

UNIVERSIDAD DE CUENCA

Facultad de Ingeniería

Carrera de Ingeniería Civil

Inventario y caracterización de los sistemas de riego en la cuenca hidrográfica del río Guabalcón.

Trabajo de titulación previo a la obtención del título de Ingeniero Civil

Autores:

Carangui Rodríguez Juan José CI: 0302197173 juanjose.carangui.1996@hotmail.com

González Castro Henry Ricardo CI: 0105667760 henrygz1995@gmail.com

Director:

MSc., PhD. Cisneros Espinosa Felipe Eduardo CI: 0101045540

Cuenca, Ecuador 13 de Abril del 2021

RESUMEN

La cuenca el río Guabalcón está ubicada en la región andina de la Republica de Ecuador, dentro de la cordillera Occidental, en las provincias del Chimborazo y Cañar, en específico en los cantones Alausí, Cañar y Chunchi. Las aguas de la cuenca drenan directamente al río Chanchan el cual forma parte del sistema hídrico del río Guayas el mismo que desemboca en el océano pacifico. Tiene una superficie total de 65,83 km2, con una cota que varía desde los 4420 m.s.n.m, hasta los 1.370 m.s.n.m.

La cuenca vertiente situada en plena cordillera andina, mantuvo hasta hace una década una población extensa. Actualmente presenta una población dispersa y decreciente, debido a que la mayoría de la población se dedica a la agricultura, y al presentar sistemas deficientes de cultivo, muestran olas migratorias. Esto genera preocupación y es una de las razones por las que se realiza este proyecto en el que se va a identificar y caracterizar las zonas de riego de las comunidades de la cuenca hidrográfica del rio Guabalcón.

El inventario permitirá indagar sobre el estado de las fuentes de agua, los tipos de usos y las características de la organización para el uso de agua, de tal manera de identificar los conflictos actuales y potenciales que no permitan su correcta planificación para el uso eficiente y sostenible del recurso en la comunidad.

El recurso hídrico proveniente de la cuenca es principalmente agua para riego, que tiene como principal actividad económica la agricultura, lo que implica que el sistema de distribución de agua para riego debe presentar buena eficiencia. Las herramientas empleadas en este proyecto nos sirven para planificar un uso sostenible del recurso, con el fin de garantizar su distribución en buenos términos de calidad necesarias para todos los usuarios.

Se evaluó el funcionamiento de los sistemas existentes, y de esta forma se determinó si se cumple con los requerimientos mínimos que necesita cada sistema de irrigación. La evaluación de los sistemas de riego, en base a la topografía del terreno q principal aliado del proyecto, ya que cuyos resultados fueron base fundamental para determinados estudios, y mediante el uso de sistemas de información geográfica se realizó el análisis de pendientes, delimitación de la cuenca, árbol de canales y evaluación de las estructuras existentes.

Palabras clave: Guabalcón. Inventario. Sistema de riego. Sistema de información geográfica. Cuenca hidrográfica. Catastro de usuarios.

ABSTRACT

The Guabalcón river basin is located in the Andean region of the Republic of Ecuador, within the Occidental mountain range, in the Chimborazo and Cañar provinces, specifically in the Alausí, Cañar and Chunchi cantons. The waters of the basin drain directly into the Chanchan River, which is part of the Guayas River's water system, which flows into the Pacific Ocean. It has a total area of 65.83 km2, with a height that varies from 4,420 meters above sea level, to 1,370 meters above sea level.

The basin is located in the heart of the Andean mountain range, maintained an extensive population until a decade ago. It currently has a scattered and declining population, due to the fact that the majority of the population is dedicated to agriculture, and by presenting poor farming systems, they show waves of migration. This raises concern and is one of the reasons why this project is being carried out in which the irrigation areas of the communities of the Guabalcón river basin will be identified and characterized.

The inventory will make it possible to inquire about the status of water sources, the types of uses and the characteristics of the organization for the use of water, in such a way as to identify current and potential conflicts that do not allow their correct planning for efficient use and sustainable resource in the community.

The water resource coming from the basin is mainly water for irrigation, whose main economic activity is agriculture, which implies that the irrigation water distribution system must present good efficiency. The tools used in this project help us to plan a sustainable use of the resource, in order to guarantee its distribution in good quality terms necessary for all users.

The operation of the existing systems was evaluated, and in this way it was determined if the minimum requirements that each irrigation system needs are met. The evaluation of the irrigation systems, based on the topography of the land that is the main ally of the project, since the results of which were the fundamental basis for certain studies, and through the use of geographic information systems, the analysis of slopes, delimitation of the basin, canal tree and evaluation of existing structures.

Keywords: Guabalcon. Inventory. Irrigation system. Geographic information system. Hydrographic basin. User cadastre.

Índice de contenidos

RESUME	N	2
Palabras cl	ave:	2
ABSTRAC	CT	3
Keywords:		3
AGRADE	CIMIENTO	15
DEDICAT	ORIA	16
CAPITUL	O 1	17
1. Inti	roducción	17
1.1	Antecedentes	17
1.2	Justificación	17
1.3	Objetivos	18
1.4	Descripción General	18
CAPÍTUL	O 2	19
2. Ma	rco teórico	19
2.1	La situación general del riego.	19
2.2	Inventario de los recursos hídricos	21
2.3	Infraestructura básica de los sistemas de riego	24
2.3	Red hidrográfica de la cuenca del río Guabalcón	27
CAPÍTUL	O 3	28
3. Ma	teriales y metodología	28
3.1	Materiales	28
3.2	Metodología	38
CAPÍTUL	O 4	43
4. Res	sultados y Discusión	43
4.1	Datos Generales	43
4.2	Parámetros y requerimientos hídricos de la zona de estudio	46
4.3	Infraestructura de riego	48
4.4	Evaluación de los sistemas de riego	50
4.5	Gestión de agua.	53
4.6	Determinación de la dotación de agua para las áreas de irrigación de la cuen	.ca63
4.7	Diseño de la conducción	76
4.8	Aspectos generales del riego en el presente inventario	81
CAPÍTUL	O 5	84
5. Co.	nclusiones y Recomendaciones	84
Juan José (Carangui Rodríguez	

5.1	Conclusiones.	84
5.2	Recomendaciones.	87
REFERE	ENCIAS	89
ANEXO	S	93
7.1	Concesiones de agua en la cuenca hidrográfica del río Guabalcon	93
7.2	Información de las obras de toma de agua.	94
7.3	Aforo de caudales	95
7.4	Encuesta	96
7.5	Diseño de tuberías.	97
7.6	Ortofotos.	100
7.7	Diseño de Captaciones	102
7.8	Prediseños de las obras hidráulicas	119

Índice de tablas

Tabla 1. Caudal adjudicado	33
Tabla 2. Caudal medido	34
Tabla 3. Ancho de zanja mínimo en relación al diámetro nominal (DN) de la tubería	42
Tabla 4. Ancho de zanja mínimo en relación a la profundidad de zanja	42
Tabla 5. Caudal estimado	47
Tabla 6. Obras de captación y almacenamiento	48
Tabla 7. Caracterización del Sistema de Sagüin	50
Tabla 8. Caracterización del Sistema de Namza	51
Tabla 9. Caracterización del Sistema de Compud	51
Tabla 10. Caracterización del Sistema de Guabalcón	52
Tabla 11. Caracterización del Sistema Piñancay	52
Tabla 12. Concesiones de agua de la cuenca del río Guabalcón	54
Tabla 13. Superficies que presentan las distintas clases de suelos de la cuenca del río	
Guabalcón.	
Tabla 14. Clasificación por pendientes y área de riego	59
Tabla 15. Tasa de aplicación máxima indicativa en función del tipo de suelo, inclinación y	
pendiente del terreno.	60
Tabla 16 Tipos de erosión en la provincia de Chimborazo.	61
Tabla 17. Distribución de superficie de cultivos para la unidad parcelaria de riego	62
Tabla 18. Distribución de superficie de cultivos para toda el área de riego	63
Tabla 19. Aportaciones de las respectivas zonas en m3/s	69
Tabla 20. Cantidad de Agua Disponible (l/s)	70
Tabla 21. Balance hídrico para cada sistema (l/s)	
Tabla 22. Volúmenes mensuales en m3.	
Tabla 23. Volúmenes anuales en m3	74
Tabla 24. Requerimiento Hídrico. (l/s)	
Tabla 25. Caudal de diseño	
Tabla 26. Percentiles de caudales	
Tabla 27. Caudal de crecida	
Tabla 28. Diseño de tuberías	
Tabla 29. Datos para el diseño de la captación de fondo.	
Tabla 30. Valores obtenidos en función del tipo de barrotes.	
Tabla 31. Datos adoptados de la sección de los barrotes rectangulares	
Tabla 32. Cálculo de la energía especifica al inicio de la reja	102
Tabla 33. Datos de entrada para el metodo de Zamarin	
Tabla 34. Cálculo del coeficiente de descarga	
Tabla 35. Cálculos de la rejilla.	
Tabla 36. Datos de entrada para el método de Hinds	
Tabla 37. Cálculo del perfil de flujo para el canal con flujo subcrítico	
Tabla 38. Determinación del perfil de flujo a partir de la sección de control	
Tabla 39. Datos de entrada para el estudio de un desarenador	
Tabla 40. Condiciones en el canal de entrada	
Tabla 41. Cálculo de la velocidad de sedimentación.	
Tabla 42. Capacidad de arrastre del canal para el diámetro máximo de partículas	
Tabla 43. Cálculo de dimensiones de cámara	106

Tabla 44. Diseño del sedimentador de flujo horizontal para lavado intermitente	106
Tabla 45. Datos para el diseño del vertedero del desarenador	107
Tabla 46. Datos para el diseño de la captación de fondo	107
Tabla 47. Valores obtenidos en función del tipo de barrotes.	107
Tabla 48. Datos adoptados de la sección de los barrotes rectangulares	107
Tabla 49. Cálculo de la energía especifica al inicio de la reja	107
Tabla 50. Datos de entrada para el metodo de Zamarin	108
Tabla 51. Cálculo del coeficiente de descarga	108
Tabla 52. Cálculos de la rejilla	108
Tabla 53. Datos de entrada para el método de Hinds	109
Tabla 54. Cálculo del perfil de flujo para el canal con flujo subcrítico	109
Tabla 55. Determinación del perfil de flujo a partir de la sección de control	110
Tabla 56. Datos de entrada para el estudio de un desarenador	111
Tabla 57. Condiciones en el canal de entrada	111
Tabla 58. Cálculo de la velocidad de sedimentación.	111
Tabla 59. Capacidad de arrastre del canal para el diámetro máximo de partículas.	111
Tabla 60. Cálculo de dimensiones de cámara	112
Tabla 61. Diseño del sedimentador de flujo horizontal para lavado intermitente	112
Tabla 62. Datos para el diseño del vertedero del desarenador	112
Tabla 63. Datos para el diseño de la captación de fondo	112
Tabla 64. Valores obtenidos en función del tipo de barrotes.	113
Tabla 65. Datos adoptados de la sección de los barrotes rectangulares	113
Tabla 66. Cálculo de la energía especifica al inicio de la reja	113
Tabla 67. Datos de entrada para el metodo de Zamarin	113
Tabla 68. Cálculo del coeficiente de descarga	114
Tabla 69. Cálculos de la rejilla	114
Tabla 70. Datos de entrada para el método de Hinds	114
Tabla 71. Cálculo del perfil de flujo para el canal con flujo subcrítico	115
Tabla 72. Determinación del perfil de flujo a partir de la sección de control	
Tabla 73. Datos de entrada para el estudio de un desarenador	117
Tabla 74. Condiciones en el canal de entrada	117
Tabla 75. Cálculo de la velocidad de sedimentación	117
Tabla 76. Capacidad de arrastre del canal para el diámetro máximo de partículas.	117
Tabla 77. Cálculo de dimensiones de cámara	118
Tabla 78. Diseño del sedimentador de flujo horizontal para lavado intermitente	118
Tabla 79 Datos para el diseño del vertedero del desarenador	118

Índice de ilustraciones

Ilustración 1. Ubicación de la cuenca del río Guabalcon	30
Ilustración 2. Vuelo de DRONE	31
Ilustración 3. GPS Trimble RTK R8.	32
Ilustración 4. Aforo de Caudales.	33
Ilustración 5. Inexistencia de infraestructura	35
Ilustración 6. Ausencia de compuertas derivadoras	36
Ilustración 7. Mal revestimiento de los canales	36
Ilustración 8. Mal estado del cruce de dos canales	37
Ilustración 9. Distribución de cuartiles de caudales	41
Ilustración 10. Infraestructura Hidráulica	50
Ilustración 11. Mapa de suelos de la cuenca del río Guabalcón	56
Ilustración 12. Zonas ecológicas en la cuenca del río Guabalcón	57
Ilustración 13. Usos del suelo dentro de la cuenca del río Guabalcón	58
Ilustración 14. Mapa de la cuenca del río Guabalcón según sus pendientes	59
Ilustración 15. Sección de tubería	77
Ilustración 16. Bocatoma Sagüin vista en planta	119
Ilustración 17. Bocatoma Sagüin vista en perfil	120
Ilustración 18. Desarenador Sagüin vista en planta	120
Ilustración 19. Desarenador Sagüin vista en perfil	120
Ilustración 20. Bocatoma Namza vista en planta	121
Ilustración 21. Bocatoma Namza vista en perfil	121
Ilustración 22. Desarenador Namza vista en planta	122
Ilustración 23. Desarenador Namza vista en perfil	122
Ilustración 24. Bocatoma Compud vista en planta	123
Ilustración 25. Bocatoma Compud vista en perfil	123
Ilustración 26. Desarenador Compud vista en planta	124
Ilustración 27. Desarenador Compud vista en perfil	124

Índice de gráficos

Gráfico 1. Aprovechamiento del agua en el país	20
Gráfico 2. Distribución del agua en la cuenca.	44
Gráfico 3. Distribución de los sistemas de riego por categoría y área regada	45
Gráfico 4. Relación de número de usuarios y área regada por sistema	46
Gráfico 5. Relación de área regada por usuario.	46
Gráfico 6. Área regada por fuente de agua.	47
Gráfico 7. Cantidad de agua disponible (l/s) y área de riego (ha)	48
Gráfico 8 Mecanismos de laboreo del suelo.	61
Gráfico 9. Utilización de tecnología por los usuarios de sistemas de riego	62
Gráfico 10. Distribución de cultivos y área de riego.	63
Gráfico 11. Variación histórica de las precipitaciones en la estación de Compud. Serie 19	
Gráfico 12. Precipitación media mensual en la estación meteorológica de Compud	64
Gráfico 13. Caudales máximos	
Gráfico 14. Caudales mínimos.	66
Gráfico 15. Caudales medios	66
Gráfico 16. Humedad Relativa	67
Gráfico 17. Velocidad del Viento	68
Gráfico 18. Temperaturas máximas, medias y mínimas de la estación meteorológica Chu	ınchi .68
Gráfico 19. Evapotranspiración media calculada por el método de Penman-Monteith par	a los
datos de la estación meteorológica Namza.	69
Gráfico 20. Aporte de caudal realizado a partir de los datos de precipitaciones medias en	
estación de Compud	
Gráfico 21. Balance hídrico para el sistema de Piñancay	71
Gráfico 22. Balance hídrico para el sistema de Guabalcón	
Gráfico 23. Balance hídrico para el sistema de Namza.	72
Gráfico 24. Balance hídrico para el sistema de Sagüin	
Gráfico 25. Balance hídrico para el sistema de Compud	73
Gráfico 26. Perfil del canal de Sagüin	78
Gráfico 27. Perfil del canal de Compud	
Gráfico 28. Perfil del canal de Guabalcón	
Gráfico 29. Perfil del canal de Piñancay	
Gráfico 30. Perfil del canal de Namza 1	
Gráfico 31. Perfil del canal de Namza 2.	
Gráfico 32. Perfil del canal de Namza 3.	81
Gráfico 33. Perfil de flujo hipotético Sagüin.	104
Gráfico 34. Perfil de flujo en la galería Sagüin.	105
Gráfico 35. Perfil de flujo hipotético Namza	110
Gráfico 36. Perfil de flujo en la galería Namza.	110
Gráfico 37. Perfil de flujo hipotético Compud.	115
Gráfico 38. Perfil de flujo en la galería Compud	116

4	_		
Indice	de	ecuaciones	C

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Juan José Carangui Rodríguez en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "Inventario y caracterización de los sistemas de riego en la cuenca hidrográfica del río Guabalcón", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS,

CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 13 de Abril de 2021

Juan José Carangui Rodríguez

Cláusula de Propiedad Intelectual

Juan José Carangui Rodríguez, autor del trabajo de titulación "Inventario y caracterización de los sistemas de riego en la cuenca hidrográfica del río Guabalcón", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Cuenca, 13 de Abril de 2021

Juan José Carangui Rodríguez

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Henry Ricardo González Castro en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "Inventario y caracterización de los sistemas de riego en la cuenca hidrográfica del río Guabalcón", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS,

CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obrá, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 13 de Abril de 2021

Henry Ricardo González Castro

Cláusula de Propiedad Intelectual

Henry Ricardo González Castro, autor del trabajo de titulación "Inventario y caracterización de los sistemas de riego en la cuenca hidrográfica del río Guabalcón", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Cuenca, 13 de Abril de 2021

Henry Ricardo González Castro

AGRADECIMIENTO

A Dios por darnos salud y no desampararnos en todo momento, más aún por protegernos en esta época tan difícil que está atravesando el mundo entero, agradecidos eternamente por llenarnos de sabiduría y darnos la fortaleza necesaria para cumplir nuestros objetivos.

A nuestro director, Ing. Felipe Cisneros Espinosa, nuestra gratitud por sus conocimientos y experiencias impartidas para el desarrollo de este proyecto.

A nuestros lectores, Ing. Esteban Pacheco e Ing. Verónica Carrillo por brindarnos su apoyo y enseñanzas que solventaron nuestras dudas generadas a lo largo de la elaboración del trabajo de titulación.

A los habitantes de las distintas comunidades pertenecientes a la cuenca del río Guabalcón, por su disposición y compromiso, que nos acompañaron durante todo el tiempo que se desarrolló este proyecto.

Al Programa para el Manejo del Agua y del Suelo (PROMAS), por permitirnos acceder a información relevante que fue la base para el desarrollo de este trabajo.

A nuestro grupo de estudio que fueron parte de nuestra carrera universitaria por enseñarnos el significado de compañerismo, por su amistad y apoyo moral que nos ayudaron día a día a salir adelante.

Finalmente, a nuestros familiares por su apoyo incondicional que a lo largo de nuestras vidas nos han ayudado a mejorar y alcanzar nuestros sueños.

Juan José y Henry Ricardo

DEDICATORIA

A Dios y la Virgen de la Nube, por permitirme concluir este proyecto y alcanzar este momento tan especial en mi vida.

A mi madre Sandra, por ser mi principal fortaleza y apoyarme cada uno de mis días para cumplir mis metas, por enseñarme que el esfuerzo y trabajo constante siempre tiene su recompensa. Tu bendición siempre me ha protegido madre mía y este proyecto va para ti

A mi padre Marcelo, por ser el forjador de mi camino, quien siempre creyó en mí, aquel que me acompaño moralmente durante todo este trayecto y con su apoyo constante me ayudo a encontrar destrezas y habilidades que solamente trabajando juntos lo lograría.

A mis hermanos Carolina, Juan David y Juan Marcelo, que con su entrega de amor infinito siempre me han motivado a seguir adelante y no dejaron nunca que desista y me dé por vencido en los momentos más difíciles.

A María José, mi compañera de vida universitaria, siempre tu apoyo, alegría y afecto incondicional, hizo de mí una mejor persona e impulsó a cumplir todos mis objetivos, sin ti todo hubiera sido diferente, gracias por estar siempre.

Juan José

Este trabajo de titulación se lo quiero dedicar a mi padre Ricardo, que siempre ha sido mi ejemplo a seguir e hizo hasta lo imposible para verme salir adelante, aunque hoy no esté conmigo sé que en el cielo estará muy orgulloso de lo que he alcanzado, pues este logro es de los dos.

A mi madre Mercedes, que ha sido un pilar fundamental en mi vida y mi apoyo incondicional, a pesar de las adversidades que se nos ha presentado, ella ha sido capaz de guiarme por el buen camino e impulsarme a cumplir todas las metas que me he trazado.

A mi enamorada Belén, que me ayudó a cumplir este objetivo y ha estado siempre para mí, más aún cuando me sentía vencido ella con su cariño y amor me supo motivar a no darme por vencido.

Al Dr. Edisson González que ha sido como mi hermano mayor y desde pequeño me ha guiado e impulsado a alcanzar mis metas, y a mi hermano Mateo que me motiva día a día a mejorar como persona y ser un buen ejemplo para él.

Henry Ricardo

CAPITULO 1

1. Introducción

1.1 Antecedentes

La cuenca del rio Guabalcón, conservo hasta hace una década una población extensa. Actualmente presenta una población dispersa y decreciente, debido a que la mayoría de la población se dedica a la agricultura, y al presentar sistemas deficientes de cultivo, tierras menos productivas, suelos inestables y condiciones climáticas muchas veces no favorables, son el resultado actual de la disminución de la población existente en la cuenca.

La cuenca tiene terrenos con grandes pendientes, mismos que son causa de procesos de erosión hídrica, que se han demostrado con los deslizamientos presentados en el año 2021 en la zona de aledaña al río Guatajsi. Sin embargo, la cuenca mantiene casi intacta su cabecera de pajonal y chaparral, puesto que, en Ecuador, el páramo posee inmensa capacidad de almacenamiento del recurso hídrico, pues mantiene durante todo el año la disponibilidad de agua para usos domésticos, industriales y ambientales. Esto es de gran importancia ya que es su mejor activo para una adecuada organización agro-hidrológica de la misma.

A nivel de los Andes ecuatorianos, gran parte de sistemas relacionados al riego son antiguos; las construcciones datan desde la época de la colonia hasta inicios del presente siglo. En la provincia de Chimborazo, especialmente en los cantones de Alausí y Chunchi, están instaurados varios canales de riego dado que en la región la principal actividad económica es la agricultura. (PROMAS, Estudios y Diseños para la Rehabilitación y el Mejoramiento de los Sistemas de Riego en la Provincia de Chimborazo, 2017)

1.2 Justificación

La administración adecuada de los recursos hídricos demanda tener un conocimiento pleno de la cantidad, calidad, distribución y acceso al uso del agua y de manera particular el uso de agua para actividades agrícolas, estimándose que cubre alrededor del 90% de la demanda total. Así el PROMAS (Programa para Manejo del Agua y el Suelo), en el año 2012 inició el estudio dedicado a realizar una caracterización de los sistemas de riego en la cuenca hidrográfica del rio Guabalcón.

El inventario de los sistemas de riego refiere a valorar el listado de todas las obras hidráulicas que constituyen la infraestructura de riego, tales como bocatoma, sistemas de conducción y drenaje con que cuenta una zona de riego, así como de la infraestructura auxiliar constituido por estaciones hidrométricas y meteorológicas, y fuentes de agua puntuales.

1.3 Objetivos

1.3.1 Objetivo general

Inventariar y caracterizar las zonas de riego pertenecientes a las comunidades de la cuenca hidrográfica del rio Guabalcón.

1.3.2 Objetivos específicos

- Identificar los parámetros y requerimientos hídricos de la cuenca.
- Evaluar el funcionamiento de los sistemas de riego existentes.
- Determinar la dotación de agua para las áreas de irrigación de la cuenca.

1.4 Descripción General

"En la zona andina del Ecuador el riego particular presta servicio al 80% de la superficie total regada" (Torres, 2007). A pesar de esto, no se ha brindado apoyo a este sector, solamente se ha considerado acción estatal, misma que para su diseño no tomo en cuenta a los campesinos que iban a ser beneficiados, lo que con llevo a un fracaso del sistema de riego, puesto que no respondían a las necesidades de los usuarios. Esto significa concebir el riego como una elaboración social y no como una propuesta técnica. En la provincia de Chimborazo de acuerdo a la información referida por el Consejo Nacional de Recursos Hídricos, se han otorgado más de seis mil concesiones de agua donde se incluye el uso agrícola, consumo humano, abrevadero, generación eléctrica, piscicultura y recreación.

La problemática social entorno al riego resalta que se impusieron formas organizativas distintas a la socialmente reconocidas, mismas que alteraron la representatividad y legitimidad de las organizaciones campesinas, sumando los conflictos relacionados con la accesibilidad, distribución, cantidad y calidad del recurso hídrico, lo que conlleva a que existan concesiones de agua que son superiores a los caudales disponibles y genero deficiencia en los sistemas de riego.

El estudio en el área de la cuenca del Rio Guabalcón, es parte integral del Inventario de Recursos Hídricos, que está liderado por el PROMAS, el cual se ha enfocado desde la oferta y demanda, es decir, que busca caracterizar a los usuarios de agua que se encuentran circunscritos en el territorio delimitado por la cuenca como unidad hidrográfica de análisis.

CAPÍTULO 2

2. Marco teórico

2.1 La situación general del riego.

2.1.1 La importancia del riego

Según (FORO RECURSOS HÍDRICOS, 2005), la importancia del riego y las funciones que realiza esta actividad humana en las áreas productivas, sociales, ambientales y económicos, destacan algunas funciones, tales como:

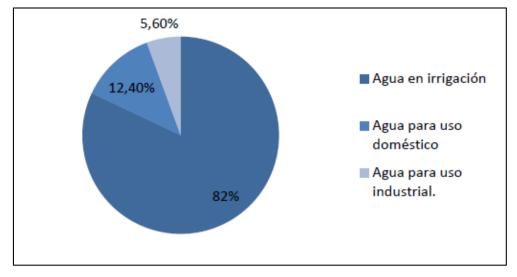
En el ámbito productivo, el riego contribuye a:

- Solucionar los problemas derivados de la escasez de agua en algunas zonas y regiones.
- Garantizar la dotación de agua para los cultivos en épocas secas.
- Contribuir al incremento y diversificación de la producción agropecuaria.
- Disminuir los riesgos para la producción, particularmente aquellos que se derivan de factores ambientales, como las sequías y heladas.

En el ámbito social, el riego tiene implicaciones importantes:

- Contribuye a la estabilización de precios de los productos agrícolas.
- Aporta a la generación de empleo en el agro.
- Articula la organización y movilización social en el campo.

Por otro lado, el riego tiene implicaciones ambientales positivas. Al ayudar a aumentar la producción, el riego es, o puede ser, un factor que elimina la necesidad del crecimiento de la frontera agrícola hacia ecosistemas frágiles, como páramos o bosques, por ejemplo. Con respecto a la importancia estrictamente económica, se estima que el valor de la producción bajo riego representa el 70% de la producción agrícola total del país.


2.1.2 La superficie bajo riego

En el tercer censo agrícola en el año 2000, el área total para riego en este momento es de 853,332 hectáreas en todo el país. Sin embargo, dicha área irrigada representa poco más de una cuarta parte del área que puede ser irrigada si el país tuviera instalada la infraestructura de riego necesaria.

Pese a ello, en este momento, el aprovechamiento de agua en irrigación constituye el 82% del consumo total de agua en el país, el resto se distribuye entre el 12.4 % para uso doméstico y el 5.6 % para uso industrial. (FORO RECURSOS HÍDRICOS, 2005)

Gráfico 1. Aprovechamiento del agua en el país

Elaborado: Fuente de los Recursos Hídricos (2005).

En 2010, se estimaron 1 152 000 ha con infraestructura de riego, superficie obtenida a partir de la Subsecretaría de Riego y Drenaje (SRD) y de la Secretaría del Agua (SENAGUA). Sin embargo, se estima que alrededor de 348 000 ha adicionales están siendo regadas sin concesión y por lo tanto no aparecen en las estadísticas oficiales, obteniendo de esta manera un total de 1 500 000 ha equipadas con riego. (FAO, AQUASTAT Perfl de País - Ecuador., 2015)

2.1.3 Los sistemas de Riego en el Ecuador.

En el año 2000 "Del total de la superficie actualmente regada, 853.332 hectáreas a nivel nacional, los sistemas de riego construidos por el estado cubren una superficie de 200.000 hectáreas. El resto, es decir, 653.332 hectáreas está cubierto por sistemas de riego empresariales, particulares, campesinos, comunitarios.

Con una inversión que supera ampliamente los 2000 millones de dólares, el estado ha construido 73 sistemas de riego, 51 de los cuales se encuentran en la sierra y 22 en la costa." (Zapatta, A., y Gasselin, P., 2005)

Debido al último censo en el año 2010 del total de 1 500 000 ha equipadas con infraestructura de riego se tiene la siguiente clasificación:

- 266 000 ha o el 18 por ciento corresponde a la superficie con infraestructura construida por el Estado.
- 466 000 ha o el 31 por ciento corresponde a los sistemas comunitarios y asociativos.
- 420 000 ha o el 28 por ciento corresponde a los sistemas privados-particulares.
- 348 000 ha o el 23 por ciento corresponden al uso del agua sin concesión.

La superficie con infraestructura de riego efectivamente regada es de 942 000 ha, lo cual es relativamente bajo, debido a los múltiples problemas que presentan principalmente los sistemas de riego públicos y los sistemas de riego comunitarios, de los cuales tan sólo se regó el 61 por ciento y el 50 por ciento de la superficie equipada respectivamente. Los sistemas privados/particulares se estima que regaron el 78 por ciento de la superficie equipada. (MAGAP, 2011)

Según (Zapatta, A., y Gasselin, P., 2005) "El riego afronta un conjunto de problemas relacionados entre sí, de ellos los más comunes están asociados a:

- Escasa disponibilidad de agua.
- Acceso socialmente inequitativo
- Bajo nivel de tecnificación y de eficiencia del riego.
- Carencia de estrategias estatales para el desarrollo del riego.
- Limitaciones institucionales
- Dificultades organizativas en la administración de los sistemas."

2.2 Inventario de los recursos hídricos

Según (FORO RECURSOS HÍDRICOS, 2005), menciona "El inventario es una herramienta que nos permite analizar el estado de las fuentes de agua, los tipos de usos, las características de la organización para la gestión del agua, los conflictos (actuales y potenciales, y los procesos de contaminación existentes). Además, posibilita la compresión de la dinámica entre la oferta y la demanda de agua; con el fin de asegurar el equilibrio ambiental y responder a la demanda social, económica y productiva". Esta herramienta nos ayuda a planificar el uso eficiente y sostenible del recurso, para garantizar su existencia en términos de cantidad y calidad.

La implementación de un proceso de inventario de recursos hídricos ayudaría en una toma de decisiones conscientes, en la que los espacios, temas y enfoques se eligen en función de las prioridades para la gestión integrada de los recursos a nivel local, regional o nacional.

Según (Pulido Fernández, M., Schnabel, S., Jariego García, A. y Lagar Timón, D., 2010) proponen que se debe trabajar con diferentes aplicaciones ambientales en las que fue necesario realizar un inventario de los recursos hídricos. Para ello, los autores proponen la aplicación de procedimientos metodológicos basados en SIG (Sistemas de Información Geográfica) a través de información cartográfica digital con el fin de generalizar una metodología que permita un proceso

continuo de recolección y monitoreo de los recursos hídricos disponibles, aplicable a diferentes escalas espaciales.

La realización de inventarios de los recursos hídricos debe contribuir a:

- Diseñar planes hídricos nacionales y locales.
- Articular en forma coherente la oferta y la demanda.
- Ajustar y aplicar estrategias para conservar y proteger el recurso.
- Garantizar la cantidad y calidad del recurso.
- Mejorar las estrategias de intervención y gestión.
- Garantizar un uso eficiente y racional del agua.
- Promover un acceso y uso equitativo del agua.
- Mejorar las inversiones en los diversos sectores usuarios de estos recursos.
- Generar opinión pública sobre prioridades, problemas y alternativas.

Para (Raffino María Estela, 2020) los recursos hídricos, son los reservorios e insumos de agua dulce que, en diferentes estados físicos y disponibles o potencialmente disponibles, pueden ser utilizados por los seres humanos para satisfacer una necesidad específica, en principio, no tienen un uso específico, porque son recursos naturales.

El estudio de la demanda en agua de riego y drenaje, es el primero de los ejes temáticos del inventario, según el uso de una mayor demanda de agua en términos de volúmenes, su relación directa con la producción y la generación de valor agregado, para facilitar alternativas de generación de ingresos.

- Concesiones y derechos de agua.
- Organizaciones locales para la gestión y administración del agua.
- Proyectos de riego.
- Infraestructura: toma, transporte, distribución.
- Análisis de los sistemas de producción agropecuarios: estructura agraria y sistemas de riegos como construcción social e histórica, características y relación con la producción, disfuncionamientos.
- Información socioeconómica
- Conflictos entre usuarios, conflictos entre usos.

Universidad de Cuenca

El estudio de la calidad del agua y evaluación de la contaminación, determina la cantidad de agua de calidad disponible para los diversos usos y, en particular, para los dos usos anteriores.

- Estado ambiental de las fuentes hídricas y de los ecosistemas asociados.
- Ubicación de áreas de contaminación del agua y tipo de contaminantes.
- Mediciones de la contaminación ambiental (ríos y fuentes de agua).

El estudio de la cantidad del agua disponible cuantifica el recurso, para poder llegar a aproximaciones de balances hídricos, tales como:

- Características climáticas: hidrología y meteorología (red de estaciones hidrometeorológicas, temperaturas, precipitaciones).
- Caracterización de las captaciones y fuentes: análisis de caudales, modelo lluviacaudal, evaluación de caudales disponibles.
- Características geológicas, biológicas.

Según (Briceño, M., Alvarez, F., y Barahona, U., 2012) el agua es el elemento integrador para la gestión de las cuencas hidrográficas, por lo que el concepto de calidad y cantidad tiene prioridad y el agua juega un papel estratégico en la gestión sostenible o integral de las cuencas hidrográficas.

Por tanto, el inventario corrobora al desarrollo sostenible de la cuenca, para que satisfaga las necesidades de las generaciones de hoy sin poner en peligro ni menoscabar las capacidades de las generaciones futuras para satisfacer sus propias necesidades.

Este concepto implica tres elementos básicos:

- El aprovechamiento adecuado de los recursos.
- Una distribución más equitativa de los recursos manteniendo el equilibrio,
- La participación de la población en la gestión y la conservación de la capacidad productiva de los ecosistemas intervenidos a fin de que se mantenga el nivel de producción con características permanentes.

Además, con el inventario del recurso hídrico, se espera que el desarrollo sustentable sea aquel en el que se garantice que las poblaciones de estas cuencas alcancen un nivel aceptable de bienestar en el presente y en el futuro; pero que esto también es compatible con las condiciones ecológicas y socioeconómicas a largo plazo. Esto tiene que ver con el uso adecuado del suelo, con el manejo de la vegetación, los sistemas de cultivo, el cuidado y uso del agua, el mantenimiento de la biodiversidad, etc.

Juan José Carangui Rodríguez Henry Ricardo González Castro

2.3 Infraestructura básica de los sistemas de riego

2.3.1 Infraestructura de captación, regulación y distribución

2.3.1.1 Bocatoma

Según (Romero, F. H. C, 2005), Bocatoma o captación es una estructura hidráulica que se origina en un curso de agua, río, arroyo o canal. o por un lago; o incluso del mar, parte del agua disponible en el mismo que se utilizará para un propósito específico, por ejemplo, para suministro de agua potable, riego, generación de energía, acuicultura, refrigeración de plantas industriales, etc.

Según el (CAMAREN, 2002), los Tipos de Bocatomas son:

- Tipo convencional o de presa derivadora que Consiste en un muro que cierra el cauce del río y capta las aguas mediante una rejilla lateral de entrada.
- Tipo tirolesa, caucasiana o de rejilla de fondo. Consiste en un muro construido a lo ancho del río y capta las aguas mediante una rejilla colocada en la parte superior de dicho muro.
- Tipo rústicas, rudimentarias o de estiaje. Son bocatomas construidas con materiales de la zona tales como piedras, chambas, arenas, palos, etc.

2.3.1.2 Aliviadero

Según (Breña, 2005). "Es aquella obra que se construye para evacuar el agua excedente o de avenida que no cabe en el espacio destinado para el almacenamiento. Partes que componen el aliviadero, las siguientes:

- Canal de aproximación. Es aquel cuya función dentro del aliviadero, es captar el agua del embalse y conducirla a la estructura de control o sección vertedora, garantizando una distribución uniforme del flujo en dicha sección.
- Sección vertedora. Es aquella que regula la descarga directamente del embalse. Esta sección define la capacidad de evacuación de un aliviadero.
- **Transición.** Es una estructura que se ubica entre el cimacio y la rápida con el objetivo de cambiar la forma o las dimensiones o ambas, de la sección transversal, de la cual se puede prescindir en dependencia de las dimensiones del vertedor.
- **Rápida.** Es aquel elemento del aliviadero encargado de salvar la diferencia de nivel entre la sección vertedora y el cauce del río o canal de salida. Su pendiente generalmente es fuerte, asegurando un régimen de circulación supercrítico.
- Estructura terminal o disipadora de energía. Es la encargada de disipar la alta energía cinética que alcanza el agua al circular por la rápida, debido a su pendiente, evitando así la

erosión del terreno natural y la consecuente destrucción de la propia obra u otra cercana a la descarga del aliviadero.

• Canal de salida. - Es el encargado de conducir el agua hasta el cauce viejo del río."

2.3.1.3 Desarrenador

Según (Albuja, C., Pinos, C., y Samaniego, J, 2013)" Los desarenadores son estructuras ubicadas a continuación de una captación de agua y que permiten remover partículas como arenas, arcillas, gravas finas y material orgánico de cierto tamaño contenidas en el agua que ingresa de una fuente superficial el objetivo principal es proteger la línea de conducción, equipos y accesorios instalados aguas debajo de la captación, evitando problemas de erosión y/o acumulación de materiales que pueden producir desgastes en el sistema."

2.3.1.4 Compuerta

Según (INGENIERO DE CAMINOS, 2017). "Las compuertas hidráulicas son dispositivos mecánicos para el control del flujo del agua que se sitúan en los portillos de las presas, aliviaderos o en las esclusas de canales con el fin de retener o permitir el paso de toda o parte del agua embalsada. El uso de compuertas permite, entre otros, el control de inundaciones o la creación de reservas de agua y forman parte de proyectos de irrigación, sistemas de drenaje o plantas de tratamiento de aguas."

2.3.2 Infraestructura de conducción

2.3.2.1 Canal revestido

(Zimmerman, J, 1985), menciona "En muchos países estos canales son los más comúnmente construidos y empleados para aliviar las limitaciones del canal de tierra. Sin embargo, el canal concreto es muy caro de construir. Necesita acero de refuerzo, dispositivos de cierre y una mano de obra diestra para su construcción."

Según (Fritz Mazzei, P, 1999) dice "El revestimiento de canales, aparte de su función fundamental de eliminar las pérdidas por infiltración, ofrece otras ventajas de importancia entre las cuales cabe mencionar las siguientes:

- Prevención de la erosión.
- Imposibilidad de roturas.
- Eliminación de vegetación.
- Aumento de la capacidad del canal, o reducción de la sección transversal.
- Disminución de los costos de mantenimiento.
- Acortamiento del trazado por las mayores pendientes admisibles.
- Prevención sanitaria.

El revestimiento de los canales permite adoptar velocidades de escurrimiento más elevadas, y por lo tanto mayores pendientes y radios de curvas horizontales menores, lo que se traduce en longitudes y secciones menores, así como taludes más empinados que en los canales sin revestir.

2.3.2.2 Canal de tierra

(Zimmerman, J, 1985), menciona "Que el canal de tierra es todavía con mucho el conducto más ampliamente usado en las redes de riego. Cuando están cuidadosamente diseñados y construidos los canales de tierra, pueden servir por años con un mantenimiento relativamente pequeño. Para mantener o conservar una sección transversal estable, así como su capacidad de escurrimiento, debe obtenerse la velocidad adecuada de ese escurrimiento, en relación con la sección transversal y con la pendiente.

Siempre debe tenerse en cuenta que el agua para cada valor de la velocidad tiene una capacidad específica según el material de acarreo del lecho y el acarreo de limo en suspensión: y mientras más rapidez tenga el escurrimiento, mayor es la capacidad de acarreo y más grueso el material que transportará."

2.3.2.3 Tubería

Según (Metcalf, L., y H. P. Eddy., 1928) "La tubería es un conducto compuesto de tubos que cumple la función de transportar agua u otros fluidos. Se suele elaborar con materiales muy diversos."

2.3.2.3 Acueducto

Según, (Rodríguez Perez, J.F, 2015) "El acueducto es un sistema o conjunto de sistemas de irrigación, que permite transportar agua en forma de flujo continuo desde un lugar en el que ésta es accesible en la naturaleza, hasta un punto de consumo distante. Cualquier asentamiento humano, por pequeño que sea, necesita disponer de un sistema de aprovisionamiento de agua que satisfaga sus necesidades vitales. La solución más elemental consiste en establecer el poblamiento en las proximidades de un río o manantial, desde donde se acarrea el agua a los puntos de consumo."

2.3.3 Daños frecuentes en los sistemas de riego

Filtraciones.- Según (White, G. F, 1978) en los principales canales de riego, la filtración puede constituir una parte considerable de las pérdidas generales de agua, especialmente cuando los canales no están cubiertos y se encuentran en terrenos con altos niveles de percolación del suelo.

Derrumbos.- Según (Fritz Mazzei, P, 1999) menciona "Como consecuencia de socavaciones provocadas por erosión, embancamientos por perturbaciones debidas a vegetación o sedimentación de materiales de arrastre, acción de animales cavadores u otras causas diversas, en los canales no revestidos pueden producirse roturas".

Contaminación.- Según (Mundial,B, 1992). "Los grandes proyectos de riego que represan y desvían las aguas de los ríos, tienen el potencial de causar importantes trastornos ambientales como resultado de los cambios en la hidrología y limnología de las cuencas de los ríos. El desvío y pérdida de agua debido al riego reduce el caudal que llega a los usuarios, aguas abajo, incluyendo las municipalidades, las industrias y los agricultores.

2.3.4 Operación y mantenimiento de los canales

El (CAMAREN, 2002) menciona algunas actividades de operación y mantenimiento que generalmente se realizan en los canales. Para la operación se debe realizar recorridos diarios de inspección del canal para verificar o controlar filtraciones, asentamientos del canal, obstrucciones, desbordamientos, robos de agua, caudales establecidos. Además, se debe realizar el mantenimiento, el cual consiste en: limpiar los canales, protección biofísica (empalizada y muros para evitar el deslizamiento) del canal, y reparaciones necesarias.

2.3 Red hidrográfica de la cuenca del río Guabalcón.

El río Guabalcón forma parte del sistema hídrico de la cuenca del río Chanchán. Recibe la afluencia del río Turmas, que nacen en los páramos. El río Guabalcón aguas arriba recibe la afluencia de las quebradas Compud, Cuchicorral, Tinajeras además de otras pequeñas quebradas, dentro de la cuenca se encuentran poblados como Piñancay, Pasoloma, Verdepamba y Compud. (PROMAS, Informe de proyecto EPIC FORCE, 2006).

El río Chanchan forma parte del sistema hídrico de la cuenca del río Guayas, que desemboca en el Pacífico. Está formado por la unión de los ríos Alausí y Guasuntos, que nacen en los páramos de la cordillera oriental. Aguas abajo recibe la afluencia de los ríos Machángara, Blanco, Chinguancay, Chilicay y Azul por la orilla derecha, y, Huatacsí, Guabalcón, y Angas por la orilla izquierda.

El río Yaguachi con el rio Babahoyo van a formar parte del Rio Guayas y este a su vez forma el Golfo de Guayaquil por lo tanto cualquier actividad que se realice en este río, su afectación va más allá de los limites propios de él, su influencia es de importancia ecológica y económica de las comunidades locales y el desarrollo economía del país por ser el Golfo de Guayaquil el más grande del océano Pacífico en Sudamérica. (Valencia, 2018)

El río Yaguachi es un importante sistema fluvial de la provincia del Guayas del cual se abastece la población aledaña para agua consumo, riego y recreación. Se forma al Este de la provincia, a la altura de Naranjito, en la confluencia de los ríos Chimbo y Chanchán, y corre en dirección noreste hasta desembocar en el Babahoyo.

La cuenca hidrográfica del río Guayas se conforma por los ríos: Babahoyo, Daule, Vinces y Yaguachi, por situarse en la principal región ganadera y agrícola del Ecuador, en ella se encuentra la mayoría de población nacional y comprende también una gran parte de la red hídrica de la costa noroeste de América del Sur. (Espol, 2000)

CAPÍTULO 3

3. Materiales y metodología

A través de este trabajo de titulación se proyecta realizar: (i) inspecciones de campo que permitan conocer las necesidades hídricas de las comunidades pertenecientes a la cuenca hidrográfica del río Guabalcón, (ii) evaluar el estado actual de los sistemas de riego; (iii) Determinar la cantidad de agua de riego disponible para mencionadas comunidades.

Para el diagnóstico de la situación actual del sistema de riego, se obtendrán datos como el catastro de red, curvas de consumo, caudal disponible y problemáticas presentes. Se realizarán encuestas para determinar las necesidades de los agricultores, aforos de caudales, y conjuntamente con información proporcionada por el PROMAS se evaluará el funcionamiento del sistema de irrigación.

Con los datos obtenidos en el diagnóstico se realizará un análisis y procesamiento de la información, posteriormente con la inspección de campo y en base a los estudios realizados, se tendrá un inventario caracterizado de los sistemas de riego aplicados en la zona de estudio.

El alcance del proyecto es determinar si la dotación de agua solventa las necesidades de riego para cada sistema, para lo cual se evaluará la cantidad de agua disponible y la extensión del área de riego de las distintas comunidades de la cuenca hidrográfica del río Guabalcón.

Además, que se realizará el diseño de distintas obras de captación de agua que sean acordes al tipo de fuente de abastecimiento en los sistemas de riego existentes en la cuenca, y el diseño de los canales de agua de riego que garantice el máximo aprovechamiento del recurso hídrico.

3.1 Materiales

3.1.1 Recopilación de información secundaria.

El PROMAS desarrollo estudios generales desde el año 2012, los cuales fueron de gran ayuda para tener una visión general del trabajo propuesto y así obtener la realidad del estado actual de los sistemas de riego que fueron estudiados.

El Ministerio del Ambiente en conjunto con la Secretaria Nacional del Agua (SENAGUA) suministró los datos de las concesiones de agua existentes en la cuenca hidrográfica del rio Guabalcon, pertenecientes a los cantones Chunchi y Alausí. Adicionalmente, la SENAGUA nos

Juan José Carangui Rodríguez Henry Ricardo González Castro

proporcionó cartografía del sector que fue de vital importancia para la ubicación preliminar de las tomas de agua a lo largo del rio Guabalcon, de allí se elaboraron mapas con ayuda del software ArcGIS, que adjuntamos en la sección de Anexos.

3.1.2 Estudios preliminares

• "Ordenación hidrológico forestal de la cuenca del Río Guabalcón."

El proyecto de fin de carrera elaborado por Abarquero Nur Algeet, realizó la gestión agro hidrológica de las cuencas hidrográficas en el cual se ve como un pilar importante el sustento de la política territorial de los municipios integrados en las cuencas. Por tanto, estos proyectos son documentos que analizan los recursos hídricos y suelos desde un punto de vista físico y socioeconómico y recogen una serie de propuestas de gestión de cuencas hidrográficas que contribuyen al desarrollo racional de estas comunidades y al uso sostenible de los recursos naturales. Este proyecto final es parte del programa marco de la Comisión Europea EPIC FORCE (Evidence Based Policy for Integrated Control of Forested River Catchments in Extreme Rainfall and Snowmelt - Políticas basadas en la evidencia científica para la gestión integrada de cuencas hidrográficas forestadas frente a precipitaciones extremas y fusiones repentinas del manto de nieve), y el objetivo principal es investigar la defensa de la cuenca frente a grandes eventos independientemente de su intensidad y encontrar formas adecuadas para asegurar su uso sostenible.

Además (Algeet Abarquero, 2008) menciona que "la zona de captación del río Guabalcón (Ecuador) se encuentra en los Andes en la provincia de Chimborazo. En él se realizó un estudio de su comportamiento hidrológico, así como un estudio de sus técnicas de uso y manejo del suelo, con el fin de identificar los principales problemas físicos. Por estos, y por los problemas socioeconómicos que la propia población ve como urgentes, la alta tasa de migración de su población y los bajos precios de los productos agrícolas y animales, se ha intentado buscar alternativas que protejan a la población de fenómenos relacionados con el Geodinamismo Torrencial y otros que representan una alternativa para las comunidades en el futuro."

• "Diseño de un sistema de distribución de agua para riego en zonas de alta pendiente para comunidades andinas: aplicación a la comunidad agrícola Namza."

Tesis elaborada por (Mocoso, J., y Zeas, M., 2020), que nos proporcionó datos iniciales que fueron de gran ayuda para el desarrollo de nuestra propuesta de trabajo de titulación, su estudio fue realizado por en el mismo sector y bajo las mismas condiciones climatológicas, por lo tanto, este trabajo sirve de complemento a nuestro estudio ya que corrobora gran parte de la información obtenida.

3.1.3 Cartografía

3.1.3.1 Ubicación

La cuenca el río Guabalcón está ubicada en la región andina de la Republica de Ecuador, dentro de la cordillera Occidental, en las provincias del Chimborazo y Cañar, en específico en los cantones Alausí, Cañar y Chunchi.

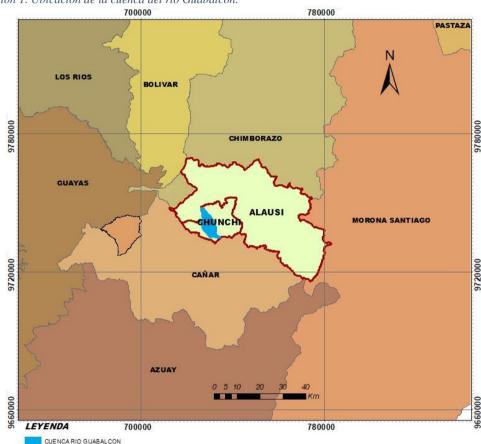


Ilustración 1. Ubicación de la cuenca del río Guabalcon.

Elaborado: Carangui & González.

3.1.3.2 Situación geográfica

La cuenca del Río Guabalcón se ubica geográficamente esta entre las coordenadas:

- 728331, 9749477 N
- 734230, 9734487 S
- 735237, 9735495 E.
- 725834, 9741798 O

Altitudinalmente el punto más bajo está a 1370 y el más alto a 4420 m.s.n.m.

3.1.4 Levantamiento Topográfico.

Se desarrolló el levantamiento de información topográfica del área de estudio, con la ayuda de equipos topográficos. Para ello se utilizó un vehículo aéreo Drone PHANTOM 4 PRO (Ilustración 4) y un sistema de posicionamiento global GPS TRIMBLE RTK R8 (Ilustración 5).

Luego de realizar el levantamiento topográfico, se procesaron las imágenes captadas por los programas del sistema de información geográfica.

Ilustración 2. Vuelo de DRONE.

Elaborado: Carangui & González.

Los productos obtenidos mediante el procesamiento de imágenes aéreas se describen a continuación:

- Ortofotos de la zona de estudio con calidad de píxel 3cm x 3cm.
- Modelo digital de elevaciones (MDE).
- Topografía a escala 1:1000: Curvas de nivel cada metro.
- Caracterización de tramos representativos de los canales

Ilustración 3. GPS Trimble RTK R8.

Elaborado: Carangui & González.

3.1.5 Caracterización de los sistemas de riego

Se identificó de forma sistemática y metodológicamente los distintos sistemas de riego, mediante una evaluación del funcionamiento de los sistemas, lo que implica aspectos como: características de la obra captación de agua, conducción, obras hidráulicas, obras de almacenamiento, determinación de eficiencias, pérdidas en los sistemas, y evaluación del estado físico de las obras y métodos de distribución. Para lo cual se realizó una ficha de campo para la recopilación de datos que se encuentra en el Anexo 7.2.

3.1.6 Hidrología

Se desarrolló una caracterización climática a partir de la recopilación de información obtenida de la estación climatológica Namza (coordenadas UTM WGS84 zona 17S: 725 754,8 m E, 9745 619 m S, 1850 m altitud). Con los datos obtenidos de la estación, que registra datos históricos de 2005 a 2018, se determinaron los siguientes parámetros:

 Precipitación mensual promedio: Este valor se calculó con los promedios mensuales de cada año de precipitación.

- Temperatura media anual: Se calculó a partir de los promedios plurianuales mensuales de las temperaturas máxima y mínima
- Velocidad del viento: Se determinó a partir de los promedios de los datos mensuales.
- Radiación solar: Se obtuvo a partir de las medias mensuales de cada año de luminosidad solar.

3.1.6.1 Caudal concesionado

Además, según las sentencias de agua por parte de la Secretaria Nacional del Agua otorgados en 2016, se tienen los caudales de la Tabla 1. Donde el Sistema de Namza y Sagüin tienen mayor caudal concesionado, pero son los mismos que mayor variación de caudal con los aforados.

Tabla 1. Caudal adjudicado

Sistema de Riego	Caudal (l/s)
Namza	84.700
Sagüin	78.000
Compud	30.814
Piñancay	52.240
Guabalcon	20.800

Elaborado: SENAGUA (2016)

3.1.6.2 Aforo de Caudales.

Se realizó aforos de caudales en el área de estudio, recopilando así información de cinco canales que abastecen a distintas zonas de riego en el sector para así poder establecer un balance hídrico. El mismo se obtuvo con equipos de aforo de caudales mediante campañas, los cuales comprenden una mini veleta y un controlador.

Ilustración 4. Aforo de Caudales.

Elaborado: Carangui & González.

Del aforo de caudales realizado se pudo obtener el caudal que abastece el agua para riego a los distintos sistemas, siendo el sistema de Compud el de mayor caudal y el sistema de Guabalcon el menor, se detalla en la Tabla 2.

Tabla 2. Caudal medido

Sistema de Riego	Caudal (l/s)
Namza	68.595
Sagüin	34.258
Compud	73.013
Piñancay	44.151
Guabalcon	21.688

Elaborado: Carangui & González.

3.1.6.3 Características climáticas

3.6.1.3.1 Temperatura

La temperatura promedio en la parte media es de 15 °C, las máximas están alrededor de los 27°C y las mínimas en los 11 °C. La humedad relativa registra los siguientes valores: una máxima del 100%, la mínima es de e orden del 40 % y en promedio tenemos un 90 %. La radiación solar es de 164 Watts/m2 promedio anual.

3.6.1.3.2 Precipitación

La precipitación es muy variable en su cantidad total, de registros pluviométricos obtenidos en la parte alta y baja de la microcuenca tenemos la siguiente información:

En la parte media y baja de la microcuenca el total acumulado de lluvias es de 700 mm, por otro lado, en la parte alta a una cota sobre los 4000 m.s.n.m. se registran 1050 mm. Los siguientes registros climáticos corresponden a la estación meteorológica Namza, ubicada en la parte baja de la cuenca en una cota de 1700 m.s.n.m.

3.6.1.3.3 Viento

La velocidad del viento promedio está en el orden de 1.65 m/seg. La estación meteorológica a esta altitud registra una presión barométrica de 811 milibares. El punto de rocío promedio esta alrededor de los 13.5 ° C.

3.1.7 Estructuras hidráulicas

Realizadas inspecciones visuales en los recorridos por los distintos canales de riego se encontraron deficiencia en el funcionamiento de los mismos.

Ilustración 5. Inexistencia de infraestructura

*En la conducción del canal de Guabalcón se puede observar que no existe infraestructura adecuada para la derivación de caudal.

Elaborado: Carangui & González.

Ilustración 6. Ausencia de compuertas derivadoras.

Elaborado: Carangui & González.

*En la conducción del canal de Guabalcón se puede observar que no existen compuertas derivadoras de caudal lo que ocasiona pérdidas cuando no se realiza un correcto uso de la función de la misma.

Ilustración 7. Mal revestimiento de los canales

Elaborado: Carangui & González.

*En la conducción del canal de Guabalcón se puede observar que el revestimiento del canal está en mal estado lo que provoca infiltraciones de agua y por lo tanto genera pérdidas.

Ilustración 8. Mal estado del cruce de dos canales

*En la conducción del canal de Namza se puede observar que el mini acueducto está en mal estado debido a la falta de mantenimiento del mismo.

Elaborado: Carangui & González.

3.1.8 Nivel organizacional en los sistemas de riego

Para lo cual se realizó un taller, para validar la información secundaria. El trabajo en el taller se realizó empleando las siguientes matrices:

- a) Matriz de diversidad de actores para la gestión de los sistemas de riego, con el objetivo de identificar los actores que se desenvuelven dentro de la gestión de los sistemas de riego en la zona de estudio, dentro de las esferas nacional, provincial y local.
- b) Matriz para el análisis de relaciones entre actores sociales, a través de esta matriz se identificó las funciones, proyectos de mejoramiento de la infraestructura de riego y las relaciones entre las instituciones locales que influyen en la zona de estudio, determinando las alianzas y conflictos entre ellas.
- c) Matriz de línea de tiempo, esta matriz permitió valorar desde la perspectiva de los actores locales los proyectos más significativos ejecutados por instituciones en el mejoramiento de los sistemas de riego.

3.1.9 Base de datos articulada a una base de datos SIG

- Elaboración de los planos definitivos y llenado definitivo de formatos.

- Se elaborarán los planos definitivos a la escala de 1/5,000 y 1/25,000 mostrando los límites de los subdistritos, sectores y subsectores y la ubicación de las infraestructuras.
- Se utilizará el AutoCAD o el sistema de información geográfica ArcGIS para digitalizar la información.
- Se elaborará el esquema hidráulico o árbol de canales.

3.2 Metodología

3.2.1 Trabajos de Campo

3.2.1.1 Entrenamiento: Reconocimiento General del Distrito de Riego

Se realizó un estudio del área a inventariar para tener una vista panorámica del distrito de riego e identificar los aspectos y dificultades más importantes que surgirán durante el trabajo de campo y proporcionar las soluciones más apropiadas. El reconocimiento se hará con un representante de la junta de usuarios o comités de usuarios que estén familiarizados con el área.

3.2.1.2 Censo Técnico

El censo técnico es el trabajo realizado en el campo para aclarar y completar la información relacionada con el inventario, que no se obtuvo de los documentos y otros materiales recopilados o que se llevan a cabo cuando no hay datos o información disponible.

El censo técnico consiste en:

- a) Identificar y señalar en los planos catastrales las fuentes de agua, y las diferentes obras de infraestructura hidráulica y obras auxiliares, así como las vías y medios de comunicación y caminos de vigilancia y utilizando la nomenclatura y simbología pertinente.
- b) Describir las obras brevemente indicando ubicación, dimensiones y capacidad, funcionamiento y estado de conservación en los formatos correspondiente.
- Realizar aforos de agua para determinar la capacidad de conducción de los canales y los caudales que se entregan a los usuarios cuando no se dispone de estos datos.
- d) Ubicar las coordenadas y determinar la altitud de la ubicación de las obras hidráulicas principales.

El censo técnico de las obras hidráulicas de riego se inicia a partir de la bocatoma y se va avanzando con los canales laterales de primer orden, de segundo orden y así sucesivamente.

El censo técnico de las obras hidráulicas de drenaje se comienza desde la salida común de las aguas de los drenes.

3.2.1.3 Caracterización técnica de los sistemas de riego

3.2.1.3.1 Contacto con las Organizaciones presentes en la zona

Se tomó contacto con las organizaciones presentes en el área de intervención de manera que se socialice la propuesta a nivel directivo. De esta manera se realizaron reuniones con los representantes de los directorios de riego en el área de influencia de la cuenca del río Guabalcón.

3.2.1.3.2 Contacto con representantes de las juntas de agua (riego)

Se realizó reuniones con los representantes de cada junta de agua que forman parte de la cuenca, con la finalidad de coordinar reuniones y capacitaciones, así como también seleccionar de manera conjunta a los Promotores, en razón de generar capacidad local para la caracterización de los sistemas de agua.

3.2.1.3.3 Matrices de caracterización

Se realizó las matrices con los datos obtenidos en las inspecciones de campo, recorridos a lo largo de los canales de conducción, información de caudales recopilada y medida en campo, se obtuvo las eficiencias y las pérdidas para cada sistema, de igual manera el estado físico de los componentes de los mismos.

3.2.1.3.4 Caracterización general de los sistemas de agua

Se realizaron recorridos de campo con el acompañamiento del promotor empleando fichas para la caracterización de los sistemas de riego, de ésta forma se recabo la siguiente información

- i. Coordenadas geográficas (tomas de agua)
- ii. Caudal adjudicado/ estimado/ medido
- iii. Descripción cualitativa de los problemas de contaminación y su grado de incidencia
- iv. Descripción de las características del sistema de uso
- v. Croquis Esquema hidráulico del sistema

3.2.1.3.5 Caracterización de los sistemas de agua de riego

Se realizaron recorridos de campo con el acompañamiento del promotor empleando fichas para la caracterización de los sistemas de riego, de ésta forma se recabo la siguiente información

- i. Superficie bajo riego en hectáreas
- ii. Tipos de cultivos típicamente producidos
- iii. Tecnología de riego utilizado
- iv. Identificación de los principales conflictos en el manejo y distribución del agua

3.2.1.4 Definición del nivel organizacional que prevalece en la administración de los sistemas de riego

3.2.1.4.1 Recopilación de información para el mapeo de actores

Para la realización del mapeo de actores se revisó información secundaria proveniente de los Planes de Desarrollo Local y Diagnósticos Participativos de la zona en estudio. Datos que fueron recopilados según la encuesta que se presenta en el 7.4.

3.2.2 Determinación de la dotación de agua para las áreas de irrigación de la cuenca

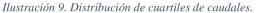
3.2.2.1 Análisis Pluviométrico

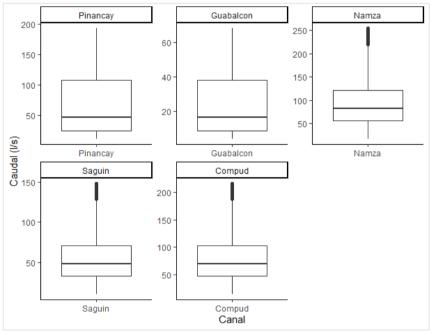
La precipitación a lo largo de la cuenca varía con la altitud, como lo demuestran las diferentes clases bioclimáticas registradas en el suelo. La cantidad de precipitación varía de 500 a 700 mm (que es el límite climático del suelo montano inferior de la región) entre 1700 y 2000 m sobre el nivel del mar. y 1500-2000 mm (lo que requiere el bosque montano húmedo que aparece en la parte alta de la cuenca) entre 3800 y 4200 m.s.n.m.

A pesar de esta variabilidad, se decidió cerrar la cuenca con la precipitación de la estación Compud a 2860 m sobre el nivel del mar, se caracteriza por representar la serie más completa y al mismo tiempo la más representativa de todas las disponibles, tanto dentro como fuera de la cuenca. Datos que fueron corroborados con los recopilados por la estación meteorológica de Namza.

3.2.2.2 Análisis de temperaturas en el área de la cuenca.

La Estación Meteorológica de Namza, ubicada a 1895 metros sobre el nivel del mar, ha servido para caracterizar el patrón de temperatura de las zonas baja y media de la cuenca.




3.2.2.3 Análisis de la evapotranspiración.

Los datos de evapotranspiración no están disponibles en ninguna de las dos estaciones climáticas seleccionadas, por lo tanto, la evapotranspiración potencial se ha calculado a partir de los datos climáticos con el programa EToCalculator.

3.2.2.4 Determinación de caudales de crecida

Los puntos en Namza, Sagüin y Compud muestran una mayor ocurrencia de crecidas respecto a Piñancay y Guabalcón donde la posición del primer y tercer cuartil muestran un mayor rango de variabilidad en los caudales, llama la atención que los valores del 2do cuartil (50%), son bajos, lo cual podría significar presencia de caudales insuficientes durante periodos de sequía prolongados.

Elaborado: Carangui & González.

3.2.3 Diseño de tuberías para los canales

Para el diseño de la conducción de agua para riego en los diferentes sistemas se utilizó:

- Perfiles longitudinales de cada sistema. Para obtener las pendientes
- Aforos de caudales. Para obtener el caudal de diseño
- Clases de tuberías. Se diseñó para la tubería más óptima, tomando en cuenta la resistencia a la presión y el tipo de material.

Con la Ecuación 1 se realizó iteraciones entre diámetros y tipos de tubería, para obtener la más adecuada para cada trama en cada tipo de sistema.

$$Q = \frac{A Rh^{2/3}So^{1/2}}{n}$$

Ecuación 1

Donde:

Q= Caudal de diseño (m3/s)

A= Área de la sección (m2)

Rh= Radio hidráulico (m)

So= Pendiente (%)

n= Coeficiente de rugosidad del material

3.2.3.1 Excavación y Soporte de la Zanja

La zanja deberá diseñarse y excavarse de manera tal de asegurar una instalación correcta y segura de las tuberías.

Deberá asegurarse la estabilidad de las paredes de la zanja, ya sea a través de un sistema de apuntalamiento, inclinando las paredes laterales o por otros medios.

Los sistemas de apuntalamiento se removerán de acuerdo con las suposiciones hechas en el cálculo estructural, de manera tal que la tubería no sufra daños ni se mueva.

• Ancho de la Zanja

El ancho mínimo de Zanja especificados por DIN EN 1610 que se detallan en las Tabla 3 y Tabla 4.

Tabla 3. Ancho de zanja mínimo en relación al diámetro nominal (DN) de la tubería.

	Ancho de Zanja Mínimo (OD+x)								
DN mm	Zonio Anuntolodo	Zanja sin apuntalar							
	Zanja Apuntalada	β >6 0°	β ≤ 60°						
≤ 400	DE + 0.50	DE + 0.50	DE + 0.40						
> 400 ≤ 700	DE + 0.70	DE + 0.70	DE + 0.40						
> 700 ≤ 1200	DE + 0.85	DE + 0.85	DE + 0.40						
> 1200	DE + 1.00	DE + 1.00	DE + 0.40						
DE Diámetr	o externo de la tubería		•						
β Ángulo, re	especto a la horizontal, de	las paredes de l	a zanja						

Fuente: (KRAH).

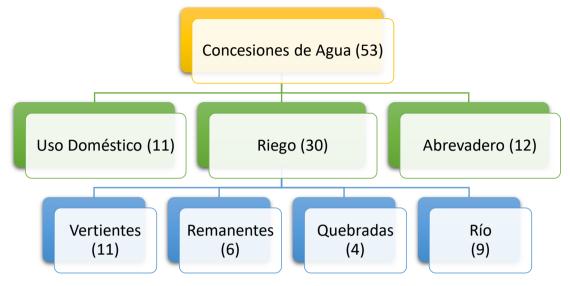
Tabla 4. Ancho de zanja mínimo en relación a la profundidad de zanja.

Profundidad Zanja (m)	Ancho Mínimo de Zanja (m)
< 1.00	No hay Mínimo
$\leq 1.00 \text{ y} \leq 1.75$	0.80
$> 1.75 \text{ y} \le 4.00$	0.90
> 4.00	1.00

Fuente:

CAPÍTULO 4

4. Resultados y Discusión


4.1 Datos Generales

Para el análisis de la información y elaboración del reporte, los sistemas de riego inventariados han sido agrupados de acuerdo a las concesiones de agua adquiridas en la Secretaria Nacional del Agua:

- La primera división separa las concesiones de agua de acuerdo al uso que se le da al recurso hídrico, estos son: Uso Doméstico, Riego y Abrevadero.
- Las concesiones de agua para riego se dividen de acuerdo a la toma de agua que pertenecen, se distinguen entre: Vertientes, Acequias, Remanentes, Quebradas y Rio.
- Los sistemas de riego de nuestro interés, son aquellos que están comprometidos directamente con el rio Guabalcon y tienen una gran demanda del recurso, por lo cual hemos subdividido en cinco sistemas que son los que abastecen a los sectores de Namza, Sagüin, Compud, Piñancay y Guabalcón.

Gráfico 2. Distribución del agua en la cuenca.

4.1.1 Número de sistemas de riego y área regada.

El conjunto de sistemas reportados se los categoriza de la siguiente manera:

- Microsistemas: son aquellos que presentan un área regada menor o igual 10 ha regadas.
- Pequeños: sistemas que cuentan con un área regada de más de 10 ha a menores de 100 ha regadas.
- Medianos: sistemas que cuentan con un área regada de más de 100 ha a menor o igual a 500 ha regadas.
- Grandes: sistemas que cuentan con un área regada de más de 500 ha.

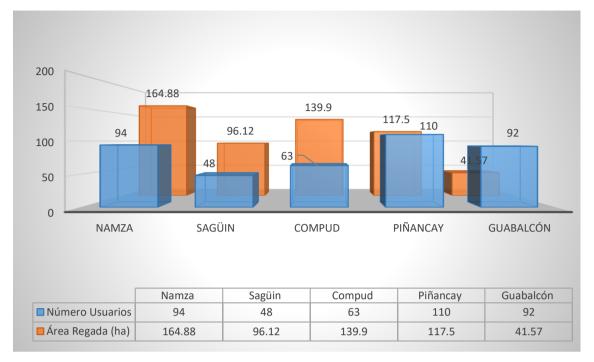

395.4 400 350 300 250 200 150 100 ~ 64.57 100 16 13 50 0 MICROSISTEMA **PEQUEÑOS MEDIANOS** MICROSISTEMA PEQUEÑOS **MEDIANOS** ■ NUMERO SISTEMAS 13 1 16 64.57 100 ■ AREA REGADA (ha) 395.4

Gráfico 3. Distribución de los sistemas de riego por categoría y área regada.

4.1.2 Número de usuarios y área regada.

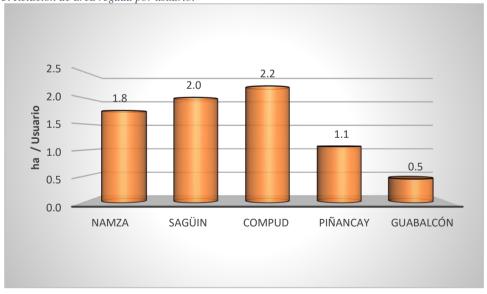

La mayor cantidad de usuarios (110) se encuentran en el sistema de Piñancay que posee 117.5 ha de riego, por otro lado, la menor cantidad de usuarios (48) pertenecen al sistema de Sagüin cuya superficie de riego (96.12 ha). La relación entre número de usuarios y área regada por sistema de riego se presenta en el Gráfico 4. Relación de número de usuarios y área regada por sistema..

Gráfico 4. Relación de número de usuarios y área regada por sistema.

El sistema de Compud presentan la relación más alta ha/usuario, por otro lado, esta relación es menor en el sistema de Guabalcón, se detalla en el Gráfico 5. Relación de área regada por usuario.

Gráfico 5. Relación de área regada por usuario.

Elaborado: Carangui & González.

4.2 Parámetros y requerimientos hídricos de la zona de estudio.

4.2.1 Fuentes de agua de los sistemas de riego y área regada.

El mayor número de sistemas de riego tiene como fuente de agua al rio y coincide con la mayor área regada. Los sistemas de riego tienen como fuente principalmente a las vertientes, aunque son Juan José Carangui Rodríguez

el 36.6% de los sistemas de riego abarcan el 29.07% del área regada. Los sistemas de riego con fuente de agua proveniente del río cubren el 33.84% del área regada. Vale mencionar que solo el 13.3% de sistemas que tienen como fuente de agua las quebradas, estas abarcan el 31.23% del área regada

O.00% 5.86%

29.07% 31.23%

■ Vertientes Acequias Remanentes

■ Quebradas Río

Gráfico 6. Área regada por fuente de agua.

Elaborado: Carangui & González.

4.2.2 Requerimiento de agua y área regada.

Se determinó un caudal de diseño en base a (Mocoso, J., y Zeas, M., 2020) que mencionan "el mayor requerimiento hídrico se evidencia en la tercera década del mes de septiembre, donde se necesita un caudal de diseño *Qdise*ño de 96.53 l/s, es decir que para la superficie regable de 164.88 ha se requiere un caudal unitario de 0.59 l/s/Ha para cubrir las necesidades hídricas de los cultivos."

Por lo tanto, nuestro caudal de diseño se detalla en la Tabla 5.

Tabla 5. Caudal estimado

Sistema de Riego	Caudal (l/s)
Namza	96.530
Sagüin	56.274
Compud	81.905
Piñancay	68.791
Guabalcon	24.337

Elaborado: Carangui & González.

Actualmente, los caudales concesionados por el SENAGUA no cubren el requerimiento hídrico de los cultivos en ninguno de los sistemas. Por otro lado, en los meses de enero a abril el requerimiento hídrico es nulo, debido a que los cultivos se abastecen con la lluvia.

Según la relación entre la cantidad de agua disponible (caudales aforados) para cada sistema y su respectiva área de riego, que se muestra en el Gráfico 7 el sistema de Compud es el mayor y por otro lado el sistema de Guabalcón es el menor.

180.0 164.9 160.0 139.9 140.0 117.5 120.0 96.1 100.0 68.6 80.0 41.6 60.0 40.0 20.0 0.0 SAGÜIN **PIÑANCAY** NAMZA COMPUD **GUABALCÓN** Piñancay Guabalcón Namza Sagüin Compud Caudal (I/s) 34.3 68.6 73.0 44.2 21.7 ■Área regada (ha) 164.9 96.1 139.9 117.5 41.6

Gráfico 7. Cantidad de agua disponible (l/s) y área de riego (ha)

Elaborado: Carangui & González.

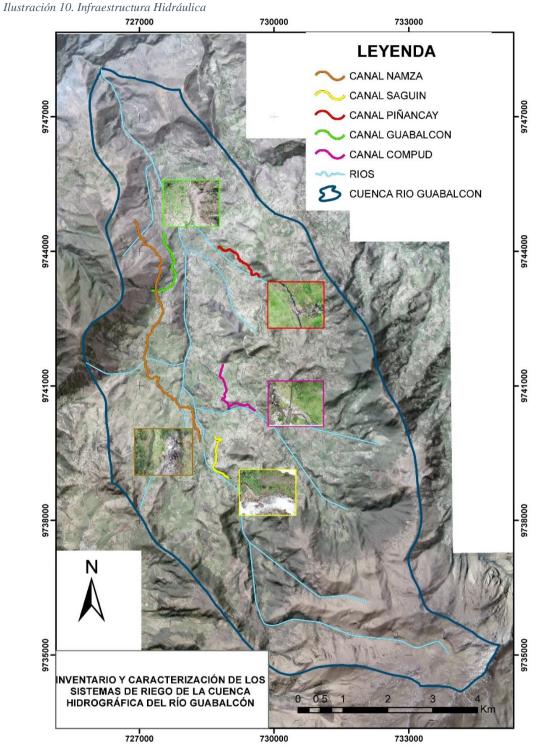
4.3 Infraestructura de riego.

La infraestructura de riego ha sido clasificada en obras de captación y obras de almacenamiento.

En los sistemas de riego inventariados se ha registrado un total de 5 obras de captación distribuidas de la siguiente manera: derivadoras 60% y tomas directas 40%.

Las obras de almacenamiento registradas en los sistemas de riego representan únicamente el 20% del total de los sistemas inventariados pues el 80% no presenta dichas obras.

La distribución de mencionadas obras se puede observar en la Tabla 6.


Tabla 6. Obras de captación y almacenamiento.

Sistema de	Captao	ción	Almacenamiento				
Riego	Tomas Directas	Derivadoras	Reservorios				
Namza		X	X				
Sagüin		X					
Compud		X					
Piñancay	X						
Guabalcon	X						

Los canales de conducción del agua para riego fueron inventariados mediante Drone por lo cual mencionados planos se presentan en la Ilustración 10 .

Para la mejora y potenciación de las obras de captación se realizó el diseño técnico para las tomas directas y derivadoras, mismos planos se presentan en la sección anexos. Además, se diseñó los canales de sección abierta que serán reemplazados por tubería, y de esta manera se disminuye perdidas y se optimiza el uso del recurso hídrico.

Elaborado: Carangui & González.

4.4 Evaluación de los sistemas de riego.

Tabla 7. Caracterización del Sistema de Sagüin

		CAPTACION		CONDUCCION				
COORD	ENADAS	ELEVACION	TIPO	ESTADO	ABSO	CISAS	TIPO	ESTADO
ESTE	NORTE	ELEVACION	TIPO	ESTADO	INICIAL	FINAL	TIPO	ESTADO
728982.539	9738944.583	2560		Deficiente	0+000.000	0+108.000	Canal rectangular	Bueno

				tación a de agua			0+108.0	000	0+750.000	revestido de hormigón Canal trapezoidal revestido de hormigón	Bueno
		_	(Der	(Derivación)			0+750.0	000	1+278.000	Canal rectangular revestido de hormigón	Bueno
OBRAS	OBRAS HIDRAULICAS		METODO DE		EFICIENCIA		PERDIDAS D		STRIBUCION	I RESERV	OBIOS
TIPO	ESTADO	DISTRIBUC	ION	EFICIEI	NCIA	PER	DIDAS	יט	STRIBUCION	RESERV	OKIOS
NO EXISTEN		GRAVEDA	٩D	61%	%	5	6%		ACEQUIAS	NO EX	(ISTE

Tabla 8. Caracterización del Sistema de Namza

		CAPTACION	-			CONDU	JCCION			
COORD	ENADAS	FLEV/ACION	TIPO	TCTA DO	ABSCIS	AS	Т	ПРО	ESTADO	
ESTE	NORTE	ELEVACION	TIPO	ESTADO	INICIAL	FINAL				
				DEFICIENTE	0+000.000	2+700.00		NAL DE ERRA	REGULAR	
728520.227	9739412.850	2460	CAPTACION A FILO DE AGUA (DERIVACION)		2+700.00	3+900.00 0	RECTA REVES	ANAL ANGULAR STIDO DE MIGON	REGULAR	
					3+900.000	6+304.00 0		NAL DE ERRA	REGULAR	
OBRAS HID	RAULICAS	METODO DE								
TIPO	ESTADO	METODO DE DISTRIBUCION	EFICIENCIA	PERDIDAS	DISTRIBUCION		RESERVORIOS			
						RESERVO Campa	-	BUENO	1449	
MINI ACUEDUCTO	MALO	GRAVEDAD	71%	20%	ACEQUIAS	RESERVO Asocias	I BUENO I		1973	
ACUEDUCTO	IW LEG					RESERV "Santa N		BUENO	2534	

Elaborado: Carangui & González.

Tabla 9. Caracterización del Sistema de Compud

	CAPTACION			CONDUCCION				
COORDENADAS	ELEVACION	TIPO	ESTADO	ABSCISAS	TIPO	ESTADO		

ESTE	NORTE	I			INICIAL	FINAI	_		
729571.521 9740436.373	0740426 272	2480	Captación a filo	Dogwlan	0+000.000	0+900.0	Canal rectangular 00 revestido de hormigón	Bueno	
	2480	de agua (Derivación)		0+900.000	1+776.0	Canal trapezoidal oo revestido de hormigón	Bueno		
OBRAS HI	OBRAS HIDRAULICAS								
TIPO	ESTADO	METODO DE DISTRIBUCION	EFICIENCIA	PERDIDA	S DISTRIE	BUCION	RESERVO	PRIOS	
Compuerta	REGULAR	GRAVEDAD	89%	30%	ACEO	THAS	NO EVI	TE TE	
Compuerta	REGULAR	GRAVEDAD	09%	30%	ACEQUIAS		NO EXISTE		

Tabla 10. Caracterización del Sistema de Guabalcón

		CAPTACION						CONDU	JCC.	ION		
COORE	DENADAS	ELEVACION	TIPO	ECT	'A DO	A	BSC	CISAS		TIPO	ESTADO	
ESTE	NORTE	ELEVACION	TIPO	TIPO ESTADO		INICIAL		FINAL		TIPO	ESTADO	
						0+000.000		1+230.000	_	anal de tierra	Regular	
727727.061 9743895.721		2225	Toma Directa	REG	ULAR			1+300.000		anguera negra ciclada 60mm	Regular	
						1+300.000		1+831.000		anal de tierra	Regular	
_	RAS ULICAS	METODO DE	FEICIEN	EFICIENCIA PERI		DIDAS DISTRIBUC			ON DECEDIOR			
TIPO	ESTADO	DISTRIBUCION	N EFFCIEN	CIA	ILK	DIDAS	ועו	ISTRIBUCIO)1 \	RESERVORIOS		
Tanque partidor de caudal	REGULAR	GRAVEDAD	200/		2			ACEQUIAS		NO EXISTE		
Tanque partidor de caudal	REGULAR	GRAVEDAD	69%	89%		0%		ACEQUIAS		NO.	LAIGTE	

Elaborado: Carangui & González.

Tabla 11. Caracterización del Sistema Piñancay

CAPTACION	CONDUCCION
-----------	------------

COORD	ENADAS	ELEVACION		TPO	ECTAI	20	ABSO	CISAS	TIF	PO	ESTADO
ESTE	NORTE	ELEVACION	1	IPO ESTAD)()	INICIAL	FINAL			
						0+000.000	0+850.000	Canal de tierra		Deficiente	
728746.616	9744099.602	2181	_	oma recta	Regul	ar	0+850.000	1+172.000	Car trapez reves do horm	zoidal stido e	Deficiente
OBRAS HI	DRAULICAS	METODO I	ЭE	E EFICIENCIA		DEDDID A C		DISTRIBUCION		DECEDIOR	
TIPO	ESTADO	DISTRIBUCI	ON	EFICI	ENCIA	PI	ERDIDAS	DISTRIBU	CION	RESERVORIOS	
Tanque partidor de caudal	REGULAR	GRAVEDA	D	64%		20%		ACEQUIAS		NO) EXISTE

Se tomó como "Eficiencia" al indicador de gestión que es la relación existente entre el caudal concesionado y el caudal disponible, lo cual se proponemos definir como tal, mismo que será tratado en el apartado de recomendaciones, y a las pérdidas se tomó como una estimación en cada canal de acuerdo a sus condiciones.

4.5 Gestión de agua.

La organización de la gestión del agua está enfocada a un uso sostenible del agua, su gestión integral, una correcta planificación y control público del abastecimiento. Está relacionada con la ordenación del territorio y para conseguir el uso eficiente del agua es necesaria la participación de los usuarios. El objetivo final es la preservación y recuperación de la calidad del agua y los valores ambientales.

4.5.1 Organización en los sistemas de riego.

El Ministerio del Ambiente y el Agua (MAAE), es la autoridad ambiental del Ecuador, que ejerce en forma eficaz y eficiente el rol rector de la gestión ambiental para hacer sustentable la biodiversidad, manteniendo y mejorando la calidad ambiental, promoviendo el desarrollo sustentable y la justicia social, reconociendo al agua, suelo y aire como recursos naturales estratégicos.

A su vez tiene su departamento destinado al uso del agua que es la Secretaria Nacional del Agua (SENAGUA), quienes son los encargados de dirigir la gestión integral e integrada de los recursos hídricos en todo el territorio nacional a través de políticas, normas, control y gestión desconcentrada para generar una eficiente administración del uso y aprovechamiento del agua.

Existen subsecretarias que han sido clasificadas de acuerdo a las demarcaciones hidrográficas existentes en todo el Ecuador, al ser nuestra zona de estudio la cuenca hidrográfica del rio Juan José Carangui Rodríguez

Guabalcón, esta pertenece a la demarcación hidrográfica GUAYAS departamento de ALAUSÍ. Quienes son los encargados de designar las distintas juntas parroquiales que a su vez asignaran las juntas riego y estas regularan la distribución de la misma a los usuarios dependiendo el sector.

4.5.1.1 Derechos del agua

Los derechos al agua de cada usuario se registran en las distintas organizaciones reguladoras de agua de riego, estas dependen de la ubicación del terreno, lo cual se detalla en la tabla 16 que contiene los datos de relevancia de cada concesión.

Tabla 12. Concesiones de agua de la cuenca del río Guabalcón

CANTION	DA DDOOLIJA	NOMBRE CONCESIONARIO	DIRECCION
CANTON	PARROQUIA	AUTORIZADO	CONCESIONARIO
Chunchi	Compud	Comité de Desarrollo Comunitario Cullun	Compud
Chunchi	Capzol	Directorio de aguas de las Vertientes Capilla Pata	Piñancay
Chunchi	Chunchi	Directorio de Aguas de la Acequia Namza	Namza
Chunchi	Chunchi	Directorio de Aguas del Canal de Riego Namza	Namza
Chunchi	Chunchi	Espinoza de Aguilar María Luisa	Namza
Chunchi	Chunchi	Espinoza de Cisneros Lastenia	Namza
Chunchi	Chunchi	Directorio de Aguas de la Comunidad de Namza	Namza
Chunchi	Chunchi	Directorio de Aguas de la Comunidad de Namza	Namza
Chunchi	Llagos	Malo Arévalo Teresa del Rocío	Sagüin
Chunchi	Llagos	Asociación de Trabajadores Agrícolas Paccha Santa Rosa y Otros	Sagüin
Chunchi	Capzol	Directorio de Aguas de la Acequia la Victoria	Piñancay
Chunchi	Capzol	Directorio de Aguas de la Acequia la Victoria Piñanca	
Chunchi	Compud	Junta de Aguas del Río Guabalcon	Guabalcon
Chunchi	Compud	Junta de Aguas del Río Guabalcon	Guabalcon
Alausí	Huigra	De la Cruz Urgiles Norma Romelia	Piñancay

Alausí	Huigra	Piña Peñafiel Eugenio Oswaldo	Piñancay
Alausí	Huigra	Piña Silva Mercy Nelly	Compud
Chunchi	Llagos	Yumbla Miguel Ángel y otros	Sagüin
Chunchi	Llagos	Santander Sergio María y Siguencia María Dolores	Sagüin
Chunchi	Llagos	Directorio de aguas de la Vertiente Guabalcon	Sagüin
Alausí	Huigra	Izquierdo Ambrosi Daniel Alcides	Compud
Chunchi	Compud	García Gladis	Compud
Chunchi	Compud	Gerardo Zeas Víctor Manuel	Compud
Chunchi	Compud	Piña Angamarca José Leonidas	Compud
Chunchi	Chunchi	Gallego Lazo María Transito	Sagüin
Chunchi	Capzol	Zhicay Miguel Angel	Piñancay
Chunchi	Chunchi	Santander Segundo Félix	Sagüin
Chunchi	Capzol	Villa Tenemasa Angel Remigio	Piñancay
Chunchi	Capzol	Villa Tenemaza Angel Remigio y Otros	Piñancay
Chunchi	Llagos	Álvarez Rodríguez Olga Marina	Sagüin
Chunchi	Llagos	Siguenza Álvarez Luis	Sagüin
Chunchi	Llagos	Siguenza Siguenza Segundo	Sagüin
Chunchi	Llagos	Álvarez Rodríguez Olga Marina y Otros	Sagüin
Chunchi	Compud	Álvarez Flores Dolores Irlanda	Compud
Chunchi	Llagos	Santander Coronel Ana María	Sagüin
Chunchi	Chunchi	Medina Pesantes Richard Adriano	Compud
Chunchi	Chunchi	Directorio de Aguas El Tambo	Compud
Chunchi	Llagos	Asociación de Trabajadores Agrícolas Paccha Santa Rosa Y Otros	Sagüin
Chunchi	Llagos	Santander Sergio María y Siguencia María Dolores Sagüir	
Chunchi	Chunchi	Directorio De Aguas De La Acequia Namza	Namza

Fuente: SENAGUA (2020).

4.5.1.2 Distribución de agua.

La distribución de agua se realiza mediante jornadas de riego en las cuales cada usuario es el encargado de derivar el agua desde el canal hacia su terreno, estas jornadas dependen del tipo de Juan José Carangui Rodríguez

Henry Ricardo González Castro

cultivo, la extensión del terreno y el método de riego que se realiza. Mismas que son reguladas por las juntas de riego de cada sector.

4.5.1.3 Aportes para la operación y mantenimiento de los sistemas de riego.

La operación de los sistemas de riego es realizada por los usuarios de cada concesión, quienes a su vez realizan el mantenimiento de los sistemas de captación y canales principales con ayuda de las juntas de riego y juntas parroquiales, ya que estas tienen destinado un presupuesto otorgado por la prefectura de la provincia de Chimborazo para realizar los mencionados trabajos.

4.5.2 Suelo.

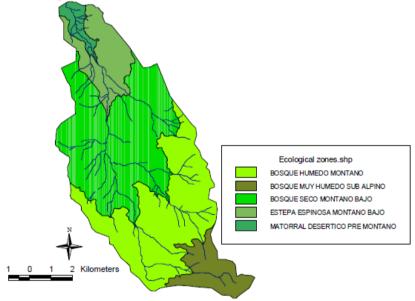
El PROMAS, mediante el uso de metodologías descriptivas, transeptos de observación en el campo y uso de medios digitales, procedió a la caracterización de suelos según el sistema de la (FAO, World reference Base for soil resources, 1999). En la Ilustración 11 se presenta el mapa de suelos elaborado, y en la Tabla 13 se detalla la superficie ocupada por cada grupo.

Suelos
Andosol eutrico
Andosol histico
Andosol umbrico
Cambisol eutrico
Cambisol eutrico
Histosol fibrico
Leptosol haplico
Leptosol haplico
Leptosol humico

Ilustración 11. Mapa de suelos de la cuenca del río Guabalcón.

Fuente: PROMAS.

Tabla 13. Superficies que presentan las distintas clases de suelos de la cuenca del río Guabalcón.


GRUPO DE SUELO	SUPERFICIE (HA)	PORCENTAJE (%)

Andosol éutrico	198.23	3
Andosol hístico	96	1.5
Andosol móllico	106.29	1.6
Andosol úmbrico	169.06	2.6
Leptosol háplico	127.39	1.9
Leptosol ándico	505.68	7.7
Leptosol húmico	2085.98	31.6
Histosol fibrico	23	0.3
Cambisol éutrico	2989.94	30.2
Cambisol vértico	1291.02	19.6

En la Ilustración 12 se pueden diferenciar entre formaciones de Bosque Húmedo Montano, Bosque Muy Húmedo Sub Alpino, Bosque Seco Montano Bajo, Estepa Espinosa Montano Bajo y Matorral Desértico Pre Montano. Estos se encuentran determinados por la influencia de la cordillera andina, donde se halla situada la cuenca, pero también por los influjos costero y oriental, que han originado una inmensa diversidad de nichos de vegetación.

Ilustración 12. Zonas ecológicas en la cuenca del río Guabalcón

Fuente: PROMAS.

El uso del suelo es un aspecto complejo debido a su carácter dinámico y a la multitud de factores que lo determinan, ya sean de orden físico, tenencia de tierras, propiedades, económico y social. En la Ilustración 13 se propone una diferenciación de usos de suelo en relación al grado de protección que ofrece frente a la acción de los agentes y procesos de degradación del mismo, estos se clasifican en: Paramo-Pajonal, Chaparro- Pajonal, Pastizal-Chaparro, Cultivos-Pastos y Maleza-Cultivos.

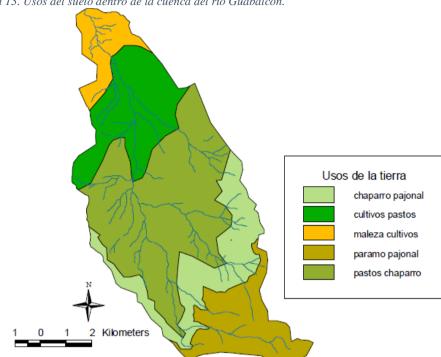
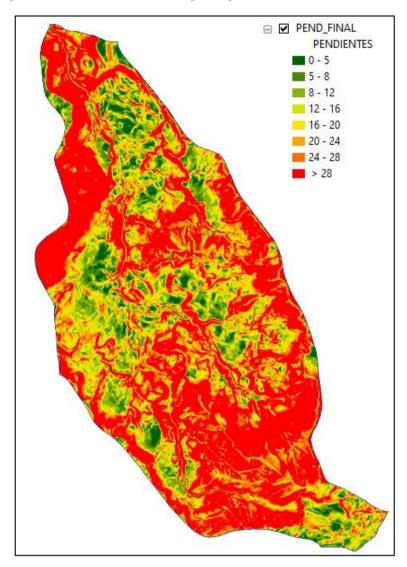


Ilustración 13. Usos del suelo dentro de la cuenca del río Guabalcón.


Fuente: PROMAS.

4.5.2.1 Pendientes de las áreas bajo riego.

La pendiente del terreno es un factor esencial que controla o interviene en la sensibilidad ambiental a los efectos producidos por los derrames de hidrocarburos. La pendiente está ligada a la morfología y la dinámica de todas las formas del relieve; prácticamente todos tienen un umbral que los clasifica o jerarquiza según su geometría; es decir que la pendiente constituye un factor que favorece la delimitación de los procesos y tipos de formas que se encuentran en el terreno.

El mapa de pendientes de la zona en análisis se elaboró a partir del Modelo Digital de Elevaciones (MDE) obtenido a partir del procesamiento de las fotografías aéreas con la ayuda de sistemas de información geográfica (SIG). Para este proyecto, según (Keller, J., & Bliesner, R.D., 1990) & (Cisneros, F., Torres, P., & Feyen, J., May/June 2007) se clasificó la topografía en rangos de pendientes relacionados a zonas de riego en ladera, se puede observar en el grafico siguiente:

Ilustración 14. Mapa de la cuenca del río Guabalcón según sus pendientes.

En la Tabla 14 se presentan los valores de pendiente por superficie en la cuenca.

Tabla 14. Clasificación por pendientes y área de riego

Pendientes	Área (Has)
0-5	198.11
5-8	301.88
8-12	589.72
12-16	651.26
16-20	666.67
20-24	671.15
24-28	705.28
>28	2824.06

Elaborado: Carangui & González

Las pendientes así determinadas con sus respectivas áreas permitirán definir el tipo más adecuado de riego, que para el caso del riego por aspersión se puede llevar adelante a través de la utilización de la tasa de aplicación máxima indicativa en función del tipo de suelo, inclinación y pendiente (Keller, J., & Bliesner, R.D., 1990) & (Cisneros, F., Torres, P., & Feyen, J., May/June 2007), que se presenta en la Tabla 15 con la cual se deberá planificar el riego en los diferentes sistemas aquí presentados.

Tabla 15. Tasa de aplicación máxima indicativa en función del tipo de suelo, inclinación y pendiente del terreno.

Pendiente (%)	0-5	5-8	8-12	12-16	16-20	20-24	24-28	>28
Textura del suelo y perfil	Tasa de aplicación máxima (mm hr-1)							
Suelo arenoso grueso hasta	50	38	25	13	10	9.6	9.4	8.9
1.8m								
Suelo arenoso grueso sobre	38	25	19	10	<u>9.6</u>	9.4	<u>8.9</u>	5.2
suelos más compactos								
Francos de arena claro hasta	25	20	15	10	<u>8.9</u>	<u>7.4</u>	<u>5.2</u>	<u>3.3</u>
1.8m								
Francos de arena claro sobre	19	13	10	8	7.4	5.2	3.3	1.4
suelos más compactos								
Limo hasta 1.8m	13	10	8	5	3.3	1.5	1.4	1.2
Limo franco sobre suelos	8	6	4	2.5	<u>1.5</u>	1.4	1.2	<u>0.4</u>
más compactos								
Arcillas de textura pesada o	4	2.5	2	1.5	1.4	1.2	0.4	0.2
margas arcillosas								
	(Keller, J., & Bliesner, R.D.,				(Cisneros, F., Torres, P., & Feyen, J.,			
	1990)				May/June 2007)			

Leyenda: 9.6 = Datos medidos; 10 datos extrapolados; celdas sombreadas: Valores que no son aplicables.

Fuente: (Cisneros, F., 2002).

4.5.2.2 Riesgo de erosión.

En la Tabla 16, se muestra los tipos de erosión en la provincia de Chimborazo en donde se puede observar que el suelo de la provincia se encuentra más afectado por procesos indiferenciados, que abarcan el 67,86% del territorio, seguido del escurrimiento concentrado que se da con mayor facilidad en pendientes superiores a 20% y es cuando el agua logra rasgar la superficie del suelo formando surcos, cárcavas y quebradillas que a menudo no son recuperables para el cultivo, dada su profundidad (Trujillo, G., y Noni, G, 2000); y están ocupando un 14,27% del territorio de la provincia.

Tabla 16 Tipos de erosión en la provincia de Chimborazo.

Erosión	Área (Has)	Área total (%)
Erosión Hídrica	27567	4.51
Escurrimiento concentrado	87270	14.27
Escurrimiento difuso y concentrado	44863	734
Escurrimiento muy concentrado	17303	2.83
Erosión eólica	19577	3.20
Procesos indiferenciados	415012	67.86
Total	611592	100.00


Fuente: (Gobierno Autónomo Descentralizado de la Provincia de Chimborazo, 2011)

4.5.3 Aspectos tecnológicos y productivos.

4.5.3.1 Laboreo del suelo.

Los usuarios de la mayor parte de los sistemas de riego realizan el laboreo y preparación de suelo con la utilización de tractor (50%), yunta (30%) y manual (20%). El laboreo manual es una práctica que se utiliza en la preparación del suelo, labores culturales y cosecha; el tractor se utiliza más en actividades de preparación de suelos y algunas labores culturales, lo que se indica en el Gráfico 8.

Gráfico 8 Mecanismos de laboreo del suelo.

Elaborado: Carangui & González.

4.5.3.2 Uso de tecnología agraria.

Los pesticidas (principalmente pesticidas y fungicidas) son utilizados por los usuarios del 80% de los sistemas de riego. Los insecticidas y fungicidas son utilizados más intensivamente en cultivos de tomate, papa y arveja, por ser los más atacados por las plagas y las enfermedades

Los fertilizantes químicos son utilizados por el 70% de los usuarios de los sistemas de riego y la misma que se utiliza donde los cultivos de papa, tomate, arveja y maíz consumen mayores cantidades de fertilizante mineral

La semilla mejorada es utilizada por los usuarios del 50% de los sistemas de riego, puesto que la otra mitad de los usuarios utiliza las semillas que les quedan de su propia cosecha.

El 30% de los usuarios utilizan abonos naturales para mejorar las condiciones físico-químicas de sus parcelas y parece ser la forma menos común de mejorar las condiciones de fertilidad de las parcelas en producción.

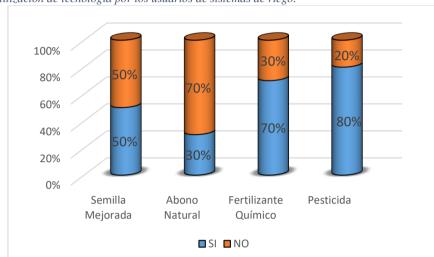


Gráfico 9. Utilización de tecnología por los usuarios de sistemas de riego.

Elaborado: Carangui & González.

4.5.3.3 Superficie cultivada bajo riego.

Para obtener la superficie cultivada bajo riego se realizó un muestreo representativo en 1000m2 obteniendo los siguientes resultados mostrados en la Tabla 17.

Tabla 17. Distribución de superficie de cultivos para la unidad parcelaria de riego

Cultivo	Método de	Método de Eficiencia (%)		Porcentaje	
	irrigación			(%)	
Frejol	Superficial por surcos	60	644.8	64.48	
Papa	Tubería de compuerta	70	84.4	8.44	
Tomate	Aspersión	80	58.5	5.85	
Arveja	Aspersión	80	63.3	6.33	
Maíz	Superficial por surcos	60	64.1	6.41	
Pasto	Aspersión	80	85.0	8.50	
	Total		1000	100.00	

Fuente: (Mocoso, J., y Zeas, M., 2020).

La mayor superficie regada reporta el fréjol con 64.48%, donde registran 361.03 ha de superficie total de riego; en orden de importancia le siguen el pasto y la papa con 8.50% y 8.44%

respectivamente, le siguen el maíz y la arveja con el 6.41% y 6.33% cada una; dejan así con la menor superficie de cultivo a los tomates con 32.76 ha que representan el 5.85% del total.

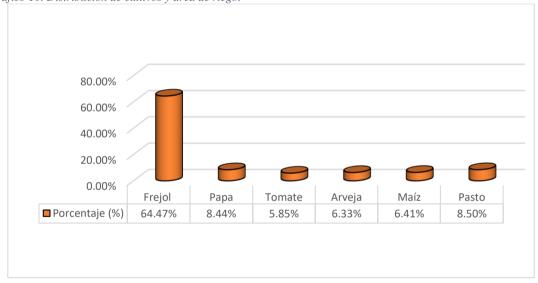

Teniendo en la zona de estudio 560 ha de área total de riego, en la Tabla 18 se detalla la superficie de cada tipo de cultivo, que a su vez se interpreta en el Gráfico 10.

Tabla 18. Distribución de superficie de cultivos para toda el área de riego

Cultivo	Área (has)	Porcentaje (%)
Frejol	361.03	64.48
Papa	47.27	8.44
Tomate	32.76	5.85
Arveja	35.45	6.33
Maíz	35.90	6.41
Pasto	47.60	8.50
Total	560.00	100

Elaborado: Carangui & González.

Gráfico 10. Distribución de cultivos y área de riego.

Elaborado: Carangui & González.

4.6 Determinación de la dotación de agua para las áreas de irrigación de la cuenca 4.6.1 Oferta.

Las fuentes de agua utilizadas para el riego son: aguas superficiales primarias y secundarias, aguas subterráneas primarias y secundarias mixtas. El término agua secundaria se refiere al agua previamente extraída con fines agrícolas, municipales e industriales y devuelta al sistema.

La precipitación es esencial para los cultivos pues es la fuente principal que dota del líquido vital, en algunos casos no es suficiente por lo que se necesita del riego para complementar el requerimiento y proporcionar humedad para el crecimiento de las plantas.

4.6.1.1 Pluviometría.

La distribución de la precipitación (precipitación media anual) en la cuenca está representada por la precipitación en la estación de Compud, obtenido de la serie histórica disponible (Gráfico 11), se estima en 982,9 mm. El patrón de precipitación anual (Gráfico 12) es máximo de febrero a marzo y significativamente menos pronunciado en diciembre. Los meses de julio y agosto, sin embargo, tienen las precipitaciones más bajas.

2000
1800
1600
1400
1200
1000
400
200

196th 196th 196th 196th 197th 197

Gráfico 11. Variación histórica de las precipitaciones en la estación de Compud. Serie 1964 -2005.

Fuente: INAMHI.

Se obtuvo datos de la estación meteorológica de Compud, con los cuales se consiguió las precipitaciones medias mensuales para la cuenca, siendo estas fundamentales para la interpolación y obtención de la precipitación en toda la cuenca del río Guabalcón.

Gráfico 12. Precipitación media mensual en la estación meteorológica de Compud

Fuente: INAMHI.

4.6.1.2 Determinación de caudales en las fuentes.

Con base a las precipitaciones de la estación de Compud e información secundaria adicional se han obtenido los valores de caudales máximos, medios y mínimos durante todo el año. A partir de datos obtenidos en los informes referidos, se ha realizado la definición de los valores medios de los caudales al relacionar las precipitaciones y la transformación de caudales para el área la cuenca, se ha realizado una regresión y así obtener los caudales para cada sistema durante todo el año, con lo que se obtiene caudales máximos, medios y de estiaje, que nos servirán para el diseño de las bocatomas.

Los caudales máximos para cada sistema han sido esenciales para obtener el volumen excedente a lo largo de todos los meses y así obtener valores que puedan ser acumulativos, de esta manera se obtiene el volumen que se puede embalsar para toda la cuenca

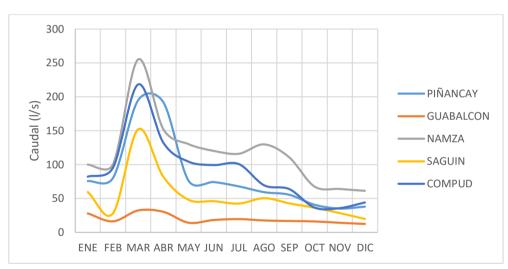


Gráfico 13. Caudales máximos

Elaborado: Carangui & González.

Los caudales mínimos son indicadores de los meses en los cuales no se cumple con el requerimiento hídrico de cada cultivo en las distintas zonas de riego, de igual manera estos valores nos indican cuánta agua estaría faltando y que esta pueda ser dotada desde el embalse.

120 100 80 PIÑANCAY Caudal (I/s) **GUABALCON** 60 NAMZA SAGUIN 40 -COMPUD 20 0 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

Gráfico 14. Caudales mínimos.

Elaborado: Carangui & González.

El caudal medio de cada sistema indicado en el Gráfico 15, nos servirá para realizar el balance hídrico comparando la oferta y demanda de los mismos.

Gráfico 15. Caudales medios.

Elaborado: Carangui & González.

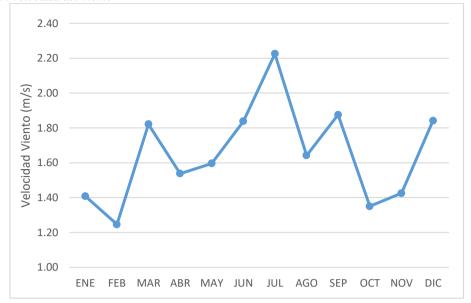
4.6.2 Demanda.

La demanda de agua del cultivo (ETc) es el consumo de agua o evapotranspiración del cultivo con el suelo sin déficit hídrico, desarrollándose en condiciones controladas de salud y fertilidad, se determina directamente experimentalmente al uso de lisímetros y en ausencia de estos se determina utilizando la evapotranspiración de referencia (ETo) y el coeficiente de hídrico Kc del cultivo considerado; En estas condiciones, debido a que el suelo está siempre en condiciones óptimas de humedad, la evapotranspiración tiene su valor más alto y, por lo tanto, también se denomina evapotranspiración máxima (Em).

4.6.2.1 Evapotranspiración.

Al ser la evapotranspiración, la pérdida de humedad de una superficie por evaporación directa junto con la pérdida de agua por transpiración de la vegetación. Se han tomado en cuenta datos sobre parámetros climatológicos como presión de vapor, humedad relativa (Gráfico 16) y velocidad del viento (Gráfico 17), de la estación de Namza que es monitoreada por el PROMAS, donde la transpiración de evaporación promedio se ha calculado utilizando el método Penman-Monteith modificado por la FAO.

Humedad relativa – La humedad relativa en la cuenca del riego Guabalcón varía entre el 88% como mínimo y llega hasta un 96% como máxima, manteniendo la humedad promedio en el 92%.



Elaborado: Carangui & González.

Velocidad del viento – Al estar ubicada la cuenca hidrográfica en la cordillera andina, presenta vientos desde los 1.20 m/s hasta los 2.25 m/s.

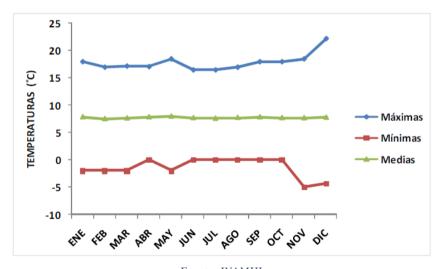
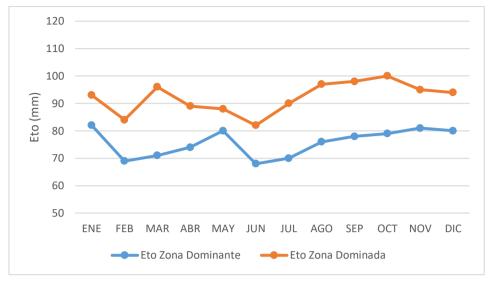


Gráfico 17. Velocidad del Viento

Temperaturas. - La temperatura en estas latitudes es bastante constante durante todo el año y mantiene la media en torno a los 14 °C, la máxima en torno a los 23 °C y la mínima en torno a los 6 °C.


Gráfico 18. Temperaturas máximas, medias y mínimas de la estación meteorológica Chunchi

Fuente: INAMHI.

En cuanto al cuerpo principal de agua de la cuenca, la Estación Meteorológica Pachamama-Tixan solo contaba con datos de temperatura disponibles, por lo que la evapotranspiración se calculó mediante el método Blaney-Criddle modificado por la FAO.

Gráfico 19. Evapotranspiración media calculada por el método de Penman-Monteith para los datos de la estación meteorológica Namza.

Fuente: (Algeet Abarquero, 2008).

4.6.3 Balance Hídrico.

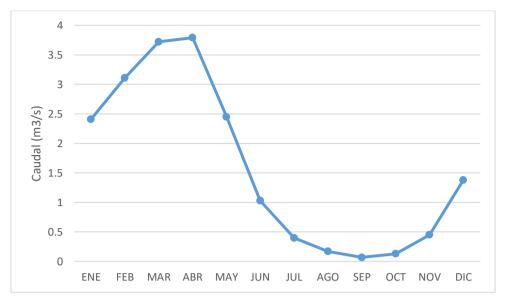

Para determinar la oferta hídrica en las captaciones, la estación meteorológica de Compud es ideal para los cálculos, ya que está ubicada en el centro de la cuenca y tiene una serie histórica de 35 años de lluvia. El año medio, que se presentó para esta serie histórica en el apartado de condiciones climáticas, es el que se ha utilizado como dato inicial en el balance. El Gráfico 20 muestra el aporte mensual de la cuenca y la Tabla 19 el aporte de cada una de las subcuencas al escurrimiento final.

Tabla 19. Aportaciones de las respectivas zonas en m3/s.

	PARAMO	CHAP_ LEPT	CHAP_ CAMB	PASTO_ LEPT	PASTO_ CAMB	CULTIVO	Total mensual
ENE	0.54	0.24	0.1	0.23	0.69	0.61	2.41
FEB	0.75	0.35	0.14	0.33	0.99	0.55	3.11
MAR	0.88	0.41	0.17	0.4	1.18	0.68	3.72
ABR	0.9	0.43	0.17	0.41	1.22	0.66	3.79
MAY	0.59	0.27	0.11	0.26	0.77	0.45	2.45
JUN	0.26	0.11	0.04	0.1	0.31	0.21	1.03
JUL	0.1	0.04	0.02	0.04	0.12	0.08	0.4
AGO	0.04	0.02	0.01	0.02	0.05	0.03	0.17
SEP	0.02	0.01	0	0.01	0.02	0.01	0.07
OCT	0.1	0	0	0	0.01	0.02	0.13
NOV	0.15	0.03	0.01	0.03	0.08	0.15	0.45
DIC	0.38	0.16	0.06	0.15	0.45	0.18	1.38
Total	4.71	2.07	0.83	1.98	5.89	3.63	19.11
Porcentaje	24.6	10.8	4.4	10.3	30.8	19.1	·

Fuente: INAMHI.

Gráfico 20. Aporte de caudal realizado a partir de los datos de precipitaciones medias en la estación de Compud.

Fuente: INAMHI.

Para cada sistema se ha determinado la cantidad de agua disponible (Tabla 20) y el requerimiento hídrico (Tabla 24) presentada para cada sistema.

Tabla 20. Cantidad de Agua Disponible (l/s)

	PIÑANCAY	GUABALCON	NAMZA	SAGUIN	COMPUD
ENE	43	15	60	35	51
FEB	55	20	78	45	66
MAR	66	23	93	54	79
ABR	67	24	95	55	80
MAY	47	9	75	28	63
JUN	47	12	71	36	60
JUL	41	13	67	31	58
AGO	41	15	77	36	44
SEP	34	13	63	29	39
OCT	24	11	38	23	22
NOV	22	9	39	19	24
DIC	22	7	39	15	30

Elaborado: Carangui & González.

Con esta oferta y la demanda definida anteriormente se ha procedido a realizar el balance hídrico para cada sistema, la oferta corresponde a los caudales disponibles en la bocatoma para cada sistema de riego, y la demanda corresponde a los requerimientos hídricos transformados a caudal que cada una de las zonas necesita en función a las áreas de riego.

Tabla 21. Balance hídrico para cada sistema (l/s)

	PIÑANCAY	GUABALCON	NAMZA	SAGUIN	COMPUD
ENE	42.84	15.16	60.12	35.05	51.01
FEB	55.28	19.56	77.58	45.22	65.82
MAR	66.13	23.39	92.79	54.09	78.73
ABR	67.37	23.84	94.54	55.11	80.21
MAY	28.39	2.41	48.88	12.77	40.84
JUN	5.54	-3.17	12.82	2.08	10.13
JUL	6.72	1.17	18.79	2.34	17.16
AGO	4.75	1.60	25.29	6.43	0.20
SEP	-34.35	-11.50	-33.73	-26.90	-42.95
OCT	-39.85	-12.16	-51.79	-29.42	-54.23
NOV	-4.47	-0.47	2.01	-3.09	-7.78
DIC	19.01	6.01	34.64	12.46	26.76

4.6.3.1 Calculo del requerimiento hídrico.

En los párrafos precedentes hemos determinado la oferta hídrica que implica la precipitación en la cuenca y los caudales disponibles en la toma, de igual manera se ha determinado los requerimientos de los cultivos en el área de riego con base al cálculo de la evapotranspiración, para el presente proyecto se ha realizado la aplicación de estos conceptos a las áreas de riego, y en función del tipo de cultivo se ha determinado los requerimientos hídricos en las bocatomas de los sistemas.

Gráfico 21. Balance hídrico para el sistema de Piñancay

Juan José Carangui Rodríguez Henry Ricardo González Castro

Gráfico 22. Balance hídrico para el sistema de Guabalcón.

Elaborado: Carangui & González.

Gráfico 23. Balance hídrico para el sistema de Namza.

Elaborado: Carangui & González.

60

50

40

60

Figure 10

Ene feb mar abr may jun jul ago sep oct nov dic

Gráfico 24. Balance hídrico para el sistema de Sagüin.

Gráfico 25. Balance hídrico para el sistema de Compud

Elaborado: Carangui & González.

4.6.3.1.1 Determinación del volumen de regulación requerido para cubrir las necesidades del proyecto.

Analizando la relación oferta menos la demanda en cada uno de los sistemas, se pudo evidenciar que la disponibilidad de agua en las fuentes es insuficiente para abastecer los diferentes sistemas, por esta razón se ha analizado la posibilidad de regular los caudales en la cuenca del rio Guabalcon a fin de guardar el agua en el tiempo de lluvia y utilizar dicha agua en los tiempo de estiaje a través de la construcción de embalses en la cuenca, con esta análisis se ha determinado en forma preliminar un volumen anual en toda la cuenca que se indica en la Tabla 23, cabe mencionar que los volúmenes con signos negativos nos indican el déficit de agua que van a existir en ciertos meses y en la mayoría de casos en periodos de septiembre a noviembre.

Tabla 22. Volúmenes mensuales en m3.

	PIÑANCAY	GUABALCON	NAMZA	SAGUIN	COMPUD
ENE	114744	40595	161012	93865	136618
FEB	133742	47316	187672	109407	159239
MAR	177115	62661	248533	144887	210880
ABR	174627	61781	245042	142852	207917
MAY	76029	6467	130920	34211	109379
JUN	14356	-8213	33229	5399	26269
JUL	17996	3146	50314	6259	45965
AGO	12727	4288	67737	17219	541
SEP	-89038	-29801	-87428	-69735	-111314
OCT	-106723	-32580	-138714	-78793	-145241
NOV	-11591	-1221	5210	-8015	-20168
DIC	50928	16093	92766	33375	71677

Elaborado: Carangui & González.

Los volúmenes con signo positivo son aquellos a los cuales se les puede ir acumulando, mismos que pueden suplir a la acumulación de volúmenes negativos a lo largo de todo el año.

Tabla 23. Volúmenes anuales en m3

VOLUMEN	PIÑANCAY	GUABALCON	NAMZA	SAGUIN	COMPUD	TOTAL
EXCEDENTE	772263	242347	1222436	587473	968484	3793004
FALTANTE	207352	71816	226142	156544	276723	938576
TOTAL	564911	170531	996293	430930	691762	2854427

Elaborado: Carangui & González.

Al obtener los volúmenes totales anuales se observa que la cuenca si es capaz de dotar agua para riego a todos los sistemas, se toma en cuenta cada volumen excedente para la elaboración de un embalse y posteriormente un diseño de distribución de esta agua, con lo cual proponemos realizar un embalse aguas arriba de toda la cuenca con la capacidad de un millón de metros cúbicos como mínimo para que pueda dotar de suficiente agua a cada uno de los sistemas implicados en el estudio.

4.6.3.1.2 Determinación del requerimiento hídrico para riego

De acuerdo a la información obtenida en las secciones precedentes se obtuvo el requerimiento hídrico para sistema, siendo el máximo en el mes de septiembre en todos los sistemas, mismo que servirá para determinar el caudal de diseño.

Tabla 24. Requerimiento Hídrico. (l/s)

	PIÑANCAY	GUABALCON	NAMZA	SAGUIN	COMPUD
ENE	0.00	0.00	0.00	0.00	0.00
FEB	0.00	0.00	0.00	0.00	0.00
MAR	0.00	0.00	0.00	0.00	0.00
ABR	0.00	0.00	0.00	0.00	0.00
MAY	18.61	6.59	26.12	15.23	22.16
JUN	41.46	14.67	58.18	33.92	49.37
JUL	34.56	12.23	48.49	28.27	41.14
AGO	36.56	12.93	51.30	29.91	43.53
SEP	68.79	24.34	96.53	56.27	81.91
OCT	64.32	22.75	90.25	52.61	76.58
NOV	26.43	9.35	37.09	21.62	31.47
DIC	3.09	1.09	4.33	2.52	3.67

Elaborado: Carangui & González.

Con base en el balance presentado y en las determinaciones realizadas en la aplicación del proyecto de riego Namza (Mocoso, J., y Zeas, M., 2020), a continuación en la Tabla 25 se presentan los caudales de diseño de agua para riego requeridos para cada sistemas

Tabla 25. Caudal de diseño

Canal	Caudal de diseño (l/s)
Piñancay	68.79
Guabalcon	24.34
Namza	96.53
Sagüin	56.27
Compud	81.91

Elaborado: Carangui & González.

4.6.3.1.3 Caudal de crecida para obras hidráulicas.

Con el propósito de determinar los caudales de crecida para cada zona de riego se ha establecido para cada uno de ellos los valores correspondientes a los percentiles 50, 75 y 90, dentro del estudio hidrológico realizado en colaboración con el Ing. Rigoberto Guerrero, estos percentiles son proporcionales al caudal medio de diseño para cada sistema, estos caudales se expresan en litros por segundo y se indican en la Tabla 26.

Tabla 26. Percentiles de caudales

Canal		Percentil	
	50	75	90

Piñancay	47.1	107.64	159.6		
Guabalcón	16.6	38	56.3		
Namza	81.5	120.8	188.3		
Sagüin	47.5	70.5	109.8		
Compud	69.2	102.6	159.8		

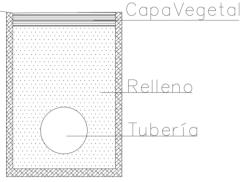
El caudal de crecida, tomando en cuenta las obras que se van a emplazar con un periodo de retorno de 50 años, se obtuvo mediante Ven Te Chow que recomienda, considerar el caudal del percentil 90 por un factor de seguridad de 1.5. Determinados caudales se indican en la

Tabla 27.

Tabla 27. Caudal de crecida

Canal	Caudal de crecida (l/s)
Piñancay	239.4
Guabalcon	84.45
Namza	282.45
Sagüin	164.7
Compud	239.7

Elaborado: Carangui & González.


4.7 Diseño de la conducción.

De acuerdo a los cálculos realizados se ha determinado los caudales de diseño para cada una de las conducciones presentados en la Con base en el balance presentado y en las determinaciones realizadas en la aplicación del proyecto de riego Namza , a continuación en la Tabla 25 se presentan los caudales de diseño de agua para riego requeridos para cada sistemas

Tabla 25, y al conocer los perfiles de cada canal se obtuvieron las pendientes, las cuales fueron empleadas para el cálculo de los diámetros para el diseño de las conducciones. En la Ilustración 15 se presenta una sección de tubería que esquematiza la instalación de la misma.

Ilustración 15. Sección de tubería

Se realizó el cálculo para diferentes tramos en todas las tuberías para elegir el diámetro mayor y así garantizar la funcionabilidad del sistema y que no se presenten problemas al ejecutar la obra. Se utiliza Polietileno de alta densidad HDPE ya que presenta una gran resistencia a las presiones y a los impactos, además de que es flexible lo que facilita su instalación.

Tabla 28. Diseño de tuberías

Canal	Longitud Diámetro (mm)		Material	Ancho de Zanja (m)	Profundidad de Zanja (m)
Piñancay	1259.35	250	HDPE	0.75	1.00
Guabalcon	1907.25	250	HDPE	0.75	1.00
Namza	6728.96	450	HDPE	1.15	1.20
Sagüin	1321.53	350	HDPE	0.85	1.00
Compud	1843.83	500	HDPE	1.20	1.30

Gráfico 26. Perfil del canal de Sagüin

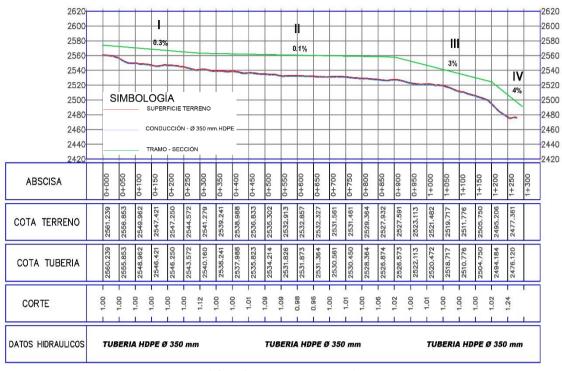
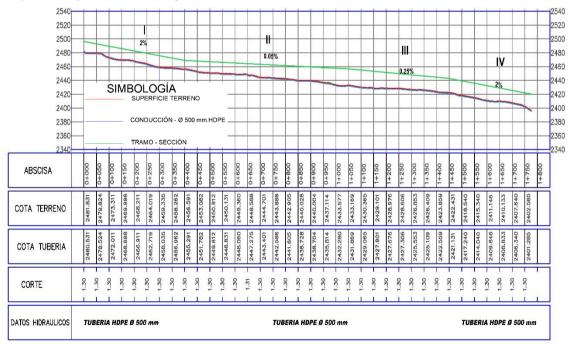
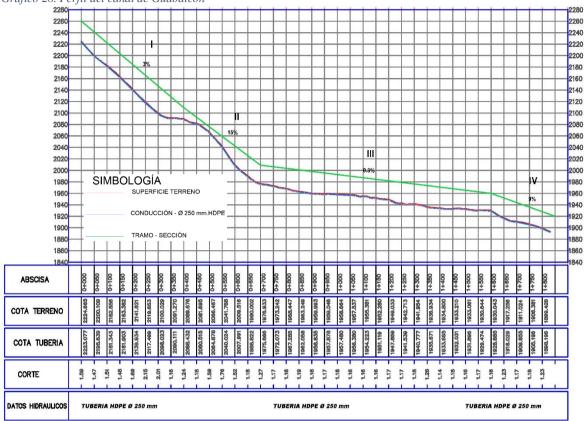




Gráfico 27. Perfil del canal de Compud

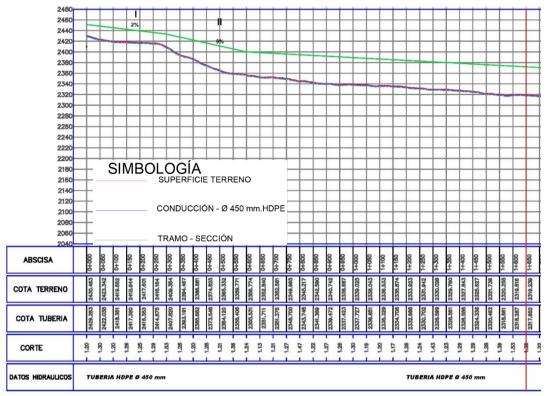

Elaborado: Carangui & González.

Gráfico 29. Perfil del canal de Piñancay 2240 2240 2220 2220 П 2200 2200 10% 2180 2180 Ш 2160 2160 2140 2140 2120 2120 2100 2100 2080 2080 2060 2060 2040 2040 SIMBOLOGÍA 2020 2020 SUPERFICIE TERRENO 2000 2000 1980 CONDUCCIÓN - Ø 250 mm.HDPE 1980 1960 1960 1940 1940 1920 1920 ABSCISA COTA TERRENO COTA TUBERIA CORTE 0.1 9. 1.00 1.00 00.1 1.00 9. 00.1 00.1 9. 00.1 00.1 00.1 00.1 00.1 00.1 00.1 0.1 9.1 1.00 DATOS HIDRAULICOS TUBERIA HDPE Ø 250 mm TUBERIA HDPE Ø 250 mm TUBERIA HDPE Ø 250 mm

Para el perfil del sistema de Namza, al tener una longitud de 6728.96 metros, se realizó su diagramación en 3 partes.

Gráfico 30. Perfil del canal de Namza 1.

Elaborado: Carangui & González.

Gráfico 31. Perfil del canal de Namza 2.

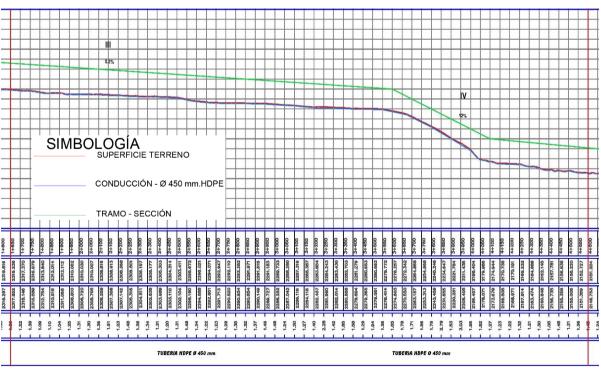


Gráfico 32. Perfil del canal de Namza 3.

En el anexo 7.5 se adjuntan los cálculos para cada tramo de los canales respectivos.

4.8 Aspectos generales del riego en el presente inventario.

El trabajo de titulación que se presenta ha cumplido con el objetivo principal que es el de realizar el inventario de los recursos hídricos en la cuenca del río Guabalcon, en este contexto, y dado que se considera de suma importancia, a continuación se presentan algunos aspectos, que se consideran vitales para el desarrollo de este tipo de proyectos y que constituyen un aporte desde el ámbito científico a la realización de los inventarios de sistemas de riego que requiere el desarrollo del País.

El proyecto de fin de carrera que se culmina puede servir de plataforma para apoyar otros proyectos que abordan aspectos específicos que se han analizado brevemente en este. En línea con esto, sería interesante realizar una evaluación económica en el lugar de las medidas propuestas y el desarrollo de dinámicas participativas que expliquen a las comunidades el contenido y las ideas del proyecto de planificación actual, con el fin de intentar implementar las ideas propuestas para que el proyecto sea ejecutado de manera más optimas que garantice la satisfacción de los usuarios.

Todas las medidas de restauración y protección se definieron como acciones a largo plazo. Estas medidas requieren fuertes inversiones, que a menudo son imposibles de mantener durante este tiempo. Por tanto, es necesario tener en cuenta cuáles son las acciones prioritarias y tratar de avanzar en su ejecución. Se mencionarán a continuación:

La primera de ellas, sin lugar a dudas, es la protección del páramo con la declaración de alguna figura legal, conjuntamente con la adopción de las medidas pertinentes para el cumplimiento de las conductas que se impongan; esto permitiría mantener en las áreas dominantes de la cuenca una estructura vegetal natural, estratégicamente bien ubicada y de especial importancia para la conservación del buen funcionamiento hidrológico de la cuenca, que redundaría también en la protección de la misma ante los eventos torrenciales

El manejo agro-hidrológico de la cuenca es realmente efectivo, en el control de la erosión superficial en cultivos y pastos ya que se propone el uso efectivo de dichos espacios con lo cual se pide la protección de laderas altas frente a los fenómenos rastreros.

El riesgo de erosión en los canales de la cuenca del río Guabalcón, especialmente en su canal principal (Namza), es potencialmente muy alto. por las fuertes pendientes que presentan a lo largo de sus recorridos y la vulnerabilidad de los materiales que componen sus perfiles de evacuación. Aunque solo en la parte media y baja se encuentran riesgos reales, que afectan la erosión del lecho y los consiguientes deslizamientos de tierra en los taludes que forman su cauce. Esto es particularmente importante en el propio río Guabalcón en su recorrido por la zona de Piñancay, donde se aprecia una fuerte erosión del fondo y la estabilización de la margen izquierda. Antes de que se planifique la construcción de cualquier infraestructura en el área relacionada con el río, como es la construcción de un puente sobre el mismo, se debe asegurar antes la estabilización del canal en el tramo que se verá afectado. Por ello, se recomienda la construcción de un pasador de velocidad de puente, que al mismo tiempo sirve para estabilizar el canal y facilitar el tráfico rodado en la zona.

En lo que respecta a los aspectos específicos sobre la Hidrología del río Guabalcón que se han realizado en este proyecto de fin de carrera, se señala que, en los cálculos desarrollados dentro del capítulo de estudio hidrológico, se ha apoyado sobre series de datos de diferentes fuentes y diferentes periodos temporales. Ambos aspectos, especialmente el segundo, se deben tener presentes al valorar los parámetros obtenidos y utilizados en los cálculos posteriores. Pues mencionada información es de relevancia para la aplicación de métodos que nos ayuden a

aprovechar de mejor manera el recurso hídrico.

A través de las propuestas de medidas para el uso de la tierra y el agua, se ha intentado dar respuesta a los problemas que la población identifica como prioritarios. En esta línea, se ha enfatizado el objetivo que se puede destacar como el más urgente, mitigar la situación de pobreza mediante el fortalecimiento de la tierra, único activo muchas veces poseído, optimizando su aprovechamiento, con una mejora de los cultivos más cercana a los requerimientos comerciales actuales y la incorporación de nuevas técnicas de gestión que mejoren la producción de las zonas piscícolas y optimicen los recursos hídricos.

En definitiva, se ha intentado brindar soluciones y alternativas que, por un lado, aseguren la conservación y protección de los ecosistemas naturales, que tienen un alto valor ecológico para el almacenamiento del recurso hídrico y, por otro lado, brinden nuevas oportunidades para su población.

En zonas de clima mediterráneo, donde el agua se convierte en un bien muy valioso, especialmente en la estación seca, parece necesario desarrollar métodos sencillos de inventariar los recursos hídricos. El que se presenta en esta tesis cumple con creces este objetivo en el sentido de que utiliza información cartográfica fácilmente disponible y puede ejecutarse con cualquier tipo de software GIS libre o estándar disponible en el mercado, y más allá de eso, no son conocimientos completos. Este tema es necesario porque se trata de operaciones básicas de análisis espacial.

Esta metodología ya ha sido utilizada y validada con éxito en trabajos científicos con objetivos tan diferentes como la evaluación de la disponibilidad de consumo de agua para el ganado o la clasificación de imágenes aéreas para la cuantificación de suelo desnudo. Por tanto, se recomienda su uso para todo tipo de escalas espaciales y para multitud de aplicaciones medioambientales, con el beneficio añadido de poder ser utilizado para actualizar la información de los recursos hídricos a medida que esté disponible. La aparición de una nueva cartografía base o los vuelos llevado a cabo, facilitan incluso, para poder comparar con épocas anteriores.

CAPÍTULO 5

5. Conclusiones y Recomendaciones.

5.1 Conclusiones.

Se ha realizado la recopilación de la cartografía e hidrología, estudios que han sido base fundamental para el inventario y caracterización las siguientes zonas de riego: Sagüin, Namza, Compud, Guabalcon y Piñancay, pertenecientes a la cuenca hidrográfica del rio Guabalcón.

- En los diferentes sistemas de la cuenca del río Guabalcon el aprovechamiento de agua de riego resulta excedente en razón de la demanda en el periodo de noviembre hasta junio; siendo el periodo julio-agosto (época de estiaje) que muestra mayor requerimiento del recurso hídrico que la cantidad de agua disponible, esto se debe a un exceso de superficie regada en relación al caudal concesionado, y a esto se suma la pérdida de caudal durante el recorrido ya que son canales excavados en tierra.
- En la cuenca del río Guabalcón, las conducciones son principalmente de canales de tierra y no cuentan obras de regulación, a excepción de los sistemas de riego de Compud y Sagüin, que están bordeados por canales. Esto implica pérdidas en el volumen de agua, que se conducen como consecuencia de las fugas, lo que reduce el acceso de los usuarios al recurso hídrico en la última etapa del canal.
- El patrón de cultivo de los sistemas de riego en la cuenca del río Guabalcón está
 constituido por fréjol, papa, tomate, alverja, maíz, y pastos. En la zona de estudio, el
 pasto al no necesitar de un riego tecnificado predomina, por lo tanto, se evidencia un
 crecimiento de la actividad ganadera.

Se ha identificado los parámetros y requerimientos hídricos a través del Balance Hídrico para la cuenca hidrográfica del río Guabalcón y en particular para cada sistema que lo integra. En base a la caracterización realizada, la distribución de agua de riego en los sistemas de aprovechamiento en la cuenca del río Guabalcón tienen las siguientes condiciones, en base a la infraestructura existente, el estado de las conducciones y el indicador de gestión:

• Inadecuado, para el sistema Sagüin con una eficiencia del 61% y un porcentaje de Juan José Carangui Rodríguez

Universidad de Cuenca

pérdidas del 56%. Valores que se ven reflejados directamente con el estado físico de la captación a filo de agua (derivación) y la conducción del recurso hídrico, siendo un estado deficiente.

- Inadecuado, para el sistema Piñancay con una eficiencia del 64% y pérdidas del 20%.
 El sistema de conducción a pesar de contener un tanque partidor de caudal como obra hidráulica, el estado físico de sus canales de tierra como de los que tienen revestimiento de hormigón es deficiente.
- Aceptable, para el sistema Namza con una eficiencia del 71% y pérdidas del 20%. La
 captación de este sistema es a filo de agua (derivación), la conducción del recurso
 hídrico es la más extensa ya que cuenta con un canal de 6.3 kilómetros, y un mini
 acueducto de obra hidráulica a través del cual se da el cruce con otro canal.
- Aceptable, para el sistema Compud con una eficiencia del 89% y pérdidas del 30%. La eficiencia de este sistema se ve directamente relacionada al tipo de canal que conduce el recurso hídrico, ya que el mismo en su totalidad es revestido de hormigón, así también, como la presencia de compuertas desde su captación y a lo largo de la conducción permiten un mejor manejo y distribución del agua.
- Aceptable, para el sistema Guabalcón con una eficiencia del 89% y pérdidas del 20%.
 Este sistema de conducción que parte de una toma directa desde la quebrada, cuenta con tanques de distribución de caudal, estas obras hidráulicas se encuentran en un estado físico regular. La conducción de este sistema es una combinación que contiene trayectos de canal de tierra variado con manguera negra reciclada de 160mm de diámetro.

De la misma manera se ha caracterizado las conducciones de cada sistema, ya que estas son el punto crítico del estudio realizado, por lo tanto, se realizó en base a su estado físico y su topografía donde están involucradas las pendientes, siendo de la siguiente manera:

- Pésimo, para el sistema Piñancay ya que posee una pendiente fuerte del 31% en el tramo
 IV y su canal actual es de tierra en ese tramo.
- Pésimo, para el sistema Guabalcón ya que posee una pendiente del 16% en el tramo II
 y su canal actual es de tierra.

- Regular, para el sistema Namza ya que posee pendientes del 9% y 1231% en el tramo
 II y IV, y su canal actual es de tierra y revestido de hormigón.
- Regular, para el sistema Sagüin y Compud ya que sus pendientes máximas son del 2% y 3%, además su canal es revestido de hormigón.

De acuerdo a las preguntas analizadas en la encuesta de opinión realizada a los usuarios del agua para riego sobre el nivel de organización de las comisiones de riego en la cuenca del río Guabalcón, misma que se presenta en el anexo 7.4. de la cual se concluye lo siguiente:

- Los usuarios opinan que la junta es ineficaz, pese a que la participación de los regantes es alta y comprometida, la comisión encargada es poco transparente debido a que no existe un control exhaustivo que brinde los derechos que les corresponden a los usuarios.
- Los usuarios hacen referencia a una mala gestión en cuanto al cumplimiento de los
 objetivos de la junta, ya que no hay una autonomía sabiendo que el dinero recaudado
 no es suficiente y es necesaria una intervención de los organismos superiores o ayudas
 externas que de un mayor aporte para sus necesidades.

Se ha determinado la dotación de agua para las áreas de irrigación de la cuenca, en base en el caudal unitario obtenido en la sección de requerimiento de agua y área regada., la cual se nos ayuda obtener el caudal de diseño para cada sistema detalla en la Tabla 5.

- Tomando en cuenta que los cálculos realizados para la obtención de la oferta y demanda para cada uno de los sistemas, se debe considerar que el resultado es una estimación de los volúmenes disponibles en relación a una demanda neta, que esta debería ser afectada por unas eficiencias efectivas en los sistemas para obtener los volúmenes reales en los sistemas.
- Al observar las perdidas y eficiencia de cada sistema, se concluye mejorar los métodos de conducción de canales abiertos ya sean de tierra o revestidos de hormigón, independiente de su forma, rectangular o trapezoidal, pues estos al ser reemplazados por tuberías se mejoraría la eficiencia de los mismos y se disminuiría las pérdidas en los mismos.

• En el balance hídrico, se ha determinado la necesidad de identificar y construir embalses de regulación de caudales con el objeto de cubrir las necesidades que se presentan en el verano, pues al obtener los volúmenes totales anuales se observa que la cuenca si es capaz de dotar agua para riego a todos los sistemas, se toma en cuenta cada volumen excedente para la elaboración de un embalse y posteriormente un diseño de distribución de esta agua, con lo cual proponemos realizar un embalse con la capacidad de un millón de metros cúbicos como mínimo para que pueda dotar de suficiente agua a cada uno de los sistemas implicados en el estudio.

5.2 Recomendaciones.

Mejorar el tipo de infraestructura para las cuencas hidrográficas y el manejo de los sistemas de riego en el área de estudio, que suelen ser canales de tierra y con tomas rústicas, para lo cual hemos esquematizado las obras de captación que con estudios posteriores podrán ser ejecutadas, esta información presentamos en el anexo 7.7.

Capacitar e incentivar a los beneficiarios en el uso de tecnologías modernas de riego como: riego por aspersión, goteo y microaspersión, que además de optimizar el consumo de agua, también mejoran la calidad y cantidad de los productos agrícolas, de acuerdo a la Tabla 17 la tecnología de riego superficial por surcos predomina y esta presenta una eficacia del 60%, que al ser reemplazada por aspersión incrementa un 20%.

En el apartado de caracterización de los sistemas al indicador de gestión denominado "Eficiencia", lo cual se proponemos definir este indicador como uno de los parámetros importantes que nos permitan caracterizar los sistemas dentro de los inventarios de los recursos hídricos.

Se recomienda replicar este inventario en todo el País donde exista infraestructura de riego, lo que significa que tanto los organismos públicos como las juntas de riego tengan un conocimiento actualizado y moderno del riego y los recursos hídricos para poder tomar las mejores decisiones en beneficio de la población, según los datos obtenidos mediante la encuesta que se encuentra en el anexo 7.4. se obtuvo información de que las juntas carecen de información actualizada.

Realizar los estudios para la ejecución de un embalse aguas arriba de toda la cuenca con la capacidad de un millón de metros cúbicos según se expresa en la Tabla 23, este serviría para almacenar el recurso hídrico excedente en los periodos de invierno y así el mismo pueda satisfacer las necesidades de los cultivos en los periodos de verano que se da la escasez del Juan José Carangui Rodríguez

mismo.

Al ser el caudal de diseño requerido mayor al caudal disponible es necesario regular dicho caudal en el invierno, por lo tanto, para cumplir las metas del caudal requeridas aparte de los embalses es necesario recuperar la cuenca con objeto de recuperar caudal que permita realizar el riego en toda la cuenca hidrográfica.

Ejecutar obras de captación de fondo en los sistemas de Sagüin, Namza y Compud que serán de gran importancia para garantizar el aprovechamiento del recurso hídrico necesario para cada uno de los sistemas, garantizando los caudales necesarios para las distintas áreas de riego, lo que conlleva a un uso adecuado del mismo y así mejorar la producción de los cultivos.

Al ser canales de tierra en gran parte de los sistemas, se recomienda la implementación de conducción en tubería a flujo libre, cuyo material podría ser Polietileno de alta densidad ya que presenta grandes beneficios como son:

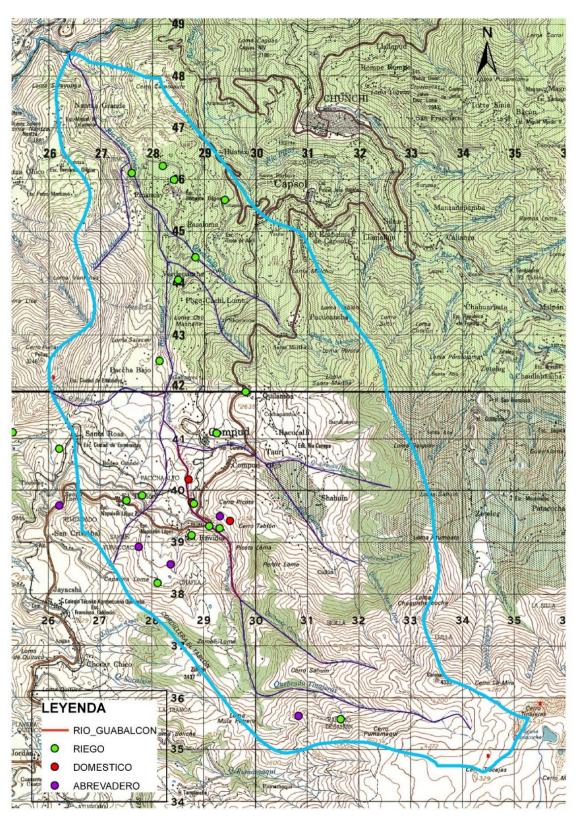
- 1. Alta rigidez anular, lo que le permite resistir las cargas producto de una instalación normal enterrada en zanja.
- 2. Muy liviano, facilitando el transporte manejo e instalación.
- 3. Resistencia a casi todos los agentes químicos conocidos.
- 4. Baja rugosidad desde el punto de vista hidráulico, lo que significa mínimas perdidas de carga en el trasporte de fluidos
- 5. Resistencia a la abrasión.

Además, que se disminuyen notablemente las perdidas por filtraciones y conexiones clandestinas a los canales. Para lo cual se detallan los diámetros a utilizar para cada canal y sus características de excavación en la Tabla 28.

REFERENCIAS

- Acosta, A., y Martinez, E. (2010). *AGUA Un derecho humano fundamental*. Quito Ecuador: Abya Yala.
- Aguirre, M. (2011). La cuenca hidrografica en la gestion integrada de los recursos hidricos. *Revista Virtual REDESMA*, 1-12.
- Albuja, C., Pinos, C., y Samaniego, J. (2013). Uso de desarenadores en abastecimiento de agua potable. *Galileo*(23).
- Algeet Abarquero, N. (2008). Ordenación hidrológico forestal de la cuenca del río Guabalcón, Ecuador.
- Alvarado Vélez, J., Ube Olvera, J., y Naranjo Armijo, F. . (2019). Buen Vivir y Políticas públicas en Ecuador: Una revisión del proceso formativo de la Ley Orgánica de Recursos Hídricos. *PRO-SCIENCES: REVISTA DE PRODUCCIÓN, CIENCIAS E INVESTIGACIÓN*, 24-30.
- Arocha, R,S. (1980). Abstecimiento de agua: Teoría y Diseño. Vega.
- Breña, E. A. (2005). *Diseño hidráulico de aliviaderos para presas pequeñas*. Investigación en el Centro de Investigaciones Hidráulicas del Instituto Superior Politécnico José Antonio Echeverria.
- Briceño, M., Alvarez, F., y Barahona, U. (2012). Manual de Riego y Drenaje. Honduras.
- CAMAREN. (1996). Proyecto de Capacitación para el Área Temática "Riego Andino".
- CAMAREN. (2002). *Programa de capacitación a promotoras y promotores campesinos.* Quito, Ecuador.
- Carrazón, J. (2007). Manual práctico para el diseño de sistemas de minirriego. 218.
- Caseres, J. A. (2012). Sistemas de riego. Catamarca.
- Cisneros Iván. (1995). Riego Campesino y Modernización.
- Cisneros, F. (2002). Mountain irrigation: performance assesmant and introduction of new concepts to improve the water distribution at field level, Tesis doctoral. KU Leuven Belgium.
- Cisneros, F., Pacheco, E., y Feyen, J. (2007). EVALUACIÓN DEL RENDIMIENTO DE SISTEMAS DE RIEGO POR ASPERSIÓN DE BAJA PLUVIOSIDAD COMO RESULTADO DE LA APLICACIÓN DE LA EXTENSIÓN COMO SOPORTE TÉCNICO. *Ingenieria del agua*, 14(3), 177-185.
- Cisneros, F., Torres, P., & Feyen, J. (May/June 2007). "Experimental Assessment of the Sprinkler Application Rate for Steep Sloping Fields". *Journal of Irrigation and Drainage Engineering. Vol. 133 No.3*, 276-278.
- CODERECH. (2005). La Cuenca Hidrográfica y el Riego. Riobamba, Ecuador.
- Cruz, B., y Gaspari, F. (2015). Análisis morfométrico de la cuenca hidrográfica del río Cuale, Jalisco, Mexico. *INVESTIGACION Y CIENCIA*, 26-34.

- Espol. (2000). Estudio Econónico Ambiental del Sistema de Cultivo del Mango en la región de la Sub-Cuenca del Río Daule. Guayaquil: Escuela Politecnica del Litoral.
- FAO. (1999). World reference Base for soil resources. World soil resources reports, 251.
- FAO. (2015). AQUASTAT Perfl de País Ecuador.
- Faustino, J., y Jimenez, J. (2000). MANEJO DE CUENCAS HIDROGRAFICAS. Turrialba, Costa Rica.
- FORO RECURSOS HÍDRICOS. (2005). *Inventario y Planificación de los Recursos Hídricos*. Quito, Ecuador.
- Fritz Mazzei, P. (1999). Manual de Agricultura Moderna. México D.F.
- García Romero, A. Astete Muñoz, S. (2012). Género, interculturalidad y sostenibilidad en la agenda de desarrollo de los pueblos originarios de Ecuador.
- Gobierno Autónomo Descentralizado de la Provincia de Chimborazo. (2011). *Plan de desarrollo y ordenamiento territorial de Chimborazo*. Riobamba.
- Heinke, G. L. Y. N. N, y Henry, J. (1999). Ingenieria Ambiental. Pearson Education.
- Henao, J. E. (1988). Introducción al manejo de cuencas hidrográficas. Bogota, Colombia: Universidad Santo Tomás.
- INGENIERO DE CAMINOS. (2017). Compuertas Hidráulicas para presas.
- Keller, J., & Bliesner, R.D. (1990). *Sprinkle and trickle irrigation.* New York, NY.: Van Nostrand Reinhold, 652 pp.
- KRAH, C. (s.f.). Tubería de pared estructurada. Especificación Técnica.
- Krochin, E. (1982). Diseño Hidráulico. Quito Ecuador.
- Kuffner, U. (2005). El proceso de la formulacion de la politica y estrategia de manejo de los recursos hidricos en el Ecuador. *REGA*, 23-34.
- MAGAP. (2011). *Plan nacional de riego y drenaje 2011-2026.* Ministerio de Agricultura, Ganadería, Acuacultura y Pesca. Subsecretaría de Riego y Drenaje.
- Martínez Gavilanes, J. M. (2012). Diagnóstico del inventario de recurso hídricos en la provincia del Azuay. Cuenca.
- Metcalf, L., y H. P. Eddy. (1928). Ingenieria de Aguas Residuales. Madrid: McGraw-Hill.
- Mocoso, J., y Zeas, M. (2020). Diseño de un sistema de distribución de agua para riego en zonas de alta pendiente para comunidades andinas: aplicación a la comunidad agrícola Namza. Cuenca.
- Mostkow, M. (1957). Sur le calcul des grilles de prise d'eau (Theorical study of bottom type water intake). *La Houille Blanche, V.4*, 569-576.
- Mundial, B. (1992). Libro de Consulta para Evaluación Ambiental. Washington, DC.
- PROMAS. (2006). Informe de proyecto EPIC FORCE. Universidad de Cuenca.


- PROMAS. (2017). Estudios y Diseños para la Rehabilitación y el Mejoramiento de los Sistemas de Riego en la Provincia de Chimborazo. Facultad de Ingenieria: Universidad de Cuenca.
- PROMAS Universidad de Cuenca. (noviembre de 2005). Análisis de gestión en la cuenca del río Chanchán. *Informe del Proyecto EPIC FORCE*, 20.
- PROMAS Universidad de Cuenca. (mayo de 2005). Descripción de la cuenca del río Chanchán: Cartografía, Geología, Estudio edafológico, Clima (precipitaciones y temperaturas), Uso del suelo y vegetación, Inventario de los problemas que generan los desastres naturales en la cuenca. *Informe del Proyecto EPIC-FORCE*, 28 y 7 mapas.
- PROMAS Universidad de Cuenca. (enero de 2006). Recorrido de la cuenca del río Chanchán. Informacion de Baase, Proyecto EPIC-FORCE, 13 y 5 mapas.
- Pulido Fernández, M., Schnabel, S., Jariego García, A. y Lagar Timón, D. (2010). *Inventario de recursos hídricos*. Sevilla.
- Raffino María Estela. (2020). Recursos Hidricos. Argentina.
- Rodríguez Perez, J.F. (2015). Diagnóstico del uso actual del recurso hídrico utilizado por los acueductos municipales ubicados en la parte alta de la cuenca del río Algodonal.
- Romero, F. H. C. (2005). *Acueductos: teoría y diseño*. Medellín, Colombia: Universidad de Medellín.
- Segovia, J. (2005). Módulo de Cuencas. ESPOCH PUCESI, Riobamba Ecuador.
- Torres, Z. (2007). *Caracterizacion de la Cuenca del río Guabalcón*. Universidad de Cuenca, Tesis de maestría programa PROMAS.
- Trujillo, G., y Noni, G. (2000). *La erosion actual y potencial en ecuador: localización, manifestaciones y causas.* Quito.
- Valencia, R. (2018). Distribución Espacial y Temporal de Coliformes Totales y Fecales en el Río Yaguachi. Guayaquil.
- Vimos Reinoso, M. (2017). Evaluación del estado de degradación y de fertilidad segun el uso del suelo en tres agroecosistemas. Riobamba.
- White, G. F. (1978). Environmental effects of arid land irrigation in developing countries/ed by GF White. MAB technical notes.
- Zapatta, A., y Gasselin, P. (2005). *El riego en el Ecuador: problemática, debate y políticas.*Central Ecuatoriana de Servicios Agrícolas.
- Zimmerman, J. (1985). El Riego. México: Editorial Continental.

ANEXOS

7.1 Concesiones de agua en la cuenca hidrográfica del río Guabalcon

7.2 Información de las obras de toma de agua.

17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en A		INFORMACIÓN DI	E LAS OBRAS DE TOMA	
Sector de Riego Sub Sector de Riego Fecha 1 Nombre de la Bocatoma 2 Nombre de la Fuente Sub Sector de Riego Sub Sector de Riego Sub Sector de Riego Sub Sector de Riego Fecha 1 Nombre de la Bocatoma 2 Nombre de la Fuente Sub Sector de Riego Sub Sector de Riego Fecha Indicator de Riego Sub Sector de Riego Fecha Indicator de La Fuente Sub Sub Sector de Riego Sub Sector de Riego Fecha Indicator de Vendana (Drecha o Izquierda) Sub Reja de Captación Sub Reja de Captación Indicator de Ventanas de captación existentes en la Indicator de Ventanas de captación existentes en la Indicator de Ventanas de Captación (Número de Ventanas de la bocatoma) Indicator de Ventanas de Captación (Número de compuertas de la bocatoma) Indicator de Ventanas de Captación (Número de compuertas de la bocatoma) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación de Indicator de Ventanas de Captación de Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecánico o mixto) Indicator de Ventanas de Captación (Manual, mecáni	Cuenca		Junta Parroquial	
Sub Sector de Riego 1 Nombre de la Bocatoma 2 Nombre de la Fuente 3 Abscisa 4 Margen 5 Capacidad de Captación (Diseño), (Actual). 6 Canal de Derivación 7 Tipo de Bocatoma 8 Material de Construcción 9 Reja de Captación (Tipo de operación, mecánico, manual o mixto) 11 Compuertas de Admision 12 Material (M = Madera, F = Fierro) 13 Dimensiones (m) 14 Operación (Manual, mecánico o mixto) 15 Estado Actual (Pequeña descripe 17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en Al (Bueno, Regular o Mal	Sub Cuenca		Presidente de la Junta	
1 Nombre de la Bocatoma 2 Nombre de la Fuente 3 Abscisa 4 Margen 5 Capacidad de Captación (Diseño), (Actual). 6 Canal de Derivación 7 Tipo de Bocatoma 8 Material de Construcción 9 Reja de Captación 10 Operación 11 Compuertas de Admision 12 Material 13 Dimensiones (m) 14 Operación 15 Estado Actual 16 Desarenador 16 Desarenador 17 Canal de Purga 18 Vida Util 19 Estado actual 19 Estado actual 10 Guebra (Piero de Ventana de Captación elas Bocatomas en Al (Período de Operación de las Bocatomas en Al (Bueno, Regular o Ma) 19 Estado actual 10 Estado actual 10 Estado actual 10 Compuerta descripación de las Bocatomas en Al (Bueno, Regular o Ma) 10 Capta descripación de las Bocatomas en Al (Bueno, Regular o Ma) 10 Estado actual 10 Capta descripación de las Bocatomas en Al (Bueno, Regular o Ma) 10 Estado actual	Sector de Riego		Numero de Beneficiarios	
Río o Quebrada O0+000 km O0+000 km ODE ODE	Sub Sector de Riego		Fecha	
3 Abscisa 00+000 km (Drecha o Izquierda) (Drecha o Izquier	l Nombre de la Bocatoma		•	
4 Margen (Drecha o Izquierda) 5 Capacidad de Captación (Diseño), (Actual). (Nombre) 7 Tipo de Bocatoma (Pe = Permanente, Sr = Semi-Rústica, R = Rústica, M = Móvil, Sm = Semi Modera, Margen (Pe = Permanente) (Pipo de operación, mecánico, manual o mixto) (Número de compuertas de la bocatoma) 10 Operación (Número de compuertas de la bocatoma) 11 Compuertas de Admision (Número de compuertas de la bocatoma) 12 Material (M = Madera, F = Fierro) 13 Dimensiones (m) Ancho: Alto: 14 Operación (Manual, mecánico o mixto) 15 Estado Actual (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripedor (Peque	2 Nombre de la Fuente		(Río o Quebrada)	
5 Capacidad de Captación (Diseño), (Actual). 6 Canal de Derivación (Nombre) 7 Tipo de Bocatoma (Pe = Permanente, Sr = Semi-Rústica, R = Rústica, M = Móvil, Sm = Semi Mó (Concreto, Mampostería o Rústico) 9 Reja de Captación (Número de Ventanas de captación exixtentes en la (Tipo de operación, mecánico, manual o mixto) 11 Compuertas de Admision (Número de compuertas de la bocatoma) 12 Material (M = Madera, F = Fierro) 13 Dimensiones (m) Ancho: Alto: 14 Operación (Manual, mecánico o mixto) 15 Estado Actual (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripe (P	3 Abscisa		00+000 km	
6 Canal de Derivación (Nombre) 7 Tipo de Bocatoma (Pe = Permanente, Sr = Semi-Rústica, R = Rústica, M = Móvil, Sm = Semi Mos. B Material de Construcción (Concreto, Mampostería o Rústico) (Número de Ventanas de captación exixtentes en la la locatoma (Tipo de operación, mecánico, manual o mixto) 11 Compuertas de Admision (Número de compuertas de la bocatoma) 12 Material (M = Madera, F = Fierro) 13 Dimensiones (m) Ancho: Alto: (Manual, mecánico o mixto) (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripe	1 Margen		(Drecha o Izquierda)	
7 Tipo de Bocatoma (Pe = Permanente, Sr = Semi-Rústica, R = Rústica, M = Móvil, Sm = Semi Mora. 8 Material de Construcción (Concreto, Mampostería o Rústico) 9 Reja de Captación (Número de Ventanas de captación exixtentes en la	5 Capacidad de Captación ((Diseño),	(Actual).	
Concrete, Mampostería o Rústico Concrete, Mampostería Concrete, Mampostería Concrete, Mampostería Concrete, Mampostería	6 Canal de Derivación		(Nombre)	
8 Material de Construcción 9 Reja de Captación (Número de Ventanas de captación exixtentes en la 10 Operación (Número de Operación, mecánico, manual o mixto) (Número de compuertas de la bocatoma) (Número de compuertas de la bocatoma) (M = Madera, F = Fierro) 13 Dimensiones (m) Ancho: Alto: (Manual, mecánico o mixto) (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripe d	7 Tipo de Bocatoma	(Pe = Permanente,	Sr = Semi-Rústica, R = Rústica,	M = Móvil, Sm = Semi Móvi
Tipo de operación, mecánico, manual o mixto	8 Material de Construcción			
11 Compuertas de Admision	9 Reja de Captación		(Número de Ventanas de ca	aptación exixtentes en la
11 Compuertas de Admision				
2 Material				
Ancho: Alto: Ancho: Alto: Manual, mecánico o mixto) Sexado Actual (Bueno, Regular o Malo) Cequeña descripe (Pequeña descripe (Período de Operación de las Bocatomas en Al (Período actual (Período de Operación de las Bocatomas en Al (Período actual (Período actual (Período de Operación de las Bocatomas en Al (Período actual				
15 Estado Actual (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripe 17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en Al 19 Estado actual (Bueno, Regular o M	13 Dimensiones (m)	Ancho:		
15 Estado Actual (Bueno, Regular o Malo) 16 Desarenador (Pequeña descripe 17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en Al 19 Estado actual (Bueno, Regular o M	14 Operación		(Manual, mecánico o mixto))
16 Desarenador (Pequeña descripe 17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en Al 19 Estado actual (Bueno, Regular o M				,
17 Canal de Purga (Pequeña descripe 18 Vida Util (Período de Operación de las Bocatomas en A 19 Estado actual (Bueno, Regular o M	16 Desarenador		R	(Pequeña descripción
18 Vida Util (Período de Operación de las Bocatomas en A. 19 Estado actual (Bueno, Regular o M.	17 Canal de Purga			(Pequeña descripció
19 Estado actual (Bueno, Regular o M			(Período de Operac	
	19 Estado actual		((Bueno, Regular o Malo
	20 Observaciones			

7.3 Aforo de caudales.

PROMAS UNIVERSIDAD DE CUENCA				SIDAD DE C PROMAS RO DE CAUDA					
Nombre del Proy Fecha: Hora de inicio de Hora de finalizac	Aforo:			Responsable del Aforo: Rio: Equipo: Prof. de corrección de Equipo:					
Distancia desde punto inicial (m)		Profundidad de Medición (%)	Profundidad de Medición (m)	Lectura	Revoluciones	Tiempo (s)	Velocidad (m/s)		
					ं				
Observaciones									
	•								

7.4 Encuesta

ENCUESTA SISTEMAS DE RIEGO EN	LA CUENC	CA DEL RIO GUABALCON					
Está encuesta servirá para desarrollar el proyecto de tesis que ayudará a dar alternativas para mejorar las condiciones del sistema de riego de la comunidad.							
Encuestador:							
Nombre (cabeza de la familia):							
Número de cédula:							
Comunidad:							
Sistema de Riego:							
¿Cuáles cree que son las principales fortalezas de la Junta	de riego ?						
¿Considera que existe un empoderamiento de los usuarios	s de la junta o	de riego?					
¿Cuál es el medio más eficiente de conseguir reunir a los	usuarios de l	a junta de riego?					
¿Cuáles son los principales problemas que deben hacer frente los usuarios a la junta de riego?							
¿La junta de riego ha conseguido consolidar la sostenibili	dad?						
INFORMACIÓN DE PARCELA							
Extensión del terreno (m2/hectáreas):							
Extensión de terreno que ocupa para cultivar (m2/hectáres	as):						
Especifique los cultivos que cultiva:							
¿Qué método utiliza para realizar el riego?							
¿Qué mecanismos utiliza para el laboreo del suelo?							
¿Utiliza semilla mejorada?	SI	NO					
¿Utiliza abono natural?	SI	NO					
¿Utiliza fertilizante químico?	SI	NO					
¿Utiliza pesticida?	SI	NO					
¿Ha tenido capacitación para realizar riego?	SI	NO					
¿Tuviera la predisposición para retomar o continuar con actividades agrícolas si se mejoran las condiciones?	SI	NO					
Firma del encuestador:	Firma del e	ncuestado/a:					
Observaciones:	<u> </u>						

7.5 Diseño de tuberías.

					SISTE	MA DE RIEGO	COMPUD					
PUNTO	NORTE	ESTE	ELEVACION	ABSCISA	LONGITUD	PENDIENTES	TRAMOS	LONGITUD	PRESION(MCA)	PENDIENTE	DIAMETRO	MATERIAL
1263	9740436.585	729571.645	2481.831	0+000.00								
1264	9740474.032	729538.607	2479.824	0+050.00	50	4.01%						
1265	9740502.010	729497.168	2473.311	0+100.00	50	13.03%						
1266	9740532.580	729458.320	2469.998	0+150.00	50	6.63%	١.	350	23.5692	2.15%	300	HDPE
1267	9740570.920	729429.921	2468.211	0+200.00	50	3.57%		330	23.3092	2.15%	300	пире
1268	9740576.665	729381.144	2464.019	0+250.00	50	8.39%						
1269	9740567.895	729332.699	2459.335	0+300.00	50	9.37%						
1270	9740573.275	729283.109	2458.262	0+350.00	50	2.15%						
1271	9740579.643	729234.173	2456.591	0+400.00	50	3.34%						
1272	9740596.591	729187.398	2453.082	0+450.00	50	7.02%						
1273	9740598.258	729137.820	2450.912	0+500.00	50	4.34%						
1274	9740585.849	729089.567	2450.131	0+550.00	50	1.56%	II 700					
1275	9740566.134	729043.725	2449.360	0+600.00	50	1.54%						
1276	9740542.166	728999.865	2448.588	0+650.00	50	1.54%						
1277	9740578.677	728978.242	2444.701	0+700.00	50	7.77%		700	25.0931	0.05%	500	HDPE
1278	9740618.655	728949.763	2443.886	0+750.00	50	1.63%		700				
1279	9740650.577	728911.411	2442.905	0+800.00	50	1.96%						
1280	9740681.582	728872.992	2440.029	0+850.00	50	5.75%						
1281	9740702.918	728827.773	2440.004	0+900.00	50	0.05%						
1282	9740730.380	728866.664	2437.114	0+950.00	50	5.78%						
1283	9740767.863	728889.017	2433.577	1+000.00	50	7.08%						
1284	9740816.968	728895.362	2433.169	1+050.00	50	0.82%						
1285	9740861.631	728917.839	2430.365	1+100.00	50	5.61%						
1286	9740907.338	728935.100	2429.101	1+150.00	50	2.53%						
1287	9740955.676	728925.097	2428.976	1+200.00	50	0.25%				0.25%		HDPE
1288	9741002.432	728907.851	2428.606	1+250.00	50	0.74%		400	10.7373		350	
1289	9741051.168	728896.878	2426.853	1+300.00	50	3.51%		400	10.7373		330	
1290	9741098.515	728880.959	2426.409	1+350.00	50	0.89%						
1291	9741143.054	728858.819	2423.859	1+400.00	50	5.10%						
1292	9741180.797	728826.373	2422.431	1+450.00	50	2.85%						
1293	9741217.927	728798.049	2418.540	1+500.00	50	7.78%						
1294	9741267.819	728797.299	2415.340	1+550.00	50	6.40%						
1295	9741317.233	728803.884	2411.146	1+600.00	50	8.39%	IV	300	19.8467	2.03%	250	HDPE
1296	9741365.150	728817.950	2410.133	1+650.00	50	2.03%] 'V	300	15.0407	2.05%	230	HUPE
1297	9741412.330	728834.385	2407.640	1+700.00	50	4.99%						
1298	9741460.822	728846.238	2402.585	1+750.00	50	10.11%						

					SISTE	MA DE RIEGO	SAGUIN					
PUNTO	NORTE	ESTE	ELEVACION	ABSCISA	LONGITUD	PENDIENTES	TRAMOS	LONGITUD	PRESION(MCA)	PENDIENTE	DIAMETRO	MATERIAL
1095	9738944.621	728982.376	2561.239	0+000.00								HDPE
1096	9738976.870	728944.259	2556.853	0+050.00	50	8.77%						
1097	9738995.791	728898.550	2549.962	0+100.00	50	13.78%						
1098	9739030.930	728862.986	2547.422	0+150.00	50	5.08%	1	300	19.9602	0.34%	300	
1099	9739060.283	728823.262	2547.250	0+200.00	50	0.34%						
1100	9739077.716	728776.409	2544.572	0+250.00	50	5.36%						
1101	9739098.144	728730.863	2541.279	0+300.00	50	6.59%						
1102	9739125.139	728688.957	2539.242	0+350.00	50	4.07%						
1103	9739161.491	728655.958	2538.988	0+400.00	50	0.51%						HDPE
1104	9739207.345	728646.592	2536.833	0+450.00	50	4.31%						
1105	9739252.963	728666.239	2535.302	0+500.00	50	3.06%						
1106	9739297.800	728684.500	2532.913	0+550.00	50	4.78%						
1107	9739347.778	728685.135	2532.857	0+600.00	50	0.11%	П	600	13.6884	0.11%	350	
1108	9739397.558	728687.396	2532.327	0+650.00	50	1.06%	"	000	15.0664	0.11%	330	
1109	9739447.150	728690.950	2531.561	0+700.00	50	1.53%						
1110	9739496.990	728689.711	2531.461	0+750.00	50	0.20%						
1111	9739546.696	728695.009	2529.364	0+800.00	50	4.19%						
1112	9739596.362	728700.664	2527.932	0+850.00	50	2.86%						
1113	9739644.973	728710.455	2527.591	0+900.00	50	0.68%						
1114	9739692.499	728725.849	2523.113	0+950.00	50	8.95%						
1115	9739740.358	728740.229	2521.483	1+000.00	50	3.26%						
1116	9739782.296	728765.084	2519.717	1+050.00	50	3.53%	111	200	32.3849	3.26%	200	HDPE
1117	9739817.660	728800.430	2511.776	1+100.00	50	15.88%	111	III 300	32.3849	3.20%	200	HUPE
1118	9739823.280	728773.841	2505.750	1+150.00	50	12.05%						
1119	9739814.048	728724.745	2495.206	1+200.00	50	21.09%						
1120	9739846.825	728695.040	2477.361	1+250.00	50	35.69%	IV	100	19.7921	3.89%	200	HDPE
1121	9739852.630	728691.686	2475.414	1+300.00	50	3.89%	10	100	15.7921	3.09%	200	HUPE

					SISTE	MA DE RIEGO	PINANCAY	,				
PUNTO	NORTE	ESTE	ELEVACION	ABSCISA	LONGITUD	PENDIENTES	TRAMOS	LONGITUD	PRESION(MCA)	PENDIENTE	DIAMETRO	MATERIAL
1299	9743412.824	729673.116	2181.391	0+000.00								.upps
1300	9743459.589	729656.015	2174.009	0+050.00	50	14.77%						
1301	9743492.777	729621.250	2167.541	0+100.00	50	12.93%		250	24.407	10 000/	200	
1302	9743490.131	729572.197	2160.489	0+150.00	50	14.10%	ı	250	34.487	10.60%	200	HDPE
1303	9743481.677	729525.589	2152.204	0+200.00	50	16.57%						
1304	9743507.781	729484.828	2146.904	0+250.00	50	10.60%						
1305	9743555.134	729474.584	2144.856	0+300.00	50	4.10%					250.00	
1306	9743602.504	729460.236	2144.203	0+350.00	50	1.31%				1.31%		HDPE
1307	9743648.781	729441.303	2142.577	0+400.00	50	3.25%	Ш	250.00	6.74			
1308	9743685.024	729407.705	2141.550	0+450.00	50	2.05%						
1309	9743720.205	729372.177	2140.160	0+500.00	50	2.78%						
1310	9743736.988	729325.516	2126.485	0+550.00	50	27.35%					200.00	HDPE
1311	9743768.739	729286.994	2112.664	0+600.00	50	27.64%	III	200.00	56.29	13.26%		
1312	9743789.869	729242.848	2090.499	0+650.00	50	44.33%		200.00	30.29			
1313	9743834.346	729220.096	2083.871	0+700.00	50	13.26%						
1314	9743879.429	729199.918	2068.426	0+750.00	50	30.89%						
1315	9743923.880	729179.679	2045.659	0+800.00	50	45.53%	IV	150.00	66.25	30.89%	200.00	HDPE
1316	9743960.350	729145.737	2017.624	0+850.00	50	56.07%						
1317	9743989.577	729105.462	2006.542	0+900.00	50	22.16%						
1318	9744014.900	729062.349	2001.980	0+950.00	50	9.13%						HDPE
1319	9744037.012	729017.626	1993.595	1+000.00	50	16.77%	V	300.00	E1 65	0.120/	200.00	
1320	9744031.646	728973.044	1982.918	1+050.00	50	21.35%	V		51.65	9.13%	200.00	
1321	9744014.526	728926.488	1971.238	1+100.00	50	23.36%						
1322	9744020.274	728878.393	1965.973	1+150.00	50	10.53%						

					SISTEMA	A DE RIEGO GI	UABALCON	ı				
PUNTO	NORTE	ESTE	ELEVACION	ABSCISA	LONGITUD	PENDIENTES	TRAMOS	LONGITUD	PRESION(MCA)	PENDIENTE	DIAMETRO	MATERIAL
1323	9743131.776	727264.736	2224.665	0+000.00								
1324	9743122.178	727313.806	2200.109	0+050.00	50	49.11%						
1325	9743111.723	727362.636	2182.857	0+100.00	50	34.50%						
1326	9743108.927	727412.552	2163.382	0+150.00	50	38.95%						
1327	9743111.347	727461.889	2141.621	0+200.00	50	43.52%	- 1	400	134.99	3.19%	200	HD/ HDPE
1328	9743129.646	727508.410	2119.653	0+250.00	50	43.94%						
1329	9743147.465	727555.029	2100.029	0+300.00	50	39.25%						
1330	9743176.176	727595.286	2091.270	0+350.00	50	17.52%						
1331	9743203.919	727634.622	2089.676	0+400.00	50	3.19%						
1332	9743212.684	727683.848	2081.695	0+450.00	50	15.96%						
1333	9743235.071	727727.293	2066.467	0+500.00	50	30.46%						
1334	9743276.329	727754.507	2041.788	0+550.00	50	49.36%	- 11	300 112	112.74	15.96%	200	HD/ HDPE
1335	9743325.045	727765.727	2009.516	0+600.00	50	64.54%	"	300	112.74	13.3070	200	HD, HDI L
1336	9743373.294	727778.832	1990.002	0+650.00	50	39.03%						
1337	9743421.973	727790.180	1976.933	0+700.00	50	26.14%						
1338	9743471.415	727797.110	1973.242	0+750.00	50	7.38%						HDPE
1339	9743519.854	727789.332	1968.447	0+800.00	50	9.59%						
1340	9743563.039	727765.426	1963.249	0+850.00	50	10.40%						
1341	9743604.223	727737.243	1959.994	0+900.00	50	6.51%						
1342	9743650.899	727726.168	1959.046	0+950.00	50	1.89%						
1343	9743698.791	727738.888	1958.664	1+000.00	50	0.76%					250	
1344	9743739.906	727766.726	1957.537	1+050.00	50	2.25%						
1345	9743785.420	727785.257	1955.381	1+100.00	50	4.31%						
1346	9743832.377	727777.360	1952.280	1+150.00	50	6.20%	Ш	900	46.89	0.30%		
1347	9743874.734	727750.792	1949.033	1+200.00	50	6.49%	""	300	40.83	0.3076	230	TIDEL
1348	9743917.927	727725.618	1942.713	1+250.00	50	12.64%						
1349	9743965.878	727711.739	1941.954	1+300.00	50	1.52%					'	
1350	9744011.757	727692.539	1936.934	1+350.00	50	10.04%						
1351	9744056.325	727669.874	1934.800	1+400.00	50	4.27%						
1352	9744102.226	727650.048	1933.210	1+450.00	50	3.18%						
1353	9744140.272	727619.154		1+500.00	50	0.30%						
1354	9744171.798	727580.758	1930.644	1+550.00	50	4.84%						
1355	9744214.262	727554.683	1930.043		50	1.20%						
1356	9744259.342	727575.417	1917.256	1+650.00	50	25.57%						
1357	9744298.689	727568.940	1911.024	1+700.00	50	12.46%	IV	2	30.62	9.29%	200	HDPE
1358	9744337.556	727540.161	1906.381		50	9.29%	١٧	_	30.02	J.2J/0	200	TIDIL
1359	9744384.703	727539.373	1899.426	1+800.00	50	13.91%						

Description Country ESTE ELEVACION ABSCISA LONGITUD PENDENTES TRAMOS LONGITUD LONGITUD PENDENTES TRAMOS LONGITUD LONGITUD LONGITUD PENDENTES TRAMOS LONGITUD						O NAMZA	TEMA DE RIEG	SIS.					
1552 97390429 971 72831 326 2493 0.463 0+000.00 100 10.91% 1554 9739029 661 728310.685 2419.552 074000 0.100 1.95% 1555 9740024 573 72820442 2209 354 0+200.00 100 1.95% 1555 9740010.128 728224 667 2386.881 0+400.00 100 22.47% 1557 974019.8390 728211.394 2365.323 0+500.00 100 2.247% 1557 974019.8390 728211.394 2365.323 0+500.00 100 2.155% 110 100 1.95% 1558 974020.393 72821.335 2355.774 0+00.00 100 3.56% 1559 974033.584 728191.528 2352.587 0+700.00 100 4.19% 1556 974036.005 72819.005 2345.217 0+800.00 100 7.35% 1561 974058.005 72809.005 2340.742 0+900.00 100 4.48% 1569 974058.605 72819.005 2340.005 2340.000 100 2.45% 1569 974058.607 72790.930 2338.533 1+100.00 100 2.45% 1566 9740730.308 72795.939 2339.035 1+000.00 100 2.45% 1566 9740730.308 72795.939 2339.035 1+000.00 100 2.45% 1566 9740730.308 72795.959 2339.035 1+000.00 100 2.45% 1567 974084.640 727648.232 2321.312 1+500.00 100 2.28% 1579 9740984.640 727648.232 2321.312 1+500.00 100 2.28% 1579 9740984.698 72748.879 2313.804 1+800.00 100 2.45% 1579 9740984.698 72748.879 2313.804 1+800.00 100 2.45% 1579 9741071.192 727480.003 2301.2112 1+900.00 100 2.45% 1579 9741171.192 727480.003 2301.003 2000.00 100 2.45% 1579 9741171.192 727480.003 2301.003 2000.00 100 2.45% 1579 9741171.192 727480.003 2301.003 2000.00 100 2.45% 1579 9741171.192 727480.003 2301.003 2000.00 100 2.45% 1579 9741171.192 727480.003 2301.003 2000.00 100 2.45% 1579 9741171.192 727480.003 2303.412 2700.00 100 2.45% 1579 9741171.193 727193.809 2280.202 2460.00 100 2.45% 1589 974215.246 72728.838 2221.512 2000.00 100 2.45% 1589 974215.246 72725.256 2280.939 2400.00 100 2.24% 1589 974215.246 72	MATERIAL	DIAMETRO	PENDIENTE	PRESION(MCA)	LONGITUD			1	ABSCISA	ELEVACION	ESTE	NORTE	PUNTO
1555 974002-0573 72829-042 2409 3540 37000 300 100 1.95% 1 300 21.1097 1.95% 250				, , ,									
1555 97400245.77 7282944 92 2470-3540 1-000.00 100 1.55% 1555 9740012.78 728294 92 2409.3540 1-000.00 100 2.247% 1556 9740012.88 72821-366 2386.88 0-400.00 100 2.247% 1558 9740192.89 072821.39 2365.332 0-500.00 100 2.155% 1559 974093.58 72819.58 2355.88 0-700.00 100 8.55% 1559 974093.58 72819.58 2355.88 0-700.00 100 4.19% 1560 974085.003 72809.00 2340-724 0-900.00 100 4.19% 1560 974085.003 72809.00 2340-724 0-900.00 100 4.48% 1561 974055.003 72809.00 2360.78 1-1000.00 100 1.72% 1563 974056.85 72790.309 2365.33 1-1000.00 100 1.72% 1563 974056.85 72790.309 2365.33 1-1000.00 100 2.45% 1565 974078.038 72793.28 2327.843 1-400.00 100 2.45% 1565 974078.632 72779.38 2327.843 1-400.00 100 2.45% 1565 974095.640 727643.23 2327.843 1-400.00 100 2.45% 1565 974096.85 72790.755 2317.370 1-700.00 100 2.45% 1570 974098.98 72748.679 2318.40 1480.00 100 3.53% 1571 9741074.986 727408.99 2318.111 1-900.00 100 1.25% 1570 974098.98 72748.679 2318.40 1480.00 100 3.53% 1571 9741074.986 727408.99 2318.111 1-900.00 100 1.27% 1579 974161.70 727197.55 2303.86 2200.00 100 1.25% 1575 974124.709 727197.75 2303.86 2200.00 100 1.25% 1579 974161.75 72714.32 2305.30 2400.00 100 2.45% 1579 974161.75 72714.32 2305.30 2400.00 100 2.45% 1579 974161.75 72714.52 2305.30 2400.00 100 2.45% 1579 974162.500 7272.86% 2209.402 2700.00 100 3.65% 1589 974193.03 72715.63 2229.472 2770.00 100 3.65% 1589 974193.03 72715.63 2229.472 2770.00 100 3.65% 1589 97425.500 7272.65 2229.472 2770.00 100 3.65% 1589 97425.500 7272.65 2229.472 2770.00 100 3.65% 1589 97425.500 72726.52 2229.472 2770.00 100 3.65% 1589 97425.500 72726.52 2225.426 3800.00 1	HDPE	250	1.05%	21 1007	200		10.91%	100	0+100.00	2419.552	728338.081	9739840.515	1553
1556 9740101.258 728234.667 2386.881 0+400.00 100 22.47% 1559 740198 390 728211.349 2365.329 0+500.00 100 21.55% 1559 9740298.589 728210.336 2356.774 0+600.00 100 4.19% 1556 9740286.055 728191.528 2355.2581 0+700.00 100 4.19% 1556 9740286.055 728191.528 2355.2581 0+700.00 100 4.19% 1556 9740352.003 728090.695 2340.742 0+900.00 100 1.72% 1563 9740525.2955 729791.995 2339.025 1+000.00 100 1.72% 1563 9740552.895 729790.930 2336.533 1+100.00 100 2.49% 1564 974063.860.07 72387.05 2338.923 1+200.00 100 2.49% 1566 974076.232 72719.405 2339.025 1+300.00 100 2.49% 1566 974076.232 72719.405 2339.025 1+300.00 100 2.45% 1566 974076.232 72719.255 2337.370 1+000.00 100 2.45% 1567 9740804.640 727643.223 2321.739 1+500.00 100 6.10% 1573 974107.966 727408.670 2313.840 1+800.00 100 2.45% 1570 9740804.958 72748.670 2313.840 1+800.00 100 1.27% 1579 974117.192 72748.670 2313.801 1+900.00 100 1.73% 1572 974117.192 72748.670 2313.030 2+000.00 100 0.41% 1574 9741167.153 72725.557 2308.303 2+000.00 100 0.45% 1576 9741341.709 727197.787 2305.303 2+000.00 100 0.45% 1576 9741341.709 727197.787 2305.303 2+000.00 100 0.589% 1577 9741416.765 727134.921 2305.303 2+000.00 100 0.739% 1579 9741341.709 727197.877 2305.303 2+000.00 100 0.739% 1579 9741341.709 727197.877 2305.303 2+000.00 100 0.739% 1578 9741341.709 727197.877 2305.303 2+000.00 100 0.739% 1579 9741341.709 72719.3873 2292.822 2600.00 100 0.739% 1579 9741341.709 72719.3873 2292.822 2600.00 100 0.739% 1588 974227.546 72779.583 4+000.00 100 0.25% 1588 974227.546 72779.5783 2282.339 3+000.00 100 0.25% 1588 974220.3387 27279.378 2282.339 3+000.00 100 0.25% 1588 974220.3387 27279.378	HUPE	230	1.95%	21.1097	300	'	1.95%	100	0+200.00	2417.601	728310.685	9739929.661	1554
1555 740958 390 728211_394 2365.332 0+500.00 100 21.55% 11 300 52.5795 8.56% 200 1558 740958 389 7282136 2365.758 0+700.00 100 4.15% 1550 740986.045 728279.440 2345.217 0+800.00 100 7.365% 1561 740952.003 728909.665 5340.742 0+900.00 100 4.48% 1561 740952.003 728909.665 5340.742 0+900.00 100 4.48% 1563 740956.5873 727909.90 2336.533 1100.00 100 2.49% 1564 9740638.620 727833.705 2339.231 1100.00 100 2.49% 1566 9740746.323 727719.281 2327.843 1+00.00 100 2.18% 1565 744073.036 72795.85 2300.05 1+000.00 100 1.27% 1566 9740963.756 72790.755 2317.370 1+700.00 100 2.45% 1570 744098.958 72748.029 2318.861 1400.00 100 2.45% 1570 744098.958 72748.292 2318.861 1600.00 100 1.25% 1571 974107.192 727430.10 3310.00 100 0.41% 1574 9741167.153 72752.557 2308.862 2200.00 100 1.25% 1579 974409.99 27197.877 2305.308 2400.00 100 0.24% 1579 974167.656 72797.877 2305.303 2400.00 100 0.24% 1579 974167.656 72797.877 2305.303 2400.00 100 0.24% 1579 974167.656 727179.787 2305.303 2400.00 100 0.24% 1579 974167.656 727179.787 2305.303 2400.00 100 0.24% 1588 974215.340 727179.387 2308.61 2400.00 100 0.25% 1588 974215.340 727179.350 2299.248 24800.00 100 0.25% 1588 974215.366 72782.555 2280.933 3+500.00 100 0.29% 1588 974215.366 72782.555 2280.933 3+500.00 100 0.29% 1588 974215.366 72782.555 2280.933 3+500.00 100 0.23.46% 1589 974215.366 72782.555 2280.933 3+500.00 100 0.23.46% 1589 974250.508 72782.555 2280.933 3+500.00 100 0.23.46% 1589 974250.508 72782.555 2280.933 3+500.00 100 0.23.46% 1589 974250.338 727416.39 22782.543 227174.09 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000								+					
1558 9740936 389 78210336 2356.774 0+600.00 100 8.55% 1559 9740383 384 23915.28 2352.581 0+700.00 100 4.19% 1560 9740486.045 728179.440 2345.217 0+800.00 100 7.36% 1561 9740532.003 728090.695 2340.72 0+900.00 100 1.72% 1563 974056.5873 77900.930 2336.533 1+00.00 100 1.72% 1563 974056.873 77950.930 2336.533 1+00.00 100 2.49% 1564 974063.86 077837.075 2339.393 1+00.00 100 2.45% 1566 974076.323 72775.945 2339.393 1+00.00 100 2.45% 1566 974076.323 72775.945 2330.026 1+300.00 100 2.45% 1570 9740864.586 727597.755 2317.370 1+700.00 100 2.45% 1570 9740984.958 727485.670 2311.370 1+700.00 100 2.45% 1570 9740984.958 727485.670 2311.370 1+700.00 100 2.45% 1570 9740794.986 727485.973 2312.121 1900.00 100 1.73% 1573 9741179.986 727485.673 2305.303 2+00.00 100 0.41% 1574 9741167.153 727252.557 2308.386 2+00.00 100 0.45% 1579 9741471.99 727252.557 2308.386 2+00.00 100 0.24% 1579 9741471.99 72718.076 2299.97 2+700.00 100 0.25% 1579 974157.340 72718.076 2299.97 2+700.00 100 0.73% 1579 974157.340 72718.076 2299.97 2+700.00 100 0.73% 1579 974157.340 72718.076 2299.97 2+700.00 100 0.75% 1589 974217.349 72718.076 2299.97 2+700.00 100 0.75% 1589 974217.349 72719.350 2292.82 2800.00 100 0.75% 1589 974218.050 72718.076 2299.350 2299.22 2+800.00 100 0.75% 1589 974218.050 72718.076 2299.555 2899.90 3000.00 0.00 2.36% 1589 974218.333 72717.334 2287.393 3+00.00 100 0.24% 1589 974218.333 72718.076 2299.52 2898.00 100 0.75% 1589 974218.333 72718.076 2299.555 2899.90 0.00 0.75% 1589 974218.333 72718.076 2299.555 2899.90 0.00 0.75% 1589 974283.300 27740.333 2221.848 4900.00 100 2.36% 1599 974280.039 72740.333 221258 4000.00 100			ı l					+					
1550 9740383.584 28191.528 2352.581 0-700.00 100	HDPE	200	8.56%	52.5795	300								
1560 9740486 045 728179 440 2245 217 0+800.00 100 7.36% 1561 9740532.003 728090.695 2340.742 0+900.00 100 1.72% 1563 9740552.925 727997.196 2339.025 1+000.00 100 1.72% 1563 9740583.820 72789.930 2336.533 1+100.00 100 2.49% 1564 9740583.602 72783.978 2338.6533 1+100.00 100 2.61% 1565 9740730.308 727795.495 2330.026 1+300.00 100 3.30% 1566 9740764.63.23 727719.818 2327.843 1+000.00 100 0.12% 1569 974096.54.92 72757.95 2317.370 1+700.00 100 0.12% 1579 9740804.640 727643.223 2321.739 1+500.00 100 0.15% 1570 9740984.958 727448.670 2313.840 1+800.00 100 3.53% 1573 9741174.986 72708.99 2312.112 1+900.00 100 1.73% 1573 9741197.386 72789.99 2312.112 1+900.00 100 1.73% 1573 9741197.386 72789.99 2312.112 1+900.00 100 1.25% 1575 974124.738 727792.645 2366.197 2+300.00 100 1.27% 1576 974341.709 72719.7787 2305.333 2400.00 100 1.27% 1576 974341.709 72719.7787 2305.333 2400.00 100 1.89% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 974151.344 727128.076 2299.477 2+700.00 100 3.07% 1580 974250.07158 72712.55 2288.343 3+000.00 100 1.78% 1588 9742151.086 727782.543 2288.430 3+000.00 100 1.78% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.78% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.25% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.25% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.78% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.78% 1589 974250.086 72786.243 2288.430 3+000.00 100 1.78% 1590 974260.047 72750.851 2245.246 3+800.00 100 0.2346% 1590 974260.047 72750.851 2245.246 3+800.00 100 2.346% 1590 974260.047 72750.853 2245.246 3+800.00								1					
1561 9740532 003 726090 695 2240,742 0+900.00 100 1.02 4.85% 1562 9740552 925 727997.196 2393.025 1+000.00 100 1.72% 1563 9740558.873 727909.390 2336.533 1+200.00 100 2.49% 1565 974073.098 72795.895 2230.026 1+300.00 100 2.61% 1565 974073.098 72795.895 2230.026 1+300.00 100 2.18% 1566 9740746.323 727719.281 2322.843 1+400.00 100 2.18% 1566 9740746.323 727759.281 2322.843 1+400.00 100 1.92% 1566 9740836.786 7277597.755 2317.370 1+700.00 100 2.45% 1570 9740984.958 727446.70 2313.840 1480.00 100 1.52% 1570 9740984.958 727446.70 2313.840 1480.00 100 1.73% 1572 9741171.192 727430.103 2310.030 2400.00 100 1.25% 1573 9741198.680 727342.882 2309.616 2+100.00 100 1.25% 1573 974124.2738 72719.645 2306.303 2+00.00 100 1.25% 1575 974124.2738 72719.645 2306.303 2+00.00 100 2.17% 1576 9741341.709 727197.878 2305.303 2+00.00 100 1.25% 1578 9741513.440 727128.076 2299.947 2+700.00 100 3.07% 1578 9741513.440 727128.076 2299.947 2+700.00 100 3.07% 1578 9741513.490 727128.076 2299.947 2+700.00 100 3.07% 1580 974172.496 727129.950 2292.947 2+700.00 100 3.07% 1580 974172.496 727129.950 2292.947 2+700.00 100 3.07% 1580 974107.2496 727129.950 2292.947 2+700.00 100 3.07% 1580 974107.2496 727129.950 2292.947 2+700.00 100 3.46% 1581 974200.349 727718.65 2289.373 3+000.00 100 0.24% 1586 974226.449 72758.658 2288.384 3+200.00 100 0.25% 1589 974200.049 727578.658 2288.249 3490.00 100 0.24% 1586 974226.449 72758.688 2282.249 3480.00 100 0.23.46% 1599 974280.009 72789.558 2285.248 3480.000 100 0.23.46% 1599 974280.003 727460.282 2184.449 4000.00 100 2.34.6% 1599 974380.003 727460.282 2184.449 4000.00 100 0.550% 1599 9743835.855 727464.													
1563 9740555.975 977997.196 2339.075 1-900.00 100 1.72% 1563 9740558.873 277909.390 2336.533 1-900.00 100 2.49% 1564 9746638.60 727833.705 2333.923 1-200.00 100 2.61% 1565 9740730.308 277795.495 2330.026 1-300.00 100 3.90% 1566 9740746.323 277719.818 2327.834 1-400.00 100 2.18% 1569 974086.8.60 72783.213 2327.834 1-400.00 100 2.18% 1569 974086.8.676 77759.320 2319.816 1-600.00 100 0.19% 1569 974095.450 727507.755 2317.370 1-700.00 100 2.45% 1570 974094.9459 727468.670 2313.840 1-800.00 100 3.53% 1573 974117.192 727430.103 2310.030 2-000.00 100 0.28% 1573 974117.192 727430.103 2310.030 2-000.00 100 0.28% 1574 9741167.153 727252.557 2308.368 2-200.00 100 1.25% 1575 974124.738 72719.645 2306.197 2-300.00 100 1.25% 1576 9741341.709 72719.7787 2305.303 2-400.00 100 1.25% 1577 9741416.765 727134.921 2303.411 2-500.00 100 1.89% 1579 9741612.540 727128.076 2299.947 2-700.00 100 3.07% 1580 9741913.344 727138.976 2299.947 2-700.00 100 3.07% 1581 9741809.302 727156.557 2291.333 3-000.00 100 1.78% 1588 974215.216 727225.350 2292.822 24800.00 100 0.66% 1588 974220.01.589 727725.565 2280.933 3+000.00 100 1.78% 1588 974226.01.589 727726.244 2288.248 3+000.00 100 2.15% 1588 974226.499 727729.773 2281.279 3+000.00 100 1.25% 1589 974250.086 727468.408 2246.866 3+000.00 100 2.346% 1590 974260.049 72750.851 2245.266 3+000.00 100 1.96% 1590 974260.049 72750.851 2245.266 3+000.00 100 2.346% 1590 974260.049 72750.851 2245.266 3+000.00 100 2.36% 1590 974260.049 72750.851 2245.266 3+000.00 100 2.36% 1590 974260.049 72750.851 2245.266 3+000.00 100 2.36% 1590 974260.049 72750.851 2245.266 3+000.00 100 2.50% 1590 974260.049 72750.851								t					
1563 974056.873 127900.930 3336.533 1+100.00 100 2.49% 1564 9740783.680 727833.705 2333.923 1+200.00 100 3.90% 1566 9740780.308 727779.481 2327.843 1+400.00 100 2.18% 1569 9740906.400 727648.223 2321.739 1+700.00 100 1.92% 1569 9740906.400 727648.223 2321.739 1+700.00 100 1.92% 1569 9740908.498 727448.670 2313.400 1+800.00 100 2.45% 1570 9740984.958 727448.670 2313.400 1+800.00 100 1.73% 1571 9741074.996 727408.929 2312.112 1+900.00 100 1.73% 1573 9741171.912 72743.010 2310.030 2+000.00 100 1.25% 1573 9741174.920 72743.010 2310.030 2+000.00 100 1.25% 1573 9741417.192 72743.010 2310.030 2+000.00 100 1.25% 1575 9741427.738 77192.645 2306.197 2+300.00 100 1.25% 1576 9741341.709 72719.787 2305.303 2+400.00 100 0.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 3.07% 1580 9741712.496 7712.9530 229.287 2+800.00 100 0.77% 1581 974809.302 72712.850 229.287 229.800 100 0.66% 1581 974809.507 72712.850 229.287 229.800 100 0.77% 1589 974275.216 72762.530 229.287 229.800 100 0.77% 1588 974264.015 72732.547 2287.319 3+100.00 100 0.24% 1588 974264.015 72732.555 2289.038 3+500.00 100 0.24% 1589 974254.60.15 72732.555 2289.038 3+500.00 100 0.24% 1589 974254.60.15 72732.555 2289.038 3+000.00 100 0.23.46% 1599 974260.097 72706.588 221.788 3+000.00 100 0.23.46% 1599 974260.097 72706.588 221.788 3+000.00 100 0.23.46% 1599 974260.097 72707.658 2245.246 3+600.00 100 0.23.46% 1599 9742883.730 727461.831 2174.944 4+100.00 100 0.23.46% 1599 974360.097 72707.831 2142.548 4+000.00 100 0.23.46% 1599 974360.097 72709.232 219.808 219.788 4+000.00 100 0.23.46% 1599 9743425.398 727450.331			1					+					
1566 97406738.620 127833.705 2333.025 1+200.00 100 2.61% 1566 9740746.323 727719.281 2327.843 1+400.00 100 3.90% 1569 974096.323 727719.281 2327.843 1+400.00 100 6.10% 1569 9740905.450 727643.223 2321.739 1+500.00 100 6.10% 1569 9740905.450 727507.755 2317.370 1+700.00 100 2.45% 1570 9740984.958 727448.670 2313.840 1+800.00 100 3.53% 1573 9741074.996 727408.992 2312.112 1+900.00 100 2.08% 1573 9741171.192 727430.103 2310.030 2+000.00 100 0.28% 1573 9741175.153 727252.557 2308.368 2+200.00 100 0.41% 1574 9741167.153 727252.557 2308.368 2+200.00 100 0.125% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.217% 1576 9743141.709 72719.7787 2305.302 2+400.00 100 0.28% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 9743151.343 727139.647 2296.022 2+600.00 100 0.73% 1580 9743107.557 727156.247 2289.333 3+000.00 100 0.66% 1581 9741803.437 727193.89 2282.828 2+800.00 100 0.42% 1588 974203.437 727193.89 2283.83 3+200.00 100 0.42% 1588 974203.437 727193.89 2283.83 3+200.00 100 0.42% 1589 974250.847 72726.543 2288.338 3+200.00 100 0.42% 1589 974260.497 72750.851 2245.246 8+800.00 100 0.29% 1589 974260.497 72750.851 2245.246 8+800.00 100 1.39% 1599 974260.497 72750.851 2245.246 8+800.00 100 1.39% 1599 974286.015 77352.555 2280.939 3+600.00 100 1.39% 1599 9743067.303 72741.644 2164.686 4+300.00 100 23.46% 1599 9743067.303 72741.644 2164.686 4+300.00 100 23.46% 1599 9743067.303 72741.644 2164.686 4+300.00 100 3.50% 1599 9743067.303 72741.644 2164.686 4+300.00 100 0.550% 1599 9743067.303 72741.644 2164.686 4+300.00 100 0.550% 1599 9743067.303 72741.644 2164.686			1										
1565 9740730.308 127795.495 2330.026 1-300.00 100 3.90% 1566 9740840.601 727643.223 2321.739 1+500.00 100 0.10% 1568 9740804.601 727643.223 2321.739 1+500.00 100 0.10% 1569 9740805.490 72750.755 2313.730 1+700.00 100 1.92% 1570 9740984.958 727488.670 2313.840 1+800.00 100 1.33% 1571 9741074.986 727488.929 2312.112 1+900.00 100 1.73% 1572 9741171.192 727430.103 2310.030 2+000.00 100 1.73% 1573 9741186.890 727488.292 2312.112 1+900.00 100 0.41% 1573 9741167.193 72725.555 2308.386 2+200.00 100 0.41% 1574 9741171.912 727430.103 2310.303 2+000.00 100 0.41% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.217% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1579 9741616.765 727134.9412 2303.4112.4500.00 100 0.89% 1579 9741616.765 727134.9412 2303.4112.4500.00 100 0.89% 1580 9741712.496 727128.076 2292.947 2+700.00 100 3.07% 1580 9741712.496 727128.076 2292.947 2+700.00 100 0.77% 1580 9741712.496 727128.507 2292.282 2+800.00 100 0.77% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1583 974207.557 72716.527 2289.333 3+000.00 100 0.42% 1588 9742215.216 72726.543 2283.854 3+200.00 100 0.42% 1588 9742215.216 72726.543 2283.854 3+200.00 100 0.42% 1589 974226.015 72785.2556 2280.933 3+000.00 100 0.42% 1589 974260.0497 72750.851 2245.246 3+800.00 100 0.2346% 1599 974260.0497 72750.851 2245.246 3+800.00 100 23.46% 1599 974260.0497 72750.851 2245.246 3+800.00 100 23.46% 1599 974260.0497 72750.851 2245.246 3+800.00 100 23.46% 1599 974362.514 72740.231 2170.914 4+000.00 100 23.46% 1599 974366.037 72746.388 2217.84 3+900.00 100 23.46% 1599 974366.037 72746.388 2174.9													
1567 9740804.640 727643.223 2321.739 1+500.00 100 6.10% 1568 9740836.786 727559.230 2319.816 1+600.00 100 1.92% 1569 974090.450 727507.755 2317.370 1+700.00 100 2.45% 1570 9740984.986 727448.670 2313.840 1+800.00 100 3.53% 1571 9741074.986 727408.929 2313.112 1+900.00 100 1.73% 1573 9741171.192 727430.103 2310.030 2+000.00 100 0.40% 1573 9741176.153 727252.557 2303.368 2+200.00 100 0.41% 1574 9741167.153 727252.557 2303.368 2+200.00 100 1.25% 1575 974124.738 727192.645 2306.197 2+300.00 100 2.17% 1576 9741341.799 727197.872 2305.303 2+000.00 100 2.17% 1576 9741341.799 727197.872 2305.303 2+000.00 100 0.89% 1579 9741612.540 727128.076 2292.947 2+700.00 100 3.07% 1589 974171.2496 727129.503 2292.282 2+800.00 100 0.73% 1589 9741071.2496 727125.350 2292.282 2+800.00 100 0.77% 1582 974207.158 727172.542 2283.733 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.843 3+200.00 100 0.42% 1588 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1589 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1588 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1589 974260.497 727508.83 22276.283 3+600.00 100 0.29% 1599 974260.497 727508.83 22276.283 3+600.00 100 0.29% 1599 974280.444 72726.283 22176.284 3+000.00 100 2.3.86% 1599 974280.730 72746.085 2246.866 3+700.00 100 2.3.86% 1599 974280.730 72746.085 2246.866 3+700.00 100 0.23.46% 1599 974280.730 72746.085 2246.866 3+700.00 100 0.23.46% 1599 974280.730 72746.085 2246.866 3+700.00 100 0.23.46% 1599 974280.730 72746.085 2246.046 4+000.00 100 0.23.46% 1599 974280.730 72746.085 2246.046 4+000.00 100 0.50% 1599 974382.238 72749.935 2147.782 4+000.00 100 0.60% 1599 974382.238			1				3.90%	100	1+300.00	2330.026	727795.495	9740730.308	1565
1568 9740836.786 727559.230 2319.816 1600.00 100 1.92% 1569 9740905.450 727507.755 2317.370 1+700.00 100 2.45% 1570 9740984.958 727486.670 2313.840 1+800.00 100 1.73% 1571 9741074.986 727408.929 2312.112 1+900.00 100 1.73% 1572 9741171.192 727430.103 2310.030 2+000.00 100 0.41% 1573 9741196.880 727342.882 2309.616 2+100.00 100 0.44% 1574 9741167.153 727252.557 2308.368 2+200.00 100 1.25% 1575 9741242.738 72192.645 2306.9197 2+300.00 100 1.25% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1579 9741612.540 727124.921 2303.411 2+500.00 100 1.88% 1578 9741513.343 727139.647 2296.022 2+600.00 100 1.88% 1579 9741612.540 727124.505 2292.282 2+800.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 0.77% 1583 974207.158 727172.34 2287.319 3+100.00 100 0.42% 1586 9742203.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742203.437 727193.889 2283.854 3+200.00 100 0.29% 1589 974250.967 72746.085 2264.666 3+700.00 100 1.39% 1590 974260.997 727507.851 2245.246 3+800.00 100 1.9.62% 1591 9742694.748 72752.083 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 974289.390 727420.321 2171.191 4+200.00 100 5.50% 1596 9743158.515 727366.362 2157.782 4+400.00 100 5.50% 1596 9743789.240 72756.935 2145.782 4+00.00 100 5.06% 1596 9743789.240 72756.935 2145.782 4+00.00 100 5.06% 1596 9743799.240 72756.935 2135.749 5400.00 100 5.06% 1600 974352.233 72744.695 2144.648 4+000.00 100 5.06% 1601 974352.233 72745.935 2135.74							2.18%	100	1+400.00	2327.843	727719.281	9740746.323	1566
1569 9740905.450 727507.755 2317.370 14700.00 100 2.45% 1570 9740984.958 727448.670 2313.840 1+800.00 100 3.53% 1573 9741107.498 727408.992 2312.112 1+900.00 100 2.08% 1573 9741171.192 727430.103 2310.030 2+000.00 100 0.41% 1574 9741167.153 727255.557 2308.368 2+200.00 100 0.41% 1574 9741167.153 727255.557 2308.368 2+200.00 100 0.217% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.217% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1579 9741416.765 727134.921 2303.411 2+500.00 100 1.88% 1579 9741416.240 727128.076 2292.947 2+700.00 100 3.07% 1589 974172.496 727129.530 2292.82 2+800.00 100 0.73% 1589 974172.496 727129.530 2292.82 2+800.00 100 0.77% 1582 9741907.557 727155.247 2289.733 3+00.00 100 0.42% 1588 9742267.491 727128.530 2292.82 2+800.00 100 0.42% 1586 9742267.491 72729.573 2281.279 3+400.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.29% 1589 974250.586 727464.085 2264.866 3+700.00 100 0.29% 1589 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1589 9742260.097 727507.851 2245.246 3+800.00 100 11.39% 1599 974260.497 727507.851 2245.246 3+800.00 100 19.62% 1599 974289.338 727400.232 12719.144 400.00 100 23.36% 1599 9742883.730 727461.313 1274.944 4+100.00 100 23.36% 1599 9743252.134 727410.219 1256.220 4+500.00 100 5.50% 1599 9743252.134 727410.219 1256.220 4+500.00 100 5.02% 1599 9743252.134 727410.219 1256.220 4+500.00 100 5.02% 1599 974342.538 72749.395 2148.748 4+700.00 100 5.03% 1599 974352.233 72745.313 2148.478 4+700.00 100 5.03% 1599 974352.233 72745.310 2148.478 4+700.00 100 5.03% 1599 9743425.233 72745.3103 2148.478 4+700.00 100 5.03% 1599 9743425.233 7274							6.10%	100	1+500.00	2321.739	727643.223	9740804.640	1567
1570 9740984.958 727448.670 2313.840 1+800.00 100 3.53% 1571 9741074.986 727408.929 2312.112 1+900.00 100 1.73% 1573 9741198.680 727408.829 2312.112 1+900.00 100 0.41% 1573 9741198.680 727342.882 2309.616 2+100.00 100 0.41% 1575 9741242.738 727192.645 2306.197 2+300.00 100 1.25% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 974151.343 727219.530 2292.282 2+800.00 100 3.07% 1580 9741712.496 727129.530 2292.282 2+800.00 100 0.66% 1589 974180.930 727191.565 2291.515 2+900.00 100 0.77% 1580 9741275.216 72726.543 2283.430 3+300.00 100 0.42% 1586 974226.433 727123.891 2283.843 3+300.00 100 0.42% 1586 974226.493 727294.773 2281.279 3+00.00 100 0.42% 1589 974243.834 727414.497 2276.258 3+600.00 100 4.73% 1589 974243.834 727414.497 2276.258 3+600.00 100 4.73% 1589 974243.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742694.788 727520.883 2221.784 3+900.00 100 23.36% 1599 9742694.788 727520.883 2221.784 3+900.00 100 23.36% 1599 9742694.788 727520.883 2221.784 3+900.00 100 23.36% 1599 974289.388 727490.229 2198.404 4+000.00 100 23.36% 1599 974289.389 727420.321 2170.191 4+200.00 100 5.50% 1599 974384.239 727420.321 2170.191 4+200.00 100 5.50% 1599 974384.239 727420.321 2170.191 4+200.00 100 5.02% 1599 974384.239 72745.588 2147.877 4+800.00 100 5.02% 1599 974384.239 72745.588 2147.877 4+800.00 100 5.02% 1599 974384.239 72745.588 2147.877 4+800.00 100 5.02% 1599 974384.239 72745.588 2147.877 4+800.00 100 5.03% 1500 974352.283 72749.493 2142.588 4+900.00 100 5.03% 1500 974352.283 72749.493								1					
1571 9741074.986 727408.929 2312.112 1+900.00 100 1.73% 1572 9741171.192 727430.103 2310.030 2+000.00 100 2.08% 1573 9741186.80 727342.882 2309.016 2+100.00 100 0.41% 1574 9741167.153 72752.557 2308.368 2+200.00 100 1.25% 1575 9741242.738 727192.645 2306.197 2+300.00 100 2.17% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 9741513.434 7271218.676 2299.472 2+700.00 100 3.07% 1589 9741612.540 727128.676 2299.472 2+700.00 100 3.07% 1589 9741612.540 727128.676 2299.247 2+700.00 100 3.07% 1580 9741712.496 727129.530 2292.282 2+800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 2.41% 1584 9742103.437 727193.889 2283.830 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1589 9742433.834 727144.497 2276.258 3+600.00 100 4.73% 1589 9742433.834 727144.497 2276.258 3+600.00 100 4.73% 1589 9742433.834 727444.497 2276.258 3+600.00 100 11.39% 1599 9742604.748 727520.883 2221.784 3+900.00 100 23.46% 1599 9742604.748 727520.883 2221.784 3+900.00 100 23.46% 1599 974289.478 727520.883 2221.784 3+900.00 100 23.46% 1599 974289.330 727461.381 2170.191 4+200.00 100 5.50% 1599 9743807.331 727461.381 2170.191 4+200.00 100 5.50% 1599 9743263.134 727416.7219 2156.220 4+500.00 100 5.50% 1599 9743252.134 727416.291 2156.220 4+500.00 100 5.50% 1599 9743362.336 727469.935 2147.877 4+800.00 100 5.33% 1600 974359.243 72745.555 2137.579 4+800.00 100 5.33% 1600 974359.243 727455.555 2137.579 4+800.00 100 5.50% 1599 9743490.293 727453.103 2148.478 4+800.00 100 5.50% 1599 9743426.			1					1					
1572 9741171.192 727430.103 2310.030 2+000.00 100 2.08% 1573 9741198.680 727342.882 2309.616 2+100.00 100 0.41% 1574 9741191.513 727525.557 2308.368 2+200.00 100 1.25% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.89% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.89% 1577 9741416.765 727134.921 2303.301 2+300.00 100 0.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 3.07% 1578 9741513.434 727139.647 2296.022 2+600.00 100 3.07% 1580 9741712.496 727192.593 2292.282 2+800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 0.241% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.24% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.24% 1589 9742230.834 727414.497 2276.258 3+600.00 100 0.29% 1588 9742233.344 727414.497 2276.258 3+600.00 100 0.29% 1589 974260.0497 727507.851 2245.246 3+800.00 100 11.39% 1599 9742604.497 727507.851 2245.246 3+800.00 100 10.62% 1591 9742694.748 72750.838 2217.784 3+900.00 100 23.46% 1599 9742694.748 72750.838 2217.784 4+000.00 100 23.46% 1599 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1599 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1599 9742883.730 727461.381 2174.944 4+100.00 100 2.73% 1599 974283.234 72741.644 2164.686 4+300.00 100 5.50% 1599 974283.233 727494.935 2147.877 4+800.00 100 5.50% 1599 974283.233 727494.935 2147.877 4+800.00 100 5.50% 1599 974382.233 727494.935 2147.877 4+800.00 100 5.50% 1599 974399.240 727518.073 2132.535 5+00.00 100 5.33% 1600 974359.240 727518.073 2132.535 5+00.00 100 5.33% 1600 974359.240													
1573 9741198.680 727342.882 2399.616 2+100.00 100 0.41% 1574 9741167.153 727525.557 2308.368 2+200.00 100 1.25% 1575 9741242.738 727192.645 2305.303 2+400.00 100 0.89% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 0.307% 1580 9741712.946 727128.076 2292.947 2+700.00 100 0.739% 1580 9741712.946 727128.076 2292.947 2+700.00 100 0.779% 1581 9741809.20 727155.633 2291.515 2+900.00 100 0.779% 1583 974207.158 727172.354 2287.313 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1588 9742423.884 727414.497 2276.258 3+600.00 100 1.39% 1589 974250.586 727464.085 2264.866 3+700.00 100 11.39% 1599 9742600.497 72750.881 2245.246 3+800.00 100 19.62% 1591 9742694.748 72750.883 221.784 3+900.00 100 23.46% 1591 9742893.783 727461.381 2174.944 4+100.00 100 23.46% 1599 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1599 9742863.730 727461.381 2174.944 4+100.00 100 23.36% 1599 974385.515 727386.362 2157.782 4+400.00 100 5.50% 1599 974382.238 727494.935 2155.220 4+500.00 100 5.50% 1599 9743962.339 727453.103 2148.478 4+700.00 100 5.33% 1600 9743532.283 727494.935 2147.877 4+800.00 100 5.33% 1600 974352.283 727494.935 2147.877 4+800.00 100 5.33% 1600 9743799.240 727518.073 2125.53 5+100.00 100 5.33% 1600 9743799.240 727518.073 2132.55 5+100.00 100 5.30% 1600 9743799.240 727518.073 2132.55 5+100.00 100 5.30% 1600 9743799.240 727518.073 2132.55 5+100.00 100 5.30% 1600 9743799.24								+					
1574 9741167.153 727252.557 2308.368 2+200.00 100 1.25% 1575 9741242.738 727192.645 2306.197 2+300.00 100 0.89% 1576 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1577 9741616.765 727134.921 2303.411 2+500.00 100 1.89% 1579 9741612.540 727128.076 2292.947 2+700.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.73% 1580 9741712.496 727129.530 2292.82 2+800.00 100 0.77% 1583 9742007.158 727172.354 2287.319 3+100.00 100 2.41% 1583 9742007.158 727172.354 2287.319 3+100.00 100 2.41% 1584 974206.437 72729.4773 2288.349 3+300.00 100 0.42% 1586 9742266.491 727249.4773 2288.349 3+300.00 100 0.29% 1588 9742266.491 727352.565 2280.993 3+500.00 100 0.29% 1588 9742243.834 727414.497 2276.258 3+600.00 100 0.29% 1589 9742510.586 72464.085 2246.866 3+700.00 100 11.39% 1599 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2211.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1599 974288.730 727461.881 2174.944 4+100.00 100 23.36% 1599 974288.730 727461.881 2174.944 4+100.00 100 23.36% 1599 974358.515 727365.362 2157.782 4+400.00 100 5.50% 1599 9743352.134 727410.219 2156.220 4+500.00 100 5.50% 1599 9743352.134 727410.219 2156.220 4+500.00 100 5.50% 1599 9743352.238 727494.935 2147.877 4+800.00 100 0.60% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1600 9743799.240 727518.073 2142.548 4+900.00 100 0.60% 1600 9743799.240 727518.073 2142.548 4+900.00 100 0.60% 1600 9743799.240 727518.073 2142.548 4+900.00 100 0.60% 1600 9743799.240 727518.073 2142.548 4+900.00 100 0.60% 1600 974379								+					
1575 9741242.738 727192.645 2306.197 2+300.00 100 2.17% 1576 9741341.709 727197.787 2305.303 2+400.00 100 0.89% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 7.39% 1579 9741612.540 727128.076 2292.947 2+700.00 100 3.07% 1580 9741712.496 727129.530 2292.822 2+800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 1.78% 1583 974207.156 727262.543 2283.854 3+200.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 2.45% 1586 9742267.941 727262.543 2281.279 3+400.00 100 2.15% 1586 974236.015 727352.565 2280.993 3+500.00 100 2.15% 1588 9742438.343 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1599 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1599 9742690.390 727420.312 2170.191 4+200.00 100 23.46% 1594 9742963.390 727403.312 2170.191 4+200.00 100 23.46% 1594 9742969.390 727420.312 2170.191 4+200.00 100 23.46% 1599 9743158.515 727386.362 2157.782 4+400.00 100 5.50% 1599 9743158.515 727386.362 2157.782 4+400.00 100 5.02% 1599 9743425.339 72745.310 2148.478 4+700.00 100 5.02% 1599 9743425.339 72745.310 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.548 4+900.00 100 2.73% 1600 9743532.283 727494.935 2147.548 4+900.00 100 2.73% 1600 9743792.40 727518.073 2145.248 4+900.00 100 5.02% 1599 9743425.339 727453.310 2148.478 4+700.00 100 5.03% 1600 9743532.283 727495.350 2147.548 4+900.00 100 5.33% 1600 9743792.40 727518.073 2135.535 5+100.00 100 6.80% 1600 9743792.	HDPE	350	0.29%	80.5167	3000								
1576 9741341.709 727197.787 2305.303 2440.00 100 0.89% 1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 3.07% 1579 9741612.540 727128.076 2292.947 2+700.00 100 3.07% 1580 9741712.496 727128.076 2292.947 2+700.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 0.77% 1583 974207.158 727172.354 2287.319 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+000.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+000.00 100 0.42% 1586 9742267.491 727352.565 2280.993 3+500.00 100 0.29% 1588 974223.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 4.73% 1589 974269.478 72750.851 2245.246 3800.00 100 19.62% 1590 9742694.748 72750.851 2245.246 3800.00 100 23.46% 1593 974289.188 727490.29 2198.404 4+000.00 100 23.46% 1593 9742893.730 727461.381 2174.944 4+100.00 100 23.46% 1593 9742893.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742963.390 727420.321 2170.91 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 5.00% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1599 974379.904						-		1					
1577 9741416.765 727134.921 2303.411 2+500.00 100 1.89% 1578 9741513.434 727139.647 2296.022 2+600.00 100 7.39% 1580 9741712.496 727129.530 2292.282 2+800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 1.78% 1583 974207.158 727172.354 2287.319 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+800.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+800.00 100 0.42% 1588 9742263.344 727414.497 2276.258 3+600.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 11.39% 1599 9742600.497 727507.851 2245.246 3+800.00 100 11.39% 1599 9742690.749 72750.883 2221.784 3+900.00 100 23.46% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1599 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1599 9742789.188 727490.221 2170.191 4+200.00 100 23.46% 1599 9743067.303 727461.381 2174.944 4+100.00 100 23.46% 1599 9743067.303 727416.644 2164.686 4+300.00 100 4.75% 1596 9743158.515 727386.362 2157.782 4+400.00 100 5.50% 1599 9743442.539 727453.103 2148.478 4+00.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+00.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+00.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+00.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+00.00 100 5.02% 1599 974342.539 727453.103 2148.478 4+00.00 100 5.02% 1599 974342.539 727453.103 2148.478 4+00.00 100 5.02% 1599 974342.539 727453.103 2148.478 4+00.00 100 5.02% 1599 974342.539 727453.103 2148.478 4+00.00 100 5.02% 1599 974342.539 727453.303 2148.478 4+00.00 100 5.02% 1599 974342.539 7274						-							
1578 9741513.434 727139.647 2296.022 2+600.00 100 7.39% 1579 9741612.540 727128.076 2292.947 2+700.00 100 3.07% 1580 9741712.496 727129.530 2292.282 2+800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 1.78% 1583 974207.158 727172.354 2287.319 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.25% 1587 9742366.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 11.39% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 974260.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727507.851 2245.246 3+800.00 100 23.46% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.38% 1593 9742893.730 727461.381 2174.944 4+100.00 100 23.38% 1593 9742893.730 727461.381 2174.944 4+100.00 100 23.46% 1595 9743067.303 727410.219 2156.220 4+500.00 100 4.75% 1596 9743158.515 727386.362 2157.782 4+400.00 100 5.02% 1598 974355.138 727445.232 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743502.833 727445.935 2147.877 4+800.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 974395.283 727495.392 2142.548 4+900.00 100 5.02% 1600 9743709.086 727495.588 2135.749 5+000.00 100 5.33% 1600 9743709.086 727495.585 2135.749 5+000.00 100 5.80% 1600 9743709.086 727495.585 2135.749 5+000.00 100 5.80% 1600 9743709.086 727495.585 2135.749 5+000.00 100 5.80% 1600 9743							 	 					
1580 9741712.496 727129.530 2292.282 24800.00 100 0.66% 1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2288.733 3+000.00 100 1.78% 1583 974207.158 727172.354 2288.733 3+000.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 3.46% 1585 9742175.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 11.39% 1589 974250.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742604.748 727520.883 2221.784 3+900.00 100 19.62% 1591 9742789.188 727490.229 2198.404 4+000.00 100 23.38% 1593 974283.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743158.515 727366.362 2157.782 4+400.00 100 5.50% 1596 9743158.515 727366.362 2157.782 4+400.00 100 5.0% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743425.2134 727410.219 2156.220 4+500.00 100 5.02% 1599 9743425.238 727494.935 2147.877 4+800.00 100 5.03% 1600 974350.366 727495.558 2135.749 5+000.00 100 5.33% 1600 974350.366 727495.558 2135.749 5+000.00 100 5.33% 1600 974350.366 727495.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727495.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727495.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727495.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727495.558 2135.749 5+000.00 100 5.08% 1601 974366.736 727465.924 2142.548 4+900.00 100 5.33% 1603 9743799.240 727518.073 2135.555 5+100.00 100 5.08%							7.39%	100			727139.647		1578
1581 9741809.302 727151.635 2291.515 2+900.00 100 0.77% 1582 9741907.557 727165.247 2289.733 3+000.00 100 1.78% 1583 9742103.437 727193.889 2283.854 3+200.00 100 3.46% 1586 974215.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.25% 1587 974236.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742215.0586 727464.085 2264.866 3+700.00 100 11.39% 1599 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.748 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 9742893.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727416.444 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 5.02% 1599 9743342.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743352.283 727494.935 2147.877 4+800.00 100 5.33% 1600 9743532.283 727496.934 2142.548 4+900.00 100 5.33% 1600 9743532.283 727494.935 2147.877 4+800.00 100 5.33% 1600 9743799.240 727518.073 2132.553 5+100.00 100 6.80% 1601 9743626.736 727465.924 2142.548 4+900.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%							3.07%	100	2+700.00	2292.947	727128.076	9741612.540	1579
1582 9741907.557 727165.247 2289.733 3+000.00 100 1.78% 1583 974207.158 727172.354 2287.319 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 3.46% 1585 9742175.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 974243.834 727414.497 2276.258 3+600.00 100 4.73% 1589 974250.849 7275046.085 2264.866 3+700.00 100 11.39% 1590 9742604.748 727502.883 2221.784 3+900.00 100 23.46% 1591 9742694.748 727502.883 2221.784 3+900.00 100 23.38% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727416.444 2164.686 4+300.00 100 5.50% 1599 9743442.539 727453.103 2156.220 4+500.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 974352.283 727495.310 2148.478 4+700.00 100 5.33% 1600 974352.283 727495.558 2135.749 5+000.00 100 5.33% 1600 9743799.240 727518.073 2132.553 5+100.00 100 3.20% 100 3.20% 100 3.20% 1000							0.66%	100	2+800.00	2292.282	727129.530	9741712.496	1580
1583 9742007.158 727172.354 2287.319 3+100.00 100 2.41% 1584 9742103.437 727193.889 2283.854 3+200.00 100 3.46% 1585 9742175.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 72750.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.38% 1593 9742833.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743450.330 727416.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 974342.539 727453.103 2148.478 4+700.00 100 5.02% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.03% 1600 9743532.283 727496.352 2142.548 4+900.00 100 5.33% 1600 9743709.086 727476.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727455.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727455.558 2135.749 5+000.00 100 6.80% 1601 9743606.736 727475.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								 					
1584 9742103.437 727193.889 2283.854 3+200.00 100 3.46% 1585 9742175.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.215% 1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 974243.834 727414.497 2276.258 3+600.00 100 11.39% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.38% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 5.00% 1599 9743442.539 727453.103 2148.478 4+700.00 100 5.02% 1599 9743342.253 727453.103 2148.478 4+700.00 100 5.02% 1599 9743362.6736 727476.310 2148.478 4+700.00 100 5.33% 1600 9743522.283 727455.558 2135.749 5+000.00 100 5.33% 1600 9743502.283 727455.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 5.33% 1600 9743709.086 727475.558 2135.749 5+000.00 100 6.80% 1600 9743709.086 727475.558 2135.749 5+000.00 100 6.80% 1600 9743709.240 727518.073 2132.553 5+100.00 100 3.20% 1600							 	+					
1585 9742175.216 727262.543 2283.430 3+300.00 100 0.42% 1586 9742267.491 727294.773 2281.279 3+400.00 100 0.29% 1588 974236.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 11.39% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743352.283 727453.103 2148.478 4+700.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 0.60% 1600 9743522.283 727476.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727476.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1600 9743709.086 727475.924 2142.548 4+900.00 100 6.80% 1601 9743606.736 727475.924 2142.548 4+900.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								+					
1586 9742267.491 727294.773 2281.279 3+400.00 100 2.15% 1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743352.283 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727495.583 2135.749 5+000.00 100 5.33% 1600 9743709.866 727495.558 2135.749 5+000.00 100 5.33% 1600 9743799.240 727518.073 2132.553 5+100.00 100 3.20%			1										
1587 9742346.015 727352.565 2280.993 3+500.00 100 0.29% 1588 9742423.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727502.883 2221.784 3+900.00 100 23.36% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.38% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 97433442.539 727453.103 2148.478 4+700.00 100 5.02% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727455.558 2135.749 5+000.00 100 5.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%						-		1					
1588 9742423.834 727414.497 2276.258 3+600.00 100 4.73% 1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 974283.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.221 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727493.3103 2144.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 5.33% 1602 9743709.086 727475.558 2135.749 5+000.00 100 5.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20% 3.20% 100 3.20% 100 3.20% 100 3.20% 100 3.20% 3													
1589 9742510.586 727464.085 2264.866 3+700.00 100 11.39% 1590 9742600.497 727507.851 2245.246 3+800.00 100 19.62% 1591 9742694.748 727520.883 2221.784 3+900.00 100 23.46% 1592 9742789.188 727490.229 2198.404 4+000.00 100 23.46% 1593 9742833.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727493.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 5.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20% 100 3.20% 100						-		t					
Total Tota								+					
1592 9742789.188 727490.229 2198.404 4+000.00 100 23.38% 1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743342.539 727453.103 2148.478 4+700.00 100 2.73% 1600 974352.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%													
1593 9742883.730 727461.381 2174.944 4+100.00 100 23.46% 1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4800.00 100 0.60% 1601 9743709.086 727475.924 2142.548 4+900.00 100 5.33% 1603 9743799.240 727518.073 2132.553 5+000.00 100 3.20%	HDPE	200	11.39%	101.3131	500	IV	23.46%	100	3+900.00	2221.784	727520.883	9742694.748	1591
1594 9742969.390 727420.321 2170.191 4+200.00 100 4.75% 1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%							23.38%	100	4+000.00	2198.404	727490.229	9742789.188	1592
1595 9743067.303 727414.644 2164.686 4+300.00 100 5.50% 1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%							23.46%	100			727461.381	9742883.730	1593
1596 9743158.515 727386.362 2157.782 4+400.00 100 6.90% 1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%							 	†					
1597 9743252.134 727410.219 2156.220 4+500.00 100 1.56% 1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%													
1598 9743350.856 727415.723 2151.204 4+600.00 100 5.02% 1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								1					
1599 9743442.539 727453.103 2148.478 4+700.00 100 2.73% 1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%													
1600 9743532.283 727494.935 2147.877 4+800.00 100 0.60% 1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								1					-
1601 9743626.736 727476.924 2142.548 4+900.00 100 5.33% 1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								+					
1602 9743709.086 727495.558 2135.749 5+000.00 100 6.80% 1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%								1					
1603 9743799.240 727518.073 2132.553 5+100.00 100 3.20%						1							
1604 9743888 632 737476 539 2123 414 5+200 00 100 9 149/]					727518.073	9743799.240	1603
1604 9743888.623 727476.529 2132.414 5+200.00 100 0.14% V 2200 73.7586 0.14% 450	HDPE	450	0 1/1%	73 7586	2200	\/	0.14%	100	5+200.00	2132.414	727476.529	9743888.623	1604
1605 9743963.328 727411.150 2130.792 5+300.00 100 1.62%	HUFL	730	0.14/0	73.7300	2200	v		+					
1606 9744043.074 727352.663 2127.310 5+400.00 100 3.48%													
1607 9744117.997 727286.529 2126.866 5+500.00 100 0.44%								1					
1608 9744162.102 727197.548 2125.874 5+600.00 100 0.99%													
1609 9744221.453 727134.806 2123.359 5+700.00 100 2.52%								+					
1610 9744307.897 727105.291 2121.648 5+800.00 100 1.71%								+					_
1611 9744337.045 727031.422 2117.567 5+900.00 100 4.08% 1612 9744431.174 726997.750 2112.406 6+000.00 100 5.16%													
1613 9744527.643 726972.637 2108.742 6+100.00 100 3.66%						1		1					
1614 9744621.401 726938.936 2106.319 6+200.00 100 2.42%													_
1615 9744704.156 726885.112 2101.186 6+300.00 100 5.13%						1		 					_

7.6 Ortofotos.

Canal de Sagüin



• Canal de Namza

• Canal de Compud

Canal de Guabalcón

• Canal de Piñancay

Juan José Carangui Rodríguez Henry Ricardo González Castro

7.7 Diseño de Captaciones

7.7.1 Dimensionamiento de la captación de fondo de Sagüin

7.7.1.1 Rejilla

7.7.1.1.1 Método 1 (Mostkow)

Tabla 29. Datos para el diseño de la captación de fondo.

Qo UNITARIO= Qw	0.06	m2/s
Q CRECIDA UNITARIO= Qo=	0.16	m2/s
b ANCHO UNITARIO RIO=	1	m

Elaborado: Carangui & González.

Tabla 30. Valores obtenidos en función del tipo de barrotes.

CASO	A
INCLINACIÓN	1:5
M=	1.55
c=	0.435
Yo/Eo=	0.449
φ=	0.615

Elaborado: Carangui & González.

Tabla 31. Datos adoptados de la sección de los barrotes rectangulares.

BARROTES DE SECCION RECTANGULAR								
s =	0.04	m						
t =	0.03	m						
h barr =	0.05	m						
f=	0.30	15%						

Elaborado: Carangui & González.

• Cálculo de la energía especifica al inicio de la reja

Tabla 32. Cálculo de la energía especifica al inicio de la reja

0 1 0									
ENERGÍA ESPECÍFICA INICIAL	Eo=	0,11	Obtenida de la ecuación						
ESTIMACION DEL CALADO	A LA l	ENTRADA CON	DATOS TABLA 1						
CALADO A LA ENTRADA	yo =	0,05	m						
CALADO A LA SALIDA	ys =	0,00	m						
CASO A:	FLUJO VERTIC	FLUJO VERTICAL A TRAVES DE BARROTES							
RELACIÓN ENTRE AREA PASO Y AREA	ε =	0.428	Obtenida de la ecuación						
TOTAL REJA	E -	0,428	Obtenida de la ecuación						
Cálculo de la longitud mínima de barrotes									
LONGITUD BARROTES MINIMA	Lg =	0,21	m						
LONGITUD BARROTES CONSTRUCCION	Lg =	0,22	m						

7.7.1.1.2 Método 2 (Zamarin)

Tabla 33. Datos de entrada para el metodo de Zamarin.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.06	m3/s
Ancho del río	Brío	6.00	m
Separación barrotes	S	0.04	m
Ancho barrotes	t	0.03	m
Espesor reja	е	0.05	m
Longitud apoyo	a	0.05	m
Ángulo inclinación reja	θ	20.00	0
Tangente teta	$tan(\theta)$	0.36	
Porcentaje obstrucción	fp	30.00	%

Elaborado: Carangui & González.

Tabla 34. Cálculo del coeficiente de descarga

Descripción	Símbolo	Valor	Unidad
Relación e/s	e/s	1.27	
Coeficiente de contracción	Co'	0.50	
Coeficiente de descarga	Co	0.38	

Elaborado: Carangui & González.

Tabla 35. Cálculos de la rejilla.

Número	Longitud	Longitud	K con	Ancho	Número	Ancho	Número	K	Porcentaje
de	pedazos,	rejilla, Le	obstrucción,	total	barrotes,	rejilla	barrotes,	adoptado,	obstrucción
pedazos	Lp (m)	(m)	K (-)	neto,	n (-)	adoptado,	n adop	K adop (-	adoptado,
				b (m)		Lado (m)	(m))	fp adop
									(%)
1	6.00	5.54	0.43	0.02	0.36	0.05	1	0.24	61.16
2	3.00	2.73	0.43	0.06	0.96	0.10	2	0.30	50.22
3	2.00	1.79	0.43	0.11	1.77	0.12	2	0.41	32.71
4	1.50	1.32	0.43	0.18	2.77	0.20	3	0.40	35.04
5	1.20	1.03	0.43	0.26	3.97	0.30	5	0.39	36.91
6	1.00	0.85	0.43	0.35	5.34	0.40	6	0.39	36.34
7	0.86	0.71	0.43	0.45	6.91	0.50	8	0.40	34.79
8	0.75	0.61	0.43	0.57	8.68	0.60	9	0.41	32.74
9	0.67	0.53	0.43	0.69	10.66	0.70	11	0.43	30.38
10	0.60	0.47	0.43	0.84	12.85	0.90	14	0.41	33.27
11	0.55	0.42	0.43	1.00	15.27	1.00	15	0.43	30.18
12	0.50	0.38	0.43	1.17	17.94	1.20	18	0.42	31.14
13	0.46	0.34	0.43	1.36	20.87	1.40	21	0.42	31.26
14	0.43	0.31	0.43	1.57	24.09	1.60	25	0.42	30.80
15	0.40	0.28	0.43	1.80	27.60	1.80	28	0.43	29.94
16	0.38	0.26	0.43	2.05	31.44	2.10	32	0.42	31.03
17	0.35	0.24	0.43	2.33	35.64	2.40	37	0.42	31.40
18	0.33	0.22	0.43	2.63	40.22	2.70	41	0.42	31.25
19	0.32	0.20	0.43	2.95	45.22	3.00	46	0.42	30.71
20	0.30	0.19	0.43	3.31	50.67	3.40	52	0.42	31.22

7.7.1.2 Galería

7.7.1.2.1 Método de Hinds

Tabla 36. Datos de entrada para el método de Hinds.

Descripción	Símbolo	Valor	Unidad
Ancho de la galería	L	0.22	m
Ancho de la reja	В	2.70	m
Ancho del río	B río	6.00	m
Longitud de la galería	b	5.10	m
Rugosidad	n	0.015	
Caudal de diseño	Qd	0.056	m3/s
Caudal de diseño por metro	Qd/m	0.021	m3/s/m
Pendiente longitudinal	So	0.02	
Cota de inicio	Cota inicio	2,560.00	msnm
Pendiente paredes galería	Z	-	

Elaborado: Carangui & González.

• Cálculo del perfil de flujo para el canal

Flujo subcrítico Fr < 1.

Tabla 37. Cálculo del perfil de flujo para el canal con flujo subcrítico.

X	Qx	Q1+Q2	Yc	P	A	T	D	V	Fr	V1+V2	$\triangle \mathbf{Q}$	$\triangle \mathbf{V}$	∆Ym'	Rh	Sf	hf	h	Eh	Zf	Zo	m
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
0.30	0.01	0.01	0.05	0.33	0.01	0.22	0.05	0.53	1.00	0.53	0.01	0.53	0.07	0.04	0.01	0.00	0.07	0.07	2,559.98	2,559.92	
0.60	0.01	0.02	0.08	0.37	0.02	0.22	0.08	0.75	1.00	1.27	0.01	0.22	0.06	0.04	0.01	0.00	0.06	0.13	2,559.92	2,559.84	0.28
0.90	0.02	0.03	0.09	0.41	0.02	0.22	0.09	0.91	1.00	1.66	0.01	0.17	0.05	0.05	0.01	0.00	0.06	0.19	2,559.86	2,559.77	0.24
1.20	0.03	0.04	0.11	0.44	0.02	0.22	0.11	1.06	1.00	1.97	0.01	0.14	0.05	0.05	0.01	0.00	0.05	0.24	2,559.81	2,559.70	0.23
1.50	0.03	0.06	0.12	0.46	0.03	0.22	0.12	1.18	1.00	2.24	0.01	0.12	0.05	0.06	0.01	0.00	0.05	0.29	2,559.75	2,559.63	0.22
1.80	0.04	0.07	0.13	0.48	0.03	0.22	0.13	1.29	1.00	2.47	0.01	0.11	0.05	0.06	0.02	0.00	0.05	0.35	2,559.70	2,559.57	0.21
2.10	0.04	0.08	0.14	0.50	0.03	0.22	0.14	1.40	1.00	2.69	0.01	0.10	0.05	0.06	0.02	0.01	0.05	0.40	2,559.65	2,559.51	0.21
2.40	0.05	0.09	0.15	0.52	0.03	0.22	0.15	1.49	1.00	2.89	0.01	0.10	0.05	0.06	0.02	0.01	0.05	0.45	2,559.60	2,559.45	0.21
2.70	0.06	0.11	0.16	0.54	0.04	0.22	0.16	1.58	1.00	3.08	0.01	0.09	0.02	0.07	0.02	0.01	0.02	0.47	2,559.58	2,559.41	0.10

Elaborado: Carangui & González.

Gráfico 33. Perfil de flujo hipotético Sagüin.

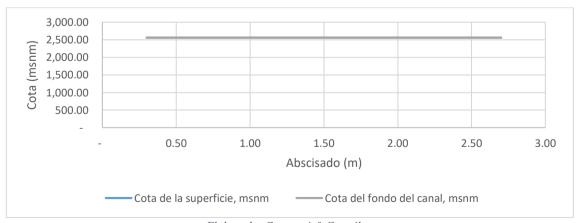
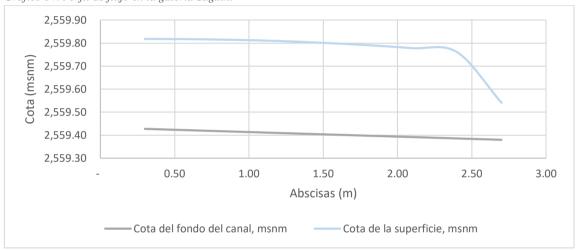



Tabla 38. Determinación del perfil de flujo a partir de la sección de control

x	Zo	h	Zf	Y	A	P	Qx	V	Q, Q1+Q2	V1+V2	DQ	DV	DYm'	R	hf	h	Dh
2.70	2,559.41		2,559.58	0.16	0.04	0.54	0.06	1.58	-	-	-	-		0.07	-	-	
2.40	2,559.42	0.220	2,559.80	0.38	0.08	0.97	0.05	0.61	0.11	2.19	0.01	0.98	0.11	0.09	0.00	0.11	0.220
2.10	2,559.43	0.017	2,559.81	0.39	0.09	0.99	0.04	0.51	0.09	1.12	0.01	0.09	0.01	0.09	0.00	0.01	0.017
1.80	2,559.43	0.013	2,559.83	0.39	0.09	1.01	0.04	0.43	0.08	0.95	0.01	0.08	0.01	0.09	0.00	0.01	0.013
1.50	2,559.44	0.010	2,559.84	0.40	0.09	1.01	0.03	0.36	0.07	0.79	0.01	0.08	0.00	0.09	0.00	0.01	0.010
1.20	2,559.44	0.008	2,559.84	0.40	0.09	1.02	0.03	0.28	0.06	0.64	0.01	0.07	0.00	0.09	0.00	0.00	0.007
0.90	2,559.45	0.005	2,559.85	0.40	0.09	1.02	0.02	0.21	0.04	0.50	0.01	0.07	0.00	0.09	0.00	0.00	0.005
0.60	2,559.46	0.003	2,559.85	0.40	0.09	1.01	0.01	0.14	0.03	0.36	0.01	0.07	0.00	0.09	0.00	0.00	0.003
0.30	2,559.46	0.001	2,559.85	0.39	0.09	1.00	0.01	0.07	0.02	0.22	0.01	0.07	0.00	0.09	0.00	0.00	0.001

Gráfico 34. Perfil de flujo en la galería Sagüin.

Elaborado: Carangui & González.

7.7.1.3 Desarenador

7.7.1.3.1 Criterios de diseño

Tabla 39. Datos de entrada para el estudio de un desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal de diseño	Q	0.0563	m3/s
Ancho de canal de entrada	b	0.3000	m
Coeficiente de rugosidad de Manning	n	0.0150	
Pendiente de fondo de canal de entrada	So	0.0050	
Diámetro de partículas	ds	0.0003	m
Viscosidad cinemática del agua	v	1.13E-06	m2/s
Densidad agua	ρ	999.7000	kg/m3
Peso específico relativo de partículas	S	2.6500	

7.7.1.3.2 Condiciones en el canal de entrada

Tabla 40. Condiciones en el canal de entrada

Descripción	Símbolo	Valor	Unidad
Caudal calculado con Manning	Q	-0.000	m3/s
Calado normal	Yn	0.20	m
Velocidad media de flujo	V	0.92	m/s
Numero de Froude	Fr	0.65	
Tipo de flujo		SUBCRÍTICO	

Elaborado: Carangui & González.

7.7.1.3.3 Cálculo de la velocidad de sedimentación en la recámara de sedimentación

Tabla 41. Cálculo de la velocidad de sedimentación.

Descripción	Símbolo	Valor	Unidad
Velocidad de sedimentación asumida	wo=vs	0.055	m/s
Velocidad de sedimentación calculada	wo	0.055	m/s

Elaborado: Carangui & González.

7.7.1.3.4 Capacidad de arrastre del canal con un diámetro máximo de partículas 2.5 mm

Tabla 42. Capacidad de arrastre del canal para el diámetro máximo de partículas

Descripción	Símbolo	Valor	Unidad
Velocidad de arrastre de la partícula	Va	0.28	m/s.
Factor seguridad	Fs	3.00	
Velocidad de arrastre de la partícula	Va	0.09	m/s.

Elaborado: Carangui & González.

7.7.1.3.5 Diseño del sedimentador de flujo horizontal para lavado intermitente

Tabla 43. Cálculo de dimensiones de cámara

Descripción	Símbolo	Valor	Unidad
AREA NECESARIA DESARENADOR	A	0.61	m2
ALTURA DEL AGUA	Н	0.8	m
VELOCIDAD DE TURBULENCIA	Vturb	0.01	m/s
COMPORTAMIENTO	η	5.00	
TANTO POR CIENTO DE REMOCION	T	0.90	
COEFICIENTE K	K	2.92	
LONGITUD DESARENADOR	Ldes	4.7	m
ANCHO REQUERIDO	В	0.8	m
LONGITUD MINIMA TRANSCISION	Ltra	1.0	m

Elaborado: Carangui & González.

 $Tabla\ 44.\ Diseño\ del\ sedimentador\ de\ flujo\ horizontal\ para\ lavado\ intermitente$

1	
Profundidad del desarenador [m] H=	0.80
Ancho requerido [m] B=	0.80
Longitud de transición mínima [m] =	1.00
Longitud de desarenador [m] L=	4.70

7.7.1.3.6 Vertedero de salida del desarenador

Tabla 45. Datos para el diseño del vertedero del desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.056	m3/s
Ancho del desarenador	В	0.8	m
Coeficiente de contracción y de velocidad del vertedero	M	1.84	
Densidad agua	V	999.70	m/s
Carga sobre el vertedero	Н	0.25	m
Ancho del vertedero	bv	0.24	m

Elaborado: Carangui & González.

El ancho del vertedero de salida se adopta al ancho del sedimentador, ya que su longitud es menor.

7.7.2 Dimensionamiento de la captación de fondo de Namza

7.7.2.1 Rejilla

7.7.2.1.1 Método 1 (Mostkow)

Tabla 46. Datos para el diseño de la captación de fondo.

Qo UNITARIO= Qw	0.10	m2/s
Q CRECIDA UNITARIO= Qo=	0.28	m2/s
b ANCHO UNITARIO RIO=	1	m

Elaborado: Carangui & González.

Tabla 47. Valores obtenidos en función del tipo de barrotes.

CASO	A
INCLINACIÓN	1:5
M=	1.55
c=	0.435
Yo/Eo=	0.449
ώ=	0.615

Elaborado: Carangui & González.

Tabla 48. Datos adoptados de la sección de los barrotes rectangulares.

BARROTES DE SECCION RECTANGULAR							
s =	0.04	m					
t =	0.03	m					
h barr =	0.05	m					
f =	0.30	15%					

Elaborado: Carangui & González.

• Cálculo de la energía especifica al inicio de la reja

Tabla 49. Cálculo de la energía especifica al inicio de la reja

ENERGÍA ESPECÍFICA INICIAL	Eo=	0,16	Obtenida de la ecuación		
ESTIMACION DEL CALADO A LA ENTRADA CON DATOS TABLA 1					
CALADO A LA ENTRADA	yo =	0,07	m		
CALADO A LA SALIDA	ys =	0,00	m		
CASO A:	FLUJO VERTICAL A TRAVES DE BARROTES				
RELACIÓN ENTRE AREA PASO Y AREA	ε =	0.428	Obtenida de la ecuación		
TOTAL REJA	£ -	0,428	Obtenida de la ecuación		
Cálculo de la longitud mínima de barrotes					
LONGITUD BARROTES MINIMA	Lg =	0,30	m		

LONGITUD BARROTES CONSTRUCCION	I a -	0.20	m
LONGITUD BARROTES CONSTRUCCION	Lg –	0,30	111

7.7.2.1.2 Método 2(Zamarin)

Tabla 50. Datos de entrada para el metodo de Zamarin.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.10	m3/s
Ancho del río	Brío	10.00	m
Separación barrotes	S	0.04	m
Ancho barrotes	t	0.03	m
Espesor reja	е	0.05	m
Longitud apoyo	a	0.05	m
Ángulo inclinación reja	θ	20.00	0
Tangente teta	tan(θ)	0.36	
Porcentaje obstrucción	fp	30.00	%

Elaborado: Carangui & González.

Tabla 51. Cálculo del coeficiente de descarga

Descripción	Símbolo	Valor	Unidad
Relación e/s	e/s	1.27	
Coeficiente de contracción	Co'	0.50	
Coeficiente de descarga	Co	0.38	

Tabla 52. Cálculos de la rejilla.

Número de pedazos	Longitud pedazos, Lp (m)	Longitud rejilla, Le (m)	K con obstrucción, K (-)	Ancho total neto, b (m)	Número barrotes, n (-)	Ancho rejilla adoptado, Lado (m)	Número barrotes, n adop (m)	K adoptado, K adop	Porcentaje obstrucción adoptado, fp adop (%)
1	6.00	5.54	0.43	0.04	0.58	0.05	1	0.34	44.34
2	3.00	2.73	0.43	0.10	1.61	0.10	2	0.44	28.66
3	2.00	1.79	0.43	0.19	3.01	0.20	3	0.42	31.41
4	1.50	1.32	0.43	0.31	4.73	0.40	6	0.36	41.36
5	1.20	1.03	0.43	0.44	6.77	0.50	8	0.39	35.68
6	1.00	0.85	0.43	0.60	9.14	0.60	9	0.43	30.39
7	0.86	0.71	0.43	0.77	11.83	0.80	12	0.42	31.69
8	0.75	0.61	0.43	0.97	14.86	1.00	15	0.42	31.43
9	0.67	0.53	0.43	1.19	18.25	1.20	18	0.43	30.35
10	0.60	0.47	0.43	1.44	22.01	1.50	23	0.42	31.97
11	0.55	0.42	0.43	1.71	26.17	1.80	28	0.41	32.38
12	0.50	0.38	0.43	2.01	30.75	2.10	32	0.42	32.05
13	0.46	0.34	0.43	2.34	35.78	2.40	37	0.42	31.23
14	0.43	0.309	0.43	2.70	41.29	2.80	43	0.42	31.72
15	0.40	0.28	0.43	3.09	47.32	3.10	47	0.43	30.12
16	0.38	0.26	0.43	3.52	53.91	3.60	55	0.42	31.00
17	0.35	0.24	0.43	3.99	61.11	4.00	61	0.43	30.07
18	0.33	0.22	0.43	4.51	68.96	4.60	70	0.42	30.94
19	0.32	0.20	0.43	5.07	77.54	5.10	78	0.43	30.29
20	0.30	0.19	0.43	5.68	86.89	5.70	87	0.43	30.16

7.7.2.2 Galería

7.7.2.2.1 Método de Hinds

Tabla 53. Datos de entrada para el método de Hinds.

Descripción	Símbolo	Valor	Unidad
Ancho de la galería	L	0.31	m
Ancho de la reja	В	2.80	m
Ancho del río	B río	10.00	m
Longitud de la galería	b	9.10	m
Rugosidad	n	0.015	
Caudal de diseño	Qd	0.097	m3/s
Caudal de diseño por metro	Qd/m	0.034	m3/s/m
Pendiente longitudinal	So	0.02	
Cota de inicio	Cota inicio	2,430.00	msnm
Pendiente paredes galería	Z	-	

Elaborado: Carangui & González.

• Cálculo del perfil de flujo para el canal

Flujo subcrítico Fr < 1.

Tabla 54. Cálculo del perfil de flujo para el canal con flujo subcrítico.

		100		Curcu	to act p	reijii a	c juijo	Para		u con jiuj	O BIIIO C	Titteo.									
X	Qx	Q1+Q2	Yc	P	A	T	D	V	Fr	V1+V2	$\triangle \mathbf{Q}$	$\triangle \mathbf{V}$	∆Ym'	Rh	Sf	hf	h	Eh	Zf	Zo	m
-	-	-	-	-	-	_	_	-	_	-	_	_	-	-	-	_	-	-			
0.20	0.01	0.01	0.05	0.40	0.01	0.31	0.05	0.47	1.00	0.47	0.01	0.47	0.05	0.04	0.00	0.00	0.05	0.05	2,429.99	2,429.94	
0.40	0.01	0.02	0.07	0.44	0.02	0.31	0.07	0.66	1.00	1.13	0.01	0.19	0.05	0.05	0.01	0.00	0.05	0.10	2,429.94	2,429.87	33.47
0.60	0.02	0.03	0.08	0.47	0.03	0.31	0.08	0.81	1.00	1.47	0.01	0.15	0.04	0.05	0.01	0.00	0.04	0.14	2,429.90	2,429.82	29.06
0.80	0.03	0.05	0.10	0.50	0.03	0.31	0.10	0.94	1.00	1.75	0.01	0.13	0.04	0.06	0.01	0.00	0.04	0.19	2,429.86	2,429.76	26.94
1.00	0.03	0.06	0.11	0.52	0.03	0.31	0.11	1.05	1.00	1.98	0.01	0.11	0.04	0.06	0.01	0.00	0.04	0.23	2,429.82	2,429.71	25.69
1.20	0.04	0.08	0.12	0.54	0.04	0.31	0.12	1.15	1.00	2.19	0.01	0.10	0.04	0.07	0.01	0.00	0.04	0.27	2,429.78	2,429.66	24.86
1.40	0.05	0.09	0.13	0.56	0.04	0.31	0.13	1.24	1.00	2.38	0.01	0.09	0.04	0.07	0.01	0.00	0.04	0.30	2,429.74	2,429.61	24.28
1.60	0.06	0.10	0.13	0.58	0.04	0.31	0.13	1.32	1.00	2.56	0.01	0.09	0.04	0.07	0.01	0.00	0.04	0.34	2,429.70	2,429.56	23.85
1.80	0.06	0.12	0.14	0.60	0.04	0.31	0.14	1.40	1.00	2.73	0.01	0.08	0.04	0.07	0.01	0.00	0.04	0.38	2,429.66	2,429.52	23.53
2.00	0.07	0.13	0.15	0.61	0.05	0.31	0.15	1.48	1.00	2.88	0.01	0.08	0.04	0.08	0.02	0.00	0.04	0.42	2,429.62	2,429.47	23.28
2.20	0.08	0.14	0.16	0.63	0.05	0.31	0.16	1.55	1.00	3.03	0.01	0.07	0.04	0.08	0.02	0.00	0.04	0.46	2,429.58	2,429.43	23.09
2.40	0.08	0.16	0.17	0.64	0.05	0.31	0.17	1.62	1.00	3.17	0.01	0.07	0.04	0.08	0.02	0.00	0.04	0.50	2,429.54	2,429.38	22.93
2.60	0.09	0.17	0.17	0.65	0.05	0.31	0.17	1.69	1.00	3.31	0.01	0.07	0.04	0.08	0.02	0.00	0.04	0.54	2,429.51	2,429.33	22.81
2.80	0.10	0.19	0.18	0.67	0.06	0.31	0.18	1.75	1.00	3.44	0.01	0.06	0.01	0.08	0.02	0.00	0.02	0.55	2,429.49	2,429.31	10.95

Gráfico 35. Perfil de flujo hipotético Namza.

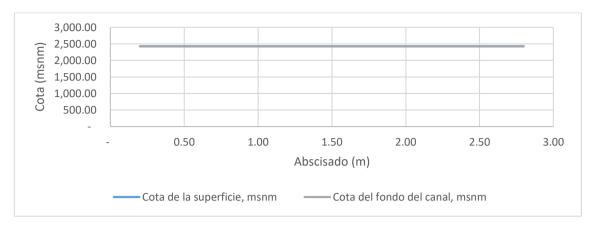
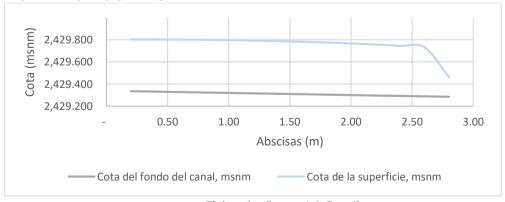



Tabla 55. Determinación del perfil de flujo a partir de la sección de control

x	Zo	h	Zf	Y	A	P	Qx	v	Q, Q1+Q2	V1+V2	DQ	DV	DYm'	R	hf	h	Dh
2.80	2,429.312		2,429.49	0.18	0.06	0.67	0.10	1.75	-	-	-	-		0.08	-	-	
2.60	2,429.316	0.270	2,429.76	0.44	0.14	1.20	0.09	0.65	0.19	2.40	0.01	1.10	0.13	0.11	0.00	0.14	0.270
2.40	2,429.320	0.013	2,429.77	0.45	0.14	1.22	0.08	0.59	0.17	1.24	0.01	0.06	0.01	0.12	0.00	0.01	0.013
2.20	2,429.324	0.012	2,429.79	0.46	0.14	1.23	0.08	0.53	0.16	1.12	0.01	0.06	0.01	0.12	0.00	0.01	0.011
2.00	2,429.328	0.010	2,429.80	0.47	0.14	1.24	0.07	0.48	0.14	1.01	0.01	0.05	0.00	0.12	0.00	0.00	0.010
1.80	2,429.332	0.008	2,429.80	0.47	0.15	1.25	0.06	0.43	0.13	0.90	0.01	0.05	0.00	0.12	0.00	0.00	0.008
1.60	2,429.336	0.007	2,429.81	0.47	0.15	1.26	0.06	0.38	0.12	0.80	0.01	0.05	0.00	0.12	0.00	0.00	0.007
1.40	2,429.340	0.006	2,429.82	0.48	0.15	1.26	0.05	0.33	0.10	0.70	0.01	0.05	0.00	0.12	0.00	0.00	0.006
1.20	2,429.344	0.005	2,429.82	0.48	0.15	1.26	0.04	0.28	0.09	0.61	0.01	0.05	0.00	0.12	0.00	0.00	0.005
1.00	2,429.348	0.004	2,429.83	0.48	0.15	1.26	0.03	0.23	0.08	0.51	0.01	0.05	0.00	0.12	0.00	0.00	0.004
0.80	2,429.352	0.003	2,429.83	0.48	0.15	1.26	0.03	0.19	0.06	0.42	0.01	0.05	0.00	0.12	0.00	0.00	0.003
0.60	2,429.356	0.002	2,429.83	0.47	0.15	1.26	0.02	0.14	0.05	0.33	0.01	0.05	0.00	0.12	0.00	0.00	0.002
0.40	2,429.360	0.001	2,429.83	0.47	0.15	1.25	0.01	0.09	0.03	0.24	0.01	0.05	0.00	0.12	0.00	0.00	0.001
0.20	2,429.364	_	2,429.83	0.47	0.14	1.24	0.01	0.05	0.02	0.14	0.01	0.05	0.00	0.12	0.00	0.00	0.000

Elaborado: Carangui & González.

Gráfico 36. Perfil de flujo en la galería Namza.

7.7.2.3 Desarenador

7.7.2.3.1 Criterios de diseño

Tabla 56. Datos de entrada para el estudio de un desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal de diseño	Q	0.0965	m3/s
Ancho de canal de entrada	b	0.4000	m
Coeficiente de rugosidad de Manning	n	0.0150	
Pendiente de fondo de canal de entrada	So	0.005	
Diámetro de partículas	ds	0.0003	m
Viscosidad cinemática del agua	v	1.13E-06	m2/s
Densidad agua	ρ	999.7000	kg/m3
Peso específico relativo de partículas	S	2.6500	

Elaborado: Carangui & González.

7.7.2.3.2 Condiciones en el canal de entrada

Tabla 57. Condiciones en el canal de entrada

Descripción	Símbolo	Valor	Unidad
Caudal calculado con Manning	Q	0.000	m3/s
Calado normal	Yn	0.23	m
Velocidad media de flujo	V	1.06	m/s
Numero de Froude	Fr	0.71	
Tipo de flujo		SUBCRÍTICO	

Elaborado: Carangui & González.

7.7.2.3.3 Cálculo de la velocidad de sedimentación en la recámara de sedimentación

Tabla 58. Cálculo de la velocidad de sedimentación.

Descripción	Símbolo	Valor	Unidad
Velocidad de sedimentación asumida	wo=vs	0.055	m/s
Velocidad de sedimentación calculada	wo	0.055	m/s

Elaborado: Carangui & González.

7.7.2.3.4 Capacidad de arrastre del canal con un diámetro máximo de partículas 2.5 mm *Tabla 59. Capacidad de arrastre del canal para el diámetro máximo de partículas*

Descripción	Símbolo	Valor	Unidad
Velocidad de arrastre de la partícula	Va	0.28	m/s.
Factor seguridad	Fs	3.00	
Velocidad de arrastre de la partícula	Va	0.09	m/s.

7.7.2.3.5 Diseño del sedimentador de flujo horizontal para lavado intermitente

Tabla 60. Cálculo de dimensiones de cámara

Descripción	Símbolo	Valor	Unidad
AREA NECESARIA DESARENADOR	A	0.61	m2
ALTURA DEL AGUA	Н	0.80	m
VELOCIDAD DE TURBULENCIA	Vturb	0.01	m/s
COMPORTAMIENTO	η	5.00	
TANTO POR CIENTO DE REMOCION	T	0.90	
COEFICIENTE K	K	2.92	
LONGITUD DESARENADOR	Ldes	4.7	m
ANCHO REQUERIDO	В	0.8	m
LONGITUD MINIMA TRANSCISION	Ltra	1.0	m

Elaborado: Carangui & González.

Tabla 61. Diseño del sedimentador de flujo horizontal para lavado intermitente

J J - 1	
Profundidad del desarenador [m] H=	1.00
Ancho requerido [m] B=	1.00
Longitud de transición mínima [m] =	1.40
Longitud de desarenador [m] L=	5.90

Elaborado: Carangui & González.

7.7.2.3.6 Vertedero de salida del desarenador

Tabla 62. Datos para el diseño del vertedero del desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.097	m3/s
Ancho del desarenador	В	1.00	m
Coeficiente de contracción y de velocidad del vertedero	M	1.84	
Densidad agua	V	999.70	m/s
Carga sobre el vertedero	Н	0.25	m
Ancho del vertedero	bv	0.42	m

Elaborado: Carangui & González.

El ancho del vertedero de salida se adopta al ancho del sedimentador, ya que su longitud es menor.

7.7.3 Dimensionamiento de la captación de fondo de Compud

7.7.3.1 Rejilla

7.7.3.1.1 Método 1 (Mostkow)

Tabla 63. Datos para el diseño de la captación de fondo.

Qo UNITARIO= Qw	0.082	m2/s
Q CRECIDA UNITARIO= Qo=	0.240	m2/s
b ANCHO UNITARIO RIO=	1	m

Tabla 64. Valores obtenidos en función del tipo de barrotes.

CASO	A
INCLINACIÓN	1:5
M=	1.55
c=	0.435
Yo/Eo=	0.449
ώ=	0.615

Tabla 65. Datos adoptados de la sección de los barrotes rectangulares.

BARROTES DE SECCION RECTANGULAR										
s =	0.04	m								
t =	0.03	m								
h barr =	0.05	m								
f =	0.30	15%								

Elaborado: Carangui & González.

• Cálculo de la energía especifica al inicio de la reja

Tabla 66. Cálculo de la energía especifica al inicio de la reja

0 1 0									
ENERGÍA ESPECÍFICA INICIAL	Eo=	0,14	Obtenida de la ecuación						
ESTIMACION DEL CALADO	A LA l	ENTRADA CON	DATOS TABLA 1						
CALADO A LA ENTRADA	yo =	0,06	m						
CALADO A LA SALIDA	ys =	0,00	m						
CASO A:	FLUJO VERTICAL A TRAVES DE BARROTES								
RELACIÓN ENTRE AREA PASO Y AREA	ε =	0.428	Obtenida de la ecuación						
TOTAL REJA	Ę –	0,428	Obtenida de la ecuación						
Cálculo de la longitud mínima de barrotes									
LONGITUD BARROTES MINIMA	Lg =	0,26	m						
LONGITUD BARROTES CONSTRUCCION	Lg =	0,28	m						

Elaborado: Carangui & González.

7.7.3.1.2 Método 2 (Zamarin)

Tabla 67. Datos de entrada para el metodo de Zamarin.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.08	m3/s
Ancho del río	Brío	8.00	m
Separación barrotes	S	0.04	m
Ancho barrotes	t	0.03	m
Espesor reja	e	0.05	m
Longitud apoyo	a	0.05	m
Ángulo inclinación reja	θ	20.00	0
Tangente teta	$tan(\theta)$	0.36	
Porcentaje obstrucción	fp	30.00	%

Tabla 68. Cálculo del coeficiente de descarga

Descripción	Símbolo	Valor	Unidad
Relación e/s	e/s	1.27	
Coeficiente de contracción	Co'	0.50	
Coeficiente de descarga	Со	0.38	

Tabla 69. Cálculos de la rejilla.

Número de pedazos	Longitud pedazos, Lp (m)	Longitud rejilla, Le (m)	K con obstrucción, K (-)	Ancho total neto, b (m)	Número barrotes, n (-)	Ancho rejilla adoptado, Lado (m)	Número barrotes, n adop (m)	K adoptado, K adop (-	Porcentaje obstrucción adoptado, fp adop (%)
1	6.00	5.54	0.43	0.03	0.50	0.04	1	0.35	42.11
2	3.00	2.73	0.43	0.09	1.37	0.10	2	0.39	36.07
3	2.00	1.79	0.43	0.16	2.56	0.20	3	0.38	38.53
4	1.50	1.32	0.43	0.26	4.02	0.40	6	0.32	47.44
5	1.20	1.03	0.43	0.37	5.75	0.50	8	0.35	42.36
6	1.00	0.85	0.43	0.50	7.76	0.60	9	0.38	37.61
7	0.86	0.71	0.43	0.65	10.04	0.810	12	0.37	38.78
8	0.75	0.61	0.43	0.82	12.62	1.00	15	0.38	38.55
9	0.67	0.53	0.43	1.01	15.49	1.20	18	0.38	37.58
10	0.60	0.47	0.43	1.22	18.68	1.50	23	0.37	39.03
11	0.55	0.42	0.43	1.45	22.21	1.80	28	0.37	39.40
12	0.50	0.38	0.43	1.70	26.09	2.10	32	0.37	39.10
13	0.46	0.34	0.43	1.98	30.36	2.40	37	0.38	38.36
14	0.43	0.309	0.43	2.29	35.04	2.80	43	0.37	38.80
15	0.40	0.28	0.43	2.62	40.15	3.10	47	0.38	37.37
16	0.38	0.26	0.43	2.99	45.75	3.60	55	0.38	38.16
17	0.35	0.24	0.43	3.39	51.85	4.00	61	0.38	37.33
18	0.33	0.22	0.43	3.82	58.52	4.60	70	0.38	38.11

Elaborado: Carangui & González.

7.7.3.2 Galería

7.7.3.2.1 Método de Hinds

Tabla 70. Datos de entrada para el método de Hinds.

Descripción	Símbolo	Valor	Unidad
Ancho de la galería	L	0.28	m
Ancho de la reja	В	3.10	m
Ancho del río	B río	8.00	m
Longitud de la galería	b	7.10	m
Rugosidad	n	0.015	
Caudal de diseño	Qd	0.082	m3/s
Caudal de diseño por metro	Qd/m	0.026	m3/s/m
Pendiente longitudinal	So	0.026	
Cota de inicio	Cota inicio	2,482.00	msnm
Pendiente paredes galería	Z	-	

• Cálculo del perfil de flujo para el canal

Flujo subcrítico Fr < 1.

Tabla 71. Cálculo del perfil de flujo para el canal con flujo subcrítico.

X	Qx	Q1+Q2	Yc	P	A	T	D	V	Fr	V1+V2	$\triangle \mathbf{Q}$	$\triangle \mathbf{V}$	∆Ym'	Rh	Sf	hf	h	Eh	Zf	Zo	m
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
0.10	0.00	0.00	0.03	0.34	0.01	0.28	0.03	0.30	1.00	0.30	0.00	0.30	0.02	0.03	0.00	0.00	0.02	0.02	2,482.01	2,481.98	
0.20	0.01	0.01	0.04	0.37	0.01	0.28	0.04	0.43	1.00	0.73	0.00	0.13	0.02	0.03	0.00	0.00	0.02	0.04	2,481.99	2,481.94	32.50
0.30	0.01	0.01	0.05	0.39	0.02	0.28	0.05	0.53	1.00	0.95	0.00	0.10	0.02	0.04	0.00	0.00	0.02	0.06	2,481.97	2,481.91	27.71
0.40	0.01	0.02	0.06	0.41	0.02	0.28	0.06	0.61	1.00	1.13	0.00	0.08	0.02	0.04	0.01	0.00	0.02	0.08	2,481.95	2,481.89	25.36
0.50	0.01	0.02	0.07	0.42	0.02	0.28	0.07	0.68	1.00	1.28	0.00	0.07	0.02	0.05	0.01	0.00	0.02	0.09	2,481.93	2,481.87	23.93
0.60	0.02	0.03	0.08	0.43	0.02	0.28	0.08	0.74	1.00	1.42	0.00	0.06	0.02	0.05	0.01	0.00	0.02	0.11	2,481.92	2,481.84	22.96
0.70	0.02	0.03	0.08	0.45	0.02	0.28	0.08	0.80	1.00	1.54	0.00	0.06	0.02	0.05	0.01	0.00	0.02	0.13	2,481.90	2,481.82	22.25
0.80	0.02	0.04	0.09	0.46	0.02	0.28	0.09	0.86	1.00	1.66	0.00	0.06	0.02	0.05	0.01	0.00	0.02	0.14	2,481.89	2,481.80	21.72
0.90	0.02	0.04	0.09	0.47	0.03	0.28	0.09	0.91	1.00	1.77	0.00	0.05	0.02	0.06	0.01	0.00	0.02	0.16	2,481.87	2,481.78	21.30
1.00	0.03	0.05	0.10	0.48	0.03	0.28	0.10	0.96	1.00	1.87	0.00	0.05	0.02	0.06	0.01	0.00	0.02	0.17	2,481.85	2,481.76	20.96
1.10	0.03	0.06	0.10	0.49	0.03	0.28	0.10	1.01	1.00	1.96	0.00	0.05	0.01	0.06	0.01	0.00	0.02	0.19	2,481.84	2,481.74	20.68
1.20	0.03	0.06	0.11	0.50	0.03	0.28	0.11	1.05	1.00	2.06	0.00	0.04	0.01	0.06	0.01	0.00	0.02	0.21	2,481.82	2,481.72	20.45
1.30	0.03	0.07	0.11	0.50	0.03	0.28	0.11	1.09	1.00	2.14	0.00	0.04	0.01	0.06	0.01	0.00	0.02	0.22	2,481.81	2,481.70	20.25
1.40	0.04	0.07	0.12	0.51	0.03	0.28	0.12	1.13	1.00	2.23	0.00	0.04	0.01	0.06	0.01	0.00	0.02	0.24	2,481.79	2,481.67	20.09
1.50	0.04	0.08	0.12	0.52	0.03	0.28	0.12	1.17	1.00	2.31	0.00	0.04	0.01	0.06	0.01	0.00	0.02	0.25	2,481.77	2,481.65	19.94
1.60	0.04	0.08	0.12	0.53	0.03	0.28	0.12	1.21	1.00	2.39	0.00	0.04	0.01	0.07	0.01	0.00	0.02	0.27	2,481.76	2,481.64	19.82
1.70	0.04	0.09	0.13	0.54	0.04	0.28	0.13	1.25	1.00	2.46	0.00	0.04	0.01	0.07	0.01	0.00	0.02	0.29	2,481.74	2,481.62	19.72
1.80	0.05	0.09	0.13	0.54	0.04	0.28	0.13	1.29	1.00	2.54	0.00	0.04	0.01	0.07	0.01	0.00	0.02	0.30	2,481.73	2,481.60	19.62
1.90	0.05	0.10	0.13	0.55	0.04	0.28	0.13	1.32	1.00	2.61	0.00	0.04	0.01	0.07	0.01	0.00	0.02	0.32	2,481.71	2,481.58	19.54
2.00	0.05	0.10	0.14	0.56	0.04	0.28	0.14	1.36	1.00	2.68	0.00	0.03	0.01	0.07	0.01	0.00	0.02	0.33	2,481.70	2,481.56	19.47
2.10	0.06	0.11	0.14	0.57	0.04	0.28	0.14	1.39	1.00	2.75	0.00	0.03	0.01	0.07	0.01	0.00	0.02	0.35	2,481.68	2,481.54	19.41

Elaborado: Carangui & González.

Gráfico 37. Perfil de flujo hipotético Compud.

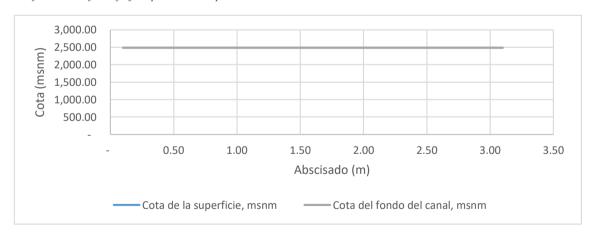
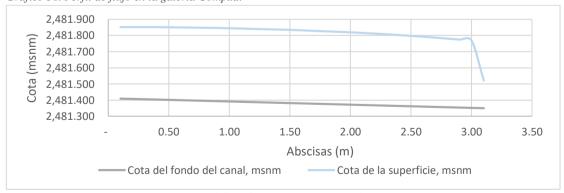



Tabla 72. Determinación del perfil de flujo a partir de la sección de control

x	Zo	h	Zf	Y	A	P	Qx	V	Q, Q1+Q2	V1+V2	DQ	DV	DYm'	R	hf	h	Dh
3.10	2,481.355		2,481.53	0.17	0.05	0.63	0.08	1.69	-	-	-	-		0.08	-	-	
3.00	2,481.357	0.245	2,481.77	0.42	0.12	1.11	0.08	0.68	0.16	2.37	0.00	1.01	0.12	0.11	0.00	0.12	0.245
2.90	2,481.359	0.007	2,481.78	0.42	0.12	1.12	0.08	0.65	0.16	1.32	0.00	0.03	0.00	0.11	0.00	0.00	0.007
2.80	2,481.361	0.006	2,481.79	0.42	0.12	1.13	0.07	0.62	0.15	1.27	0.00	0.03	0.00	0.11	0.00	0.00	0.006
2.70	2,481.363	0.006	2,481.79	0.43	0.12	1.14	0.07	0.59	0.15	1.21	0.00	0.03	0.00	0.11	0.00	0.00	0.006
2.60	2,481.365	0.006	2,481.80	0.43	0.12	1.15	0.07	0.56	0.14	1.16	0.00	0.03	0.00	0.11	0.00	0.00	0.006
2.50	2,481.367	0.005	2,481.80	0.44	0.12	1.15	0.07	0.54	0.13	1.10	0.00	0.03	0.00	0.11	0.00	0.00	0.005
2.40	2,481.369	0.005	2,481.81	0.44	0.12	1.16	0.06	0.51	0.13	1.05	0.00	0.03	0.00	0.11	0.00	0.00	0.005
2.30	2,481.371	0.005	2,481.81	0.44	0.12	1.16	0.06	0.49	0.12	1.00	0.00	0.02	0.00	0.11	0.00	0.00	0.005
2.20	2,481.373	0.004	2,481.82	0.44	0.12	1.17	0.06	0.47	0.12	0.95	0.00	0.02	0.00	0.11	0.00	0.00	0.004
2.10	2,481.375	0.004	2,481.82	0.45	0.13	1.17	0.06	0.44	0.11	0.91	0.00	0.02	0.00	0.11	0.00	0.00	0.004
2.00	2,481.377	0.004	2,481.82	0.45	0.13	1.18	0.05	0.42	0.11	0.86	0.00	0.02	0.00	0.11	0.00	0.00	0.004
1.90	2,481.379	0.003	2,481.83	0.45	0.13	1.18	0.05	0.40	0.10	0.82	0.00	0.02	0.00	0.11	0.00	0.00	0.003
1.80	2,481.381	0.003	2,481.83	0.45	0.13	1.18	0.05	0.38	0.10	0.77	0.00	0.02	0.00	0.11	0.00	0.00	0.003
1.70	2,481.383	0.003	2,481.83	0.45	0.13	1.18	0.04	0.35	0.09	0.73	0.00	0.02	0.00	0.11	0.00	0.00	0.003
1.60	2,481.385	0.003	2,481.84	0.45	0.13	1.18	0.04	0.33	0.09	0.69	0.00	0.02	0.00	0.11	0.00	0.00	0.003
1.50	2,481.387	0.003	2,481.84	0.45	0.13	1.19	0.04	0.31	0.08	0.64	0.00	0.02	0.00	0.11	0.00	0.00	0.003
1.40	2,481.389	0.002	2,481.84	0.45	0.13	1.19	0.04	0.29	0.08	0.60	0.00	0.02	0.00	0.11	0.00	0.00	0.002
1.30	2,481.391	0.002	2,481.84	0.45	0.13	1.19	0.03	0.27	0.07	0.56	0.00	0.02	0.00	0.11	0.00	0.00	0.002
1.20	2,481.393	0.002	2,481.85	0.45	0.13	1.19	0.03	0.25	0.07	0.52	0.00	0.02	0.00	0.11	0.00	0.00	0.002
1.10	2,481.395	0.002	2,481.85	0.45	0.13	1.19	0.03	0.23	0.06	0.48	0.00	0.02	0.00	0.11	0.00	0.00	0.002
1.00	2,481.397	0.002	2,481.85	0.45	0.13	1.19	0.03	0.21	0.06	0.44	0.00	0.02	0.00	0.11	0.00	0.00	0.002
0.90	2,481.399	0.002	2,481.85	0.45	0.13	1.19	0.02	0.19	0.05	0.39	0.00	0.02	0.00	0.11	0.00	0.00	0.002
0.80	2,481.401	0.001	2,481.85	0.45	0.13	1.18	0.02	0.17	0.04	0.35	0.00	0.02	0.00	0.11	0.00	0.00	0.001
0.70	2,481.403	0.001	2,481.85	0.45	0.13	1.18	0.02	0.15	0.04	0.31	0.00	0.02	0.00	0.11	0.00	0.00	0.001
0.60	2,481.405	0.001	2,481.85	0.45	0.13	1.18	0.02	0.13	0.03	0.27	0.00	0.02	0.00	0.11	0.00	0.00	0.001
0.50	2,481.407	0.001	2,481.86	0.45	0.13	1.18	0.01	0.10	0.03	0.23	0.00	0.02	0.00	0.11	0.00	0.00	0.001
0.40	2,481.409	0.001	2,481.86	0.45	0.13	1.18	0.01	0.08	0.02	0.19	0.00	0.02	0.00	0.11	0.00	0.00	0.001
0.30	2,481.411	1	2,481.86	0.45	0.13	1.17	0.01	0.06	0.02	0.15	0.00	0.02	0.00	0.11	0.00	0.00	0.000
0.20	2,481.413	-	2,481.86	0.44	0.12	1.17	0.01	0.04	0.01	0.11	0.00	0.02	0.00	0.11	0.00	0.00	0.000
0.10	2,481.415	-	2,481.86	0.44	0.12	1.16	0.00	0.02	0.01	0.06	0.00	0.02	0.00	0.11	0.00	0.00	0.000

Gráfico 38. Perfil de flujo en la galería Compud.

7.7.3.3 Desarenador

7.7.3.3.1 Criterios de diseño

Tabla 73. Datos de entrada para el estudio de un desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal de diseño	Q	0.0819	m3/s
Ancho de canal de entrada	b	0.4000	m
Coeficiente de rugosidad de Manning	n	0.0150	
Pendiente de fondo de canal de entrada	So	0.005	
Diámetro de partículas	ds	0.0003	m
Viscosidad cinemática del agua	V	1.13E-06	m2/s
Densidad agua	ρ	999.7000	kg/m3
Peso específico relativo de partículas	S	2.6500	

Elaborado: Carangui & González.

7.7.3.3.2 Condiciones en el canal de entrada

Tabla 74. Condiciones en el canal de entrada

Descripción	Símbolo	Valor	Unidad
Caudal calculado con Manning	Q	0.000	m3/s
Calado normal	Yn	0.20	m
Velocidad media de flujo	V	1.02	m/s
Numero de Froude	Fr	0.72	
Tipo de flujo		SUBCRÍTICO	

Elaborado: Carangui & González.

7.7.3.3.3 Cálculo de la velocidad de sedimentación en la recámara de sedimentación

Tabla 75. Cálculo de la velocidad de sedimentación.

Descripción	Símbolo	Valor	Unidad
Velocidad de sedimentación asumida	wo=vs	0.055	m/s
Velocidad de sedimentación calculada	wo	0.055	m/s

Elaborado: Carangui & González.

7.7.3.3.4 Capacidad de arrastre del canal con un diámetro máximo de partículas 2.5 mm

Tabla 76. Capacidad de arrastre del canal para el diámetro máximo de partículas

Descripción	Símbolo	Valor	Unidad
Velocidad de arrastre de la partícula	Va	0.28	m/s.
Factor seguridad	Fs	3.00	
Velocidad de arrastre de la partícula	Va	0.09	m/s.

7.7.3.3.5 Diseño del sedimentador de flujo horizontal para lavado intermitente

Tabla 77. Cálculo de dimensiones de cámara

Descripción	Símbolo	Valor	Unidad
AREA NECESARIA DESARENADOR	A	0.88	m2
ALTURA DEL AGUA	Н	1.0	m
VELOCIDAD DE TURBULENCIA	Vturb	0.01	m/s
COMPORTAMIENTO	η	5.00	
TANTO POR CIENTO DE REMOCION	T	0.90	
COEFICIENTE K	K	2.92	
LONGITUD DESARENADOR	Ldes	5.9	m
ANCHO REQUERIDO	В	0.9	m
LONGITUD MINIMA TRANSCISION	Ltra	1.1	m

Elaborado: Carangui & González.

Tabla 78. Diseño del sedimentador de flujo horizontal para lavado intermitente

Profundidad del desarenador [m] H=	1.00
Ancho requerido [m] B=	0.90
Longitud de transición mínima [m] =	1.10
Longitud de desarenador [m] L=	5.90

Elaborado: Carangui & González.

7.7.3.3.6 Vertedero de salida del desarenador

Tabla 79. Datos para el diseño del vertedero del desarenador.

Descripción	Símbolo	Valor	Unidad
Caudal	Q	0.082	m3/s
Ancho del desarenador	В	0.90	m
Coeficiente de contracción y de velocidad del vertedero	M	1.84	
Densidad agua	V	999.70	m/s
Carga sobre el vertedero	Н	0.25	m
Ancho del vertedero	bv	0.36	m

Elaborado: Carangui & González.

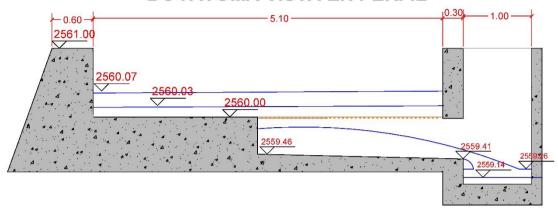
El ancho del vertedero de salida se adopta al ancho del sedimentador, ya que su longitud es menor.

7.8 Prediseños de las obras hidráulicas

Como un aporta a la comunidad se ha realizado un prediseño de las obras de captación requeridas de acuerdo a los resultados del inventario realizado a fin de que estos diseños sean complementados en un futuro con todos los requisitos de diseño de obras hidráulicas para su implementación, estas obras sin lugar a dudas mejorarían el funcionamiento del sistema.

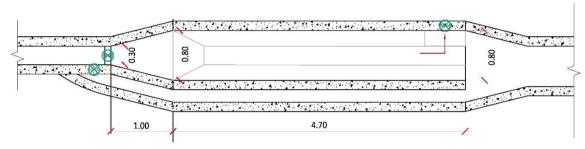
* Captación de Sagüin

Ilustración 16. Bocatoma Sagüin vista en planta



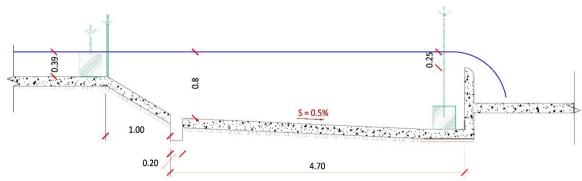
Elaborado: Carangui & González.

Ilustración 17. Bocatoma Sagüin vista en perfil


RESULTADOS DEL DISEÑO SAGUIN BOCATOMA VISTA EN PERFIL

Elaborado: Carangui & González.

Ilustración 18. Desarenador Sagüin vista en planta


RESULTADOS DEL DISEÑO SAGUIN DESARENADOR VISTA EN PLANTA

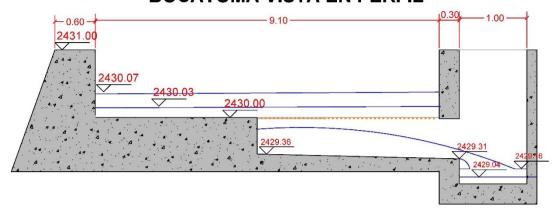
Elaborado: Carangui & González.

Ilustración 19. Desarenador Sagüin vista en perfil

RESULTADOS DEL DISEÑO SAGUIN DESARENADOR VISTA EN PERFIL

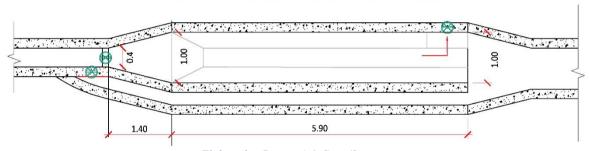
Captación de Namza

Ilustración 20. Bocatoma Namza vista en planta



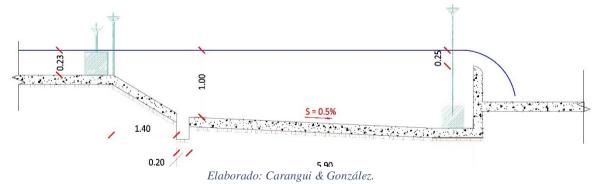
Elaborado: Carangui & González.

Ilustración 21. Bocatoma Namza vista en perfil


RESULTADOS DEL DISEÑO NAMZA BOCATOMA VISTA EN PERFIL

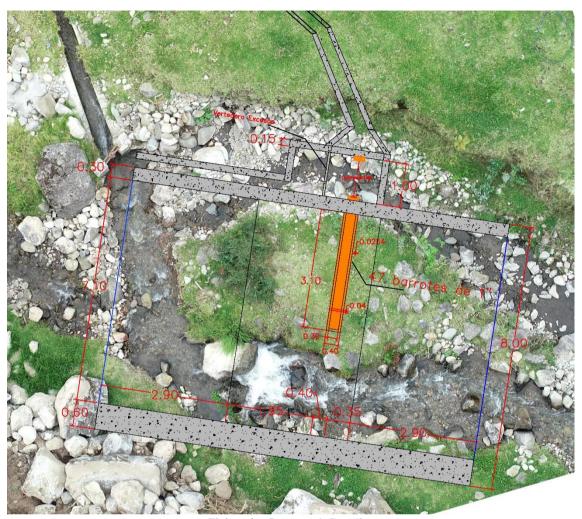
Elaborado: Carangui & González.

Ilustración 22. Desarenador Namza vista en planta

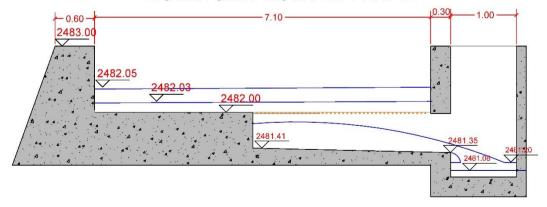

RESULTADOS DEL DISEÑO NAMZA DESARENADOR VISTA EN PLANTA

Elaborado: Carangui & González.

Ilustración 23. Desarenador Namza vista en perfil


RESULTADOS DEL DISEÑO NAMZA DESARENADOR VISTA EN PERFIL

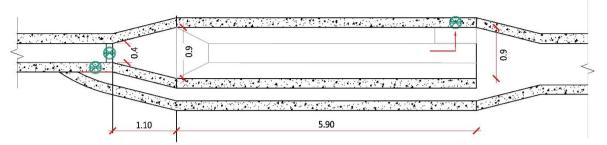
* Captación de Compud


Ilustración 24. Bocatoma Compud vista en planta

Elaborado: Carangui & González.

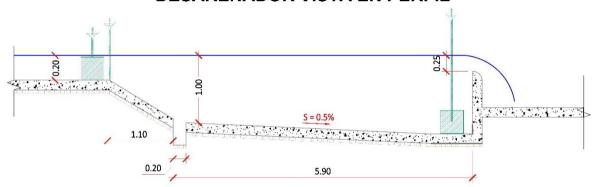
Ilustración 25. Bocatoma Compud vista en perfil

RESULTADOS DEL DISEÑO COMPUD BOCATOMA VISTA EN PERFIL



Elaborado: Carangui & González.

Ilustración 26. Desarenador Compud vista en planta


RESULTADOS DEL DISEÑO COMPUD DESARENADOR VISTA EN PLANTA

Elaborado: Carangui & González.

Ilustración 27. Desarenador Compud vista en perfil

RESULTADOS DEL DISEÑO COMPUD DESARENADOR VISTA EN PERFIL

Elaborado: Carangui & González.