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Abstract
Cancer is a widespread worldwide chronic disease. In 
most cases, the high mortality rate from cancer corre-
lates with a lack of clear symptoms, which results in 
late diagnosis for patients, and consequently, advanced 
tumor disease with poor probabilities for cure, since 
many patients will show chemo- and radio-resistance. 
Several mechanisms have been studied to explain 
chemo- and radio-resistance to anti-tumor therapies, 
including cell signaling pathways, anti-apoptotic mecha-
nisms, stemness, metabolism, and cellular phenotypes. 
Interestingly, the presence of cancer stem cells (CSCs), 
which are a subset of cells within the tumors, has been 
related to therapy resistance. In this review, we focus 
on evaluating the presence of CSCs in different tumors 
such as breast cancer, gastric cancer, lung cancer, and 
hematological neoplasias, highlighting studies where 
CSCs were identified in patient samples. It is evident 
that there has been a great drive to identify the cell 
surface phenotypes of CSCs so that they can be used 
as a tool for anti-tumor therapy treatment design. We 
also review the potential effect of nanoparticles, drugs, 
natural compounds, aldehyde dehydrogenase inhibitors, 
cell signaling inhibitors, and antibodies to treat CSCs 
from specific tumors. Taken together, we present an 
overview of the role of CSCs in tumorigenesis and how 
research is advancing to target these highly tumorigenic 
cells to improve oncology patient outcomes.
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Core tip: Tumor heterogeneity can explain the presence 
of cells that display high tumorigenic capacity along 
with chemo- and radio-resistance properties. These 
cells, identified as cancer stem cells (CSCs), are par-
tially responsible for recurrence and tumor progression. 
Most tumors follow the CSC model, which indicates the 
existence of a subset of highly tumorigenic cells. This 
has been shown to be the case for several patients 
with several types of tumors. In this review, we focus 
on the phenotypes used for the study and identification 
of CSCs from human samples, as well as promising 
strategies to target CSCs.
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INTRODUCTION
Cancer stem cells (CSCs) comprise a cell population 

within a tumor that, among other factors, is responsible 

for cancer initiation, propagation, metastasis and 

recurrence. It is known that solid tumors are composed 

of heterogeneous cell populations
[1-3]

 with different 

phenotypic characteristics at different stages of deve-

lopment, with variable abilities to proliferate. However, 

only the CSC population is clonogenic in vitro and in 
vivo, suggesting that these cells are the only ones with 

the highest tumorigenic potential
[4,5]

.

The existence of a subset of cancer cells that pos-

sesses an extensive proliferative capacity was reported 

in leukemia and multiple myeloma in the 1970s
[6,7]

. In 

both cancer types, only a cell population derived from 

a tumor was able to grow in clonogenic assays, where 

they formed spherical colonies, and induce tumors in 

mice that recapitulated the original tumor. At that time, 

the most reliable criterion for CSC identification was the 
capacity of these cells to produce colonies

[6]
.

The first CSCs were isolated from acute myeloid 

leukemia (AML) by transplantation into severe combined 

immune-deficient (SCID) mice. They were identified 

as CD34
+
CD38

- 
cells and named AML-initiating cells 

because of their ability to establish human leukemia in 

SCID mice. Since the identified CD34+
CD38

- 
cells were 

less differentiated than colony-forming cells, a hierarchy 

or heterogeneity in AML was proposed
[1]

. Later, in 1997, 

the model was reproduced in non-obese diabetic mice 

with severe combined immunodeficiency disease (NOD/
SCID) mice, where CD34

+
CD38

- 
CSCs were capable of 

differentiating into leukemic blasts in vivo, supporting 

the existence of a hierarchy in leukemia
[8]

.

Some years later, enriched CSC populations were 

obtained from human brain tumors
[9]

, using cells with a 
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CD133
+
 phenotype that showed a higher capacity for 

proliferation, self-renewal, and differentiation. CD133
+ 

cells were xenotransplanted into NOD/SCID mice and 
formed tumors that, when serially transplanted, recapi-

tulated the original human tumor
[10,11]

. Since then, CSCs 

from various solid tumors have been reported
[5]

.

In recent years, several research groups have focu-

sed on the identification and isolation of these cells. 

Besides leukemia and multiple myeloma, CSCs from solid 

tumors have been identified and isolated through the 

use of surface and functional markers
[12-15]

, their growing 

capacity as spheroids in vitro[16,17]
, the evaluation of CSC 

clonogenic capacity
[18,19]

 and their in vivo tumorigenic 

capacity in xenotransplant experiments
[16,17,20,21]

.

Due to the reported participation of CSCs in chemo- 

and radio-resistance
[22-24]

, an increasing interest in 

implementing strategies against CSCs in patients to 

improve their clinical outcome has grown in recent years 

because conventional therapies are effective in con-

trolling tumor growth at the beginning, but over time, 

relapse is a main problem due to remaining CSCs
[22,25,26]

.

CSC GENERALITIES
A CSC is defined as a cell within a tumor that is able to 
produce an identical cell with the same properties to 

give rise heterogeneous differentiated progeny, and 

has the ability to modulate differentiation and self-

renewal (homeostatic control). These CSCs possess the 

ability to propagate themselves, as well as recapitulate 

a tumor
[2,3,27]

.

A major characteristic of CSCs relies on their ability 

to regulate stemness pathways such as Wnt/β-catenin, 

Sonic hedgehog (Shh), transforming growth factor beta 

(TGF-β), etc[28]
. These pathways are dysregulated in 

CSCs, and targeting them has been proposed as a stra-

tegy to increase the effectiveness of cancer therapies.

The CSC model postulates that solid tumors and 

leukemia are hierarchically organized, with CSCs at the 

apex of this hierarchy, driving tumor growth, relapse, 

metastasis and drug resistance
[5,29]

. Cell heterogeneity 

is responsible for varying cell morphology, different 

proliferative index, genetic changes and therapeutic 

response
[30]

. For a successful therapy, all CSCs should 

be specifically eliminated to avoid relapse.
Typically, CSCs are defined as a small or a rare cell 

population
[2,31]

 that forms tumors after being xenotrans-

planted into immunodeficient mice. However, recent 

reports have suggested that the percentage of CSCs 

within a tumor can vary from 0.02% to 25% depending 

on the tumor type, where higher CSC proportions are 

found in undifferentiated tumors
[31-34]

. Typically, higher 

CSC frequencies have been found in mouse models, 

leukemias and lymphomas, while lower frequencies 

are frequently found in solid tumors
[35]

. Based on this 

information, it has been suggested that not all cancers 

follow the CSC model
[27]

. Instead, a dynamic or plastic 

CSC model has been proposed, where CSCs and non-

CSCs could alternate between two phenotypic states
[36]

. 
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In this dynamic model, both cell types show varying 

levels of tumor-forming capacity, drug response and 

the ability to give rise to differentiated cells
[29,35]

. CSCs 

and non-CSCs can still be easily distinguished through 

surface and functional markers, but mainly by their self-

renewal capacity.

It is very important to note that the CSC model 

is widely reported in several cancer types (Figure 1),  

although there are a few publications about cancers 

that do not follow a CSC model or a dynamic CSC 

model, specifically in lymphoma mice models
[37]

 and 

melanoma
[32]

, where the tumors are homogeneous. 

In 2007, Strasser and his group inoculated 10 to 10
5
 

pre-B/B lymphoma cells into recipient mice. All of the 
animals developed lymphoma within 35 d, regardless of 

the number of inoculated cells, differing only in tumor 

growth rate
[37]

.

Although CSCs are able to self-renew and diffe-

rentiate, they do not necessarily originate from the 

malignant transformation of stem cells
[33]

. The cell of 

origin refers only to the cell type that received the first 
genetic or epigenetic hit, which confers the ability for 

self-renewal or tumor growth
[35]

. Examples of these 

cells are: normal stem cells, restricted progenitor cells 

and more differentiated cells. All of them could have 

acquired or maintained self-renewal capacity, and some 

of them can even undergo epithelial to mesenchymal 

transition (EMT), giving rise to metastatic CSCs
[36]

.

In conclusion, the variable phenotype of the CSC 

population in patients and tumor types proposed in the 

CSC dynamic model constitutes the main challenge for 

the possible use of anti-CSC therapy.

CSC CHARACTERISTICS WITH CLINICAL 
RELEVANCE
The CSC population possesses several characteristics 

that can be useful for cancer therapy development, 

primarily focusing on the elimination of these cells.

Usually, a distinctive profile of surface and functional 
markers characterizes the CSC population, and their 

identification and purification usually begins with the 

description of such markers
[3,29]

. Moreover, there is an 

increasing interest in identifying the role of each marker 

in CSCs, as well as targeting CSC-specific pathways, 

which could increase the radio- and chemo-sensitivity of 

CSCs.

To date, several CSC markers from distinct tumor 

types have been proposed and validated through di-

fferent experimental models (Table 1 and Figure 1). 

Some of these markers are discussed below.

Surface markers
Nowadays, there are CSC markers that are widely 
used to identify several tumor types. Such markers 

have been reported in CSC-enrichment culture models 

from cell lines or primary cultures derived from patient 

samples and serial xenotransplantation of putative CSCs 
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in mouse models, which must be able to recapitulate 

the original heterogeneous populations and be directly 

validated in human tumor samples. It is important to 

note that the use of a single marker to define a CSC 

population is not recommended. For this purpose, a phe-

notypic profile that combines various markers should be 
established, as well as carrying out self-renewal assays 

(Figure 1)
[2,25]

.

CD133, also known as prominin-1, is a transmem-

brane cell surface glycoprotein traditionally used as 

a hematopoietic stem cell marker that is effective for 

detection of non-stem cells from various tumor and tissue 

samples. The Dirks laboratory used the CSC marker 

CD133 for brain CSC identification. The purified CD133+ 

population from primary human brain tumors samples 

showed higher proliferation and self-renewal capacity 

in neurosphere formation assays than CD133
- 
cells

[10]
. 

Moreover, the inoculation of only a few CD133
+
 cells was 

sufficient to produce a tumor, which was then success-
fully transplanted

[11]
. In 2013, the Pelicci laboratory 

reported that CD133 was found in an interconvertible 

state in glioblastoma patient-derived neurospheres 

and that the use of short hairpin RNA (shRNA) against 
CD133 diminished their self-renewal and tumorigenicity 

potential
[18]

. Interestingly, some studies have proposed 

that CD133 could maintain CSC properties through the 

Wnt/β-catenin signaling pathway
[38]

.

CD133 has also been tested in colorectal cancer cell 

lines and tumor tissue samples
[39,40]

 through the use of 

various techniques, including flow cytometry and serial 
xenotransplantation in mice

[41]
. Additionally, CD133

+ 

CSCs have been reported in many other solid cancer 

models, including endometrial cancer
[42]

, lung cancer
[43]

, 

small cell lung cancer
[44]

, laryngeal cancer
[45,46]

, liver 

cancer
[47]

, colorectal cancer
[48]

, and gastric cancer
[49]

.

CD133 has been found in samples that represent 

higher stage tumors and are predictors of poor prog-

nosis. For this reason, CD133 is considered a promising 

therapeutic target. This year, a phase Ⅰ trial for testing 

the efficacy of CD133-directed CAR-T cells showed 

that CD133
+
 cells were successfully eliminated after 

CART-133 infusion
[50]

.

CD44 is a multifunctional glycoprotein involved in 

cell adhesion, signaling, proliferation, migration, he-

matopoiesis, and lymphocyte activation
[51]

. It functions 

as a receptor for hyaluronan and other extracellular 

matrix components
[52]

. CD44 is widely used as a CSC 

marker, especially for tumors of epithelial origin, and 

it is used alone or in combination with CD24 for the 

identification of breast CSCs[5]
. CD24 is a small surface 

protein that is found in many tumor types. However, 

reports from cancer cell lines show that there is a 

substantial variation in CD24 expression even among 

the same tumor types
[53]

.

Though CD24
- 
cells are commonly associated with 

CSC phenotypes, there are some cases in which CD24
+ 

has been found to be a marker for cell populations with 

CSC features. For example, in nasopharyngeal carcino-

ma (NPC) cell lines[54]
 and in HPV-16 SiHa cervical cancer 
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cells, isolated CD44
+
CD24

+ 
cells were radioresistant 

and more tumorigenic than those negative for the same 

markers
[55]

. The same CD44
+
CD24

+ 
phenotype was 

used to identify gastric CSCs
[56]

.

A known classic publication demonstrated that only 

a small population isolated from breast tumors, defined 
as CD44

+
CD24

-/low
, has the capacity to sustain tumor 

growth in NOD/SCID mice and generate heterogeneous 
cell populations as the original breast tumor

[5]
. Later, in 
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human prostate cancer samples, CSCs characterized 

through immunofluorescence with the CD44
+/β2β1

hi/
CD133

+ phenotype were identified and characterized[57]
. 

The next year, CD44
+
 prostate cancer cell populations 

were obtained
[58]

. Also, CD44 and CD133 expression 

was evaluated in gastric adenocarcinoma tumors by 

immunohistochemistry, and it was found that both mar-

kers could be correlated with clinical and pathological 

parameters
[51]

.

December 26, 2018|Volume 10|Issue 12|

Cancer type Phenotype Model References

Prostate cancer CD44+ PCa cell line and tumor xenograft in mice   [58]
Breast cancer CD44+ CD24-/low Patient-derived tumor xenograft in mice     [5]
Cervical cancer CD44+ CD24+ SiHa cell line   [55]
Gastric cancer CD44+ CD24+ AGS cell line and patient tissue samples   [56]
Nasopharyngeal carcinoma CD24- NPC cell lnes, mice   [54]
Gastric adenocarcinoma CD44+ CD133+ Patient tissue samples   [51]
Oral squamous cell carcinoma CD44+ ALDH1 Metastatic lymph nodes [153]
Breast cancer CD44v Clinical samples [154]
Prostate cancer CD133 Primary prostate cancer cell lines [155]
Endometrial cancer CD133 Human endometrial cell lines   [42]
Liver cancer CD133 Huh-7 cells and tumor xenograft in mice   [47]
Prostate cancer CD133 Primary human prostate cancer cell lines [155]
Cervical cancer CD49f SiHa and HeLa cell lines [156]
Non-small cell lung cancer CD49f Patient-derived sphere-forming assays [157]
Gastric cancer CD49f Gastric tumor tissues and tumor xenograft in mice   [75]
Colon cancer CD49f HT29 and Caco2 cell lines, clinical samples   [77]
Cervical cancer ALDH SiHa and HeLa cell lines, mice model   [85]
Colon cancer ALDH1A3 HT29 cell line [158]
Colon cancer ALDH1A1 HT29 cell line and tumor xenograft in mice [159]
Breast cancer ALDH Breast cancer tumor tissues [160]

Table 1  Cancer stem cells markers in solid tumors

CSCs: Cancer stem cells; ALDH: Aldehyde dehydrogenase; NPC: Nasopharyngeal carcinoma.

CD133+                             CD44+                        CD24-                      CD49f+Surface
marker

ALDHhigh

Tumorigenesis
Metastasis

Radio-Chemo resistance

Intracellular

Signaling
complexes

Figure 1  Schematic representation of common cancer stem cell markers. CD133, CD44, CD24 and CD49f are common phenotype markers used for the 
identification of cancer stem cells (CSCs) and their isolation from tissue samples from cancer patients, such as the stomach, lung, liver, ovary, breast, prostate and 

colon carcinoma. In addition, the metabolic and functional marker aldehyde dehydrogenase (ALDH) is represented in CSCs derived from ovarian carcinoma, colon 

carcinoma, breast, lung and liver cancer. The CSC markers shown have a specific and relevant function in the high tumorigenic capacity of CSCs, metastasis, and 

resistance to radio- and chemotherapy.
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Although CD44 is widely reported as a CSC marker, 

it is very important to note that it is a ubiquitously 

expressed molecule derived from a gene with 18 exons. 

When all variable exons are spliced out, the standard 

form (CD44s) is expressed, and when alternative 

splicing occurs, variant forms (CD44v) are expressed
[59]

. 

In spite of this, there are only a few reports in which 

CD44 isoforms are considered when evaluating CSCs. 

In 2005, Mackenzie and his group demonstrated the 

existence of two CSC populations, both expressing 

CD44
high

 (and CD44
+
), derived from head and neck cuta-

neous squamous cell carcinoma. One was associated 
with EMT properties and the other one possessed an 

epithelial phenotype
[60]

. They demonstrated that the 

CD44
high

 cells that undergo EMT preferably expressed 

the CD44s isoform; while the epithelial CD44
high

 cells 

expressed the CD44v isoform. Using RNAseq, another 
group later confirmed these results. The CD44v6 isoform 
was identified as the predominant isoform in a prostate 
cancer epithelial cell line

[61]
.

A very important contribution from the Mackenzie 

laboratory is that they demonstrated that the use of 

enzymes (for example, trypsin or collagenase) for 

cell extraction from tissues caused destruction of cell 

surface CD44v isoforms, leaving only the CD44s iso-

form
[62]

. Moreover, CD44-specific antibodies are not 

able to distinguish between all isoforms. Specifically, 

in breast cancer, CD44v was found to be associated 

with better prognosis while CD44s was related to poor 

prognosis
[63]

. As a consequence, CD44 is the most 

frequently found CSC marker
[64,65]. Other examples are 

found in colorectal cancer, in which CD44 was found 

together with CD133
[66,67]

, head and neck squamous 

cell carcinoma
[68,69]

, ovarian CSCs
[70]

, and gastric cancer 

using the specific isoform CD44v8-10[71]
.

CD49f or integrin α6, is a transmembrane glycopro-

tein that functions as the receptor for the extracellular 

matrix protein laminin
[72,73]

. CD49f is widely distributed 

in stem cells and in the brain
[73]

; because of its role in 

tumor cell proliferation, survival, self-renewal and tumor 

growth, it has been proposed that it could be used as a 

CSC marker
[73]

.

In sphere colony forming cell culture using prostate 

cancer cells, CD49f was shown to be a better marker 

than CD133 and CD44
[74]

. In gastric cancer, CD49
high

 

cells displayed CSC characteristics, including resistance 

to doxorubicin, 5-fluorouracil and doxifluridine
[75]

.This 

has also been reported in breast
[76]

 and colon cancer
[77]

.

Besides the examples mentioned above, there are 

other surface markers that have been proposed as CSC 

markers, such as CXCR4 and LGR5, among others.

Functional markers
Another strategy for CSC identification and purifica-

tion is the use of functional or intracellular markers 

(Figure 1), which are considered to be more stable than 

surface markers. The principal functional CSC marker 

is aldehyde dehydrogenase or ALDH, part of an enzy-
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me superfamily encoded by 19 genes that metabolize 

endogenous and exogenous aldehydes. It is present in 

practically all organisms, and its levels and isozymes 

vary depending on tissue and organ
[78]

.

For ALDH identification, specific ALDH antibodies 

are available; nonetheless, we suggest that the most 

appropriate way for ALDH identification is the mea-

surement of its activity using the commercial ALDH 

fluorescent substrate ALDEFLUOR® kit assay by Stem 

Cells Technologies, Inc. (Vancouver, BC, Canada). Cells 

that display high ALDH activity, (named ALDH
high

 or 

ALDH
+
 or ALDH

br), can be identified and isolated using 
flow cytometry[79]

. Several works have shown that high 

ALDH activity is often associated with CSCs derived 

from solid tumor types
[80]

. These cells are generally cha-

racterized by a higher proliferation potential, colony-

forming capacity, self-renewal, in vivo tumorigenic 

capacity, metastasis, and drug resistance. For instance, 

ALDH
high CSCs have been identified in colon cancer[81,82]

, 

lung cancer
[83]

, cervical cancer
[14,84,85]

, breast cancer
[86]

, 

pancreatic cancer
[87,88]

, and melanoma
[89,90]

, to mention 

some examples.

As for surface markers, ALDH is often reported in 

combination with other cell markers to increase the 

accuracy of CSC validation. In some cases, high ALDH 

activity is found together with high expression of 

markers like CD133. Some cases have been identified 
in ovarian cancer

[91,92]
, invasive ductal breast carcinoma 

tumors
[93]

, and lung cancer
[94]

. The combination ALDH
+/

CD44
+
 has been evaluated in various tumors such as 

breast cancer
[95]

 and lung cancer
[96]

.

CSCs AND THERAPY RESISTANCE
Several cancers acquire drug resistance during or after 

treatment, which is the case for cancers that possess 

cells that are more resistant than the rest of the tumor. 

Generally, resistant cells have proteins that remove 

drugs from cells
[97]. One of the most studied mechanisms 

of drug resistance in CSCs is their ability to actively expel 

therapeutic drugs via transport proteins. Such proteins 

are a family known as ATP-binding cassette transporters. 

These proteins use ATP-dependent drug efflux pumps 

for drug elimination, mostly into the extracellular space, 

and they have been found to be overexpressed in CSCs 

using side population assays
[41,98-100]

.

Additionally, high ALDH activity is directly related 

to a higher resistance to several drugs, for example, 

cyclophosphamide, temozolomide, irinotecan, paclitaxel, 

and doxorubicin
[101-103]

. Resistance conferred by ALDH 

has been observed in numerous cell lines and patient 

samples
[97,104]

. A well known case is the resistance to 

cyclophosphamide, where ALDH irreversibly oxidizes 

aldophosphamide, an active metabolite of cyclophos-

phamide, into an inert compound
[105]

. In breast cancer, 

the inhibition of ALDH activity in ALDH
high

 CD44
+
 cells 

leads to a reduction in chemoresistance to doxorubicin 

and paclitaxel
[106]

. This information suggests that the 
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inhibition of ALDH activity leads to cell sensitization to 

chemotherapeutics
[99]

.

Besides higher resistance to conventional cancer 

treatments, evidence shows that highly metastatic 

tumors correlate with a higher percentage of CSCs
[28]

.

CSCs IN PATIENTS: PHENOTYPE AND 
TYPE OF STUDIES
Most publications about the identification of CSCs have 
been performed in cell lines. However, in this section, 

we will discuss the cases in which CSCs were identified 
in patient samples.

CD133 was analyzed in a meta-analysis of 32 stu-

dies of non-small cell lung cancer, and a higher CD133 

expression was associated with poor tumor differen-

tiation and lymph node metastasis
[107]

.

Gastric CSCs have been identified in tumor ti-

ssues and peripheral blood using the CD44
+
CD54

+ 

phenotype
[108]. Nevertheless, in another study, CD133+/

CD44
+ 

cells sorted from 44 patients who underwent 

gastrostomy failed to produce tumors in mice and did 

not show any CSC properties
[109]

.

The presence of ALDH has been analyzed in normal 

mammary and breast cancer tissues
[110]

. The activity 

of ALDH1A3 is associated with metastasis in patient 

breast cancer samples by microarray analysis
[86]

. In 

another analysis of formalin-fixed paraffin-embedded 
tissue samples from primary stage Ⅳ breast cancer, 

ALDH and CD44/CD24 expression was correlated with 
response to endocrine therapy and clinical outcome 

but was not statistically significant[111]
.

CSC approaching therapy
Despite the broad variety of CSC publications in the 

last years, the discovery of effective therapies has 

remained elusive. However, some advances have been 

made in the field that could be getting us closer to 

direct CSC elimination. A brief outline of some of these 

strategies is showed in Figure 2.

Targeting deregulated pathways in CSCs aims at 

developing effective strategies against CSCs. In adult 

pancreas, the Hedgehog (Hh) signaling pathway is 

dormant, but it is upregulated in pancreatic ductal ade-

nocarcinoma, specifically in CD44+/CD24+/ESA+
CSCs. 

In a phase Ⅰ study, 68 patients were treated with 

GDC-0449 or Vismodegib, a Hh pathway antagonist
[112]

, 

alone or in combination with gemcitabine. GDC-0449 

inhibited Hh signaling, but there was no correlation 

with survival or other parameters
[113]. Other drugs that 

show promising results in inhibiting this pathway are 

PF-044449913
[114]

 and thiostrepon, which attenuates 

CD44
+/CD24-

 triple-negative breast CSCs
[115]

.

In addition, γ–secretase inhibitors target the Notch 
pathway and possess a stronger anti-neoplastic acti-

vity when combined with chemotherapeutic agents
[116]

. 

Nevertheless, adverse effects have been reported, as 
patients developed cutaneous rash in phase Ⅰ clinical 
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trials
[117,118]

.

Several drugs that aim to inhibit the Wnt/β-catenin 

signaling pathway are being developed. One such drug 
is Celecoxib, a non-steroidal anti-inflammatory drug 

that inhibits β-catenin signaling by cyclo-oxygenase 

(commonly known as COX)-dependent and COX-in-
dependent mechanisms

[116]
. This drug downregulates 

CD133 expression in colon cancer cells by inhibiting 

Wnt signaling
[119]

 and intestinal cancer growth
[120]

. The 

Wnt inhibitor LGK-974 inhibits porcupine, an O-acyl-
transferase required for Wnt secretion. In liver cancer 

cells, LGK-974 blocks secretion of the Wnt3A protein, 

and as a consequence, cells become more sensitive 

to radiation
[121]

. A recent study showed that LGK-974 

downregulates ALDH1A3 and reduces chemoresistance 

in glioblastoma cells
[122]

.

Curcumin is an antioxidant derived from turmeric 

whose anti-cancer effect is well documented. Referring 

specifically to CSCs, curcumin has shown the potential 
to regulate the CSC self-renewal pathways, as well as 

specific microRNAs[123]
. In CD133

+
 lung CSCs, curcumin 

suppresses the activation of Wnt/β-catenin and Shh 

pathways, as well as other CSC traits
[124]

. It has been 

demonstrated that in bladder cancer, curcumin supp-

ress the Shh pathway
[125]

 and in laryngeal carcinoma 

treatment, curcumin enhances the effectiveness of 

cisplatin, reducing CD133
+
 cells in vitro[46]

. Additionally, 

a combination of curcumin and FOLFOX chemotherapy 
inhibits colorectal CSCs in ex vivo models

[126]
.

An interesting strategy is to target CSCs using 

nanoparticles to reduce side effects on surrounding 

normal cells. In 2015, construction of glucose-coated 

gold nanoparticles (Glu-GNPs) that used glucose to 
facilitate GNP entry into leukemic stem cells overex-
pressing CD44 (TH1-P) was reported. Leukemic cells 

were cultured for one hour in the absence of glucose 

for better Glu-GNP uptake, and then X-ray irradiation 
tests were performed. Results showed that Glu-GNPs 
enhanced cell death compared to either irradiation or 

GNPs alone[127]
. Formulated mangostin-encapsulated 

poly(lactic-co-glycolic acid) nanoparticles (Mang-NPs) 
successfully downregulated the known stemness genes 

c-Myc, Nanog and Oct4, two CSC markers, CD24 and 
CD133, and the Shh pathway

[128]
. Salinomycin and pa-

clitaxel nanoparticles are also being used to eliminate 

breast cancer cells including CD44 breast CSCs
[129]

.

Interestingly, CSCs have a strict dependence on 

mitochondrial biogenesis. Five classes of FDA-appro-

ved antibiotics that inhibit mitochondrial biogenesis 

were used on eight different cancer cell lines, and 

the results suggested that the observed therapeutic 

effects were infection-independent
[130]

. Clinical trials 

using doxycycline showed positive results in cancer 

patients
[131]

. Another drug that has been shown to 

specifically eliminate CSCs is metformin, and its effects 
are enhanced when it is used in combination with 

doxorubicin
[132]

. Moreover, it has been observed that 

metformin reduces metastasis by targeting both EMT 
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and CSCs
[133]. In the ovarian cancer cell line SKOV3, low 

doses of metformin diminished CD44
+
CD117

+
 CSCs in 

xenograft tissue and enhanced the effect of cisplatin
[134]

. 

In esophageal cancer, metformin reduced the number 

of ALDH+ cells, tumor growth in vivo[135]
, and in pan-

creatic cancer, it increased radiation sensitivity
[136]

.

Using antibodies is another strategy to block CSC 

signaling pathways and reduce tumor activity in diffe-

rent models. For instance, the anti-DLL4 (Enoticumab) 

antibody that targets the dominant Notch ligand 
DLL4 has shown anti-tumor activity, especially in 

VEGF-resistant tumors in human phase Ⅰ studies
[137]

. 

Furthermore, another anti-DLL4 antibody (Demcizumab) 

is effective in decreasing tumor size but produces 

hypertension
[138]

. In colon cancer patients, increased 

progastrin levels in the blood have been observed, which 

is a tumor-promoting peptide that participates in colon 

CSC self-renewal and is also a direct target gene of β–
catenin/Tcf4. Based on this information, specific anti-
progastrin antibodies have been developed and tested 

in colon cancer cell lines and in mice. The antibodies, 

alone or in combination with chemotherapy, decreased 

self-renewal, migration and invasion. Moreover, they 

mitigated Wnt-driven intestinal neoplasia and induced 

tumor cell differentiation in vivo[139]
. H90 is a mouse 

IgG1 mAb against human CD44 that directly targets 

CSCs to induce differentiation and proliferation in AML 

xenograft mouse models
[140]

. Additionally, anti-CD44s-

specific antibodies are effective in eliminating pancreatic 
stem cells

[141]
. For more extensive information about 

antibodies against CSCs, we recommend reference
[142]

.

ALDH is an important CSC marker that is overex-

pressed in several cancers. Specific ALDH inhibitors 

are effective in modulating cell growth, apoptosis and 

differentiation. Additionally, increased chemo- and 

radio-sensitivity is usually observed. All-trans retinoic 
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acid (commonly known as ATRA) is a first generation 

systemic retinoid that promotes cell differentiation
[143,144]

 

and has been used in clinical trials
[145]

. ATRA has also 

been tested in breast cancer cells
[106,146,147]

 and in gastric 

cancer, where it inhibited tumor growth
[148]

, and in head 

and neck cancer, where it suppressed Wnt/β-catenin 

signaling
[149]

. In a phase Ⅰ/Ⅱ trial, advanced breast 

cancer patients did not show a significant improvement 
when treated with ATRA and tamoxifen compared with 

tamoxifen alone
[150]

.

Disulfiram is a drug used for treating alcoholism, 

and it shows anti-cancer activity in vitro and in vivo, 

further potentiating the chemotherapeutic response. 

Its effectiveness has been demonstrated on paclitaxel-

resistant triple-negative breast cancer cells
[151]

, in non-

small cell lung cancer cells
[152]

, and glioblastoma.

CONCLUSION
CSCs are potential cancer therapy targets due to their 

tumorigenic capabilities, such as chemo- and radio-

resistance, phenomena involved in tumor relapse in 

patients. Several efforts have been made to continue 

to identify the CSCs in several tumors to better under-

stand the mechanisms related to tumor resistance in 

oncologic patients. It is known that de-regulated cell 

signaling pathways are partially responsible for main-

taining CSC stemness. Consequently, Wnt, Notch and 
Hh signaling pathways have been studied to develop 

an efficient anti-CSC therapy. However, innovative anti-
cancer treatments need to be developed to improve 

the lifespan and quality of life of cancer patients. 

Finally, we suggest that there cannot be a generalized 

CSC phenotype to design and promote new drugs, 

antibodies, nanoparticles, and cellular treatments to 

treat oncological patients. Taken together, we suggest 

December 26, 2018|Volume 10|Issue 12|

Figure 2  Drugs that may target cancer stem cells. Promising therapeutics to treat cancer patients. The flowchart highlights the new and more promising cancer 

therapies that can be directed toward cancer stem cells to eliminate them. CSC: Cancer stem cell.
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the full characterization of phenotypes and capabilities 

of CSCs in patients, a cellular component responsible 

for tumor progression, tumor relapse and metastasis.
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