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Abstract

Cancer is a widespread worldwide chronic disease. In
most cases, the high mortality rate from cancer corre-
lates with a lack of clear symptoms, which results in
late diagnosis for patients, and consequently, advanced
tumor disease with poor probabilities for cure, since
many patients will show chemo- and radio-resistance.
Several mechanisms have been studied to explain
chemo- and radio-resistance to anti-tumor therapies,
including cell signaling pathways, anti-apoptotic mecha-
nisms, stemness, metabolism, and cellular phenotypes.
Interestingly, the presence of cancer stem cells (CSCs),
which are a subset of cells within the tumors, has been
related to therapy resistance. In this review, we focus
on evaluating the presence of CSCs in different tumors
such as breast cancer, gastric cancer, lung cancer, and
hematological neoplasias, highlighting studies where
CSCs were identified in patient samples. It is evident
that there has been a great drive to identify the cell
surface phenotypes of CSCs so that they can be used
as a tool for anti-tumor therapy treatment design. We
also review the potential effect of nanoparticles, drugs,
natural compounds, aldehyde dehydrogenase inhibitors,
cell signaling inhibitors, and antibodies to treat CSCs
from specific tumors. Taken together, we present an
overview of the role of CSCs in tumorigenesis and how
research is advancing to target these highly tumorigenic
cells to improve oncology patient outcomes.

Key words: Cancer; Targeted therapy; Clinical outcome;
Drug resistance; Cancer stem cells
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Core tip: Tumor heterogeneity can explain the presence
of cells that display high tumorigenic capacity along
with chemo- and radio-resistance properties. These
cells, identified as cancer stem cells (CSCs), are par-
tially responsible for recurrence and tumor progression.
Most tumors follow the CSC model, which indicates the
existence of a subset of highly tumorigenic cells. This
has been shown to be the case for several patients
with several types of tumors. In this review, we focus
on the phenotypes used for the study and identification
of CSCs from human samples, as well as promising
strategies to target CSCs.
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INTRODUCTION

Cancer stem cells (CSCs) comprise a cell population
within a tumor that, among other factors, is responsible
for cancer initiation, propagation, metastasis and
recurrence. It is known that solid tumors are composed
of heterogeneous cell populations!™ with different
phenotypic characteristics at different stages of deve-
lopment, with variable abilities to proliferate. However,
only the CSC population is clonogenic in vitro and in
vivo, suggesting that these cells are the only ones with
the highest tumorigenic potential?.,

The existence of a subset of cancer cells that pos-
sesses an extensive proliferative capacity was reported
in leukemia and multiple myeloma in the 1970s®”). In
both cancer types, only a cell population derived from
a tumor was able to grow in clonogenic assays, where
they formed spherical colonies, and induce tumors in
mice that recapitulated the original tumor. At that time,
the most reliable criterion for CSC identification was the
capacity of these cells to produce colonies'®.

The first CSCs were isolated from acute myeloid
leukemia (AML) by transplantation into severe combined
immune-deficient (SCID) mice. They were identified
as CD34"CD38 cells and named AML-initiating cells
because of their ability to establish human leukemia in
SCID mice. Since the identified CD34*CD38’ cells were
less differentiated than colony-forming cells, a hierarchy
or heterogeneity in AML was proposed'. Later, in 1997,
the model was reproduced in non-obese diabetic mice
with severe combined immunodeficiency disease (NOD/
SCID) mice, where CD34'CD38 CSCs were capable of
differentiating into leukemic blasts in vivo, supporting
the existence of a hierarchy in leukemia'®.

Some years later, enriched CSC populations were
obtained from human brain tumors™, using cells with a
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CD133" phenotype that showed a higher capacity for
proliferation, self-renewal, and differentiation. CD133"
cells were xenotransplanted into NOD/SCID mice and
formed tumors that, when serially transplanted, recapi-
tulated the original human tumort'®*", Since then, CSCs
from various solid tumors have been reported”..

In recent years, several research groups have focu-
sed on the identification and isolation of these cells.
Besides leukemia and multiple myeloma, CSCs from solid
tumors have been identified and isolated through the
use of surface and functional markers™***, their growing
capacity as spheroids in vitro''*'”}, the evaluation of CSC
clonogenic capacity™®*®' and their in vivo tumorigenic
capacity in xenotransplant experiments™®*72%*!,

Due to the reported participation of CSCs in chemo-
and radio-resistance®?*, an increasing interest in
implementing strategies against CSCs in patients to
improve their clinical outcome has grown in recent years
because conventional therapies are effective in con-
trolling tumor growth at the beginning, but over time,
relapse is a main problem due to remaining CSCs™***?¢,

CSC GENERALITIES

A CSC is defined as a cell within a tumor that is able to
produce an identical cell with the same properties to
give rise heterogeneous differentiated progeny, and
has the ability to modulate differentiation and self-
renewal (homeostatic control). These CSCs possess the
ability to propagate themselves, as well as recapitulate
a tumor®**7,

A major characteristic of CSCs relies on their ability
to regulate stemness pathways such as Wnt/p-catenin,
Sonic hedgehog (Shh), transforming growth factor beta
(TGF-B), etc®®. These pathways are dysregulated in
CSCs, and targeting them has been proposed as a stra-
tegy to increase the effectiveness of cancer therapies.

The CSC model postulates that solid tumors and
leukemia are hierarchically organized, with CSCs at the
apex of this hierarchy, driving tumor growth, relapse,
metastasis and drug resistance™*. Cell heterogeneity
is responsible for varying cell morphology, different
proliferative index, genetic changes and therapeutic
response™., For a successful therapy, all CSCs should
be specifically eliminated to avoid relapse.

Typically, CSCs are defined as a small or a rare cell
population®" that forms tumors after being xenotrans-
planted into immunodeficient mice. However, recent
reports have suggested that the percentage of CSCs
within a tumor can vary from 0.02% to 25% depending
on the tumor type, where higher CSC proportions are
found in undifferentiated tumors®>%. Typically, higher
CSC frequencies have been found in mouse models,
leukemias and lymphomas, while lower frequencies
are frequently found in solid tumors®®. Based on this
information, it has been suggested that not all cancers
follow the CSC model®”. Instead, a dynamic or plastic
CSC model has been proposed, where CSCs and non-
CSCs could alternate between two phenotypic states®®®.
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In this dynamic model, both cell types show varying
levels of tumor-forming capacity, drug response and
the ability to give rise to differentiated cells'”>**). CSCs
and non-CSCs can still be easily distinguished through
surface and functional markers, but mainly by their self-
renewal capacity.

It is very important to note that the CSC model
is widely reported in several cancer types (Figure 1),
although there are a few publications about cancers
that do not follow a CSC model or a dynamic CSC
model, specifically in lymphoma mice models””’ and
melanoma®”, where the tumors are homogeneous.
In 2007, Strasser and his group inoculated 10 to 10°
pre-B/B lymphoma cells into recipient mice. All of the
animals developed lymphoma within 35 d, regardless of
the number of inoculated cells, differing only in tumor
growth rate®”,

Although CSCs are able to self-renew and diffe-
rentiate, they do not necessarily originate from the
malignant transformation of stem cells”®®. The cell of
origin refers only to the cell type that received the first
genetic or epigenetic hit, which confers the ability for
self-renewal or tumor growth™. Examples of these
cells are: normal stem cells, restricted progenitor cells
and more differentiated cells. All of them could have
acquired or maintained self-renewal capacity, and some
of them can even undergo epithelial to mesenchymal
transition (EMT), giving rise to metastatic CSCs™®.

In conclusion, the variable phenotype of the CSC
population in patients and tumor types proposed in the
CSC dynamic model constitutes the main challenge for
the possible use of anti-CSC therapy.

CSC CHARACTERISTICS WITH CLINICAL
RELEVANCE

The CSC population possesses several characteristics
that can be useful for cancer therapy development,
primarily focusing on the elimination of these cells.

Usually, a distinctive profile of surface and functional
markers characterizes the CSC population, and their
identification and purification usually begins with the
description of such markers®*?, Moreover, there is an
increasing interest in identifying the role of each marker
in CSCs, as well as targeting CSC-specific pathways,
which could increase the radio- and chemo-sensitivity of
CSCs.

To date, several CSC markers from distinct tumor
types have been proposed and validated through di-
fferent experimental models (Table 1 and Figure 1).
Some of these markers are discussed below.

Surface markers

Nowadays, there are CSC markers that are widely
used to identify several tumor types. Such markers
have been reported in CSC-enrichment culture models
from cell lines or primary cultures derived from patient
samples and serial xenotransplantation of putative CSCs
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in mouse models, which must be able to recapitulate
the original heterogeneous populations and be directly
validated in human tumor samples. It is important to
note that the use of a single marker to define a CSC
population is not recommended. For this purpose, a phe-
notypic profile that combines various markers should be
established, as well as carrying out self-renewal assays
(Figure 1),

CD133, also known as prominin-1, is a transmem-
brane cell surface glycoprotein traditionally used as
a hematopoietic stem cell marker that is effective for
detection of non-stem cells from various tumor and tissue
samples. The Dirks laboratory used the CSC marker
CD133 for brain CSC identification. The purified CD133*
population from primary human brain tumors samples
showed higher proliferation and self-renewal capacity
in neurosphere formation assays than CD133 cells™.
Moreover, the inoculation of only a few CD133" cells was
sufficient to produce a tumor, which was then success-
fully transplanted™. In 2013, the Pelicci laboratory
reported that CD133 was found in an interconvertible
state in glioblastoma patient-derived neurospheres
and that the use of short hairpin RNA (shRNA) against
CD133 diminished their self-renewal and tumorigenicity
potential™®, Interestingly, some studies have proposed
that CD133 could maintain CSC properties through the
Wnt/p-catenin signaling pathway™®.

CD133 has also been tested in colorectal cancer cell
lines and tumor tissue samples®**” through the use of
various techniques, including flow cytometry and serial
xenotransplantation in mice™". Additionally, CD133"
CSCs have been reported in many other solid cancer
models, including endometrial cancer*?, lung cancer™*?,
small cell lung cancer™®, laryngeal cancer®**®, liver
cancer™*”), colorectal cancer™®, and gastric cancer™,

CD133 has been found in samples that represent
higher stage tumors and are predictors of poor prog-
nosis. For this reason, CD133 is considered a promising
therapeutic target. This year, a phase 1 trial for testing
the efficacy of CD133-directed CAR-T cells showed
that CD133" cells were successfully eliminated after
CART-133 infusion®”.

CD44 is a multifunctional glycoprotein involved in
cell adhesion, signaling, proliferation, migration, he-
matopoiesis, and lymphocyte activation™". It functions
as a receptor for hyaluronan and other extracellular
matrix components®”. CD44 is widely used as a CSC
marker, especially for tumors of epithelial origin, and
it is used alone or in combination with CD24 for the
identification of breast CSCs™'. CD24 is a small surface
protein that is found in many tumor types. However,
reports from cancer cell lines show that there is a
substantial variation in CD24 expression even among
the same tumor types™.

Though CD24" cells are commonly associated with
CSC phenotypes, there are some cases in which CD24*
has been found to be a marker for cell populations with
CSC features. For example, in nasopharyngeal carcino-
ma (NPC) cell lines®™ and in HPV-16 SiHa cervical cancer
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Table 1 Cancer stem cells markers in solid tumors

Cancer type Phenotype Model References
Prostate cancer CD44" PCa cell line and tumor xenograft in mice [58]
Breast cancer CD44" CD247" Patient-derived tumor xenograft in mice [5]
Cervical cancer CD44" CD24" SiHa cell line [55]
Gastric cancer CD44" CD24" AGS cell line and patient tissue samples [56]
Nasopharyngeal carcinoma CD24 NPC cell Ines, mice [54]
Gastric adenocarcinoma CD44" CD133" Patient tissue samples [51]
Oral squamous cell carcinoma CD44" ALDH1 Metastatic lymph nodes [153]
Breast cancer CD44v Clinical samples [154]
Prostate cancer CD133 Primary prostate cancer cell lines [155]
Endometrial cancer CD133 Human endometrial cell lines [42]
Liver cancer CD133 Hubh-7 cells and tumor xenograft in mice [47]
Prostate cancer CD133 Primary human prostate cancer cell lines [155]
Cervical cancer CD49f SiHa and HeLa cell lines [156]
Non-small cell lung cancer CD49f Patient-derived sphere-forming assays [157]
Gastric cancer CD49f Gastric tumor tissues and tumor xenograft in mice [75]
Colon cancer CD49f HT29 and Caco2 cell lines, clinical samples [77]
Cervical cancer ALDH SiHa and HeLa cell lines, mice model [85]
Colon cancer ALDH1A3 HT29 cell line [158]
Colon cancer ALDH1A1 HT29 cell line and tumor xenograft in mice [159]
Breast cancer ALDH Breast cancer tumor tissues [160]

CSCs: Cancer stem cells; ALDH: Aldehyde dehydrogenase; NPC: Nasopharyngeal carcinoma.
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Figure 1 Schematic representation of common cancer stem cell markers. CD133, CD44, CD24 and CD49f are common phenotype markers used for the
identification of cancer stem cells (CSCs) and their isolation from tissue samples from cancer patients, such as the stomach, lung, liver, ovary, breast, prostate and
colon carcinoma. In addition, the metabolic and functional marker aldehyde dehydrogenase (ALDH) is represented in CSCs derived from ovarian carcinoma, colon
carcinoma, breast, lung and liver cancer. The CSC markers shown have a specific and relevant function in the high tumorigenic capacity of CSCs, metastasis, and

resistance to radio- and chemotherapy.

cells, isolated CD44"CD24" cells were radioresistant
and more tumorigenic than those negative for the same
markers®*!, The same CD44"CD24" phenotype was
used to identify gastric CSCs™®.

A known classic publication demonstrated that only
a small population isolated from breast tumors, defined
as CD44"CD247°", has the capacity to sustain tumor
growth in NOD/SCID mice and generate heterogeneous
cell populations as the original breast tumor™. Later, in
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human prostate cancer samples, CSCs characterized
through immunofluorescence with the CD44"/p2p1"/
CD133" phenotype were identified and characterized™”.
The next year, CD44" prostate cancer cell populations
were obtained”®. Also, CD44 and CD133 expression
was evaluated in gastric adenocarcinoma tumors by
immunohistochemistry, and it was found that both mar-
kers could be correlated with clinical and pathological
parameters®",
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Although CD44 is widely reported as a CSC marker,
it is very important to note that it is a ubiquitously
expressed molecule derived from a gene with 18 exons.
When all variable exons are spliced out, the standard
form (CD44s) is expressed, and when alternative
splicing occurs, variant forms (CD44v) are expressed™.
In spite of this, there are only a few reports in which
CD44 isoforms are considered when evaluating CSCs.
In 2005, Mackenzie and his group demonstrated the
existence of two CSC populations, both expressing
CD44™" (and CD44"), derived from head and neck cuta-
neous squamous cell carcinoma. One was associated
with EMT properties and the other one possessed an
epithelial phenotype'®. They demonstrated that the
CD44"" cells that undergo EMT preferably expressed
the CD44s isoform; while the epithelial CD44™" cells
expressed the CD44v isoform. Using RNAseq, another
group later confirmed these results. The CD44v6 isoform
was identified as the predominant isoform in a prostate
cancer epithelial cell line®®".

A very important contribution from the Mackenzie
laboratory is that they demonstrated that the use of
enzymes (for example, trypsin or collagenase) for
cell extraction from tissues caused destruction of cell
surface CD44v isoforms, leaving only the CD44s iso-
form™®®!, Moreover, CD44-specific antibodies are not
able to distinguish between all isoforms. Specifically,
in breast cancer, CD44v was found to be associated
with better prognosis while CD44s was related to poor
prognosis®”. As a consequence, CD44 is the most
frequently found CSC marker®®). Other examples are
found in colorectal cancer, in which CD44 was found
together with CD133"%"], head and neck squamous
cell carcinoma’®®®”, ovarian CSCs"”, and gastric cancer
using the specific isoform CD44v8-10"",

CD49f or integrin a6, is a transmembrane glycopro-
tein that functions as the receptor for the extracellular
matrix protein laminin”’>”*. CD49f is widely distributed
in stem cells and in the brain”; because of its role in
tumor cell proliferation, survival, self-renewal and tumor
growth, it has been proposed that it could be used as a
CSC marker”.

In sphere colony forming cell culture using prostate
cancer cells, CD49f was shown to be a better marker
than CD133 and CD44V*. In gastric cancer, CD49"®"
cells displayed CSC characteristics, including resistance
to doxorubicin, 5-fluorouracil and doxifluridinet”™. This
has also been reported in breast””® and colon cancer””.
Besides the examples mentioned above, there are
other surface markers that have been proposed as CSC
markers, such as CXCR4 and LGR5, among others.

Functional markers

Another strategy for CSC identification and purifica-
tion is the use of functional or intracellular markers
(Figure 1), which are considered to be more stable than
surface markers. The principal functional CSC marker
is aldehyde dehydrogenase or ALDH, part of an enzy-
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me superfamily encoded by 19 genes that metabolize
endogenous and exogenous aldehydes. It is present in
practically all organisms, and its levels and isozymes
vary depending on tissue and organ®.,

For ALDH identification, specific ALDH antibodies
are available; nonetheless, we suggest that the most
appropriate way for ALDH identification is the mea-
surement of its activity using the commercial ALDH
fluorescent substrate ALDEFLUOR® kit assay by Stem
Cells Technologies, Inc. (Vancouver, BC, Canada). Cells
that display high ALDH activity, (named ALDH"" or
ALDH* or ALDH™), can be identified and isolated using
flow cytometry”®. Several works have shown that high
ALDH activity is often associated with CSCs derived
from solid tumor types®®. These cells are generally cha-
racterized by a higher proliferation potential, colony-
forming capacity, self-renewal, in vivo tumorigenic
capacity, metastasis, and drug resistance. For instance,
ALDH"" CSCs have been identified in colon cancer®#,
lung cancer®™, cervical cancer™**® breast cancer®,
pancreatic cancer’®®®, and melanoma™*”, to mention
some examples.

As for surface markers, ALDH is often reported in
combination with other cell markers to increase the
accuracy of CSC validation. In some cases, high ALDH
activity is found together with high expression of
markers like CD133. Some cases have been identified
in ovarian cancer® ¥, invasive ductal breast carcinoma
tumors®®, and lung cancer™®. The combination ALDH*/
CD44" has been evaluated in various tumors such as
breast cancer’® and lung cancer®®.

CSCs AND THERAPY RESISTANCE

Several cancers acquire drug resistance during or after
treatment, which is the case for cancers that possess
cells that are more resistant than the rest of the tumor.
Generally, resistant cells have proteins that remove
drugs from cells’®”), One of the most studied mechanisms
of drug resistance in CSCs is their ability to actively expel
therapeutic drugs via transport proteins. Such proteins
are a family known as ATP-binding cassette transporters.
These proteins use ATP-dependent drug efflux pumps
for drug elimination, mostly into the extracellular space,
and they have been found to be overexpressed in CSCs
using side population assays'*"*%1%,

Additionally, high ALDH activity is directly related
to a higher resistance to several drugs, for example,
cyclophosphamide, temozolomide, irinotecan, paclitaxel,
and doxorubicin™®'%’l, Resistance conferred by ALDH
has been observed in numerous cell lines and patient
samples®*®, A well known case is the resistance to
cyclophosphamide, where ALDH irreversibly oxidizes
aldophosphamide, an active metabolite of cyclophos-
phamide, into an inert compound™®. In breast cancer,
the inhibition of ALDH activity in ALDH"" CD44" cells
leads to a reduction in chemoresistance to doxorubicin
and paclitaxel’®. This information suggests that the
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inhibition of ALDH activity leads to cell sensitization to
chemotherapeutics®.

Besides higher resistance to conventional cancer
treatments, evidence shows that highly metastatic
tumors correlate with a higher percentage of CSCs!*®.,

CSCs IN PATIENTS: PHENOTYPE AND
TYPE OF STUDIES

Most publications about the identification of CSCs have
been performed in cell lines. However, in this section,
we will discuss the cases in which CSCs were identified
in patient samples.

CD133 was analyzed in a meta-analysis of 32 stu-
dies of non-small cell lung cancer, and a higher CD133
expression was associated with poor tumor differen-
tiation and lymph node metastasis!®”.

Gastric CSCs have been identified in tumor ti-
ssues and peripheral blood using the CD44*CD54"
phenotype™®. Nevertheless, in another study, CD133"/
CD44" cells sorted from 44 patients who underwent
gastrostomy failed to produce tumors in mice and did
not show any CSC propertiest®®,

The presence of ALDH has been analyzed in normal
mammary and breast cancer tissues''®. The activity
of ALDH1A3 is associated with metastasis in patient
breast cancer samples by microarray analysis®. In
another analysis of formalin-fixed paraffin-embedded
tissue samples from primary stage IV breast cancer,
ALDH and CD44/CD24 expression was correlated with
response to endocrine therapy and clinical outcome
but was not statistically significant™,

CSC approaching therapy

Despite the broad variety of CSC publications in the
last years, the discovery of effective therapies has
remained elusive. However, some advances have been
made in the field that could be getting us closer to
direct CSC elimination. A brief outline of some of these
strategies is showed in Figure 2.

Targeting deregulated pathways in CSCs aims at
developing effective strategies against CSCs. In adult
pancreas, the Hedgehog (Hh) signaling pathway is
dormant, but it is upregulated in pancreatic ductal ade-
nocarcinoma, specifically in CD44"/CD24*/ESA*CSCs.
In a phase I study, 68 patients were treated with
GDC-0449 or Vismodegib, a Hh pathway antagonist%,
alone or in combination with gemcitabine. GDC-0449
inhibited Hh signaling, but there was no correlation
with survival or other parameters!**®l, Other drugs that
show promising results in inhibiting this pathway are
PF-044449913™ and thiostrepon, which attenuates
CD44*/CD24 triple-negative breast CSCs!'*”,

In addition, y-secretase inhibitors target the Notch
pathway and possess a stronger anti-neoplastic acti-
vity when combined with chemotherapeutic agents!'*®,
Nevertheless, adverse effects have been reported, as
patients developed cutaneous rash in phase I clinical
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Several drugs that aim to inhibit the Wnt/B-catenin
signaling pathway are being developed. One such drug
is Celecoxib, a non-steroidal anti-inflammatory drug
that inhibits B-catenin signaling by cyclo-oxygenase
(commonly known as COX)-dependent and COX-in-
dependent mechanisms!**®!, This drug downregulates
CD133 expression in colon cancer cells by inhibiting
Wnt signaling™® and intestinal cancer growth™, The
Wnt inhibitor LGK-974 inhibits porcupine, an O-acyl-
transferase required for Wnt secretion. In liver cancer
cells, LGK-974 blocks secretion of the Wnt3A protein,
and as a consequence, cells become more sensitive
to radiation™". A recent study showed that LGK-974
downregulates ALDH1A3 and reduces chemoresistance
in glioblastoma cells™**,

Curcumin is an antioxidant derived from turmeric
whose anti-cancer effect is well documented. Referring
specifically to CSCs, curcumin has shown the potential
to regulate the CSC self-renewal pathways, as well as
specific microRNAs™™?!, In CD133" lung CSCs, curcumin
suppresses the activation of Wnt/B-catenin and Shh
pathways, as well as other CSC traits™?*, It has been
demonstrated that in bladder cancer, curcumin supp-
ress the Shh pathway"* and in laryngeal carcinoma
treatment, curcumin enhances the effectiveness of
cisplatin, reducing CD133" cells in vitro™®, Additionally,
a combination of curcumin and FOLFOX chemotherapy
inhibits colorectal CSCs in ex vivo models™®.

An interesting strategy is to target CSCs using
nanoparticles to reduce side effects on surrounding
normal cells. In 2015, construction of glucose-coated
gold nanoparticles (Glu-GNPs) that used glucose to
facilitate GNP entry into leukemic stem cells overex-
pressing CD44 (TH1-P) was reported. Leukemic cells
were cultured for one hour in the absence of glucose
for better Glu-GNP uptake, and then X-ray irradiation
tests were performed. Results showed that Glu-GNPs
enhanced cell death compared to either irradiation or
GNPs alone™”), Formulated mangostin-encapsulated
poly(lactic-co-glycolic acid) nanoparticles (Mang-NPs)
successfully downregulated the known stemness genes
c-Myc, Nanog and Oct4, two CSC markers, CD24 and
CD133, and the Shh pathway™®. Salinomycin and pa-
clitaxel nanoparticles are also being used to eliminate
breast cancer cells including CD44 breast CSCs!**.,

Interestingly, CSCs have a strict dependence on
mitochondrial biogenesis. Five classes of FDA-appro-
ved antibiotics that inhibit mitochondrial biogenesis
were used on eight different cancer cell lines, and
the results suggested that the observed therapeutic
effects were infection-independent™®. Clinical trials
using doxycycline showed positive results in cancer
patients!”*', Another drug that has been shown to
specifically eliminate CSCs is metformin, and its effects
are enhanced when it is used in combination with
doxorubicin***, Moreover, it has been observed that
metformin reduces metastasis by targeting both EMT
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Figure 2 Drugs that may target cancer stem cells. Promising therapeutics to treat cancer patients. The flowchart highlights the new and more promising cancer
therapies that can be directed toward cancer stem cells to eliminate them. CSC: Cancer stem cell.

and CSCs!"*, In the ovarian cancer cell line SKOV3, low
doses of metformin diminished CD44"CD117" CSCs in
xenograft tissue and enhanced the effect of cisplatin®>"..
In esophageal cancer, metformin reduced the number
of ALDH+ cells, tumor growth in vivo™®, and in pan-
creatic cancer, it increased radiation sensitivity!®.
Using antibodies is another strategy to block CSC
signaling pathways and reduce tumor activity in diffe-
rent models. For instance, the anti-DLL4 (Enoticumab)
antibody that targets the dominant Notch ligand
DLL4 has shown anti-tumor activity, especially in
VEGF-resistant tumors in human phase [ studies!*”’.
Furthermore, another anti-DLL4 antibody (Demcizumab)
is effective in decreasing tumor size but produces
hypertension™®. In colon cancer patients, increased
progastrin levels in the blood have been observed, which
is a tumor-promoting peptide that participates in colon
CSC self-renewal and is also a direct target gene of -
catenin/Tcf4. Based on this information, specific anti-
progastrin antibodies have been developed and tested
in colon cancer cell lines and in mice. The antibodies,
alone or in combination with chemotherapy, decreased
self-renewal, migration and invasion. Moreover, they
mitigated Wnt-driven intestinal neoplasia and induced
tumor cell differentiation in vivo!™. H90 is a mouse
IgG1 mAb against human CD44 that directly targets
CSCs to induce differentiation and proliferation in AML
xenograft mouse models'*”, Additionally, anti-CD44s-
specific antibodies are effective in eliminating pancreatic
stem cells™*". For more extensive information about
antibodies against CSCs, we recommend reference!*.
ALDH is an important CSC marker that is overex-
pressed in several cancers. Specific ALDH inhibitors
are effective in modulating cell growth, apoptosis and
differentiation. Additionally, increased chemo- and
radio-sensitivity is usually observed. All-trans retinoic
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acid (commonly known as ATRA) is a first generation
systemic retinoid that promotes cell differentiationt******
and has been used in clinical trials™*!. ATRA has also
been tested in breast cancer cells"****'*"! and in gastric
cancer, where it inhibited tumor growth™®!, and in head
and neck cancer, where it suppressed Wnt/p-catenin
signaling™*. In a phase 1/1I trial, advanced breast
cancer patients did not show a significant improvement
when treated with ATRA and tamoxifen compared with
tamoxifen alone*”,

Disulfiram is a drug used for treating alcoholism,
and it shows anti-cancer activity in vitro and in vivo,
further potentiating the chemotherapeutic response.
Its effectiveness has been demonstrated on paclitaxel-
resistant triple-negative breast cancer cells!**", in non-
small cell lung cancer cells™**, and glioblastoma.

CONCLUSION

CSCs are potential cancer therapy targets due to their
tumorigenic capabilities, such as chemo- and radio-
resistance, phenomena involved in tumor relapse in
patients. Several efforts have been made to continue
to identify the CSCs in several tumors to better under-
stand the mechanisms related to tumor resistance in
oncologic patients. It is known that de-regulated cell
signaling pathways are partially responsible for main-
taining CSC stemness. Consequently, Wnt, Notch and
Hh signaling pathways have been studied to develop
an efficient anti-CSC therapy. However, innovative anti-
cancer treatments need to be developed to improve
the lifespan and quality of life of cancer patients.
Finally, we suggest that there cannot be a generalized
CSC phenotype to design and promote new drugs,
antibodies, nanoparticles, and cellular treatments to
treat oncological patients. Taken together, we suggest
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the full characterization of phenotypes and capabilities
of CSCs in patients, a cellular component responsible
for tumor progression, tumor relapse and metastasis.
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