiological and pathological states.  

 Finally, although proteomic profiling studies have identified hundreds of adipokines 

in the secretome of adipose tissue [12–15] and, recently, have even identified new 

adipokines [224], the human adipokinome has not yet been fully characterized [12]. 

Secretomics could unveil new biological, pathological, and homeostasis mechanisms of 
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adipokines in pulp tissue. Furthermore, the precise mechanisms leading to the secretion 

of many adipokines requires investigation.  

 

6. Conclusion 

 

Adipokines carry out several physiological and pathological functions in the pulp tissue. 

Though scarcely studied with limited understanding of their actions, they are potential 

therapeutic agents to be researched in the management of inflammatory disorders of the 

dentin-pulp complex and regenerative endodontics. The use of agonists/antagonists 

modulating the expression of the most studied adipokines may be promising in developing 

new therapeutic agents; taking into consideration the available evidence on their use and 

their unique characteristics and functions, such as angiogenesis and reparative dentin 

formation, leptin and adiponectin seem to be the best candidates for use as therapeutics.  
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