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Resumen:  

La falta de información a una alta resolución temporal es uno de los principales 

obstáculos al momento de estudiar la dinámica de la lluvia especialmente en áreas 

con una compleja topografía como son los Andes Tropicales. Además, los tipos de 

lluvia (ej., estratiforme, convectiva) son definidos usualmente utilizando umbrales de 

algunas de las características de la lluvia como la intensidad y la velocidad. Sin 

embargo, estos umbrales dependen principalmente del área de estudio y el clima 

local de la zona. En consecuencia, estos umbrales son un factor limitante para la 

definición de las clases de lluvia porque no pueden ser generalizados. Este estudio 

tiene como objetivo analizar los tipos de eventos de lluvia usando un enfoque de 

agrupamiento basado en el algoritmo k-means que permite considerar las 

similitudes de las características de la lluvia de cada tipo de lluvia. Este estudio se 

llevó acabo utilizando tres años de datos obtenidos del Micro Rain Radar (MRR) y 

el disdrómetro laser. Los resultados obtenidos muestran dos tipos de lluvia 

principales (convectiva y estratiforme) en el área de estudio, las mismas que 

presentan marcadas diferencias en sus características. Además, como subgrupo 

del tipo de lluvia estratiforme fue encontrado el tipo de lluvia mixta. Por otro lado, la 

lluvia estratiforme fue el tipo de lluvia más frecuente durante todo el año. Además, 

los eventos de lluvia de corta duración (menos que 70 mins) fueron dominantes en 

el área de estudio. Este estudio contribuirá al análisis de los procesos de formación 

de lluvia y el perfil vertical. 
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Abstract: 

Lack of rainfall information at high temporal resolution in areas with a complex 

topography as the Tropical Andes is one of the main obstacles to study its rainfall 

dynamics. Furthermore, rainfall types (e.g., stratiform, convective) are usually 

defined by using thresholds of some rainfall characteristics such as intensity and 

velocity. However, these thresholds highly depend on the local climate and the study 

area. In consequence, these thresholds are a constraining factor for the rainfall class 

definitions because they cannot be generalized. Thus, this study aims to analyze 

rainfall-event types by using a data-driven clustering approach based on the k-

means algorithm that allows accounting for the similarities of rainfall characteristics 

of each rainfall type. It was carried out using three years of data retrieved from a 

vertically pointing Micro Rain Radar (MRR) and a laser disdrometer. The results 

show two main rainfall types (convective and stratiform) in the area which highly 

differ in their rainfall features. Also, a mixed type was found as a subgroup of the 

stratiform type. The stratiform type was found more frequently throughout the year. 

Furthermore, rainfall events of short duration (less than 70 mins) were prevalent in 

the study area. This study will contribute to analyze the rainfall formation processes 

and the vertical profile. 
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1. Introduction 

Precipitation is among the most important components of the hydrologic cycle 

because it triggers important processes that determine water distribution and 

availability [1–3]. Also, precipitation is characterized by a high spatiotemporal 

variability. This is particularly true in the Tropical Andes, where complex topography 

is a key factor that influences rainfall processes [4]. Here, precipitation variability has 

been studied only at a certain extent [5–7]. This is because of the lack of high 

temporal resolution data, which is one of the main obstacles to understand the 

rainfall processes and dynamics in this area [8]. Usually, rainfall characteristics such 

as rain rate are used to study rainfall variability [6]. Moreover, microphysical 

characteristics (e.g., drop size distribution) and the study of the vertical profile of the 

rainfall allow to improve the knowledge about microphysical processes that govern 

the formation of the hydrometeors and to identify rainfall types. This rainfall variability 

can be captured by remote sensing observation with micro rain radars (MRR) and 

laser disdrometers. The advantage of these instruments is that they not only enable 

to quantify the rainfall, but also allow to analyze its microphysical attributes [9,10].   

MRRs are instruments that measure the characteristics of the precipitation along its 

vertical profile. MRRs retrieve the reflectivity profile, drop size distribution (DSD), rain 

rate, velocity and liquid water content (LWC) [9] for different atmospheric layers. 

These characteristics allow analyzing the vertical structure of the rain. They also 

allow to differentiate between rain types (convective and stratiform rain), and to 

identify the height of the melting layer [2,11–13]. Besides, disdrometers are 

instruments that retrieve characteristics as particle spectrum the rain rate, the 

quantity and the type of rain [10]. These instruments have been used to analyze the 

rainfall dynamic in mountain areas [4,12,14–17]. In the Tropical Andes, the diurnal 

dynamics of the precipitation were studied by Bendix, (2006) using MRR data. The 

author found that rainfall is mostly of stratiform type and the afternoon events are 

influenced by local convection. A study in Peru and Bolivia using MRR data [12] 

showed the dominance of stratiform events during the night, and suggested that the 

height of melting layer is an indicator of climate change. Using microphysical data 

(e.g., mean volume diameter Dm) obtained from laser disdrometers, Orellana-

Alvear, (2017) analyzed rainfall types at three sites with different height in the Andes 

Cordillera in Ecuador. The authors found that convective type (rainfall associated 

with higher rain rate and Dm) was more common in the lower elevation sites while 

light rain was more frequent in higher sites. Seidel, (2019) using MRR data, found 

that short events (less than 3 hours) were dominant in the Tropical Andes and 

nocturnal precipitation is more of the stratiform type.  
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Previous studies highlight the importance of differentiating between rainfall types 

[3,17–19], principally to analyze the rainfall behavior and find patterns in the rainfall 

attributes. Also, the definition of rainfall types is useful for improving the quantitative 

precipitation estimation (e.g., Z-R relation)[4]. Usually, rainfall types (e.g., stratiform 

and convective) are defined by using some rainfall characteristics thresholds such 

as rain rate [19–21]; DSD [22,23] and; reflectivity [24]. Furthermore, in the case of 

the reflectivity profile, it is used to determine the melting layer (ML) presence, which 

is also used to determine rainfall types [11,25]. However, these thresholds are site 

specific [21] and depend mainly on the local climate and the study area. This makes 

rainfall classification closely related to independent, arguably subjective decisions 

rather than the possibility of extracting knowledge only from the interactions between 

rainfall characteristics. This can be overcome using clustering analysis.  

Clustering analysis is a statistical tool used to group objects with similar 

characteristics. The objects grouped within a cluster have similar characteristics, and 

differ to objects of other clusters [26]. The technique performs an unsupervised 

classification; thus, it is not based on the use of a priori labels to determine the 

clusters [26–28]. Therefore, by using a set of objects (instances from a dataset), it 

finds their natural grouping that maximize the cohesion within the groups while 

ensuring higher separation from other clusters [28]. Clustering algorithms are divided 

into hierarchical and partitional [28]. In partitional algorithms as k-means clustering, 

the definition of the number of clusters and the feature selection are important 

conditions in the cluster formation [29]. The clustering analysis based on the 

hierarchical and k-means algorithm had been used to classify rainfall events in 

different studies such as Dilmi, (2017), dos Santos, (2017), Fang, (2012), and Peng, 

(2012).  

In this context, this study aims to analyze rainfall-event types in the Tropical Andes 

by using a clustering approach based on the k-means algorithm that allows 

accounting for the similarities of rainfall characteristics (e.g., duration, rain rate, drop 

size distribution) of each rainfall type. This will allow to improve the knowledge of 

rainfall dynamics and its occurrence in the region.  

2. Study site and data 

2.1. Study site 

The study area Balzay (2°53’S, 79°02’W) is located at 2610 m a.s.l, in the outskirts 

of the city of Cuenca in the Tropical Andes of southern Ecuador, as shown in Figure 

1. Balzay is located in the inter-Andean depression [33] and shows a bimodal rainfall 

regime with two wet seasons in the months March-April-May and October. The mean 
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annual precipitation is 969 mm [4] and the mean temperature is 14°C [34]. The 

precipitation is mainly driven by the displacement of the Intertropical Convergence 

Zone (ITCZ) [35,36]. The ITCZ is defined as the zone in the vicinity of the equator, 

where the trade winds from the north and south converge [37]. The climate in 

Ecuador shows high variability in part due to the presence of the Andes Cordillera. 

In the inter- Andean depression, due to the impact of the ITCZ, the tropical Amazon 

air masses from the East and the Pacific coastal regimen from the West are the main 

factors that control the climatology of the area [38]. 

 

Figure 1. Study site in the southern Ecuador; the diamond indicates the location of instruments. 

2.2. Instruments 

The instruments used in this study are the Micro Rain Radar (MRR) [9] and the laser 

disdrometer (Thies Clima LPM- Laser Precipitation Monitor) [10]. A detailed 

explanation of the instruments operation is provided in the following sections.  

2.2.1. Micro Rain Radar 

The MRR is a vertically pointing frequency modulated continuous wave (FM-CW) 

doppler radar. It operates at 24.1 GHz and 12.5 mm wavelength. The radar transmits 

a signal along a vertical orientation in the atmosphere over the antenna [9,39].  

The primary advantage of the MRR is its high sensitivity and temporal resolution to 

detect small amounts of precipitation (i.e., low rain rates) [9]. The MRR detects 

droplets with diameters between 0.25 to 6 mm [40], and it assumes water drops are 

spherical. The MRR retrieves basically the Doppler spectra of the falling droplets 
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and radar reflectivity where parameters like the mean fall velocity, droplet 

concentration, rain liquid water content and rain rate are derived from. The details of 

the parameters derivation can be found in [9,39–41]. The MRR records these 

parameters for all the vertical profile.  

The vertical profile consists of 31 height steps (gates) whose maximum and 

minimum height resolution is defined by the user and range between 10 and 1000 

m. In our case, the MRR was operated with a height resolution of 100 m and the 

data were captured with a 1-min frequency. 

2.2.2. Disdrometer 

The disdrometer used in this study is a Thies Clima Laser precipitation monitor 

(LPM) [10], which is based on a laser sensor that produces a horizontal light beam. 

This sensor has a wavelength of 785 nm and the measuring area is 45.6 cm2. When 

a precipitation particle falls through the light beam, the receiving signal is attenuated. 

The particle diameter is estimated from the reduction in the signal amplitude while 

its fall velocity is calculated from the duration of the decreased signal. Each drop is 

assigned to one of 22 size bins and to one of 20 velocity bins. The size bins are 

between 0.125- 8 mm and the velocity bins are between 0-10 m s-1. Later, a telegram 

is sent every minute. This shows the number of drops that the LPM detected in each 

class depending on the bin combination (diameter-velocity). The LPM retrieves the 

particle spectrum, the rain rate, the quantity and the type of precipitation. Data were 

captured with 5-min frequency, as a result of averaging 1-min observations.   

2.3. Data availability and quality control 

Three years of data, from February 2017 to February 2020 of both instruments were 

used in this study. In the case of the MRR, the data were averaged to 5-min. Several 

parameters of the MRR such as rain rate (mm h-1), mean fall velocity (m s-1), liquid 

water content (g m-3), droplet concentration (m-3 mm-1) and radar reflectivity (dBZ) 

were used for the rainfall classification process.  

The validity of the MRR data has been reported by many researchers [11,19,42–44]. 

These studies showed a good agreement between MRR and different types of 

disdrometer (OTT Parsivel, Joss-Waldvogel and LPM) through a correlation 

analysis. Thus, to ensure the validity of the MRR measurements, we compared the 

rain rate observed by the MRR at the lowest height (100m) with the rain rate obtained 

from the collocated disdrometer at 30-min cumulative interval (Figure 2). This 

comparison was performed by using the determination coefficient (R2). The 

coefficient of determination between MRR and LPM rain rate data was 0.74 (Figure 
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2). Therefore, we had a good fit in spite of the difference in height where each sensor 

is monitoring the rainfall (i.e., the disdrometer is located at ground level while the 

MRR first range of monitoring is 0 - 100 m).  

 

Figure 2. Correlation between rainfall recorded by the MRR and LPM data at 30-min accumulation. 

The solid line denotes the regression line, the dashed line denotes the bisector line and R2 is the 

determination coefficient.  

As shown in Figure 2, the MRR tended to slightly underestimate the rainfall amount. 

Nevertheless, the MRR showed some outliers especially in higher values. Sarkar, 

(2015) found that the LPM and MRR had a good fit (R2 =0.74). The author suggested 

that over 60 mm h-1, the MRR has a high probability of underestimates the measures 

of rain rate. Also, Rollenbeck, (2007) compared the precipitation measurements 

between 5 recording devices. The author found that the MRR underestimate the 

precipitation. The MRR had a high sensitivity to detect light rain, but it had problems 

detecting higher rain rates [45,46]. These studies agree with our results and show 

the good fit between both instruments. Thus we derived the drop size distribution (m-

3 mm-1) from the disdrometer data. It was calculated from the number of drops for 

each size and velocity bins [10]. The details of the drop spectrum calculation can be 

found in [4,44,47]. 

3. Methods 

First, we selected rainfall events from the available time series by using three criteria 

which are detailed in section 3.1. Then, for each of them, we determined individual 

rainfall event characteristics (e.g., duration, maximum rain rate, etc) derived from the 

MRR and LPM data. Finally, we applied the k-means algorithm that clusters these 
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events based on their derived characteristics. A detailed explanation of the last steps 

is provided in section 3.2. 

3.1. Rainfall Events Selection 

 Representative data of the study period were obtained through the delineation of 

rainfall events using three criteria: (i) minimum inter-event time, (ii) minimum total 

rainfall accumulation, and (iii) minimum duration. The minimum inter-event time is 

defined as the minimum lapse of time for a dry period (i.e., no rainfall occurrence or 

less than a threshold) between rainfall events, which is necessary to classify two 

events as independent. In this study, we used the threshold of rain rate greater than 

0.05 mm min-1 for each time step. This threshold was identified using a sensitivity 

analysis. The range of values to find the threshold was between (0.01-0.1 mm min-
1). The value of 0.05 mm min-1 was selected because it eliminated the long tails and 

discontinuities that lower rain rate values showed in the events. The minimum total 

rainfall accumulation refers to the rainfall total during the event. The minimum 

duration is the time where the rainfall was continuous (without gaps) [48,49]. To 

identify the proper thresholds for these values we performed a sensitivity analysis 

which was carried out by using a variation between a range of values of each 

criterion (minimum inter-event time, minimum total rainfall accumulation, and min 

duration) with the purpose of getting a probability distribution. This distribution was 

used to find a threshold where the number of events got steady for each criterion 

and thus we got a trade-off between the number of events and their 

representativeness. The range of values to find the proper threshold were: (i) 20- 60 

min for minimum inter-event time; (ii) 2-8 mm for minimum total rainfall accumulation 

per event and; (iii) 10-30 min for minimum duration. The methodology of Orellana-

Alvear, 2017 was used as a starting point to determine such thresholds. Finally, 

rainfall events that met the criteria were selected for the current study. 

3.2. Rainfall Classification 

3.2.1. Derivation of Rainfall Events Characteristics 

Rainfall event characteristics are used to describe and synthesize the behavior of a 

rainfall event [27]. After the rainfall events were selected, several of their temporal 

(e.g., duration) and hydrometeorological (e.g., rainfall accumulation) characteristics 

were picked out for the rainfall classification process. However, there is no 

universally agreed set of characteristics to describe a rainfall event [27]. Generally, 

choosing the rainfall characteristics depends on the instrument, its measured 

variables, and the objective of the study. Here, we used the characteristics obtained 
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from the MRR and the LPM; these include hydrological and microphysical 

information of the rainfall events (Table A1). 

3.2.1.1. Derivation of MRR and Disdrometer characteristics 

We used four hydrological characteristics of rainfall events of the lower height bin of 

the MRR, namely rain rate (mm h-1), mean fall velocity (m s-1), liquid water content 

(g m-3), and radar reflectivity (dBZ). Moreover, rainfall accumulation and the duration 

of the event were calculated. 

Regarding microphysical data, the LPM retrieved the drop spectra N(D) (m-3 mm-1) 

and drop diameters D (mm). These characteristics are used to represent the Drop 

Size Distribution (DSD, Marshall and Palmer, 1948) at each time step. Nonetheless, 

we needed to combine these characteristics to get a representative DSD for each 

rainfall event. So, we derived the mean volume diameter (Dm) in mm that represents 

the proportion between the fourth and third moment of the DSD, as defined by 

Testud, (2001). It is frequently used to represent the DSD of a rainfall event 

[4,27,43,52,53]. Finally, we analyzed the characteristic distribution and extracted the 

mean, maximum, minimum, and median value for characterizing the rainfall 

properties within each event. 

3.2.1.2. Determination of the melting layer 

The melting layer (ML) is an important characteristic, commonly used to identify 

rainfall classes [11,25,54]. The ML determination is based on the identification of a 

bright band (BB) signature in the vertical profile of the reflectivity. This BB detection 

consists in determining the prominent increase of the values in the reflectivity profile 

at specific gates, using the maximum slope found in the reflectivity profile [11,55,56]. 

This band is a combination of water, air, and ice that highly increase the reflectivity 

values at certain gates of the vertical profile. Also, another factor that influences the 

increase in reflectivity is the density effect, which consists in the water (melted and 

snow) distribution in the particles [19,54–56].  

A general solution to identify the ML is performing a visual inspection of the 

reflectivity profile [19,22]. Thus, the BB was identified for each event based on a 

visual inspection and the scheme of Fabry and Zawadzki, (1995). As a result, three 

possible scenarios related to the occurrence of the BB were found: i) the BB is 

always present during the rainfall event, ii) the BB is partially present along the event, 

and; iii) the BB is absent. Thus, we used a three stage ML variable that can be set 

to 1 (BB always present), 0.5 (BB intermittent) and 0 (no BB present).  
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3.2.2. Clustering approach: k- means algorithm 

The k-means algorithm was used for obtaining the rainfall event classes. This is 

accomplished  by  identifying different groups of instances (i.e., rainfall events) with 

similar features (i.e., the rainfall characteristics such as duration, DSD, etc.) within 

each group in a data set [57].  The main idea behind the k-means algorithm is 

grouping n points of m dimensions into k clusters, so that for each cluster, the square 

of the Euclidean distance between the x points that belongs to n and the centroid of 

the cluster is minimal (Eq. 1) [29,58,59].  

J = ∑ ∑ |xi − cj|
2n

i=1  k
j=1 , (1) 

Where J is the Euclidean distance, xi is each data point and cj is the centroid of the 

cluster. The k-means algorithm is iterative, so the process is repeated until the 

Euclidean distance converges to the minimum value. In order to apply the k-means 

algorithm, it is needed to fulfill three conditions: determine the features (rainfall event 

characteristics) to use; standardize the features and; define the number of clusters. 

To begin this process, we decided to select a subset of features to diminish 

redundant information for the algorithm and for obtaining a parsimonious model. A 

number of techniques have been developed for feature-selection [60]. We chose 

each feature by performing a cross-correlation analysis between all features by 

means of the Pearson correlation coefficient. This aimed to highlight the features 

that contribute redundant information for the algorithm. With this, we removed these 

features and we got a parsimonious model with less number of features. 

In the case of the ML feature, it is worth mentioning that the identification of the ML 

and its corresponding feature derivation needed a great effort and was very time 

consuming because we had to visually check each one of the rainfall events. For 

these reasons, this feature was included and excluded from the original list of 

features with the purpose of determining its influence over the rainfall clusters 

formation.  

Furthermore, the standardization of features is mandatory for the implementation of 

the k-means algorithm. This is because all features should have the same weight for 

calculating the Euclidean distance. While different methods have been proposed to 

standardize the features, Milligan and Cooper, (1988) found that standardizing by 

the range was the best method of eight standardization methods. So, we decided to 

use the range method (Eq.2). 
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Z =
X−Min (X)

Max(X)−Min(X)
 , (2) 

Where Z is the standardized feature, X is the feature, and Max and Min are the 

maximum and minimum value of X respectively. 

Finally, we aimed to select the optimal number of clusters for our data set. Milligan 

and Cooper, (1985) evaluated thirty procedures to determine the optimal number of 

clusters and they found that it highly depends on the data. For this study, we decided 

to run the algorithm a priori with two and three clusters because rainfall types are 

usually classified in two and three classes (stratiform, convective, and transition or 

mixed). Furthermore, we evaluated the quality of the cluster separation, so we 

decided to use the elbow method. Here, we needed to identify a sharp elbow 

between the sum of the squared errors as a function of the number of clusters [63]. 

Also, this value usually indicates the optimal number of clusters. In our case we will 

include and exclude the ML feature in this analysis to identify its influence on the 

cluster´s separation. 

4. Results and Discussion 

4.1. Rainfall Events Selection 

We selected 92 rainfall events after finding the thresholds that met the criteria for the 

rainfall event separation. The thresholds of the three criteria were: 30 min for 

minimum inter-event time, 3 mm for minimum total rainfall accumulation per event 

and; 15 min for minimum event duration.  

Figure 3 illustrates the distribution of the rainfall event duration and occurrence in 

each month. The distribution of the rainfall events along the year is in agreement 

with the bimodal regime of precipitation in the study area as documented by 

Campozano, (2018) and Celleri, (2007). The higher number of rainfall events 

occurred in March, May and October whereas June, July, August and September 

had the lowest number of rainfall events. However, no rainfall events accomplished 

the defined criteria (e.g., minimum inter-event time, minimum total rainfall 

accumulation and; min duration) in July, which is one of the driest months of the year 

with a mean monthly precipitation of 7mm. Furthermore, the longest events duration 

was found in April and May, which are the wettest months with a mean monthly 

precipitation of 78 and 98mm respectively. 

For the selected events, we found that the rainfall event duration was shorter than 3 

hours (Figure 3). Also, we found that short rainfall events (i.e., < 70 min) were 
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predominant (around 70%) in the region during the study period.  In addition, the 

mean duration at every month was less than 70 min. 

These results about short rainfall duration supports evidence from previous 

observations [4,14]. Orellana-Alvear (2017) analyzed the rainfall events duration 

using the LPM disdrometer and found that the mean event duration is around 3 

hours. In the same way, Seidel, (2019) confirmed that the short duration events are 

dominant in this study area by using MRR data. Furthermore, the short duration of 

the events evidenced the necessity of high temporal resolution to capture their 

variability. However, the instruments’ time resolution limit capturing the variability in 

these events [14,64]. Padrón, (2015) already discussed the influence of different 

instrument time resolution (rain gauge and disdrometer laser) in rainfall data after 

finding that the rain gauge underestimates rainfall catch.  In our case, with the MRR 

and LPM data, we could analyze the temporal variability (i.e., 1 min frequency) with 

respect to rain rate, velocity, reflectivity, liquid water content, rainfall accumulation 

and mean volume diameter.   

 

Figure 3. Rainfall events duration per month at Balzay, n is the number of events, and the gray point 

represents the mean value. 

4.2. Rainfall Event Features 

4.2.1. Determination of the melting layer 

With the aim of determining the ML feature, we analyzed the vertical reflectivity and 

velocity profile and well as their evolution along the rainfall event. Here we used data 

with 1 min frequency, as it was necessary to identify the variability of the rainfall 
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characteristics along the event. We had 3 scenarios linked to the occurrence of the 

BB: i) present, ii) partially present, and; iii) absent.  

Figure 4, 5 and 6 show the three scenarios (i, ii, iii) about the BB identification. The 

event shown in Figure 4a and Figure 4b show a constant enhancement in the 

reflectivity and in the velocity profile around 2000 m above ground level (a.g.l), which 

evidence a BB. In the reflectivity profile, there is a clear increase of the reflectivity 

value around this height. Also, a closer inspection of the velocity profile showed an 

extreme variation in the values around the 2000 m a.g.l. and in consequence 

supports the presence of the ML. In this case, the ML variable was set to 1.  

 

Figure 4. Event with a clear bright band on 21 March 2019: a) reflectivity profile (dBZ), b) vertical fall 

velocity (m s-1), c) rain rate at range of 100 m a.g.l (mm h-1). White color in a), represents missing 

data. 

In contrast, Figure 5a and Figure 5b show that the BB was not always present during 

the entire rainfall event as seen in the reflectivity and velocity profiles. Thus, the ML 

related feature was set to 0.5. The clear BB appeared from 15:00h until the end of 

the event around 2000 m a.g.l. In the reflectivity and velocity profiles, we could see 

an increase of their values around this height from 15:00h until the 15:35h which is 

the end of the event. However, there is no previous signature of BB. 
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Figure 5. Event with intermittent bright band on 26 December 2017: a) reflectivity profile (dBZ), b) 

vertical fall velocity (m s-1), c) rain rate at range of 100 m a.g.l (mm h-1). White color in a), represents 

missing data.  

Finally, Figure 6a and Figure 6b illustrate the absence of the BB along the entire 

event in the reflectivity and velocity profiles. There are no strong variations in the 

reflectivity and velocity profiles as in the previous scenarios. This means that the ML 

was not evident in the rainfall event. Here, we set the ML related feature to 0.  

Furthermore, in Figure 4c, 5c, and 6c, we differentiated between the rain rate range 

and the evolution of the event in the three scenarios of the BB. In Figure 4c, we 

found that the rain rate ranged between 0-16 mm h-1. In Figure 5c, the range was 

between 0-35 mm h-1. In addition, the rain rate reveals two peaks before 15:00h. 

Figure 6c shows that the rain rate ranged between 0-80 mm h-1, and also has two 

peaks.  

It is interesting to note that the events with a clear BB were related to the low rainfall 

rain rate range at the ground level. In addition, events with intermittent BB had an 

intermediate rainfall rain rate range between the other two scenarios of BB. This 

suggested that these events are mixed case of the other scenarios of BB. In the 

same way, events with no BB were related to the high rainfall rain rate range at the 

ground level.  This finding was also reported by Das, (2010); Das and Maitra, (2016); 
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and Seidel, (2019). The authors related these scenarios of the BB to stratiform, 

transition or mixed and convective classes. Furthermore, [14] pointed that the BB 

typically lies between 1700 – 2400 m a.g.l, this is in concordance with our results.  

 

Figure 6. Event without bright band on 29 January 2019: a) reflectivity profile (dBZ), b) vertical fall 

velocity (m s-1), c) rain rate at range of 100 m a.g.l (mm h-1). White color in a), represents missing 

data.  

Furthermore, as can be seen in the Figure 4, 5 and 6, rainfall starts forming at higher 

height gates (around 2000 m a.g.l), which is the height where we found the BB. Later, 

this rainfall comes to the ground gate with a lag time. This is named the boundary 

effect [14]. Moreover, Seidel, (2019) identified that it could be a problem in its rainfall 

classification. So, to evaluate their rainfall classification method, the author 

employed other approaches that used different features (e.g., Dm). 

4.3. Clustering using k- means 

4.3.1. Features Selection 

We analyzed the cross-correlation between the 23 features determined in Table A1. 

Results of the cross-correlation analysis are provided in Figure A1. From the cross-

correlation analysis, we found that features as reflectivity and liquid water content 
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are related especially with rain rate. Therefore, rain rate can explain these features 

in the algorithm. Furthermore, the median value distribution of all the features are 

linked in their majority with the mean value distribution of the same or other feature. 

Therefore, the features with a Pearson correlation coefficient higher than 0.8 are 

found to provide repetitive information in the clusters, so we kept only one feature 

and removed the related one(s). Thus, we determined that 12 features were the most 

important and these capture all the variability during the event (see Table 1). In the 

case of RRmean, it had a Pearson correlation coefficient of 0.8 with the RRmax 

feature, however we kept this feature because it is commonly considered to 

determine thresholds for rainfall types. The list of the selected features is provided 

in Table 1. Dilmi et al., (2017) reduced the number of features from 23 to 5 using a 

genetic algorithm and self-organizing maps. Despite using different features than in 

this study, the rain rate, duration and rainfall accumulation features belonged to the 

features selected. So, it suggests that these features are important in the rainfall 

classification. 

Table 1. Features selected for the cluster analysis. 

Number Variable Name Unit Symbol 

1 Maximum  Rain Rate mm h-1 RRmax 

2 Minimum  Rain Rate mm h-1 RRmin 

3 Mean Rain Rate mm h-1 RRmean 

4 Rainfall Accumulation mm  Raccum 

5 Maximum  Velocity m s-1 Vmax 

6 Minimum  Velocity m s-1 Vmin 

7 Mean Velocity m s-1 Vmean 

8 Event Duration minutes Dur 

9 Melting Layer - ML 

10 Maximum Mean Volume Diameter mm Dmmax 

11 Minimum Mean Volume Diameter mm Dmmin 

12 Mean Liquid Mean Volume 

Diameter 

mm Dmmean 

4.3.2. Features Standardization 

As stated previously, standardization is mandatory for applying the k-means 

clustering algorithm. This ensures that all features are equally weighted in the 

process. This method compensates the differences among the range of all the 

features. For example, the RRmax (Maximum Rain Rate) values range between 5-

100 mm h-1 whereas the Dm values range between 0.30–5 mm.  
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Figure 7 shows the 12 features in a standardized mode. In the case of the rain rate 

related features (RRmax, RRmin and RRmean), we had a few events with high 

values, especially in RRmax. In this feature, around 80% of the events showed 

values below 0.5.  

 

 

Figure 7. Standardized features using the range method. 

With respect to rainfall accumulation (Raccum), we had the same pattern as RRmax, 

but here around 70% of the events showed values below 0.25. In the case of 

Duration (Dur), short duration events (less than 0.5) were predominant. For the three 

velocity features, high values were dominant in all of the events. Finally, Dm max 

and Dm mean showed a similar distribution in their values. These results are in 

agreement with Dilmi, (2017); Löwe, (2016); and Milligan and Cooper, (1988) who 

found that data standardization is required to get the same weighting of the features 

before clustering. 

4.3.3. Clustering with k=2 and k=3 

The 12 standardized features and the a priori selected number of clusters (k=2 and 

k=3) were used to apply the k-means algorithm. In addition, by applying the elbow 

method, we found that k=3 was the optimal k when we include the ML feature. 

However, when we exclude the ML feature we found that k=2 was the optimal k (see 

the Figure A2). So, these results agreed with our number of clusters selected a priori. 

To facilitate the graphical visualization of the clusters, we elaborated Figure 8 by 

using the two principal components from the principal component analysis (PCA); 

details regarding the methodology of PCA can be found in Abdi, (2010) and  Wold, 

(1987). 
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Figure 8 shows the results of the clustering approach by using k=2 and k=3. For 

each k we present the subsequent results of including or excluding the ML feature 

in the clusters formation. For simplicity we would refer as Class x (e.g., Class 1, 

Class 2) to every group resulting of the clustering process. Figure 8a and Figure 8b 

with k=2, present the Class 1 and Class 2. By excluding the ML feature, only two 

events shifted from Class 1 to Class 2.  Also, this could be observed in the variation 

of the number of events in each Class (Cl).  

Figure 8c and Figure 8d with k=3, present the Class 1, Class 2 and Class3. By using 

k=3, we found that 11 events shifted the class they belong initially. In addition, this 

could be observed in the variation of the number of events in each Class (Cl). 

Furthermore, when we increased the number of groups (i.e., k=2 to k=3) 

independently of the ML feature, it can be seen in Figure 8a-c and Figure 8b-d that 

Class 3 is formed principally by a splitting of Class 2.  These results suggested that 

the ML feature did not affect the cluster formation when we used two classes (k=2). 

However, applying three classes (k=3), we found a higher variability in the formation 

of the clusters. 

Previous studies [29,60,62] have noted the importance of defining the number of 

clusters and the features selected before applying the algorithm. In our case, we 

defined these conditions considering the typical rainfall classes (convective, 

stratiform and mixed). With respect to the number of clusters, one interesting finding 

is to note that the Class 3 and Class 2 (with k=3) are principally part of the Class 2 

(with k=2). So, the Class 3 could be considered like a subclass of the Class 2. These 

results are in agreement with Dilmi, (2017) findings, which showed 5 subclasses of 

the two mainly rainfall types (convective and stratiform). Furthermore, our results 

suggest that with k=2, we obtain remarkable differences between the Class 1 and 

Class 2, which will be explained in the next section. These findings suggest that 

when we have other Class (i.e., Class 3), it will be obtained from split one of the main 

Classes (k=2). Besides, we analyzed the influence of including or excluding the ML 

feature in the cluster formation. In the case of k=2, we found that all the events in 

each Class but two of them, remained constant when we included or excluded the 

ML feature. However, in k=3, a shift of 11 events occurred, where more than 50% of 

these events change from Class 3 to Class 2 or vice versa.  A possible explanation 

for this might be that the Class 3 and Class 2 (k=3) are a subclass of the Class 2 

(k=2).  Therefore, the features selected and determination of number of clusters play 

an important role in the cluster formation. For these reasons, these conditions should 

be defined carefully. Also, we have to notice that k-means is  an unsupervised 
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method, so we did not evaluate the information a priori [28] to get these rainfall 

classifications. 

 

Figure 8. The classified rainfall events based on cluster analysis: a) two classes (with ML feature), 

b) two classes (without ML feature), c) three classes (with ML feature), d) three classes (without ML 

feature). Cl1, Cl2, Cl3 are the number of events per each class. 

4.3.3.1. Features Distribution Analysis per each class 

Furthermore, we analyzed the distributions of the features obtained per each class 

in order to identify the thresholds of the features value for rainfall classification. 

Figure 9 shows the distribution of all the features using k=2 and k= 3, and the 

influence of the presence or absence of the ML feature in the clusters formation.  

In the clusters with k=2 (Figure 9a), we found that the highest values of all features 

but the duration occurred in Class 1. Thus, in this class we had events with higher 

rain rate, velocity, Dm, and rainfall accumulation. However, the same events had the 

shortest duration in comparison with Class 2. On the other hand, Class 2 had events 

with lower values in all features, but these were also the events with the longest 

duration. Moreover, we observed that the ML feature has no effect in the clusters  
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Figure 9. Boxplots of variables: a) two classes, b) three classes. 
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formation. This can be seen in the similarity of the feature distributions for both 

scenarios. 

Similarly, we obtained comparable results in the clusters with k=3 (Figure 9b). Class 

1 showed events with higher values in the rain rate, velocity, rainfall accumulation 

and Dm, but shorter values in the event duration. However, in Class 2 and Class 3, 

it was difficult to define a tendency because there was not an evident pattern in all 

the features. For instance, in comparison with Class 2, Class 3 showed higher value 

in RRmax but shorter values in RRmin. However, Class 2 showed the highest value 

in the duration event feature. Furthermore, in the clusters with k=3, we observed a 

more notorious range difference regarding the values of the features when using the 

ML feature in comparison with their counterparts when using k=2. 

For the purpose of determining the threshold values of the features for the rainfall 

classification, we assessed the features distribution. Rainfall is usually classified in 

stratiform, mixed and convective rain. Stratiform rain is defined like a homogenous 

rain, with low rain rate, high duration and low velocity [27]. Convective rain consists 

of variable rain types, with high rain rate, low duration and high velocity [27]. Mixed 

rain is considered as a transition between convective and stratiform rain [19]. Several 

authors have identified rain rate and Dm thresholds for rainfall classification (Table 

2).   

Table 2. Summary of rainfall features thresholds of Tropical Zones. 

Feature (Units) 
Rainfall 

Classification 
Value Location Author 

Rain Rate (mm h-1) Convective >10 Marine 

Tropics 

Tokay, 

(1999)  Stratiform ≈1.86 

 Mixed ≈2.4 Mountains 

South 

Ecuador 

Bendix, 

(2006) 

 Convective 8-12 
Tropical 

Locations 

Das and 

Maitra, 

(2016) 

 Stratiform 2-5 

 Class 1 (k=2) 14.86 ± 0.20 

Tropical 

Andes 
This study 

 Class 2 (k=2) 6.55 ± 0.08 

 Class 1 (k=3) 15.08 ± 0.32 

 Class 2 (k=3) 5.43 ±1.06 

 Class 3 (k=3) 7.27 ± 0.14 
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Dm (mm) Convective ≈1.66 Tropical 

Andes 

Seidel, 

(2019)  Stratiform ≈1.07 

 Class 1 (k=2) 1.55 ± 0.01 

Tropical 

Andes 
This study 

 Class 2 (k=2) 1.09 ± 0.01 

 Class 1 (k=3) 1.57 ± 0.02 

 Class 2 (k=3) 1.1 ± 0.05 

 Class 3 (k=3) 1.1 ± 0.01 

 

Table 2 shows that Das and Maitra, (2016) and Tokay (1999) agreed that the 

convective rain type showed the highest values in comparison with the stratiform 

rain type. In the case of the mixed rain type, Caracciolo, (2008) suggested that the 

values of rain rate between 2-10 mm h-1 are complex to interpret because this range 

can show a mixed of convective and stratiform rainfall. Also, Bendix, (2006) found 

that mixed rain type had values of rain rate around 2.4 mm h-1. Besides rain rate, 

Dm has also been related to rainfall type. Bringi, (2003) found that events with larger 

Dm are considered convective. Seidel, (2019) confirmed that convective events 

present values of Dm higher than stratiform events (Table 2). In this context, in our 

study, Class 1 events represent a convective rain type, Class 2 events are 

associated with stratiform rain type and Class 3 events exhibit characteristics of a 

mixed rain type. 

4.3.3.2. Distribution of rainfall classes along the year 

In order to analyze the rainfall events frequency, we calculated the events 

percentage by month from every cluster as seen in Figure 10. 

Figure 10a and Figure 10b present the events percentage when we included or not 

the ML feature with k=2. In concordance with the Figure 8a and Figure 8b, the 2 

events that shifted of Class, belonged to January and May. For this reason, we found 

a slight variation in these months in the Figure 10a and Figure 10b.  Also, these 2 

events did have a BB and their rain rate showed a range between 0-60 mm h-1 in 

1min frequency. 

Furthermore, we found that convective rain type was dominant (more than 50%) only 

in March and November. As a result, we had a predominance of the stratiform class 

along the year. 

Figure 10c and Figure 10d show the events percentage by including or excluding 

the ML feature with k=3. In Figure 10c, d, we found a different percentage of events 
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in January, March, April, October, November and December especially in the 

stratiform rain type (Class 2) and mixed rain type (Class 3). Furthermore, the 

convective rain type (Class 1) for k=3 showed a maximum value in March which may 

be related to the first ITCZ passage, and a slightly higher value in October and 

November as a result of the secondary ITCZ. Nonetheless, in k=3 the stratiform rain 

type (Class 2) and mixed rain type (Class 3) showed that the ML influenced the 

clusters formation. 

Our results support the finding of  Seidel, (2019) that during most of the year the 

stratiform and mixed rain types are dominant. 

 

Figure 10. Monthly event percentage for two classes: a) with ML feature, b) without ML feature. 

Events for three classes: c) with ML feature, d) without ML feature. 

5. Conclusions 

This study analyzed rainfall-event types in the Tropical Andes of Ecuador by using 

a data-driven clustering approach (k-means algorithm). This algorithm allowed to 

find rainfall types based on the similarities of rainfall attributes. The investigation 

used common rainfall characteristics such as rain rate but also included 

microphysical data (e.g., DSD). Furthermore, it evaluated the influence of the melting 
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layer (ML) as a feature in the clusters formation. From the study, the main 

conclusions are as follows: 

Rainfall types were identified by applying a clustering method and thus ensured an 

objective separation of rainfall events because the classification is based exclusively 

on the data (i.e., rainfall characteristics). The use of microphysical characteristics, 

which are not commonly used due to instrument limitations, allowed to provide 

additional insights about each rainfall type.  

Three rainfall classes were identified in the study area: convective, stratiform and 

mixed. The rainfall classes show that the clustering method (k-means) works well to 

distinguish the different rainfall patterns and identify the rainfall types. The first two 

main classes, i.e., convective and stratiform, were obtained by first using the method 

with two classes (k=2). Here, the two groups showed a clear difference in the 

features, especially in the mean values of rain rate, velocity and Dm. Also, the 

convective type (class 1) showed rainfall events with shorter duration and higher rain 

rate than the stratiform type (class 2). The inclusion/exclusion of the Melting Layer 

feature did not influence on the clustering results. Thus, it proves that the other 

rainfall features are able to properly describe the differences between these two 

main groups. When using three classes (k=3), the mixed type (class 3) resulted as 

a subgroup of one of the main groups (k=2). So, the convective type remained almost 

invariable regarding its rainfall characteristics. With respect to the stratiform type and 

mixed type, their rainfall features are most similar between them. It suggests that the 

mixed type has a dominant stratiform behavior. 

Rainfall events with shorter duration of less than 70 min are more frequent in the 

study area. Furthermore, there is a prevalence of convective rainfall events in March 

and November, while rainfall events of the stratiform and mixed type are common 

during all the year.  

The findings of this research provide insights about the rainfall dynamics in this 

tropical mountain setting and show that data with high temporal resolution is 

necessary to analyze the rainfall variability in this area. Furthermore, these rainfall 

types identified here will be of interest to analyze the vertical profile of rainfall and 

identify the rainfall formation process.  
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6. Appendix A 

Table A1. The 23 Rainfall events features determined for each event. 

Number Feature Name Unit Symbol Instrument 

1 Maximum  Rain Rate mm h-1 RRmax MRR 

2 Minimum  Rain Rate mm h-1 RRmin MRR 

3 Mean Rain Rate mm h-1 RRmean MRR 

4 Median Rain Rate mm h-1 RRmedian MRR 

5 Rainfall Accumulation mm  Raccum MRR 

6 Maximum  Velocity m s-1 Vmax MRR 

7 Minimum  Velocity m s-1 Vmin MRR 

8 Mean Velocity m s-1 Vmean MRR 

9 Median Velocity m s-1 Vmedian MRR 

10 Event Duration minutes Dur MRR 

11 Maximum  Reflectivity dBZ Rmax MRR 

12 Minimum  Reflectivity dBZ Rmin MRR 

13 Mean Reflectivity dBZ Rmean MRR 

14 Median Reflectivity dBZ Rmedian MRR 

15 Melting Layer - ML MRR 

16 Maximum Liquid Water Content g m-3 LWCmax MRR 

17 Minimum  Liquid Water Content g m-3 LWCmin MRR 

18 Mean Liquid Water Content g m-3 LWCmean MRR 

19 Median Liquid Water Content g m-3 LWCmedian MRR 

20 Maximum Mean Volume 

Diameter 

mm Dmmax LPM 

21 Minimum Mean Volume 

Diameter 

mm Dmmin LPM 

22 Mean Liquid Mean Volume 

Diameter 

mm Dmmean LPM 

23 Median Mean Volume Diameter mm Dmmedian LPM 
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Figure A1. Cross-correlation matrix between rainfall characteristics. The highlight characteristics are 

the features selection for the algorithm. 

 

Figure A2. Sum of square errors in function of the number of clusters: a) including ML, b) excluding 

ML. 
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