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Resumen:

La falta de informacion a una alta resolucion temporal es uno de los principales
obstaculos al momento de estudiar la dinamica de la lluvia especialmente en areas
con una compleja topografia como son los Andes Tropicales. Ademas, los tipos de
lluvia (ej., estratiforme, convectiva) son definidos usualmente utilizando umbrales de
algunas de las caracteristicas de la lluvia como la intensidad y la velocidad. Sin
embargo, estos umbrales dependen principalmente del area de estudio y el clima
local de la zona. En consecuencia, estos umbrales son un factor limitante para la
definicion de las clases de lluvia porque no pueden ser generalizados. Este estudio
tiene como objetivo analizar los tipos de eventos de lluvia usando un enfoque de
agrupamiento basado en el algoritmo k-means que permite considerar las
similitudes de las caracteristicas de la lluvia de cada tipo de lluvia. Este estudio se
llevé acabo utilizando tres afios de datos obtenidos del Micro Rain Radar (MRR) y
el disdrometro laser. Los resultados obtenidos muestran dos tipos de lluvia
principales (convectiva y estratiforme) en el area de estudio, las mismas que
presentan marcadas diferencias en sus caracteristicas. Ademas, como subgrupo
del tipo de lluvia estratiforme fue encontrado el tipo de lluvia mixta. Por otro lado, la
lluvia estratiforme fue el tipo de lluvia mas frecuente durante todo el afio. Ademas,
los eventos de lluvia de corta duracion (menos que 70 mins) fueron dominantes en
el area de estudio. Este estudio contribuird al andlisis de los procesos de formacién
de lluvia y el perfil vertical.

Palabras claves: Tipos de Lluvia. k-means. Micro Rain Radar.
Disdrémetro Laser. Caracteristicas de la Lluvia. Andes Tropicales.
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Abstract:

Lack of rainfall information at high temporal resolution in areas with a complex
topography as the Tropical Andes is one of the main obstacles to study its rainfall
dynamics. Furthermore, rainfall types (e.g., stratiform, convective) are usually
defined by using thresholds of some rainfall characteristics such as intensity and
velocity. However, these thresholds highly depend on the local climate and the study
area. In consequence, these thresholds are a constraining factor for the rainfall class
definitions because they cannot be generalized. Thus, this study aims to analyze
rainfall-event types by using a data-driven clustering approach based on the k-
means algorithm that allows accounting for the similarities of rainfall characteristics
of each rainfall type. It was carried out using three years of data retrieved from a
vertically pointing Micro Rain Radar (MRR) and a laser disdrometer. The results
show two main rainfall types (convective and stratiform) in the area which highly
differ in their rainfall features. Also, a mixed type was found as a subgroup of the
stratiform type. The stratiform type was found more frequently throughout the year.
Furthermore, rainfall events of short duration (less than 70 mins) were prevalent in
the study area. This study will contribute to analyze the rainfall formation processes
and the vertical profile.

Keywords: Rainfall types. k-means. Micro Rain Radar. Laser
Disdrometer. Rainfall Characteristics. Tropical Andes.
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1. Introduction

Precipitation is among the most important components of the hydrologic cycle
because it triggers important processes that determine water distribution and
availability [1-3]. Also, precipitation is characterized by a high spatiotemporal
variability. This is particularly true in the Tropical Andes, where complex topography
is a key factor that influences rainfall processes [4]. Here, precipitation variability has
been studied only at a certain extent [5-7]. This is because of the lack of high
temporal resolution data, which is one of the main obstacles to understand the
rainfall processes and dynamics in this area [8]. Usually, rainfall characteristics such
as rain rate are used to study rainfall variability [6]. Moreover, microphysical
characteristics (e.g., drop size distribution) and the study of the vertical profile of the
rainfall allow to improve the knowledge about microphysical processes that govern
the formation of the hydrometeors and to identify rainfall types. This rainfall variability
can be captured by remote sensing observation with micro rain radars (MRR) and
laser disdrometers. The advantage of these instruments is that they not only enable
to quantify the rainfall, but also allow to analyze its microphysical attributes [9,10].

MRRs are instruments that measure the characteristics of the precipitation along its
vertical profile. MRRs retrieve the reflectivity profile, drop size distribution (DSD), rain
rate, velocity and liquid water content (LWC) [9] for different atmospheric layers.
These characteristics allow analyzing the vertical structure of the rain. They also
allow to differentiate between rain types (convective and stratiform rain), and to
identify the height of the melting layer [2,11-13]. Besides, disdrometers are
instruments that retrieve characteristics as particle spectrum the rain rate, the
guantity and the type of rain [10]. These instruments have been used to analyze the
rainfall dynamic in mountain areas [4,12,14-17]. In the Tropical Andes, the diurnal
dynamics of the precipitation were studied by Bendix, (2006) using MRR data. The
author found that rainfall is mostly of stratiform type and the afternoon events are
influenced by local convection. A study in Peru and Bolivia using MRR data [12]
showed the dominance of stratiform events during the night, and suggested that the
height of melting layer is an indicator of climate change. Using microphysical data
(e.g., mean volume diameter Dm) obtained from laser disdrometers, Orellana-
Alvear, (2017) analyzed rainfall types at three sites with different height in the Andes
Cordillera in Ecuador. The authors found that convective type (rainfall associated
with higher rain rate and Dm) was more common in the lower elevation sites while
light rain was more frequent in higher sites. Seidel, (2019) using MRR data, found
that short events (less than 3 hours) were dominant in the Tropical Andes and
nocturnal precipitation is more of the stratiform type.
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Previous studies highlight the importance of differentiating between rainfall types
[3,17-19], principally to analyze the rainfall behavior and find patterns in the rainfall
attributes. Also, the definition of rainfall types is useful for improving the quantitative
precipitation estimation (e.g., Z-R relation)[4]. Usually, rainfall types (e.g., stratiform
and convective) are defined by using some rainfall characteristics thresholds such
as rain rate [19-21]; DSD [22,23] and; reflectivity [24]. Furthermore, in the case of
the reflectivity profile, it is used to determine the melting layer (ML) presence, which
is also used to determine rainfall types [11,25]. However, these thresholds are site
specific [21] and depend mainly on the local climate and the study area. This makes
rainfall classification closely related to independent, arguably subjective decisions
rather than the possibility of extracting knowledge only from the interactions between
rainfall characteristics. This can be overcome using clustering analysis.

Clustering analysis is a statistical tool used to group objects with similar
characteristics. The objects grouped within a cluster have similar characteristics, and
differ to objects of other clusters [26]. The technique performs an unsupervised
classification; thus, it is not based on the use of a priori labels to determine the
clusters [26—28]. Therefore, by using a set of objects (instances from a dataset), it
finds their natural grouping that maximize the cohesion within the groups while
ensuring higher separation from other clusters [28]. Clustering algorithms are divided
into hierarchical and partitional [28]. In partitional algorithms as k-means clustering,
the definition of the number of clusters and the feature selection are important
conditions in the cluster formation [29]. The clustering analysis based on the
hierarchical and k-means algorithm had been used to classify rainfall events in
different studies such as Dilmi, (2017), dos Santos, (2017), Fang, (2012), and Peng,
(2012).

In this context, this study aims to analyze rainfall-event types in the Tropical Andes
by using a clustering approach based on the k-means algorithm that allows
accounting for the similarities of rainfall characteristics (e.g., duration, rain rate, drop
size distribution) of each rainfall type. This will allow to improve the knowledge of
rainfall dynamics and its occurrence in the region.

2. Study site and data
2.1. Study site

The study area Balzay (2°53’S, 79°02'W) is located at 2610 m a.s.l, in the outskirts
of the city of Cuenca in the Tropical Andes of southern Ecuador, as shown in Figure
1. Balzay is located in the inter-Andean depression [33] and shows a bimodal rainfall
regime with two wet seasons in the months March-April-May and October. The mean
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annual precipitation is 969 mm [4] and the mean temperature is 14°C [34]. The
precipitation is mainly driven by the displacement of the Intertropical Convergence
Zone (ITCZ) [35,36]. The ITCZ is defined as the zone in the vicinity of the equator,
where the trade winds from the north and south converge [37]. The climate in
Ecuador shows high variability in part due to the presence of the Andes Cordillera.
In the inter- Andean depression, due to the impact of the ITCZ, the tropical Amazon
air masses from the East and the Pacific coastal regimen from the West are the main
factors that control the climatology of the area [38].
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Figure 1. Study site in the southern Ecuador; the diamond indicates the location of instruments.
2.2. Instruments

The instruments used in this study are the Micro Rain Radar (MRR) [9] and the laser
disdrometer (Thies Clima LPM- Laser Precipitation Monitor) [10]. A detailed
explanation of the instruments operation is provided in the following sections.

2.2.1. Micro Rain Radar

The MRR is a vertically pointing frequency modulated continuous wave (FM-CW)
doppler radar. It operates at 24.1 GHz and 12.5 mm wavelength. The radar transmits
a signal along a vertical orientation in the atmosphere over the antenna [9,39].

The primary advantage of the MRR s its high sensitivity and temporal resolution to
detect small amounts of precipitation (i.e., low rain rates) [9]. The MRR detects
droplets with diameters between 0.25 to 6 mm [40], and it assumes water drops are
spherical. The MRR retrieves basically the Doppler spectra of the falling droplets
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and radar reflectivity where parameters like the mean fall velocity, droplet
concentration, rain liquid water content and rain rate are derived from. The details of
the parameters derivation can be found in [9,39-41]. The MRR records these
parameters for all the vertical profile.

The vertical profile consists of 31 height steps (gates) whose maximum and
minimum height resolution is defined by the user and range between 10 and 1000
m. In our case, the MRR was operated with a height resolution of 100 m and the
data were captured with a 1-min frequency.

2.2.2. Disdrometer

The disdrometer used in this study is a Thies Clima Laser precipitation monitor
(LPM) [10], which is based on a laser sensor that produces a horizontal light beam.
This sensor has a wavelength of 785 nm and the measuring area is 45.6 cm?. When
a precipitation particle falls through the light beam, the receiving signal is attenuated.
The particle diameter is estimated from the reduction in the signal amplitude while
its fall velocity is calculated from the duration of the decreased signal. Each drop is
assigned to one of 22 size bins and to one of 20 velocity bins. The size bins are
between 0.125- 8 mm and the velocity bins are between 0-10 m s™*. Later, a telegram
Is sent every minute. This shows the number of drops that the LPM detected in each
class depending on the bin combination (diameter-velocity). The LPM retrieves the
particle spectrum, the rain rate, the quantity and the type of precipitation. Data were
captured with 5-min frequency, as a result of averaging 1-min observations.

2.3. Data availability and quality control

Three years of data, from February 2017 to February 2020 of both instruments were
used in this study. In the case of the MRR, the data were averaged to 5-min. Several
parameters of the MRR such as rain rate (mm h1), mean fall velocity (m s1), liquid
water content (g m3), droplet concentration (m=2 mm) and radar reflectivity (dBZ)
were used for the rainfall classification process.

The validity of the MRR data has been reported by many researchers [11,19,42—-44].
These studies showed a good agreement between MRR and different types of
disdrometer (OTT Parsivel, Joss-Waldvogel and LPM) through a correlation
analysis. Thus, to ensure the validity of the MRR measurements, we compared the
rain rate observed by the MRR at the lowest height (100m) with the rain rate obtained
from the collocated disdrometer at 30-min cumulative interval (Figure 2). This
comparison was performed by using the determination coefficient (R?). The
coefficient of determination between MRR and LPM rain rate data was 0.74 (Figure
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2). Therefore, we had a good fit in spite of the difference in height where each sensor
is monitoring the rainfall (i.e., the disdrometer is located at ground level while the
MRR first range of monitoring is 0 - 100 m).

251
201
154

104

MRR Rainfall (mm 30min")

R?=0.74, p <0.001

0 5 10 15 20 25

Disdrometer Rainfall (mm 30min'1)

Figure 2. Correlation between rainfall recorded by the MRR and LPM data at 30-min accumulation.
The solid line denotes the regression line, the dashed line denotes the bisector line and R? is the
determination coefficient.

As shown in Figure 2, the MRR tended to slightly underestimate the rainfall amount.
Nevertheless, the MRR showed some outliers especially in higher values. Sarkar,
(2015) found that the LPM and MRR had a good fit (R? =0.74). The author suggested
that over 60 mm h1, the MRR has a high probability of underestimates the measures
of rain rate. Also, Rollenbeck, (2007) compared the precipitation measurements
between 5 recording devices. The author found that the MRR underestimate the
precipitation. The MRR had a high sensitivity to detect light rain, but it had problems
detecting higher rain rates [45,46]. These studies agree with our results and show
the good fit between both instruments. Thus we derived the drop size distribution (m"
3 mm?) from the disdrometer data. It was calculated from the number of drops for
each size and velocity bins [10]. The details of the drop spectrum calculation can be
found in [4,44,47].

3. Methods

First, we selected rainfall events from the available time series by using three criteria
which are detailed in section 3.1. Then, for each of them, we determined individual
rainfall event characteristics (e.g., duration, maximum rain rate, etc) derived from the
MRR and LPM data. Finally, we applied the k-means algorithm that clusters these
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events based on their derived characteristics. A detailed explanation of the last steps
is provided in section 3.2.

3.1. Rainfall Events Selection

Representative data of the study period were obtained through the delineation of
rainfall events using three criteria: (i) minimum inter-event time, (ii) minimum total
rainfall accumulation, and (iii) minimum duration. The minimum inter-event time is
defined as the minimum lapse of time for a dry period (i.e., no rainfall occurrence or
less than a threshold) between rainfall events, which is necessary to classify two
events as independent. In this study, we used the threshold of rain rate greater than
0.05 mm mint for each time step. This threshold was identified using a sensitivity
analysis. The range of values to find the threshold was between (0.01-0.1 mm min-
). The value of 0.05 mm min* was selected because it eliminated the long tails and
discontinuities that lower rain rate values showed in the events. The minimum total
rainfall accumulation refers to the rainfall total during the event. The minimum
duration is the time where the rainfall was continuous (without gaps) [48,49]. To
identify the proper thresholds for these values we performed a sensitivity analysis
which was carried out by using a variation between a range of values of each
criterion (minimum inter-event time, minimum total rainfall accumulation, and min
duration) with the purpose of getting a probability distribution. This distribution was
used to find a threshold where the number of events got steady for each criterion
and thus we got a trade-off between the number of events and their
representativeness. The range of values to find the proper threshold were: (i) 20- 60
min for minimum inter-event time; (ii) 2-8 mm for minimum total rainfall accumulation
per event and; (iii) 10-30 min for minimum duration. The methodology of Orellana-
Alvear, 2017 was used as a starting point to determine such thresholds. Finally,
rainfall events that met the criteria were selected for the current study.

3.2. Rainfall Classification

3.2.1. Derivation of Rainfall Events Characteristics

Rainfall event characteristics are used to describe and synthesize the behavior of a
rainfall event [27]. After the rainfall events were selected, several of their temporal
(e.g., duration) and hydrometeorological (e.g., rainfall accumulation) characteristics
were picked out for the rainfall classification process. However, there is no
universally agreed set of characteristics to describe a rainfall event [27]. Generally,
choosing the rainfall characteristics depends on the instrument, its measured
variables, and the objective of the study. Here, we used the characteristics obtained
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from the MRR and the LPM; these include hydrological and microphysical
information of the rainfall events (Table Al).

3.2.1.1. Derivation of MRR and Disdrometer characteristics

We used four hydrological characteristics of rainfall events of the lower height bin of
the MRR, namely rain rate (mm h-1), mean fall velocity (m s1), liquid water content
(g m®), and radar reflectivity (dBZ). Moreover, rainfall accumulation and the duration
of the event were calculated.

Regarding microphysical data, the LPM retrieved the drop spectra N(D) (m-3 mm-1)
and drop diameters D (mm). These characteristics are used to represent the Drop
Size Distribution (DSD, Marshall and Palmer, 1948) at each time step. Nonetheless,
we needed to combine these characteristics to get a representative DSD for each
rainfall event. So, we derived the mean volume diameter (Dm) in mm that represents
the proportion between the fourth and third moment of the DSD, as defined by
Testud, (2001). It is frequently used to represent the DSD of a rainfall event
[4,27,43,52,53]. Finally, we analyzed the characteristic distribution and extracted the
mean, maximum, minimum, and median value for characterizing the rainfall
properties within each event.

3.2.1.2. Determination of the melting layer

The melting layer (ML) is an important characteristic, commonly used to identify
rainfall classes [11,25,54]. The ML determination is based on the identification of a
bright band (BB) signature in the vertical profile of the reflectivity. This BB detection
consists in determining the prominent increase of the values in the reflectivity profile
at specific gates, using the maximum slope found in the reflectivity profile [11,55,56].
This band is a combination of water, air, and ice that highly increase the reflectivity
values at certain gates of the vertical profile. Also, another factor that influences the
increase in reflectivity is the density effect, which consists in the water (melted and
snow) distribution in the particles [19,54-56].

A general solution to identify the ML is performing a visual inspection of the
reflectivity profile [19,22]. Thus, the BB was identified for each event based on a
visual inspection and the scheme of Fabry and Zawadzki, (1995). As a result, three
possible scenarios related to the occurrence of the BB were found: i) the BB is
always present during the rainfall event, ii) the BB is partially present along the event,
and; iii) the BB is absent. Thus, we used a three stage ML variable that can be set
to 1 (BB always present), 0.5 (BB intermittent) and 0 (no BB present).
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3.2.2. Clustering approach: k- means algorithm

The k-means algorithm was used for obtaining the rainfall event classes. This is
accomplished by identifying different groups of instances (i.e., rainfall events) with
similar features (i.e., the rainfall characteristics such as duration, DSD, etc.) within
each group in a data set [57]. The main idea behind the k-means algorithm is
grouping n points of m dimensions into k clusters, so that for each cluster, the square
of the Euclidean distance between the x points that belongs to n and the centroid of
the cluster is minimal (Eq. 1) [29,58,59].
12 1|X |2 , 1)

Where J is the Euclidean distance, x; is each data point and c;j is the centroid of the
cluster. The k-means algorithm is iterative, so the process is repeated until the
Euclidean distance converges to the minimum value. In order to apply the k-means
algorithm, it is needed to fulfill three conditions: determine the features (rainfall event
characteristics) to use; standardize the features and; define the number of clusters.

To begin this process, we decided to select a subset of features to diminish
redundant information for the algorithm and for obtaining a parsimonious model. A
number of techniques have been developed for feature-selection [60]. We chose
each feature by performing a cross-correlation analysis between all features by
means of the Pearson correlation coefficient. This aimed to highlight the features
that contribute redundant information for the algorithm. With this, we removed these
features and we got a parsimonious model with less number of features.

In the case of the ML feature, it is worth mentioning that the identification of the ML
and its corresponding feature derivation needed a great effort and was very time
consuming because we had to visually check each one of the rainfall events. For
these reasons, this feature was included and excluded from the original list of
features with the purpose of determining its influence over the rainfall clusters
formation.

Furthermore, the standardization of features is mandatory for the implementation of
the k-means algorithm. This is because all features should have the same weight for
calculating the Euclidean distance. While different methods have been proposed to
standardize the features, Milligan and Cooper, (1988) found that standardizing by
the range was the best method of eight standardization methods. So, we decided to
use the range method (EQ.2).
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_ X-Min(X)
"~ Max(X)-Min(X) ’ (2)

Where Z is the standardized feature, X is the feature, and Max and Min are the
maximum and minimum value of X respectively.

Finally, we aimed to select the optimal number of clusters for our data set. Milligan
and Cooper, (1985) evaluated thirty procedures to determine the optimal number of
clusters and they found that it highly depends on the data. For this study, we decided
to run the algorithm a priori with two and three clusters because rainfall types are
usually classified in two and three classes (stratiform, convective, and transition or
mixed). Furthermore, we evaluated the quality of the cluster separation, so we
decided to use the elbow method. Here, we needed to identify a sharp elbow
between the sum of the squared errors as a function of the number of clusters [63].
Also, this value usually indicates the optimal number of clusters. In our case we will
include and exclude the ML feature in this analysis to identify its influence on the
cluster’s separation.

4. Results and Discussion

4.1. Rainfall Events Selection

We selected 92 rainfall events after finding the thresholds that met the criteria for the
rainfall event separation. The thresholds of the three criteria were: 30 min for
minimum inter-event time, 3 mm for minimum total rainfall accumulation per event
and; 15 min for minimum event duration.

Figure 3 illustrates the distribution of the rainfall event duration and occurrence in
each month. The distribution of the rainfall events along the year is in agreement
with the bimodal regime of precipitation in the study area as documented by
Campozano, (2018) and Celleri, (2007). The higher number of rainfall events
occurred in March, May and October whereas June, July, August and September
had the lowest number of rainfall events. However, no rainfall events accomplished
the defined criteria (e.g., minimum inter-event time, minimum total rainfall
accumulation and; min duration) in July, which is one of the driest months of the year
with a mean monthly precipitation of 7mm. Furthermore, the longest events duration
was found in April and May, which are the wettest months with a mean monthly
precipitation of 78 and 98mm respectively.

For the selected events, we found that the rainfall event duration was shorter than 3
hours (Figure 3). Also, we found that short rainfall events (i.e., < 70 min) were
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predominant (around 70%) in the region during the study period. In addition, the
mean duration at every month was less than 70 min.

These results about short rainfall duration supports evidence from previous
observations [4,14]. Orellana-Alvear (2017) analyzed the rainfall events duration
using the LPM disdrometer and found that the mean event duration is around 3
hours. In the same way, Seidel, (2019) confirmed that the short duration events are
dominant in this study area by using MRR data. Furthermore, the short duration of
the events evidenced the necessity of high temporal resolution to capture their
variability. However, the instruments’ time resolution limit capturing the variability in
these events [14,64]. Padrén, (2015) already discussed the influence of different
instrument time resolution (rain gauge and disdrometer laser) in rainfall data after
finding that the rain gauge underestimates rainfall catch. In our case, with the MRR
and LPM data, we could analyze the temporal variability (i.e., 1 min frequency) with
respect to rain rate, velocity, reflectivity, liquid water content, rainfall accumulation
and mean volume diameter.
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0 -

Figure 3. Rainfall events duration per month at Balzay, n is the number of events, and the gray point
represents the mean value.

4.2. Rainfall Event Features

4.2.1. Determination of the melting layer

With the aim of determining the ML feature, we analyzed the vertical reflectivity and
velocity profile and well as their evolution along the rainfall event. Here we used data
with 1 min frequency, as it was necessary to identify the variability of the rainfall
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characteristics along the event. We had 3 scenarios linked to the occurrence of the
BB: i) present, ii) partially present, and; iii) absent.

Figure 4, 5 and 6 show the three scenarios (i, ii, iii) about the BB identification. The
event shown in Figure 4a and Figure 4b show a constant enhancement in the
reflectivity and in the velocity profile around 2000 m above ground level (a.g.l), which
evidence a BB. In the reflectivity profile, there is a clear increase of the reflectivity
value around this height. Also, a closer inspection of the velocity profile showed an
extreme variation in the values around the 2000 m a.g.l. and in consequence
supports the presence of the ML. In this case, the ML variable was set to 1.

a) Reflectivity dBZ
3000 Ly & o 50
= 25004 e L l 40
o
T 2000
H 30
< 1500
o 20
5 1000 -
500 I °
0= T T — T T 0

b) Velocity

05 T T T T IO

c) Rain Rate Range 100m

Rain Rate (mm

21:45 22:00 22:15 22:30 22:45
Local Time (UTC-5)

Figure 4. Event with a clear bright band on 21 March 2019: a) reflectivity profile (dBZ), b) vertical fall
velocity (m s1), c) rain rate at range of 100 m a.g.l (mm ht). White color in a), represents missing
data.

In contrast, Figure 5a and Figure 5b show that the BB was not always present during
the entire rainfall event as seen in the reflectivity and velocity profiles. Thus, the ML
related feature was set to 0.5. The clear BB appeared from 15:00h until the end of
the event around 2000 m a.g.l. In the reflectivity and velocity profiles, we could see
an increase of their values around this height from 15:00h until the 15:35h which is
the end of the event. However, there is no previous signature of BB.
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Figure 5. Event with intermittent bright band on 26 December 2017: a) reflectivity profile (dBZ), b)
vertical fall velocity (m s™), ¢) rain rate at range of 100 m a.g.l (mm h). White color in a), represents
missing data.

Finally, Figure 6a and Figure 6b illustrate the absence of the BB along the entire
event in the reflectivity and velocity profiles. There are no strong variations in the
reflectivity and velocity profiles as in the previous scenarios. This means that the ML
was not evident in the rainfall event. Here, we set the ML related feature to O.

Furthermore, in Figure 4c, 5c¢, and 6¢, we differentiated between the rain rate range
and the evolution of the event in the three scenarios of the BB. In Figure 4c, we
found that the rain rate ranged between 0-16 mm hL. In Figure 5c, the range was
between 0-35 mm hl. In addition, the rain rate reveals two peaks before 15:00h.
Figure 6¢ shows that the rain rate ranged between 0-80 mm h%, and also has two
peaks.

It is interesting to note that the events with a clear BB were related to the low rainfall
rain rate range at the ground level. In addition, events with intermittent BB had an
intermediate rainfall rain rate range between the other two scenarios of BB. This
suggested that these events are mixed case of the other scenarios of BB. In the
same way, events with no BB were related to the high rainfall rain rate range at the
ground level. This finding was also reported by Das, (2010); Das and Maitra, (2016);
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and Seidel, (2019). The authors related these scenarios of the BB to stratiform,
transition or mixed and convective classes. Furthermore, [14] pointed that the BB
typically lies between 1700 — 2400 m a.g.l, this is in concordance with our results.
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Figure 6. Event without bright band on 29 January 2019: a) reflectivity profile (dBZ), b) vertical fall

velocity (m s1), c) rain rate at range of 100 m a.g.l (mm ht). White color in a), represents missing
data.

Furthermore, as can be seen in the Figure 4, 5 and 6, rainfall starts forming at higher
height gates (around 2000 m a.g.l), which is the height where we found the BB. Later,
this rainfall comes to the ground gate with a lag time. This is named the boundary
effect [14]. Moreover, Seidel, (2019) identified that it could be a problem in its rainfall
classification. So, to evaluate their rainfall classification method, the author
employed other approaches that used different features (e.g., Dm).

4.3. Clustering using k- means

4.3.1. Features Selection

We analyzed the cross-correlation between the 23 features determined in Table Al.
Results of the cross-correlation analysis are provided in Figure Al. From the cross-
correlation analysis, we found that features as reflectivity and liquid water content
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are related especially with rain rate. Therefore, rain rate can explain these features
in the algorithm. Furthermore, the median value distribution of all the features are
linked in their majority with the mean value distribution of the same or other feature.
Therefore, the features with a Pearson correlation coefficient higher than 0.8 are
found to provide repetitive information in the clusters, so we kept only one feature
and removed the related one(s). Thus, we determined that 12 features were the most
important and these capture all the variability during the event (see Table 1). In the
case of RRmean, it had a Pearson correlation coefficient of 0.8 with the RRmax
feature, however we kept this feature because it is commonly considered to
determine thresholds for rainfall types. The list of the selected features is provided
in Table 1. Dilmi et al., (2017) reduced the number of features from 23 to 5 using a
genetic algorithm and self-organizing maps. Despite using different features than in
this study, the rain rate, duration and rainfall accumulation features belonged to the
features selected. So, it suggests that these features are important in the rainfall
classification.

Table 1. Features selected for the cluster analysis.

Number Variable Name Unit Symbol

1 Maximum Rain Rate mm h RRmax

2 Minimum Rain Rate mm ht RRmin

3 Mean Rain Rate mm h? RRmean

4 Rainfall Accumulation mm Raccum

5 Maximum Velocity m st Vmax

6 Minimum Velocity m st Vmin

7 Mean Velocity m s Vmean

8 Event Duration minutes Dur

9 Melting Layer - ML

10 Maximum Mean Volume Diameter mm Dmmax

11 Minimum Mean Volume Diameter mm Dmmin

12 Mean Liquid Mean Volume mm Dmmean
Diameter

4.3.2. Features Standardization

As stated previously, standardization is mandatory for applying the k-means
clustering algorithm. This ensures that all features are equally weighted in the
process. This method compensates the differences among the range of all the
features. For example, the RRmax (Maximum Rain Rate) values range between 5-
100 mm h! whereas the Dm values range between 0.30-5 mm.
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Figure 7 shows the 12 features in a standardized mode. In the case of the rain rate
related features (RRmax, RRmin and RRmean), we had a few events with high
values, especially in RRmax. In this feature, around 80% of the events showed
values below 0.5.

1.00 1 L] [} L] [} L] ‘

0754

0.504

‘ .

RRFnax Rlein RRn;ean Raclcum Dlur IViL Vn;ax an1in leean Dm;nax Dmlmin Dmnl'|ean
Features

Figure 7. Standardized features using the range method.

With respect to rainfall accumulation (Raccum), we had the same pattern as RRmax,
but here around 70% of the events showed values below 0.25. In the case of
Duration (Dur), short duration events (less than 0.5) were predominant. For the three
velocity features, high values were dominant in all of the events. Finally, Dm max
and Dm mean showed a similar distribution in their values. These results are in
agreement with Dilmi, (2017); Léwe, (2016); and Milligan and Cooper, (1988) who
found that data standardization is required to get the same weighting of the features
before clustering.

4.3.3. Clustering with k=2 and k=3

The 12 standardized features and the a priori selected number of clusters (k=2 and
k=3) were used to apply the k-means algorithm. In addition, by applying the elbow
method, we found that k=3 was the optimal k when we include the ML feature.
However, when we exclude the ML feature we found that k=2 was the optimal k (see
the Figure A2). So, these results agreed with our number of clusters selected a priori.
To facilitate the graphical visualization of the clusters, we elaborated Figure 8 by
using the two principal components from the principal component analysis (PCA);
details regarding the methodology of PCA can be found in Abdi, (2010) and Wold,
(1987).
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Figure 8 shows the results of the clustering approach by using k=2 and k=3. For
each k we present the subsequent results of including or excluding the ML feature
in the clusters formation. For simplicity we would refer as Class x (e.g., Class 1,
Class 2) to every group resulting of the clustering process. Figure 8a and Figure 8b
with k=2, present the Class 1 and Class 2. By excluding the ML feature, only two
events shifted from Class 1 to Class 2. Also, this could be observed in the variation
of the number of events in each Class (Cl).

Figure 8c and Figure 8d with k=3, present the Class 1, Class 2 and Class3. By using
k=3, we found that 11 events shifted the class they belong initially. In addition, this
could be observed in the variation of the number of events in each Class (CI).

Furthermore, when we increased the number of groups (i.e., k=2 to k=3)
independently of the ML feature, it can be seen in Figure 8a-c and Figure 8b-d that
Class 3 is formed principally by a splitting of Class 2. These results suggested that
the ML feature did not affect the cluster formation when we used two classes (k=2).
However, applying three classes (k=3), we found a higher variability in the formation
of the clusters.

Previous studies [29,60,62] have noted the importance of defining the number of
clusters and the features selected before applying the algorithm. In our case, we
defined these conditions considering the typical rainfall classes (convective,
stratiform and mixed). With respect to the number of clusters, one interesting finding
is to note that the Class 3 and Class 2 (with k=3) are principally part of the Class 2
(with k=2). So, the Class 3 could be considered like a subclass of the Class 2. These
results are in agreement with Dilmi, (2017) findings, which showed 5 subclasses of
the two mainly rainfall types (convective and stratiform). Furthermore, our results
suggest that with k=2, we obtain remarkable differences between the Class 1 and
Class 2, which will be explained in the next section. These findings suggest that
when we have other Class (i.e., Class 3), it will be obtained from split one of the main
Classes (k=2). Besides, we analyzed the influence of including or excluding the ML
feature in the cluster formation. In the case of k=2, we found that all the events in
each Class but two of them, remained constant when we included or excluded the
ML feature. However, in k=3, a shift of 11 events occurred, where more than 50% of
these events change from Class 3 to Class 2 or vice versa. A possible explanation
for this might be that the Class 3 and Class 2 (k=3) are a subclass of the Class 2
(k=2). Therefore, the features selected and determination of number of clusters play
an important role in the cluster formation. For these reasons, these conditions should
be defined carefully. Also, we have to notice that k-means is an unsupervised
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method, so we did not evaluate the information a priori [28] to get these rainfall

classifications.
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Figure 8. The classified rainfall events based on cluster analysis: a) two classes (with ML feature),
b) two classes (without ML feature), c) three classes (with ML feature), d) three classes (without ML

feature). CI1, CI2, CI3 are the number of events per each class.

4.3.3.1. Features Distribution Analysis per each class

Furthermore, we analyzed the distributions of the features obtained per each class
in order to identify the thresholds of the features value for rainfall classification.
Figure 9 shows the distribution of all the features using k=2 and k= 3, and the
influence of the presence or absence of the ML feature in the clusters formation.

In the clusters with k=2 (Figure 9a), we found that the highest values of all features
but the duration occurred in Class 1. Thus, in this class we had events with higher
rain rate, velocity, Dm, and rainfall accumulation. However, the same events had the
shortest duration in comparison with Class 2. On the other hand, Class 2 had events
with lower values in all features, but these were also the events with the longest
duration. Moreover, we observed that the ML feature has no effect in the clusters
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formation. This can be seen in the similarity of the feature distributions for both
scenarios.

Similarly, we obtained comparable results in the clusters with k=3 (Figure 9b). Class
1 showed events with higher values in the rain rate, velocity, rainfall accumulation
and Dm, but shorter values in the event duration. However, in Class 2 and Class 3,
it was difficult to define a tendency because there was not an evident pattern in all
the features. For instance, in comparison with Class 2, Class 3 showed higher value
in RRmax but shorter values in RRmin. However, Class 2 showed the highest value
in the duration event feature. Furthermore, in the clusters with k=3, we observed a
more notorious range difference regarding the values of the features when using the
ML feature in comparison with their counterparts when using k=2.

For the purpose of determining the threshold values of the features for the rainfall
classification, we assessed the features distribution. Rainfall is usually classified in
stratiform, mixed and convective rain. Stratiform rain is defined like a homogenous
rain, with low rain rate, high duration and low velocity [27]. Convective rain consists
of variable rain types, with high rain rate, low duration and high velocity [27]. Mixed
rain is considered as a transition between convective and stratiform rain [19]. Several
authors have identified rain rate and Dm thresholds for rainfall classification (Table
2).

Table 2. Summary of rainfall features thresholds of Tropical Zones.

Rainfall

Feature (Units) o Value Location Author
Classification
Rain Rate (mm h')  Convective >10 Marine Tokay,
Stratiform ~1.86 Tropics (1999)
Mixed =2.4 Mountains Bendix,
South (2006)
Ecuador
Convective 8-12 . Das and
) Tropical _
Stratiform 2-5 ) Maitra,
Locations
(2016)
Class 1 (k=2) 14.86 £ 0.20
Class 2 (k=2) 6.55 + 0.08 .
Tropical )
Class 1 (k=3) 15.08 £ 0.32 This study
Andes
Class 2 (k=3) 5.43 £1.06
Class 3 (k=3) 7.27+£0.14
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Dm (mm) Convective ~1.66 Tropical Seidel,

Stratiform =1.07 Andes (2019)

Class 1 (k=2) 1.55+0.01

Class 2 (k=2) 1.09+0.01 .
Tropical )

Class 1 (k=3) 1.57 £ 0.02 This study
Andes

Class 2 (k=3) 1.1 +0.05

Class 3 (k=3) 1.1+0.01

Table 2 shows that Das and Maitra, (2016) and Tokay (1999) agreed that the
convective rain type showed the highest values in comparison with the stratiform
rain type. In the case of the mixed rain type, Caracciolo, (2008) suggested that the
values of rain rate between 2-10 mm h are complex to interpret because this range
can show a mixed of convective and stratiform rainfall. Also, Bendix, (2006) found
that mixed rain type had values of rain rate around 2.4 mm h1. Besides rain rate,
Dm has also been related to rainfall type. Bringi, (2003) found that events with larger
Dm are considered convective. Seidel, (2019) confirmed that convective events
present values of Dm higher than stratiform events (Table 2). In this context, in our
study, Class 1 events represent a convective rain type, Class 2 events are
associated with stratiform rain type and Class 3 events exhibit characteristics of a
mixed rain type.

4.3.3.2. Distribution of rainfall classes along the year

In order to analyze the rainfall events frequency, we calculated the events
percentage by month from every cluster as seen in Figure 10.

Figure 10a and Figure 10b present the events percentage when we included or not
the ML feature with k=2. In concordance with the Figure 8a and Figure 8b, the 2
events that shifted of Class, belonged to January and May. For this reason, we found
a slight variation in these months in the Figure 10a and Figure 10b. Also, these 2
events did have a BB and their rain rate showed a range between 0-60 mm h in
1min frequency.

Furthermore, we found that convective rain type was dominant (more than 50%) only
in March and November. As a result, we had a predominance of the stratiform class
along the year.

Figure 10c and Figure 10d show the events percentage by including or excluding
the ML feature with k=3. In Figure 10c, d, we found a different percentage of events
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in January, March, April, October, November and December especially in the
stratiform rain type (Class 2) and mixed rain type (Class 3). Furthermore, the
convective rain type (Class 1) for k=3 showed a maximum value in March which may
be related to the first ITCZ passage, and a slightly higher value in October and
November as a result of the secondary ITCZ. Nonetheless, in k=3 the stratiform rain
type (Class 2) and mixed rain type (Class 3) showed that the ML influenced the
clusters formation.

Our results support the finding of Seidel, (2019) that during most of the year the
stratiform and mixed rain types are dominant.

With ML Without ML
. Convective

a) b)
100 1
751 i
50 i
251 ]
0 - -
c) d) . Stratiform
1004 ] I Mixed
754 k
50 b
254 ]
04 ]

12345686 7 8 9101112 12345678 9101112
Month

Events Percentage

Figure 10. Monthly event percentage for two classes: a) with ML feature, b) without ML feature.
Events for three classes: c) with ML feature, d) without ML feature.

5. Conclusions

This study analyzed rainfall-event types in the Tropical Andes of Ecuador by using
a data-driven clustering approach (k-means algorithm). This algorithm allowed to
find rainfall types based on the similarities of rainfall attributes. The investigation
used common rainfall characteristics such as rain rate but also included
microphysical data (e.g., DSD). Furthermore, it evaluated the influence of the melting
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layer (ML) as a feature in the clusters formation. From the study, the main
conclusions are as follows:

Rainfall types were identified by applying a clustering method and thus ensured an
objective separation of rainfall events because the classification is based exclusively
on the data (i.e., rainfall characteristics). The use of microphysical characteristics,
which are not commonly used due to instrument limitations, allowed to provide
additional insights about each rainfall type.

Three rainfall classes were identified in the study area: convective, stratiform and
mixed. The rainfall classes show that the clustering method (k-means) works well to
distinguish the different rainfall patterns and identify the rainfall types. The first two
main classes, i.e., convective and stratiform, were obtained by first using the method
with two classes (k=2). Here, the two groups showed a clear difference in the
features, especially in the mean values of rain rate, velocity and Dm. Also, the
convective type (class 1) showed rainfall events with shorter duration and higher rain
rate than the stratiform type (class 2). The inclusion/exclusion of the Melting Layer
feature did not influence on the clustering results. Thus, it proves that the other
rainfall features are able to properly describe the differences between these two
main groups. When using three classes (k=3), the mixed type (class 3) resulted as
a subgroup of one of the main groups (k=2). So, the convective type remained almost
invariable regarding its rainfall characteristics. With respect to the stratiform type and
mixed type, their rainfall features are most similar between them. It suggests that the
mixed type has a dominant stratiform behavior.

Rainfall events with shorter duration of less than 70 min are more frequent in the
study area. Furthermore, there is a prevalence of convective rainfall events in March
and November, while rainfall events of the stratiform and mixed type are common
during all the year.

The findings of this research provide insights about the rainfall dynamics in this
tropical mountain setting and show that data with high temporal resolution is
necessary to analyze the rainfall variability in this area. Furthermore, these rainfall
types identified here will be of interest to analyze the vertical profile of rainfall and
identify the rainfall formation process.
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6. Appendix A

Table Al. The 23 Rainfall events features determined for each event.

Number Feature Name Unit Symbol Instrument
1 Maximum Rain Rate mm ht RRmax MRR
2 Minimum Rain Rate mm ht RRmin MRR
3 Mean Rain Rate mm ht RRmean MRR
4 Median Rain Rate mm ht RRmedian MRR
5 Rainfall Accumulation mm Raccum MRR
6 Maximum Velocity m st Vmax MRR
7 Minimum Velocity m st Vmin MRR
8 Mean Velocity m st Vmean MRR
9 Median Velocity m st Vmedian MRR
10 Event Duration minutes Dur MRR
11 Maximum Reflectivity dBz Rmax MRR
12 Minimum Reflectivity dBz Rmin MRR
13 Mean Reflectivity dBz Rmean MRR
14 Median Reflectivity dBzZ Rmedian MRR
15 Melting Layer - ML MRR
16 Maximum Liquid Water Content g m* LWCmax MRR
17 Minimum Liquid Water Content g m= LWCmin MRR
18 Mean Liquid Water Content gm?3 LWCmean MRR
19 Median Liquid Water Content gm?3 LWCmedian MRR
20 Maximum Mean Volume mm Dmmax LPM
Diameter
21 Minimum Mean Volume mm Dmmin LPM
Diameter
22 Mean Liquid Mean Volume mm Dmmean LPM
Diameter
23 Median Mean Volume Diameter mm Dmmedian LPM
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Figure Al. Cross-correlation matrix between rainfall characteristics. The highlight characteristics are
the features selection for the algorithm.
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