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RESUMEN 

 

El estiaje es un fenómeno natural que se manifiesta a través de precipitaciones por debajo 

de los límites normales con duración, frecuencia y severidad difícil de predecir (Pacheco, 

Parra, & Avilés, 2017). Durante las épocas de estiaje, el caudal de los ríos proviene 

principalmente del flujo de aguas subterráneas (caudal base). En el periodo 2009 a 2011 

Ecuador atravesó diferentes épocas secas críticas, afectando la generación de energía 

eléctrica del país. El Complejo Hidroeléctrico Paute también se vio afectado debido al 

bajo nivel que presentó su embalse, cuyo principal afluente es el río Paute y con ello el 

aporte hídrico de las subcuencas que confluyen en éste. Por lo cual, los objetivos de este 

estudio son conocer cómo en dicho periodo el caudal base del río Paute fue influenciado 

por la subcuenca del río Machángara con regulación artificial en relación a las subcuencas 

de los ríos Tarqui y Yanuncay en las que sólo existe regulación natural y realizar un 

análisis comparativo de las características asociadas al caudal base entre éstas, mediante 

el empleo de análisis de recesión no lineal y filtros digitales.  

La subcuenca del río Machángara durante el periodo de análisis aportó con el 15% de 

caudal base a la cuenca media del río Paute, en relación a las subcuencas de los ríos Tarqui 

y Yanuncay con el 6% y 12% respectivamente. Asimismo, su capacidad de 

almacenamiento fue superior frente a las otras subcuencas, condición que puede deberse 

a los embalses existentes en la zona. Este estudio constituye una herramienta de análisis 

hidrológico para la gestión y manejo adecuado del recurso hídrico a través del 

entendimiento de las características físicas asociadas al caudal base en subcuencas con 

regulación natural y artificial en la región andina del Ecuador, especialmente en la cuenca 

del río Paute. 

 

Palabras clave: Estiaje. Caudal base. río Paute. Subcuenca del río Machángara. 

Regulación artificial. Subcuenca del río Tarqui. Subcuenca del río Yanuncay. Regulación 

natural. Análisis de recesión no lineal. Filtros digitales. 
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ABSTRACT 

 

Drying is a natural phenomenon that is manifest through rainfall below normal limits with 

duration, frequency and severity difficult to predict (Pacheco, Parra, & Avilés, 2017). 

During the dry season, the flow of the rivers comes mainly from the flow of groundwater 

(base flow). In the period 2009 to 2011 Ecuador went through different critical dry 

seasons, affecting the country's electricity generation. The Paute Hydroelectric Complex 

was also affected due to the low level of its reservoir, whose main tributary is the Paute 

river; and with it the water supply of the sub-basins that converge in it. Therefore, the 

objectives of this study are to know how in that period the base flow of the Paute river 

was influenced by the sub-basin of the Machángara river with artificial regulation in 

relation to the sub-basins of the Tarqui and Yanuncay rivers in which there is only natural 

regulation,  and to carry out a comparative analysis of the characteristics associated with 

the base flow rate between them, through the use of non-linear recession analysis and 

digital filters. 

 

The sub-basin of the Machángara river during the analysis period contributed with 15% 

of base flow to the middle basin of the Paute river, in relation to the sub-basins of the 

Tarqui and Yanuncay rivers with 6% and 12% respectively. Also, its storage capacity was 

higher compared to the other sub-basins, a condition that may be due to existing reservoirs 

in the area. This study constitutes a hydrological analysis tool for the adequate 

arrangement and management of the water resource through the understanding of the 

physical characteristics associated with the base flow in sub-basins with natural and 

artificial regulation in the Andean region of Ecuador, especially in the Paute river basin. 

 

 

Keywords: Drying, base flow, Paute river. Sub-basin of the Machángara river. Artificial 

regulation. Sub-basin of the Tarqui river. Sub-basin of the Yanuncay river. Natural 

regulation. Non-linear recession analysis. Digital filters. 
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1. INTRODUCCIÓN 

 

1.1. Antecedentes 

 

El agua es el recurso que sostiene la vida en el planeta, cuya disponibilidad y calidad cada 

vez es más crítica por factores climáticos y antrópicos, llevando a conflictos por la 

producción de los principales servicios al ser humano como la potabilización, riego y 

generación de energía eléctrica (Quintero, 2010).  

Estas calamidades son un reflejo de fenómenos naturales como la sequía, caracterizada 

por precipitaciones debajo de los límites normales con frecuencia, duración y severidad 

incierta (Pacheco et al., 2017). No obstante, en dichos periodos ocurre un proceso 

hidrológico importante, donde los ríos y cauces son abastecidos por el flujo de aguas 

almacenadas en el subsuelo o flujo base (Cadier, Gómez, & Calvez, 1997).  

Alrededor del mundo se ha estudiado el caudal base con distintos enfoques y diferentes 

metodologías empleadas en su estimación: filtros digitales (Eckhardt, 2005; Lyne & 

Hollick, 1979; Nathan & McMahon, 1990), filtros físicos (Furey & Gupta, 2001), análisis 

de recesión no lineal (Wittenberg, 1994, 1999) y trazadores experimentales (Chapman & 

Maxwell, 1996). En función de estos métodos, se han realizado comparaciones y además 

se ha logrado establecer relaciones entre los procesos de caudal base y características de 

cuencas hidrográficas, tales como la capacidad de retención y almacenamiento de aguas 

subterráneas, recarga en acuíferos y condiciones hidrogeológicas de la cuenca. 

Estudios realizados por diferentes autores en la región altoandina sostienen que el 

ecosistema páramo es el contribuyente principal de caudal base (Buytaert, De Bièvre, 

Wyseure, & Deckersm, 2004; Buytaert et al. 2006c; Buytaert, Iñiguez, & De Bièvre, 

2007; Aksoy & Wittenberg, 2011). Cabe mencionar que dichos estudios se han aplicado 

a cuencas pequeñas de cobertura homogénea. A su vez, Guzmán, Batelaan, Huysmans, & 

Wyseure (2015) en su estudio investigaron las características de flujo base en las cuencas 

andinas heterogéneas e identificaron las relaciones entre las características físicas 

asociadas a éste como el almacenamiento y la recarga. La investigación se realizó en las 

subcuencas de los ríos Tarqui y Yanuncay, las cuales cuentan con regulación natural y 

son de mayor tamaño.  

Por otra parte, en cuencas con regulación artificial como la del río Machángara, Carchi 

(2015) realizó un estudio sobre el balance hídrico en el periodo 1998-2011. Asimismo,   
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Avilés (2017) en su estudio pronosticó eventos de sequías y evaluó el riesgo en la gestión 

de sistemas hídricos. Sin embargo, no existen estudios enfocados al proceso de caudal 

base a nivel de esta subcuenca.  

 

1.2. Justificación   

 

Durante los años 2009 y 2010 varios países andinos atravesaron uno de los periodos de 

estiaje más severos. Ecuador por su parte se vio afectado por pérdidas en el sector agro 

ganadero y energético, lo que dio lugar al Decreto Ejecutivo N°124 emitido el 6 de 

noviembre del 2009 por el presidente de la República de aquel periodo, declarando al país 

en estado de Excepción Eléctrica. 

 El complejo hidroeléctrico Paute (uno de los más importantes de la región 

Andina) ubicado en la cuenca del mismo nombre también se vio afectado debido al bajo 

nivel que presentaron sus embalses, cuyo principal afluente es el río Paute y con ello el 

aporte hídrico de las subcuencas que confluyen en éste. Ante esto, resulta de especial 

interés conocer cómo en dicho periodo el caudal base del río Paute fue influenciado por 

la subcuenca del río Machángara con regulación artificial en relación a las subcuencas de 

los ríos Tarqui y Yanuncay en las que sólo existe regulación natural de sus caudales. 

Asimismo, se pretende identificar las relaciones entre el caudal base y las características 

del medio físico para establecer comparaciones entre las subcuencas mencionadas.  

 Por lo tanto, este estudio constituye una herramienta de análisis hidrológico para la 

caracterización del flujo base en cuencas andinas del Ecuador y a su vez busca 

proporcionar información que será útil para el entendimiento de las características físicas 

asociadas a éste en subcuencas reguladas y no reguladas, especialmente en la cuenca del 

río Paute.  
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1.3. Objetivos 

 

1.3.1. Objetivo General 

 

Estimar y analizar la influencia del caudal base de las subcuencas de los ríos 

Machángara, Tarqui y Yanuncay en el caudal base del río Paute durante el periodo 

2009 - 2011. 

1.3.2.  Objetivos Específicos 

 

i. Estimar el caudal base de la subcuenca del río Machángara y del río Paute en el 

periodo 2009 – 2011.  

ii. Analizar la relación entre el caudal base y las características del medio físico de 

la subcuenca del río Machángara.   

iii. Comparar el caudal base de la subcuenca del río Machángara frente al de las 

subcuencas de los ríos Tarqui y Yanuncay respecto al caudal base del río Paute en 

el periodo 2009 – 2011.  

iv. Valorar el aporte del caudal base de las subcuencas de los ríos Machángara, Tarqui 

y Yanuncay al caudal base del río Paute en el periodo 2009 – 2011.  
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2. MARCO TEÓRICO 

El agua en la naturaleza no permanece estática, más bien responde a un ciclo; el cual 

abarca diferentes etapas o fases en las que se muestra el movimiento que atraviesa al pasar 

de la atmósfera a la tierra y volver a la atmósfera nuevamente  (Campos, 1998; Maderey 

& Jiménez, 2005).  

Por tanto, se puede considerar que el ciclo inicia con la evaporación del agua de toda 

superficie evaporante y se eleva hacia la atmósfera hasta cierta altura, en donde bajo 

condiciones meteorológicas adecuadas se condensa formando nubes, las cuales darán 

lugar a precipitaciones ya sea en forma líquida (lluvia), sólida (granizo o nieve) y gaseosa 

(rocío). No toda la precipitación llega a la superficie ya que una parte se evapora durante 

su caída, mientras que otra es interceptada por la vegetación y después de un corto periodo 

de tiempo se evapora, regresando nuevamente a la atmósfera (Campos, 1998; Jiménez, 

1994; Maderey & Jiménez, 2005).  

De la precipitación que llega a la superficie una parte puede caer directamente sobre 

superficies líquidas (ríos, lagos, lagunas, etc.) y otra se concentra en pequeños surcos que 

luego integran arroyos, los cuales desembocan en los cauces de los ríos (escorrentía 

superficial) desde donde se evapora o bien se infiltra (Campos, 1998; Maderey & 

Jiménez, 2005).   

La parte de la precipitación que se infiltra tiende a satisfacer las condiciones de humedad 

del suelo y  posteriormente puede llegar a saturarlo, de manera que el agua se desplaza en 

un corto recorrido lateral sobre el nivel freático y sale hacia los cauces (escorrentía 

subsuperficial) (Campos, 1998; Llambí et al., 2012). Sin embargo, existe una parte del 

agua infiltrada que percola hacia el agua subterránea, esta fracción de agua añadida se 

denomina “recarga de agua subterránea”. Este proceso determina una respuesta lenta en 

el que el flujo subterráneo se escurre hacia los cauces como caudal base (Millares, Polo, 

Losada, Aguilar, & Herrero, 2009). Smakhtin (2001) señala que el caudal base está 

relacionado o proviene también de fuentes retardadas como glaciares, lagos y humedales; 

siendo un proceso natural que permite mantener el flujo durante periodos de escasa 

precipitación o estiaje.  
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De las tres escorrentías descritas, la más rápida es la superficial seguida de la 

subsuperficial con una velocidad de respuesta de minutos y horas, mientras que la 

escorrentía subterránea al permanecer por un tiempo prolongado (semanas, años e incluso 

décadas) hasta salir hacia los cauces es la más lenta (Llambí et al., 2012) . 

A lo largo del tiempo, ha surgido la necesidad de estimar cuantitativamente los elementos 

del ciclo hidrológico centrándose en el funcionamiento de las cuencas hidrográficas; 

donde ocurren diferentes procesos hidrológicos interactivos que pueden ser determinados 

en el balance hídrico, el cual puede ser definido a través de la ecuación de conservación 

de masa, la misma que indica los valores relativos de entrada (𝐼), salida (𝑂) y la variación 

de agua almacenada en la cuenca (∆𝑆) en un periodo de tiempo (Llambí et al., 2012) , 

como se muestra: 

𝐼 − 𝑂 = ∆𝑆          (1) 

Los volúmenes de entrada a la cuenca comprenden la precipitación (𝑃), mientras que los 

volúmenes de salida en la ecuación incluyen la evapotranspiración (𝐸𝑇), el caudal del río 

(𝑄) y el flujo neto de agua subterránea que sale del límite de la cuenca sin pasar por la 

salida (𝐺) (Guzmán et al., 2015), es decir:  

𝑃 − 𝑄 − 𝐸𝑇 − 𝐺 = ∆𝑆          (2) 

En las zonas montañosas de los Andes, como las cuencas hidrográficas en Ecuador, existe 

gran heterogeneidad de relieve, lo cual es óptimo para la producción de energía 

hidroeléctrica (Buytaert et al., 2006c).  Además, dicha heterogeneidad en combinación 

con los diferentes sistemas climáticos influye en la alta variabilidad espacial de la 

precipitación y temperatura (Buytaert et al., 2006c ; Celleri, Willems, Buytaert, & Feyen, 

2007). De igual manera, existe diversidad de ecosistemas y por lo tanto diferentes 

patrones de respuesta hidrológica (Guzmán et al., 2015). Generalmente, en estas zonas 

resulta común encontrar el ecosistema páramo, el cual es caracterizado por pastizales 

neotropicales y se ubica a partir de los 3500 m s.n.m. (Buytaert et al., 2006b).  

Además, presenta un clima húmedo, frío y baja evapotranspiración, su geomorfología se 

compone de valles de los glaciares formados por una mezcla de laderas y llanuras de alta 

pendiente y el suelo posee un alto contenido de materia orgánica (generalmente 
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andosoles) (Buytaert & Beven, 2011). Por su parte, la vegetación se conforma 

principalmente de pastizales y especies leñosas como Polylepis sp. y Gynoxys sp. 

(Buytaert et al., 2006a). Otro aspecto importante, es la capacidad de almacenar agua 

durante periodos húmedos para su posterior liberación durante periodos secos (a través 

del caudal base) (Llambí et al., 2012); proceso conocido como regulación. Buytaert et al. 

(2004) manifiesta que en las épocas secas este flujo puede ser suministrado hasta en un 

100% por el páramo. 

Generalmente en este ecosistema, se asume que el caudal base es producido a través de 

escorrentía subsuperficial por la dificultad que representa la separación entre flujos 

(lateral subsuperficial y el flujo base) (Crespo et al., 2009; Ochoa & Rodas, 2009) debido 

a que el suelo es relativamente poroso y se encuentra sobre un lecho impermeable (roca). 

Una de las principales características de los páramos es que en las cuencas hidrográficas 

andinas, los ríos que descienden de este ecosistema son provistos de un caudal base alto 

(debido su régimen hidrológico, el cual es dominado por una respuesta de flujo lenta 

(Buytaert et al., 2007)) y continuo (por la elevada capacidad de regulación hidrológica 

(Buytaert et al., 2006b; Buytaert et al., 2006c).  

La combinación entre el caudal base y la topografía en cuencas andinas garantizan la 

generación de energía hidroeléctrica de manera constante y eficiente (Buytaert et al., 

2006c). En Ecuador, la cuenca del río Paute es de gran importancia, pues es el hogar del 

Complejo Hidroeléctrico Paute Integral conformado por algunas de las centrales más 

grandes de la región andina, las cuales aprovechan el agua de la cuenca del río Paute para 

generar energía. 

Por otra parte, en esta misma cuenca y a menor escala existen plantas hidroeléctricas 

pequeñas y multifuncionales, en donde sus embalses son utilizados para sistemas de riego, 

producción de agua potable y regulación de los caudales. Esta última hace referencia a la 

regulación del régimen de precipitaciones, cuya finalidad es ofrecer protección a las 

poblaciones y a los recursos naturales ante inundaciones y asimismo durante las épocas 

secas regulan los caudales en los cauces mediante la descarga del agua almacenada 

(Mujeriego, 2005). Tal es el caso del Complejo Hidroeléctrico Machángara, conformado 

por las presas “El Labrado” y “Chanlud” y de las centrales “Saucay” y “Saymirín”.   
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3. METODOLOGÍA 

 

3.1. Área de estudio  

 

El presente estudio se realizó en la subcuenca del río Machángara e involucró los 

resultados obtenidos por Guzmán et al. (2015) de las subcuencas de los ríos Tarqui y 

Yanuncay; todas subcuencas hidrográficas pertenecientes a la cuenca del río Paute.  

La siguiente figura indica el mapa correspondiente al área de estudio: 

 

 

Figura 1: Ubicación de las subcuencas de los ríos Yanuncay, Tarqui y Machángara en la cuenca del río 

Paute. 

Cuenca del río Paute 

La cuenca del río Paute está ubicada en la región austral del Ecuador en las provincias de 

Azuay, Cañar y Morona Santiago; cubre una superficie aproximada de 6439 km2  

(Pombosa, Roura, García, & Tejada, 2000). Esta cuenca comprende un rango altitudinal 

que va desde 500 m s.n.m. hasta 4600 m s.n.m. y dentro de ésta se hallan 19 subcuencas 

hidrográficas. Esquemáticamente puede dividirse en 2 zonas características:  
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La región oriental. -  constituida en su parte alta por páramo y a menor altitud por bosque 

primario tropical. Presenta características muy similares a las cuencas amazónicas 

(vegetación exuberante, difícil acceso y poco poblada) (Pombosa et al., 2000).  

La región occidental y central de la cuenca. -  compuestas en su parte alta por páramo y/o 

bosque primario con gran superficie de relieves atenuados. Asimismo, se identifican 

valles con pendientes muy pronunciadas (alrededor del 60% del área presenta pendientes 

mayores al 30%) cuyas laderas se encuentran arborizadas por pinos o eucaliptos y en las 

regiones de baja pendiente (menores al 10%) como en las terrazas aluviales se encuentran 

zonas agrícolas: cultivos o pastizales (Pombosa et al., 2000; Vanacker, Molina, Govers, 

Poesen, & Deckers, 2007). Por otro lado, la parte baja y central corresponde a zonas 

pobladas o desarrollo urbano de la ciudad de Cuenca.  

En este estudio se consideró la cuenca media en función de la longitud del río principal 

(Paute) y el punto de medición de la descarga (estación Paute en Paute) correspondiente 

al nivel medio de ésta (Figura 1).     

Subcuenca del río Machángara 

La subcuenca del río Machángara se ubica en las provincias de Azuay y Cañar, al noreste 

de la ciudad de Cuenca; abarca una superficie de 325.45 km2 (Díaz & Dominguez, 2015). 

Para una adecuada gestión del recurso hídrico en esta subcuenca se creó el Complejo 

Hidroeléctrico Machángara, el cual consta de dos represas: “Chanlud” y “El Labrado” a 

3440 m s.n.m. y 3420 m s.n.m. mismas que fueron construidas en los años 1972 y 1992 

respectivamente (Electro Generadora del Austro ELECAUSTRO S.A., 2019).  

 Las actividades agrícolas y ganaderas se encuentran restringidas en el área superior de 

esta subcuenca, debido a que en 1985 fue declarada “bosque protector” (ETAPA EP, 

2019). Por otra parte, para mejorar la gestión del recurso hídrico y el manejo de los 

recursos naturales se instauró el “Consejo de Cuenca del Río Machángara” a través de un 

convenio interinstitucional cuya finalidad es la coordinación entre instituciones y los 

usuarios de la cuenca del Machángara vinculados en el desarrollo sustentable (Díaz, 

2015). 

Las estaciones hidrológicas y meteorológicas utilizadas en este estudio se ubican en la 

subcuenca alta del río Machángara, como se muestra en la siguiente figura:  
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Figura 2: Elevación de la subcuenca del río Machángara, ubicación del Complejo Hidroeléctrico 

Machángara y de las estaciones meteorológicas e hidrológicas 

Subcuenca del río Yanuncay 

La subcuenca del río Yanuncay se sitúa en la provincia del Azuay al oeste de la ciudad 

de Cuenca, limita al norte con la subcuenca del río Tomebamba, al sur con la subcuenca 

del río Tarqui y al este con la subcuenca del río Jadán. Comprende un área aproximada 

de 418.8 km2 y un rango altitudinal que va desde 2480 m s.n.m. hasta 4340 m s.n.m. 

(Cordero & Dominguez, 2013). 

 

 

Subcuenca del río Tarqui 
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La subcuenca del río Tarqui se encuentra al suroeste de la ciudad de Cuenca en la 

provincia del Azuay. Abarca un área aproximada de 476.2 km2, la variabilidad de relieve 

está definida en un rango altitudinal que va desde 2600 m s.n.m. hasta 3700 m s.n.m., 

donde drena la subcuenca a través del río Tarqui (Barbecho & Calle, 2012). 

3.2. Modelos Perceptuales 

El modelo perceptual resume las percepciones acerca del comportamiento de una cuenca 

frente a eventos como la precipitación bajo diversas condiciones (Beven, 2012). Además, 

permite identificar los posibles caminos que recorren los flujos superficiales y 

subsuperficiales, lo cual puede ser de gran utilidad para análisis hidrológicos. 

En la región andina, Guzmán et al. (2015) a partir de observaciones de campo, análisis de 

datos y estudios previos desarrolló la hipótesis de tres modelos perceptuales (A, B y C) 

en subcuencas con regulación natural. El modelo A correspondiente al páramo, establece 

que la respuesta hidrológica se compone de flujo subsuperficial lateral (𝑄𝑠𝑠) y superficial 

(𝑄𝑠𝑢𝑝); en este tipo de ecosistemas la recarga profunda de aguas subterráneas es menos 

probable debido al lecho impermeable a poca profundidad (Guzmán et al., 2015; Llambí 

et al., 2012), como se muestra en la Figura 3. Sin embargo, la combinación de una alta 

capacidad de retención de agua en el suelo y una baja evapotranspiración (𝐸𝑇) de la 

vegetación generan una respuesta lenta en el flujo de aguas subsuperficiales o 

subterráneas (Guzmán et al., 2015). 
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Figura 3: Modelo perceptual A 

Fuente: Guzmán et al., 2015; Llambí et al., 2012 

El modelo B representa la transición entre el ecosistema páramo y el valle aluvial, en el 

cual se espera la ocurrencia de procesos hidrológicos como: infiltración (𝐼𝑛𝑓), la 

evapotranspiración (𝐸𝑇), recarga (𝑅), variación del nivel freático (𝑁𝑓) y el aporte del 

flujo subterráneo (𝑄𝑠) (Figura 4). 

 

Figura 4: Modelo perceptual B 

Fuente: Guzmán et al., 2015; The COMET program, 2019 
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Finalmente, el modelo C representado por el valle aluvial muestra principalmente la 

influencia del nivel freático (𝑁𝑓) en la descarga de flujos subterráneos (𝑄𝑠) tal como se 

muestra en la Figura 5; cabe señalar que en épocas secas el acuífero tiende a desconectarse 

de lecho del río, al bajar considerablemente su nivel freático. Además, este modelo indica 

la ocurrencia de otros procesos hidrológicos como la evapotranspiración (𝐸𝑇), 

infiltración (𝐼𝑛𝑓) y recarga (𝑅). 

 

Figura 5: Modelo perceptual C 

Fuente: Guzmán et al., 2015; The COMET program, 2019 

De los tres modelos descritos, Guzmán et al. (2015) establece que la respuesta hidrológica 

de la subcuenca del río Yanuncay obedece principalmente al modelo A y de manera 

secundaria al modelo B, mientras que la de Tarqui puede explicarse por los tres modelos 

(A, B y C) siendo el C predominante.  

Para comprender las condiciones físicas en la subcuenca alta del río Machángara se 

elaboró un modelo perceptual distribuido, el cual es analizado en la zona antecedente y 

subsecuente a los embalses. 

De manera que, el área antecedente a los embalses “Chanlud” y “El Labrado” cuya 

superficie predominante corresponde al ecosistema páramo está sujeta a la respuesta 

hidrológica del modelo A descrito por Guzmán et al. (2015). Mientras que la zona 

subsecuente a éstos, obedece a la respuesta hidrológica constituida principalmente por los 

flujos subsuperficial lateral (𝑄𝑠𝑠), subterráneo (𝑄𝑠), superficial (𝑄𝑠𝑢𝑝) y a la adición de 
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un flujo que es liberado de manera continua proveniente del almacenamiento artificial 

(𝑄𝑎𝑟𝑡) como resultado de la regulación de dichos embalses, tal como se indica en la 

siguiente figura. 

 

Figura 6: Modelo perceptual propuesto para la subcuenca alta del río Machángara 

Fuente: Adaptado de Guzmán et al., 2015; Llambí et al., 2012 

 

3.3. Procesamiento de la información 

Para el análisis hidrológico y separación de caudal base de la zona de estudio, se requiere 

información hidro-meteorológica que comprende datos de descarga o caudal, 

precipitación e información cartográfica. Los datos de descarga y precipitación se 

obtuvieron a través de entidades públicas como la Empresa de Telecomunicaciones, Agua 

Potable, Alcantarillado y Saneamiento de Cuenca (ETAPA) y la Secretaría Nacional del 

Agua (SENAGUA), las cuales disponen de estaciones hidrológicas y meteorológicas 

(Tabla 1). 
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Tabla 1: Tipo y ubicación de estaciones en la subcuenca del río Machángara y la cuenca media del río 

Paute 

Nombre Tipo UTM X UTM Y 
Altitud (m 

s.n.m.) 

Machángara DJ 

Chulco 
Hidrológica 720877 9695101 2956 

Paute en Paute Hidrológica 759470 9691853 2160 

El Labrado Meteorológica 713978 9697404 3335 

Chanlud Meteorológica 718622 9703602 3336 

Saucay Meteorológica 720861 9695294 2977 

Fuente: INAMHI, 2009 

Cabe señalar que para cada serie obtenida se emplea un proceso determinado para la 

validación de los datos.  

3.3.1. Análisis visual - determinación de datos faltantes 

A través del análisis visual de las series en las estaciones hidrológicas y meteorológicas 

en estudio, se inspeccionó la existencia de datos faltantes o inexistentes en las mismas. 

Por una parte, la estación hidrológica Machángara DJ Chulco y las meteorológicas 

“Chanlud”, “El Labrado” y “Saucay” no presentaron vacíos de información durante el 

periodo 01/01/2009 a 31/12/2011. No obstante, en la serie de descarga de la estación 

Paute en Paute se observaron datos faltantes correspondientes al 6% del periodo en 

análisis, donde la mayoría de éstos se registran en el mes de octubre de 2011.  

3.3.2. Análisis de curva de doble masa 

Cualquier cambio en los métodos de recolección de información o de ubicación de los 

sitios de medición de precipitación pueden generar inconsistencias, las cuales pueden 

detectarse a través de las curvas de doble masa o doble acumuladas (Arumí, Jara, & 

Salgado, 2000). Éstas consisten en una representación gráfica de los valores acumulados 

de la estación en estudio o problema (eje y) frente a los valores acumulados de una 

estación base (eje x), la cual está en función del promedio de varias estaciones de 

referencia; sin embargo, cuando existe sólo una estación de referencia los datos 

acumulados de esta serie pueden servir como base de comparación. Finalmente, si los 

valores graficados están sobre una línea recta, los datos de la estación en estudio son 

válidos (Montealegre, 1990).  
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En el presente estudio, después de realizar una inspección visual en las series de datos de 

las estaciones meteorológicas “El Labrado”, “Chanlud” y “Saucay” se procedió a analizar 

la consistencia de las mismas a través del método descrito, donde se constató que las 

series empleadas no presentan datos inconsistentes. 

Por otro lado, para el relleno de la serie de descarga de la estación Paute en Paute no fue 

posible aplicar los métodos de relleno más confiables como el análisis de curva de doble 

masa, debido a que no se hallaron estaciones cercanas o adyacentes disponibles. Por tanto, 

se procedió a emplear un método matemático, conocido como la media móvil. 

3.3.3. Media Móvil 

La media móvil dota de información de tendencias que son influenciadas por la media de 

datos previos o históricos, es decir, es un promedio de valores predefinidos en la serie que 

se desplazan de un extremo hacia otro, sustituyendo valores inválidos o faltantes.  La 

cantidad de valores de la variable 𝑛 previos a considerarse, denominados puntos o 

términos y coeficientes utilizados para ponderar dichos valores son los que definen el tipo 

de media móvil (Mauricio, 2007). En este caso para estimar los datos faltantes (𝑍𝑡) en un 

tiempo 𝑡 se utiliza la media móvil simple que se representa en la Ecuación 3. 

𝑍𝑡 =  
𝑍𝑡−𝑛+…+𝑍𝑡−2+ 𝑍𝑡−1

𝑛
          (3)           

La serie de datos rellenada se presenta en el Anexo 1. 

3.4.  Precipitación media de la subcuenca alta del río Machángara 

 

Dado que en la subcuenca alta del río Machángara existe más de una estación 

meteorológica, el cálculo de su precipitación media diaria se realizó a través de polígonos 

de Thiessen. El cual trata de ponderar el valor de la precipitación de cada estación en 

función de su área efectiva o de influencia. Ésta se crea a partir del trazo de líneas que 

conectan las estaciones unas con otras, seguido de la proyección de perpendiculares 

bisectrices de éstas, las mismas que forman polígonos alrededor de cada estación. Los 

lados de cada polígono son los límites del área efectiva que se considera  (Linsley, Kohler, 

& Paulus, 1997). Por lo tanto, la precipitación promedio sobre una cuenca se evalúa por 

(Chow, Maidment, & Mays, 1994):  
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𝑃̅ =
∑ 𝐴𝑖𝑃𝑖

𝑛
𝑖=1

𝐴
          (4) 

Donde: 

𝑃̅= precipitación promedio sobre un área determinada, en mm. 

𝐴𝑖= área del polígono de cada una de las estaciones i asignadas en la cuenca, en km2 o 

m2. 

𝑃𝑖= Precipitación registrada en la estación i para el periodo en estudio, en mm. 

𝐴= Área total de la cuenca, en km2 o m2. 

En este estudio, el método se aplicó con respecto a las estaciones de “Chanlud”, “El 

Labrado” y “Saucay”. En la Figura 7 se muestra el método de Thiessen con los límites de 

área efectiva para cada estación de análisis.  

 

 

Figura 7: Áreas de influencia para la determinación de la precipitación media diaria a través de polígonos 

de Thiessen en la subcuenca alta del río Machángara 
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3.5. Determinación de cobertura de páramo en la subcuenca del río 

Machángara 

La determinación de cobertura del páramo en la subcuenca del río Machángara se realizó 

a partir de la creación del modelo digital de elevación (MDE) tipo ráster con resolución 

espacial de 5 x 5 m, el cual fue creado a través del uso de información cartográfica 

disponible de la cuenca del río Paute, realizada por el Instituto de Estudios de Régimen 

Seccional del Ecuador (IERSE) y el Consejo de Gestión de aguas de la cuenca del río 

Paute en el año 2008 en el software ArcGIS 10.7.   

Posteriormente, mediante el uso del mismo software se aplicó la herramienta “Evaluación 

condicional” , la cual permite establecer criterios de evaluación en cada una de las celdas 

de entrada de un ráster (ArcGis Desktop, 2019). El criterio que se empleó para la 

separación de la cobertura de páramo fue aplicado para valores iguales o mayores a 3500 

m s.n.m. de altitud.  

3.6. Evaluación de caudal base 

 

No existe una forma directa de medir continuamente el caudal base en la corriente de un 

río (Furey & Gupta, 2001);  únicamente durante largos periodos secos es posible observar 

el caudal base puro en fuentes superficiales, mientras que para otros periodos es necesario 

utilizar diversos métodos de separación del mismo (Guzmán et al., 2015). 

El presente estudio se enfoca en estimar el caudal base de la cuenca media del río Paute 

(filtros digitales) y de la subcuenca del río Machángara (filtros digitales y análisis de 

recesión no lineal), con la finalidad de identificar las características físicas  asociadas al 

caudal base (almacenamiento y recarga) y contrastar los resultados obtenidos con los 

correspondientes a los de las subcuencas Tarqui y Yanuncay presentados por Guzmán et 

al. (2015) en el mismo periodo de análisis. Finalmente, se pretende cuantificar el aporte 

del caudal base de las subcuencas de los ríos Machángara, Tarqui y Yanuncay a la cuenca 

media del río Paute. 

3.6.1.  Filtros Digitales 

 

Los métodos de separación de caudal base que no tienen una base física, es decir, que no 

se derivan de una ecuación de balance de masa o no toman en consideración todas las 
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condiciones de flujo, proporcionan una estimación objetiva y repetible (Arnold & Allen, 

1999; Furey & Gupta, 2001) siendo éstos: la técnica de mínimos suavizados y los filtros 

digitales recursivos que comprenden el filtro Eckhardt y el filtro BFLOW. Dichos filtros 

parten de la idea en que el caudal total se conforma de dos componentes, el componente 

lento o de baja frecuencia y el componente rápido o de alta frecuencia; los cuales están 

asociados al caudal base y a la escorrentía directa, respectivamente (Lyne & Hollick, 

1979). Como se muestra en la Ecuación 5.  

𝑌𝐵,𝑗 =  𝑏𝐵,𝑗 +  𝑓𝐵,𝑗           (5) 

Donde los subíndices 𝐵 y 𝑗 indican la cuenca y el tiempo respectivamente, 𝑌𝐵,𝑗 es el 

caudal total, 𝑏𝐵,𝑗 se lo interpreta como el caudal base y 𝑓𝐵,𝑗  la escorrentía directa. 

Sin embargo, aunque la técnica puede resultar poco realista físicamente, es importante 

destacar la estimación objetiva, repetible y su facilidad para automatizarse (Nathan & 

McMahon, 1990). Además, la estimación del caudal base por estos filtros tiene 

restricciones importantes para no producir caudales negativos o excedentes del caudal 

total, dando como resultado una mejor aproximación. Cabe mencionar que Lyne & 

Hollick (1979) fueron los pioneros en introducir el filtro para separar el caudal base del 

flujo total, siendo el filtro digital recursivo BFLOW: 

𝑞𝑑𝑡 = 𝛼 𝑞𝑑𝑡−1 +
(1+𝛼)

2
(𝑄𝑡 − 𝑄𝑡−1)          (6 ) 

Donde: 

 𝑞𝑑𝑡 es la escorrentía directa filtrada en el paso de tiempo 𝑡 (m3/s) 

𝑞𝑑𝑡−1 es la escorrentía directa filtrada en el paso de tiempo 𝑡 − 1 (m3/s) 

𝛼 es el parámetro de filtro 

𝑄𝑡 es el caudal total en el paso de tiempo 𝑡 (m3/s) 

𝑄𝑡−1 es el caudal total en el paso de tiempo 𝑡 − 1 (m3/s)  

El valor asignado al parámetro del filtro recursivo influye en la naturaleza de la 

atenuación del hidrograma (Ladson, Brown, Neal, & Nathan, 2013). Diversos estudios 

sugieren adoptar un enfoque estándar, donde se pretende usar el parámetro 𝛼 igual a 0.925 
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dado que los resultados se asemejan a una separación manual de caudal base (Nathan & 

McMahon, 1990). 

Por otro lado, Eckhardt (2005) propone que el filtro digital considere un parámetro de 

filtro y el máximo valor de la relación de caudal base respecto al caudal total por un 

periodo de tiempo considerable (𝐵𝐹𝐼𝑚𝑎𝑥). Este filtro emplea una separación del caudal 

base aplicando reglas simples de suavizado y a través de la separación del hidrograma del 

flujo total. No obstante, el componente de alta frecuencia puede representar sólo una parte 

de la escorrentía superficial en lugar de la escorrentía superficial total, de modo que la 

interpretación física del caudal base como componente de baja frecuencia y la escorrentía 

directa como componente de alta frecuencia puede ser incorrecta (Spongberg, 2000).  

Sin embargo, se reduce la subjetividad de este filtro mediante el uso de 𝐵𝐹𝐼𝑚𝑎𝑥 en la 

separación de caudal base al estimar los 𝐵𝐹𝐼𝑚𝑎𝑥 representativos que infieren sobre las 

condiciones hidrológicas e hidrogeológicas. 

El filtro recursivo Eckhardt responde a la ecuación: 

𝑞𝑏𝑡 =
(1 − 𝐵𝐹𝐼𝑚𝑎𝑥)𝛼 + 𝑞𝑏𝑡−1 + (1 − 𝛼)𝐵𝐹𝐼𝑚𝑎𝑥 𝑄𝑡

1 − 𝛼 𝐵𝐹𝐼𝑚𝑎𝑥
          (7) 

Donde, 𝑞𝑏𝑡 y 𝑞𝑏𝑡−1 son el caudal base (m3/s) en el paso de tiempo 𝑡 y 𝑡 − 1, 

respectivamente. 𝐵𝐹𝐼𝑚𝑎𝑥 se define como el valor máximo del índice de caudal base, α 

es el parámetro de filtro y 𝑄𝑡 es el caudal total en el paso 𝑡 de tiempo.  

Eckhardt (2005) plantea el uso de tres valores de 𝐵𝐹𝐼𝑚𝑎𝑥 que van desde 0.25 a 0.80, 

donde el valor de 0.25 corresponde a arroyos perennes con acuíferos de roca dura, 

mientras que el valor de 0.50 representa a arroyos efímeros con acuíferos porosos y 

finalmente el valor de 0.80 es utilizado para arroyos perennes con acuíferos porosos. Este 

proceso fue aplicado y validado por Eckhardt (2005) en ciertas cuencas de diversas partes 

del mundo como: Pennsylvania, Illinois, Maryland y Alemania.  

El 𝐵𝐹𝐼𝑚𝑎𝑥 tiene la capacidad de restringir el caudal base máximo, es decir, que el 𝐵𝐹𝐼 

(𝑐𝑎𝑢𝑑𝑎𝑙 𝑏𝑎𝑠𝑒 𝑐𝑎𝑢𝑑𝑎𝑙 𝑡𝑜𝑡𝑎𝑙)⁄  alcanza al 𝐵𝐹𝐼𝑚𝑎𝑥 cuando las ondas tienen una 

frecuencia predominantemente baja. Si 𝐵𝐹𝐼𝑚𝑎𝑥 aumenta, se incrementa el número de 

ondas de alta frecuencia que se integran al hidrograma de caudales y por lo tanto 𝐵𝐹𝐼  
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resulta menor que 𝐵𝐹𝐼𝑚𝑎𝑥 (Guzmán et al., 2015). Es por ello, que en este estudio se 

utiliza el valor de 0.80 para el 𝐵𝐹𝐼𝑚𝑎𝑥. 

El Sistema de herramientas de análisis de hidrogramas basados en la web (WHAT) 

incorpora los filtros de: Lyne & Hollick (1979) (BFLOW) y el propuesto por Eckhardt 

(2005) (filtro Eckhardt). En este estudio, mediante la aplicación del filtro Eckhardt a 

través del software WHAT se realizó la separación de caudal base de las series de datos 

de descarga correspondientes a la estación Paute en Paute y Machángara DJ Chulco, para 

la cuenca media del río Paute y la subcuenca del río Machángara respectivamente (Anexo 

2).  

3.6.1.1. Estimación de caudal base a la salida de las subcuencas en 

estudio 

 

Para el análisis comparativo de las subcuencas de los ríos Tarqui, Yanuncay y 

Machángara se requiere separar el caudal base a su salida. No obstante, para la subcuenca 

del río Machángara se restringe dicha separación debido a la inexistencia de datos de 

descarga en su zona baja durante el periodo de análisis. Frente a esto, al revisar los 

resultados de Guzmán et al. (2015) del filtro Eckhardt para la subcuenca del río Yanuncay 

se observa que los valores de 𝐵𝐹𝐼 en la zona alta y baja corresponden a 0.64 y 0.63 

respectivamente, expresando una diferencia del 1%; lo que demuestra las limitaciones de 

este filtro y corrobora la idea de Buytaert et al. (2006) que señala que en cuencas andinas 

la mayor parte de caudal base es proporcionado por el ecosistema páramo. 

Por ello, se plantea la estimación de caudal base a la salida de la subcuenca del río 

Machángara (𝑄𝑏𝑠) a partir de la separación de caudal base en la subcuenca alta cuya área 

está cubierta por páramo en un 86% y presenta la influencia de la regulación artificial 

ejercida por los embalses (𝑄𝑏𝐴2) y la interpolación de caudal base del área de páramo 

externa a la subcuenca alta (𝑄𝑏𝐴1) (Figura 8); es decir:  

𝑄𝑏𝑠 =  𝑄𝑏𝐴2  + 𝑄𝑏𝐴1 

Cabe señalar que dicha interpolación se realizó en función del caudal base específico de 

la subcuenca alta del río Yanuncay cuya cobertura de páramo es predominante. A su vez, 

es importante mencionar que este proceso genera incertidumbres al no disponer de 

información hidrológica en la zona baja de la subcuenca.  
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Figura 8: Proyección de caudal base a la salida de las subcuencas en estudio a través de filtros digitales 

 

3.6.2. Análisis de recesión no lineal 

 

Las curvas de recesión representan el hidrograma de descarga de la cuenca durante un 

período seco o sin lluvias y reflejan la relación entre el almacenamiento y la liberación de 

aguas subterráneas, además brindan información referente a las características de la 

cuenca (Wittenberg, 1994). En este estudio, para determinar el periodo de recesión de la 

subcuenca alta del río Machángara se utilizaron los resultados de precipitación media 

diaria obtenidos por polígonos de Thiessen y el criterio se estableció en 10 días con una 

precipitación media diaria menor a 0.5 mm/d, valor que es notablemente inferior al de 

evapotranspiración potencial según lo calculado por Carchi (2015) en  su estudio 

“Elaboración de un balance hídrico de la Cuenca del Río Machángara”.  

Generalmente, el análisis de las curvas de recesión responde al modelo de 

almacenamiento lineal, el cual establece que el almacenamiento de aguas subterráneas 

(𝑆) es linealmente proporcional a la descarga o caudal de salida (𝑄), por lo tanto: 
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𝑆 = 𝑘𝑄         (9) 

Donde 𝑘 es la constante de recesión con unidades de tiempo, que representa la pendiente 

de la curva de caudales en escala semilogarítmica. Por otra parte, la función exponencial 

que responde a este modelo y que describe la recesión de flujo base viene dada por la 

ecuación:  

𝑄𝑡 = 𝑄0exp (−𝑡/𝑘)            (10)           

Siendo 𝑄𝑡 la descarga en el tiempo 𝑡 y 𝑄0 la descarga inicial; la gráfica resultante de dicha 

ecuación produce una línea recta. Este tipo de modelo responde a cuencas con acuíferos 

confinados y es empleado en múltiples investigaciones debido a su formulación 

matemática sencilla (Wittenberg, 1999).  

No obstante, en la mayoría de cuencas donde existen acuíferos no confinados no es 

posible expresar el sistema con la ecuación de almacenamiento lineal, puesto que en la 

curva de recesión exponencial las representaciones semilogarítmicas de caudal de salida 

son cóncavas y el valor de 𝑘 aumenta sistemáticamente con la disminución de la salida 

del flujo (Moore, 1997; Wittenberg, 1994), por lo que no se ajusta a un solo valor; 

demostrando un fuerte carácter no lineal de la recesión. Por lo tanto, Wittenberg (1999) 

propone la adición de un exponente b (adimensional) a la ecuación de reservorio lineal 

para indicar la relación no lineal entre el almacenamiento de aguas subterráneas y la 

descarga, además de la sustitución de la constante 𝑘 por el coeficiente de almacenamiento 

𝑎, expresándose como:  

𝑆 = 𝑎𝑄𝑏          (11) 

Donde 𝑆 es el almacenamiento en 𝑚3 y 𝑄 la descarga en 𝑚3/s, 𝑎 es el factor de 

almacenamiento en 𝑚3−3𝑏𝑠𝑏. Si los volúmenes se expresan como alturas sobre un área y 

el intervalo de tiempo es un día, entonces: 𝑆 en mm, 𝑄 en mm/d y 𝑎 en 𝑚𝑚1−𝑏𝑑𝑏. El 

exponente 𝑏 es adimensional, el reservorio lineal es un caso especial para 𝑏 = 1.  

La combinación de la ecuación de almacenamiento no lineal (11) con la ecuación de 

continuidad en términos de flujo de salida de un reservorio 𝑑𝑆
𝑑𝑡⁄ = −𝑄 produce la 

ecuación de la curva de recesión para el reservorio no lineal (12) que comienza en 

cualquier descarga inicial 𝑄0 y 𝑏 ≠ 1 (Coutagne, 1948). 
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𝑄𝑡 = 𝑄0 [1 +
(1 − 𝑏)𝑄0

1−𝑏

𝑎𝑏
𝑡]

1 /(𝑏−1)

          (12) 

Considerando que:  

El parámetro 𝑎 puede ser calculado a través del método iterativo de mínimos cuadrados 

de una serie temporal de recesión (Wittenberg, 1994), para lo cual se considera la 

variación del almacenamiento que se traduce en la descarga media durante el intervalo de 

tiempo 𝑖 e 𝑖 − 1 (∆𝑆 = −
(𝑄𝑖+ 𝑄𝑖−1)

2
∆𝑡), la variación de descarga (𝑄 = 𝑄𝑖 − 𝑄𝑖−1) y la 

ecuación de continuidad, resultando:  

𝑎 =
∑(𝑄𝑖−1 + 𝑄𝑖)𝛥𝑡

2𝛴(𝑄𝑖−1
𝑏 + 𝑄𝑖

𝑏)
          (13) 

Los parámetros 𝑎 y 𝑏 representan propiedades o condiciones de los acuíferos en contacto 

con el río. 

Se han realizado estudios de análisis de la recesión en diversas cuencas hidrográficas con 

diferentes regímenes hidrológicos con el objetivo de establecer valores para el parámetro 

𝑏 y el posterior cálculo del parámetro 𝑎; obteniendo valores de 𝑏 < 1 con un valor 

promedio de 𝑏 = 0.5 (Aksoy & Wittenberg, 2011). Wittenberg (1999) concluye que el 

valor de 𝑏 = 0.5 parece ser un valor estándar para acuíferos no confinados, mientras que 

𝑎 puede estar relacionado con la porosidad, la conductividad hidráulica y las propiedades 

morfométricas de la cuenca. Además, Wittenberg & Sivapalan (1999) sugieren que, 

incluso si el valor "verdadero” de 𝑏 no se reproduce exactamente, el supuesto de 𝑏 =  0.5 

sería más realista físicamente y probaría una mejor coincidencia para los valores de 

descarga observados que el enfoque de reservorio lineal. Por ello, en este estudio para el 

cálculo de caudal base de la subcuenca alta del río Machángara se utilizó el valor de 𝑏 =

0.5. 

Después de calculado el valor del parámetro 𝑎 se procede al cómputo del caudal base, el 

cual empieza en el último valor de la recesión y avanza hacia atrás a lo largo del eje 

temporal del hidrograma (Wittenberg, 1999). El caudal base en el tiempo 𝑡 − 𝛥𝑡 está dado 

por:  

 

𝑄𝑡−𝛥𝑡 = [𝑄𝑡
𝑏−1 +

𝑡(𝑏 − 1)

𝑎𝑏
]

1/(𝑏−1)

          (14) 
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Esta expresión es la invertida de la ecuación de la curva de recesión para el reservorio no 

lineal. Considerando que el paso de tiempo 𝛥𝑡 es normalmente un día. 

En el presente estudio, se desarrolló la separación de caudal base por el método descrito 

y se calculó el parámetro 𝑎 a través de Matlab, aplicado a la serie temporal de datos de 

descarga de la estación Machángara DJ Chulco. Además, se estimó la capacidad de 

almacenamiento por unidad de área en función de la relación 𝑎/ á𝑟𝑒𝑎. 

 

3.6.2.1. Estimación de caudal base de las subcuencas altas en estudio 

 

Para analizar la capacidad de almacenamiento y la relación de ésta por unidad de área de 

las subcuencas en estudio, se calculó el valor del parámetro 𝑎 y la proporción 𝑎/ á𝑟𝑒𝑎  

para la subcuenca alta del río Machángara y se lo contrastó con los valores de las 

subcuencas altas de los ríos Tarqui y Yanuncay obtenidos del estudio realizado por 

Guzmán et al. (2015) (Figura 9). Es importante mencionar que la comparación no se 

efectuó a nivel de las salidas de las subcuencas debido a la no disponibilidad de datos en 

la zona media y baja del río Machángara durante el periodo de análisis.  
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Figura 9: Subcuencas altas consideradas en el análisis de recesión no lineal 
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4. RESULTADOS Y DISCUSIÓN 

 

4.1. Cobertura de páramo de la subcuenca del río Machángara 

A través de la metodología empleada se determinó que la superficie de páramo en la 

subcuenca alta del río Machángara es 170.35 km2, valor que representa el 86% de la 

cobertura total de este ecosistema (206.3 km2) en toda la subcuenca, tal como se muestra 

en la Figura 10.  

 

Figura 10: Cobertura de páramo en la subcuenca del río Machángara 

Por otra parte, se comparó las superficies de páramo de las subcuencas altas en estudio; 

dando como resultado gran similitud entre los porcentajes de las subcuencas de los ríos 

Yanuncay y Machángara, a diferencia de la del río Tarqui cuyo porcentaje de páramo es 

considerablemente menor (Tabla 2).  
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Tabla 2: Superficie total y superficie de páramo en las subcuencas altas de los ríos Yanuncay, Tarqui y 

Machángara y subcuenca alta del rio Machángara 

 
S. del 

Yanuncay 
%P 

S. alta del 

Yanuncay 
% P 

S. del 

Tarqui 
%P 

S. alta del 

Tarqui 
% P 

S. del 

Machángara 
%P 

S. alta del 

Machángara 
%P 

Superficie 

total (Km2) 
418.8 - 320.71 - 476.2 - 214.41 - 325.45 - 198.6 - 

Superficie 

de páramo 

(Km2) 

322.5 77% 294.84 92% 52.4 11% 29.95 14% 206.3 63% 170.35 86% 

Fuente: Adaptado de Guzmán et al., 2015 

4.2.  Determinación de caudal base 

 

Los resultados analizados corresponden a la serie de caudal base obtenidos en el periodo 

01/01/2009 a 14/08/2011, el cual fue previamente seleccionado debido a la disponibilidad 

de datos y a la comparabilidad de éstos con los presentados por Guzmán et. al 2015. 

Además, considerando que en periodos de sequía el caudal base se aproxima al caudal 

total, en el presente estudio se consideran dos periodos críticos, con valores de descarga 

consistentemente bajos, siendo así; el primer periodo crítico: 12/07/2009 a 26/11/2009 y 

el segundo:18/09/2010 a 12/10/2010 (Anexo 3). 

4.2.1. Análisis de recesión no lineal 

 

La comparación del valor del parámetro 𝑎 se realizó en función de 𝑏 = 0.5 (valor 

sugerido por Wittenberg (1999); Wittenberg & Sivapalan (1999)); se evidencia que la 

capacidad de almacenamiento de la subcuenca alta del río Machángara es mayor en un 

67% y 84% que las subcuencas altas de los ríos Yanuncay y Tarqui respectivamente. 

Considerando que la subcuenca alta del río Machángara posee alrededor de 170.35 km2 

de páramo y tiene regulación artificial ejercida por los embalses “Chanlud” y “El 

Labrado”, mientras que, las subcuencas altas de los ríos Yanuncay y Tarqui abarcan 

294.84 km2 y 29.95 km2 de páramo respectivamente y poseen regulación natural; Guzmán 

et al., (2015) señala que la capacidad de almacenamiento se ve influenciada por factores 

como: la composición y la proporción de los diferentes ecosistemas. A su vez, el tipo de 

regulación (natural o artificial) de las cuencas también podría ser un factor determinante 

en dicha característica, tal como se muestra en los resultados de la Tabla 3. 
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Tabla 3: Variación del parámetro "𝑎" (m3-3bsb) de Recesión no lineal en función de 𝑏 = 0.5  para las 

subcuencas altas de los ríos Yanuncay, Tarqui y Machángara 

𝑏 Subcuenca alta del Yanuncay Subcuenca alta del Tarqui Subcuenca alta del Machángara 

0,5 51 25 155 

Fuente: Adaptado de Guzmán et al., 2015.  

En consecuencia, la capacidad de almacenamiento (expresada a través del parámetro 𝑎) 

de la subcuenca alta del río Machángara está determinada por los factores antes 

mencionados, por lo que resulta importante evaluar el aporte de cada uno. Por 

consiguiente, se puede estimar la capacidad de almacenamiento del páramo en cuencas 

donde esta característica responde en su totalidad a dicho ecosistema, tal es el caso de la 

subcuenca alta del río Yanuncay cuyo 𝑎 es de 51 𝑚3−3𝑏𝑠𝑏 según el estudio de Guzmán 

et al. (2015). Por ende, se podría asumir que la capacidad de almacenamiento producida 

por el páramo en la subcuenca alta del río Machángara se aproxima a este valor. 

En el Anexo 4 se muestra el valor obtenido para 𝑎 y el gráfico de caudal base de la 

subcuenca alta del río Machángara efectuados mediante Matlab. 

La comparación de la relación 𝑎/ á𝑟𝑒𝑎 de la subcuenca alta del río Machángara frente a 

las otras subcuencas se observan en la Tabla 4. 

Tabla 4: Variación de la relación 𝑎 Á𝑟𝑒𝑎⁄  (m3-3b sb m-2) en función de "𝑏” para la subcuenca alta y baja de 

los ríos Tarqui, Yanuncay y la subcuenca alta del río Machángara 𝑎 Á𝑟𝑒𝑎⁄  

𝑏 Subcuenca alta del Yanuncay Subcuenca alta del Tarqui Subcuenca alta del Machángara 

0,5 1,65E-07 1,24E-07 7,80E-07 

 Fuente: Adaptado de Guzmán et al., 2015 

La subcuenca alta del río Machángara tiene la capacidad de almacenamiento por unidad 

de área más alta de todas las analizadas, seguida de la subcuenca alta de los ríos Yanuncay 

y Tarqui respectivamente. Estos resultados corroboran la influencia de los diferentes 

ecosistemas y el tipo de regulación en su capacidad de almacenamiento. 

No obstante, es importante mencionar que esta metodología no puede ser aplicada para la 

separación de caudal base en la cuenca media del río Paute, ya que considera periodos de 

recesión que se basan en la serie de precipitación media diaria de un área en particular, la 

cual debe ser estimada a través de un método de cálculo. Sin embargo, el cómputo de 

precipitación media para esta cuenca abarca varias incertidumbres debido a los diferentes 

regímenes de lluvia que se dan en toda su superficie, dado que la cuenca del río Paute es 
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particularmente heterogénea principalmente por la diversidad de influencias climáticas 

que la afectan (Pombosa et al., 2000).  Frente a esto, una alternativa para la aplicabilidad 

de esta metodología consistiría entonces en la sectorización de la cuenca en subcuencas 

con regímenes hidrológicos similares. 

4.2.2.  Filtros Digitales 

 

A partir de la serie de caudal base resultante a la salida de la subcuenca del río 

Machángara y el área total de ésta, se calcula el caudal base específico acumulado (∑
𝑄𝑏𝑠

𝐴
) 

y se lo compara con los valores obtenidos del estudio de Guzmán et al. (2015) para las 

subcuencas de los ríos Tarqui y Yanuncay en los 956 días del periodo 2009 a 2011. A 

continuación, en la Tabla 5 se muestran los resultados. 

Tabla 5: Caudal base específico acumulado en el periodo 01/01/2009 - 14/08/2011 para las subcuencas de 

los ríos Tarqui, Yanuncay y Machángara 

 
Subcuenca baja del 

Yanuncay  

Subcuenca baja del 

Tarqui 

Subcuenca baja del 

Machángara 

Qb específico 
acumulado (mm) 

785.70 352.48 1255.02 

Fuente: Autores 

Donde el mayor caudal base específico acumulado corresponde a la subcuenca del río 

Machángara, resultando ser un 72% y 37% superior a los de las subcuencas de los ríos 

Tarqui y Yanuncay respectivamente. La superioridad del caudal base específico 

encontrado para la subcuenca del río Machángara puede verse influenciado por dos 

aspectos: la regulación artificial en la zona alta y la cobertura de páramo. Sin embargo, la 

diferencia con el caudal base específico acumulado de la subcuenca del río Yanuncay 

radica principalmente en el tipo de regulación (natural) dado que igualmente ésta cuenta 

con un gran porcentaje de páramo (77%), mientras que para la subcuenca del río Tarqui 

el contraste se debe a los dos aspectos. 

El método de filtros digitales para la separación de caudal base presenta ciertas 

restricciones por no tener una base física, es decir; no considera todas las condiciones de 

flujo. Sin embargo, es aplicable por la objetividad y reproducibilidad que éste presenta.   

A partir del análisis del balance hídrico en una subcuenca con regulación natural, es 

posible caracterizar la recarga durante un periodo de tiempo prolongado, donde el flujo 



 

 
 

43 

Christian Andrés Quezada Ochoa 

 María del Carmen Quizhpi Calle  

proveniente del caudal base es equivalente a la recarga, debido a que cuando se promedia 

el balance hídrico durante un largo periodo de tiempo sin cambios significativos en el 

clima o influencias antropogénicas, se puede suponer que la variación del 

almacenamiento tiende a ser despreciable (Allan & Castillo, 2007). Por lo cual, existe una 

compensación entre los dos procesos (recarga y almacenamiento); ya que en épocas secas 

se liberan las aguas subterráneas que fueron almacenadas durante los periodos lluviosos 

(Guzmán et al., 2015). 

En el siguiente esquema se ilustra el proceso de recarga en una cuenca con regulación 

natural. 

 

Figura 11: Esquema del proceso de recarga en una cuenca con regulación natural 

Es decir: 

𝑅 − 𝑄𝑏 = 𝑆          (15)           

Donde 𝑆 es el almacenamiento, 𝑅 la recarga y 𝑄𝑏 el caudal base; entonces, al considerar 

un intervalo de tiempo ∆𝑡 prolongado: 

∆𝑆 ≈ 0    

∴ 𝑅 = 𝑄𝑏          (16)           

No obstante, para la subcuenca del río Machángara la estimación de la recarga es 

compleja, debido a que en la zona alta existe almacenamiento artificial (𝑆𝑎), determinada 

por la regulación de los embalses Chanlud y El Labrado. Por tanto, existe una fracción de 

dicho almacenamiento (𝑓) que es liberada constantemente como se muestra en la 

siguiente figura: 
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Figura 12: Esquema del proceso de recarga en una cuenca con regulación artificial 

Fuente: Autores 

 

Es decir; 

∆𝑆 ≠ 0  

∴ 𝑄𝑏 = 𝑅 + 𝑓𝑆𝑎          (17)           

4.3. Aporte de las subcuencas de los ríos Yanuncay, Tarqui y Machángara en la 

cuenca media del río Paute durante el periodo 01/01/2009 a 14/08/2011 

 

Con los resultados obtenidos por el método de filtros digitales (Eckhardt) se cuantificó el 

aporte de caudal base de las tres subcuencas analizadas a la cuenca media del río Paute 

(Anexo 5). Dichos aportes están representados en porcentajes para el periodo 01/01/2009 

a 14/08/2011, resultando: 

 

Figura 13: Aporte de las subcuencas Yanuncay, Tarqui y Machángara en la cuenca media del río Paute 

durante el periodo 2009 a 2011 

Fuente: Autores 
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La contribución de caudal base de las subcuencas de los ríos Machángara, Tarqui y 

Yanuncay constituye el 33% y proviene de un área de 1220.45 km2 en la cuenca media 

del río Paute (3598.44 km2). Siendo la de mayor aporte la subcuenca del río Machángara 

con el 15%, seguida de las subcuencas de los ríos Yanuncay y Tarqui con el 12% y 6% 

respectivamente. Considerando únicamente el aporte de las tres subcuencas se determina 

que el mayor aporte proviene de la subcuenca del río Machángara con el 45%, seguido 

de la subcuenca de los ríos Yanuncay y Tarqui con el 36% y 19% respectivamente. 

Por otra parte, en el periodo crítico uno se observa que el aporte de las tres subcuencas en 

la cuenca media del río Paute se reduce al 27%, debido a la disminución del caudal base 

en las subcuencas con regulación natural de los ríos Tarqui y Yanuncay a un 3% y 8% 

respectivamente, mientras que la contribución de la subcuenca del río Machángara 

aumenta al 16%. De modo que, al considerar únicamente la contribución de las tres 

subcuencas, se observa que el aporte de la del río Machángara representa el 60% y el de 

los ríos Tarqui y Yanuncay el 12% y 28% respectivamente (Figura 14).  

 

 

Figura 14: Aporte de las subcuencas Yanuncay, Tarqui y Machángara en la cuenca media del río Paute 

durante el periodo crítico 1 (12/07/2009 a 26/11/2009) 

Fuente: Autores 

Finalmente, al analizar el periodo crítico dos se observa que el aporte de caudal base de 

las tres subcuencas a la cuenca media del río Paute ha disminuido en un 2%; resultado de 

la disminución del aporte de la subcuenca del río Machángara. Además, se determina que 

las contribuciones de caudal base de las subcuencas de los ríos Tarqui y Yanuncay (3% y 
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8%) son iguales a las del periodo crítico uno, manteniendo una respuesta hidrológica 

similar frente a eventos de sequía. Por otra parte, al considerar exclusivamente el aporte 

de las tres subcuencas, se define que el de las subcuencas de los ríos Machángara (55%) 

y Yanuncay (32%) es sustancial, a diferencia de la del río Tarqui cuyo aporte es mínimo 

(13%). En la Figura 15 se ilustran dichos resultados: 

 

Figura 15: Aporte de las subcuencas Yanuncay, Tarqui y Machángara en la cuenca media del río Paute 

durante el periodo crítico 2 (18/09/2010 a 12/10/2010) 

Fuente: Autores 
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5. CONCLUSIONES  

 

Se concluye que la capacidad de almacenamiento de la subcuenca alta del río Machángara 

analizada a través del parámetro 𝑎 y de la relación 𝑎/á𝑟𝑒𝑎 mediante el método de 

separación de caudal base de análisis de recesión no lineal fue mayor que las subcuencas 

altas de los ríos Tarqui y Yanuncay. Esto se puede deber a los embalses existentes en la 

zona alta, cuya respuesta hidrológica se ve representada por el modelo perceptual 

distribuido, el cual se constituye del modelo perceptual A (páramo) y de la combinación 

de este ecosistema con la regulación artificial de los mismos. 

Por otra parte, la estimación de la característica física de la recarga a través de la ecuación 

de balance hídrico ha sido aplicada en cuencas sin regulación artificial durante largos 

periodos de tiempo. Por consiguiente, el cálculo de este parámetro en la subcuenca del 

río Machángara presentó dificultades en su cómputo, debido a que ésta cuenta con 

regulación artificial de sus embalses. 

En cuanto a los aportes de caudal base de las subcuencas de los ríos Machángara, Tarqui 

y Yanuncay se estableció que durante el periodo 01/01/2009 a 14/08/2011 el mayor aporte 

que recibió la cuenca media del río Paute provino de la subcuenca del río Machángara 

(15%), seguido de la subcuenca del río Yanuncay (12%) y el contribuyente más bajo fue 

la subcuenca del río Tarqui (6%). Cabe señalar que el aporte de caudal base de la 

subcuenca del río Yanuncay la cual posee alrededor del 77% de páramo y regulación 

natural fue aproximado al de la subcuenca del río Machángara, que está provista de un 

porcentaje similar de páramo (63%) y cuenta con regulación artificial; frente a esto, en 

función de un análisis de balance neto de regulación; sería importante cuestionarse si es 

mejor invertir en el cuidado del páramo o en la construcción de presas para la regulación. 

Finalmente, en el caso de la subcuenca del río Machángara la regulación artificial ejercida 

a través de su capacidad de almacenamiento en los embalses fue un factor determinante 

para sostener los caudales principalmente en épocas de estiaje; lo cual se mostró en los 

periodos críticos analizados, donde el primero (12/07/2009 a 26/11/2009) como el 

segundo (18/09/2010 a 12/10/2010) presentaron un aporte superior de caudal base de la 

subcuenca del río Machángara (16% y 14% respectivamente). Además, se determinó que 

los aportes de caudal base de las subcuencas de los ríos Tarqui y Yanuncay en el periodo 
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crítico uno (3% y 8% respectivamente) fueron iguales a los del periodo críticos dos; 

manteniendo una respuesta hidrológica similar frente a eventos de sequía. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. RECOMENDACIONES  
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Para la construcción de embalses en zonas de páramo se recomienda analizar no sólo el 

aumento del almacenamiento, sino también la capacidad de regulación que éstos tendrían; 

ya que si con la construcción de los mismos se liberan cantidades similares de agua que 

las del páramo en condiciones naturales, entonces surge la necesidad de cuestionarse qué 

tanto amerita su implementación. 

Para un análisis más detallado del aporte de caudal base en épocas de estiaje a la cuenca 

del río Paute, se recomienda extender la comparación de los aportes obtenidos en este 

estudio a otros periodos críticos. Asimismo, se recomienda ampliar el área de estudio para 

estimar el aporte de las otras subcuencas.  

Para la obtención de resultados más realistas de caudal base, se recomienda el uso de 

metodologías basadas en la física como los filtros físicos, los cuales se derivan a partir de 

una ecuación de balance de masa y analizan ciertos parámetros (precipitación, recarga y 

evapotranspiración. 

La subcuenca del río Machángara aporta caudal de forma continua, debido a la regulación 

artificial que posee. Por ello, se sugiere profundizar la investigación en la relación 

existente entre el caudal base y la regulación de los embalses. Lo cual facilitará el 

entendimiento de las características físicas asociadas a éste (almacenamiento y recarga). 
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8. ANEXOS  

 

ANEXO 1. Relleno de la serie de datos de descarga de la estación Paute en Paute durante el periodo 01/01/2009 a 31/12/2011. 

 

 

 

0

150

300

450

600

750

900

02/01/2009 02/01/2010 02/01/2011

Q
 (

m
3 /

s)

Fecha (día/mes/año)

Estación Paute en Paute Serie rellenada



 

 
 

58 

Christian Andrés Quezada Ochoa 

 María del Carmen Quizhpi Calle  

ANEXO 2. Separación de caudal base por Eckhardt 𝐵𝐹𝐼𝑚𝑎𝑥 = 0.8 en la subcuenca alta del río Machángara y en la cuenca media del río Paute en 

el periodo 2009-2011. 

a. Subcuenca alta del río Machángara  
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b. Cuenca media del río Paute  
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ANEXO 3. Periodos de estiaje en las series de descarga en el periodo 2009-2011.  

a. Estación Machángara DJ. Chulco 

 

b. Estación Paute en Paute 
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ANEXO 4. Separación de caudal base por análisis de recesión no lineal 

a. Cálculo del parámetro 𝑎 
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b. Gráfico de separación de caudal base 
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ANEXO 5. Aporte del caudal base de las subcuencas de los ríos Machángara, Tarqui y Yanuncay en la cuenca media del río Paute durante el 

periodo 2009 a 2011. 

a. Comparación de caudal base por Eckhardt 𝐵𝐹𝐼𝑚𝑎𝑥 = 0.8 durante el periodo 2009 a 2011. 
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b. Comparación de caudal base por Eckhardt 𝐵𝐹𝐼𝑚𝑎𝑥 = 0.8 durante los periodos de estiaje. 

Periodo 1 
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Periodo 2 

 

 

 

0

5

10

15

20

25

30

09/18/2010 09/23/2010 09/28/2010 10/03/2010 10/08/2010

Q
 (

m
3
/s

)

Fecha (día/mes/año)

Tarqui Yanuncay Machángara Paute


