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Resumen: 

Las características del paisaje originadas por la actividad volcánica influyen en el 

transporte de agua y solutos en zonas montañosas. Sin embargo, el conocimiento 

sobre cómo estas características afectan el comportamiento hidrológico a 

diferentes escalas espaciales (desde laderas hasta cuencas) aún es escaso. La 

influencia de los suelos originados por la ceniza volcánica (Andosoles/Andisoles) y 

de la geología de origen volcánico fuertemente fracturada en el comportamiento 

hidrológico y la delineación de las rutas de flujo del agua es particularmente poco 

conocida. Para llenar estos vacíos de conocimiento, enfoqué esta disertación 

doctoral en la investigación de cómo los Andosoles y la geología volcánica 

fracturada influyen en el transporte de agua y la mezcla de trazadores. Mediciones 

de laboratorio, experimentales y de campo de la curva de retención de agua (CRA) 

de los Andosoles en combinación con datos extraídos de la literatura publicada 

muestran que los métodos de laboratorio estándar representan bien una pequeña 

porción del rango húmedo de la CRA, específicamente, desde saturación hasta 

potenciales matriciales 3-5 kPa (pF 1.5-1.7). Para potenciales matriciales más 

altos, los métodos de laboratorio estándar sobrestiman sustancialmente el 

contenido de agua de los suelos en comparación con las mediciones 

experimentales y de campo. A continuación, utilicé una evaluación combinada de 

datos hidrométricos, isótopos estables y de propiedades hidráulicas del suelo para 

investigar cómo los Andosoles influyen en el transporte de agua y la mezcla de 

trazadores en una ladera empinada tropical. Los resultados del análisis apuntan al 

predominio de las rutas de flujo vertical dentro de la matriz del suelo, a pesar de la 

formación de una capa de almacenamiento de agua debajo de la zona de la raíz, 

que se asemeja al comportamiento hidráulico de una esponja húmeda e inclinada. 

Finalmente, utilicé un modelo hidrológico asistido por trazadores (TraSPAN) y 

calibrado utilizando los isótopos estables de agua y conductividad eléctrica 

durante un evento de lluvia para investigar el papel de la geología volcánica 

fracturada en el transporte de agua y la mezcla de trazadores. La estructura del 

modelo que produjo las mejores simulaciones incluyó dos reservorios de agua que 

representan los suelos con alta capacidad de infiltración y el sistema de agua 

subterránea formado en el lecho de roca fracturada. Durante el evento solo el 13% 

de la precipitación se convirtió en caudal, con una proporción importante (75-81%) 

compuesta por agua de pre-evento almacenada en la cuenca previo al evento de 

lluvia. Estos hallazgos indican una alta capacidad de almacenamiento de agua del 

sistema en la geología volcánica fracturada.  

Palabras claves:  Andosol/Andisol. Roca fracturada. Isotopos estables. 

Transporte de agua. Trazadores hidrológicos. Modelación hidrológica. Curva de 

retención de agua.    
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Abstract: 

Landscape features of volcanic origin influence the transport of water and solutes 

across high-elevation environments. Nevertheless, knowledge regarding how these 

features affect subsurface hydrological behavior at different spatial scales (from 

plot to catchment) is scarce. The effect of the soils originated from volcanic ash, 

such as Andosols (or Andisols), and the influence of highly fractured geology of 

volcanic origin on subsurface hydrological behavior and water flow path delineation 

are poorly understood. To fill this knowledge gap, I took as the main objective in 

the doctoral project the analysis of how Andosols and fractured volcanic geology 

influence flow transport and tracer mixing mechanisms. Laboratory, experimental, 

and field measurements of the water retention curve (WRC) of Andosols in 

combination with data extracted from the published literature shows that standard 

laboratory methods resemble well a small portion of the wet range of the WRC, 

specifically, from saturation to the matric potentials 3 to 5 kPa (pF 1.5-1.7). For 

higher matric potentials, standard laboratory methods substantially overestimate 

the water content of the soils in comparison to experimental and field 

measurements. Further, a unique set of hydrometric, stable isotope, and soil 

hydraulic properties data were evaluated to investigate how Andosols influence 

water transport and tracer mixing mechanisms at a steep tropical hillslope. The 

results from this analysis point to the dominance of vertical flow paths within the 

soil matrix, despite the formation of a perched water layer below the root zone, 

which mimics the hydraulic behavior of a wet, layered sloping sponge. Last, I used 

a tracer-aided hydrological model (TraSPAN) calibrated for the stable isotopes of 

water and electrical conductivity (or specific conductance) during a rainstorm event 

for the analysis of the role of the fractured volcanic geology on flow transport and 

tracer mixing at the catchment scale. The model structure that best simulated the 

streamflow hydrograph and the tracers concentrations during a rainfall event 

consisted of two water reservoirs representing the soils with high infiltration 

capacity and the groundwater system formed in the fractured bedrock. During the 

monitored event, only 13% of total precipitation was converted into runoff, with a 

major proportion (75-81%) corresponding to pre-event water stored in the 

catchment prior to the event. These findings indicate a large water storage capacity 

of the system in the fractured volcanic geology. 

 

 

Keywords: Andosol / Andisol. Fractured bedrock. Stable isotopes. Water 

transport. Hydrological tracers. Hydrological modeling. Water retention curve. 
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Summary 

Terrestrial mountain landscapes are shaped by past and present volcanic activity. The formed 

landscape features in turn influence the transport of water and solutes across those high-

elevation environments. Knowledge regarding how these features affect subsurface 

hydrological behavior at different spatial scales (from plot to catchment) is scarce. In this 

regard, the effects of the soils originated from volcanic ash, such as Andosols (or Andisols), 

on subsurface hydrological behavior and water flow path delineation are poorly understood. 

Similarly, the investigation of how the highly fractured geology of volcanic origin affects flow 

partitioning and hydrological behavior in catchments has been limited. To fill this knowledge 

gap that hinders the water management in regions where landscape features of volcanic origin 

dominate, I took as the main objective in the doctoral project the analysis of how Andosols and 

fractured volcanic geology influence flow transport and tracer mixing mechanisms. To this 

end, three specific objectives were proposed: 1) the determination of the water retention 

capacity of Andosols, 2) the conceptualization of how the properties of Andosols influence 

subsurface water transport and tracer mixing dynamics at the hillslope scale, and 3) the 

assessment of how fractured geology of volcanic origin affects the hydrological behavior and 

flow partitioning at the catchment scale. 

Laboratory, experimental, and in-situ measurements of the water retention curve (WRC) of 

Andosols in combination with data extracted from the published literature shows that standard 

laboratory methods resemble only partially the water retention curve of these soils as compared 

to field conditions. These methods resemble well a small portion of the wet range of the WRC, 

specifically, from saturation to the matric potentials 3 to 5 kPa (pF 1.5-1.7). For higher matric 

potentials, standard laboratory methods substantially overestimate the water content of the 

soils, including the moisture content at field capacity, in comparison to experimental and field 

measurements. The comparison of results with data compiled from the published literature 

shows that this issue occurs independently of the standard laboratory method applied and the 

site-specific physical, chemical, and mineralogical properties of the analyzed Andosols. 

Findings also depict that cylindrical soil samples of small volume (<300 cm3), generally used 

to determine the WRC of Andosols through standard laboratory analyses, cannot capture the 

hydraulic behavior of these soils under field conditions. Even though an experimental method 

using direct soil moisture and matric potential measurement in large, undisturbed soil cores as 

an alternative method to characterize correctly the WRC of Andosols is presented. Future 

research should focus on determining the representative elementary volume of Andosol soils 

000015
0



nada

 

iv 

 

and developing laboratory methods that allow the accurate characterization of their water 

retention capacity at reasonable logistical and financial costs.  

Further, a unique set of hydrometric, stable isotope, and soil hydraulic properties data were 

evaluated to investigate how Andosols influence water transport and tracer mixing mechanisms 

at a steep tropical hillslope. The analysis of the properties of the soils along the experimental 

hillslope showed a little developed (52-61 cm) andic (Ah) horizon rich in organic matter (33-

42%) and clay (29-31%), overlying a mineral (C) horizon. The hydrometric data revealed the 

formation of a perched water layer below the root zone in the Ah horizon that remains near 

saturation year-round. The existence of this layer is favored by the tendency of water molecules 

to be bounded to the high surface areas of the clay and organic matter particles, in combination 

with an abrupt change in saturated hydraulic conductivity between the rooted and perched 

layers due to the lower density of roots in the former in comparison to the latter. Despite the 

formation of this layer, soil water transit times (ages) were short within the whole Ah horizon 

(2-4 weeks). The response time to peak in soil moisture during rainfall events indicated a 

strongly synchronized response of soil moisture across the entire soil profile (Ah-C horizons), 

despite the formation of the perched layer as a result of a fast transfer of hydraulic potentials 

due to the exponential shape of the WRC of the soils. Overall, these findings point to the 

dominance of vertical flow paths within the soil matrix, despite the formation of a perched 

water layer below the root zone, which mimics the hydraulic behavior of a wet, layered sloping 

sponge.  

For the analysis of the role of the fractured volcanic geology on flow transport and tracer 

mixing at the catchment scale, I used a tracer-aided hydrological model (Tracer-based 

Streamflow Partitioning ANalysis model, TraSPAN) calibrated for the stable isotopes of water 

(SIW) and electrical conductivity or specific conductance (EC). The model was calibrated 

using hydrometric and tracer data collected at high temporal frequency (<4 hours) during a 

rainstorm event that took place at the beginning of the fall season after a particularly dry 

summer. A hypothesis testing framework, in which different TraSPAN structures each one 

representing a different mechanism of rainfall conversion into runoff, was designed and tested. 

The framework was used to delineate the hydrological behavior of a temperate catchment in 

the U.S. Pacific Northwest. The model structure that best simulated the streamflow hydrograph 

and the tracers concentrations during the rainfall event consisted of two water reservoirs and a 

time-variant fraction of effective precipitation routed as event water. These reservoirs represent 

the soils with high infiltration capacity and the groundwater system formed in the fractured 
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bedrock. During the monitored event, precipitation totaled 155.1 mm and only 13% of it was 

converted into runoff, with a major proportion (75-81%) corresponding to pre-event water 

stored in the catchment prior to the event. These findings indicate a large water storage capacity 

of the system in the fractured volcanic geology. Moreover, I found that the modeling results 

using EC, an inexpensive and easy to measure tracer at high temporal frequency (sub-hourly), 

yielded remarkably similar results than the commonly used SIW, which cannot normally be 

collected at temporal frequencies less than a few hours. However, further testing of the 

suitability of EC to calibrate hydrological models at other catchments with different 

physiographical and climatological conditions is recommended before the proposed 

methodology is broadly disseminated. These results open the door to facilitate the identification 

of fast occurring water transport and tracer mixing processes in catchments.   
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Resumen 

La actividad volcánica pasada y presente da forma a paisajes montañosos en la Tierra. Las 

características del paisaje originadas por el vulcanismo a su vez influyen en la forma en que el 

agua y los solutos se transportan a través de regiones de alta elevación. Sin embargo, el 

conocimiento sobre cómo estas características afectan el comportamiento hidrológico 

subsuperficial a diferentes escalas espaciales (desde laderas hasta cuencas) aún es escaso. La 

influencia de los suelos originados por la ceniza volcánica (Andosoles/Andisoles) en el 

comportamiento hidrológico y la delineación de las rutas de flujo subsuperficial del agua es 

particularmente poco conocida. Del mismo modo, la investigación sobre cómo la geología 

fuertemente fracturada de origen volcánico afecta la separación de flujo y el comportamiento 

hidrológico en las cuencas hidrográficas aún es escaza. Para llenar estos vacíos de 

conocimiento que limitan el mejoramiento de la gestión del recurso hídrico en las regiones 

donde estas características del paisaje se hallan comúnmente, enfoqué esta disertación doctoral 

en la investigación de cómo los Andosoles y la geología volcánica fracturada influyen en el 

transporte de agua y la mezcla de trazadores. Con este fin, se llevaron a cabo tres objetivos 

específicos: 1) determinar la capacidad de retención de agua de los Andosoles, 2) 

conceptualizar cómo las propiedades de los Andosoles influyen en la dinámica subsuperficial 

del transporte de agua y la mezcla del trazador a escala de ladera y 3) evaluar cómo la geología 

fracturada de origen volcánico afecta el comportamiento hidrológico y la separación de flujo a 

escala de cuenca. 

Mediciones de laboratorio, experimentales e in-situ de la curva de retención de agua (CRA) de 

los Andosoles en combinación con datos extraídos de la literatura publicada muestran que los 

métodos de laboratorio estándar reflejan parcialmente a la capacidad de retención de agua de 

estos suelos en comparación con las condiciones de campo. Estos métodos representan bien 

una pequeña porción del rango húmedo de la CRA, específicamente, desde saturación hasta 

potenciales matriciales 3-5 kPa (pF 1.5-1.7). Para potenciales matriciales más altos, los 

métodos de laboratorio estándar sobrestiman sustancialmente el contenido de agua de los 

suelos, incluido el contenido de humedad a capacidad de campo, en comparación con las 

mediciones experimentales y de campo. La comparación de los resultados con los datos 

recopilados de la literatura publicada muestra que este problema ocurre independientemente 

del método de laboratorio estándar aplicado y las propiedades físicas, químicas y mineralógicas 

específicas de los diferentes sitios de estudio. Los resultados también muestran que las 

muestras de suelo recolectadas en cilíndros de pequeño volumen (<300 cm3), generalmente 

000018
0



nada

 

vii 

 

utilizadas para determinar la CRA de los Andosoles a través de análisis de laboratorio estándar, 

no permiten capturar el comportamiento hidráulico de estos suelos en condiciones de campo. 

A pesar de que se presenta un método experimental que utiliza la medición directa de la 

humedad del suelo y el potencial matricial en núcleos de suelo grandes y no perturbados como 

un método alternativo para caracterizar correctamente la CRA de los Andosoles, la 

investigación futura debe centrarse en determinar el volumen elemental representativo de estos 

suelos y desarrollar métodos de laboratorio que permiten caracterizar la capacidad de retención 

de agua de estos suelos con precisión a costos logísticos y financieros accesibles. 

A continuación, utilicé una evaluación combinada de datos hidrométricos, isótopos estables y 

de propiedades hidráulicas del suelo para investigar cómo los Andosoles influyen en el 

transporte de agua y la mezcla de trazadores en una ladera empinada en un ambiente tropical. 

La caracterización de las propiedades de los suelos a lo largo de la ladera experimental mostró 

un horizonte andico (Ah) poco desarrollado (52-61 cm) rico en materia orgánica (33-42%) y 

arcilla (29-31%), que recubre un horizonte mineral (C). Los datos hidrométricos mostraron la 

formación de una capa de almacenamiento de agua (perched layer) que permanece cerca de la 

saturación durante todo el año, debajo de la zona de la raíz en el horizonte Ah. La formación 

de esta capa se ve favorecida por la tendencia de las moléculas de agua a unirse a las altas áreas 

superficiales de las partículas de arcilla y materia orgánica, en combinación con un cambio 

brusco en la conductividad hidráulica saturada entre la zona de raíces y la capa de 

almacenamiento debido a la mayor densidad de raíces en la primera en comparación con la 

segunda. A pesar de la formación de esta capa, los tiempos de tránsito (edades) del agua del 

suelo fueron cortos dentro de todo el horizonte Ah (2-4 semanas). El tiempo de respuesta al 

pico de la humedad del suelo durante eventos de lluvia indicó una respuesta fuertemente 

sincronizada en todo el perfil del suelo (horizontes Ah-C), a pesar de la formación de la capa 

de almacenamiento como resultado de una rápida transmisividad de potenciales hidráulicos 

debido a la forma exponencial del CRA de los suelos. En general, estos hallazgos indican al 

predominio de las rutas de flujo vertical dentro de la matriz del suelo, a pesar de la formación 

de una capa de almacenamiento de agua debajo de la zona de la raíz, que se asemeja al 

comportamiento hidráulico de una esponja húmeda e inclinada en capas. 

Con respecto al papel de la geología volcánica fracturada en el transporte de agua y la mezcla 

de trazadores, utilicé un modelo hidrológico asistido por trazadores (Tracer-based Streamflow 

Partitioning ANalysis model, TraSPAN) calibrado para los isótopos estables de agua (IEA) y 

conductividad eléctrica o conductancia específica (CE) para investigar la separación de flujo a 
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escala de cuenca. El modelo se calibró utilizando datos hidrométricos y de trazadores 

recolectados a alta frecuencia temporal (<4 horas) durante un evento de lluvia que tuvo lugar 

al comienzo de la temporada de otoño después de una temporada de verano particularmente 

seca en la región de estudio. Un marco de prueba de hipótesis en el que se utilizaron diferentes 

estructuras de TraSPAN, cada una representando un mecanismo diferente de conversión de 

lluvia en escorrentía, fue usado para delinear el comportamiento hidrológico en una cuenca 

templada en el noroeste de los EE. UU. La estructura del modelo que mejor simuló el 

hidrograma y las concentraciones de los trazadores durante el evento de lluvia incluyó dos 

reservorios de agua y una fracción de precipitación efectiva encaminada como agua de evento 

variable en el tiempo. Estos depósitos representan los suelos con alta capacidad de infiltración 

y el sistema de agua subterránea formado en el lecho de roca fracturada. Durante el evento 

monitoreado, la precipitación totalizó 155.1 mm y solo el 13% se convirtió en escorrentía, con 

una proporción importante (75-81%) compuesta por agua de pre-evento almacenada en la 

cuenca antes del evento de lluvia. Estos hallazgos indican una alta capacidad de 

almacenamiento de agua del sistema en la geología volcánica fracturada. Además, encontré 

que los resultados del modelado utilizando conductividad eléctrica, un trazador económico y 

fácil de medir a alta frecuencia temporal (sub-horaria), arrojaron resultados notablemente 

similares a los isótopos estables de agua utilizados de manera estándar, pero que normalmente 

no se pueden recolectar a una frecuencia temporal menor a unas pocas horas Si bien es 

necesario realizar más pruebas para evaluar la utilidad de la CE para calibrar modelos 

hidrológicos en otras cuencas con diferentes condiciones fisiográficas y climatológicas antes 

de que la metodología propuesta pueda ser ampliamente utilizada, estos resultados abren una 

nueva puerta para facilitar la identificación de rápidos procesos de transporte y mezcla de agua 

en cuencas hidrográficas.  
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Chapter 1 

1. Introduction 

 

1.1 Importance of the study 

Montane ecosystems provide key hydrological services to local and downstream populations. 

These services include runoff production and regulation and water storage (Beniston, 2003). 

As a result, catchments originated from high-elevation ecosystems are often considered the 

“water towers” of the planet (Viviroli et al., 2007). Runoff generated from these catchments 

provides the water that sustains the economic development of millions of people around the 

world (Messerli et al., 2004; Viviroli et al., 2011). However, hydrological knowledge in these 

catchments remains limited due to the difficulty to understand the complexity of mountainous 

landscapes and the harsh environmental conditions that limit data collection. These factors 

hamper the understanding of how montane headwater catchments store and release water and 

how these processes are affected by specific catchment features. 

Despite the close link between past and present volcanic activity and the formation of mountain 

ranges (Gerrard, 1990; Stanley, 2004), the specific influence of landscape features of volcanic 

origin on the hydrological behavior of mountainous environments is not yet fully understood. 

Amongst these features, the influence of soils formed on volcanic ash and of highly fractured 

geology originated from weathered lava flows has been the least investigated. Hence, an 

improved understanding of how these landscape characteristics affect fundamentally 

hydrological relations such as flow path delineation and water transport and tracer mixing in 

the subsurface still needs to be further unraveled. Acquiring such understanding will not only 

fill knowledge gaps in hydrological sciences, but also will help to improve the water 

management in the regions where these features dominate. 

One of the main factors behind these knowledge gaps is the lack of appropriate datasets, in 

combination with field-based surveys and modeling methods, to obtain a complete 

understanding of subsurface hydrological processes (Vereecken et al., 2015). Although 

commonly measured hydrometric data (e.g., precipitation, streamflow, and soil moisture) have 

been useful to shed light on the dynamics of hydrological systems influenced by volcanic 

features (e.g., Hasegawa and Sakayori, 2000; Hasegawa and Eguchi, 2002), this information 

alone is not sufficient to identify the dominant flow paths of water in the subsurface, neither to 
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understand how water mixes within these systems. The methodological limitations were 

resolved in other environments through the use of environmental tracers, of the stable isotopes 

of water in particular. These tracers have the potential to help identify the fractions of event 

water (or “new” water from incoming precipitation) and pre-event water (or “old” water stored 

in a catchment prior to a precipitation event) that contribute to discharge during rainstorm 

events (Klaus and Mcdonnell, 2013; von Freyberg et al., 2017), the mean transit time (or “age”) 

of water at an outlet point of a hydrological system (Hrachowitz et al., 2016; McGuire and 

McDonnell, 2006), the main flow paths of water (e.g., Mueller et al., 2014; Farrick and 

Branfireun, 2015; Klaus et al., 2015; Mosquera et al., 2016; Orlowski et al., 2016), and the 

relationship between water storage and discharge (e.g., McNamara et al., 2011; Birkel et al., 

2015; Pfister et al., 2017; Lazo et al., 2019). Despite their usefulness, the use of these tracers 

to evaluate how the aforementioned catchment features of volcanic origin affect the hydrology 

of mountainous environments is still limited. 

The mixing and transport of water and solutes in the subsurface depends largely on the water 

retention capacity of porous media (Selker et al., 1999). Thus, an accurate determination of the 

water retention curve of a soil (WRC, the relation between the water content of the porous 

medium and the matric potential, a measure of the adhesion of water molecules to the soil 

matrix) is fundamental to investigate flow transport and mixing below ground. Past 

investigations about the WRC of volcanic ash soils (Andosols/Andisols) have shown 

contrasting results between in-situ measurements, considered as the true representation of the 

hydrological behavior of the soils under field conditions, and those obtained through the 

application of standard laboratory methods (Eguchi and Hasegawa, 2008; Fontes et al., 2004). 

Defining the reasons behind such discrepancies and how to obtain accurate representations of 

the WRC of Andosols is, therefore, a fundamental step in the interpretation and modeling of 

the subsurface hydrological, ecological, and biogeochemical processes occurring within these 

soils. 

Another important knowledge gap is the assessment of how Andosols influence water transport 

and tracer mixing in the subsurface. To date, research only focused on investigating the 

dynamics of soil moisture and the factors controlling its hydrological behavior (e.g., Hasegawa 

and Eguchi, 2002; Blume et al., 2009; Dec et al., 2017; Tenelanda-Patiño et al., 2018; 

Montenegro-Díaz et al., 2019). Unfortunately, those investigations offer no information about 

water flow paths and tracer mixing mechanisms in the subsurface. Other investigations 

monitored the isotopic and geochemical composition of Andosols to evaluate sources of runoff 
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contributing to streamflow production (e.g., Muñoz-Villers and McDonnell, 2012; Mosquera 

et al., 2016; Correa et al., 2017). However, those data have not yet been used to obtain a 

process-based understanding of subsurface flow processes in these soils. Therefore, the 

analysis of a combined dataset of hydrometric, tracer, and Andosol properties is required to 

investigate how the properties of these soils influence the subsurface water flow paths (lateral 

versus vertical). 

Past research focused mainly on investigating the role of vegetation (forested versus non-

forested) and land use (conserved versus disturbed) on the hydrological behavior of 

catchments, while overlooking the effect of the highly fractured geology originated from 

weathered lava flows. As a result, how geology affects subsurface flow processes is still poorly 

understood (Gabrielli and McDonnell, 2020). In other environments, hypothesis testing 

frameworks (Beven et al., 2020; Pfister and Kirchner, 2017; Vaché et al., 2004) using tracer-

aided hydrological models have been successfully used to disentangle subsurface water flow 

paths (Birkel and Soulsby, 2015). These models present the advantage that they do not only 

account for water flux dynamics (i.e., the transfer of hydraulic potentials in the subsurface), 

but also for the mixing of tracers (Harman, 2015; Segura et al., 2012; Weiler et al., 2003). 

However, the potential of these techniques to understand the role of fractured volcanic geology 

on the partitioning of streamflow into new and old water has not yet been taken advantage of. 

In this dissertation, a combination of traditional and emerging laboratory, experimental, field, 

and numerical modeling techniques at different spatial scales (from plot to catchment) were 

applied to fill these knowledge gaps. The acquisition of such knowledge will enhance the water 

resources management in mountainous environments where landscape features of volcanic 

origin are dominant and facilitate the development of adaptation strategies as input for 

management and policy action. 

1.2 Objectives 

The general objective of this dissertation was to shed light on how landscape features of 

volcanic origin (soils and geology) influence the main flow paths and the transport and mixing 

of water in the subsurface of mountainous environments. To this end, the following specific 

objectives were formulated: 

1) to determine the water retention capacity of volcanic ash soils (Andosols) 
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2) to conceptualize how the hydraulic properties of Andosols influence subsurface water 

transport and tracer mixing dynamics at the hillslope scale, and 

3) to evaluate how fractured geology of volcanic origin affects the hydrological behavior and 

flow partitioning at the catchment scale. 

1.3 Study areas  

 

Figure 1.1. The Pacific Basin surrounded by volcanic arcs and major active volcanoes around 

the Pacific Ring of Fire (pinkish shaded area). The study areas are located in the northern Andes 

in south Ecuador (cyan star) and the Cascades range in Oregon, United States (green star). 

(Adapted from Encyclopædia Britannica, Inc., https://www.britannica.com/place/Ring-of-Fire, 

Last access: March 3, 2020). 

 

The Pacific Ring of Fire surrounds a major area of the Pacific Basin (Figure 1.1). This area, 

geographically bounded by North, Central, and South America on the east and by an arc of 

islands extending from Alaska to New Zealand on the west, is largely affected by the movement 

of the Earth’s tectonic plates (Schlanger et al., 1981). As a result, this region of the planet is 

000036
0



nada

Introduction 

5 

 

one of the most affected by volcanic activity. Volcanism along the Ring of Fire in turn has led 

to the formation of vast mountain ranges, such as the Cascades range and the Andean mountain 

range along the western edge of North and South America, respectively. As such, three 

experimental sites with distinctive soil and geological features of volcanic origin situated 

within these two mountainous ranges were selected. Two of the experimental sites were located 

in the northern Andes of Ecuador, where relatively young soils derived from volcanic ash are 

common, and the third one in the western Cascades in the Pacific Northwest of the United 

States, where older, fractured geology is found without the presence of volcanic ash soils. 

Although a detailed description of each of the experimental sites are presented in Chapter 2-4, 

a brief description of the most relevant characteristics is given below. 

1.3.1 Zhurucay Ecohydrological Observatory 

The Zhurucay Ecohydrological Observatory is located on the west slope of the Andean 

mountain range in southern Ecuador (3°04'S, 79°14'W) and drains towards the Pacific Ocean. 

The observatory is located within the tropical alpine (Páramo) ecosystem at elevations ranging 

from 3,400-3,900 m a.s.l. The climate in the study area is mainly influenced by air masses 

stemming from the Amazon forest (Esquivel-Hernández et al., 2019), despite its proximity to 

the Pacific Ocean (approximately 80 km). Annual precipitation in the observatory averages 

1,345 mm (Mosquera et al., 2015). Precipitation is fairly uniformly distributed throughout the 

year showing little seasonality and falling mainly in the form of drizzle (Padrón et al., 2015). 

Mean annual temperature, relative humidity, and radiation at 3,780 m a.s.l. are 6.0°C, 90%, 

and 100 W m−2; Córdova et al., 2015; Ochoa-Sánchez et al., 2020). The landscape presents a 

U-shaped geomorphology with broad valleys at the bottom of hillslopes as a result of past 

glacial activity, presenting an average gradient of 17%. The geology in the region consists 

primarily of volcanic rock deposits compacted by glacial activity during the last ice age 

(Coltorti and Ollier, 2000). The Quimsacocha and Turi geologic formations dominate, both 

dating from the late Miocene Period (Pratt et al., 1997). The former is composed of basaltic 

flows and the latter of tuffaceous andesitic breccias, conglomerates, and horizontally stratified 

sands. The dominant soils in the observatory are Andosols/Andisols of volcanic ash origin 

covering approximately 72% of the area; while the remaining area is occupied by peat soils 

(Histosols). Andosols are commonly found on hillslopes, whereas Histosols are mainly located 

in the valley bottoms. These soils have resulted from the accumulation of volcanic ash deposits 

during the Quaternary, which in combination with cold and humid local atmospheric conditions 

led to the formation of organic and clay rich soils with high water holding capacity (Buytaert 
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et al., 2006a). The areal distribution of the soils in the observatory is highly correlated with its 

vegetation cover (Mosquera et al., 2016a). As such, the dominant tussock grass of the Páramo 

(commonly in the genera Calamagrostis and Festuca) that overlies the Andosols cover 71% of 

the land (Figure 1.2), and cushion plants (Plantago rigida, Xenophyllum humile, Azorella; 

Ramsay and Oxley, 1997; Sklenar and Jorgensen, 1999) covering the Histosols extend over 

24% of the observatory. Endemic (Polylepis) and introduced (Pinus) forest patches cover the 

remaining area of the observatory (4%). The land cover in the observatory is mainly pristine, 

with little cattle grazing at the lower elevations. 

 

Figure 1.2. a) Dominant tussock grass vegetation on the hillslopes of the tropical alpine 

(Páramo) ecosystem in south Ecuador. b) Profile of the soils of volcanic ash origin 

(Andosols/Andisols) that underlie the Andean Páramo hillslopes. (Photo credits: G.M. 

Mosquera). 

 

1.3.2 Quinuas Ecohydrological Observatory 

The Quinuas Ecohydrological Observatory is approximately 35 km north of the Zhurucay 

Observatory, but situates on the east slope of the Andean mountain range (2°47'S, 79°13'W), 

draining towards the Atlantic Ocean through the Amazon basin. The observatory is also 

situated in the Páramo ecosystem and extends between 3,600-4,400 m a.s.l. (Pesántez et al., 

2018). The upper part of the observatory, where this research was conducted (3,900-4,100 m 

a.s.l.), belongs to the protected El Cajas National Park. The climate and precipitation regime in 

the study area are similar to those described above for the Zhurucay Observatory. Annual 

precipitation, temperature, and relative humidity at 3,955 m a.s.l. are on average 1,021 mm, 

5.4°C, and 92.1%, respectively (Carrillo-Rojas et al., 2019; Muñoz et al., 2016). The 
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geomorphology in the observatory is also shaped by past glaciation, although the valley 

bottoms are narrower and the surrounding hillslopes are steeper in comparison to Zhurucay, 

presenting an average gradient of 42% (Carrillo-Rojas et al., 2016). The geology is composed 

of the Tarqui and Celica formations, with a dominance of tuffs, lavas, agglomerates, and 

ignimbrites of rhyolitic composition (Hall and Calle, 1982). Similar to the Zhurucay 

Observatory, the dominant soils are Andosols covering mainly the hillslopes and Histosols 

found principally in the valley bottoms. The dominant vegetation in the observatory is tussock 

grass (Calamagrostis and Festuca, 67%) coexisting with forest patches (Polylepis, Gynoxys. 

and Pinus, 14%) and cushion plants and shrubs (Plantago, Valerian, and Gentiana, 8%). The 

remaining of the landscape corresponds to lakes and small water ponds (7%) and rock and bare 

soil (Pesántez et al., 2018). There is no influence of anthropogenic land use in the study area. 

1.3.3 H.J. Andrews Experimental Forest 

 
 

Figure 1.3. Photography of a stream section within the H.J. Andrews Experimental Forest. 

(Photo credits: G.M. Mosquera). 

 

The H.J. Andrews Experimental Forest is located on the western Cascade Range of Oregon, 

United States (44°12'N, 122°15'W) and drains to the Willamette River basin that ultimately 

discharges into the Pacific Ocean after joining the Columbia River in the north. Differently 

than in the Páramo of south Ecuador, soils of volcanic ash origin (Andosols) are not commonly 

found in this study area. The experimental site situates in a temperate forest ecosystem at 
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elevations between 430 and 1,600 m a.s.l. The study region has a Mediterranean climate, with 

cool, wet winters and warm, dry summers. Annual precipitation averages 2,709 mm at 1,294 

m a.s.l., with more than 80% falling between November and May. Snow-pack accumulation 

normally occurs between mid-November through the end of June at high elevations (>1,000 m 

a.s.l.), but snow usually does not persist for periods>2 weeks at lower elevations (Jones and 

Perkins, 2010). The landscape is dominated by a U-shaped geomorphology of glacial origin, 

with a steep average gradient of 46%. The geology in the study area is composed of multiple 

rock types of volcanic origin that date back from the late Miocene and Pliocene (upper Sardine 

Formation and Pliocene flows). Ridges in the study area are underlain by highly weathered 

lava flows with high porosity, and areas at lower elevation are underlain by air fall tuffs and 

alluvial tuffaceous sediments (Swanson and James, 1975). Highly porous Inceptisols with high 

infiltration rates (>1000 mm hr-1) are the dominant soils in this experimental site (Brown and 

Parsons, 1973). Vegetation is mainly composed of coniferous forests (Dyrness and Hawk, 

1972) including Douglas‐fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), 

western red cedar (Thuja plicata), noble fir (Abies procera), and Pacific silver fir (Abies 

amabilis). 

1.4 Outline 

The first chapter of this dissertation provides an overview of the relevance and general 

background of the topics addressed in the doctoral project. In addition, the general and specific 

objectives of the dissertation and a brief description of the content of each of the following 

chapters are listed. 

The outline of the main Chapters of the dissertation that summarizes the approach and scale of 

analysis used to address each of the specific objectives is shown in Figure 1.4. Chapter 2 is 

oriented towards the accurate determination of the water retention capacity of Andosols. To 

this end, a combination of laboratory and experimental techniques were used for the 

measurement of the WRC of the soil. The chapter also includes a compilation of data extracted 

from the literature published on this topic. I included and analyzed these data so that the study 

results are discussed in a broader context, and general conclusions about the advantages and 

limitations of the different measurement techniques to obtain the WRC of Andosols could be 

developed. The last part of Chapter 1 presents a set of recommendations in support of the 

interpretation and modeling of subsurface flow processes in future research. 
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Figure 1.4. Outline of the structure of the doctoral dissertation. The vertical blue arrows 

indicate how each chapter relates to each of the specific objectives (SOs), as well as to the 

applied approaches and scales of work used to address each SO. The horizontal orange arrow 

indicates that the knowledge obtained from one chapter (initial point) was necessary to evaluate 

the findings of another chapter (end point). 

 

Subsequently, the conceptualization of how the hydraulic properties of Andosols (including 

the WRC of the soils determined using the appropriate method defined in Chapter 2) control 

the subsurface flow dynamics at the hillslope scale is presented in Chapter 3. A spatial and 

temporal analysis of precipitation, soil moisture, and groundwater level dynamics was 

conducted in a hillslope transect covered by Andosols to unravel the flow transport along the 

hillslope transect. In addition, the stable isotopic composition of precipitation and soil water 

were analyzed to investigate the mixing of tracer and to delineate the main water flow paths in 

the subsurface. Finally, a process-based conceptual model on how water transport and tracer 

mixing mechanisms relate to the hydraulic properties of the Andosols along the experimental 

hillslope was developed. 

Chapter 4 presents on the investigation of the role of fractured volcanic geology on the 

hydrological behavior and streamflow partitioning (old versus new water) at the catchment 
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scale. For this purpose, I used a combined set of hydrometric (precipitation and streamflow) 

and tracer (stable isotopes and electrical conductivity) data collected at high temporal 

frequency (15 minutes to 4 hr) and introduced a tracer-aided hydrological model as a 

hypothesis testing tool to unravel the hydrological functioning of the catchment. In addition, 

this chapter presents a thorough comparison of the modeling results using two tracers for 

calibration in terms of the modeling performance and the process-based understanding of the 

hydrologic system. 

Finally, Chapter 5 presents a summary of the main findings of this doctoral project. In addition, 

a brief description of the findings of studies complementary to this work, in which I participated 

during the execution of the research, are included. Finally, the pathways that the findings of 

the doctoral project have left open for future investigations are delineated. 

 

 

 

. 
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Chapter 2 

2. Water retention capacity of volcanic ash soils 

 

Volcanic ash soils with andic properties (Andosols) provide fundamental hydrological and 

ecological services in mountainous regions worldwide. For the study of the transport and 

mixing of water and solutes in the unsaturated zone of the Earth´s crust the volumetric water 

content-matric potential relationship (the water retention curve, WRC) is an essential 

parameter. Through an extensive analysis of laboratory, experimental, and in-situ measured 

WRCs of Andosols in combination with data extracted from published literature I show that 

standard laboratory methods using small soil sample volumes (≤300 cm3) are capable of 

mimicking the WRC of Andosols only partially. These methods resemble well the wet range 

of the WRC, but overestimate substantially the water content of Andosols for high matric 

potentials, including the field capacity. This discrepancy occurs irrespective of site-specific 

land use and cover and soil properties (physical, chemical, and mineralogical), and the 

laboratory method applied. These findings imply that results reported in past research should 

be re-evaluated and future investigations should apply appropriate methods to obtain the WRC 

of Andosols. The latter requires the determination of the smallest volume of soil and the 

adaptation of standard laboratory methods to represent accurately the Andosols’ hydraulic 

behavior under field conditions. 

 

 

 

 

 

 

Related publication 

Mosquera GM, Marin F, Célleri R, Feyen J, Breuer L, Windhorst D, Crespo P. Analysis of 

methodological issues of the water retention characteristic curve of volcanic ash soils: Do 

standard laboratory methods reflect field conditions? (In review, Hydrological Processes). 
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2.1 Introduction 

Soils developed on volcanic ash, known as Andosols (IUSS Working Group WRB, 2015) or 

Andisols (Soil Survey Staff, 1999), possess distinctive mineralogical, chemical, and physical 

properties (Nanzyo, 2002; Wada, 1985). These soils have an atypical mineralogy composed of 

allophane with subordinate imogolite and ferrihydrite for allophanic Andosols or Al- and Fe-

humus complexes for non-allophanic Andosols (McDaniel, Lowe, Arnalds, & Ping, 2012; 

Sadao Shoji, Nanzyo, & Dahlgren, 1993). Andosols also present a high affinity for phosphate 

retention combined with high organic matter accumulation (Dahlgren, Saigusa, & Ugolini, 

2004). The mineralogical and chemical features of these soils provide them with andic 

properties (Soil Survey Staff, 2010), which in turn explain their unique physical characteristics. 

The latter include low bulk density, high porosity, and large surface area that gives them an 

outstanding water holding capacity (McDaniel et al., 2012). Andosols are found worldwide, in 

humid montane regions with past and present volcanic activity primarily (S. Shoji et al., 1993), 

providing important hydrological and ecological services (Terribile et al., 2018). Because of 

this, even though Andosols cover only 1% of the Earth’s crust, they represent an important 

resource supporting the water supply of approximately 10% of world’s population (Neall, 

2006; Ping, 2000; Sadao Shoji et al., 1993), including the densely populated tropics, where half 

of the world population is projected to live by 2050 (Wright et al., 2017). 

Given the increasing recognition of the hydrological services produced by Andosols such as 

water storage and flow regulation (Buytaert et al., 2006a, 2005b; Mosquera et al., 2016a, 2015), 

investigations about their hydraulic properties increased during the last few decades. The 

correct determination of these properties, and of the water retention characteristics in particular, 

is fundamental to improve the understanding of subsurface hydrological, ecological, and 

biogeochemical processes (Selker et al., 1999) and to increase the predictive capability of 

numerical models to accurately represent these processes (Vereecken et al., 2016). As such, the 

water retention capacity of Andosols is one of the most investigated features (81 publications 

with ≈3,200 citations in the period 1982-2019; Figure 2.1a, see Appendix A for details). The 

published literature regarding this topic focused predominantly on the determination of the 

Andosols’ physical and hydraulic properties (35%) and the assessment of the impacts of land 

use and land cover change on these properties (25%; Figure 2.1b). Other authors investigated 

the subsurface flow dynamics (6%), the hillslope stability (6%), the derivation and use of 

pedotransfer functions (5%), the testing of soil moisture sensors (5%), and the hydrological 

behavior of catchments using hydrological models (4%), among others (Figure 2.1b). 
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Figure 2.1. Synthesis of published literature presenting data on the water retention curves 

(WRCs) of Andosols. a) Evolution of the number of publications and cumulative number of 

citations of the consulted studies (81 in total). The pie charts summarize the research objectives 

of the consulted studies (b), the applied laboratory methods (c-e), and the volume of the soil 

samples used for the determination of the WRCs (f) in the consulted studies. The laboratory 

methods are classified according to different matric potential ranges (pF = logarithm of the 

matric potential in cm H2O). Total = number of studies reporting results for each pie chart 

category. 

*Others in subplot b) include: carbon stocks, soil genesis, biosolid application, ecological 

services, estimation of soil hydraulic parameters, soil description, spatial variability and spatial 

prediction of soil properties, water conservation practices, and biogeochemical modelling. 

**Acronyms of the laboratory methods in subplots c)-e) are as follows: SB=Sandbox, 

S/KB=Sand/Kaolin box, PPE=Pressure plate extractors, HA=Haines apparatus, 

MS=Multistep, PHT=Pressure heads by tensiometers, TT=Mini-tensiometers, PC=Pressure 

cells, SP=Suction plate, PMA=Pressure membrane apparatus, CT=Centrifuge, FP=Filter 

paper, DPP=Dew-point potentiometer. 
 

The majority of the findings of these studies rely on the Andosols’ water retention curve (WRC, 

also known as moisture release curve, moisture characteristic curve, or pF curve). The WRC 

represents the change in the soil matric potential (tension) during drying and/or wetting cycles 
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(Hillel, 1998) and is generally determined using standard laboratory methods. For Andosols, 

the sandbox (Stakman et al., 1969; 49%) and pressure plate extractor (FAO, 2002; 18%) 

methods are the most widely used to measure the water content of the soil at matric potentials 

below field capacity (i.e., the amount of water that a soil retains against gravity (Kirkham, 

2014; Figure 2.1c). To determine the soil water content around field capacity, the pressure 

plate extractor (65%) and the multistep (van Dam et al., 1992) 13%) method are commonly 

used (Figure 2.1d). The pressure plate extractor (68%) and the pressure membrane apparatus 

(Richards, 1941; 23%) are applied to measure the water content at potentials above field 

capacity up to the permanent wilting point (i.e., the matric potential that prevents plant roots to 

extract water from the soil causing wilting (Kirkham, 2014; Figure 2.1e). Despite the 

usefulness of these methods, it is widely known that they can yield an inaccurate representation 

of the water retention capacity of the soils as compared to field conditions, particularly for fine 

textured soils (i.e., soils composed mainly of clay and silt; Bittelli and Flury, 2009; Solone et 

al., 2012). This issue results from a low porous material and soil sample conductance, a lack 

of hydrostatic equilibrium, and a lack of soil–plate contact (Bittelli and Flury, 2009; Solone et 

al., 2012; van Lier et al., 2019). The magnitude of the discrepancy, however, depends on the 

specific properties of the soils. For instance, the magnitude tends to be small in the absence of 

soil micro- and macrostructure (e.g., sandy soils), whereas it can be substantial for structured 

soils. Notwithstanding the variety of laboratory methods used to determine the Andosols’ 

WRCs (Figure 2.1c-e), knowledge about whether these methods reflect correctly the hydraulic 

behavior of these soils under field conditions, as well as the magnitude of the potential 

discrepancy, is limited. 

An important element in the accurateness of the determination of the hydraulic properties of 

soils using standard laboratory methods, including the WRCs, is the representativeness of the 

used soil sample volume. What is the smallest representative elementary volume (REV) of the 

soil to ensure that laboratory measurements give a correct representation of the properties in 

the field (Bear, 1972; Kutilek and Nielsen, 1994)? The determination of the REV for a given 

soil depends largely on how well the sample volume captures the soil micro- and 

macrostructure that controls the water movement in the porous soil material. Based on 

measurements of bulk density and water content in Japanese volcanic ash soils, Sato and 

Tokunaga (1976) reported that the REV of Andosols is 100 cm3. That is, a cylindrical sample 

with a cross-sectional area of 20 cm2 (Ø=5 cm, h=5.1 cm). On the basis of saturated hydraulic 

conductivity measurements using different laboratory methods, Buytaert et al. (2005) 
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confirmed that the REV to determine the hydraulic properties of Andosols is 100 cm3. 

Regarding the water retention capacity of these soils, the majority of laboratory analyses have 

been conducted using soil samples with a volume ≤100 cm3 (63%; Figure 2.1f), with only 6% 

of the studies using volume samples>300 cm3. Despite the general application of standard 

laboratory methods using small sample volumes to determine the WRC of Andosols, only a 

few studies compared laboratory results with field measurements. 

Fontes et al. (2004) compared WRCs measured in the laboratory and in the field for allophanic 

Andosols of the Island of Terceira (Azores) under grazed pasture. In the laboratory, they used 

the sand/kaolin box method (Stakman et al., 1969) to measure the water content of 100 cm3 

undisturbed soil samples for potentials below field capacity. For potentials above field 

capacity, they used the pressure membrane apparatus and determined the water content of 

disturbed soil samples with a volume of 25 cm3. In parallel, they used neutron probes and 

mercury tensiometers to measure soil moisture and matric potential in large soil monoliths (2.5 

m x 1.5 m x 1.20 m) to determine the WRC under field conditions. These authors reported that 

the laboratory measurements accurately described the field soil water retention for potentials 

lower than field capacity, but overestimated significantly the soil moisture content for 

potentials above field capacity. Eguchi and Hasegawa (2008) also compared the WRCs 

obtained via laboratory analyses and field measurements for Hydric Hapludand Andosols in a 

cropping field in Ibaraki, Japan. They applied the suction plate method to 314 cm3 soil samples 

and used time domain reflectometers and ceramic porous cups in the field to measure the WRC 

of the soils for matric potentials below field capacity. These authors found no difference 

between both methods. Despite these findings, it is yet unknown if these 

differences/similarities are due to local land use and/or management (i.e., both sites were 

impacted by different land use), the laboratory method used, the volume of the soil sample 

used; and/or more importantly, if they are valid for all Andosols or only for some specific 

subclasses/subgroups. Considering the variety of purposes for which laboratory obtained 

WRCs of Andosols have been and are used (Figure 2.1a), the contrasting findings reported in 

past investigations demand a thorough analysis of whether standard laboratory analyses using 

small soil samples reflect field conditions correctly. 

To gain insights into this issue, I compiled and analyzed a dataset of WRCs of Andosols 

determined in the laboratory and in the field at experimental sites in the Ecuadorian Andes. In 

parallel, I searched the existing literature on this topic, and compared the results with WRC 

data presented in the published literature to address the overarching question of whether the 
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determination of the WRCs of volcanic ash soils via standard laboratory methods reflects field 

conditions. Addressing this question can help setup efficient monitoring strategies of soil water 

relations in regions where Andosols are found. This information is essential for the assessment 

of how changes in climate and land use will affect the water storage and flow regulation, as 

well as the eco-physiological functioning of vegetation in environments dominated by 

Andosols. 

2.2 Materials and methods 

2.2.1 Description of the experimental sites 

Soil samples were collected at two experimental sites in the tropical alpine (Páramo) ecosystem 

in south Ecuador. The first site was the Zhurucay Ecohydrological Observatory located on the 

west slope of the western Andean mountain range (3°04′S, 79°14′W). This site covers an area 

of 7.53 km2 and is situated between 3,400 to 3,900 m a.s.l. The second site is an experimental 

hillslope (3,900-4,000 m a.s.l.) located at the Quinuas Ecohydrological Observatory on the east 

slope of the western Andean Cordillera (2°47'S, 79°13'W), approximately 35 km north of 

Zhurucay. The landscape in the region is of glacial origin, resulting in the formation of a U-

shaped geomorphology. Both study areas are dominated by non-allophanic Andosols (Buytaert 

et al., 2006b), found typically on the Páramo hillslopes, covering nearly 75 to 80% of the extent 

of both observatories (Mosquera et al., 2015; Pesántez et al., 2018). The Andosols at both sites 

are mainly covered by tussock grass, commonly the genera Calamagrostis and Festuca 

(Mosquera et al., 2016a). The anthropogenic disturbance in the Zhurucay Observatory is 

limited to light cattle grazing; whereas there is no disturbance at the Quinuas experimental 

hillslope as it is located in a protected national park. Detailed descriptions of the Zhurucay and 

Quinuas observatories are available in Mosquera et al. (2015) and Pesántez et al. (2018). 
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Figure 2.2. Study site and monitoring setup for determining the water retention curves of 

Andosols. a) View of the experimental plot (marked in red) located in the Zhurucay 

Ecohydrological Observatory in south Ecuador; b) conceptual diagram of the spatial 

distribution of Andosols in the Zhurucay Observatory hillslopes (Ah=andic horizon, C=mineral 

horizon, R=bedrock); c) profile of an Andosol in the observatory; and d) experimental setup 

for monitoring the soil water content and matric potential in the Ah horizon of undisturbed 

Andosol soil cores (Ø=40 cm, h=32 cm) covered by tussock grass. Positions along the hillslope 

in subplot b) correspond to: (A)=Toe slope, (B)=Lower slope, (C)=Middle slope, (D)=Upper 

slope, and (E)=Hilltop. (Photo credits: a) Galo Carrillo, c) Pablo Borja, and d) Giovanny M. 

Mosquera). 

 

2.2.2 WRC determination from in-situ (field) measurements 

An experimental plot (17 m x 23 m) was constructed at the upper, conserved part (3,770 m 

a.s.l.) of the Zhurucay Observatory to monitor the subsurface flow dynamics (Montenegro-

Díaz et al., 2019). This plot was selected because the Andosol soil was covered by tussock 

grass and unaffected by cattle grazing (Figure 2.2a). To further ensure the latter, the plot was 

surrounded by a barbed wire fence during the monitoring period. The slope of the plot, 20% 

on average, was similar to the average gradient of the observatory. The plot was instrumented 

with water content reflectometers (WCR) (Campbell Scientific CS616, accuracy ±2.5%, 

measurement range 0 to 100% moisture content) and tensiometers (UMS T8, accuracy ±0.5 
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kPa, measurement range ~-85 to 0 kPa; or pF 0 to pF ~2.9). The WCR probes were calibrated 

to the local soil conditions to obtain an improved accuracy of the soil moisture measurements 

(Ochoa-Sánchez et al., 2018). The temporal variation of soil moisture and matric potential was 

monitored at the middle of the slope (position C in Figure 2.2b). Two sets of WCR probes and 

tensiometers, separated horizontally 12.8 m from each other, were installed in the organic 

(andic) horizon of the Andosols (the Ah horizon in Figure 2.2b, the black soil layer in Figure 

2.2c). The probes were placed below the root zone at a depth corresponding to half the thickness 

of this soil horizon. The WCR probes were placed horizontally and the tensiometer probes were 

installed vertically from the top. The soil moisture content and matric potential data were 

recorded continuously at 5-min intervals during the period January 2011-June 2018. The 

average soil moisture and matric potential values of the two sets of measurements were used 

to construct the in-situ WRC of the Andosols, considered in this study as the correct 

representation of the water retention capacity of the soils under field conditions (hereafter 

referred to as the field WRC). Precipitation was also recorded every 5-min during the same 

period using a tipping-bucket rain gauge (Texas TE525MM; resolution 0.1 mm) located 

approximately 10 m away from the experimental plot at 3,780 m a.s.l. 

2.2.3 Collection of soil samples 

Although field measurements were only conducted in the Zhurucay Observatory, soil samples 

to determine the WRC of the Andosols experimentally and in the laboratory were also collected 

at the experimental hillslope of the Quinuas Observatory.  

In the Zhurucay Observatory, three large undisturbed soil cores (Ø=40 cm, h=32 cm; Figure 

2.2d) were collected at the middle position of the slope (C in Figure 2.2b) for the determination 

of the WRC during a desiccation experiment. For direct comparison with the field WRC, the 

large-size cores were randomly collected from a 5 m x 5 m area centered around the site were 

the field measurements were conducted within the plot shown in Figure 2.2a. The vegetation 

in the cores was conserved to mimic field conditions during the desiccation of the samples. 

Samples from the andic horizon of the Andosols were also collected across the Zhurucay 

Observatory. Small, undisturbed soil samples with a volume of 100 cm3 were collected using 

standard steel rings (Ø=5 cm, h=5.1 cm; the REV for Andosols) and approximately 500 gr of 

disturbed soil for measuring the WRCs in the laboratory. Samples were collected at 14 

sampling locations roughly separated 150 m from each other along three transects across the 

Zhurucay Observatory (41 sampling locations in total). The sampling strategy was designed 

such that the soil samples were collected at different positions along the hillslopes (Lazo et al., 
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2019). Samples were collected accordingly at the toe, the lower, the middle, and the upper 

sections of the hillslopes, as well as at the hilltops (i.e., the positions A-E in Figure 2.2b). The 

physiographic characteristics and the properties of the soils collected at each sampling position 

are described in Table 2.1. The samples collected at the middle slope position (C in Figure 

2.2b) were used for direct comparison with the field and experimental WRCs of the Andosols 

in the Zhurucay Observatory. Given that we also conducted a comparison of the WRCs of the 

Andosols obtained via laboratory analysis with available data from the published literature 

(section 2.2.6), the samples collected at different physiographic positions were used to account 

for the potential variability in specific terrain conditions (e.g., physiographic position and/or 

gradient) found in the compiled literature dataset. Undisturbed and disturbed soil samples were 

collected in triplicate at a depth corresponding to half the thickness of the Ah horizon at each 

sampling site (i.e. below the root zone at depths comparable to which the field and experimental 

measurements in the large soil cores were made). Considering that at a total of 123 samples 

were analyzed in the laboratory, it was assumed that the number of collected samples was 

sufficient to characterize the spatial variability of the soil properties across the observatory. 

A similar soil sampling strategy was carried out in the experimental hillslope of the Quinuas 

Observatory. In the experimental hillslope, however, the large soil cores and small, undisturbed 

and disturbed soil samples were only collected at the middle slope position. 

2.2.4 WRC determination on large soil cores via a desiccation experiment 

The large undisturbed soil cores were wetted by capillary rise from their bottom for two months 

to secure saturation before the start of the desiccation cycle. Subsequently, a WCR probe 

(Campbell Scientific CS616) and a tensiometer (UMS T8) were placed in each soil core at half 

the depth of the cores (i.e., the same depth were the field measurements were conducted and 

the small soil samples were collected; Figure 2.2d). The WCR probes were placed horizontally 

through holes on the sides of the cores and the tensiometer probes were installed from the top 

at an angle of 35° from the vertical line. A correction for the inclination angle was applied 

according to the manufacturer’s recommendations (UMS, 2011). Positive matric potential 

measurements from the tensiometers in each of the samples indicated saturation. After this 

check, I let the samples drain freely by gravity and recorded the soil moisture content and 

matric potential at 5-min intervals throughout the entire desiccation process. During this 

process, duplicate small soil samples (Ø=2.5, cm h=5 cm) were collected from each soil core 

to determine the “real” moisture content of the soil in the laboratory. The small samples were 

collected every 1 to 4 days during the first 3 weeks of the experiment, and subsequently every 
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10 to 15 days. These data were used to construct the calibration curve for each of the WCR 

probes used in the experiment to secure the accuracy of the monitored soil WRC. The 

experiment was carried out until the tensiometers' measurement range was reached about 50 

days after its beginning. Thus, the soil water content and matric potential values recorded 

during the desiccation process represent the WRC of the Andosols (hereafter referred to as the 

experimental WRC) from saturation to pF 2.9 (-85 kPa). 

2.2.5 WRC determination on small soil cores using standard laboratory 

methods 

The 100 cm3 undisturbed samples were used to determine the soils’ bulk density and soil water 

retention at matric potentials (or pF, defined as logarithms of the matric potentials in cm water 

column) below field capacity. The moisture contents were measured at pF 0 (saturation, –1 cm 

H2O or –0.1 kPa), pF 0.5 (–3.2 cm H2O or –0.31 kPa), pF 1.5 (–32 cm H2O or –3.1 kPa), and 

pF 2.52 (field capacity, –330 cm H2O or –33 kPa). Sieved, disturbed soil samples (Ø=4 cm, 

h=1 cm) were used to determine the water retention capacity at pF 3.4 (–2,500 cm H2O or –

245 kPa) and pF 4.2 (permanent wilting point, –15,500 cm H2O or –1,550 kPa). The WRCs 

were determined using the sandbox apparatus (for pF-values 0.5-1.5) and the low (pF 2.52) and 

high (pF 3.4 and 4.2) pressure plate extractors (FAO, 2002) (Soil Moisture Equipment Corp., 

Goleta, CA, USA). I selected these methods to determine the WRC of the Andosols (hereafter 

referred to as the laboratory WRC) because they are the most frequently used in the compiled 

literature (Figure 2.1c-e). Although a direct comparison between the laboratory WRC using 

the REV of the Andosols (undisturbed soil samples of 100 cm3) and the field and experimental 

WRCs is possible until pF ~2.9 due to the measurement range of the tensiometer probes, we 

also present the results of the laboratory WRC for higher matric potentials (applying the 

standard laboratory method to the disturbed soil samples) for reference. 

2.2.6 Compilation of WRC data from the published literature 

I identified 81 studies that reported quantitative information (in figures or tables) about WRCs 

of Andosols or volcanic ash soils with andic properties (i.e., pumice soils were excluded; see 

Appendix A for a detailed description of the applied literature search procedure, and the list of 

selected documents in Appendix B). From this database, I selected the papers reporting the 

WRC for: (i) the organic (andic) horizon of Andosols (up to a depth of 50 cm), (ii) Andosols 

covered by grassland vegetation, and (iii) Andosols situated in conserved areas unaffected by 

changes in land use and cover. That is, for conditions comparable to the Zhurucay Observatory. 
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Sixteen papers that fulfilled these criteria were selected for further analysis. Information from 

these publications provided the data from which I reconstructed 71 WRCs. The main details 

about the locations, features, the physical, chemical, and mineralogical soil characteristics, and 

the methods and soil sample volumes used to determine these WRCs are summarized in Table 

2.2. Information on the specific terrain conditions (e.g., physiographic position and/or gradient) 

are not included in the table since the majority of studies did not provide this information. 

However, the dataset most likely covers a wide range of terrain conditions. I will further refer 

to these data as the “literature compiled WRC dataset”. 
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Table 2.1 Hydraulic properties of the Ah (andic) horizon of the Andosols monitored at different positions along the hillslopes (as shown in 

Figure 2.2b) in the Zhurucay Ecohydrological Observatory. The values presented in the table are the average and the standard deviation (in 

parenthesis) of the properties measured in the laboratory. 

Position 

codea 
nb 

Slope 

(%) 

Horizon 

type 

Horizon 

depth 

(cm) 

BDc  

(g cm–3) 

pFc 0  

(cm3 cm–3) 

pFc 0.5 

(cm3 cm–3) 

pFc 1.5 

(cm3 cm–3) 

pFc 2.52 

(cm3 cm–3) 

pFc 3.4 

(cm3 cm–3) 

pFc 4.2  

(cm3 cm–3) 

A 10 7 (5) Ah 41 (2) 0.38 (0.25) 0.80 (0.10) 0.78 (0.09) 0.71 (0.06) 0.63 (0.04) 0.41 (0.14) 0.31 (0.03) 

B 5 17 (14) Ah 33 (6) 0.36 (0.10) 0.81 (0.04) 0.81 (0.04) 0.80 (0.04) 0.67 (0.00) 0.51 (0.10) 0.49 (0.10) 

C 10 21 (16) Ah 34 (7) 0.40 (0.04) 0.77 (0.03) 0.76 (0.03) 0.75 (0.04) 0.70 (0.02) 0.60 (0.08) 0.53 (0.07) 

D 9 11 (9) Ah 38 (3) 0.47 (0.16) 0.72 (0.08) 0.72 (0.08) 0.71 (0.08) 0.63 (0.05) 0.52 (0.11) 0.54 (0.06) 

E 7 4 (3) Ah 35 (11) 0.49 (0.14) 0.73 (0.06) 0.73 (0.06) 0.72 (0.06) 0.65 (0.04) 0.58 (0.06) 0.51 (0.04) 
a A=Toe slope; B=Lower slope; C=Middle slope; D=Upper slope; E=Summit. 
b n=number of locations where triplicate samples were collected and analyzed at each of the hillslope positions across the Zhurucay 

Ecohydrological Observatory. 
c BD=Bulk density; pF=log10 matric potential in cm H2O. 
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Table 2.2 Summary of the published literature presenting soil moisture content versus matric potential dataa used for the construction of the 

water retention curves (moisture release curves, moisture characteristic curves, or pF curves) of volcanic ash soils with andic properties 

(Andosols/Andisols) using standard laboratory methods.  

Ref.a Countryb RQc 
Elevation  Slope 

R N 
Soil 

subclass 

Depth BD φ 
pH 

OM Sand Silt Clay Alp/Alo Feo Sio Allophane Lab. 

methodd 

Sample 

volume 

(m a.s.l) (%) (cm) (gr cm-3) (%) (%) (%) (%) (%)  (%) (g kg-1) (g kg-1) (%) (cm3) 

[1] ECU LUC 3,450 - 12 - Histic 15 0.3 - - 33 - - - - - - -  MS + PPE 100 

[2] ECU SG 

3,970 - 

- 8 - 

0-24 
0.26 83 4.8 62 29 41 31 0.92 - - - 

 PMA  100 

24-56 

3,850 - 
0-12  

0.48 73 4.6 46 32 36 32 0.82 - - - 
12-44 

3,830 - 
0-15 

0.17 82 5.3 62 40 32 29 1.08 - - - 
15-41 

3,550 - 
0-17 

0.57 71 4.6 26 19 27 55 0.47 - - - 
17-60 

3,425 - 
0-16 

0.32 82 5 50 26 32 42 0.46 - - - 
16-62 

3,300 - 0-30 0.33 84 5.3 34 24 31 45 0.48 - - - 

[3] ECU LUC 

3,400 30 6 - - 
0-10 

0.54 - 6 20 - - - - - - - 

 SB + PPE 100 

10-25 

3,650 22 6 - - 
0-10 

0.38 - 5.2 39 - - - - - - - 
10-25 

>3,650 20 6 - - 
0-10 

0.74 - 5.5 12 - - - - - - - 
10-25 

[4] ECU LUC 3,650 23 - 36 - 0-50  0.64 - 4.9 29 - - - - - - -  MS + PPE. 100 

[5] ECU HM 3,735 - - - - 30 - - - - - - - - - - -  MS + PPE  - 
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Table 2.2. Cont. 

Ref.a Countryb RQc 
Elevation  Slope 

R N Soil subclass 
Depth BD φ 

pH 
OM Sand Silt Clay Alp/Alo Feo Sio Allophane Lab. 

methodd 

Sample 

volume 

(m a.s.l) (%) (cm) (gr cm-3) (%) (%) (%) (%) (%)  (%) (g kg-1) (g kg-1) (%) (cm3) 

[6] JAP SP - - 18 6 - 

3-8 

- 73 - - - - - - - - -  SB + PPE  100 
4-9 

17-22 

25-30 

[7] ECU LUC 
4,000 

- 4 - - 

0-20  
0.85 65 - 11 58 36 7 0.72 - - - 

PPE  - 20-40 

3,600 0-30 0.4 80 - 28 9 65 26 0.96 - - - 

[8] ECU LUC 

4,200 
0-

>60 

5 - - 

0-15  
0.68 - 4.8 11 32 54 9 0.66 0.62 1.71 - 

PPE  

- 
15-30 

4,000 
0-

>60 

0-15  
0.84 - 5.2 8 32 45 16 0.58 0.38 0.96 - - 

15-30 

3,700 0-40 
0-15  

0.78 - 5.4 12 30 54 12 0.72 0.43 0.89 - - 
15-30 

[9] CHI LUC 73 1 7 - Histi-Silandic  

5 

0.5 - 5 31 - - - - - - -  SB + PPE 230 15 

30 

[10] ECU SD 

3,500 - 

- 3 

Melani-Vitric 

(Pachic) 
0-30 0.58 80 - 37 - - 26 0.97 0.64 0.4 2 

PPE + 

PMA  
100 3,700 - 

Melani-Vitric 

(Hydric) 

0-30  
0.38 81 - 37 - - 35 0.99 1.23 2.4 2 

30-45 

3,250 - 
Melani-Vitric 

(Hydric) 

0-7.5  
0.33 83 - 29 - - 51 0.96 2.07 0.45 2 

15-50 
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Table 2.2 Cont.  

Ref.a Countryb RQc 
Elevation  Slope 

R N 
Soil 

subclass 

Depth BD φ 
pH 

OM Sand Silt Clay Alp/Alo Feo Sio Allophane Lab. 

methodd 

Sample 

volume 

(m a.s.l) (%) (cm) (gr cm-3) (%) (%) (%) (%) (%)  (%) (g kg-1) (g kg-1) (%) (cm3) 

[11] ECU CS 3,860 14 1 - - 
0-10  

0.4 - 4.5 31 - - 12 0.93 0.85 0.14 0.9  SB + PPE  200 
10-30 

[12] ECU LUC 3,450 - - - Histic 15 - - - - - - - - - - -  MS + PPE  100 

[13] JAP SSF - 6 5 - - 

7.5 

0.75 - - - - - - - - - -  SB + CT - 15 

30 

[14] TAI SG 
970 30 

- 3 - 
0-27 0.51 81 4.1 11 16 61 23 0.84 2.12 0.31 

- PMA  - 
890 30 0-20 0.55 79 4.5 9 39 48 15 0.88 1.9 0.21 

[15] COG SD 2,290 34 - 9 - 10-50 - - - - - - - - - - -  SB + PPE 100 

[16] NZL SG 
1,000 

- - 5 - 

1-10 

0.9 - 5.5 4 71 22 7 0.17 - 0.43 3.7 
 PPE - 

10-28 

33-40 

70 0-23 0.69 - 5.5 13 55 30 15 0.4 - 0.09 5 

Abbreviations: number of replicates (R); total number of soil profiles (N); research question (RQ); porosity (φ); bulk density (BD); organic matter 

(OM); soil moisture content (θ) at pF 0 (saturation), pF 2.52 (field capacity), and pF 4.2 (permanent wilting point); not reported (-). 
a Reference: [1] (Buytaert et al., 2005b), [2] (Poulenard et al., 2003), [3] (Tonneijck et al., 2010); [4] (Podwojewski et al., 2006), [5] (Buytaert et 

al., 2006b), [6] (Quichimbo et al., 2012), [7] (Marín et al., 2018), [8] (Buytaert et al., 2004), [9] (Moldrup et al., 2003), [10] (Iñiguez et al., 2016), 

[11] (Poulenard et al., 2001), [12] (Tokumoto et al., 2010), [13] (Dörner et al., 2016), [14] (Chen et al., 1999), [15] (Dondeyne et al., 1993), [16] 

(Tjahyandari, 1998). 
b Country: ECU=Ecuador; JAP=Japan; CHI=Chile; COD=Democratic Republic of the Congo; NZL=New Zealand. 
c Research question: LUC=land use/cover change; SD=soil description; SG=soil genesis; SP=soil properties; SSF=subsurface flow; 

HM=hydrological modelling CS=carbon stocks. 
d Laboratory method: SB=sandbox, PPE=pressure plate extractors, MS=multistep, PMA=pressure membrane apparatus, CT=centrifuge. 

000057
0



nada

Chapter 2 

26 

 

2.3 Results and discussion 

2.3.1 Comparison of laboratory determined WRCs 

 

Figure 2.3. Comparison of the water retention curves (WRCs) of Andosols obtained using 

standard laboratory methods. Soil moisture content versus matric potential relation (i.e., soil 

WRC, moisture release curve, or pF curve) of the Ah horizon of Andosols at different locations 

across the Zhurucay Ecohydrological Observatory (Figure 2.2; this study) and the WRCs of 

16 published studies summarized in Table 2.2 (compiled WRC data). All data correspond to 

the upper horizon (depth<50 cm) of the Andosol, all covered by pristine grassland (i.e., forest 

cover and disturbed land use were excluded from the compiled WRC dataset). Data were 

generated via laboratory analysis using (i) steel rings (100 cm3 volume) in Zhurucay, and (ii) 

steel rings of different volume (100-230 cm3 volume) in the literature compiled WRC dataset 

(see Table 2.2 for details). The box plots correspond to the median and the 25 and 75 

percentiles, and the whiskers to the maximum and minimum soil moisture values. The dashed 

vertical lines represent field capacity (FC; pF 2.52, –330 cm H2O, or –33 kPa) and permanent 

wilting point (PWP; pF 4.2, –15,500 cm H2O, or –1,550 kPa). n indicates the number of 

moisture release curves used to construct the boxplots. 

 

Figure 2.3 summarizes the laboratory results of the WRCs determined on the 100 cm3 

undisturbed core samples collected across the hillslopes of the Zhurucay Observatory (Table 

2.1). The small spatial variability of the Andosols’ properties across the observatory indicates 

a low heterogeneity in their physical and hydraulic characteristics regardless of the hillslope 

000058
0



nada

Water retention capacity of volcanic ash soils 

27 

 

sampling position (Buytaert et al., 2006a). The figure also shows the 71 reconstructed WRCs 

from the 16 selected studies summarized in Table 2.2. The WRCs of the Andosols in Zhurucay 

depicted that the soil moisture content remained near saturation (0.77±0.04 cm3 cm-3) up to pF 

1.5. A small decrease in soil moisture content was observed at pF 2.52 (0.66±0.03 cm3 cm-3), 

indicating that the soils at field capacity lost only 14% of their water content. A continuous 

reduction of the soils’ water content was observed until pF 4.2 (permanent wilting point). At 

this matric potential, the moisture content of the soils was about 38% lower than at saturation 

(0.48±0.09 cm3 cm-3). These findings are in line with those reported for Andosols at nearby 

sites in the south Ecuadorian Andes when the WRCs were determined in the laboratory using 

100 cm3 soil samples (Buytaert et al., 2005b; Iñiguez et al., 2016; Marín et al., 2018; Quichimbo 

et al., 2012). 

Although the literature compiled WRC data were not in all cases obtained using the same 

laboratory methods applied in this study, they produced a similar WRC shape in comparison 

to the WRCs of the Andosols in the Zhurucay Observatory (Figure 2.3). Only a larger 

variability in moisture content at different matric potentials was observed in the literature 

compiled WRC dataset. This variability most likely reflects the differences in the site-specific 

conditions in this dataset (e.g., geographical location; elevation and topographic position; 

physical, chemical, and mineralogical properties of the Andosols; Table 2.2). 

The remarkable similarity between both datasets suggests that different laboratory methods 

produce similar shapes of the Andosols’ WRCs irrespective of the specific method applied. 

This observation is in line with the findings of Buytaert et al. (2005), who reported that different 

laboratory methods for the determination of the saturated hydraulic conductivity of non-

allophanic Andosols also produced similar results. Furthermore, it is worth noting that although 

the Andosols in the Zhurucay Observatory are non-allophanic, the literature compiled WRC 

dataset included both, allophanic and non-allophanic Andosols (Table 2.2). This indicates that 

standard laboratory methods yield similar shapes of the WRCs of Andosols regardless of their 

specific mineralogical composition. It is also worth highlighting that although the volume of 

the samples analyzed in the majority of studies was 100 cm3 (Table 2.2), I did not find 

differences in the shapes of the WRCs when larger sample volumes were used (up to 230 cm3). 

Based on the analysis of the bulk density and water content of the Andosols using soil samples 

of different volume, Sato and Tokunaga (Sato and Tokunaga, 1976) concluded that the REV 

of volcanic ash soils with andic properties is 100 cm3. The comparative analysis of the different 
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standard laboratory methods for determining the WRC of Andosols supports indirectly this 

conclusion. 

2.3.2 Comparison of laboratory, experimental, and field WRCs 

 

Figure 2.4. Comparison of laboratory, experimental, and in-situ measured water retention 

curves. a) Soil moisture content versus matric potential relation of the Ah horizon in the 

Andosols located in the middle position of the hillslope (position C in Figure 2.2a) obtained 

via standard laboratory methods using 100 cm3 steel rings (n=10), the experimental 

measurement of the soil moisture content-water potential relation (daily data shown, n=3) in 

large undisturbed soil cores (Ø=40 cm, h=32 cm), and field measurements of soil moisture 

content versus matric potential in the experimental plot of the Zhurucay Ecohydrological 

Observatory (data shown in Figure 2.5, n=2). Subplot b) shows the same results for the Ah 

horizon of Andosol soils in the Quinuas Ecohydrological Observatory located 35 km north of 

Zhurucay measured in the laboratory and experimentally on large soil cores. Data shown are 

the mean (x symbols connected with a thick line) and standard deviations (vertical error bars) 

of the measured soil moisture contents. Continuous vertical lines represent the matric potential 

at field capacity (FC; pF 2.52, –330 cm H2O, or –33 kPa) and permanent wilting point (PWP; 

pF 4.2, –15,500 cm H2O, or –1,550 kPa). 

 

This study yielded similar shapes of the field and experimental (large core samples) WRCs for 

the Andosols in the Zhurucay Observatory (red and green lines in Figure 2.4a, respectively). 

That is, the soil moisture content hardly dropped between saturation (≈0.77cm3 cm-3) up to pF 

1.5. Beyond this point, both curves showed an abrupt and fast reduction in soil moisture content 

as the matric potential of the soil increased. Similar observations were reported by Ritter et al. 
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(2004) for volcanic ash soils in Tenerife (Canary Islands, Spain), who determined the WRC 

using time domain reflectometers and ceramic porous cups to monitor the soil moisture and 

matric potential directly in large undisturbed soil cores (Ø=45 cm, h=85 cm). The field WRC 

presented larger error bars than the experimental one (Figure 2.4a). This observation conforms 

with the hysteretic behavior of the hydraulic properties of the soils when exposed to a 

succession of wetting and drying cycles under field conditions (Basile et al., 2003); differently 

from the desiccation experiment in which the soil cores where drained only once. The field 

WRC did not reach field capacity (Figure 2.4a) as a result of the local environmental 

conditions. On the one hand, the continuous input of low-intensity precipitation (Padrón et al., 

2015) sustains the recharge of soil water (Mosquera et al., 2016b, 2015). On the other hand, 

the high air humidity and the low temperatures year-round (Córdova et al., 2015) (mean annual 

relative humidity and temperature are 91% and 6.0°C at 3,780 m a.s.l.) restrict soil moisture 

loss by evapotranspiration. In contrast, the soil cores were dried to a matric potential beyond 

field capacity during the desiccation experiment (until pF≈2.9). As the experimental WRC 

resembled well the field WRC in the Zhurucay Observatory, I will refer to the experimental 

curve as representative of both conditions in the following. 

The laboratory WRC in Zhurucay approximated closely the experimental observations up to 

pF 1.5 (i.e., soil moisture contents remained near saturation as shown in Figure 2.4a). These 

observations are similar to those reported by Eguchi and Hasegawa (2008) and Fontes et al. 

(2004) for Andosols in Japan and the Island of Terceira (Azores), respectively. These authors 

reported that the shape of WRCs obtained via laboratory analysis and field measurements were 

similar up to pF 1.7. For pF-values>1.5, the laboratory WRC in Zhurucay overestimated the 

water content of the Andosols in comparison to the experimental WRC. It is important to notice 

that the moisture content at field capacity was notoriously different between both curves. That 

is, the laboratory WRC overestimated the water content (0.69±0.03 cm3 cm-3) by 17% in 

comparison to the experimental curve (0.59±0.01 cm3 cm-3). The overestimation for the 

Andosols in the Quinuas experimental hillslope was even larger than in Zhurucay (33%; Figure 

2.4b). Another significant difference observed for the Andosols at both study sites was that at 

the soil moisture content in which the laboratory WRCs reached permanent wilting point 

(0.53±0.10 cm3 cm-3 in Zhurucay and 0.41±0.07 cm3 cm-3 in Quinuas), the experimental WRCs 

only exceeded slightly field capacity (Figure 2.4a,b). Similar discrepancies between 

laboratory and experimental/field derived WRCs have been reported for allophanic Andosols 

under disturbed land use conditions by Fontes et al. (2004). These authors reported that 
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laboratory methods failed to mimic field conditions for pF-values>1.7; and attributed the 

discrepancy to the presence of allophane in the soil. The findings for non-allophanic Andosols, 

however, suggest that the differences in water retention characteristics cannot be attributed 

solely to the allophane content of the soils. Moreover, the findings of Fontes et al. (2004) at 

disturbed sites and of this study at pristine sites also suggest that the misrepresentation of the 

laboratory WRCs occurs independently from the land use and/or management of the soils. 

On the basis of this extensive comparative analysis I conclude that standard laboratory methods 

(listed in Figure 2.1c-e) using soil sample volumes ≤300 cm3 (corresponding to 94% of the 

sample volumes used for determining the WRCs of Andosols; Figure 2.1f) do not mimic 

accurately the water retention of Andosols under field conditions. This evaluation suggests that 

the observed differences occur irrespective of site-specific land use and soil properties (e.g., 

clay mineralogy, organic matter content, texture; Table 2.2). The observed discrepancies could 

partially result because small-volume soil samples do not represent correctly the soil micro- 

and macrostructure that controls the water movement of the Andosols (Guzman et al., 2019). 

Errors identified when applying the pressure plate laboratory method for determining the WRC 

of fine textured soils (for pFs>2) could also contribute to the discrepancy (e.g., Bittelli and 

Flury, 2009; Solone et al., 2012). These issues, which include an inadequate soil-plate 

hydraulic conductance, a lack of hydrostatic equilibrium, a lack of soil–plate contact, and/or 

soil dispersion, can cause that water does not drain properly from the soil under the applied 

suction and/or that hydrostatic equilibrium is not reached (Bittelli and Flury, 2009; Solone et 

al., 2012; van Lier et al., 2019). These methodological limitations in turn cause that the 

measured soil moisture content is overestimated. Taking into account that the Andosols present 

a moderately fine to fine texture due to their high content of small size particles (clay, silt, and 

organic matter) and the strong shrinkage they undergo during drying cycles (Bartoli et al., 

2007; Dörner et al., 2009a), the use of standards methods could also contribute to the found 

laboratory misrepresentation. It is also worth noting that although the use of undisturbed versus 

disturbed, sieved samples for the laboratory analysis has a negative effect in the determination 

of the WRC of the Andosols (Kassaye et al., 2019), this factor did not have an influence in the 

presented results as the comparison was done in the suction range until undisturbed soil 

samples were used for the laboratory analysis (from saturation to pF~2.9). Furthermore, the 

similarities between the laboratory curves in Zhurucay and the literature compiled WRC 

dataset (Figure 2.3) suggest that comparing only different standard laboratory methods is 
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insufficient to determine the cause of the misrepresentation of the WRC of volcanic ash soils 

with andic properties. 

2.4 Broader implications 

These findings have important implications in soil hydrological research since the WRCs of 

Andosols obtained via standard laboratory methods are commonly used to investigate water 

transport and mixing in the subsurface (e.g., Blume et al., 2009; Dörner et al., 2015). The data 

collected in the experimental hillslope of the Zhurucay Observatory illustrates this issue when 

analyzing and interpreting the dynamics of soil moisture (Figure 2.5b). The WRC obtained in 

the laboratory (yellow line in Figure 2.4a) indicates that soil moisture at the experimental 

hillslope decreases rapidly from levels above field capacity to levels at or near permanent 

wilting point (blue and purple dashed lines in Figure 2.5b) shortly after the beginning of dry 

periods. A similar hydrological behavior at the hillslope scale was observed by Dörner et al. 

(2015) for Andosols in southern Chile. These authors attributed this phenomenon to the high 

unsaturated hydraulic conductivity of the soil. This explanation suggests that water molecules 

tightly bound to soil particles with the smallest volumes could be emptied as fast as 

gravitational water moving readily in the macropores of the Andosols’ soil matrix. However, 

such a behavior cannot be physically justified, particularly for soils rich in clay minerals with 

high surface areas such as Andosols (Maeda et al., 1977; McDaniel et al., 2012). Our 

comparative analysis of the Andosols’ WRCs provides a more feasible explanation for the 

observed dynamics. That is, the field capacity of Andosols under field conditions is reached at 

a much lower water content than that determined through standard laboratory methods (Figure 

2.4a). This explanation is further supported by the matric potential observations in our 

experimental hillslope, which show that field capacity was not reached during the study period 

(solid orange line in Figure 2.5b). These findings do not only clearly demonstrate the 

misrepresentation of the WRC of the Andosols using standard laboratory methods, but also the 

need to determine it accurately for interpreting soil moisture dynamics and inferring subsurface 

hydrological behavior correctly. 
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Figure 2.5. In situ measurements of daily precipitation (a), and soil moisture and matric 

potential monitored at half the thickness of the Ah horizon of the Andosols at the middle 

position (b) of the experimental plot of the Zhurucay Ecohydrological Observatory (position C 

in Fig. 2b) during the period January 2012–June 2018. The matric potential and soil moisture 

data correspond to the average of two monitoring stations in the experimental plot and were 

used to construct the “field” water retention curve (WRC) of the Andosol soil (red line in 

Figure 2.4a). The dashed horizontal lines in b) represent the soil moisture values at saturation 

(green line), field capacity (blue line), and wilting point (purple line) according to the WRC 

obtained using standard laboratory methods (yellow line in Figure 2.4a). The solid orange 

horizontal line in b) represents the matric potential at field capacity (–33 kPa, –330 cm H2O, 

or pF = 2.52), which is not reached during the study period according to the field measurements. 

 

Standard laboratory methods that do not represent fully the field-based WRC of Andosols have 

also been used to investigate relations between the water retention characteristics of these soils 

and other soil properties. These properties include the Andosols’ clay colloidal composition 

(Karube and Abe, 1998), gas diffusivity (Moldrup et al., 2003), pore size distribution and 

hydraulic conductivity (Poulenard et al., 2001), salinity and sodicity (Armas-Espinel et al., 

2003), pH and exchangeable Ca (Van Ranst et al., 2002), topsoil structure (Negrón et al., 2019), 

organic matter (Pochet et al., 2007; Walczak et al., 2002), and shrinkage (Beck-Broichsitter et 

al., 2016; Dorel et al., 2006). Although these investigations shed light upon the relation between 

the mineralogical, physical, chemical, and/or biological features of these soils and their water 

retention capacity, my findings suggest that results from these studies should be re-evaluated 

to verify their validity and the real strength of the identified relations. 
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Past research also focused on the investigation of the impacts of land use change/management 

on the water retention capacity of Andosols. The land use change or management practices 

included crop and agroforestry (Abera and Wolde-Meskel, 2013), crop rotation (Duwig et al., 

2019), overgrazing (Buytaert et al., 2005b; Podwojewski et al., 2006), forest/wetland 

conversion to grassland (Dec et al., 2017; Dörner et al., 2016; Roa-García et al., 2011), native 

forest or grassland conversion to pasture, exotic forest, or crops (Daza Torres et al., 2014; 

Dörner et al., 2010, 2009b; Farley et al., 2004; Marín et al., 2018; Quichimbo et al., 2012), soil 

compaction due to tractor traffic (Gómez-Rodríguez et al., 2013), and biosolid application 

(Salazar et al., 2012). Not surprisingly, Marín et al. (2018) reported that part of the 

aforementioned findings are not generalizable. This lack of generalization could at least be 

partially related to the misrepresentation of the WRCs obtained via standard laboratory 

methods using small soil samples (≤300 cm3). Thus, the magnitude and direction of the 

reported impacts should be re-evaluated using appropriate methods/REVs for characterizing 

the water retention of these soils, particularly for pF>1.5. Moreover, the laboratory based 

determination of the WRC using standard methods and soil samples of small volume should 

be prevented in future studies to avoid obtaining erroneous results. 

The WRCs of Andosols obtained via standard laboratory methods have also been utilized as 

input data to implement physically-based numerical models to simulate water and nutrient 

fluxes (Alavi and Tomer, 2001; Asada et al., 2018), as well as hydraulic models to design 

landslide early warning systems (Ferrari et al., 2012; Frattini et al., 2004). Alavi and Tomer 

(2001) reported that simulations yielded by their hydrological model overestimated soil 

drainage observations by 35-138% and attributed these large errors to the soil WRCs 

determined in the laboratory on small volume soil samples (68 cm3). Asada et al. (2018) 

showed that a modified soil water retention function was needed to improve the simulation of 

nitrogen loss from soils in their biogeochemical model. These findings indicate that a correct 

determination of the WRCs of Andosols is required to improve the predictive capability of 

numerical models to simulate hydrological, hydraulic, and biogeochemical response by 

reducing uncertainty in model outputs (Fatichi et al., 2016; Köhne et al., 2009; Vereecken et 

al., 2016). 

Pedotransfer functions (PTFs, i.e., relations between soil properties with different difficulty in 

measurement or availability (Pachepsky and van Genuchten, 2011)) and spatial predictions of 

the water retention characteristics of Andosols have also been developed (Borja, 2006; Guio 

Blanco et al., 2018; Rustanto et al., 2017; Spilling, 2018; Yáñez et al., 2015) using WRC 
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information obtained from standard laboratory methods. Since these functions are aimed to 

serve as input data for the implementation of large scale (regional to global) hydrological, 

ecological, land surface, and earth system models (Fan et al., 2019; Vereecken et al., 2010), 

the incorrect determination of the water retention characteristics of soils will increase the 

uncertainty and diminish the accuracy of the produced simulations (Vereecken et al., 2016). 

Therefore, a re-evaluation of the PTFs and spatial predictions of the water retention of 

Andosols is needed to better represent the hydrological and hydraulic behavior of these soils 

in large-scale models. This issue is of particular importance in regions where data are scarce, 

such as in the tropics where volcanic ash soils are an important resource (Hodnett and 

Tomasella, 2002; Minasny and Hartemink, 2011). 

Rapid advancements in ecophysiology and ecohydrology for improving our understanding of 

water-soil-plant relations demand the accurate determination of the water retention 

characteristics of soils (Brantley et al., 2017; Sprenger et al., 2016). Although the role Andosols 

play in this context has not yet been investigated, a precise determination of their water 

retention capacity will be fundamental to fill this knowledge gap, as these soils represent an 

important ecological resource in mountain regions (Terribile et al., 2018). 

2.5 Conclusions 

The WRC is an important physical characteristic of a soil that expresses the relation between 

the water content of the porous medium and the matric potential, a measure of the adhesion of 

water molecules to the soil matrix. The matric potential defines the tendency of water to move 

in the subsurface, and consequently the WRC is an essential feature in most hydrological, 

ecological, physiological, biogeochemical, and hydraulic processes involving directly or 

indirectly the transport of water molecules in the vadose zone. Traditionally, the soil WRC is 

determined in the laboratory applying a set of standard laboratory techniques using small 

undisturbed and disturbed soil samples. For volcanic ash soils with andic properties 

(Andosols/Andisols), the determination of the WRC in the lower section of the matric potential 

is carried out generally using undisturbed samples of 100 cm3 (the assumed REV) as to 

guarantee that the sample is a true representation of the capillary structure of the soil in the 

field. The comparative analysis among the laboratory, experimental, and in-situ (field) based 

determination of the WRCs of Andosols revealed that standard laboratory methods using 100 

cm3 soil samples corresponds well with the experimental curve (WRC measured on large soil 

cores or directly in the field) in the wet range from saturation to a matric potential of 3-5 kPa 
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(pF 1.5-1.7). For higher matric potentials, including the field capacity (pF 2.52), the laboratory 

defined curve overestimates considerably the water content of the soil in comparison to the 

experimental curve. Moreover, the outstanding similarity between the shape of the laboratory 

obtained WRCs and the 71 WRCs reconstructed from the data extracted from 16 articles 

published in high-ranked journals using small soil samples (≤300 cm3) reinforces the suspicion 

that the standard laboratory methods used to determine the WRC of Andosols using small soil 

samples are incapable of mimicking field conditions correctly. However, I cannot conclude 

whether this is due to the applied laboratory methods, the analyzed volume of soil sample, or 

both. Resolving this issue demands the identification of the factors causing the discrepancy and 

likely an adjustment of the standard laboratory methods used currently. 

The adaptation of the laboratory methods, however, should be such that after modification the 

methods are not only able to accurately resemble field conditions, but also allow analyzing 

multiple soil samples simultaneously in relatively short time at acceptable cost. A first step 

towards addressing this issue will be the determination of the REV of Andosols. Results from 

a controlled evaporation experiment in combination with matric potential measurements using 

mini-tensiometers illustrated that an undisturbed core sample of 600 cm3 (Ø=8.5 cm and 

h=11.0 cm) produced a similar WRC than the field-based measured WRC of volcanic ash soils 

(Basile et al., 2003). This likely resulted because a larger soil sample is a better replica of the 

micro- and macrostructure of the soil and/or this alternative method is not subjected to the 

issues identified for determining the WRC of fine-textured soils (e.g., low plate and soil 

conductance, a lack of hydrostatic equilibrium, a lack of soil–plate contact, and/or soil 

dispersion). Although more research is needed to determine the cause behind the identified 

disagreement, this piece of information is crucial as it can serve as a basis for future 

investigations. However, this information is also linked to challenges ahead that must be 

overcome. For instance, if the REV of Andosols would be several times bigger than the one 

considered until now (100 cm3), investigating whether commonly applied laboratory methods 

can be accommodated to the analysis of larger soil samples requires future evaluation. 

Moreover, these results clearly depict that for addressing this issue, the comparison between 

laboratory methods and experimental measurements in large soil cores or in-situ (field) 

measurements is needed, as this extensive evaluation shows that the comparison between 

laboratory methods alone yields equivocal results. Resolving this methodological issues is 

essential to produce reliable information that can be used to enhance the management and 

conservation of soil and water resources and to develop adaptation strategies in light of changes 
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in climate and land use, so that a sustainable provision of ecosystem services in regions where 

Andosols are found can be maintained.
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Chapter 3 

3. Subsurface flow dynamics at a tropical hillslope 

underlain by volcanic ash soils 

 

Andosol soils formed in volcanic ash provide key hydrological services in montane 

environments. To unravel the subsurface water transport and tracer mixing in these soils I 

conducted a detailed characterization of soil properties and analyzed a 3-year dataset of sub-

hourly hydrometric and weekly stable isotope data collected at three locations along a steep 

hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying 

a mineral (C) horizon was identified, both showing relatively similar properties and subsurface 

flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast 

responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that 

remained near saturated year-round. The formation of the latter results from the high organic 

matter (33-42%) and clay (29-31%) content of the Ah horizon and an abrupt hydraulic 

conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures 

revealed that water resides within this soil horizon for short periods, both at the rooted (2 

weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was 

also observed in the C horizon, with response times similar to those in the rooted layer. These 

results indicate that despite the perched layer, which helps sustain the water storage of the soil, 

a fast-vertical mobilization of water through the entire soil profile occurs during rainfall events. 

The latter being the result of the fast transfer of hydraulic potentials through the porous matrix 

of the Andosols, as evidenced by the exponential shape of the water retention curves of the 

subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic 

ash soils resembles that of a “layered sponge”, in which vertical flow paths dominate. 

 

Related publication 

Mosquera, G. M., Crespo, P., Breuer, L., Feyen, J., & Windhorst, D. (2020). Water transport 

and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge. 

Hydrological Processes, hyp.13733. https://doi.org/10.1002/hyp.13733 
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3.1 Introduction 

Hillslope soils in mountainous environments are essential providers of hydrological services. 

They regulate the transport and mixing of water and solutes in the subsurface (Fan et al., 2019; 

Lin, 2010). Most of these soils are able to store large amounts of water in their matrix (e.g., 

organic rich soils; van Huijgevoort et al., 2016; Lazo et al., 2019) or to deliver it rapidly to 

streams via preferential and/or shallow subsurface flow (e.g., steep and forested catchments; 

McDonnell et al., 1991; Uchida et al., 1999; Anderson et al., 2009). The hydrological behavior 

of mountain soils depends on their specific physical, and chemical properties (e.g., hydraulic 

conductivity, bulk density, porosity, organic matter content, texture). Despite the importance 

of hillslope soils in the provisioning of hydrological services, fundamental knowledge about 

how their properties influence water transport and mixing in the subsurface is limited (Fan et 

al., 2019). 

Filling this knowledge gap is of particular importance in understudied hydrological systems, 

such as those in which subsurface flow paths are influenced by the presence of soils of volcanic 

ash origin. These soils are known as Andosols (IUSS Working Group WRB, 2015) or Andisols 

(Soil Survey Staff, 1999). Andosols are characterized by their high content of short-range order 

clays with high surface areas (e.g., allophane, imogolite, ferrihydrite, and/or the Al- and Fe-

humus complexes) and organic matter (McDaniel et al., 2012), resulting in high water holding 

capacity (Neall, 2006). These soils occur extensively in mountainous regions around the world 

with active or recently extinct volcanos (Takahashi and Shoji, 2002) and deliver important 

hydrological services such as water storage and flow regulation for downstream water users. 

Therefore, knowledge about how hillslopes underlain by Andosols store and release water is 

crucial to improve the management of water and soil resources in these regions. However, the 

understanding of how these soils and their properties influence subsurface hydrological 

behavior has not yet been sufficiently clarified. 

One of the main factors behind this knowledge gap is the lack of datasets that allows full 

disentanglement of water flow and mixing processes in the subsurface (Vereecken et al., 2015). 

The use of hydrometric information (e.g., soil moisture and/or matric potential data) has been 

helpful to identify e.g.: i) spatial and/or temporal dynamics of soil moisture (Blume et al., 2009; 

Hasegawa and Eguchi, 2002), ii) hydrometeorological controls on soil moisture response 

during rainfall events (Tenelanda-Patiño et al., 2018), iii) subsurface flow processes (Eguchi 

and Hasegawa, 2008; Hasegawa and Sakayori, 2000), and iv) the effects of land use and/or 
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land cover change in soil moisture dynamics (Dec et al., 2017; Montenegro-Díaz et al., 2019) 

in plots and hillslopes underlain by Andosols. Nevertheless, hydrometric observations alone 

are insufficient to shed light on water mixing and aging within these soils. 

In the last two decades, insights into subsurface mixing processes and water ages improved 

thanks to the monitoring of the stable isotopes of hydrogen and oxygen (2H and 18O) in soil 

waters (Sprenger et al., 2016). Tracer data do not only allow to investigate how incoming 

precipitation mixes with water previously stored in the soils, but also for the estimation of the 

“age” or mean transit time (MTT; i.e., the time it takes for a water molecule to travel to the 

outlet of a hydrological system; McGuire and McDonnell, 2006) of water mobilizing within 

different soil layers/horizons (e.g., Asano et al., 2002; Stumpp et al., 2009; McGuire and 

McDonnell, 2010; Muñoz-Villers and McDonnell, 2012; Tetzlaff et al., 2014; Lazo et al., 

2019). Soil water MTT evaluations at hillslope transects have shown either a dominance of 

water aging with depth below the surface (e.g., Asano et al., 2002; McGuire and McDonnell, 

2010; Muñoz-Villers and McDonnell, 2012) or a combination of depth and upslope 

contributing area (e.g., Stewart and McDonnell, 1991; Kim and Jung, 2014; Tetzlaff et al., 

2014). The former indicates that vertical flow paths are dominant, and the latter that there is 

also a significant influence of lateral subsurface flow paths. Although soil water isotopes 

(SWIs) in Andosols have been used to investigate runoff generation (Mosquera et al., 2016a; 

Muñoz-Villers and McDonnell, 2012) and water storage (Lazo et al., 2019) in catchments, their 

application in combination with hydrometric observations and detailed characterization of soil 

properties is still inexistent. This situation hinders our ability to disentangle flow paths and 

mixing processes in hillslopes dominated by volcanic ash soils. 

To fill this knowledge gap, a unique dataset of soil properties in combination with hydrometric 

and water isotope measurements in precipitation and soil water collected in an experimental 

hillslope transect underlain by volcanic ash soils (Andosols) is presented. The experimental 

hillslope is located within the tropical alpine (Páramo) ecosystem in south Ecuador. This rich 

set of observations was analyzed to address the following overarching question: how does 

water transport and mix in volcanic ash soils (Andosols) at the hillslope scale? To this end, the 

two objectives of this research are: i) to evaluate how Andosols’ properties influence water 

flow and mixing in the subsurface, and ii) to conceptualize the subsurface hydrological 

behavior and the dominant flow paths of water occurring within the experimental hillslope. 
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3.2 Experimental hillslope description 

 

Figure 3.1. a) Experimental hillslope showing the monitoring stations of soil moisture content 

and stable isotopes of soil water at the upper (UP), middle (MP), and lower (LP) positions (red 

triangles) along the experimental hillslope and the position of a monitoring well used for 

monitoring the groundwater level at the bottom of the hillslope (GW, blue square); b) hillslope 

drainage area and monitoring stations; and c) soil profile and horizons at the UP of the hillslope 

(Ah = Andic horizon, C = mineral horizon).   

 

The study was carried out at a tropical alpine (Páramo) experimental hillslope situated in the 

headwaters of the Quinuas Ecohydrological Observatory in south Ecuador (2°47’ S, 79°13’ W) 

between 3,900-4,100 m a.s.l. The hillslope (Figure 3.1a) has a steep gradient (42%; similar to 

the average slope of the Quinuas Observatory; Pesántez et al., 2018) and is covered by the 

dominant Páramo vegetation, consisting primarily of tussock grass (Calamagrotis Intermedia), 

locally known as “pajonal”, which covers more than 75-80% of conserved Páramo areas 

(Mosquera et al., 2015). The soils at the study region resulted from the accumulation of 

volcanic ash deposits during Quaternary activity in combination with the humid and cold local 

climate conditions (Buytaert et al., 2006a). These conditions have led to the formation of 

organic and clay rich soils with high water holding capacity (i.e., Andosols). The soils in the 
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study region are characterized as non-allophanic (i.e., the clay mineralogy is dominated by 

metal-humus complexes; Buytaert et al., 2006b). The climate is mainly influenced by 

continental air masses originating from the Amazon basin (Esquivel-Hernández et al., 2019). 

Precipitation occurs throughout the year and is composed mainly of drizzle (Padrón et al., 

2015). Annual precipitation during the period 2015-2018 averages 1,021 mm, with low 

temporal seasonality (Carrillo-Rojas et al., 2019). Average temperature and average relative 

humidity during the period 2011-2014 are 5.4°C and 92.1% at 3,955 m a.s.l., respectively 

(Muñoz et al., 2016). 

3.3 Data collection and methods 

3.3.1 Soil properties characterization  

Soil pits were dug to characterize the soil profile at three locations along the experimental 

hillslope. The upper position (UP) at 4,006 m a.s.l., the middle position (MP) at 3,958 m a.s.l., 

and the lower position (LP) at 3,913 m a.s.l (Figure 3.1a,b). The length between the UP and 

LP sampling sites was 208 m. The UP site was located 256 m below the hilltop. The type, 

depth, and density of roots in each soil horizon (including the densely rooted topsoil layer) 

were determined according to the FAO guidelines (FAO, 2006). The distribution of coarse and 

fine particles and the field characterization of soil texture were carried out according to ISO 

11277:2009 International Standard (ISO 11277, 2009). Soil carbon content was determined via 

combustion of two undisturbed soil samples collected at each sampling position and depth 

using a Vario EL cube device (Elementar, Germany). Carbon content (CC) was used as an 

indicator of soil organic matter content (OM% = CC% x 1.72; Guo and Gifford, 2002). 

The hydraulic properties of the soils were also characterized at 5, 20, 45, and 75 cm depths at 

the same positions as the soil pits. The saturated hydraulic conductivity (ksat) of the soils in the 

vertical direction was measured in-situ via the inverse auger-hole method (Oosterbaan and 

Nijland, 1994). The measurements were repeated three times at each position and depth, and 

the average ksat values are reported. Three undisturbed soil samples were collected using 100 

cm3 steel rings to determine bulk density (BD) and soil moisture content at saturation. The 

latter was determined gravimetrically as the weight difference of the samples saturated via 

capillary rise and subsequently oven-dried at 105°C for 24 hours. The BD and soil moisture at 

saturation values are reported as average values for the 3 replicates. The volume and weight of 

rock content (>2 mm diameter) was determined and used for correcting the BD and soil 

moisture content of the soil.  
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The moisture release curves of the organic and mineral horizons of the soils were also 

determined. Given the highly organic nature of the shallow horizon of the hillslope soils and 

the identified discrepancy between the WRCs determined experimentally and in the laboratory 

(section 2.3), their moisture release curves were determined from direct soil moisture content 

and matric potential measurements using water content reflectometers (Campbell Scientific 

CS616) and tensiometers (UMS T8), respectively. For this purpose, I took 3 randomly selected 

undisturbed soil cores (Ø = 40 cm, h = 32 cm) located in a 5 m x 5 m area around each of the 

sampling sites along the hillslope to capture the spatial variability of the moisture release 

characteristic. The samples were wetted from the bottom of the cores via capillary rise for two 

months to assure they were completely saturated. Once the samples were fully saturated, I 

installed one reflectometer and one tensiometer at a depth of 15 cm below the vegetation layer 

in each soil core. The samples were then drained freely by gravity and their soil moisture 

content-water potential relations were measured at 5-minute intervals until the tensiometer 

probes lost contact with the matrix due to desiccation. 

The stoniness of the mineral horizon of the soils did not allow collecting large undisturbed soil 

cores to determine moisture release characteristics as described above. Thus, the soil moisture-

matric potential relations were determined using 100 cm3 undisturbed soil samples by applying 

traditional laboratory analyses using sandboxes (Topp and Zebchuk, 1979) and pressure 

chambers (FAO, 2002). Soil moisture was determined at matric potentials of 1, 3, 10, 31, 330, 

2,500, and 15,000 cm H2O, which span a range from saturation (1 cm H2O) to theoretical 

permanent wilting point (~15,000 cm H2O). Given the similarities among the water retention 

curves collected at each soil horizon along the hillslope, I report these results as the average ± 

1 standard deviation of all analyzed samples. 

3.3.2 Hydrometric data collection 

The hillslope was equipped for the monitoring of hydrometric fluxes (rainfall, soil moisture, 

and groundwater level) and tracer fingerprints (SWI) at the same three positions as the soil pits. 

A Texas TE525MM tipping bucket rain gauge with an accuracy of ±1% was used to record 

precipitation amounts 1.5 km from the experimental hillslope at an elevation of 3,955 m a.s.l. 

Soil moisture content was measured using Decagon Devices 5TE capacitance probes. The 

capacitance probes were installed at the UP, MP, and LP sampling sites (Figure 3.1a,b) at 5, 

20, 45, and 75 cm depths. The probes were calibrated for the soils’ local conditions for each of 

the identified horizons following the procedures described by Blume et al. (2009). Through 

calibration, an improved accuracy of ±1–2% (r2=0.95, p-value<0.05) was obtained (Tenelanda-
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Patiño et al., 2018). Rainfall amount and soil moisture content data were simultaneously 

monitored every 5-minutes during the period January 2015–December 2017. 

I also used a monitoring well to measure groundwater level fluctuations at the bottom of the 

experimental hillslope (GW site in Figure 3.1a,b). The well consisted of 1.5 m long, 2-inch 

(5.1 cm) diameter galvanized tube, with a 1.05 m screen with holes of 0.8 mm diameter 

separated 10 mm vertically and 5 mm horizontally. Given the highly organic nature of the local 

soils, I designed a filter system following the recommendations of the Minnesota Board of 

Water & Soil Resources for hydrologic monitoring of wetlands (Minnesota Board of Water & 

Soil Resources, 2013). The well was wrapped with a permeable nylon textile and a 5 cm sand 

and gravel filter (1-20 mm diameter) to prevent sediment accumulation in the tube. 

Approximately 70% of the filter was composed of fine sand particles (1 mm diameter) to 

increase the surface area where organic matter particles could be retained. Pressure transducers 

(Schlumberger DI500) with a precision of ±5 mm recorded groundwater level fluctuations 

every 5-minutes during the period January-December 2017. 

3.3.3 Isotopic data collection and analysis 

Precipitation water samples were collected from a rainfall collector installed at the location of 

the rain gauge. The rainfall collector was covered with aluminum foil and a 5 mm mineral oil 

layer was added to the collector to reduce possible isotopic fractionation due to evaporation. A 

portion of the mobile water fraction of the soils was collected using wick samplers (Mertens 

and Vanderborght, 2007). The wick samplers consisted of a 30 cm x 30 cm polypropylene plate 

surrounded by 5 cm walls, on which a piece of 0.5 m long woven and braided 3/8” fiberglass 

wick (Amatex Co. Norristown, PA, US) was unraveled and covered with parent soil material. 

Below the polypropylene plates, the remaining part of the wicks were placed inside a flexible 

silicon tube and protected with a 60 cm long and 3/4” diameter plastic pipe to ensure an 

unhindered and constant vertical suction of approximately 60 hPa (Windhorst et al., 2014). 

Each silicon tube was routed to a centralized collection pipe (Ø = 50 cm) where it was 

connected to a 1.5 L glass bottle where collected water was stored until analysis (Pesántez et 

al., 2018). The wick samplers were installed at 10, 35, and 65 cm depths at each sampling site. 

The precipitation and soil water samples were collected weekly for the period January-

December 2016. The collected samples were filtered in the field using 0.45 μm 

polytetrafluorethylene membranes and stored in 2 ml amber glass bottles in the dark to prevent 

evaporative fractionation until analysis (Mook, 2000). The samples were analyzed for 2H and 
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18O using a Picarro L2130-i isotopic water vapor analyzer with a precision of 0.5‰ for 2H and 

0.2‰ for 18O. The ChemCorrect software (Picarro, 2010) was used to check the samples for 

organic contamination. Samples that showed evidence of contamination were excluded from 

data analysis. The isotopic values are reported in the δ notation in reference to the Vienna 

Standard Mean Ocean Water V-SMOW for both measured isotopes (Craig, 1961). 

3.3.4 Spatial-temporal variability of hydrometric data: Hydrological dynamics 

and response times 

The transport of water in the subsurface was characterized through the temporal variability of 

hydrometric observations and the response time of soil moisture and groundwater level to 

rainstorm events. I first plotted and compared hourly data of precipitation, soil moisture 

content, and groundwater level, and carried out an examination of the response times to reach 

the peak value (tpeak) of soil moisture or groundwater level during rainstorm events (Zhu et al., 

2014). Rainfall events were defined using the minimum inter-event time criteria (Dunkerley, 

2008). That is, the minimum time span without rain between two consecutive events. Given 

that precipitation occurs frequently in the study region, with only few consecutive dry days 

throughout the year (Padrón et al., 2015), a time-lapse of 6 hr without rain was used to 

characterize rainfall events (Tenelanda-Patiño et al., 2018). The manufacturers’ accuracy of 

the instruments, 0.3% volume for soil moisture and 0.5 cm H2O for groundwater level, was 

applied as minimum threshold changes to differentiate instruments noise from response to 

rainfall during the events (Lozano-Parra et al., 2015). Only events in which data were available 

at all sampling locations were considered. Under these conditions, 74 rainfall events were 

identified. The tpeak information was used to compare the timing of soil moisture response along 

the experimental hillslope. For this purpose, scatter plots of tpeak between pairs of contiguous 

sampling positions at the same sampling depth (e.g., between the UP and MP at 5 cm depth) 

and contiguous sampling depths at the same sampling position (e.g., between 20 cm and 45 cm 

depths at the MP) were constructed and analyzed. The same approach was carried out to 

compare the tpeak between soil moisture at different depths at the LP site and the groundwater 

levels at the bottom of the hillslope. In these analyses, scatter points falling closely to the 1:1 

ratio indicate similar response times, whereas the ones falling outside this relation indicate 

delays in response time between different sampling positions/depths or groundwater levels. 
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3.3.5 Soil water stable isotopes: Tracer mixing and soil water ages 

The mixing of tracer in the system was evaluated via the attenuation of the isotopic composition 

of soil water (at different positions and depths) in relation to the composition of precipitation. 

For this purpose, I compared the weekly collected stable isotopic composition of rainfall and 

soil water samples. This analysis permitted a qualitative characterization of how the water 

within the soils mixes with rainfall water. In addition, I used δ2H–δ18O isotope plots of 

precipitation samples (i.e., the Local Meteoric Water Line, LMWL; Rozanski et al., 1993) and 

soil waters to evaluate potential evaporation effects in the isotopic fractionation of soil water 

(i.e. non-equilibrium fractionation). 

I applied a lumped convolution approach (LCA; Maloszewski and Zuber, 1996) to estimate the 

MTT (age) of soil water. The LCA approach aims to reproduce the attenuation of the 

geochemical composition of a given tracer (e.g. 2H, 18O, Cl) at the outlet of a hydrologic system 

based on the tracer’s input signal assuming steady state conditions. Even though alternative 

methods for the investigation of water ages under non-stationary conditions exist (e.g., 

Harman, 2015; Kirchner, 2016; Benettin et al., 2017), since my objective is not to investigate 

long-term changes in subsurface hydrological conditions, the LCA provides a valuable metric 

that allows for a quantitative comparison of the attenuation of the isotopic composition of soil 

water at different sampling positions and depths. Since it can be assumed that the experimental 

hillslope is subjected to the same meteorological conditions along the whole monitoring 

transect, such a comparison permits to identify the dominant flow paths of water in the 

subsurface. 

Transit time distributions (TTDs) are used in the LCA to convert inputs tracer signals into 

output ones. TTDs are predefined mathematical functions that represent the internal transport 

and mixing processes within hydrologic systems (Hrachowitz et al., 2016). I applied the 

exponential model (EM) TTD as it has outperformed at catchment (Mosquera et al., 2016b; 

Muñoz-Villers et al., 2016) and hillslope (Lazo et al., 2019; Muñoz-Villers and McDonnell, 

2012) scales in the Páramo and other tropical montane ecosystems in comparison to other 

TTDs. The model performance was evaluated using the Kling–Gupta efficiency (KGE; (Gupta 

et al., 2009). The model was run 10,000 times using a Monte Carlo sampling procedure to 

calibrate the only parameter of the EM TTD, i.e., the MTT of the system. The range of 

calibration parameters was 0-250 weeks (0-5 years). Simulations that yielded at least 95% of 

the highest KGE were considered behavioral solutions. The 5 and 95% bounds of the range of 
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behavioral solution parameters were used as uncertainty limits for the model simulations. 

Further details about the modelling procedure can be found in (Mosquera et al., 2016b). 

3.4 Results 

3.4.1 Soil properties characterization 

The general characteristics of the soil profiles along the experimental hillslope are shown in 

Table 3.1. These were generally consistent with those reported for nearby Páramo hillslopes 

(Buytaert et al., 2006b; Mosquera et al., 2016a) and in a tropical forest catchment dominated 

by Andosol soils in central eastern Mexico (Muñoz-Villers and McDonnell, 2012). There were 

two well-differentiated soil horizons (Figure 3.1c). The shallow horizon corresponded to an 

andic horizon (Ah) with relatively comparable characteristics at all sampling sites. Its depth 

varied little (52–61 cm) along the hillslope. The Ah horizon contained a high density of fine 

roots (Ø≤2 mm), with the highest density in the first 10–15 cm below the ground surface due 

to the presence of the root system of the overlying tussock grass vegetation. The density of 

large roots (Ø>2 mm) was lower than the density of fine roots. In this horizon few coarse 

particles, most of them with Ø≤200 mm, were present. Its texture was classified as clay loam. 

The distribution of fine particles in the Ah horizon was similar at all sampling sites (sand 29–

39%, silt 32–42%, and clay 29–31%). The carbon content in the Ah horizon was high at all 

hillslope positions (19.5–24.5%, corresponding to organic matter contents of 33.5-42.1%). 

The underlying horizon corresponded to a mineral horizon (C) with more heterogeneous 

characteristics. The depth of the C horizon was higher at the LP site compared to the UP and 

MP sites. The density of fine roots was very low and there were no large roots. The proportion 

of coarse particles was higher than for the Ah horizon. The majority of particles (48–57% of 

the total) had Ø>200 mm, regardless of the position along the hillslope. The texture of the C 

horizon was classified as sandy loam. The distribution of fine particles revealed a dominance 

of sand (70–73%) and low clay content (7–8%). The carbon content was much lower than in 

the Ah horizon and decreased with sampling site elevation from 4.4% at the UP site to 1.7% at 

the LP site. 
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Table 3.1. Physical characteristics and carbon content of the soil profiles monitored at the upper (UP), middle (MP), and lower (LP) positions 

along the experimental hillslope. 

Hillslope 

position 

Altitude 

Horizon 

type 

Upper 

boundary 

Lower 

boundary 

  Root content   
Coarse particles 

distribution 
  

Fine particles 

distributiona 
  

Carbon 

Contentb   

Fine Large 

 2-63 

mm 

63-200 

mm 

>200 

mm 
 Sand Silt Clay  

[Øb ≤ 2 

mm] 

[Øb>2 

mm] 

(m a.s.l.) (cm) (cm)  (Roots per 

dm²) 

(Roots per 

dm²) 
 (%) (%) (%)  (%) (%) (%)  (%) 

UP 4,006 

AhDRZ 0 10  224 0  0 0 0  
29 42 30 

 24.4 

AhBDRZ 10 57  63 7  4 2 0   24.5 

C 57 89  4 0  5 8 12  73 20 7  4.4 

MP 3,958 

AhDRZ 0 10  280 0  0 0 0  
34 35 31 

 33.8 

AhBDRZ 10 52  57 3  4 2 0   19.5 

C 52 77  11 0  10 5 20  71 22 7  2.3 

LP 3,913 

AhDRZ 0 10  200 0  0 0 0  
39 32 29 

 27.3 

AhBDRZ 10 61  58 9  5 1 1   21.2 

C 61 116   4 0   10 2 12   70 23 8   1.7 

Abbreviations: Ah = andic horizon and C = mineral horizon. Subscripts are: DRZ = densely rooted zone and BDRZ = below densely rooted zone, 

Ø = diameter of the roots. 
a The distribution of fine particles in the andic (Ah) horizon was only characterized at the middle depths of the soil horizon at each sampling site. 

b The soil samples for carbon content analysis were taken at depths corresponding to half the horizon/layer thickness (i.e., the average between the 

upper and lower boundaries reported in the table). 
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The hydraulic properties of the soils along the experimental hillslope are summarized in Table 

3.2. The BD of the Ah horizon was relatively similar at all depths (5, 20, and 45 cm) at each 

sampling position, with typically low values (<0.90 gr cm–3) expected for the Ah horizon of 

Andosol soils (Takahashi and Shoji, 2002). The BD varied between 0.37±0.07 gr cm–3 and was 

least variable with depth at the UP site. The BD in the C horizon (75 cm depth) was consistently 

higher than in the Ah horizon at all sampling sites (0.96–1.37 gr cm–3). The Ksat of the Ah 

horizon in the vertical direction generally decreased with depth, with values up to 1.91 cm hr–

1 at 5 cm depth, and as low as 0.25 cm hr–1 at 45 cm depth. The Ksat of the C horizon (1.12-2.73 

cm hr–1) was higher than for the Ah horizon and was highest downslope. The BD and Ksat 

values for both horizons are consistent with those previously reported along hillslopes in nearby 

Páramo areas (Buytaert et al., 2006b; Mosquera et al., 2016a). The soil moisture content at 

saturation was high, as expected for soils rich in organic matter (Boelter, 1969; Letts et al., 

2000), and similar at all soil depths within the Ah horizon at all sampling positions (0.78–0.84 

cm3 cm–3). The soil moisture content at saturation in the C horizon was substantially lower than 

in the Ah horizon (Buytaert et al., 2006b), and varied little along the hillslope (0.48–0.59 cm3 

cm–3). 

Table 3.2. Mean values of the hydrophysical properties of the soil at the upper (UP), middle 

(MP), and lower (LP) positions along the experimental hillslope. The presented values 

correspond to the average of three measurements of each of the properties and each sampling 

location and depth. 

Hillslope 

position 

Altitude Depth 
Horizon 

BDa Ksat
a  θsat

a 

(m a.s.l.) (cm) (gr cm-1) (cm hr-1) (cm3 cm-3) 

UP 4,006 

5 Ah 0.29 1.41 0.84 

20 Ah 0.29 0.45 0.8 

45 Ah 0.3 0.25 0.85 

75 C 1.12 1.12 0.59 

MP 3,958 

5 Ah 0.37 1.88 0.82 

20 Ah 0.46 0.65 0.78 

45 Ah 0.51 0.31 0.78 

75 C 1.37 2.28 0.48 

LP 3,913 

5 Ah 0.33 1.91 0.84 

20 Ah 0.39 0.42 0.84 

45 Ah 0.35 0.3 0.84 

75 C 0.96 2.73 0.55 

Note: The presented values correspond to the average of three measurements of each of the 

properties and each sampling location and depth. 

Abbreviations: BD, bulk density; Ksat, saturated hydraulic conductivity in the vertical 

direction; θsat, soil moisture content at saturation. 
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The moisture release curve of the organic horizon of the hillslope soils depicted an exponential 

decrease in soil moisture as matric potentials increased from saturation to ~330 cm H2O 

(Figure 3.2a), resembling the soil moisture retention curve of peat soils (e.g., Schwärzel et al., 

2002) and those obtained for Andosol soils in the Terceira Island, Portugal (Fontes et al., 2004). 

The water retention curve of the mineral horizon resembled that of the organic horizon at 

potential values above field capacity, but with lower moisture contents for the same potentials 

(Figure 3.2b). This relation further showed a decrease in soil moisture with decreasing 

potentials to a soil moisture of 0.24±0.11 cm3 cm–3 at permanent wilting point (~15,000 cm 

H2O). 

 

Figure 3.2. Moisture release curves of the a) organic (Ah) horizon (including the curve for a 

peat soil reported by Schwärzel et al. (2002) for reference) and b) the mineral (C) horizon 

(including the curve of the Ah horizon for reference) of the experimental hillslope soils. The 

black lines in subplots a) and b) show the exponential relation between the matric potential and 

soil moisture content of the Ah horizon [Eq: ln (θ) = 1.076e–3 x ΨM – 0.3548]. Note the different 

ranges of the x- and y-axes values in subplots a) and b). Data shown represent the mean (x 

symbols) and standard deviation (error bars) of all samples collected at the upper (UP), middle 

(MP), and lower (LP) sampling sites along the experimental hillslope for each soil horizon. 

 

3.4.2 Hydrological dynamics and response times 

Hourly rainfall, soil moisture content, and groundwater level data are shown in Figure 3.3. 

Precipitation was uniform during the study period and fell typically as low intensity events (<2 

mm hr–1), although few rainstorm events had a maximum intensity that exceeded 5 mm hr–1 

(Figure 3.3a). 
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Figure 3.3. Hourly temporal variability of a) precipitation and soil moisture content (θ) at the 

b) upper (UP), c) middle (MP), and d) lower (LP) positions along the experimental hillslope, 

and e) groundwater level (GW) at the bottom of the experimental hillslope located in the 

headwaters of the Quinuas River Ecohydrological Observatory for the period January 2015–

December 2017. 
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The soil moisture dynamics at 5 cm depth (the densely rooted zone of the Ah horizon; hereafter 

referred to as the “rooted layer”) varied along the hillslope (grey lines in Figure 3.3b–d). At 

the UP site, soil moisture varied between 0.46 cm3 cm–3 during periods of low intensity 

precipitation and saturation (0.84 cm3 cm–3) in response to high intensity precipitation events 

(Figure 3.3b). A similar hydrological dynamic was observed at the MP site, but at higher soil 

moisture than at the UP site (Figure 3.3c). Soil moisture at the LP site varied little and remained 

near saturated (0.84-0.82 cm3 cm–3, respectively), except during relatively long dry periods 

(e.g., October–December 2016; Figure 3.3d). 

At 20 cm depth, the soil moisture dynamic at all hillslope positions was very different than in 

the rooted layer (black lines in Figure 3.3b–d). That is, there was no apparent soil moisture 

response to the temporal variability in precipitation. Soil moisture remained high and near 

saturation (0.72±0.05. cm3 cm–3) during the entire study period, even during extended dry 

periods. These conditions resemble a perched water layer in the Ah horizon, and as such, this 

layer will hereafter be referred to as the “perched layer”. Although soil moisture at 45 cm depth 

(the Ah horizon layer near the organic–mineral horizons interface; hereafter referred to as the 

“transition layer”) was more responsive to the temporal variability of precipitation (brown lines 

in Figure 3.3b–d), it showed a similar behavior as the perched layer. Soil moisture varied little 

at the UP site during the study period (0.68 cm3 cm–3 to 0.71 cm3 cm–3). At the MP site, soil 

moisture varied between 0.53 cm3 cm–3 during low intensity precipitation periods and was 0.71 

cm3 cm–3 during high intensity precipitation events (Figure 3.3c). Soil moisture at the LP site 

was higher (>0.72 cm3 cm–3) than at UP and LP sites during the whole study period, and 

reached saturation during precipitation events of high intensity (Figure 3.3d). Regardless of 

the monitoring position, soil moisture in the transition layer decreased only slightly during dry 

periods. 

The soil moisture dynamics at a depth of 75 cm depth (i.e., within the C horizon), hereafter 

referred to as the “mineral layer”, differed at each of the hillslope positions (orange lines in 

Figure 3.3b–d). At the UP site, soil moisture was low and remained below saturation (<0.59 

cm3 cm–3) but was very responsive to precipitation inputs (Figure 3.3b). At the MP site, soil 

moisture remained higher in comparison to the UP site and reached saturated conditions (0.48 

cm3 cm–3) during some rainy periods (Figure 3.3c). Soil moisture was the highest at the LP 

site and often reached saturation (0.58 cm3 cm–3; Figure 3.3d) in comparison to the other 

hillslope positions. Soil moisture showed only a slight decrease during dry periods at all 

hillslope positions. 
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The groundwater level at the bottom of the hillslope responded rapidly to precipitation events, 

but reached the surface only few times mainly during the wettest months (March-May). 

Groundwater levels were also more sensitive to relatively long (>1 month) periods of no to low 

rainfall (Figure 3.3e). During one of the longest dry periods (August 3-October 5, 2017), 

groundwater levels steadily decreased to the lowest level recorded during the monitoring period 

(i.e., 97 cm below the ground level) and changed at a faster rate than the soil moisture levels 

uphill (Figure 3.3b-d). 

 

Figure 3.4. Relation of the response times in hours (tpeak) to the peak value of soil moisture 

during rainfall events between contiguous sampling depths at the UP (a-c), MP (d-f), and LP 

(g-i) sites. Subplots j-l show the relation between the tpeak to the peak value of soil moisture at 

different depths at the LP site and the tpeak to the peak value of groundwater level (GW) at the 

bottom of the hillslope during rainfall events (j-l). The orange line in each subplot represents 

the 1:1 ratio. 

 

The response times to the peak values of soil moisture and groundwater level during 

precipitation events varied between 1 and 35 hours along the hillslope (Figure 3.4 and Figure 

3.5). These times were normally short, with an average variation of 7.2±1.6 hours among all 

sampling sites. The response times at contiguous sampling positions and depths were very 

similar and fell mostly under the 1:1 relation (Figure 3.4 and Figure 3.5c-h). The only 
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exception was in the rooted layer, where I observed a short delay in soil moisture response at 

the MP site in comparison to the UP site (Figure 3.5a). I could not evaluate the response times 

at the LP site in the rooted layer as the soil usually became saturated before the other sampling 

positions/depths reached maximum soil moisture/groundwater level (Figure 3.4g and Figure 

3.5b). 

 

Figure 3.5. Relation of the response times in hours (tpeak) to the peak value of soil moisture 

during rainfall events between contiguous sampling positions (UP, MP, and LP sites) at a depth 

of 5 cm (a-b), 20 cm (c-d), 45 cm (e-f), and 75 cm (g-h). The orange line in each subplot 

represents the 1:1 ratio. 
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3.4.3 Tracer mixing and soil water ages 

 

Figure 3.6. Temporal variability of the weekly δ18O isotopic composition of precipitation (light 

blue line) and soil water (a, c, and e) and the δ2H-δ18O relation in precipitation (Local Meteoric 

Water Line, LMWL) and soil water (b, d, and f) at the upper (UP), middle (MP), and lower 

(LP) positions along the experimental hillslope during the period January 2016-January 2017. 

The dark blue lines and the light blue shaded areas in subplots b), d), and f) represent the 

LMWL and the range of the isotopic variation in precipitation, respectively. 

 

The temporal variability of the isotopic composition of precipitation and soil water is shown in 

Figure 3.6. The isotopic composition of soil water in the rooted and perched layers (at 10 and 

35 cm depths, respectively; grey and black dots in Figure 3.6) followed closely the isotopic 

composition of precipitation. Conversely, the isotopic composition of soil water in the mineral 

layer (at 65 cm depth; orange dots in Figure 3.6) was more attenuated than the isotopic 

compositions of precipitation and soil water in the Ah horizon. The dual plots of δ18O and δ2H 

showed that regardless of the horizon type (i.e., organic or mineral), all soil water samples at 

all sampling sites plotted within the range of variation of the samples in precipitation (Figure 

3.6b,d,f). These observations indicate that evaporative fractionation of soil water is negligible. 

Although transpiration does not usually modify the stable isotopic composition of water 

(White, 1989), it could affect soil water MTT estimations by removing important amounts of 
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water from the soil. Transpiration of the tussock grass vegetation that covers the experimental 

hillslope only affects the rooted layer of the soil profile (up to 10-15 cm depth). However, this 

water flux represents only a small fraction of evapotranspiration in the study region (Ochoa-

Sánchez et al., 2020). Evaporation and transpiration effects on the isotopic composition of soil 

water are likely suppressed by the local environmental conditions. That is, high relative 

humidity (annual average=90%; Muñoz et al., 2016), low net radiation (annual average=100 

W m–2; Ochoa-Sánchez et al., 2020), and sustained input of low intensity precipitation (Padrón 

et al., 2015) throughout the year. Thus, the soil water MTT estimations were unaffected by 

evaporation and transpiration effects. Soil water MTTs increased consistently from the rooted 

layer to the mineral layer at all hillslope positions (Figure 3.7 and Table 3.3). MTTs varied 

little at all monitored positions in the rooted (14.3±6.1 days) and perched (26.3±7.4 days) layers 

within the Ah horizon. On the contrary, there was a larger MTT variation in the mineral layer 

(from 256.7±34.3 days at the UP to 83.8±13.4 days at the LP; Table 3.3). 

 

Figure 3.7. Observed and simulated soil water δ18O isotopic composition at a) 10 cm, b) 35 

cm, and c) 65 cm depths at the upper position (UP) of the experimental hillslope. The open 

circles represent the observed isotopic composition in soil water; the blue lines represent the 

precipitation isotopic composition; the black lines represent the best simulated isotopic 

composition in soil water according to the KGE objective function; and the shaded areas. 
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Table 3.3. Summary statistics of the δ18O isotopic composition of precipitation (QP1) and soil 

water and the soil water mean transit times (MTTs) at the upper (UP), middle (MP), and lower 

(LP) positions along the experimental hillslope. MTT values in parenthesis represent the 5–

95% confidence limits of the simulated soil water MTTs. 

Sample  Sampling  Altitude Depth δ18O (‰) MTT 

type station (m a.s.l.) (cm) n Mean SE Max Min (days) 

Precipitation QP1 3,955  n/ab 58 -10 0.6 -2.5 -21.8 n/aa 

Soil water 

UP 4,006 

10 41 -9.7 0.5 -5.4 -16.4 15.8 (10.3-22.2) 

35 38 -10.7 0.5 -5.5 -16.7 29.0 (22.3-37.3) 

65 32 -9.9 0.2 -8.5 -13.3 256.8 (227.5-296.2) 

MP 3,958 

10 47 -9.3 0.5 -4.2 -16.2 15.2 (9.6-22.2) 

35 47 -9.6 0.4 -6.1 -16.5 25.5 (19.0-33.2) 

65 13 -9.9 0.5 -7.6 -12.3 n/pb 

LP 3,913 

10 53 -9.7 0.5 -5 -17.9 11.8 (6.9-18.9) 

35 27 -10.2 0.6 -5.3 -16.8 24.5 (17.4-32.8) 

65 53 -9.9 0.2 -6.7 -15.8 83.8 (72.2-99.0) 

Note: MTT values in parenthesis represent the 5–95% confidence limits of the simulated soil 

water MTTs. 

Abbreviations: Max, maximum; Min, Minimum; n, number of samples; SE, standard error. 
a Not applicable. 
b Not possible to estimate the soil water mean transit time since there were not enough samples 

to run the model due to malfunctioning of the wick sampler during the study period. 
 

3.5 Discussion 

3.5.1 Hydrological dynamics and response times 

Hydrometric observations showed higher moisture contents towards the bottom of the hillslope 

(Figure 3.3b-d). This effect likely results from an increase in the contributing drainage area 

towards the bottom of the hillslope, possibly combined with a decrease in slope gradient for 

the sampling sites closer to the valley bottom. These factors probably explain the larger changes 

in soil moisture contents to occur at the UP site, as soil layers at this position (particularly the 

rooted and mineral layers) remain drier than those at the MP and LP sites where saturated 

conditions occurred more frequently. Apart from this difference, soil moisture dynamics was 

relatively similar at each soil layer along the experimental hillslope. 

The rapid response of soil moisture to precipitation inputs in the rooted layer of the Ah horizon 

(from the ground surface to 10-15 cm depth; Table 3.1 and grey lines in Figure 3.3b-d) 

indicates that this soil layer was highly influenced by the temporal dynamics of incoming 

precipitation. The fast-hydraulic response can be explained by the combination of two factors. 
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First, the activation of preferential flow paths through the layer’s large density of roots, as has 

been previously obseverd in Japanese Andosol soils (Eguchi and Hasegawa, 2008). This rapid 

response can be further explained by the fast mobilization of water via matric flow through the 

porous soil matrix (Hasegawa and Sakayori, 2000; Neall, 2006). A similar hydrological 

behavior in the unsaturated zone of an organic rich soil layer was observed in a steep hillslope 

in Coos Bay, Oregon, USA (Torres et al., 1998). There, the observed subsurface flow dynamics 

were explained by the shape of the soils’ water retention curves, which suggested that small 

changes in hydraulic potentials caused large changes in soil moisture at low matric potentials. 

The exponentially shaped moisture release curve of the organic horizon of the soils in the 

experimental hillslope (Figure 3.2a) behaves similarly for the same reason, reflecting a fast 

hydraulic dynamic in the soil system. The combination of these effects in turn result in a rapid 

mobilization of water during precipitation events, explaining the flashy response of soil 

moisture in the Ah horizon. 

Deeper in the subsurface (from 10-15 cm to 30-35 cm depth), the sustained near saturated 

conditions year-round (black lines in Figure 3.3b-d) indicate a perched water layer. These 

findings are in line with those reported for organic rich soils in the Scottish highlands (Tetzlaff 

et al., 2014). The formation of this layer likely results from the abrupt vertical Ksat reduction in 

this soil layer compared to the overlying rooted layer (Table 3.2), caused by the lower density 

of fine roots (Bonell et al., 1983). Moreover, the high moisture (soil water storage) likely results 

from the high organic matter and clay content of the andic horizon (Table 3.1), to which water 

molecules can be easily bound (Yang et al., 2014). 

The underlying transition layer (from 30-35 cm to 40-55 cm depth) also maintained a high 

moisture content throughout the year due to the high content of organic matter and clay of the 

Ah horizon (Table 3.1), but at a lower level than the perched layer above (brown lines in 

Figure 3.3b–d). The high water storage in the perched and transitions layers is also likely 

favored by the presence of a thin (few mm to few cm in thickness), cemented layer commonly 

found below the organic horizon of the Andosols, known as placic horizon (Soil Survey Staff, 

2015). This horizon results from the illuviation of iron and organic matter from the Ah horizon 

and usually locates in the interface between the organic and mineral horizons (Buytaert et al., 

2005a). Although irregular and discontinuous, the hard and impervious nature of the placic 

horizon hampers the activation of vertical flow paths throughout the entire soil profile (Ah-C 

horizons) during periods of little to no rainfall. This effect in turn facilitates the accumulation 

of water in the organic layer above the Ah-C, explaining the high water storage capacity in the 
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Ah horizon below the root zone. At the same time, the thin placic horizon also permits the 

formation a small proportion of lateral flow above the Ah-C horizons’ interface during these 

periods (as observed in the field). During rainfall events, however, the available pore space in 

the transition layer was quickly recharged, leading to a fast soil moisture response as in the 

rooted layer. This response likely results from the exponential soil moisture-matric potential 

relation of the soils’ organic horizon (Figure 3.2a) that allows incoming water to fill rapidly 

the available pore space in the soil matrix (Hasegawa and Eguchi, 2002; Torres et al., 1998). 

This effect is likely due to the precipitation intensity (<2 mm hr-1), which is generally lower 

than the vertical Ksat of the organic soil horizons (Table 3.2), thus enhancing the transfer of 

hydraulic potentials during rainfall events. A noteworthy difference in this layer was observed 

between the UP and MP sites. This difference reflects possibly the higher content of mineral 

and coarse particles at the MP site, as observed in the field and indicated by the higher BD and 

a lower soil moisture content at saturation compared to the UP site (Table 3.2). This factor is 

also likely responsible for the observed lower moisture (water storage) at the MP site in 

comparison to the UP site (brown lines in Figure 3.3b-c, respectively). 

The fast soil moisture dynamics in the underlying mineral layer (from 40-55 cm to 70-80 cm 

depth) indicate that this layer is quickly recharged by water from the Ah horizon during rainfall 

events (orange lines in Figure 3.3b-d). This hydrological dynamic indicates that despite the 

aforementioned influence of the placic horizon on the soil water storage above the Ah-C 

interface, the irregular and discontinuous features of this horizon allow water to transport 

downwards during rainfall events before reaching the C horizon. The subsequent rapid 

response of soil moisture in the mineral layer is likely explained by the steep gradient of the 

water retention curve of the C horizon at high matric potentials (Figure 3.2b), similar to that 

of the organic horizon. This soil moisture-matric potential relation facilitates a rapid transfer 

of hydraulic potentials through the mineral horizon, which in turn causes a fast soil moisture 

response to precipitation inputs of water that infiltrated through the Ah horizon during rainfall 

events (Torres et al., 1998). The observed soil moisture variations, however, occurred at lower 

water content than those within the Ah horizon. This lower moisture content reflects the lower 

clay fraction and organic matter content in the mineral horizon, which decreased to about a 

third to fourth of those in the Ah horizon (Table 3.1). 

As lateral flow is more prone to be activated under high moisture conditions, hypothetically, if 

upper hillslope portions would contribute substantial moisture downslope via lateral subsurface 

flow, a delay in the response times in downhill positions with respect to uphill positions during 
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rainfall events would be observed. However, the strong synchronization of response times to 

the peak values of soil moisture and groundwater level along the entire experimental hillslope 

(i.e., most scatter points in Figs. 4 and 5 plot near the 1:1 ratio) indicates that during rainfall 

events a dominance of vertical flow paths of water persists. These findings are further 

supported by soil moisture and groundwater level observations during dry periods (e.g., 

September-October 2017; Figure 3.3). During these periods, not surprisingly, groundwater 

levels showed a very sharp and steady reduction at faster rates than soil moisture observations 

did. These findings indicate that the aforementioned hydrological dynamics, enabled by the 

properties of the Andosol soils, facilitate the vertical percolation of water throughout the year 

despite the perched layer formed below the rooted zone. Nevertheless, it is worth noting the 

likely occurrence of lateral subsurface flow in the thin transition zones (<few centimeters) 

between soil layers with marked differences in hydraulic conductivity (e.g., the transitions 

between the rooted and perched layers, and the C horizon and the compact bedrock), which I 

observed during field work, but whose hydrological dynamics could not be captured through 

the monitoring system used. 

3.5.2 Tracer mixing and soil water ages 

Precipitation affected greatly the mixing of water in the rooted layer, as evidenced by the little 

attenuation of the stable isotopic composition of soils water (grey dots in Figure 3.6). These 

observations further indicate that water molecules residing in this soil layer are rapidly replaced 

by incoming water during precipitation events (Mosquera et al., 2016a), thus explaining the 

short MTT of water in this soil layer (about 2 weeks at all sampling sites; Figure 3.7a, Table 

3.3). 

Past research suggested that a perched water layer in the subsurface implies that vertical 

percolation in a soil–regolith–bedrock continuum is substantially reduced, while lateral 

subsurface flow in the overlaying layer is favored (Dykes and Thornes, 2000; Hardie et al., 

2012). Thus, solely based on soil moisture observations, I expect that the time water resided in 

this soil layer was much longer than the one in the fast reacting rooted layer above. 

Surprisingly, however, results from the SWI data and MTT analyses indicate that the isotopic 

composition of the water stored in the perched layer is highly influenced by the isotopic 

composition of precipitation (black dots in Figure 3.6a,c,e) and resides in the subsurface for a 

short time (about a month at all sampling sites; Figure 3.7b, Table 3.3). Similar MTTs have 

been previously reported for Andosols in a nearby Páramo catchment at 25 cm depth (35 days; 
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Mosquera et al., 2016a; Lazo et al., 2019) and in a temperate humid forest catchment in central 

eastern Mexico at 30 cm depth (36 ± 10 days; Muñoz-Villers and McDonnell, 2012). 

The soil water MTTs at this soil horizon increased with depth at each hillslope position, but 

were consistently similar at each depth among all sampling sites, similar to the vertical aging 

of water in a tropical forest catchment dominated by Andosol soils (Muñoz-Villers and 

McDonnell, 2012). The sole vertical aging of soil water indicates that water from upslope areas 

does not significantly contribute to lower hillslope positions, and thus, that vertical flow paths 

of water are dominant (Asano et al., 2002; McGuire and McDonnell, 2010; Muñoz-Villers and 

McDonnell, 2012). These findings are concomitant with the aforementioned fast transfer of 

hydraulic potentials across the entire organic (andic) horizon of the hillslope soils, being the 

result from the fast movement of water through the porous soil matrix. Moreover, the transport 

and mixing of water throughout the whole Ah horizon suggests that the perched layer is 

hydrologically active, balancing out gains and losses of moisture during rainfall events. This 

behavior can be explained by the combined effect of two characteristics of the soil. On the one 

hand, the high content of organic matter and clay of the soil that allow water molecules to be 

bound to the large surface area of the soil particles. On the other hand, the rapid transport of 

water through the soil that enables the replacement of stored moisture by “new” water 

molecules during rainstorms. 

Despite the fast transfer of hydraulic potentials from the organic horizon to the mineral horizon 

during rainfall events, soil water stored within the mineral layer was less influenced by the 

isotopic composition of incoming precipitation and had longer MTTs (2.8-8.5 months; Table 

3.3) than in the organic horizon. Similar SWI signals for the mineral layer of Andosols have 

been reported in a nearby Páramo catchment (Lazo et al., 2019; Mosquera et al., 2016a) and in 

a tropical forest catchment in Veracruz, Mexico (Muñoz-Villers and McDonnell, 2012). Even 

though the dominance of rapid infiltration of incoming precipitation across the Ah horizon 

toward the mineral layer is consistent with the relatively short MTT observed at the LP site 

(2.8 months), this mechanism cannot explain the longer MTT at the UP site (8.5 months). A 

potential explanation for the long MTT at the latter could be the reduced lateral inflow at upper 

hillslope positions within the mineral layer due to smaller upslope contributing area in relation 

to the downslope sites. This effect could result in an overall lower exchange of the water stored 

at upslope sampling positions and hence explain (i) the generally longer MTTs of soil water in 

the mineral layer in relation to the organic horizon and (ii) the longer MTT and slower response 

times to the peak values of soil moisture during rainfall events (Figure 3.5g,h) at the UP site 
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in comparison to the LP site. The activation of lateral flow paths in this soil layer is likely 

favored by the compacted underlying geology observed during the excavation of the soil pits. 

3.5.3 Volcanic ash soils as wet, layered sloping sponges? 

The hydraulic properties of household cellulose sponges were experimentally examined and 

compared to soils with different characteristics by Richardson and Siccama (2000) to 

investigate whether the forest hydrology analogy of soils behaving like “sponges” is a fair 

comparison from a soil physics point of view. Their findings suggested that sponges (O-Cel-O 

cellulose sponges, 3M) had similar water retention and release characteristics as soils rich in 

organic matter, i.e., topsoil and peat. The field observations and soil properties characterization 

suggest that the organic layer of the Andosol soils is able to store large amounts of water and 

to rapidly transfer hydraulic potentials in a similar manner to the cellulose sponges. Thus, this 

findings provide novel field evidence to support the experimental observations reported by 

Richardson and Siccama (2000) and indicate that volcanic ash soils (rich in organic matter and 

clay) resemble a “sponge-like” hydrological behavior. 

 

 

Figure 3.8. “A wet, layered sloping sponge”. Conceptual model of the subsurface hydrological 

system of the experimental hillslope underlain by volcanic ash soils (Andosols) located in the 

headwaters of the Quinuas Ecohydrological Observatory. The size of the blue arrows represents 

the relative importance of vertical and lateral flow paths of water at different soil layers. The 

relative size of the white symbols indicates differences in the magnitude of the soil properties 

at each of the soil layers (values in Tables 1 and 2). aKsat = saturated hydraulic conductivity in 

the vertical direction. 
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This natural soil system, however, presents some particularities with respect to the “ideal” 

sponge behavior. Even though the organic matter and clay content of the organic horizon of 

the soils are homogenous along the experimental hillslope, Ksat decreased consistently with 

depth at all positions. These factors allow incoming water to rapidly fill and empty the porous 

matrix of the unsaturated layers with high Ksat (the rooted layer), but tend to promote a 

sustained storage of high amounts of water and to transport it steadily to deeper soil layers with 

low Ksat (the perched layer). The latter phenomenon is also possible at the study site given that 

precipitation is distributed fairly even throughout the year, with generally low intensity 

compared to the Ksat of the soil, thus maintaining near saturation conditions in the organic 

layers below the highly conductive root zone. This results in the formation of a “layered 

sponge” system, in which a fast-conducting organic layer underlain by a lower conductivity 

layer helps conserve high soil moisture near saturated conditions year-round in the latter 

(Figure 3.8). This situation, in turn, provides water for vegetation throughout the year, creating 

a positive hydrological service. Even though topography has been found an important factor 

controlling subsurface flow processes (e.g., Famiglietti et al., 1998; Bachmair and Weiler, 

2012), the findings illustrate clearly the dominance of vertical flow paths independent of the 

position along the steep hillslope. Thus, it is not unlikely that the conceptual system 

representation can be used to mimic the hydrological functioning of hillslopes dominated by 

volcanic ash soils with similar to lower slope gradients. 

3.6 Conclusions 

The experimental evaluation of water transport and tracer mixing helped to conceptualize the 

subsurface hydrological behavior of a steep experimental hillslope underlain by volcanic ash 

soils (Andosols). Findings reveal that the behavior resembles that of a “layered sponge” in 

which vertical flow paths are dominant. That is, on the one hand, the formation of a perched 

water layer that maintains high moisture near saturated conditions year-round due to the 

presence of a low conductivity layer below a layer with a higher conductivity. On the other 

hand, a fast-vertical transport of water due to the rapid transfer of hydraulic potentials along 

the entire soil profile facilitating water mobilization through the porous soil matrix. Despite the 

dominance of vertical flow paths, lateral flow likely develops during high intensity rainstorm 

events above hydraulically restrictive layers (e.g., the perched layer) due to the steep slope of 

the hillslope. Given that the “sponge-like” hydrological behavior of these soils largely depends 

on their high organic matter and clay content, the rapid breakdown of the soil organic-mineral 

components due to changes in land use and climate could cause severe changes in the 
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hydrological services provided by ecosystems in which these soils dominate. The findings of 

this study provide crucial information that can be used to improve the representation of the 

physical processes in hydrological models, which in turn will lead to a better management of 

the soil and water resources in these ecosystems. 
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Chapter 4 

4. Hydrological behavior of a temperate catchment 

underlain by volcanic geology 

 

Water-stable isotopic (WSI) data are widely used in hydrological modelling investigations. 

However, the long-term monitoring of these tracers at high-temporal resolution (sub-hourly) 

remains challenging due to technical and financial limitations. Thus, alternative tracers that 

allow continuous high-frequency monitoring for identifying fast-occurring hydrological 

processes via numerical simulations are needed. I used a flexible numerical flow-partitioning 

model (TraSPAN) that simulates tracer mass balance and water flux response to investigate the 

relative contributions of event (new) and pre-event (old) water fractions to total runoff. I tested 

four TraSPAN structures that represent different hydrological functioning to simulate storm 

flow partitioning for an event in a headwater forested temperate catchment in Western, Oregon, 

USA using four-hour WSI and 0.25-hour electrical conductivity (EC) data. Results showed 

strong fits of the water flux and tracer signals and a remarkable level of agreement of flow 

partitioning proportions and overall process-based hydrological understanding when the model 

was calibrated using either tracer. In both cases, the best model of the rainstorm event indicated 

that the proportion of effective precipitation routed as event water varies over time and that 

water is stored and routed through two reservoir pairs for event and pre-event. These results 

provide great promise for the use of sub-hourly monitored EC as an alternative tracer to WSI 

in hydrological modelling applications that require long-term high-resolution data to 

investigate non-stationarities in hydrological systems. 

 

 

 

Related publication 

Mosquera G, Segura C, Crespo P. 2018. Flow Partitioning Modelling Using High-Resolution 

Isotopic and Electrical Conductivity Data. Water 10 (7): 904 DOI: 10.3390/w10070904 
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4.1 Introduction 

The identification of the water sources contributing to runoff is fundamental to understand the 

linkage and interactions between water and biogeochemical cycles and the transport of 

contaminants and solutes at the catchment and landscape scales (Burns and Kendall, 2002; Burt 

and Pinay, 2005; Hrachowitz et al., 2015; Kendall and McDonnell, 1998). During precipitation 

events total runoff can be partitioned into event — “new” water from incoming precipitation 

— and pre-event water — “old” water stored in the catchment prior to a given precipitation 

event (Buttle, 1994; Klaus and Mcdonnell, 2013). Depending on the catchment conditions (e.g., 

vegetation, soil type, geology, topography, antecedent moisture) and event characteristics (e.g., 

precipitation amount and temporal variability) the event and pre-event water fractions vary. As 

such, understanding the spatial and temporal variability of the contributions of different water 

pools to the hydrograph is not only a fundamental question in hydrological science (Heidbüchel 

et al., 2012), but is also needed for the implementation of effective water resources 

management strategies worldwide (Hrachowitz et al., 2013). 

Given that the contribution of different water pools to total runoff is time dependent owing to 

the time variant nature of flow response processes (Bertuzzo et al., 2013; Birkel et al., 2012; 

Heidbüchel et al., 2012; Kirchner, 2016; van der Velde et al., 2015), we struggle to apply 

effective monitoring strategies in catchments with different environmental conditions (Rode et 

al., 2016). Conservative (e.g., water stable isotopes, 2H and 18O, and chloride) and non-

conservative (e.g., electrical conductivity (EC) and silica) tracers have been used to constrain 

mixing models of flow partitioning at the event scale (e.g., Hooper, Christophersen, & Peters, 

1990; Hooper & Shoemaker, 1986; Kronholm & Capel, 2016; Laudon & Slaymaker, 1997; 

Uhlenbrook & Hoeg, 2003). One of the most commonly applied methods is tracer-based two-

component end member mixing analysis (Buttle, 1994; Klaus and Mcdonnell, 2013; Pinder 

and Jones, 1969; Sklash and Farvolden, 1979) to quantify the proportions of event and pre-

event water to total runoff using a simple mass balance (cf., Buttle (1994) and Klaus & 

Mcdonnell (2013) for reviews). However, since these models only account for the mixing of 

the tracer within a hydrological system, they provide only limited information about the 

combined flow and tracer mixing dynamics in response to precipitation inputs. Therefore, these 

models have limited ability to provide a process-based understanding of catchment behavior 

(Laudon et al., 2004; McDonnell and Kendall, 1992; Rice and Hornberger, 1998). 
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In response to this challenge, numerical models in which the tracer mass balance and the 

hydrological flow response are coupled have been developed (Roa-García and Weiler, 2010; 

Segura et al., 2012; Vaché and McDonnell, 2006; Weiler et al., 2003). These models allow for 

the simultaneous simulation of the streamflow hydrograph — water flux — and the tracer 

mixing. In general, these models account for the water flux partitioning by applying the unit 

hydrograph approach, and the tracer mixing using travel time distributions (TTDs) (Barnes and 

Bonell, 1996). The application of TTDs accounts for the estimation of the possible travel times 

of the tracer within the system. That is, the time that a water molecule takes to travel within a 

hydrological system from the moment it enters as precipitation or snowmelt to the time it exists 

as runoff (Kirchner et al., 2000; McGuire and McDonnell, 2006). The TTDs shapes are used 

to identify runoff processes (Heidbüchel et al., 2012; Hrachowitz et al., 2016; Kirchner et al., 

2000; Małoszewski and Zuber, 1982) by providing information about the physical processes 

that influence the internal mixing of different water sources. 

Despite the advantages of numerical approaches for hydrograph separation, the availability of 

long-term high-resolution water geochemical data remains a challenge. To date, the majority 

of applications of tracer-based hydrograph separation techniques have been conducted using 

WSIs as tracers (Klaus and Mcdonnell, 2013). Despite their recognized usefulness and 

reliability (being conservative), WSIs sampling at fine resolution (e.g., sub-hourly) is still 

sparse given high associated costs and, thus, limits the description of the rapid response of 

streamflow to water inputs and the inter-storm variation of the input isotopic composition 

(Brooks et al., 2010; Coplen et al., 2015, 2008; N.C. Munksgaard et al., 2012). This limitation 

has resulted in high uncertainties in the estimation of flow components (Coplen et al., 2015; 

McDonnell et al., 1990; N.C. Munksgaard et al., 2012). Recent studies have monitored WSIs 

at high-temporal resolution (every 30 min) (Berman et al., 2009; Koehler and Wassenaar, 2011; 

Munksgaard et al., 2011; N. C. Munksgaard et al., 2012; Pangle et al., 2013; Volkmann et al., 

2016) and applied simple mixing models to partition flow components (Birkel et al., 2012; 

Kronholm and Capel, 2016; Tweed et al., 2015; von Freyberg et al., 2017). However, while 

technological developments currently allow the deployment of field analyzers to measure the 

WSI of inputs and outputs (e.g., rainfall and streamflow) at high temporal resolution it is 

unfeasible to broadly implement such analyzers. Thus, there is a need for alternative 

inexpensive and low maintenance water quality parameters (i.e., tracers) that allow 

investigating internal catchment processes at a high resolution (Kirchner et al., 2004; Rode et 

al., 2016). 

000098
0



nada

Hydrological behavior of a temperate catchment 

67 

 

Electrical conductivity, or specific conductance (EC) of water, is an alternative tracer often 

used in flow partitioning and water quality studies, either alone or in combination with WSIs 

(e.g., Nakamura, 1971; Pilgrim et al., 1979; Sklash and Farvolden, 1979; Matsubayashi et al., 

1993; Laudon and Slaymaker, 1997; Johnson et al., 2007; Pellerin et al., 2008; Maurya et al., 

2011; Penna et al., 2015). The main advantage of using EC is that it can be continuously 

monitored at high temporal resolution (seconds to minutes) using inexpensive in-stream probes 

(Kirchner et al., 2004; Matsubayashi et al., 1993; Rode et al., 2016). Despite the non-

conservative nature of EC as it highly depends on the water contact time with the mineral 

substrate in particular (Carey and Quinton, 2005; Mueller et al., 2016; Pilgrim et al., 1979), EC 

has yielded similar streamflow partitioning results than WSIs using traditional mass balance 

models (Laudon and Slaymaker, 1997; Pellerin et al., 2008). However, its effectiveness has not 

been tested against WSI using sophisticated hydrological modeling approaches. 

This study compares the results of a flow partitioning tracer-based hydrological model 

calibrated using WSIs and EC. The specific objectives are: (1) to evaluate different model 

structures (representing different assumptions of the internal catchment hydrological 

functioning) and determine the model structure that best simulates flow partitioning using WSI 

and EC data; and (2) to compare the process-based hydrological understanding obtained from 

the models calibrated using each tracer. 

4.2 Materials and Methods 

4.2.1 Study Area 

This study was conducted at the Mack Creek catchment (5.8 km2) in the H.J. Andrews 

Experimental Forest in the Western Cascades of Oregon (Figure 4.1). Mack Creek is a 

tributary of Lookout Creek, which drains into the Blue and McKenzie rivers within the 

Willamette River Basin. Glaciation occurred in the catchment leaving U-shaped valley 

morphologies with a steep slope (average 46%). The elevation ranges between 758 and 1610 

m a.s.l. (McGuire et al., 2005; Swanson and Jones, 2002). The catchment is underlain by ridge-

capping andesite lava flows (upper Sardine Formation and Pliocene flows). The soils in the 

catchment are gravelly loams at high elevation that transition into the predominantly gravelly 

sandy loams that characterize over 70% of Mack Creek drainage area (Dyrness et al., 2005). 

The forest is dominated by 400–500 year-old coniferous trees, including Douglas fir 

(Psuedotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja 

plicata). The climate is Mediterranean with wet, mild winters and dry summers. Fall and winter 
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precipitation falls as a mix of rain and snow and may accumulate and last from early November 

to late June (Jennings and Jones, 2015). Mean annual precipitation (between 2002 and 2016) 

was 2243 and 2709 mm at the CENMET (1018 m a.s.l) and UPMET (1294 m a.s.l) 

meteorological stations (Figure 4.1), respectively. However, precipitation in 2015 — when 

this study was conducted — was only 51% of this 15-year average and fell almost entirely in 

the form of rain. 

 

Figure 4.1. Location of Mack Creek Catchment within the H.J. Andrews Experimental Forest 

in Western Oregon. Black triangles indicate the locations of the meteorological stations 

(PRIMET, CENMET, and UPLMET) along with the location of the precipitation and stream 

gauging stations at Mack Creek (GSMACK). 

 

4.2.2  Hydrometric Data Collection 

Water fluxes — precipitation (P) and streamflow (Q) — were monitored during a large 

rainstorm event between 28 October and 7 November 2015. I used 5-min resolution P and Q 

data maintained as part of the NSF Long-Term Ecological Research (LTER) program (Johnson 

and Rothacher, 2016). Q data derived from an 18-in flume (GSMACK; Figure 4.1) and mean 

P values across the UPMET station and a precipitation tipping bucket located in the roof top 

of the GSMACK was used (Daly and Rothacher, 2017). The 8-in diameter GSMACK gauge is 

heated with a propane heater. Continuous precipitation is recorded with depth measurements 

using a Stevens A-35 chart recorder or a Stevens PAT water level shaft encoder. The UPMET 
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precipitation gauge is stand-alone composed of standing pipe with tank gauge, a propane-

heated 20-inch diameter orifice, surrounded by a Valdai-style double wind fence. A 

temperature probe controls the orifice heating by turning a pump and heater on/off. The stand-

alone rain gauge was specifically developed to withstand heavy snow with depths up to 3–4 m 

and windy condition. 

4.2.3 Water Stable Isotope Data Collection and Analysis 

Streamflow grab samples of 44,500 mL were collected every 4 h using an automatic 

autosampler (ISCO-3700). A grab sample was also collected before the event in order to 

characterize the streamflow isotopic composition during base flow conditions (i.e., pre-event). 

I described the event isotopic signature of precipitation at a meteorological station located at 

430 m a.s.l (PRIMET; Figure 4.1) with a sequential rainfall sampler designed to collect up to 

12 200-mL water samples to characterize the temporal variability of water stable isotopes 

(Brooks et al., 2010; McGuire and McDonnell, 2010). The sequential collector was located in 

a clearing, thus, it was assumed that the difference between the isotopic signature of direct 

rainfall and throughfall was minimal (Allen et al., 2014). All water samples for isotopic 

analysis were collected and stored in 20 mL glass bottles with conical inserts without headspace 

and kept in dark at relatively cool conditions (~15°C) to avoid fractionation by evaporation 

until their analysis was conducted at the Watershed Processes Laboratory at Oregon State 

University. 

The water-stable isotopes (δ18O) in all samples were measured using a cavity ring down 

spectroscopy liquid and vapor isotopic analyzer (Picarro L2130-i, Picarro Inc, Santa Clara, 

CA). All samples were run under high precision, including six injections per sample. The first 

three injections were discarded to account for memory effects. Two internal (secondary) 

standards (MET1, δ18O= −14.49‰ and BB1, δ18O= −7.61‰) were used to develop calibration 

curves, while a third internal standard (ALASKA1, δ18O= −11.09‰) was used to estimate a 

drift correction equation (drift was always below 0.000152‰). All internal standards were 

calibrated against the IAEA primary standards for the Vienna Standard Mean Ocean Water 

(VSMOW2, δ18O=0.0‰), Greenland Ice Sheet Precipitation (GISP, δ18O=−24.76‰), and 

Standard Light Antarctic Precipitation (SLAP2, δ18O=−55.5‰). The uncertainty in the 

secondary standards (i.e., standard deviation) is<0.01‰. Based on>50 duplicate samples 

(collected concurrently under comparable conditions) in rainfall and streamflow, an internal 

laboratory precision of 0.03‰ was estimated. The external accuracy of the laboratory was 

0.06‰. This accuracy was computed as the mean difference between 60 estimated values and 
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a known water standard. Only the internal precision as an overall measure of accuracy was 

used although it is acknowledged that there are other sources of uncertainty (Dunn and Carter, 

2018). 

4.2.4 Electrical Conductivity Measurements 

The conductance of the sequential water samples collected for the water stable isotopes analysis 

was measured using a Hanna® Multiparameter (HI9828) Water Quality Portable Meter and 

used these measurements to characterize the EC of the precipitation during the event. The 

portable meter was calibrated in the laboratory following manufacture guidelines. The 

manufacture accuracy of this instrument is 1% or 1 μS/cm (whichever is larger). Replicate 

measurements for 30 samples indicated a precision of<5%. The EC measurements were 

conducted after the 20-mL samples for water stable isotopes were collected to avoid sample 

contamination. Streamflow EC was continuously recorded (every 5 min) at the GSMACK 

gauge with a Campbell Scientific CS547A EC and temperature probe (with a 5% accuracy; 

Johnson, 2016). The EC data is corrected with a temperature coefficient based on YSI Pro30 

conductivity instrument (Johnson, 2016). 

4.2.5 Tracer-Based Hydrograph Separation Modeling 

In recent years, different approaches that allow the incorporation of geochemical tracers mixing 

into hydrological models have been developed. The application of conceptual models using 

TTD functions (Birkel et al., 2015; Segura et al., 2012; Weiler et al., 2003) and ranked storage-

age-selection (rSAS) functions (Harman, 2015) are amongst the most frequently applied 

approaches. I selected the former approach as it allows for the implementation of different 

model structures (representing different catchment hydrological behavior) that have been 

widely tested using WSI for model calibration in other studies and, thus, allow for a direct 

comparison with these results using both high-resolution WSIs and EC data. 

The flexible modelling framework developed by (Segura et al., 2012) that considers both the 

tracer mass balance and the hydrological flow response during rainfall-runoff events was used. 

I refer to this model as TraSPAN (Tracer-based Streamflow Partitioning ANalysis model). 

TraSPAN shares similarities with other tracer-based hydrological models (e.g., Weiler et al., 

2003; Roa-García and Weiler, 2010). It allows for the implementation of different model 

structures to simulate different levels of hydrological complexity, assuming that rainfall-runoff 

can be partitioned into event and pre-event components. As such, I implemented this 

framework to evaluate competing hypotheses of hydrological response against observed Q and 
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tracer data to select the best model structure for the given hydrological system (Clark et al., 

2011; Kirchner et al., 2000; Pfister and Kirchner, 2017). 
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Table 4.1. Modules, equations, and parameters of the four Tracer-Based Streamflow Partitioning Analysis (TraSPAN) model structures. 

Module Parameters and Equations Units 
Model Structure 

1 2 3 4 

1a 

Peff 

Initial antecedent rainfall index, So - X X X X 

Memory timescale parameter, w 
time 

steps d 
X X X X 

Equations 

𝑃𝑒𝑓𝑓(𝑡) = 𝑝(𝑡)𝑠(𝑡); Equation (1) 

𝑠(𝑡) = 𝑐 ∙ 𝑝(𝑡) − 𝑠(𝑡 − ∆𝑡) (1 −
1

𝑤
); Equation (2) 

where p is precipitation and c is the normalization constant to maintain ∑ 𝑃𝑒𝑓𝑓 = ∑ 𝑄 

     

2b 

f, constant Fraction of effective rainfall routed as event water, f - X X   

f, variable 

Normalization constant, cf 

15-

min/m

m 

  X X 

Memory timescale parameter, wf 
time 

steps d 
  X X 

Equations 𝑓(𝑡) = 𝑐𝑓 ∙ 𝑝(𝑡) − 𝑓(𝑡 − ∆𝑡) (1 −
1

𝑤𝑓
); Equation (3)      
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Table 4.1 Cont. 

Module Parameters and Equations Units 
Model Structure 

1 2 3 4 

3 c 

Single Reservoir 

Mean transit time of event water, ke h X  X  

Time delay for the event fraction response, elag h X  X  

Mean transit time of pre-event water kp h X  X  

Time delay for the pre-event fraction response, plag h X  X  

Equations 

𝑄𝑒(𝑡) = ∫ ℎ𝑒(𝜏)
𝑡

0
𝑃𝑒𝑓𝑓(𝑡 − 𝜏)𝑓(𝑡 − 𝜏)𝑑𝜏; Equation (4) 

𝑄𝑝(𝑡) = ∫ ℎ𝑝(𝜏)
𝑡

0
𝑃𝑒𝑓𝑓(𝑡 − 𝜏)[1 − 𝑓(𝑡 − 𝜏)]𝑑𝜏 ; Equation (5) 

ℎ𝑒(𝜏) = 𝑒𝑙𝑎𝑔 −
1

𝑘𝑒
exp (

𝜏

𝑘𝑒
)  ; Equation (6) 

ℎ𝑝(𝜏) = 𝑝𝑙𝑎𝑔 −
1

𝑘𝑝
exp (

𝜏

𝑘𝑝
)  ; Equation (7) 

𝐶𝑡(𝑡) =
𝑄𝑒(𝑡) 𝐶𝑒+𝑄𝑝(𝑡) 𝐶𝑝

𝑄𝑒+𝑄𝑏
 ; Equation (8) 

where Ce is the tracer composition of event water (rainfall) and Cp is the tracer composition in pre-event 

water (e.g., baseflow prior to the rainstorm). 

     

Two Parallel 

Reservoirs 

Fraction of water routed into the fast-responding reservoir of event water, qe -  X  X 

Mean transit time of the fast fraction of event water, kfe h  X  X 

Mean transit time of the slow fraction of event water, kse h  X  X 

Time delay for the event fraction response, elag h     

Fraction of water routed into the fast-responding reservoir of pre-event water, qp -  X  X 

Mean transit time of the fast fraction of pre-event water, kfp h  X  X 

Mean transit time of the slow fraction of pre-event water, kse h  X  X 

Time delay for the pre-event fraction response, plag h  X  X 

Equations 

ℎ𝑒(𝜏) = −
𝑞𝑒

𝑘𝑓𝑒
exp (−

𝜏−𝑒𝑙𝑎𝑔

𝑘𝑓𝑒
) +

1−𝑞𝑒

𝑘𝑠𝑒
exp (

𝜏−𝑒𝑙𝑎𝑔

𝑘𝑠𝑒
)  ; Equation (9) 

ℎ𝑝(𝜏) =
𝑞𝑝

𝑘𝑓𝑝
exp (−

𝜏−𝑝𝑙𝑎𝑔

𝑘𝑓𝑝
) +

1−𝑞𝑝

𝑘𝑠𝑝
exp (

𝜏−𝑝𝑙𝑎𝑔

𝑘𝑠𝑝
) ; Equation (10) 

Equations (4), (5) and (8) are also used here. 

     

  Total number of parameters  7 11 8 12 
a Module 1: Effective rainfall module; b Module 2: Event and pre-event routing module; c Module 3: Event and pre-event transfer functions 

module; d 15 min time steps. 
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TRaSPAN is composed of three modules (Table 4.1). Module 1: The effective rainfall module 

is a non-linear routine that computes the effective rainfall (Peff) as the product of precipitation 

(P) and the antecedent rainfall index (s) (Equations (1) and (2) in Table 4.1; Jakeman and 

Hornberger, 1993). Module 2: The event and pre-event routing module defines the fraction Peff 

routed as either event or pre-event water. Module 3: The Event and pre-event transfer functions 

module includes the TTDs to convolve the fractions of event and pre-event water and, thus, 

represents the internal hydrological behavior of the system. Modules 2 and 3 are flexible, 

allowing for the fraction (f) of Peff routed as event water to be constant or time-variant (i.e., to 

vary over the duration of the event; Equation (3) in Table 4.1) and for the incorporation of 

TTDs of varying degrees of complexity into the convolution integrals for event ant pre-event 

water (Equations (4) and (5)). Even though there exists a variety of theoretical TTDs that could 

represent tracer mixing in hydrological models, two of the most commonly applied TTDs that 

have been tested to represent hydrological systems in other catchments were selected (Muñoz-

Villers and McDonnell, 2012; Timbe et al., 2014; Weiler et al., 2003). These are the 

exponential model (EM; Maloszewski and Zuber, 1996) representing a single linear reservoir 

(Equations (6) and (7) in Table 4.1) and the two-parallel linear reservoirs model (TPLR; 

(Weiler et al., 2003) representing two connected linear reservoirs (Equations (9) and (10) in 

Table 4.1). A detailed description of the model framework and its modules can be found in 

Segura et al. (2012). The tracer signal was also allowed to vary 10% around the concentration 

measured before the event to account for the uncertainty in pre-event water composition. 

The fractions of event and pre-event water are routed according to the given TTD for he(τ) and 

hp(τ) (Table 4.1, Figure 4.2) and the resulting event (Qe) and pre-event (Qp) fractions are used 

to calculate the tracer concentration based on a mass balance approach (Equation (8), Table 

4.1). Total discharge (Qt) is the sum of event and pre-event water plus the baseflow (Qb), which 

was subtracted from the input data prior to the modelling. The discharge prior to the beginning 

of the rainfall event was defined as Qb. All the parameters in the model were estimated by the 

simultaneous calibration of the streamflow and tracer data (Segura et al., 2012). 

Four TraSPAN model structures were explored of varying complexity depending on the 

treatment of the fraction of Peff routed as event water and the number of reservoirs used to route 

the event and pre-event water fractions (Figure 4.2). The number of parameters fitted in each 

of the four model structures varied between 7 and 12 (Table 4.1). Structure 1 had a constant 

fraction f of Peff routed as event water and a single reservoir for each of the event and pre-event 

water components (seven parameters). Structure 2 also had a constant fraction f, but two 
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reservoirs in parallel for routing the event and pre-event water components (11 parameters). 

Structure 3 had a time-variant fraction f(t) of Peff routed as event and pre-event water and a 

single reservoir for each of the event and pre-event water components (8 parameters). Structure 

4 also had a time-variant fraction f(t), but two reservoirs in parallel for each of the event and 

pre-event water components (12 parameters). For all the model structures, Q, δ18O, and EC 

data were computed every 15 min. 

 

Figure 4.2. Assumptions in TRaSPAN model structures (a) constant fraction of effective 

precipitation (Peff) routed as event water and a single reservoir for the event and pre-event 

runoff components (structure 1); (b) constant fraction of Peff routed as event water and two 

reservoirs in parallel for the event and pre-event runoff components (structure 2); (c) time-

variable fraction of Peff routed as event water and a single reservoir for the event and pre-event 

runoff components (structure 3); and (d) the time-variable fraction of Peff routed as event water 

and two reservoirs in parallel for the event and pre-event runoff components (structure 4). 

 

4.2.6  Model Simulations, Performance, and Uncertainty 

Initially, each of the model structures was ran per tracer 80 million times within a broad range 

of Monte Carlo-generated parameter values from uniform distributions (Table 4.2). The Nash-

Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) was used during the 

calibration always considering the average NSE for the fits of Q and either δ18O or EC. In order 

to improve the identification of parameters each model structure was ran 20 million additional 
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times using a narrower range of parameters corresponding to those that yielded a NSE of at 

least 80% of the maximum NSE during the first run. Given that structure 4 had a larger number 

of calibrated parameters, a third model run for 10 million additional times considering the 

values of the parameters that yielded NSE values of at least 90% of the maximum NSE of the 

second run as initial parameter ranges was conducted (Mosquera et al., 2016b). 

Overall model performance was evaluated using the NSE as a measure of goodness of fit, and 

the Akaike information criterion (AIC; Akaike, 1974) — using the χ2 statistic as the likelihood 

(Bevington and Robinson, 2003) — as a measure of model parsimoniousness. This was 

necessary considering the different number of parameters of the considered model structures 

(Table 4.1). I considered the sum of AICs for the Q and tracer data. Given that the χ2 test 

requires the uncertainty in the observations, it was quantified for Q, δ18O, and EC. The 

uncertainty in the discharge was calculated as the sum of the uncertainty associated with the 

stage measurements and the uncertainty associated with the rating curve. The stage uncertainty 

was estimated to be less than 1.2 mm considering both the instrumentation precision and 

observed bias. The uncertainty in the rating curve was assessed by conducting 10,000 Monte 

Carlo simulations, in which its parameters were randomly varied. This uncertainty varied 

between 0.9% and 4.31% with an average of 3.2%. The total Q resulting uncertainty for the 

monitored storm varied between 2% and 14%. The uncertainty in δ18O was estimated to be 

0.03‰ (Section 3.4) and the uncertainty in EC was assumed to be 5%, considering the precision 

of the instrument. 

I evaluated the uncertainty in the model parameters based on the results of their last run using 

a threshold of behavioral solutions. This threshold of behavioral solutions was set up to include 

parameter sets that yielded NSEs above 0.70 (for model structures 1 and 3) and above 0.75 (for 

model structures 2 and 4). In all cases, there were>5,000 behavioral sets. The difference in 

threshold results from the larger number of simulations for models 1 and 3 that would have 

been required in order to get 5,000 parameter sets with NSE>0.75. 
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Table 4.2. Parameter sets that yielded the highest NSEs values for each TraSPAN model structure and tracer used for calibration. 

Model 

Structure 
Tracer 

 Module 1 Module 2 Module 3 

 So w f cf wf ke (h) 
elag 

(h) 
kp (h) 

Plag 

(h) 
qe kfe (h) kse (h) qp kfp (h) ksp (h) 

1 δ18O Min 0.00 1.00 0.17   15.06 0.00 13.98 0.00        

   Max 1.00 400.00 0.33   55.84 5.75 74.26 3.75        

   Best 0.99 4.03 0.28   28.18 0.25 34.07 0.00        

  EC Min 0.00 11.03 0.16   15.96 0.00 12.67 0.00        

   Max 0.75 399.98 0.24   50.53 3.75 49.47 2.75        

   Best 0.01 390.44 0.20   21.19 0.25 19.64 0.25        

2 δ18O Min 0.00 1.00 0.15     0.00  0.00 0.00 0.03 16.24 0.00 0.03 6.31 

   Max 1.00 400.00 0.37     6.00  4.50 1.00 49.87 250.0 1.00 49.99 250.0 

   Best 0.65 6.60 0.25     0.75  0.25 0.66 16.66 128.7 0.15 6.35 47.23 

  EC Min 0.00 1.09 0.13     0.00  0.00 0.00 0.25 17.82 0.00 0.11 5.75 

   Max 1.00 400.00 0.27     5.25  4.25 1.00 47.78 250.0 1.00 46.99 250.0 

   Best 0.01 190.67 0.19     0.75  1.00 0.69 6.18 122.1 0.66 4.89 208.8 

3 δ18O Min 0.00 1.00  0.01 1.01 17.83 0.00 18.23 0.00        

   Max 1.00 39.99  0.19 39.99 43.40 2.00 72.50 3.75        

   Best 0.08 24.90  0.02 21.33 26.10 0.00 30.61 0.00        

  EC Min 0.00 1.00  0.01 1.00 22.80 0.00 17.50 0.00        

   Max 1.00 40.00  0.15 40.00 64.50 6.50 64.84 3.25        

   Best 0.75 2.50  0.02 12.45 37.63 0.25 35.53 0.25        

4 δ18O Min 0.00 1.02  0.01 1.23   0.00  0.00 0.06 1.06 22.9 0.02 1.25 20.77 

   Max 1.00 39.98  0.14 39.99   2.25  3.25 1.00 31.30 249.8 1.00 49.54 250.0 

   Best 0.31 39.63  0.01 34.95   1.00  0.50 0.48 6.24 45.00 0.31 6.57 44.26 

  EC Min 0.00 1.01  0.01 1.00   0.00  0.00 0.00 0.24 27.2 0.00 0.04 13.60 

   Max 1.00 40.00  0.16 39.98   3.25  3.00 1.00 49.95 250.0 1.00 38.49 249.9 

    Best 0.11 21.03   0.01 32.75   0.00   0.00 0.63 20.62 140.6 0.27 3.84 59.94 
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4.2.7  Comparison of Model Simulations for δ18O and EC 

Once the model structure that best simulated the observed Q and tracer data when calibrated 

for both tracers (δ18O and EC) was selected, I compared the results in terms of their capability 

to simulate the Q and tracer data observations, their distribution and ranges of behavioral 

parameters, and their TTDs. The TTD comparison, which provides information about the 

mixing and transport processes within the hydrological system, allowed for a direct comparison 

of the hydrological behavior determined by the model structures using each tracer. 

4.3 Results 

4.3.1  Hydrometric and Tracer Characterization 

 

Figure 4.3. Temporal variability of the hydrometric and tracer data during the event monitored 

between 28 October and 7 November 2015 at Mack Creek. (a) Rainfall (P), runoff (Q), and 

sample collection times. Vertical dashed lines (t0 − tf) indicate periods described in Section 

4.3.1; (b) δ18O in stream and P; and (c) electrical conductivity (EC) in stream and P. 
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The monitored rainfall-runoff event lasted for 10 days and 6.5 h (t0 − tf in Figure 4.3a). During 

this period, total precipitation (in the form of rain; P) and total runoff (Q) reached 155.1 mm 

and 20.6 mm, respectively. These values corresponded to a runoff coefficient (Q/P) of 0.13. 

During the first 44.5 h (t0 − t1), total P was 19.9 mm with a mean intensity of 0.45 mm h−1. This 

period was characterized by little response in the hydrograph. Subsequently (t1 − t2), Q started 

to increase in response to P inputs of higher intensity (0.95 mm h−1). At t2 (92.5 h since t0) Q 

reached its maximum after a total P amount of 107.4 mm. Later (t2 − t3), the recession of the 

hydrograph started as P intensity decreased to 0.30 mm h−1. Then, at t3, the last Q peak occurred 

112 h after the beginning of the event. By this time, total P was 140.7 mm. Between t3 and the 

end of the event (tf), P almost completely ceased, and the hydrograph recession proceeded. 

During this last period (t3 − tf), total P was 14.4 mm with a mean intensity of 0.06 mm h−1. 

The temporal dynamics of the δ18O and EC signals of P and Q are shown in Figure 4.3b and 

3c respectively. The δ18O of P (δ18O) at to (baseline signal) was the lowest during the event 

(−10.66 ‰) and started increasing as P inputs increased (Figure 4.3b). The δ18O signal peaked 

at −3.5‰ in the water sample collected a few hours before the Q peak at t3. After this time, 

during the recession of the hydrograph, the δ18O decreased to the baseline value in the sample 

collected at the end of the event (tf). Similarly, the EC signal in P (ECP) started at a low baseline 

value of 5.2 μS cm−1, and increased as P inputs increased (Figure 4.3c). The ECP peaked at a 

value of 30 μS cm−1 in the sample collected a few hours before the highest peak of the 

hydrograph at t2. After this period, ECP decreased near the baseline value, and then peaked 

again (as δ18O did) in the sample collected before the last Q peak (around t3) with a value of 

11 μS cm−1. Then, ECP decreased to the baseline value during the recession of the Q as P inputs 

decreased until the end of the event (tf). The temporal variability in the Q δ18O (δ18OQ) was 

smaller (−10.92‰ to −8.3‰; Figure 4.3b) than the variability observed in δ18OP. The δ18OQ 

showed a pattern related to the hydrograph, i.e., δ18OQ increased as Q increased, and vice versa, 

in response to the dynamics of P. Similarly, the temporal change of EC in Q (ECQ) was lower 

(31.8–41.6 μS cm−1; Figure 4.3c) than ECP. The ECQ variability was the mirror image of the 

δ18OQ signal, i.e., when the δ18OQ signal (and Q) increased, the ECQ signal decreased, and vice 

versa (the r2 between EC and δ18O is 0.69). The Q values of the pre-event water fraction were 

−10.92‰ for δ18O and 41.0 μS cm−1 for EC. 

4.3.2 Model Performance 

A summary of the parameter values that yielded the highest NSEs and the statistics of the 

calibration model performance for the four structures using each tracer are presented in Tables 
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2 and 3 respectively. In general, all model structures using both tracers yielded strong fits 

(NSE>0.79) to the observed Q and tracer data (Table 4.3). The highest NSEs were obtained 

using model structures 2 and 4 (NSE = 0.87) for δ18O and model structure 4 (NSE = 0.90) for 

EC. The evaluation of the models structures’ parsimoniousness showed that the variation of 

the AIC values for Q (10,747–22,581) was higher than the variation of the AIC values for the 

tracers (213–1025) among the different model structures (Table 4.3). Even though model 

structure 4 had the largest number of fitting parameters, the sum of the AIC values for Q and 

the tracers (ΣAIC) showed that this model structure yielded the lowest values for both δ18O 

(ΣAIC = 12,238) and EC (ΣAIC = 10,992). 

Table 4.3. TraSPAN model performance in terms of the mean Nash–Sutcliffe efficiency (NSE) 

for discharge and tracer concentrations and the Akaike Information Criterion for discharge 

(AICQ) and tracer (AICT, i.e., δ18O or EC) values. 

Tracer 
Model 

Structure 
Pre-Event Fraction (%) NSE AICQ AICT ΣAIC * 

δ18O 1 71.7 0.86 20,762 644 21,405 
 2 76.2 0.87 16,987 514 17,501 
 3 76.3 0.81 21,563 1025 22,589 
 4 74.9 0.87 11,390 849 12,238 

EC 1 79.6 0.79 20,762 448 21,209 
 2 79.5 0.86 15,517 379 15,896 
 3 81.7 0.86 22,581 213 22,793 
 4 81.0 0.90 10,747 245 10,992 

Note: Bold values indicate the best model structure considering NSE or AIC. * ΣAIC 

= AICQ + AICT. 

 

4.3.3 Modelled Streamflow Partitioning 

The fitted hydrographs using TRaSPAN model structure 1 (Figure 4.2a) for δ18O and EC 

(Figure 4.4a,d) poorly resembled the temporal dynamics of Q during the monitored event. In 

general, the model was not able to reproduce the Q peak responses to P inputs, or the recession 

limbs of the hydrographs. This was particularly noticeable during the highest Q peak and rapid 

recession of the hydrograph on DOY 305 and by the overestimation (DOY 306–308) and 

underestimation (DOY 308–311) of Q during the recession limb of the hydrograph. Similarly, 

this model structure poorly reproduced the δ18OQ and ECQ temporal variability during the 

event. The structure could not resemble the δ18OQ tracer signal dynamics at the beginning of 

the event (DOY 301–303) and the enriched isotopic composition during the highest Q peak 

response on DOY 306 (Figure 4.4b). During the remaining of the event, the tracer signal was 

better captured within the uncertainty bands of the simulations. Regarding the ECQ temporal 

dynamics, the model simulations were even weaker (Figure 4.4e). The model poorly 
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reproduced this tracer’s signal at the beginning of the event (DOY 301–304), during the highest 

Q peak response (DOY 305), and during the last part of the event’s recession limb (DOY 311). 

The pre-event water fractions estimated using this model structure were 71.7 % for δ18O and 

79.6% for EC (Table 4.3) and the temporal dynamics of the event and pre-event water 

contributions to total Q are shown in Figure 4.4c,f, respectively. These fractions depicted 

similar overall model results using both tracers. These simulations also indicated an over 

prediction of the pre-event water fraction (i.e., Qe>100%) at the beginning of the event with 

δ18O (DOY 301–302; Figure 4.4c) and at the first part of the recession limb (DOY 306–308; 

Figure 4.4d) with EC. Similar results were found for model structure 3 (time-variant fraction 

of Peff routed as event water and single reservoirs for event and pre-event; Figure 4.2c). For 

this structure, the implementation of the time-variant routine for the fraction of Peff routed as 

event water did not improve the simulations of the hydrograph and the temporal variation of 

the tracers (Figure S2). The pre-event water fractions estimated using this model structure were 

76.3% for δ18O and 81.7% for EC (Table 4.3) and the temporal dynamics of the event and pre-

event water contributions to total Q were similar using both tracers (Figure S2c,f). 
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Figure 4.4. TraSPAN modelling results of the hydrograph separation using structure 1 with 

δ18O (a–c) and electrical conductivity (EC) (d–f) as tracers for calibration. (a,b,d, and e) show 

the observed (open markers) and simulated streamflow and tracer data according to at least 100 

different sets of parameters (light blue lines) yielding Nash–Sutcliffe efficiencies (NSEs) above 

0.70 (behavioral parameter sets). The simulated times series with the set of parameters that 

yielded the highest NSEs are depicted in dark blue lines in all cases. (c and f) present the pre-

event water (gray shaded area) and the event water (unshaded area) contributions during the 

storm corresponding to the set of parameters yielding the highest NSEs. 

 

The simulation results using TRaSPAN model structure 4 (i.e., the time variant fraction of Peff 

routed as event water and two connected reservoirs for event and pre-event water; Figure 4.2d) 

showed that this structure better captured the temporal dynamics of Q using both tracers. All 

peaks (e.g., the highest peak produced on DOY 305) and the recession (DOY 306–311) of the 

hydrograph were well simulated by this model structure using δ18O (Figure 4.5a) and EC 

(Figure 4.5d). Similarly, the temporal dynamics of the tracers’ signal were well simulated by 

this model structure. Even though this model structure underestimated the δ18OQ enrichment 

(Figure 4.5b) and overestimated the decrease in ECQ (Figure 4.5e) on DOY 304; the most 

enriched δ18OQ and the lowest ECQ peak values (DOY 305), as well as the rest of the tracer 

dynamics, fitted the observed data well. The estimated proportions of pre-event water were 

74.9% using δ18O and 81% using EC (Table 4.3). The temporal variability of the pre-event 

water contributions were similar using δ18O (Figure 4.5c) and EC (Figure 4.5f) and showed a 

dominance of pre-event water contributions, even during the peak Q generation. 
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Figure 4.5. TraSPAN model results of the hydrograph separation using structure 4 calibrated 

with δ18O (a–c) and electrical conductivity (EC) (d–f) as tracers. (a,b,d, and e) present observed 

(open markers) and simulated streamflow and tracer data according to all parameter sets (blue 

lines) that yield a Nash–Sutcliffe coefficient above 0.75 (behavioral parameter sets). The best 

simulated times series in both cases are depicted in dark blue lines. (c and f) present the pre-

event water (gray area) and the event water (white area) contributions during the storm, 

according to the best set of parameters. 

 

Even though structure 2 (i.e., the constant fraction of Peff routed as event water and two 

connected reservoirs for event and pre-event; Figure 4.2b), simulated the hydrograph better 

than structures 1 and 3 using both tracers (e.g., it captured the Q peaks better), it still had issues 

simulating the peak hydrograph response compared to structure 4, particularly when calibrated 

using δ18O (Figure S1a,b). Structure 2 also had issues replicating the δ18OQ (Figure S1c) and 

ECQ (Figure S1d), particularly when calibrated using EC during the rising limb of the 

hydrograph. The pre-event water fractions estimated using this model structure were 76.2% for 

δ18O and 79.5% for EC (Table 4.3). However, in contrast to all of the other model structures, 

the temporal dynamics of the event and pre-event water contributions to total Q were different 

using both tracers. This structure tended to estimate lower pre-event water contributions during 

the rising limb of the hydrograph and higher pre-event water contributions during the recession 

when calibrated using δ18O (Figure S1c). An opposite trend was observed when calibrated for 

EC (Figure S1f). 
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4.3.4 Model Parameter Identification for the Best Model Structure 

 

Figure 4.6. Dotty plots of the Monte Carlo simulations for the calibrated parameters using 

TraSPAN model structure 4 using electrical conductivity (EC). Parameter names are shown in 

Table 4.1. 

 

According to the dotty plots (i.e., values of the NSE as a function of the calibrated parameters 

for a given model run), seven of the 12 parameters of model structure 4 using EC for calibration 

reached a single peak in the parameter space yielding the highest NSE (Figure 4.6). These 

parameters were: the normalization constant (cf = 0.01; Figure 4.6c; Table 4.2) of module 2 

and the fraction of water routed into the fast-responding reservoir of event water (qe = 0.63; 

Figure 4.6e), the mean transit time (MTT) of the fast fraction of event water (kfe = 20.62 h; 

Figure 4.6f), the time delay for the event fraction response (elag = 0 h; Figure 4.6h), the fraction 

of water routed into the fast-responding reservoir of pre-event water (qp = 0.27; Figure 4.6i), 

and the MTT of the fast fraction of pre-event water (kfp = 3.84 h; Figure 4.6j), and the time 

delay for the pre-event fraction response (plag = 0 h; Figure 4.6l) of module 3. Both parameters 

of module 1 (So; Figure 4.6a and w; Figure 4.6b), the memory timescale parameter (wf) of 

module 2 (Figure 4.6d), and the slow fractions of event (kse; Figure 4.6g) and pre-event (ksp; 

Figure 4.6k) water of module 3 showed equifinality (Beven and Freer, 2001). That is, these 

parameters did not reach a single peak associated to the highest NSE in their parameter space 

distributions. The distributions of the model parameters for model structure 4 calibrated using 
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δ18O was similar (Figure S9) and the ranges of calibrated parameters using both tracers were 

in strong agreement (Figure 4.7). 

Similar results were found for model structure 2 using EC for calibration. For this structure, 

the module 3 parameters qe, kfe, elag, qp, kfp, and plag, as well as the constant fraction of effective 

rainfall routed as event water parameter f (module 2) reached a single peak in the parameter 

space yielding the highest NSE (i.e., seven out of 11 parameters; Figure S6). However, even 

tough for the same model structure calibrated using δ18O, the parameters qp and kfp did not 

reach a single peak in the parameter space (i.e., only five out of 11 parameters did; Figure S5), 

the ranges of calibrated parameters using both tracers were in agreement (Figure S11). 

 

Figure 4.7. Box plots of the calibrated parameters considering sets that yielded NSE>0.75 from 

the last run (i.e., 1 × 107 simulations) using model structure 4 calibrated for δ18O and electrical 

conductivity (EC) data. Parameter names are shown in Table 4.1. 

 

For model structure 1 calibrated using EC, none of the parameters of module 1 reached a single 

peak in the parameter space, whereas the parameters f (module 2), and ke, elag, kp, and plag 

(module 3) did (i.e., five out of seven parameters; Figure S4). The calibration of structure 1 

using δ18O, showed that the parameter w (module 1) reached a single peak in the parameter 

space in addition to those that did for the model calibrated for EC (i.e., six out of seven 
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parameters; Figure S3). Similarly, the ranges of the calibrated parameters for both tracers were 

not in agreement (Figure S10). For model structure 3 calibrated using EC, only the cf 

parameter (module 2), and the ke, kp, and elag parameters (module 3) reached a single peak in 

the parameter space (i.e., four out of eight parameters; Figure S8). The same parameters reach 

a single peak in the parameter space when structure 3 was calibrated using δ18O (Figure S7) 

and the ranges of calibrated parameters using both tracers were in agreement (Figure S12). 

4.3.5 Comparison of Model Results for Both Tracers 

 

Figure 4.8. Transit time distributions (TTDs) of the (a) event (he) and (b) pre-event (hp) flow 

components for model structure 4 using δ18O and electrical conductivity (EC) for calibration. 

The solid lines represent TTDs based on the 50th percentiles of behavioral (>0.75 NSE) 

parameter sets. The dashed lines correspond to the TTD defined based on parameter sets 

representing the 25th and 75th percentiles of their distributions. 

 

Even though the TTDs of the event fractions using both tracers were similar for transit times 

(τ) longer than 20 h (Figure 4.8), there was some discrepancy in the τ distributions shorter than 

20 h. For shorter τ, the calibration with δ18O yielded a TTD with a predominance of shorter τ 

in comparison to the calibration of the model calibrated with EC (Figure 4.8a). The shape of 

the TTDs of the pre-event water fractions (Figure 4.8b) were opposite to those of the event 
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water fraction. That is, for shorter MTTs (<10 h), there was a predominance of shorter MTTs 

for the calibration with EC compared to the calibration with δ18O. 

4.4 Discussion 

4.4.1 Selection of the Best Model Structure Using Water Isotopes and 

Electrical Conductivity for Model Calibration 

The various TraSPAN model structures can be used to test different hypothesis about the 

processes that control streamflow generation (Clark et al., 2011; Pfister and Kirchner, 2017) or 

as a rejectionist framework to improve knowledge about the hydrological behavior of a given 

catchment (Vaché and McDonnell, 2006). Thus, the modeler can hypothesize and test different 

hydrological behaviors and assumptions in a catchment by building and testing conceptual 

models that represent different catchment functions (Birkel et al., 2010; Fenicia et al., 2011). 

In this study, the four tested model structures (i.e., competing hypotheses; Chamberlin, 1965; 

Elliott and Brook, 2007) provided strong fits in terms of the NSE objective function using both 

tracers for calibration (NSEs>0.79; Table 4.3). However, further evaluation of the models’ 

parsimoniousness, depicted important differences among the evaluated structures (Table 4.3). 

The simplest TraSPAN structures, including a single reservoir for the event and pre-event water 

transit times assuming either constant (structure 1 with 7 parameters; Figure 4.2a) or a time 

variant (structure 3 with 8 parameters; Figure 4.2c) fraction of Peff routed as event water, 

provided less parsimonious results than the more complex structures 2 and 4. Between 

structures 2 and 4, which represented the catchment response with two connected linear 

reservoirs for each the event and pre-event water fractions and a constant (structure 2 with 11 

parameters; Figure 4.2b) or time variant (structure 4 with 12 parameters; Figure 4.2d) fraction 

of Peff routed as event water; structure 4 was the most parsimonious to represent the internal 

catchment response using both tracers (Table 4.3). 

Regarding the results of the simulations of the observed Q and tracer data, the simplest 

structures 1 and 3 poorly resembled the hydrograph. These structures did not reproduce the 

peak responses and the recessions that followed them (DOY 306–311; Figure 4.4a,d, Figure 

S2a,d). Regarding the simulation of the tracer dynamics, these structures captured relatively 

well the δ18OQ decrease and ECQ increase during the hydrograph falling limb but poorly 

resembled the tracer dynamics at the beginning of the event (Figure 4.4b,e, Figure S2b,e). 

These results indicate that the hydrological behavior of Mack Creek is not well represented 

when a single reservoir is used to route the event and pre-event water fractions regardless of 
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the treatment of the Peff as constant or time variant. On the other hand, structures 2 and 4 

provided better representations of the hydrograph and the tracers’ dynamics. Both of these 

structures calibrated with both tracers were able to better resemble the highest Q peak (DOY 

305) and the following rapid recession (Figure 4.5a,d, Figure S1a,d). These results suggest 

that the Mack Creek hydrological system is better represented by two connected linear 

reservoirs for each the event and pre-event water fractions. Regarding the tracer dynamics, 

structure 4 provided the best fits of the tracer data in comparison with structure 2 for both 

tracers (Figure 4.5b,e, Figure S1b,e). These results indicate that the system is not only better 

represented by two connected reservoirs, but that the internal mixing of the tracer is better 

represented when the Peff routed as event water is treated as time-variant (structure 4) than 

when it is treated as constant (structure 2). Even though not directly investigated at Mack Creek 

evidence of non-stationary flow conditions and tracer dynamics have been shown for WS10, a 

0.1 km2 catchment located near the outlet of the H.J. Andrews Forest (Figure 4.1; McGuire 

and McDonnell, 2010; Klaus et al., 2015; Rodriguez et al., 2018). 

4.4.2 Comparison of Flow Partitioning Modelling Results Calibrated for 

Water Isotopes and Electrical Conductivity 

The ranges of the calibrated parameters for TraSPAN structure 4 were remarkably similar using 

both WSI and EC for calibration (Figure 4.6, Figure 4.7, and Figure S8, Table 4.2). In 

addition, the temporal variation (Figure 4.5c,f) and the estimated proportions of pre-event 

water yielded by the model calibrated for each tracer were in agreement (74.9% for δ18O and 

81.0% for EC, Table 4.3). Even though previous hydrograph separation investigations using 

simple tracer mixing models have found contradictory results regarding the reliability of the 

event and pre-event water contributions when EC is used as a tracer due to its non-conservative 

nature (Caissie et al., 1996; Cey et al., 1998; Kronholm and Capel, 2016; Laudon and 

Slaymaker, 1997; Matsubayashi et al., 1993; Nakamura, 1971; Nolan and Hill, 1990; Pellerin 

et al., 2008; Pilgrim et al., 1979), these findings suggest that this issue could be related to the 

lack of simultaneous representation of the water flow transport in addition to the tracer mixing 

within a given hydrological system. I was able to account for both using the TraSPAN 

numerical modeling approach. 

Similar findings were reported by Mosquera et al. (2016b) in a study conducted to evaluate the 

baseflow transit times in a nested system of tropical alpine (páramo) catchments in South 

America. These authors found that the spatial variability of transit time estimates for their 
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nested system of catchments—based on the calibration of a lumped conceptual model using 

δ18O —was highly correlated with the catchments’ mean yearly baseflow EC (r2 = 0.89) and 

suggested that average EC values could be used as an inexpensive proxy to estimate baseflow 

transit times. Even though these results cannot be generalized until additional investigations 

are carried out in different environments, the results from Mosquera et al. (2016b) and this 

study highlight the potential advantages of high-resolution monitoring of EC for hydrological 

modelling applications, particularly when flow dynamics are accounted for. 

4.4.3 On the Use of High-Temporal Resolution EC in Hydrograph 

Separation Modelling 

It is worth noting that the structure 4 simulation results yielded better model performance, both 

in terms of goodness of fit and parsimoniousness, when calibrated with the finer temporal 

resolution of EC data than when calibrated for δ18O (Table 4.3). The simulation results also 

showed that a higher accuracy to represent the hydrograph and tracer dynamics was obtained 

when structure 4 was calibrated using the higher-resolution EC data (sub-hourly), than when 

calibrated for WSI data collected every 4 h. For instance, the hydrograph highest peak and 

following recession on DOY 305 (Figure 4.5a,c) and the rapid δ18O increase/EC decrease on 

DOY 304–305 (Figure 4.5b,d) were better represented by the model calibrated using EC data. 

These results indicate that even though the model calibrated for both tracers depicted similar 

hydrological behavior (see Section 4.4 for details), the calibration for the higher-resolution EC 

data allowed better capturing of the fast occurrence of flow transport and solute mixing 

processes. These simulations resulted in the release of higher amounts of pre-event water for 

the model calibrated for EC (81%), particularly during the highest hydrograph peak on DOY 

305 (Figure 4.5f), with respect to the calibration for δ18O (75%; Figure 4.5c). 

Other investigations have also reported higher accuracy to represent the temporal variability of 

the tracer’s signal, and further interpretation of water routing in hydrological systems when 

using high-temporal resolution tracer data (Stockinger et al., 2016; Timbe et al., 2015). This 

results do not only support the findings from these authors, but also demonstrate the potential 

of the inexpensive collection of EC data at high-temporal resolution to improve understanding 

of fast occurring (seconds to minutes) hydrological processes. 

4.4.4 Process-Based Understanding of Hydrological Behavior 

The similarity in hydrological behavior of the transport and mixing of water within the Mack 

Creek catchment was evaluated based on the shapes of TTDs provided by the best model 
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structure calibrated for each tracer. Despite the overall similarities of the TTDs’ shapes for both 

tracers (Figure 4.8) with dominance of long transit times (τ>10 h), results showed small 

differences for shorter transit times (τ<20 h for the event water fractions, Figure 4.8a; τ<10 h 

for the pre-event water fractions, Figure 4.8b). This discrepancy could be related to different 

temporal resolution of the data used for calibration, as reported in other studies (Stockinger et 

al., 2016). In other words, the use of finer temporal resolution EC data (every 0.25 h) in 

comparison to the WSI data (every 4 h). 

From a process-based perspective, the TTDs obtained from the model calibration using both 

tracers indicate that the catchment acts as a connected system of two water reservoirs each with 

a fast and a slow transit function contributing large amounts of pre-event water (75–81%) to 

discharge (Table 4.3). These two reservoirs likely represent: (1) fast event and pre-event water 

moving through the shallow permeable soils and (2) slow event and pre-event water moving 

through the fractured parent material (hereafter referred to as the groundwater reservoir, GW). 

That is, this catchment has poorly developed gravelly loam soils with high infiltration rates 

(>500 cm h−1) that are overlaying highly weathered and fractured bedrock (McGuire et al., 

2005). Baseflow MTT at Mack Creek was estimated around 2 ± 0.49 years, i.e., one of the 

longest within the H.J. Andrews catchments (McGuire et al., 2005). This MTT estimation 

indicates that water is likely stored in the GW reservoir, as has been observed in other 

headwater catchments with relatively permeable geology (e.g., Timbe et al., 2014; Hale and 

McDonnell, 2016; Muñoz-Villers et al., 2016). Stored water that can be released rapidly to 

streams during rainfall events given the connectivity between hillslopes and riparian areas. 

Such connectivity has been observed near the study area at WS10 (Figure 4.1; McGuire and 

McDonnell, 2010). Additionally, even though high amounts of pre-event water were released 

as streamflow during the monitored event, the total runoff (20.6 mm) accounted for only 13% 

of the total precipitation input (155.1 mm). Again, given the permeable soils and fractured 

bedrock of the catchment, and the dry antecedent moisture conditions during the monitoring 

period (28 October–7 November)—which corresponded to the beginning of the fall season 

after the summer period in the particularly dry water year 2015—only a small fraction of total 

precipitation was converted into Peff. These results from the hydrometric analysis indicate that 

the rest of water inputs must have filled the initially low water storage of the GW reservoir 

after the dry summer. In this context, the strong goodness of fit of the model to simulate the 

high temporal variability of the streamflow and tracer data dynamics (Figure 4.5a–d) indicates 

that through the simultaneous calibration of water and solute fluxes, the model was not only 
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capable to successfully account for the water flux and tracer mixing dynamics, but also for the 

recharge of water in the groundwater system. 

4.5 Concluding Remarks and Future Directions 

Our evaluation of a tracer-based hydrological model (TraSPAN) demonstrated that the 

assessment of different modeling structures—each representing a different rainfall-runoff 

response—allowed for a better identification of the hydrological system functioning. For the 

analyzed rainfall event at the H.J. Andrews experimental forest, I found that the same model 

structure was best at representing hydrographic and tracer dynamics using either electrical 

conductivity/specific conductance (EC) or water-stable isotopes (WSIs) collected at high 

temporal resolution for calibration. The model results using both tracers not only showed a 

remarkable agreement to fit the observed data and the calibrated parameter distributions, but 

also in terms of the process-based understanding of the hydrological system. Moreover, the use 

of sub-hourly (0.25 h) collected EC data also allowed to better simulate the catchment 

hydrological response in comparison to the 4 h δ18O data. These findings highlight the potential 

of using low-cost EC data collected at high temporal resolution in combination with a flexible 

hydrological modelling framework to better understand catchment hydrological behavior. 

Despite the advantages of the applied methodology, it is acknowledged that before the 

widespread application of this approach, future research should focus on understanding site-

dependent geochemical conditions under which the applicability of EC as a conservative tracer 

is suitable. Future research should also focus on implementing monitoring strategies that allow 

for the combined collection of water isotopes and geochemical data at the highest possible 

temporal resolution during a variety of climatic conditions (i.e., wet, transition, and dry 

periods). Such efforts are encouraged, as these data would provide information about the spatial 

and temporal variability in weathering rates to better establish the conditions under which the 

use of high-resolution EC observations would yield robust datasets to investigate important, 

but yet unresolved, questions in catchment hydrology that require the identification of fast-

occurring hydrological processes, while reducing monitoring costs and the degree of 

uncertainty in simulated flow components. 
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Chapter 5 

5. Conclusions 

 

5.1 Synthesis 

The influence of volcanic activity in the evolution of mountainous landscapes is well-known. 

In contrast, knowledge about how catchment features originated from volcanic material affect 

the behavior of hydrological systems has not been sufficiently investigated. The definition of 

flow paths in the unsaturated zone of volcanic ash soils and the influence of fractured volcanic 

geology on how catchments store and release water are still not completely understood. To 

improve knowledge about this, I focused the doctoral research on the investigation of the role 

of volcanic catchment features on the water transport and tracer mixing mechanisms in 

mountainous environments. In a first step, the water retention characteristics of volcanic ash 

soils with andic properties (Andosols/Andisols; Chapter 2) were evaluated. Subsequently, the 

influence of Andosols in the delineation of subsurface flow paths at the hillslope scale was 

analyzed (Chapter 3). Lastly, the impact of a highly weathered volcanic geology on streamflow 

partitioning at catchment scale was studied (Chapter 4). 

The water retention capacity of the soils is a fundamental parameter in the analysis of the 

transport and mixing of water and solutes in porous media. Previous comparative research 

using in-situ (field) and standard laboratory methods to determine the relationship between soil 

moisture content and soil matric potential (the water retention curve, WRC) of Andosols 

showed contrasting results. Since it is yet unknown whether such discrepancy depends on site-

specific features, the applied laboratory method, and/or the volume of the soil sample, a 

thorough comparison among standard laboratory methods and direct measurements in large 

soil cores and in the field (in-situ) was conducted (Chapter 2). High-elevation experimental 

observatories in south Ecuador were selected as study sites given that the formation of the local 

soils is highly influenced by the accumulation of volcanic ash from past volcanic activity. This 

evaluation showed that soil moisture content and matric potential measurements in large, 

undisturbed soil cores (Ø=40 cm, h=32 cm) resemble accurately the WRC of the Andosols in 

comparison to direct measurements in the field. However, this evaluation in combination with 

data compiled from the published literature on this topic demonstrated that standard laboratory 

methods reflect only partially the hydraulic behavior of the Andosols under field conditions. 
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These methods resembled well the wet range of the WRC of the soils (up to 3-5 kPa or pF 1.5-

1.7), but overestimated greatly the water retention capacity of the soils for the dry range of the 

WRC, including the field capacity (i.e., the amount of water that a soil retains against gravity). 

It is worth mentioning that this discrepancy occurred independently of the site-specific land 

use, land cover, and physical, chemical, and mineralogical properties of the Andosols. 

Importantly, this analysis also indicated that soil samples of small volume (≤300 cm3), which 

are traditionally used in laboratory analyses (corresponding to 94% of the sample volumes used 

in the published literature), do not represent the field hydraulic behavior of these soils. This, 

most likely because small-volume soil samples do not represent correctly the macro-porosity 

of the Andosols and/or produce the dead end of preferential flow paths that in turn causes an 

underestimation of the large-scale conductivity of the soil. I also demonstrated that for the 

determination of the representative elementary volume (i.e., the smallest soil sample volume 

that resembles the field hydraulic behavior of the soils in the laboratory, REV) of Andosols, 

currently considered as a soil sample of 100 cm3 volume (a cylindrical sample with a cross-

sectional area of 20 cm2; i.e., Ø=5 cm, h=5.1 cm), the comparison among different standard 

laboratory methods yielded equivocal results. As a result, future comparisons against field 

and/or experimental observations are required to determine the REV of these soils. 

Further research was focused on the analysis of how the properties of Andosols influence 

subsurface flow dynamics in a steep hillslope underlain by Andosols in a tropical alpine 

(Páramo) ecosystem in the south of Ecuador (Chapter 3). An extensive dataset of soil moisture 

measurements, soil water stable isotopes, and a detailed characterization of the soil properties 

was used and led to a profound understanding of the dominant water flow paths (vertical versus 

lateral) that control the water transport and tracer mixing within the studied hillslope soils. The 

findings from Chapter 2 were crucial to apply an appropriate method (direct soil moisture and 

matric potential measurements in large soil cores) for the accurate representation of the water 

retention characteristics of the Andosol soil along the experimental hillslope. The 

characterization of soil properties along the experimental hillslope depicted two well-

differentiated soil horizons. A poorly developed andic horizon (52-61 cm, Ah horizon) rich in 

organic matter (33.5-42.1 %) and clay (29-31 %) in comparison to the underlying mineral (C) 

horizon that presented much lower organic matter (2.9-7.6 %) and clay (7-8 %) contents, with 

a dominance of the sand fraction (70-73 %). In the Ah horizon, soil moisture data in the rooted 

layer (from the ground surface to 10-15 cm depth) showed a fast response to rainfall. 

Differently, below the root zone, a perched water layer (from 10-15 cm to 35-40 cm depth) that 
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remained near saturation during the 3-year monitoring period was observed. The presence of a 

perched layer is the result from the combination of two factors. On the one hand, the abrupt 

decrease in saturated hydraulic conductivity of the soil between the highly conductive rooted 

layer and the unrooted layer below. On the other hand, the high organic matter and clay content 

of the Ah horizon that increases the water storage capacity of the soil. Interestingly, the isotopic 

data showed that the mixing of tracer within the entire Ah horizon was highly influenced by 

the isotopic composition of precipitation, and that despite the perched layer, the mean transit 

time (MTT, or the age of the water) was short (2-4 weeks). This information indicates that 

water molecules in the soil matrix of the Ah horizon are rapidly replenished by incoming water 

during rainfall events. This effect is likely explained by the rapid transfer of hydraulic 

potentials through the porous soil matrix as evidenced by the exponential shape of the WRC of 

the soils in the Ah horizon. In the C layer, the soil moisture data responded fast during rainfall 

events with response times similar to those observed in the rooted layer of the Ah horizon. The 

fast soil moisture dynamics of this layer indicates that the C horizon is rapidly recharged by 

water that percolates vertically through the entire Ah horizon during rainfall events. Soil water 

in this horizon was less influenced by the isotopic composition of precipitation and presented 

longer MTTs (2.8-8.5 months) in comparison to the Ah horizon. These findings suggest that 

the storage of water in the C horizon is not only maintained by vertical contributions stemming 

from the Ah horizon above, but also by an overall lower exchange of the water stored at upslope 

sampling positions. Despite the dominance of vertical flow paths in the subsurface of the 

experimental hillslope, lateral flow likely occurs during high intensity rainstorm events above 

the hydraulically restrictive layers (e.g., the perched layer) due to the steep gradient of the 

hillslope. Together, the combination of different sources of information (i.e., hydrometric, 

isotopic, and soil properties data) led to the following conclusion: the hydrologic behavior of 

volcanic ash soils resembles the hydrologic functioning of a wet layered sloping sponge in 

which vertical flow paths dominate despite the formation of a perched water layer that helps 

sustain water storage in the andic horizon of the soils. 

Moving beyond the role of volcanic ash soils on the hydrological behavior of mountainous 

environments, Chapter 4 examined how highly weathered volcanic geology influences the 

hydrological behavior at the catchment scale. A catchment presenting fractured bedrock 

geology but without the influence of soils developed on volcanic ash in the Pacific Northwest 

of the United States was selected as the study site in order to discard the influence of the latter 

on flow transport and tracer mixing mechanisms. For this purpose, a hypothesis testing 
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framework consisting of a flow partitioning tracer-aided hydrological model was applied to 

quantify the contribution of event (new) and pre-event (old) water to total runoff. The 

hypotheses were represented as four different model structures, each representing a different 

mechanism (or competing hypothesis) of conversion of precipitation into runoff during a 

rainstorm event in which hydrometric (streamflow and precipitation) and tracer (water-stable 

isotopes (WSIs) and electrical conductivity or specific conductance (EC)) data were collected 

at high temporal frequency (few hours to sub-hourly). The model structure that best simulated 

the transport (streamflow hydrograph) and mixing (the tracers’ signals in streamflow) of water 

was represented by two-parallel linear reservoirs. From a process-based perspective, the two 

reservoirs represent the poorly developed gravelly loam soil with high infiltration rates (>500 

cm h−1) and the highly weathered, fractured bedrock that conforms the groundwater (GW) 

reservoir of the system. During the event, which lasted for 10 days and took place at the 

beginning of the fall season in the dry 2015 water year, only 13% of the total precipitation input 

during the monitored storm (155.1 mm) was released as streamflow. The modeling results 

showed that the streamflow hydrograph was mainly composed of pre-event water (or water 

stored in the catchment prior to the rainstorm event, 75-81%). These results indicate that 

incoming precipitation infiltrated rapidly through the permeable soils and contributed mainly 

to recharge the storage of the GW reservoir, whereas only a small fraction of water was released 

to the stream. The latter was composed principally of pre-event water. These findings do not 

only contribute to improve the process-based understanding of how catchments dominated by 

fractured geology generate streamflow, but also to the knowledge of how they store water. The 

latter is a fundamental hydrological feature that cannot be directly quantified by traditional 

hydrometric measurements or observed in the field, but that can be inferred from the use and 

the modeling of isotopic and geochemical signals as shown in this work. 

An additional contribution from Chapter 4 was the evaluation of whether a low cost and easy 

to measure at high temporal frequency (sub-hourly) “non-conservative” tracer (EC) yield 

similar model calibration results than conservative tracers (WSIs) commonly collected at a 

lower temporal frequency (few hours to monthly). The comparative analysis depicted a 

remarkable agreement between the flow partitioning modeling results produced by both tracers. 

This, not only in terms of the modeling performance (hydrometric and tracer data fitting and 

calibrated parameter distributions), but also with regard to the process-based understanding of 

the system. These findings provide a great promise for the utility of EC in combination with 

tracer-aided hydrologic models to investigate fast occurring catchment hydrological behavior, 
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particularly in remote areas where harsh field conditions limit the capacity to acquire WSI 

information at high temporal frequency. 

The research presented in this doctoral dissertation fills important knowledge gaps and 

highlights other important ones that require urgent attention regarding the influence of 

catchment features of volcanic origin (soils and geology) in the subsurface hydrology of 

montane ecosystems. The findings in Chapter 2 highlight that we, as a community, have not 

been able to develop appropriate methods to characterize correctly the water retention capacity 

of volcanic ash soils. Although an accurate, yet expensive and unsuitable method to be 

implemented at large spatial scale is available, it is urgent that future research is devoted to 

identify the REV of Andosols and laboratory methods that allow the characterization of this 

fundamental soil property at accessible logistical and financial costs. 

At the hillslopes scale, volcanic ash soils (Andosols) facilitate the vertical percolation of water 

within the soil profile during rainfall events, despite the formation of a perched water layer that 

sustains the near saturation water holding capacity of the soil below the root zone (Chapter 3). 

It is important to highlight that to develop this knowledge, the combination of traditional 

hydrometric measurements and not so commonly used techniques in vadose zone 

investigations, such as the use of stable isotope fingerprints and mean transit time modeling, 

was crucial. It is also worth noting that an accurate determination of the water retention capacity 

of the soils is fundamental to interpret hydrometric and isotopic observations, but more 

importantly, to develop a process-based understanding of subsurface flow processes. 

Finally, at the catchment scale, the highly weathered, fractured volcanic geology (groundwater 

reservoir) contributed substantially to water storage, with only a small amount of water 

previously stored in the catchment (pre-event water) being released as streamflow during the 

first fall season rainstorm event after a long, dry summer season (Chapter 4). Similar to Chapter 

3, the combination of hydrometric and tracer data with numerical modeling methods was vital 

to obtain an improved understanding of catchment hydrological behavior. In this sense, in 

addition to the developed process-based understanding presented in this doctoral dissertation, 

this work also contributes as a methodological guidelines for the investigation of similar issues 

in other mountainous environments. Importantly, if we would not have had access to different, 

but complementary, sources of information, it is pretty likely that our conclusions would have 

been different, and presumably erroneous. 
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5.2 Complementary, ongoing, and future research 

5.2.1 Complementary studies 

 
Figure 5.1. Schematic representation of complementary and future/ongoing research linked to 

this doctoral dissertation. The vertical blue arrows indicate how complementary research 

published in peer-reviewed journals that resulted from the thesis of 3 MSc students advised by 

the dissertation author (gray level) and open research questions that need to be addressed in 

future (or ongoing) research (orange level) are linked to the outcomes of each of the chapters 

of this dissertation (blue level). 

 

The research presented in this dissertation was closely related to several studies conducted in 

parallel (grey boxes in Figure 5.1). These studies correspond to the work of MSc students in 

the Ecohydrology Program at the University of Cuenca, in which I participated as a tutor, co-

director, or director of the students’ theses. One of these studies was focused on the 

investigation of how land use change (LUC), from native forests and grasslands to pastures or 

pine forests specifically, affect the hydraulic properties of Andosols in the Andean highlands 

(Marín et al., 2018). Results revealed that the impacts of changes in the properties of the soils, 

including their water retention capacity, cannot be generalized across the study region mainly 

because their effects depend on previous land management. Similar to the outcomes presented 

in Chapter 2, these findings add up to the general knowledge about the hydraulic properties of 

these soils. However, given the demonstrated lack of representativeness of the dry range of the 

WRC of Andosols using standard laboratory methods (Chapter 2), and that such methods were 
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used in our study, the effects of LUC on soil parameters dependent on the dry portion of the 

curve (e.g., field capacity, wilting point, plant available water) ought to be reevaluated using 

appropriate techniques. 

Regarding the dynamics of subsurface flow in Andosol soils at the hillslope scale, we studied 

the factors that control maximum soil moisture changes in response to precipitation events 

(Tenelanda-Patiño et al., 2018). Parameters based on precipitation, evapotranspiration, and soil 

wetness during and prior to rainstorm events were used as potential variables that control soil 

moisture dynamics during dry, transition, and wet periods (wetness states) at the same 

experimental hillslope studied in Chapter 3. We demonstrated that regardless of the wetness 

state of the system, the total volume and the intensity of precipitation during the monitored 

events were the main factors that triggered soil moisture response along the experimental 

hillslope. These complementary findings to those reported in Chapter 3 contribute to an 

enhanced understanding of the role of Andosols in the dynamics of subsurface flow at the 

hillslope scale. 

In relation to the hydrological behavior at the catchment scale, we analyzed how catchment 

features (e.g., vegetation, soil type and distribution, precipitation, evapotranspiration) influence 

the water storage of a nested system of tropical alpine catchments (Lazo et al., 2019) by 

applying an approach analogous to the one presented in Chapter 4. That is, we used a 

combination of hydrometric, tracer, and modelling techniques that allowed to obtain improved 

process-based understanding of the hydrologic functioning of the catchment. The study 

revealed that the areal extent of riparian soils (wetlands), which cover only 15-25% of the study 

catchments, control the passive storage (or total volume of storage available for tracer mixing), 

whereas precipitation intensity controls the dynamic storage (the storage active in the water 

balance) of the catchments. Similar to the findings presented in Chapter 4, this study filled 

knowledge gaps about the influence of landscape features on streamflow production and water 

storage. In addition, both studies present emerging methods that can be applied to unravel 

efficiently the hydrological behavior of other catchments. 

5.2.2 Future research opportunities 

The findings in this dissertation lead to important research questions, challenges, and 

opportunities for future investigations (orange boxes in Figure 5.1). What is the REV of 

Andosols that allows to resemble the hydraulic behavior of these soils accurately in the 

laboratory (Chapter 2)? Resolving this issue is fundamental to continue advancing the 
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understanding of the hydrological, ecological, and biogeochemical processes in regions where 

these soils dominate. Another important issue to resolve is to define whether or not standard 

laboratory methods can be used or adapted, if necessary, to determine the WRC of Andosols 

using soil samples of larger dimensions. Although I demonstrated that direct soil moisture and 

matric potential measurements in large, undisturbed soil cores provide an accurate 

representation of the water retention capacity of these soils, using this method is not logistically 

and economically sustainable. One of the main issues related to this method is that the 

collection of large samples across large areas is difficult as it requires the construction and 

transportation of the cores to the field, and large man-power to collect the samples in the field, 

particularly at steep, mountainous areas where these soils are commonly found. Given that this 

procedure also requires conducting soil moisture and matric potential measurements during the 

desiccation of the saturated samples at environmental conditions, obtaining the curve requires 

long observation periods in the order of several months. Additionally, the use of often 

expensive probes increases the cost of this method. These financial and logistical constraints 

limit the applicability of the method almost exclusively to research applications and to small 

spatial scale studies (e.g., from plot to hillslope transect). Therefore, the identification of the 

REV of the Andosols and the identification/adaptation of methods that allow the analysis of 

several soil samples in short time periods at accessible cost is more than relevant and opens 

opportunities for future research. It is also worth highlighting that once these issues are 

resolved, reevaluation of past research that yielded conclusions based on the incorrectly 

determined WRC of Andosols using the up to now standard laboratory methods is required. 

Once the Andosols’ influence on the delineation of the main water flow paths and the 

subsurface hydrological behavior at the hillslope scale has been conceptualized based on field 

observations (Chapter 3), the next step is to quantify these fluxes. Taking advantage of the 

detailed characterization of the hydraulic properties of the soils and the available high-

frequency hydrometric data along the experimental hillslope, the application of a process-based 

hydrological model to quantify how much water is distributed laterally and vertically in the 

subsurface, as well as how much of it is lost via soil evaporation and plant transpiration is the 

next obvious step. Another issue that requires further attention, is the dynamics of soil water 

storage along the hillslope. The available datasets could help to unravel how soil moisture 

storage changes over time and what hydrometeorological factors and/or properties of the soils 

along the hillslope control its spatial-temporal variation. Resolving these issues will not only 

be helpful in filling knowledge gaps in hydrological sciences, but also improve water 
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management in the study region, the tropical Andes, where these soils are an important resource 

that sustains the regional economic development. 

The investigation of the hydrologic behavior and flow partitioning at catchment scale using 

hydrometric, geochemical, and numerical modelling techniques also opened new opportunities 

for future investigations. During the development of the dissertation, I proposed two ideas for 

potential doctoral projects that surfaced from the findings presented in Chapter 4. The evolution 

of these ideas was partially triggered by the fact that I participated as co-director of a research 

project co-funded by the International Atomic Energy Agency and the Central Research Unit 

of the University of Cuenca (DIUC), which recently lead to the initiation of two doctoral 

projects that since mid-2018 are being implemented by two doctoral students of the Water 

Resources Program at the University of Cuenca. One of the projects relates to the use of a 

tracer-aided hydrological model, which can be used as a hypothesis testing framework similar 

to the one applied in Chapter 4, to obtain improved understanding of the hydrologic behavior 

of catchments. This project seeks to improve the transport and mix of water and stable isotopes 

within a tropical alpine experimental catchment, and how the catchment´s hydrological 

behavior varies over time in response to time-varying environmental conditions. This research 

project will contribute to improve the understanding of the hydrology of tropical alpine 

environments and the general knowledge about the usefulness of tracer-aided numerical models 

to unravel runoff generation mechanisms. 

Given the difficulty to obtain reliable conservative tracer data (i.e., stable isotopes) in 

precipitation and streamflow at high-temporal frequency to identify the fractions of old and 

new water contributing to streamflow during a variety of flow conditions (from droughts to 

extremely wet conditions), it is most relevant to identify easy to collect/measure, inexpensive 

alternative tracers that provide the same information at a fraction of the cost associated with 

the acquisition of stable isotope data. In Chapter 4, the potential use of electrical conductivity 

in combination with a tracer-aided hydrological model was tested for this purpose. However, 

determining the usefulness of the combination of these techniques in other catchments with 

different landscape and/or environmental conditions requires further testing. To this end, the 

objective of the second doctoral project I proposed is to evaluate whether electrical 

conductivity and/or other geochemical tracers collected in-stream at a high temporal frequency 

(sub-hourly) produce similar flow partitioning modeling results than those yielded when the 

model is calibrated for stable isotopes in a tropical alpine setting. The findings obtained from 

this research project will not only allow to fill knowledge gaps about rainfall conversion into 
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runoff in tropical alpine catchments, but also to the rapidly growing interest of the hydrological 

and biogeochemical community to obtain in-stream high-frequency water quality data that 

allows investigating fast occurring, non-stationary hydrological behavior in catchments. 
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Appendix A 

 

Methodology used for the compilation of the published literature reporting on the water 

retention characteristics of volcanic ash soils with andic properties (Andosols/Andisols). 

The literature review of studies presenting water retention curve (WRC) data for Andosols 

included articles published in international peer-reviewed journals indexed in the Scopus, Web 

of Science, and SciELo databases. We used the following search terms with logical operators: 

(“Andosol” OR “Andisol” OR “Volcanic ash”) AND (“Water retention curve” OR “Moisture 

release curve” OR “Moisture characteristic curve” OR “pF curve”). Further on, the literature 

search was extended by conducting a “citation chasing” of papers referenced within the 

documents selected in the initial search and what we identified as relevant information, 

including PhD and MSc dissertations. From this search, we selected papers that reported 

quantitative information (figures or tables) about WRCs of Andosols or volcanic ash soils with 

andic properties (i.e., pumice soils were excluded). We found 81 studies that met these criteria 

(the list of selected documents can be found as Supplementary Appendix S1 online). The 

literature search was first used to identify (i) the research objectives for which WRCs of 

Andosols have been used, (ii) the measuring methods applied, and (iii) the volume of the soil 

samples used for the determination of the WRCs (data summarized in Figure 2.1). 
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Figure S1. TraSPAN modelling results of the hydrograph separation using structure 2 with 

δ18O (a–c) and electrical conductivity (EC) (d–f) as tracers. (a, b, d, and e) show the observed 

(open markers) and simulated streamflow and tracer data according to at least 100 different 

sets of parameters (light blue lines) yielding Nash-Sutcliffe efficiencies (NSEs) above 0.75. 
The simulated times series with the set of parameters that yielded the highest NSEs are depicted 

in dark blue in all cases. (c and f) present the pre-event water (gray shaded area) and the event 

water (unshaded area) contributions during the storm corresponding to the set of parameters 

yielding the higher NSEs. 
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Figure S2. TraSPAN modelling results of the hydrograph separation using structure 3 with 

δ18O (a–c) and electrical conductivity (EC) (d–f) as tracers. (a, b, d, and e) show the observed 

(open markers) and simulated streamflow and tracer data according to at least 100 different 

sets of parameters (light blue lines) yielding Nash-Sutcliffe efficiencies (NSEs) above 0.75. 

The simulated times series with the set of parameters that yielded the highest NSEs are depicted 

in dark blue in all cases. (c and f) present the pre-event water (gray shaded area) and the event 

water (unshaded area) contributions during the storm corresponding to the set of parameters 

yielding the higher NSEs. 
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Figure S3. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 1 for δ18O. Parameter names are shown in Table 4.1. 
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Figure S4. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 1 for electrical conductivity (EC). Parameter names are shown in 

Table 4.1.   

000172
0



nada

Supplementary material 
 

141 

 

 

Figure S5. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 2 for δ18O. Parameter names are shown in Table 4.1. 
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Figure S6. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 2 for electrical conductivity (EC). Parameter names are shown in 

Table 4.1. 
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Figure S7. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 3 for δ18O. Parameter names are shown in Table 4.1. 
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Figure S8. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 3 for electrical conductivity (EC). Parameter names are shown in 

Table 4.1. 
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Figure S9. Dotty plots of the Monte Carlo simulation for the calibrated parameters using the 

TraSPAN model structure 4 for δ18O. Parameter names are shown in Table 4.1. 
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Figure S10. Box plots of the calibrated parameters considering sets that yield NS>0.75 from 

the last run (i.e., 1 × 107 simulations) using model structure 1 for δ18O and electrical 

conductivity (EC). Parameter names are included in Table 4.1. 

 

Figure S11. Box plots of the calibrated parameters considering sets that yield NS>0.75 from 

the last run (i.e., 1 × 107 simulations) using model structure 2 for δ18O and electrical 

conductivity (EC). Parameter names are included in Table 4.1. 
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Figure S12. Box plots of the calibrated parameters considering sets that yield NS>0.75 from 

the last run (i.e., 1 × 107 simulations) using model structure 3 for δ18O and electrical 

conductivity (EC). Parameter names are included in Table 4.1. 
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