

UNIVERSIDAD DE CUENCA

Facultad de Ingeniería

Ingeniería en Electrónica y Telecomunicaciones

Implementación de una estación prototipo con

visión artificial, aplicado a la agricultura de

precisión

Trabajo de titulación previo

a la obtención del título de

Ingeniero en Electrónica y

Telecomunicaciones

Autor:

Pablo Esteban Villota Neira

CI: 0401585401

Director:

Ing. Santiago Renán González Martínez, PhD

CI: 0103895934

Cuenca-Ecuador

14/10/2019

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 1

Resumen:

La agricultura de precisión es una actividad que mediante la observación de variables

ambientales permite actuar de forma precisa y oportuna sobre las parcelas agrícolas para así

lograr una mayor y más eficiente producción. En Ecuador, esta es una actividad poco explotada

por pequeños y medianos productores, tanto por falta de conocimiento de las tecnologías que

pueden utilizarse para este propósito, como por falta de los recursos económicos necesarios

para llevarla a cabo.

Si bien existen varias tecnologías que están ayudando al despliegue de la agricultura de

precisión, en el presente trabajo de tesis se hará énfasis en tres de ellas. En primer lugar, se

utilizan técnicas de procesamiento de imágenes para la detección de frutos de una parcela.

Posteriormente se emplean dos tecnologías que llevarán este proyecto a un ámbito actual de

investigación, como es el desarrollo de aplicaciones basada en el Internet of Things (IoT).

Específicamente, computación en la nube para la gestión de la información generada por

sensores y el protocolo Message Queue Telemetry Transport (MQTT) para la mensajería de los

datos.

Es por esto que se propone el diseño y construcción de una estación prototipo, con capacidad

para monitorizar variables ambientales, desarrollar tareas de video-vigilancia así como capturar

y procesar imágenes para la detección de frutos. Esta estación enviará los datos recolectados

a través de Internet a una aplicación web alojada en la nube de IBM; finalmente los resultados

podrán ser monitorizados por un usuario a través del navegador.

Palabras claves: Agricultura de precisión. Internet of Things. Thresholding. Modelos de

Mezclas Gaussianas. Node-Red. IBM cloud, MQTT.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 2

Abstract:

Precision agriculture is an activity that, through the observation of environmental variables,

allows precise and timely action on agricultural plots in order to achieve greater and more

efficient production. In Ecuador, this is an activity little exploited by small and medium

producers, both for lack of knowledge of the technologies that can be used for this purpose

and for lack of the necessary economic resources to carry it out.

Although there are several technologies that are helping to deploy precision agriculture, in the

present thesis work, emphasis will be placed on three of them. First, image processing

techniques are used for the detection of fruits of a plot. Subsequently, two technologies are

used that will take this project to a current field of research, such as the development of

applications based on the Internet of Things (IoT). Specifically, cloud computing for the

management of information generated by sensors and the Message Queue Telemetry

Transport (MQTT) protocol for data messaging.

Thus, the design and construction of a prototype station is proposed, with the ability to

monitor environmental variables, develop video surveillance tasks as well as capture and

process images for the detection of fruits. This station will send the data collected through the

Internet to a web application hosted in the IBM Cloud; finally, the results can be monitored by

a user through the browser.

Keywords: Precision agriculture. Internet of Things. Thresholding. Gaussian Mixture Models.

Node-Red. IBM Cloud, MQTT.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 3

Índice del Trabajo

1. INTRODUCCIÓN Y OBJETIVOS DE LA TESIS

1.1. Definición del Problema

1.2. Justificación y Alcance

1.3. Objetivo General

1.4. Objetivos Específicos

1.5. Estructura del Documento

2. MARCO TEÓRICO

2.1. Introducción

2.2. Agricultura de Precisión

2.3. Tecnología IoT

2.4. Procesamiento de Imágenes

2.4.1. Espacios de Color

2.4.2. Thresholding

2.4.3. Clustering

2.4.4. Operaciones Morfológicas

2.4.5. Etiquetado de Componentes Conectados

2.4.6. Conteo de Objetos

2.5. Procesamiento de Video

2.6. Tecnologías para el Desarrollo de Aplicaciones Web

2.6.1. Node-Red Starter

2.6.2. Internet of Things Platform

2.6.3. Protocolo MQTT

2.7. Conclusiones

3. TRABAJOS RELACIONADOS

4. IMPLEMENTACIÓN DEL SISTEMA DE MONITOREO

4.1. Introducción

4.1.1. Descripción del Equipamiento

4.1.2. Mini Computador Raspberry Pi

4.1.3. Sensores

4.1.4. Batería

4.2. Descripción del Software

4.3. Sistemas de Comunicación

4.3.1. Comunicación Estación – IBM Cloud

4.3.2. Configuración de los Bloques en la Nube

4.3.3. Comunicación IBM Cloud – Estación

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 4

4.3.4. Estructura de los Mensajes

4.4. Implementación de la Estación Prototipo

4.4.1. Integración de la Web Cam

4.4.2. Procesamiento de Imágenes

4.4.3. Transmisión de Imágenes y Video en Tiempo Real

4.4.4. Funcionamiento de los Sensores

4.5. Implementación de la Aplicación Web

4.5.1. Programación de la Aplicación

4.5.2. Configuración y Diseño de la Interfaz Gráfica

4.6. Conclusiones

5. EVALUACIÓN Y PRUEBAS EXPERIMENTALES

5.1. Introducción

5.2. Escenarios de Pruebas

5.3. Procesamiento y Análisis de Imágenes

5.4. Transmisión de Datos de Sensores y Video

5.5. Caracterización del Consumo Energético

5.6. Conclusiones

6. CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

6.2. Recomendaciones

REFERENCIAS

APENDICES

A. Entorno de Trabajo IBM Cloud

B. Entorno de Trabajo Node-Red Starter

C. Entorno de Trabajo IBM Watson IoT

D. Registro de Dispositivos en la Plataforma IBM Watson IoT

E. Instalación de los Sensores de Recolección de Datos

 Instalación Sensor INA219

 Instalación Sensor BME280

 Instalación Sensor SI1145

 Sensores de Temperatura y Carga del Procesador

 Instalación Sensor de Geo-localización

F. Diseño de las Placas Electrónicas

G. Encapsulado de la Estación

H. Código de Segmentación con GMM

I. Código de Segmentación con Thresholding

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 5

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 6

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 7

Agradecimientos

A mis padres, por estar pendientes de mis progresos como profesional y

como persona.

A mi hermano, cuya curiosidad me ha ayudado a siempre preguntarme

el porqué de las cosas.

A mi tutor Santiago, por su paciencia y disponibilidad siempre que

necesité algún consejo.

A mis amigos, cuyas palabras a veces difíciles de digerir pero siempre

bien intencionadas, me han ayudado a reflexionar las decisiones de mi

vida.

A mis compañeros, hayan sido o no afines a mí, todos me ayudaron a

conocer las dificultades y ventajas del trabajo en equipo.

A todos mis maestros que tuvieron la vocación de la docencia y pasión

por la profesión, porque ellos fueron la motivación que muchas veces

necesité.

A Dios, el universo o aquel sentimiento superior que hace que todo

cobre sentido.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 8

I. Índice General

I. Índice General ... 8

II. Índice de Figuras .. 11

III. Índice de Tablas .. 14

IV. Listado de Acrónimos .. 15

1. INTRODUCCIÓN Y OBJETIVOS DE LA TESIS .. 16

1.1. Definición del Problema .. 16

1.2. Justificación y Alcance ... 17

1.3. Objetivo General ... 18

1.4. Objetivos Específicos .. 18

1.5. Estructura del Documento .. 18

2. MARCO TEÓRICO ... 19

2.1. Introducción .. 19

2.2. Agricultura de Precisión .. 19

2.3. Tecnología IoT ... 19

2.4. Procesamiento de Imágenes ... 20

2.4.1. Espacios de Color ... 22

2.4.2. Thresholding ... 23

2.4.3. Clustering ... 23

2.4.4. Operaciones Morfológicas ... 27

2.4.5. Etiquetado de Componentes Conectados .. 28

2.4.6. Conteo de Objetos ... 28

2.5. Procesamiento de Video ... 28

2.6. Tecnologías para el Desarrollo de Aplicaciones Web ... 29

2.6.1. Node-Red Starter ... 29

2.6.2. Internet of Things Platform .. 30

2.6.3. Protocolo MQTT ... 30

2.7. Conclusiones ... 31

3. TRABAJOS RELACIONADOS .. 32

4. IMPLEMENTACIÓN DEL SISTEMA DE MONITOREO ... 34

4.1. Introducción .. 34

4.1.1. Descripción del Equipamiento ... 34

4.1.2. Mini Computador Raspberry Pi .. 35

4.1.3. Sensores ... 35

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 9

4.1.4. Batería .. 37

4.2. Descripción del Software .. 37

4.3. Sistemas de Comunicación ... 38

4.3.1. Comunicación Estación – IBM Cloud .. 38

4.3.2. Configuración de los Bloques en la Nube ... 40

4.3.3. Comunicación IBM Cloud – Estación .. 41

4.3.4. Estructura de los Mensajes .. 43

4.4. Implementación de la Estación Prototipo ... 45

4.4.1. Integración de la Web Cam .. 45

4.4.2. Procesamiento de Imágenes .. 46

4.4.3. Transmisión de Imágenes y Video en Tiempo Real .. 56

4.4.4. Funcionamiento de los Sensores .. 57

4.5. Implementación de la Aplicación Web ... 58

4.5.1. Programación de la Aplicación ... 58

4.5.2. Configuración y Diseño de la Interfaz Gráfica .. 60

4.6. Conclusiones ... 62

5. EVALUACIÓN Y PRUEBAS EXPERIMENTALES ... 64

5.1. Introducción .. 64

5.2. Escenarios de Pruebas .. 64

5.3. Procesamiento y Análisis de Imágenes ... 64

5.4. Transmisión de Datos de Sensores y Video .. 68

5.5. Caracterización del Consumo Energético ... 69

5.6. Conclusiones ... 71

6. CONCLUSIONES Y RECOMENDACIONES .. 72

6.1. Conclusiones ... 72

6.2. Recomendaciones ... 73

REFERENCIAS .. 74

APENDICES .. 78

A. Entorno de Trabajo IBM Cloud.. 78

B. Entorno de Trabajo Node-Red Starter .. 80

C. Entorno de Trabajo IBM Watson IoT .. 83

D. Registro de Dispositivos en la Plataforma IBM Watson IoT .. 85

E. Instalación de los Sensores de Recolección de Datos ... 88

 Instalación Sensor INA219 .. 88

 Instalación Sensor BME280 ... 88

 Instalación Sensor SI1145 ... 89

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 10

 Sensores de Temperatura y Carga del Procesador ... 89

 Instalación Sensor de Geo-localización ... 89

F. Diseño de las Placas Electrónicas .. 90

G. Encapsulado de la Estación ... 91

H. Código de Segmentación con GMM ... 92

I. Código de Segmentación con Thresholding .. 96

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 11

II. Índice de Figuras

Figura 1 Marco de trabajo del procesamiento de imágenes con Thresholding ... 21

Figura 2 Marco de trabajo del procesamiento de imágenes con GMM ... 22

Figura 3 Diagrama de flujo del ajuste del modelo .. 26

Figura 4 Esquema de funcionamiento de MQTT .. 31

Figura 5 Esquema del sistema implementado .. 34

Figura 6 Nodo wiotp out ... 39

Figura 7 Propiedades del nodo wiotp out .. 39

Figura 8 Credenciales nodo wiotp out .. 39

Figura 9 Nodo ibmiot in .. 40

Figura 10 Propiedades nodo ibmiot in ... 40

Figura 11 Formulario para ingresar credenciales de API .. 41

Figura 12 Comunicación Dispositivo - Nube ... 41

Figura 13 Panel debug en el lado IBM Cloud .. 41

Figura 14 Lista de dispositivos registrados ... 42

Figura 15 Propiedades nodo ibmiot in en dispositivo .. 42

Figura 16 Propiedades nodo wiotp out en la nube .. 43

Figura 17 Comunicación Nube - Dispositivo ... 43

Figura 18 Panel debug en el lado del dispositivo ... 43

Figura 19 Aplicación Node-Red en la estación prototipo ... 45

Figura 20 Nodo de ejecución para la cámara web ... 46

Figura 21 Imagen de muestra empleada para el ajuste del modelo mediante el esquema GMM 47

Figura 22 Resultados de la segmentación empleando el modelo GMM, con 5 clusters y tres tipos de

espacios de color. (a) RGB. (b) HSV. (c) LAB ... 47

Figura 23 Resultados de la segmentación incluyendo información adicional en el modelo GMM. (a)

Promediado de pixeles. (b) Varianza de pixeles ... 48

Figura 24 Resultados del criterio BIC para estimar el número de clusters. (a) RGB. (b) LAB 49

Figura 25 Resultados de la segmentación. (a) RGB, 15 clusters. (b) LAB 11 clusters. (c) LAB 18 clusters .. 49

Figura 26 Imagen binaria. (a) Antes de la operación closing. (b) Después de la operación closing 50

Figura 27 Imagen de muestra con elementos ubicados ... 51

Figura 28 Estadísticas de la imagen de muestra ... 51

Figura 29 Marco de trabajo actualizado, incluyendo el espacio de color LAB y la operación closing 51

Figura 30 Imágenes empleadas para la validación del modelo. (a) y (b) Contexto similar. (c) y (d)

Contexto distinto .. 52

Figura 31 Imágenes de validación procesadas. (a) y (b) Contexto similar. (c) y (d) Contexto distinto 53

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 12

Figura 32 Resultados obtenidos con un Thresholding amplio en varias imágenes. 54

Figura 33 Resultados obtenidos mediante Thresholding reducido en varias imágenes. 55

Figura 34 Acercamiento Figura 21(b) con extracción de segmentación .. 56

Figura 35 Diagrama de flujo en Node-Red, para la transmisión de video .. 57

Figura 36 Diagrama de flujo en Node-red para la transmisión de imágenes ... 57

Figura 37 Flujo Node-Red para el funcionamiento de los sensores ... 58

Figura 38 Diagrama de flujo correspondiente al funcionamiento de los sensores 58

Figura 39 Flujo en Node-Red para la Presentación de Datos ... 59

Figura 40 Flujo de Controles implementado en Node-Red .. 60

Figura 41 Panel de configuración dashboard ... 60

Figura 42 Pestaña Panel de sensores ... 61

Figura 43 Pestaña Imagen y Video ... 61

Figura 44 Pestaña para la visualización del Mapa .. 62

Figura 45 Resultados de detección de frutos con Thresholding reducido en varias imágenes 65

Figura 46 Acercamiento con segmentación extraída ... 66

Figura 47 Resultados fallidos de GMM con EM .. 66

Figura 48 Imagen de ajuste seleccionada para la segmentación con el modelo GMM-EM 67

Figura 49 Resultados de detección de frutos con GMM mediante EM en varias imágenes 68

Figura 50 Simulación de transmisión de datos de sensores ... 68

Figura 51 Panel debug con los resultados de la simulación ... 69

Figura 52 Página de inicio IBM Cloud ... 78

Figura 53 Panel de control IBM Cloud .. 79

Figura 54 Menú de Navegación IBM Cloud .. 79

Figura 55 Catálogo IBM Cloud .. 80

Figura 56 Servicios de IBM Cloud que se usarán .. 80

Figura 57 Instanciación de servicio Node-RED Starter ... 80

Figura 58 Ventana de inicio Node-RED Starter ... 81

Figura 59 Incremento de memoria de la instancia ... 81

Figura 60 Página de inicio del editor Node-RED ... 82

Figura 61 Editor Node-RED ... 82

Figura 62 Menú del editor Node-RED... 83

Figura 63 Ventana de "Manage Palette" .. 83

Figura 64 Formulario de instanciación IBM Watson IoT .. 84

Figura 65 Administrador de la instancia IBM Watson IoT .. 84

Figura 66 Plataforma IBM Watson IoT ... 85

Figura 67 Formulario tipo de dispositivo .. 85

Figura 68 Datos adicionales tipo de dispositivo ... 86

Figura 69 Ventana nuevo dispositivo ... 86

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 13

Figura 70 Datos adicionales del dispositivo .. 86

Figura 71 Formulario para la señal de autenticación del dispositivo ... 87

Figura 72 Datos adicionales para la clave de API.. 87

Figura 73 Datos de la clave de API .. 88

Figura 74 Placa electrónica de sensores (izq.) Cara superior (der.) Cara inferior 90

Figura 75 Placa de botones .. 91

Figura 76 Ensamble de la estación ... 91

Figura 77 Encapsulado de la estación ... 92

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 14

III. Índice de Tablas

Tabla 1 Características técnicas del sensor de corriente Adafruit INA219 ... 35

Tabla 2 Características técnicas del sensor UV Adafruit SI1145 ... 35

Tabla 3 Características técnicas del sensor de temperatura, humedad y presión Adafruit BME280 36

Tabla 4 Características técnicas del sensor de geo-localización Adafruit Ultimate GPS 36

Tabla 5 Características técnicas de la cámara web Logitech c270 ... 37

Tabla 6 Características técnicas del paquete de batería externo Ravpower Element Series 37

Tabla 7 Código de sensores/comandos .. 44

Tabla 8 Valores de Thresholding amplio .. 54

Tabla 9 Valores Thresholding reducido .. 55

Tabla 10 Consumo de corriente de las tareas de la estación ... 70

Tabla 11 Consumo de energía estimado por tarea .. 70

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 15

IV. Listado de Acrónimos

ANN Artificial Neural Network

API Application Programming Interface

BGR Blue-Green-Red

BIC Bayesian Information Criterion

CCL Connected-Components Labeling

CSS Cascading Style Sheets

EM Expectation-Maximization

FAO Food and Agriculture Organization

FPS Fotogramas por segundo

GMM Gaussian Mixture Models

GNSS Global Navigation Satellite System

GPS Global Positioning System

HLS Hue-Saturation-Lightness

HSV Hue-Saturation-Value

HTML Hyper Text Markup Language

I2C Inter Integrated Circuits

IoT Internet of Things

LAB Lightness, color channel a, color channel b

M2M Machine to Machine

MQTT Message Queue Telemetry Transport

PaaS Platform as a service

QoS Quality of Service

RGB Red-Green-Blue

SBC Single Board Computer

SSH Secure Shell

SVM Support Vector Machine

TLS Transport Layer Security

UAV Unmanned Aerial Vehicle

UV Ultravioleta

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 16

1. INTRODUCCIÓN Y OBJETIVOS DE LA TESIS

En este capítulo se presenta una introducción al trabajo de tesis, en particular se describe la

problemática de la limitada aplicación tecnología en el sector agrícola de nuestro país, a partir

de lo cual se propone un dispositivo tecnológico de bajo coste el cual contribuirá en los

procesos de análisis de los cultivos. Además, se describe el alcance y los objetivos del presente

trabajo de tesis

1.1. Definición del Problema

En Ecuador, la agricultura representó el 7% del producto interno bruto del año 2017, siendo

además la actividad que produce más empleos en el país, como se resaltan en [1],[2]. Sin

embargo, pese a los grandes avances de la tecnología, la producción de los campos en Ecuador

es considerablemente baja. Para citar un ejemplo, según la base de datos de la Organización

de Alimentos y Agricultura de las Naciones Unidas (FAOSTAT, 2016), [3], la producción de

tomates en Ecuador en 2016 fue de 31,4 ton/hec (tonelada/hectárea) que está muy por

debajo de países desarrollados como es el caso de Estados Unidos, donde se producen 90,2

ton/hec e incluso es inferior a la media mundial (37 ton/hec).

Las causas de esta baja producción son varias, como por ejemplo, el limitado acceso a

fertilizantes o el bajo despliegue de sistemas de riego. Sin embargo, uno de los mayores

inconvenientes es la limitada aplicación de tecnología en los cultivos[4]. Ciertamente en

Ecuador es reducida la aplicación de tecnologías que permiten optimizar y mejorar los

procesos agrícolas, especialmente en el ámbito de la pequeña producción. Cabe resaltar, que

en nuestro país 3 de cada 4 productores tienen superficies de producción inferiores a 5 hec [5].

Bajo tal condición, los pequeños productores se encuentran en desventaja y resulta complejo

asumir los costes de la tecnificación en los cultivos.

Sin ir muy lejos, la situación es muy distinta en otros países de la región, por ejemplo, en

Argentina existen varias empresas dedicadas a la implementación de tecnología aplicada a la

agricultura. Específicamente, se han construido estaciones de monitoreo que permiten hacer

estudios de la productividad de una parcela, mediante el uso de sensores y actuadores,

plataformas SIG (Sistema de Información Geográfica), dispositivos GPS (Global Positioning

System) así como software para la monitorización remota de cultivos [6].

La tecnificación de los cultivos con la ayuda de tecnologías emergentes recibe el nombre de

agricultura de precisión. Actualmente, en la industria agrícola, se emplean robots tanto para la

recopilación de datos para elementos actuadores, cámaras fotográficas como sensores de

imagen, además de diversas estructuras de redes inalámbricas con la finalidad de conectar

sensores y actuadores y de brindar conectividad hacia Internet. Este último punto es muy

importante ya que permite integrar la agricultura de precisión junto con soluciones tipo IoT

(Internet of Things). En particular, las arquitecturas IoT son cada vez más empleadas en

diversas áreas como la industria, la domótica e incluso con fines de entretenimiento. En cuanto

a la agricultura de precisión, las soluciones IoT permiten monitorizar ciertos parámetros de

interés en los cultivos como humedad, temperatura, imágenes de los cultivos, gases, entre

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 17

otros. De ésta forma es posible realizar tareas de control y vigilancia remota, planificación y

previsión de cosechas, comunicación M2M (Machine to Machine) para automatización e

incluso análisis de big data [7].

Bajo tales condiciones, resulta evidente la necesidad de mejorar la tecnificación agrícola en

nuestro país, priorizando a los pequeños productores, con soluciones de bajo costo que

permitan incrementar la producción de cultivos por hectárea.

1.2. Justificación y Alcance

De acuerdo a la FAO (Food and Agriculture Organization), la producción agrícola deberá crecer

en un 70% para el 2050 para poder alimentar a una población mundial de ocho mil millones de

personas que se estima habrá para ese entonces. Para alcanzar tal objetivo considerando

problemas tales como el cambio climático y el limitado acceso al agua, es imprescindible que

todos los sectores agrícolas y ganaderos estén equipados con tecnologías digitales [7]. Este

organismo también resalta, que la inversión en el sector agrícola es la forma más efectiva de

reducir el hambre y la pobreza y proveer sostenibilidad en un país [8]. En tal sentido, se prevé

que gran parte de la industria agrícola empleará soluciones basadas en tecnologías IoT[8] y

redes de sensores[9]. Ante tal escenario, nuestro país no puede ser la excepción. Las ventajas y

posibilidades que ofrece la tecnología aplicada a los cultivos, ha sido una de las principales

motivaciones para el planteamiento y desarrollo del presente trabajo de tesis.

En particular, una tecnología que está siendo cada vez más utilizada para el análisis remoto de

cultivos es la visión artificial. Las aplicaciones del procesamiento de imágenes en agricultura

son numerosas, tal como, la identificación de los efectos de los insectos en los cultivos [10], la

medición del estrés de las plantas según la temperatura del suelo [11], tareas de video

vigilancia [12] así como la identificación del estado de los cultivos [13], entre otros. Esta

tecnología ofrece mucha flexibilidad en sus aplicaciones, y dependiendo del hardware usado,

un mismo equipo puede cubrir áreas extensas.

Con base en esto, la propuesta de este trabajo de tesis se enfoca en el desarrollo de una

solución aplicada a la agricultura de precisión, la misma que integra tecnologías tipo IoT junto

con mecanismos de visión artificial. Puntualmente, se ha planteado crear una estación

prototipo que realice operaciones de visión artificial tales como extracción de características

de color y tamaño de los frutos, parámetros que a futuro pueden emplearse para determinar

la madurez o salud de un cultivo [14],[15]. Además, se contempla la capacidad de video

vigilancia, posibilitando así una mejor planificación de los cultivos.

Por otra parte, la estación contará con un módulo GPS que podrá ser usado para ubicar la

estación, por ejemplo, en un escenario conformado por un conjunto muy grande de estaciones

de monitoreo, dotando de escalabilidad al proyecto. La cámara estará conectada a una

plataforma de desarrollo tipo SBC (Single Board Computer) para tener la capacidad de realizar

el procesamiento de la imagen. El GPS estará conectado al SBC mediante sus puertos de

entrada digitales. En cuanto, a la gestión de la información capturada, se desarrollará una

aplicación web, que permita visualizar en tiempo real los datos obtenidos de los sensores

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 18

disponibles en la estación. El prototipo contará con una interfaz de comunicación para su

conexión a internet, actuando como gateway para el envío de los datos de los sensores.

Para mejorar la autonomía energética del prototipo, se realizarán pruebas para caracterizar el

consumo eléctrico de las diferentes tareas que realizará la estación y así estimar el tiempo de

autonomía con la que esta contará.

Siendo el factor económico un limitante para el acceso a la tecnología en los campos agrícolas

del Ecuador, la elaboración de este prototipo tomará como base hardware abierto junto

soluciones en software libre con el objetivo de reducir su costo al mínimo posible.

Concretamente se usarán tarjetas SBC Raspberry Pi como hardware, y la librería Open CV de

Python para el procesamiento de las imágenes como base de software. Finalmente, el

prototipo contará con una batería, lo que permitirá su portabilidad y fácil instalación.

1.3. Objetivo General

Diseñar y desarrollar una estación prototipo que use visión artificial enfocada a la agricultura

de precisión

1.4. Objetivos Específicos

1. Implementar en la estación prototipo un módulo GPS que permita la ubicación de la parcela

a analizar.

2. Caracterizar el consumo de energía del prototipo implementado.

3. Implementar un sistema de visión artificial para la identificación del tamaño y color de los

frutos.

4. Configurar interfaces de comunicación que permitan el acceso del prototipo a Internet, así

como su integración futura a una red de sensores inalámbrica

5. Desarrollar una aplicación web que permita la gestión y monitorización remota de la

estación prototipo

1.5. Estructura del Documento

El documento está estructurado de la siguiente forma. En el Capítulo 2 se presenta el marco

teórico; en particular se resaltan conceptos fundamentales acerca de la agricultura de

precisión, Internet of Things, redes de sensores, así como conceptos básicos del

procesamiento de imágenes y video; finalmente, se describen brevemente las herramientas

empleadas para el desarrollo web. A continuación, en el Capítulo 3, se presentan los

principales trabajos relacionados, disponibles en la literatura. Posteriormente, en el Capítulo 4,

se detalla la implementación de la estación prototipo. Las pruebas realizadas en campo y los

resultados obtenidos, se describen en el Capítulo 5. Finalmente, en el Capítulo 6, se exponen

las conclusiones y recomendaciones generales del presente trabajo de tesis.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 19

2. MARCO TEÓRICO

2.1. Introducción

El trabajo de tesis propuesto tiene como propósito el diseño e implementación de una

estación prototipo para la monitorización de variables de interés en el ámbito de la agricultura

de precisión. Con tal finalidad, en este capítulo se exponen los conceptos fundamentales para

entender el trabajo en su conjunto, así como una introducción a las tecnologías empleadas.

2.2. Agricultura de Precisión

La agricultura de precisión es el término que se le da a la administración de lotes agrarios en

los que se ejecutan tareas de medición y actuación sobre los cultivos, utilizando tecnología

moderna para desarrollar un plan de acción. La agricultura de precisión tiene principalmente

tres objetivos, incrementar la producción de las plantas, reducir el impacto ambiental y

obtener mayores ingresos económicos en las prácticas agrícolas.

Para la captura de datos y toma de medidas, las tareas habituales consisten en levantamientos

topográficos, emplazamiento de sensores y toma de imágenes fotográficas con cámaras fijas,

móviles o satelitales. Mientras que las tareas destinadas a los actuadores se enfocan

principalmente en la fertilización, fumigación, cosecha y riego.

Las tecnologías usadas para llevar a cabo estas tareas son muy variadas, desde infraestructuras

complejas para los sistemas de riego, redes de sensores, sistemas robóticos para fertilización y

fumigación, sistemas de visión e inteligencia artificial [16], análisis de datos, entre otros.

Además, puesto que cada parcela presenta condiciones distintas, los sistemas de

posicionamiento son de gran importancia para identificar el lugar exacto en el cual se

desarrolla un evento. En esta área está muy difundido el uso de sistemas GPS (Global

Positioning System) y GNSS (Global Navigation Satellite System) con los que es posible generar

mapas de variabilidad espacial y actuar sobre los cultivos con propósitos varios.

En el Ecuador, la agricultura de precisión se encuentra principalmente en los sistemas

automatizados de riego. Por otra parte, existen algunos proyectos en etapas iniciales que

emplean imágenes satelitales y ortofotos captadas por drones, que permiten determinar

niveles de clorofila, humedad y otros factores en las plantas. Sin embargo, debido a su alto

costo, tal sistema está limitado a los productos de alta exportación y consumo como por

ejemplo, el banano, el cacao o la cebada, mientras que para los pequeños productores resulta

casi imposible entrar en la era de la denominada agricultura 3.0 [17].

2.3. Tecnología IoT

El término Internet of Things (IoT), apareció en los años 90 para referirse a la conexión de

objetos cotidianos hacia Internet. Si bien en esa época eran muy limitados los objetos

conectados a Internet, con el paso de los años y la reducción en costo y tamaño de los

microprocesadores, este número se ha incrementado exponencialmente. Como un ejemplo en

el año 2010 existían más objetos conectados que personas en el mundo [18] y según los

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 20

pronósticos del portal Forbes [19] para 2025 la cifra de dispositivos conectados a Internet será

de 75 mil millones.

Los factores que han favorecido este enorme crecimiento han sido principalmente la ubicuidad

de Internet, la caída en los precios de miniordenadores, la estandarización de los protocolos de

comunicaciones, los avances en los análisis de datos y el crecimiento de la computación en la

nube [20].

El impacto de esta tecnología ha sido tal que no solo ha cambiado nuestra relación con los

objetos, sino también ha motivado el desarrollo de nuevas arquitecturas de comunicación. Un

claro ejemplo son las conexiones M2M (Machine to Machine) que pasaron de 106 millones en

2012 a 360 millones en 2018 [21]. Además, existen otros modelos de comunicación propios del

Internet of Things, tales como las conexiones dispositivo-nube, dispositivo-puerta de enlace y

el intercambio de datos a través del back-end [20].

En cuanto a los ámbitos de aplicación, se extienden a casi cualquier aspecto de la vida

cotidiana, desde dispositivos conectados al cuerpo humano, pasando por aplicaciones

industriales hasta dispositivos destinados al entretenimiento, y por supuesto también está

presente en la agricultura. Entre las aplicaciones típicas en las que se emplea tecnología IoT en

la agricultura, se encuentra el envío de la información recolectada por sensores hacia la nube

para posteriormente realizar un análisis y ejercer algún tipo de control, por ejemplo, mediante

sistemas robóticos como tractores o vehículos aéreos no tripulados. En el presente trabajo de

tesis se emplea una estrategia similar, capturando y enviando en este caso imágenes de un

cultivo, hacia un servidor para que estas puedan ser procesadas y analizadas.

2.4. Procesamiento de Imágenes

Al hablar de procesamiento de imágenes se cuenta con un amplio abanico de algoritmos y

procedimientos para llegar a una gran cantidad de resultados posibles. Así, es posible realizar

tareas como el filtrado, la segmentación, la clasificación, cambios de espacio de color, entre

otros mecanismos de procesamiento [18], [19]. En cuanto, al nivel de análisis, los algoritmos

pueden actuar a nivel de pixeles, por lotes o global, en el dominio del espacio o en el dominio

de la frecuencia. Adicionalmente, existen métodos de mayor complejidad como por ejemplo,

las redes neuronales [22],[23] o los algoritmos de aprendizaje supervisado tipo Support Vector

Machine (SVM) [24]. La aplicación de un mecanismo u otro depende en gran medida del

problema al que se enfrente. Estas tareas y algoritmos de procesamiento de imágenes por lo

general se usan conjuntamente formando marcos de trabajo por los cuales las imágenes a

procesarse pasan secuencialmente.

El problema de procesamiento de imágenes al cual se hará frente en este trabajo de tesis,

consiste en la detección de frutos sobre fotografías capturadas a una distancia entre cinco y

diez metros. En concreto la tarea fundamental se enfoca en identificar y separar los frutos del

fondo de la imagen. Por tanto, la complejidad del procesamiento se debe a la existencia de

elementos adicionales en las fotografías, tales como hojas, lotes de tierras, ramas, cielo, nubes

o montañas.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 21

Como solución al problema planteado, se propone la aplicación de dos algoritmos descritos en

la literatura. El primer mecanismo consiste en realizar un filtrado espectral de los pixeles, dicho

esquema se denomina Thresholding [25]. El otro método que se evaluará está basado en el

agrupamiento o clustering de los píxeles de la imagen, en el cual cada pixel se coloca dentro de

un grupo o cluster acorde a un criterio previamente definido [26].

Se contará con un marco de trabajo para cada algoritmo; estos serán desarrollados mediante

una serie de experimentos a partir de los datos provistos por un conjunto de imágenes

tomadas en campo. El esquema del marco de trabajo basado en Thresholding se muestra en la

Figura 1. Este marco de trabajo comienza con una conversión al espacio de color HSV para

posibilitar una segmentación por color más sencilla. Luego se implementa el algoritmo de

Thresholding para filtrar los pixeles con los matices deseados, segmentando la región de

interés del fondo de la imagen. Posteriormente se genera la imagen binaria que permitirá

realizar las operaciones subsecuentes. La binarización de la imagen consiste en colocar los

pixeles de la región de interés en color negro, dándole un valor binario de 1, mientras que el

fondo de la imagen pasará a estar de color blanco con un valor binario de 0 (este proceso

también podría ser inverso).

Las operaciones morfológicas permiten eliminar o agregar pixeles a la imagen para reducir el

ruido o rellenar espacios y así mejorar los resultados. Posteriormente se utiliza el algoritmo de

etiquetado de componentes conectados para colocar una etiqueta en cada una de las manchas

de la imagen binaria. Después de esto se realiza el conteo de objetos que servirá para estimar

el número de frutos presentes. Luego se realiza un encuadre de las manchas encontradas en la

imagen original para visualizar los frutos encontrados. Finalmente se calculan estadísticas de la

imagen tales como el número de manchas encontrado, número de frutos estimado, tamaño

mínimo, máximo y promedio de las manchas y color promedio de los frutos.

Figura 1 Marco de trabajo del procesamiento de imágenes con Thresholding

El marco de trabajo basado en clustering se muestra en la Figura 2. En primer lugar se realiza

un cambio de espacio de color. En el Capítulo 4 se describe como se encontró el espacio de

color usado finalmente. Luego se realiza la agrupación de píxeles (clustering) mediante el

algoritmo de Esperanza-Maximización (EM, por las siglas en inglés de Expectation-

Maximization). Luego es necesario identificar que cluster es el que agrupa a los frutos.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 22

Posteriormente se genera la imagen binaria y se procede de manera similar que en el marco

de trabaja basado en Thresholding.

Figura 2 Marco de trabajo del procesamiento de imágenes con GMM

2.4.1. Espacios de Color

Los colores en una imagen están definidos por una tupla de tres números. El significado de

cada uno de estos números y su mapeo en la gama de colores es lo que define un espacio de

color [27]. El espacio de color más usado en la mayoría de sistemas digitales es el espacio RGB

(Red-Green-Blue), sin embargo, existen otras alternativas, cada una con diferentes

características que las hacen atractivas según el problema que se intente abordar. En cuanto a

los sistemas digitales, la forma más común de representar los espacios de color es mediante 24

bits, 8 por cada canal. Como resultado se tiene 256 niveles por cada canal y un total de 16.7

millones de tonalidades posibles. En el presente trabajo se experimentó con algunos de ellos,

cuyas características se presentarán a continuación.

El espacio RGB es un espacio de color aditivo formado por una combinación lineal de los

valores de color rojo (Red), verde (Green) y azul (Blue). La información de crominancia

(información del color) y luminancia se encuentra en la mezcla de los tres componentes, por lo

que ante cambios de luminosidad del ambiente los tres canales sufren cambios notables,

siendo este un problema al intentar segmentar imágenes con diferente iluminación[28]. Otra

desventaja de este espacio, es que no es perceptivamente lineal, es decir, que un cambio

percibido como pequeño por la vista no siempre es así numéricamente.

El espacio HSV tiene como componentes el matiz de la longitud de onda dominante (Hue), la

saturación (S) y el valor (Value) que es la magnitud de intensidad lumínica del pixel. La

principal ventaja de este espacio es que tiene un solo canal para representar el color (el canal

Hue), a diferencia de RGB que tiene tres. Por esta razón este espacio de color es muy utilizado

cuando se desea filtrar una gama específica de colores [29]. Otra ventaja de este espacio es

que ante cambios de luz en el ambiente el único canal que se verá notablemente afectado es

el canal Value. Como principal desventaja se tiene que es dependiente del dispositivo en el que

se visualiza.

El espacio LAB tiene como componentes la luminosidad (Lightness), el canal de color A

(componente de color desde el verde al magenta) y canal de color B (componente de color

desde el azul hasta el amarillo). En este caso, la información de color está codificada en dos

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 23

canales, mientras que el canal restante provee información de la intensidad lumínica. La

principal ventaja del espacio LAB, es que es independiente del dispositivo en el que se

visualiza, además de ser perceptualmente lineal.

2.4.2. Thresholding

Thresholding consiste en un algoritmo muy sencillo que logra segmentar imágenes al pasar sus

pixeles por un umbral o serie de umbrales con valores específicos. Se distinguen dos tipos de

Thresholding, aquel realizado sobre la imagen en escala de grises y aquel que trabaja sobre la

imagen a color. En el presente trabajo de tesis se empleará el segundo tipo.

El Thresholding a color comúnmente trabaja sobre el espacio HSV, el cual como se mencionó

previamente tiene la ventaja de que solo uno de sus canales muestra el color. Adicionalmente,

en la literatura se describe que es posible obtener buenos resultados combinando el algoritmo

de Thresholding y el espacio de color RGB [30].

La principal ventaja del Thresholding es su sencillez y bajo costo de procesamiento. No

obstante, tiene como desventaja, la dificultad para segmentar objetos con matices semejantes

al fondo de la imagen. Además, que al aumentar el tamaño del umbral para ampliar la

cantidad de objetos segmentados, el número de falsos positivos se incrementa de forma

significativa. Por otra parte, el principal desafío con este método, consiste en determinar los

valores óptimos para el umbral, tarea que depende mucho de las características de la imagen

como por ejemplo la iluminación o la resolución.

2.4.3. Clustering

El Clustering o agrupación es un proceso de aprendizaje no supervisado, es decir que a priori

no se conoce una salida para los datos de entrada, con el cual se separan los elementos del

conjunto de entrada en diferentes grupos o clusters. En el procesamiento de imágenes, dicho

mecanismo es útil para realizar la tarea de segmentación de la imagen, es decir para separar

del resto de elementos, la parte de la imagen que es de interés para el problema.

Existen varias formas de lograr esta agrupación, una de ellas es el uso de modelos de mezclas

de distribuciones gaussianas (GMM por las siglas en inglés de Gaussian Mixture Models). Estos

modelos parten de la premisa de que los datos del conjunto de entrada fueron generados por

la mezcla de una cantidad finita y conocida de distribuciones gaussianas con parámetros

desconocidos [31].

Los parámetros a determinar que definen un modelo GMM con clusters y un conjunto de

entrada , donde cada una de sus entradas es un vector de dimensión , son la ubicación y

forma de cada una de las distribuciones gaussianas multivariables, que para un cluster se

definen mediante la ecuación (1):

(1)

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 24

Donde es la distribución gaussiana multivariable para el cluster , es el vector

de medias con entradas (una por cada cluster) de dimensión y es el vector de

covarianzas con entradas de dimensión x . Además, es necesario determinar el vector

de dimensión ; este vector define la probabilidad de que un punto de dato se encuentre

en cada cluster.

Para la estimación de estos parámetros se utiliza el algoritmo de Expectation-Maximization

(EM) que iterativamente ejecuta una etapa de esperanza (E), en la cual se crea una función

para el cálculo de la esperanza de la verosimilitud logarítmica usando la estimación actual de

los parámetros, y una etapa de maximización (M) que maximiza la esperanza de la

verosimilitud logarítmica para obtener parámetros de máxima verosimilitud [32].

Para empezar, el algoritmo inicializa los parámetros (, y) de manera aleatoria para un

número de clusters dado. Luego de esto se procede con la etapa E en la que para cada dato

se calcula la probabilidad de que dicho punto pertenezca al cluster , mediante la ecuación

(2).

(2)

En la etapa M se calcula para cada cluster el peso total que es la porción de probabilidad

de cada cluster calculada sobre todos los puntos del conjunto de datos de entrada, como se

muestra en la ecuación (3):

(3)

Luego se normaliza sobre la suma total de de todos los clusters para formar el vector ,

como se aprecia en la ecuación (4):

(4)

Dónde:

(5)

Y a continuación se actualiza también y como se muestra en las ecuaciones (6) y (7)

respectivamente:

(6)

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 25

(7)

Estas se etapa se las repite iterativamente hasta que la función de verosimilitud logarítmica del

modelo converja. Esta función se la calcula como se muestra en la ecuación (8):

(8)

Los resultados de aplicar el modelo GMM en conjunto con el algoritmo EM, depende en gran

medida de la cantidad de clusters que se seleccione para realizar los cálculos. En particular, un

pequeño número de clusters podría agrupar en un solo grupo tanto características deseadas

como no deseadas de la imagen, lo que se traduce en una segmentación deficiente que

presenta la región de interés rodeada de pixeles que no le corresponden. Por otro lado, un

número grande de clusters puede producir un sobre-ajuste del modelo, ocasionando regiones

de interés incompletas, además de que esto conlleva un coste de procesamiento mayor.

Consecuentemente, existen varios criterios con los cuales estimar un número adecuado de

clusters, entre ellos el criterio de Akaike o la Validación Cruzada [33]. Sin embargo, uno de los

criterios más utilizados actualmente, mismo que se empleó en el presente trabajo, es el

Criterio de Información Bayesiano (BIC por las siglas en inglés de Bayesian Information

Criterion) [32],[34]. Este criterio se calcula como se muestra en la ecuación (9):

(9)

Dónde:

 (10)

 es la medida de la verosimilitud maximizada del modelo con el conjunto de datos de

entrada . es el valor de los parámetros que maximizan la función de verosimilitud. La

constante es el número de parámetros libres que se estiman en el modelo y es el número

de observaciones, es decir la cantidad de entradas en . En los modelos GMM los parámetros

libres son los valores de las medias y las matrices de covarianzas, por lo que el número de

parámetros libres para un modelo con clusters y con datos de entrada de dimensión se

puede calcular con la ecuación (11):

 (11)

El criterio BIC se aplica sobre el modelo una vez sus parámetros hayan sido ajustados con el

algoritmo EM, por lo que el proceso de encontrar el número adecuado de cluster se torna

iterativo. El proceso inicia ajustando el modelo con , se evalúa BIC y luego se incrementa

el número de clusters en 1. El procedimiento se repite hasta alcanzar el número límite de

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 26

clusters impuesto. Una vez se cuente con la evaluación de BIC en todos los modelos ajustados,

algunos autores recomiendan elegir el modelo con el menor valor de BIC, mientras que otros

recomiendan elegir el primer mínimo local encontrado, como se resalta en [35]. En la práctica,

elegir el modelo con el menor valor de BIC suele añadir un costo de procesamiento a veces

innecesario, por lo que, el segundo enfoque suele ser el más indicado. Además en ciertas

fuentes se suele definir BIC como el negativo de la ecuación (9), en este caso se elige el modelo

con el máximo local[13].

Por otra parte, para que el modelo sea útil para la segmentación de imágenes, el conjunto de

entrada debe consistir en los pixeles de una imagen que contengan una considerable cantidad

de los elementos que se quieren segmentar. Naturalmente incluyendo el fondo característico

que tenga las imágenes a ser segmentadas. El procedimiento descrito se puede comprender

con mayor claridad mediante el diagrama de flujo mostrado en la Figura 3.

Figura 3 Diagrama de flujo del ajuste del modelo

Finalmente, una vez que el modelo ha sido ajustado y se han obtenido los parámetros

específicos de cada cluster, el siguiente paso consiste en determinar el cluster en el cual los

frutos han sido agrupados. Sin embargo, puesto que se está trabajando con un modelo de

aprendizaje no supervisado, el modelo no contendrá esta información. En tal sentido, la

solución implementada consistió en analizar las características espectrales que debe tener un

pixel para ser parte del cluster de frutos y realizar una predicción de tal pixel con el modelo

ajustado. Por ejemplo, si los frutos son de color rojo, se predecirá el cluster al que pertenece

un pixel rojizo.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 27

2.4.4. Operaciones Morfológicas

Una vez que se cuenta con la imagen segmentada y sus elementos han sido binarizados, es

posible mejorar los resultados obtenidos mediante la aplicación de Operaciones Morfológicas.

Las Operaciones Morfológicas permiten realizar un procesamiento sobre estructuras

geométricas disponibles en una imagen. Los operandos para dicho procedimiento, por lo

general consisten en una imagen binaria de entrada y un elemento estructural. En cuanto a los

elementos estructurales, son formas con las cuales la imagen de entrada interactuará según la

operación morfológica lo defina. Estos elementos suelen ser estructuras binarias, siendo las

formas más comunes, círculos, cuadrados y óvalos, aunque también es posible definir

estructuras más complejas.

 Las dos operaciones morfológicas básicas son la dilatación y la erosión. La dilatación,

representada por el signo ⊕, expande la imagen en sus bordes al interactuar con un elemento

estructural. Para una imagen y un elemento estructural , la dilatación se define como se

muestra en la ecuación (12):

(12)

Donde es la traslación de por . Así, se puede entender la dilatación como el

emplazamiento de los puntos de en , cuando el centro de se encuentra en algún punto

de [36].

La erosión, representada por el signo ⊖, contrae los bordes de la imagen de acuerdo a su

interacción con el elemento estructural. Para una imagen y un elemento estructural , la

erosión se define como se observa en la ecuación (13):

(13)

Donde , es la traslación de por . La erosión puede ser entendida como la translación

del centro de sobre cada punto de , en la cual, si todos los puntos de están contenidos

en , el punto permanece, caso contrario dicho punto se elimina.

De la dilatación y la erosión se derivan dos operaciones morfológicas muy usadas en el

procesamiento de imágenes, que son la Apertura (Opening) y la Cerradura (Closing). La

operación Opening, tiene la capacidad de rellenar espacios en blanco dentro de una imagen

binaria. En cuanto a su representación, se emplea el signo ο. Además, matemáticamente se

define como la dilatación de la erosión de una imagen por un elemento estructural , tal

como se muestra en la ecuación (14).

 (14)

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 28

La operación Closing, tiene la capacidad de eliminar elementos semejantes al elemento

estructural, como pueden ser manchas de ruido en la imagen. Está representada por el signo •,

y está matemáticamente definida como la erosión de la dilatación de una imagen por un

elemento estructural , como se lo puede observar en la ecuación (15).

 (15)

2.4.5. Etiquetado de Componentes Conectados

El algoritmo de etiquetado de componentes conectados (CCL, por las siglas en inglés de

Connected-Components Labeling) actúa sobre imágenes binarias, asignando una etiqueta única

a cada mancha (conjunto de píxeles conectados) de la imagen [37]. Este procesamiento resulta

indispensable en tareas como conteo de objetos, reconocimiento de patrones y extracción de

características. La funcionalidad básica de este algoritmo consiste en buscar los pixeles con un

valor binario igual a 1 y verificar en toda su vecindad si hay más pixeles con valor igual a 1,

como un indicador de que existe conexión. Para aquellos casos donde se tenga un conjunto

aislado de pixeles se asigna una etiqueta a dicho grupo. En la práctica, implementar el

algoritmo en la forma descrita, no es la opción más adecuada, por lo que en la literatura se

proponen algunas alternativas para su optimización [38], [39], [40]. En el presente trabajo de

tesis, se utilizará la librería OpenCV [41] que cuenta con un método que implementa dos

versiones del algoritmo, una que verifica los pixeles vecinos en las líneas horizontal y vertical, y

otro que verifica los 8 píxeles circundantes.

2.4.6. Conteo de Objetos

Para realizar un conteo de objetos existen dos enfoques muy empleados. El más simple de

ellos consiste en contar la cantidad de manchas. A su vez, dicha tarea resulta más simple

cuando se ha realizado un etiquetado de los componentes conectados, ya que el proceso se

reduce a tomar el número de etiquetas colocadas. El problema de emplear este enfoque para

el conteo de frutos, es que podrían existir manchas que agrupan múltiples frutos, que en este

caso serían contados como solo uno. El otro enfoque propone tomar el número total de

pixeles y dividirlo para el área esperada de un fruto. En este caso, el inconveniente es que

podría darse el caso de muchos frutos aislados con un área reducida por estar solapados por la

vegetación que se contarían como una cantidad menor a la real.

Como solución alternativa en el presente trabajo de tesis se emplea una combinación de estos

dos enfoques, es decir, se cuenta el número de manchas, y en el caso de tener manchas muy

grandes que indique un posible agrupamiento de frutos, se las divide por el área esperada de

un fruto.

2.5. Procesamiento de Video

El procesamiento de video involucra una amplia cantidad de tareas posibles de acuerdo al

resultado buscado. En el presente trabajo, se hará mención solo a las tareas necesarias para su

transmisión y almacenamiento. Como punto de partida, es necesario considerar que en un

video los fotogramas sin procesamiento, es decir en formato raw presentan una cantidad

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 29

significativa de información que en gran parte son inapreciables o redundantes. En tal sentido,

es necesario aplicar mecanismo de compresión para que su transmisión y almacenamiento

sean más sencillos y eficientes. Con tal objetivo se emplean algoritmos especializados

denominados CODECs, encargados de codificar y decodificar archivos de video. Existen varios

estándares de compresión o codificación de video, entre los más usados en la actualidad, se

encuentran, H.265, H264, VP8 y VP9.

En tal contexto resulta útil el software FFmpeg [42], que es un programa de manejo de

contenido multimedia que agrupa un conjunto de herramientas para codificar, decodificar,

multiplexar, hacer streaming, filtrar y reproducir video.

2.6. Tecnologías para el Desarrollo de Aplicaciones Web

A diferencia de las aplicaciones de escritorio que son programas que se ejecutan sobre el

sistema operativo de una plataforma nativa, las aplicaciones web están alojadas y se ejecutan

en el servidor del desarrollador para ser visualizadas en un navegador. Este tipo de soluciones

presenta grandes ventajas tales como, un ahorro de espacio en disco, la facilidad de

actualización, la compatibilidad entre distintas plataformas, portabilidad y seguridad. Además,

existen aplicaciones híbridas, en las cuales la plataforma del usuario aloja un programa

pequeño que se complementa con las funcionalidades del servidor, tal es el caso de las

aplicaciones móviles de Facebook o Twitter.

En el trabajo de tesis, se desarrollará una aplicación web para visualizar la información

capturada por la cámara fotográfica y los sensores, para que pueda ser visualizada desde

cualquier lugar con la ayuda de un navegador web.

Específicamente, el desarrollo de la aplicación web se la realizó sobre la plataforma IBM Cloud. Esta

plataforma provee una gran variedad de servicios sobre la nube que permiten diseñar y desarrollar

aplicaciones, incluso es posible configurar gran parte de la infraestructura tecnológica que una empresa

clásicamente implementaba dentro de sus Data Centers. Estos servicios tienen la ventaja de ser ubicuos,

además de escalables, es decir, se puede incorporar mayor cantidad de servicios o recursos según el

cliente lo necesite y solo se pagará por los recursos utilizados. En el presente trabajo se hará uso de dos

servicios prestados por la IBM Cloud, el servicio de Node-Red Starter y el servicio de Internet of Things

Platform. En el Apéndice A se describe el entorno de trabajo de la IBM Cloud.

Para el caso de la comunicación entre la estación y la aplicación web desarrollada en la nube, se utilizará

el protocolo MQTT, el cual está especialmente diseñado para el ámbito de soluciones IoT.

2.6.1. Node-Red Starter

Node-Red starter es un servicio en la nube del tipo Platform as a Service (Plataforma como servicio,

PaaS por sus siglas en inglés), en el cual la empresa dueña de la nube proporciona una plataforma a los

desarrolladores de aplicaciones para crear y desplegar aplicaciones. Así estas plataformas incluyen

distintos lenguajes de programación además de servicios de red para que los usuarios accedan a las

aplicaciones. En este servicio en particular, las aplicaciones se desarrollan en Node-Red [43], una

herramienta de programación gráfica construida sobre el entorno de ejecución Node.js. Dicho entorno

se encuentra optimizado para trabajar sobre aplicaciones de red, además cuenta con una gran cantidad

de librerías, entre ellas algunas que permiten desplegar páginas web de manera rápida sin necesidad de

ocuparse de la programación de las etiquetas HTML o del estilo en CSS. El editor de Node-Red, se

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 30

ejecuta en el navegador web, lo cual permite la compatibilidad con muchas plataformas. En el Apéndice

B se describe como crear una nueva instancia de este servicio así como los detalles de su entorno de

trabajo.

2.6.2. Internet of Things Platform

Este servicio también llamado IBM Watson IoT Platform, está destinado a la fácil gestión de

dispositivos tipo IoT. Para ello proporciona los servicios de registro de dispositivo, conexión,

almacenamiento, visualización de datos además de simulación de dispositivos y conectividad

con la plataforma IBM Cloud. Adicionalmente, es posible configurar distintos niveles de

seguridad en los dispositivos, y crear grupos para su administración. Internamente este

servicio implementa un broker MQTT al que se puede acceder desde el servicio de Node-Red

para conectar la aplicación web con los dispositivos IoT. El tamaño máximo de los paquetes

MQTT que este broker permite es de 128kB. En el Apéndice C se describen los pasos para crear

una nueva instancia de este servicio, así como los detalles de su entorno de trabajo.

2.6.3. Protocolo MQTT

MQTT es un protocolo para la transmisión de mensajes, diseñado especialmente para

arquitecturas tipo IoT. Su popularidad sobre protocolos similares, es consecuencia de su fácil

implementación y especialmente por ser liviano y usar pocos recursos, lo cual es indispensable

para dispositivos IoT, que por lo general tienen limitados recursos energéticos y de ancho de

banda.

MQTT está basado en la pila TCP/IP y es un protocolo con un modelo publicación/suscripción,

es decir, los clientes se conectan mediante TCP/IP con un servidor denominado broker

localizado en la nube o en una red local. A partir de la conexión establecida, el cliente puede

enviar mensajes con cierto tópico para que luego estos puedan ser alcanzados por los

dispositivos suscritos al mismo. Este esquema convierte a MQTT en un protocolo asíncrono, es

decir que los extremos de la comunicación no deben tener conexión directa, lo cual es muy

conveniente cuando se cuenta con una gran cantidad de dispositivos interesados en recibir

mensajes [44].

MQTT utiliza por defecto el puerto 1883, y en el caso de funcionar sobre TLS (Transport Layer

Security) utiliza el puerto 8883. El protocolo puede manejar paquetes de hasta 256MB. Sin

embargo, en la práctica este tamaño depende de la implementación en el broker, por lo que

suele ser considerablemente menor.

Un aspecto muy importante en MQTT es la calidad de servicio. La calidad de servicio (QoS por

las siglas en inglés de Quality of service) es un mecanismo para afrontar las posibles fallas de

conexión debidas al medio u otros factores. MQTT implementa 3 niveles de QoS. En el nivel 0,

los mensajes se envían solo una vez, por lo que ante un fallo de conexión los mensajes no

llegarán al receptor y no se tendrá constancia del error. El nivel 1, se envía los mensajes hasta

garantizar la entrega, por lo que el suscriptor podría recibir mensajes duplicados. En el nivel 2,

se garantiza la entrega de los mensajes a los suscriptores una única vez [45].

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 31

En cuanto al broker, es posible crearlo instalando el servidor Eclipse MQTT en un ordenador

tanto para una red local como para su acceso a Internet, en caso de que se cuente con una

dirección IP pública. Sin embargo, lo más sencillo es usar un servicio de broker MQTT público o

privado.

El esquema de funcionamiento de MQTT, se muestra en la Figura 4. En particular, el cliente

que desea publicar contenido tiene que registrarse en el broker mediante un mensaje

CONNECT que lleva información del nombre de usuario y contraseña, lo cual es respondido por

el servidor con un mensaje CONNACK. A continuación, los clientes que quieran suscribirse a la

información que se publique deben enviar un mensaje SUBSCRIBE al broker con la información

del tópico de los mensajes que desea recibir. El broker responde a esta solicitud con un

mensaje SUBACK. Cuando el cliente publicista desea enviar contenido al broker, lo hace

mediante un mensaje PUBLISH que lleva información del tópico del mensaje. Finalmente, el

broker se encarga de distribuir este mensaje a todos los clientes que estén suscritos al tópico.

Figura 4 Esquema de funcionamiento de MQTT

2.7. Conclusiones

En este capítulo se ha revisado los principales conceptos relacionados con el trabajo de tesis,

desde aquellos que tienen que ver con su contexto tales como la definición de IoT y la

agricultura de precisión, hasta los detalles técnicos requeridos para comprender el

funcionamiento de la aplicación, como por ejemplo las tecnologías web y los algoritmos

usados para el procesamiento de imágenes. Además, de manera particularmente importante

se expuso las diferentes etapas requeridas para el tratamiento y análisis de las imágenes,

como son la binarización, segmentación, operaciones morfológicas y conteo. Dichos procesos

definen el marco de trabajo a seguir en el Capítulo 4.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 32

3. TRABAJOS RELACIONADOS

En este capítulo se describen brevemente los principales trabajos disponibles en la literatura

relacionados con el tema de tesis. Conforme a esto, se reseñan trabajos en torno a la creación

de estaciones de monitoreo, el procesamiento de imágenes, comunicación inalámbrica entre

dispositivos y tecnologías para el desarrollo de aplicaciones web.

En la actualidad existen una gran variedad de plataformas de desarrollo, las mismas que

pueden emplearse para el despliegue de redes se sensores y sistemas de monitorización. En

particular, se destaca el trabajo descrito en [46], donde se emplea una plataforma Raspberry

Pi, como estación móvil. Para ello, dicha plataforma fue emplazada en un dron con el objetivo

de gestionar los datos que recibe de los sensores, la conexión a Internet, así como la

adquisición de imágenes y video. Por otra parte, en cuanto a la arquitectura de comunicación,

se emplea la red celular para la conexión con la estación base. Esto debido al tráfico

significativo generado por la cámara de video que restringe otro tipo de soluciones tales como

redes basadas en ZigBee o LoRa. Además, que por las características de su aplicación es

necesario contar con un rango de cobertura bastante amplio. En cuanto, a la adquisición y

transmisión de video, para que la información de la cámara sea útil, los fotogramas deben

tener la suficiente calidad para ser evaluadas por un experto, y a la vez mantener una tasa de

datos baja para no producir latencia en el video. Con esta premisa, a partir de las pruebas

realizadas, los autores proponen una resolución de 240x120 pixeles a una tasa de 15 fps

(fotogramas por segundo). Finalmente, otro aspecto a destacar del mencionado trabajo, es el

ahorro de energía, para lo cual se plantea el uso de un protocolo que reduzca al mínimo la

permanencia en estado activo de los nodos, incluyendo al nodo móvil.

Por otra parte, en cuanto al rol de la agricultura de precisión en la actualidad, en [47], se

presenta un análisis sobre la importancia de las nuevas tecnologías como medio para optimizar

la producción y los recursos dentro del entorno agrícola. Específicamente, se hace énfasis en

los retos de implementación y de seguridad a los que se enfrentan este tipo de soluciones.

Además, se exponen las principales aplicaciones y beneficios que se podrían obtener al

integrar la agricultura con el mundo del Internet of Things.

En cuanto al ámbito de las técnicas de procesamientos de imágenes enfocados en la

agricultura de precisión, en [13], se describe un trabajo donde se realiza una detección de

tomates a partir de imágenes de alta resolución obtenidas por un vehículo aéreo no tripulado

o UAV (Unmanned Aerial Vehicle). Con tal objetivo, se emplea un framework de clasificación

espectral-espacial. Específicamente, se propone el uso de tres métodos de clasificación

espectral, Expectation-Maximization (EM), Mapas Auto-organizados y K-medias. Como punto

importante de este trabajo se destaca que en lugar de usar solo dos clusters de clasificación

(tomates y no tomates), se recurre al uso del criterio de información Bayesiano (BIC) para

obtener el número óptimo de clusters. Posteriormente realizan una clasificación espacial con

el fin de eliminar falsos positivos y remover ruido. Como resultado de todo el proceso se

concluye que el uso de un número adecuado de clusters, genera mayor precisión en la

clasificación en cada uno de los tres métodos utilizados. Particularmente el método que

obtuvo mayor precisión en la clasificación fue EM.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 33

En [48], se describe un trabajo donde se realiza la clasificación entre plantas y maleza en un

cultivo de remolacha azucarera, para lo cual se realiza tareas de segmentación y operaciones

morfológicas para comparar las formas de las plantas. De manera similar, en [49], se detalla el

uso de operaciones morfológicas para mejorar los resultados de la segmentación. La

extracción de las características tiene por objetivo alimentar una red neuronal para la

posterior clasificación de frutos con enfermedades. En [47], se realiza un procedimiento similar

al trabajo descrito previamente, en este caso para la extracción de características útiles para la

detección de enfermedades en naranjas. Además, se desarrollan experimentos empleando

varios espacios de color, eligiendo finalmente el espacio RGB para el procesamiento de las

imágenes. Por otra parte, en [30], se realiza una segmentación de imágenes de plantaciones de

manzanas mediante Thresholding, a partir de lo cual se implementa un algoritmo para

manzanas rojas y otro para manzanas verdes.

En cuanto al análisis de los espacios de color, en [50],[51],[52], se describen estudios donde

realizan segmentación de imágenes mediante EM experimentando con los espacios de color

YUV, HSV y LAB respectivamente, consiguiendo resultados sobresalientes y mostrando que la

elección del espacio de color depende del escenario en el que se aplique.

Un aspecto a evaluar durante el procesamiento de imágenes, sin duda es la selección de los

mecanismos o algoritmos adecuados. En tal sentido, en [53], se presenta una revisión

detallada de las técnicas usadas en el procesamiento de imágenes. En particular, se mencionan

algoritmos para pre-procesamiento, segmentación, extracción de características y clasificación.

Aunque el artículo se enfoca en la evaluación de frutas y vegetales analizadas bajo un entorno

controlado, con fotografías cercanas y con elementos aislados, lo cual dista de lo que se busca

en el presente trabajo de tesis, sin embargo, ofrece comparativas muy útiles sobre los distintos

algoritmos usados, ampliando el panorama de la visión artificial.

En cuanto al despliegue de aplicaciones web y su integración con el ámbito del Internet of

Things, en [54], se hace uso de la herramienta de desarrollo Node-Red para desplegar

rápidamente una aplicación que gestione los datos de una estación de monitoreo de la calidad

del aire. Además, se destaca el uso del protocolo MQTT para el intercambio de datos entre la

estación y los sensores. En [55], se describe otro ejemplo que emplea Node-Red, en este caso

con el objetivo de implementar una aplicación que interactúa con el servicio de asistente de

voz Alexa y un conjunto de sensores. En cuanto al intercambio de datos se utiliza el protocolo

MQTT, y como broker los servicios web de Amazon. Por otra parte, el trabajo descrito en [56],

resulta particularmente atractivo, puesto que se propone un sistema que interconecta una

estación de monitoreo de variables ambientales dentro de una Raspberry Pi con la nube de

IBM, ambos extremos usando Node-Red para desplegar sus aplicaciones. En [57], se muestra el

uso de Node-Red para el despliegue de aplicaciones en un campo industrial, destacando la

importancia del protocolo MQTT como un protocolo de comunicación asíncrono. Finalmente,

en [58], se presenta una propuesta que hace uso del broker MQTT Mosquitto que es de código

abierto, además de detallar algunas características de MQTT como el tamaño máximo de

mensajes y el parámetro de calidad de servicio, que son vitales en cierto tipo de aplicaciones

para asegurar la recepción de los mensajes.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 34

4. IMPLEMENTACIÓN DEL SISTEMA DE MONITOREO

4.1. Introducción

En el presente capítulo se detallará la implementación del sistema de monitoreo planteado.

Este sistema tiene tres partes principales, la estación prototipo encargada de la adquisición y

procesado de datos, la aplicación web encargada del control y visualización de los datos, y el

sistema de comunicación para el intercambio de datos de sensores e información de control. El

esquema de este sistema se muestra en la Figura 5.

Figura 5 Esquema del sistema implementado

El capítulo está organizado de la siguiente forma. En la sección 4.2 se detalla el hardware

utilizado para la implementación de la estación. En la sección 4.3 se describen las librerías

utilizadas para el procesamiento de imágenes. En la sección 4.4 se describen los sistemas que

hacen posible la comunicación entre la estación y la aplicación web. En la sección 4.5 se detalla

el funcionamiento de los sensores y el procesamiento de imágenes y video, ejecutados sobre

la estación prototipo. Finalmente, en la sección 4.6 se presenta la implementación de la

aplicación web en la nube de IBM (IBM Cloud).

4.1.1. Descripción del Equipamiento

El prototipo diseñado en este trabajo de tesis, tiene la capacidad de adquirir señales

ambientales tales como temperatura, presión, humedad e índice UV (Ultravioleta). Además de

ello, incluye la capacidad de adquirir imágenes fotográficas y señales de video por lo que la

estación está provista de una cámara. Además, puesto, que se busca tener precisión en la

ubicación de la parcela en la que se emplace el prototipo, se cuenta con un sensor de geo-

localización. Todas las señales adquiridas son procesadas por la estación y enviadas hacia

Internet, por lo que todos los sensores y la cámara deberán estar concentrados en un mini-

computador con capacidades de red. Adicionalmente, el prototipo cuenta con un periodo de

autonomía energética para poder operar en lugares remotos, es decir, lleva incorporado una

batería. Para agrupar todos estos elementos se construyó un encapsulado, cuya construcción y

ensamblaje se muestran en el Apéndice G. A continuación, se detallará las características de

los dispositivos usados.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 35

4.1.2. Mini Computador Raspberry Pi

El hardware principal a ser usado para la implementación de la estación es el miniordenador

Raspberry Pi modelo 2 B, un microordenador que cuenta con una interfaz para conexión

Ethernet, memoria RAM de 1Gb, procesador Broadcom BCM2836 ARM Cortex-A7 a 900MHz,

tarjeta gráfica Broadcom VideoCore IV 250 MHz.

OpenGL ES 2.0, 4 puertos USB y un precio de fábrica de USD 35. En [46], se hace una

comparación entre varias plataformas: Raspberry Pi, Minnow Board, Minnow Board Max,

BeagleBone Low-spec, BeagleBone High-Spec, Humming Board y Banana Pi, comparando su

CPU, RAM, conectividad, comunidad de usuarios y costo. A partir del análisis se concluye que

la plataforma Raspberry Pi, conjuga buenas características técnicas junto con un bajo costo y

una amplia comunidad de usuarios.

Para su funcionamiento es necesario agregar una tarjeta de memoria microSD con un mínimo

recomendable de 4GB de espacio, sobre la cual se instalará el sistema operativo. El sistema

operativo más utilizado en la Raspberry Pi y que se hará uso en el presente trabajo es

Raspbian, que es una distribución de Linux basada en Debian.

4.1.3. Sensores

Con el fin de medir el consumo energético de la estación se utilizó el sensor de corriente

Adafruit INA219 [59] que tiene la capacidad de medir hasta 3.2A con una resolución de 0.8mA

e incluso aumentar la precisión aceptando menores rangos de corriente. Las principales

características de este sensor se muestran en la Tabla 1.

Tabla 1 Características técnicas del sensor de corriente Adafruit INA219

Voltaje de la fuente 3V - 5.5V

Temperatura de operación -40ᵒC -

125ᵒC

Comunicación I2C

ADC 12bits

Resistencia de medición 0.1Ω, 1%

Para medir el índice UV se utiliza el sensor Adafruit SI1145 [60], el cual a partir de un análisis

del espectro visible e infrarrojo, consigue estimaciones muy precisas del índice UV. Las

principales características de este sensor se muestran en la Tabla 2.

Tabla 2 Características técnicas del sensor UV Adafruit SI1145

Voltaje de la fuente 3V - 5V

Temperatura de -40ᵒC - 85ᵒC

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 36

operación

Comunicación I2C

Espectro IR 550nm -

1000nm

Espectro visible 400nm - 0nm

La medición de temperatura, humedad y presión se agrupa en un solo sensor, en este caso se

empleó el sensor Adafruit BME280 [61]. Cabe destacar, que pertenece a la nueva línea de

sensores que reemplazan a los de la línea BMP. Las principales características de este

dispositivo se muestran en la Tabla 3.

Tabla 3 Características técnicas del sensor de temperatura, humedad y presión Adafruit BME280

Voltaje de la fuente 3V - 5V

Temperatura de operación -40ᵒC - 85ᵒC

Comunicación I2C, SPI

Precisión sensor humedad ±3%

Precisión sensor

temperatura

±1ᵒC

Precisión sensor presión ±1hPa

El GPS utilizado para la ubicación de la estación es el Adafruit Ultimate GPS v3 [62]. Este

módulo tiene una alta sensibilidad de rastreo de -165dBm, puede rastrear señal de hasta 22

satélites en 66 canales, tiene una antena interna y la posibilidad de instalar una antena externa

para mejorar la recepción. Las principales características de este módulo se muestran en la

Tabla 4.

Tabla 4 Características técnicas del sensor de geo-localización Adafruit Ultimate GPS

Voltaje de la fuente 3V - 5.5V

Tamaño antena de parche 15mm x 15mm x

4mm

Comunicación USB

Precisión de posición 1.8metros

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 37

Velocidad máxima 515m/s

La cámara utilizada para la adquisición de imágenes es la webcam Logitech c270 [63], con

capacidad de adquirir video en alta definición e imágenes con calidad mejorada por software

de tres megapixeles. Las principales características de esta cámara se muestran en la Tabla 5.

Tabla 5 Características técnicas de la cámara web Logitech c270

Resolución máxima 720p

Enfoque Foco fijo

Comunicación USB

Fps máximo 30fps

Campo visual 60ᵒ

Los módulos de sensores de BME280, INA219 y SI1145 se integraron en una sola placa

electrónica junto con tres botones y tres indicadores leds. El diseño de esta placa se muestra

en el Apéndice F.

4.1.4. Batería

Para dotar de autonomía energética, la estación cuenta con un paquete de batería externo.

Esta batería es la Ravpower External Battery Pack Element Series [64], que cuenta con 2 salidas

USB. Sus principales características se muestran en la Tabla 6.

Tabla 6 Características técnicas del paquete de batería externo Ravpower Element Series

Capacidad 10400mAh

Entrada 5V/2A max

Salida 1 5V/2A max

Salida 2 5V/1.5A max

4.2. Descripción del Software

Para el desarrollo de los scripts se usó en su mayoría el lenguaje de programación Python, y en

menor medida Bash. Las librerías usadas para el funcionamiento de los sensores se describen

en el Apéndice E. Para el procesamiento de imágenes se utilizaron tres librerías Numpy,

OpenCV y Sklearn.

Numpy, es un paquete que extiende las capacidades matemáticas de Python al proporcionar

un gran número de funciones y facilidades para el uso de arreglos N-dimensionales [65]. Dicha

característica es fundamental para el procesamiento ya que las imágenes se tratan como

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 38

arreglos tridimensionales si son imágenes a color y bidimensionales si están en escala de

grises.

OpenCV, es una librería de código abierto creada para el desarrollo de la visión artificial y

aplicaciones tipo machine learning. Contiene una amplia cantidad de algoritmos y

herramientas optimizadas para el procesamiento de imágenes [41]. En el presente trabajo se

hará uso de sus herramientas para el manejo de las imágenes capturadas, así como del

algoritmo para realizar etiquetado de componentes conectados, y obtener sus estadísticas.

Sklearn, es una librería diseñada para realizar tareas de minería y análisis de datos [66]. Cuenta

con una implementación optimizada del algoritmo GMM mediante EM. Dicho algoritmo ha

sido empleado en el presente trabajo de tesis, además de la herramienta para el análisis del

número de clusters (BIC).

4.3. Sistemas de Comunicación

El sistema desarrollado cuenta con tres interfaces de comunicación, la interfaz para la

comunicación de la estación a la IBM Cloud, la interfaz de comunicación desde la IBM Cloud a

la estación y aquella que permite a la estación su conexión hacia Internet.

En cuanto al intercambio de datos entre la plataforma Node-Red en IBM Cloud y la estación de

monitoreo, es necesario recurrir a la plataforma IBM Watson IoT. En esta plataforma se debe

registrar los dispositivos que se usarán y generar una clave de API, este proceso se explica con

detalle en el Apéndice D.

Cabe resaltar que, para posibilitar esta comunicación, se requiere previamente instalar las

librerías node-red-contrib-ibm-watson-iot y node-red-contrib-scx-ibmiotapp. Dicha acción

debe ser efectuada en el editor de Node-Red, tanto en el lado del dispositivo como de la

aplicación web.

En cuanto a la interfaz que permite el acceso a Internet, dependiendo del lugar de

emplazamiento de la estación, es posible emplear una conexión de tipo Ethernet, Wifi o

incluso mediante un módulo 3G o 4G. En cualquier caso, se requiere configurar una dirección

IP fija. En tal sentido, con el propósito que la conexión se realice de forma automática, dicha

configuración se realizó mediante la edición del archivo interfaces ubicado en el directorio

/etc/network/ del sistema operativo Raspbian.

4.3.1. Comunicación Estación – IBM Cloud

Una vez que se ha registrado el dispositivo, se requiere seguir un conjunto de pasos para

enviar datos desde la estación hacia la aplicación web en IBM Cloud. En concreto, en el editor

de Node-RED se tendrán que configurar bloques tanto del lado del dispositivo como de la

aplicación web, como se detalla a continuación

4.3.1.1. Configuración de los Bloques en el Dispositivo

En el lado del dispositivo, se requiere trabajar con el nodo wiotp out, el cual permite enviar

mensajes de eventos a la plataforma IBM Watson IoT mediante el protocolo MQTT. En la

Figura 6, se muestra el nodo wiotp out, disponible en el entorno de Node-Red.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 39

Figura 6 Nodo wiotp out

En cuanto a la configuración, se requiere ingresar a las propiedades del nodo y especificar el

tipo de conexión como Dispositivo Registrado. En la Figura 7, se presenta una captura de la

configuración realizada sobre dicho nodo.

Figura 7 Propiedades del nodo wiotp out

Por otra parte, en la Figura 8, se presenta la edición de las credenciales para el dispositivo.

Como se puede apreciar, el nombre del servidor puede omitirse ya que su valor por defecto es

[organization id].messaging.internetofthings.ibmcloud.com. En cuanto al tipo de dispositivo, el

ID de dispositivo y el token de autenticación son los colocados durante el registro del

dispositivo. Es necesario aclarar que el token de autorización no se trata del obtenido al

generar la clave de la API. Una vez que se ha completado los pasos anteriores, el nodo de envío

estará completamente configurado por lo que resta configurar el nodo de recepción en el lado

de la aplicación web.

Figura 8 Credenciales nodo wiotp out

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 40

4.3.2. Configuración de los Bloques en la Nube

En cuanto al entorno Node-Red de lado de la nube IBM, se requiere trabajar con el nodo

ibmiot in. En la Figura 9, se presenta una captura del mencionado nodo.

Figura 9 Nodo ibmiot in

La funcionalidad del nodo ibmiot in, consiste en que permite recibir mensajes de la plataforma

IBM Watson IoT, provenientes de dispositivos y aplicaciones. Además, emplea el protocolo

MQTT así como el formato json por defecto. Para su configuración, en primer lugar se debe

modificar la opción de autenticación a “API Key”, el tipo de entrada a “Device Event” y se

ingresa la ID del dispositivo en el campo correspondiente como se muestra en la Figura 10.

Figura 10 Propiedades nodo ibmiot in

A continuación, se procede a editar el campo API Key dando clic en su botón de edición.

Específicamente, se debe ingresar un nombre, y los datos obtenidos en la API que fue

generada previamente. En el campo API Key se ingresa la clave de API y en API Token la señal

de autenticación de la API. De igual forma que en el lado del dispositivo, no es necesario

colocar el nombre del servidor puesto que su valor por defecto es [organization

id].messaging.internetofthings.ibmcloud.com. Una vez finalizado el procedimiento, se deben

guardar los cambios y el nodo quedará configurado. En la Figura 11, se presenta una captura

con los parámetros de edición del nodo.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 41

Figura 11 Formulario para ingresar credenciales de API

4.3.2.1. Prueba de Conexión

Para verificar el funcionamiento de la comunicación Estación-IBM Cloud, es posible emplear

los nodos inject y debug, como se describe en el diagrama de la Figura 12.

Figura 12 Comunicación Dispositivo - Nube

Al ingresar datos mediante el bloque de inyección (nodo inject), éstos serán recibidos por la

aplicación web y serán visualizados en el panel debug como se demuestra en la Figura 13.

Figura 13 Panel debug en el lado IBM Cloud

4.3.3. Comunicación IBM Cloud – Estación

Hasta el momento se ha creado una comunicación unidireccional desde la estación hacia la

aplicación web. A continuación, para crear la comunicación en el otro sentido es necesario

registrar otro dispositivo, el cual se ha denominado como “RasPi2” y estará ligado al mismo

dispositivo físico. Cabe indicar que es posible usar el mismo dispositivo registrado; sin

embargo, suelen existir problemas de disponibilidad. En la Figura 14, se muestra una captura

con los registros de los dispositivos creados.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 42

Figura 14 Lista de dispositivos registrados

4.3.3.1. Configuración de los Bloques en el Dispositivo

En el lado de la estación, se desplegará un bloque ibmiot in y se lo configurará de manera casi

idéntica a la efectuada para la recepción de mensajes en el lado de la aplicación web, con la

única diferencia de que el ID del dispositivo apuntado será en este caso “RasPi2”, como se

resalta en la captura de la Figura 15.

Figura 15 Propiedades nodo ibmiot in en dispositivo

Los datos de la clave de API serán los de la clave de API creada anteriormente. Nótese que ahora, para la

comunicación bidireccional se tiene en el dispositivo un nodo wiot y otro ibmiot, lo mismo sucederá en

el lado de la aplicación web.

4.3.3.2. Configuración de los Bloques en la Nube

En este lado se usará el bloque wiotp out. Se editan sus propiedades de forma similar a como

ya se lo hizo en el lado del dispositivo para el envío de mensajes, pero ahora el dispositivo al

que se apuntará será RasPi2 en lugar de RasPi1, colocando sus respectivas credenciales como

se muestra en la Figura 16.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 43

Figura 16 Propiedades nodo wiotp out en la nube

4.3.3.3. Prueba de Conexión

De igual forma es posible realizar una prueba de funcionamiento de la comunicación,

mediante una conexión de bloques como se muestra en la Figura 17.

Figura 17 Comunicación Nube - Dispositivo

Al inyectar datos, en este caso se los recibe en el dispositivo y se visualizan en el panel de

debug como se muestra en la Figura 18.

Figura 18 Panel debug en el lado del dispositivo

4.3.4. Estructura de los Mensajes

En el trabajo de tesis, los mensajes a ser transmitidos tienen como finalidad el transporte de datos de los

sensores o de información de control. Al llegar, estos mensajes deben ser asignados a un nodo

específico para su procesamiento. Con tal motivo los mensajes deben ser enviados con cierta estructura,

incluyendo en su cabecera información necesaria para conocer a que nodo de procesamiento

corresponde.

Los mensajes en Node-Red son enviados por defecto en formato JSON, de tal manera que la estructura

de los mensajes que se ha diseñado es la siguiente:

{"codigo":"[código del sensor]","valor":"[]","topic":"treal"}

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 44

Como se puede apreciar, los mensajes constan de tres campos, codigo, valor y topic. En el campo codigo

se coloca un código único para cada sensor o comando. Los códigos usados se detallan en la Tabla 7.

Tabla 7 Código de sensores/comandos

Sensor/Comando Código

Corriente corr

Temperatura temp

Presión pres

Índice uv uvix

GPS gps

Temperatura del cpu tcpu

Carga del cpu cpuload

Estadísticas stat

Captura de fotos Cam

Captura de video vid

En el campo valor se coloca el valor de la medición. Por otra parte, si se trata de un comando para

encender o apagar el sensor, los valores serán “true” o “false” respectivamente. El campo topic es una

denominación necesaria para colocar correctamente los datos en los cuadros.

Para el caso de los mensajes generados por el módulo GPS, se adicionan dos campos adicionales, “lat” y

“lon” con la información de las coordenadas de la estación.

Por otro lado, es necesario tomar en cuenta que, al enviar un mensaje, Node-Red empaqueta todo bajo

una etiqueta “d”, por lo que los mensajes tendrán una apariencia como la indicada a continuación.

{“d”:” {"codigo":"[codigo del sensor]","valor":"[]","topic":"treal"}”}

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 45

Dicha característica, debe considerarse para retirar este envolvente cuando el mensaje es

recibido. Finalmente, es importante mencionar que los mensajes de los sensores se

configuraron con el nivel de QoS más bajo, puesto que la pérdida de uno de estos mensajes no

tiene una relevancia mayor (aunque esto podría depender de la aplicación). Mientras que los

mensajes de comandos están configurados con el mayor nivel de QoS para asegurar su llegada

al receptor, puesto que la pérdida de uno de estos mensajes puede ocasionar problemas en el

funcionamiento del sistema.

4.4. Implementación de la Estación Prototipo

En esta sección se detallarán todos los procesos que realiza la estación prototipo como la

integración de la cámara y los sensores, el desarrollo de los algoritmos de procesamiento de

imágenes y la forma en la que se transmite las imágenes y el video a través de MQTT. Todos

estos procesos están integrados por una aplicación en Node-Red de un solo flujo, la cual se

puede observar en la figura 19. El funcionamiento de sus nodos se explicará a lo largo de esta

sección.

Figura 19 Aplicación Node-Red en la estación prototipo

4.4.1. Integración de la Web Cam

Para el control y uso de la web cam desde la aplicación en Node-RED, se utiliza un nodo de

ejecución (exec) que realiza una llamada a la aplicación fswebcam. Dicha aplicación tiene la

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 46

capacidad de capturar fotografías y video especificando sus parámetros en la misma línea de

comandos. En la Figura 20, se muestra el despliegue del nodo de ejecución que realiza la

captura de una fotografía con una resolución de 544x280 pixeles y almacena el resultado en el

fichero ./imagen.jpg.

Figura 20 Nodo de ejecución para la cámara web

4.4.2. Procesamiento de Imágenes

El procesamiento de imágenes desarrollado en el presente trabajo de tesis, tiene como

objetivo identificar frutos en fotografías de plantaciones en campo abierto y obtener

información estadística de los mismos. Para cumplir con dicho objetivo, se emplearon los

procedimientos expuestos en el apartado 2.4. Durante esta etapa, con el objetivo de analizar

con mayor rapidez las diferentes variables involucradas en el procesamiento de las imágenes,

los experimentos se realizaron mediante una computadora de escritorio. En cuanto a los

experimentos con la estación prototipo, estos se presentarán posteriormente en el Capítulo 5.

Cabe indicar, que en este caso la cámara utilizada para la adquisición de las imágenes, sobre

las cuales se probaron los algoritmos, es ligeramente superior a la usada en la estación.

Adicionalmente, también se emplearon fotografías obtenidas de bancos de imágenes libres y

disponibles en [67], juntando en total un conjunto de diez fotografías con frutos rojos.

Para el caso del procesamiento de imágenes basado en GMM con EM, en primera instancia se

experimentó el ajuste del modelo usando tres tipos de espacios de color, RGB, HSV y LAB. Para

estos experimentos se utilizó una cantidad de 5 clusters, cantidad escogida sin ningún criterio

previo.

En cuanto a la imagen seleccionada para ajustar el modelo, se empleó una fotografía con una

resolución de 480 x 380 pixeles, la misma que se presenta en la Figura 21.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 47

Figura 21 Imagen de muestra empleada para el ajuste del modelo mediante el esquema GMM

En la Figura 22(a), (b) y (c), se muestran los resultados obtenidos de la segmentación

empleando 5 clusters, para los espacios de color, RGB, HSV y LAB respectivamente.

Figura 22 Resultados de la segmentación empleando el modelo GMM, con 5 clusters y tres tipos de espacios de

color. (a) RGB. (b) HSV. (c) LAB

De estos experimentos se puede concluir que los resultados en RGB y LAB son bastante

parecidos, y muy eficientes para la tarea de segmentación, mientras que el resultado en HSV

dista mucho de los elementos que debieron ser detectados como frutos.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 48

En tal sentido, en un intento de proveer al modelo información no solo de cada pixel, si no de

lo que sucede en su contexto, se realizó dos experimentos adicionales, en los que además de la

información provista por los tres canales del espacio de color, se añadió otras tres dimensiones

al modelo GMM. En el primero de estos experimentos estas dimensiones fueron el promedio

de los canales de los espacios de color de los píxeles circundantes. En el segundo experimento

en lugar de hacerlo con el promedio, se añadió información de la varianza de los pixeles

circundantes. Los resultados obtenidos de estos experimentos se muestran en la Figura 23 y 23

(b) respectivamente.

Figura 23 Resultados de la segmentación incluyendo información adicional en el modelo GMM. (a) Promediado
de pixeles. (b) Varianza de pixeles

Como se puede apreciar en la Figura 23 (a), para el caso del experimento usando el promedio

de los pixeles, se observa que, si bien la segmentación es buena, no mejora los resultados

obtenidos al emplear solo los canales de color. Además, de que se añade una considerable

cantidad de pixeles aislados. En cuanto a los resultados del segundo experimento indicados en

la Figura 23 (b), la segmentación se torna muy deficiente. Estos dos modelos fueron

descartados.

Hasta el momento se cuenta dos modelos candidatos, sin embargo, al analizar nuevamente los

resultados de las Figuras 22(a) y 22 (c) correspondiente a los modelos en RGB y LAB con 5

clusters se detectan problemas semejantes. Es decir, en estos modelos los frutos aparecen

rodeados de pixeles que no les pertenecen y que posiblemente están ahí por reflectancia de

las hojas que los rodean. Además, existen ciertos píxeles aislados que no deberían ser parte del

cluster de frutos. Estos problemas podrían deberse a que no se han creado la suficiente

cantidad de clusters para separar a estos píxeles. Por consiguiente, se procedió a emplear el

criterio BIC para estimar la cantidad de clusters adecuada que deberían utilizarse para estos

modelos. En la Figura 24(a) y 24 (b), se presentan los resultados de aplicar el criterio BIC para

los modelos en RGB y LAB respectivamente.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 49

Figura 24 Resultados del criterio BIC para estimar el número de clusters. (a) RGB. (b) LAB

Como se puede apreciar, para el caso del espacio RGB, el primer mínimo local se encuentra en

15 clusters y el mínimo de todos los modelos analizados en 18 clusters con un valor muy

parecido al modelo de 15 clusters, por lo que se lo descartará a este último. En el espacio LAB

se tiene un primer mínimo local en el modelo de 11 clusters y un mínimo general en el modelo

de 18 clusters con un valor de BIC considerablemente menor.

A continuación, se realizaron experimentos con estos 3 modelos considerados y sus resultados

se exponen en las Figuras 25(a), 25(b) y 25(c) respectivamente.

Figura 25 Resultados de la segmentación. (a) RGB, 15 clusters. (b) LAB 11 clusters. (c) LAB 18 clusters

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 50

De estos tres modelos, se observa que el modelo en espacio LAB con 11 clusters, Figura 25 (b),

se ajusta mejor a los resultados esperados, puesto que tiene menor cantidad de píxeles no-

frutos que rodean a los frutos (como sucede en el modelo RGB de 15 clusters) y no elimina

pixeles pertenecientes a los frutos (como sucede en el modelo LAB de 18 clusters, lo cual

podría indicar un sobre ajuste del modelo). Este modelo también tiene la ventaja de que

requiere el menor número de clusters de los tres analizados, lo cual lo es una característica

deseada en términos de carga de procesamiento. Una última ventaja de este modelo es que al

encontrarse en espacio LAB será más inmune a cambios de luz en el ambiente.

A partir de los experimentos y los resultados obtenidos, se empleará el modelo LAB con 11

clusters para realizar la segmentación. En cuanto, a los inconvenientes que aún se observan,

como pequeños píxeles aislados y puentes entre algunos frutos, se requiere un tratamiento

adicional para eliminarlos. Específicamente, para eliminar estos píxeles se realizó una

operación de closing sobre la imagen binaria empleando un elemento estructural con forma de

disco de radio 3 pixeles. En la Figura 26, se muestran una comparación de los resultados antes

y después de la operación de closing.

Figura 26 Imagen binaria. (a) Antes de la operación closing. (b) Después de la operación closing

Como se puede apreciar, los resultados son satisfactorios. Un efecto secundario de la

operación closing, con el elemento estructural escogido, es el pulido de las manchas en formas

más redondas, lo cual no aporta mayor problema. Otro inconveniente que tiene la aplicación

de esta operación es el hecho de que puede eliminar frutos que tengan un tamaño similar al

elemento estructural, provocando que inevitablemente los frutos muy pequeños no sean

detectados.

Por último, se realizó un encuadre de los elementos ubicados para poder identificarlos con

mayor claridad en su contexto. Los resultados de aplicar dicha operación se muestran en la

Figura 27:

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 51

Figura 27 Imagen de muestra con elementos ubicados

A continuación, mediante un script implementado en Python se obtuvieron las estadísticas de

los objetos encontrados en esta imagen. En la Figura 28, se presenta los resultados obtenidos

Figura 28 Estadísticas de la imagen de muestra

Los resultados obtenidos luego de la secuencia de experimentos desarrollados, son

satisfactorios. En particular, se han encontrado prácticamente la totalidad de los frutos que se

pueden detectar con la visión humana. Además, se destaca que no ha sido seleccionada

ninguna zona que no corresponda a un fruto, por lo que ahora se puede actualizar el marco de

trabajo por uno más específico, modificando en este caso el primer y quinto bloque, que será

usado para la predicción de las imágenes que validarán el modelo. Este marco de trabajo

actualizado se muestra en la Figura 29. En cuanto a la implementación en código, en el

Apéndice H, se presenta el script desarrollado en Python.

Figura 29 Marco de trabajo actualizado, incluyendo el espacio de color LAB y la operación closing

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 52

Por otra parte, para verificar si el modelo definido, servirá para segmentar otras imágenes

diferentes a la empleada para el ajuste, es necesario realizar una tarea de validación, probando

dicho modelo con imágenes distintas, pero dentro del mismo contexto, es decir mismos frutos,

fondo similar y niveles similares de iluminación.

Para llevar a cabo dicha validación, se utilizó dos imágenes tomadas cerca de la ubicación

donde fue capturada la imagen empleada en la etapa de ajuste, asegurando de esta forma,

que tendrán el mismo contexto. Además, se incluyeron dos imágenes adicionales en contextos

distintos, esto con el objetivo de forzar las capacidades del modelo. Estas imágenes se

muestran en la Figura 30.

Figura 30 Imágenes empleadas para la validación del modelo. (a) y (b) Contexto similar. (c) y (d) Contexto distinto

La Figura 30(a) y la Figura 30(b) muestran las dos imágenes en un contexto similar a la imagen

de ajuste. En particular, los frutos son los mismos (manzanas) y la vegetación e iluminación son

similares. Por otra parte, en la Figura 30(c), se muestra una imagen con otros frutos (tomate de

árbol) y diferente nivel de iluminación y vegetación. Sin embargo, los frutos son de un color

semejante a los frutos de la imagen de ajuste. Finalmente, la Figura 30(d), de igual forma

consiste en una imagen en otro contexto, con frutos diferentes (tomates) y con un color

semejante a los frutos de la imagen de ajuste aunque con un mayor brillo. Al ejecutar el

procesamiento indicado por el marco de trabajo desarrollado (Figura 29), se obtienen los

resultados mostrados en la Figura 31.

La Figura 31(a), muestra excelentes resultados puesto que han sido localizados casi la totalidad

de los frutos, sin contabilizar ningún falso positivo. En la Figura 31(b), se han localizado todos

los frutos, pero también cuenta con algunos falsos positivos que deberán tomarse en cuenta al

probar la estación en el campo. La Figura 31(c), aunque está en otro contexto ha localizado

casi todos los frutos presentes, pero el número de falsos positivos también es considerable.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 53

Finalmente, la Figura 31(d), aun pese a estar en otro contexto, muestra un gran número de

elementos ubicados, sin contabilizar falsos positivos.

Figura 31 Imágenes de validación procesadas. (a) y (b) Contexto similar. (c) y (d) Contexto distinto

Los resultados obtenidos luego de la validación del modelo son muy satisfactorios por lo que

se podrá utilizar este esquema de visión artificial en campo, cuyos resultados se mostrarán en

el Capítulo 5.

Para el caso del marco de trabajo basado en Thresholding el procedimiento fue bastante

sencillo, en primera instancia se decidió crear un umbral que abarque el área total de todos los

frutos de las imágenes del conjunto usado. En cuanto a las operaciones morfológicas se

decidió usar solamente la operación de closing con un disco de radio igual a 3 pixeles, como

elemento estructural. Los valores de umbral usado en este algoritmo se especifican en la Tabla

8, mientras que los resultados de este algoritmo con un Thresholding amplio, se muestran en

la Figura 32.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 54

Tabla 8 Valores de Thresholding amplio

Valores HSV de Umbral Thresholding Amplio

Canal Mínimo Máximo

HUE -100ᵒ 60ᵒ

Saturation 35 255

Value 70 255

Figura 32 Resultados obtenidos con un Thresholding amplio en varias imágenes.

En la Figura 32(a) el resultado es muy bueno puesto que se han encuadrado todos los frutos

presentes en la imagen y la cantidad de falsos positivos es baja. Por otro lado en la Figura 32(b)

y en la Figura 32 (c) la cantidad de falsos positivos es significativa, motivo por el cual no se

realizaron más pruebas y se decidió descartar este modelo.

A continuación, se realizó otro experimento con un umbral más reducido descartando matices

rojizos tenues para así reducir la cantidad de falsos positivos. Los valores de umbral en este

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 55

algoritmo de Thresholding reducido se muestran en la Tabla 9 y los resultados obtenidos se

presentan en la Figura 33:

Tabla 9 Valores Thresholding reducido

Valores HSV de umbral thresholding reducido

Canal Mínimo Máximo

HUE -80ᵒ 20ᵒ

Saturation 65 255

Value 70 255

Figura 33 Resultados obtenidos mediante Thresholding reducido en varias imágenes.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 56

Los resultados con este algoritmo con un umbral reducido muestran una gran reducción en la

cantidad de falsos positivos, aunque aún existe una considerable cantidad de ramas que son

contadas como frutos tal como se observa en las Figuras 33(b) y 33(d). Otro problema que

tiene este modelo se lo puede observar realizando un acercamiento a la Figura 33(b) y

extrayendo la parte segmentada como se lo observa en la Figura 34. Como se puede apreciar,

una gran parte del fruto no ha sido segmentada, lo cual podría ocasionar que ciertos frutos no

sean detectados en determinadas fotografías.

Figura 34 Acercamiento Figura 21(b) con extracción de segmentación

Pese a estos problemas, al tener en cuenta las ventajas de bajo coste de procesamiento de

este algoritmo, los resultados son satisfactorios y podría ser considerado en la implementación

de la estación. El código fuente del script en Python que se utilizó para esta segmentación se

encuentra en el Apéndice G.

4.4.3. Transmisión de Imágenes y Video en Tiempo Real

La transmisión de video en tiempo real a través del protocolo MQTT está fuertemente limitada

por el máximo tamaño de los paquetes que admite el broker utilizado, que en este caso es de

128kB, dificultando el envío de los segmentos de video. Además, el hecho de que MQTT sea un

protocolo asíncrono añade retraso al video transmitido. Pese a estas restricciones se

implementó un algoritmo básico para la transmisión de video mediante MQTT.

De manera general este algoritmo al recibir una señal de la aplicación web, captura un frame a

la vez, para luego enviarlo por MQTT a la nube de IBM. Para esto, en primer lugar, se utilizó

una cantidad muy baja de cuadros por segundo, siendo esta de 1 fps. Luego se configuró el

tamaño de los cuadros en 272x140 usando el formato jpg. Posteriormente, se realizó una

verificación del tamaño de los cuadros, esto es muy importante puesto que cuando se intenta

enviar un mensaje mayor a 128kB, el nodo de envío de mensajes MQTT se colapsa,

incrementando el retraso en la transmisión de video y ocasionando problemas en el sistema en

general, ya que todos los mensajes se envían por el mismo nodo.

Una vez capturada la fotografía es necesario guardarla en un buffer, convertirla a base 64 y

finalmente colocar el encabezado con el código correspondiente. Se configuró el QoS en su

nivel más bajo, ya que, al tratarse de video en vivo, los cuadros que lleguen con desorden no

son de utilidad. El diagrama de flujo correspondiente a la programación indicada, se presenta

en la Figura 35.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 57

Figura 35 Diagrama de flujo en Node-Red, para la transmisión de video

En cuanto a la transmisión de imágenes, el procedimiento es muy similar al del video, con la

diferencia de que no se espera una señal desde la aplicación web para iniciar su

funcionamiento. En este caso se realizó la configuración para la captura automática de una

fotografía al día, la misma que posteriormente es procesada para la detección de frutos y

obtención de las estadísticas. Luego de esto se procede de igual manera que en la transmisión

de video, tal como se muestra en la Figura 36.

Figura 36 Diagrama de flujo en Node-red para la transmisión de imágenes

4.4.4. Funcionamiento de los Sensores

Además de los sensores indicados en el apartado 4.1.3, (Temperatura, presión, corriente,

índice UV y GPS), se incluyeron las lecturas de dos sensores internos de la Raspberry Pi, la

temperatura del procesador y la carga del procesador. Esto se realizó con la finalidad de

verificar el estado de la plataforma durante el funcionamiento de la estación.

Todos los sensores funcionarán de manera similar, esto es, cuando se reciba un mensaje desde

la IBM Cloud destinado a prender o apagar un sensor, la aplicación en Node-Red evaluará el

mensaje leyendo el campo “codigo” y los asignará al nodo de ejecución del sensor que

corresponda para encenderlo o apagarlo según el campo “valor” lo indique. Si el mensaje es de

apagado (false) se envía una señal kill al script que controla al sensor para detener su

ejecución. Si, por el contrario, el mensaje es de encendido (true), el nodo de ejecución en

Node-Red dará inicio a un script en Python o Bash. Dicho script tiene como finalidad realizar la

lectura del sensor, escribir dicha lectura en un archivo de texto y finalmente conformar un

mensaje JSON para que posteriormente sea enviado a la aplicación web para su visualización.

Este funcionamiento se lo puede observar analizando el flujo de Node-Red presentado en la

Figura 37 y en el diagrama de flujo presentado en la Figura 38.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 58

Figura 37 Flujo Node-Red para el funcionamiento de los sensores

Figura 38 Diagrama de flujo correspondiente al funcionamiento de los sensores

La instalación de las librerías de los sensores de adquisición de datos y geo-localización, así

como algunos detalles necesarios para su funcionamiento e implementación los scripts se

presentan en el Apéndice E.

4.5. Implementación de la Aplicación Web

En la presente sección se detallará el funcionamiento de la aplicación web, con una explicación

de los nodos usados en la programación y mostrando el diseño y configuración de la interfaz

gráfica.

4.5.1. Programación de la Aplicación

 La programación en Node-Red de la aplicación web se la realizó en dos flujos, uno destinado a

la presentación de los datos provenientes de la estación y otro que contiene los controles que

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 59

envían comandos a la estación para realizar peticiones de datos a los sensores. El flujo de

petición de datos se muestra en la Figura 39.

Este flujo se encarga en primer lugar de recibir los datos de los sensores, la cámara y las

estadísticas resultado del procesamiento de imágenes. Luego, mediante un nodo de función se

asigna cada uno de estos datos, a los cuadros de visualización que correspondan. Estos

cuadros de visualización para el caso de los datos de los sensores se tratan de gráficos

cartesianos. Para el mapa es una plantilla web que muestra un mapa proveniente de

OpenStreetMap. Para el caso de las imágenes y video son plantillas web capaces de visualizar

imágenes y para las estadísticas son cuadros de texto. Además de esto, se cuenta con el nodo

del botón borrar que permite limpiar los gráficos en los cuadros de datos de los sensores.

Finalmente, la región con el comentario “Despliegue del Mapa en Dashboard” realiza la

configuración de la plantilla web en la que se visualiza el mapa.

Figura 39 Flujo en Node-Red para la Presentación de Datos

El flujo de los Controles se muestra en la Figura 40. En este flujo se implementa los

interruptores que permiten activar/desactivar los sensores, el botón que envía una petición al

GPS para ubicar la estación, así como el interruptor que activa/desactiva la transmisión de

video. Todos estos nodos se encuentran conectados a un nodo wiotp out que envía esta

información a la estación mediante el protocolo MQTT.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 60

Figura 40 Flujo de Controles implementado en Node-Red

4.5.2. Configuración y Diseño de la Interfaz Gráfica

Para poder crear la interfaz gráfica de la aplicación web es necesario instalar la librería node-

red-dashboard. Dicha librería, provee de un conjunto de nodos para implementar un panel de

control dentro de una página web. El URL por defecto de la página es [URL del editor Node-

RED]/ui. Para el caso de tener múltiples pestañas sus URLs serán [URL del editor Node-

RED]/ui/#!/n donde n=0,1,2… es el número de pestaña.

La configuración de la interfaz gráfica se la realiza sobre la pestaña dashboard, ubicada en el

panel derecho del editor. Aquí se pueden crear pestañas que aparecerán en el menú de la

interfaz. Además, la información de cada pestaña puede ser organizada en grupos y se puede

modificar el tamaño y la disposición de cada uno de los elementos. En la Figura 41 se muestra

las pestañas creadas con sus respectivos grupos.

Figura 41 Panel de configuración dashboard

Se crearon tres pestañas, una para mostrar un panel con los datos provenientes de los

sensores en la estación, otro para mostrar las imágenes provenientes de la cámara en la

estación y la última para mostrar la ubicación de la estación en un mapa con la información del

GPS emplazado en la estación.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 61

En la Figura 42, se muestra el diseño de la pestaña del panel de sensores. En la Figura 43 se

observa el diseño de la pestaña de imagen y video y en la Figura 44 se muestra la pestaña para

la visualización del mapa.

Figura 42 Pestaña Panel de sensores

Figura 43 Pestaña Imagen y Video

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 62

Figura 44 Pestaña para la visualización del Mapa

La pestaña del panel de sensores tiene tres grupos: el panel de control, los datos de la estación

y los datos ambientales. El panel de control tiene la función de activar o desactivar los

sensores, además de borrar los datos mostrados en los cuadros de los sensores. Los datos de la

estación muestran los datos provenientes de los sensores de corriente, temperatura del

procesador y carga del procesador. El grupo de datos ambientales muestra los datos

provenientes de los sensores de temperatura, índice UV y presión atmosférica.

La pestaña Imagen y Video contiene dos grupos, Estadísticas y cámara (Cam). El grupo de

estadísticas contiene los datos estadísticos provenientes del procesamiento de imágenes de

campos frutales. Dichas estadísticas consisten en el número de manchas, el número estimado

de frutos, el color promedio, y las dimensiones de los objetos con los valores mínimo,

promedio y máximo, especificados en pixeles. El grupo cámara, contiene la imagen procesada

con un encuadre de los frutos detectados, un control para activar/desactivar la transmisión de

video y un cuadro que muestra el video transmitido en tiempo real.

La pestaña mapa muestra un solo grupo que contiene una plantilla que muestra un mapa y un

botón que realiza una petición al sensor de geo-localización para mostrar la ubicación de la

estación en el mapa.

4.6. Conclusiones

En este capítulo se expusieron todos los detalles respecto a la implementación de la estación y

la aplicación web, comenzando con una descripción del hardware y el software utilizado junto

con las configuraciones necesarias para la comunicación entre los dos extremos del sistema,

para posteriormente desarrollar dos algoritmos de procesamiento de imágenes para el

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 63

problema objetivo de la tesis. Por último, se detalló la programación tanto de la estación como

de la aplicación web.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 64

5. EVALUACIÓN Y PRUEBAS EXPERIMENTALES

5.1. Introducción

En el presente capítulo se mostrarán los resultados de las pruebas realizadas empleando la

estación prototipo. Estas pruebas consisten en el procesamiento de imágenes capturadas con

la cámara web de la estación y la transmisión de los datos de los sensores y video a través de

Internet con el protocolo MQTT. Además, se caracterizará el consumo energético de la

estación considerando las diferentes funcionalidades disponibles.

5.2. Escenarios de Pruebas

Para las pruebas de procesamiento de imágenes se capturaron fotografías con la cámara web

instalada en la estación. Dicha cámara permite capturar imágenes con una calidad ligeramente

menor a la empleada para el desarrollo de los algoritmos en el Capítulo 4. En este caso, las

fotografías tienen un tamaño de 544x288 pixeles y fueron tomadas en la granja “El Romeral”,

propiedad de la Universidad de Cuenca, ubicada en el kilómetro 10 de la vía Paute-

Guachapala, que cuenta con gran cantidad de plantaciones frutales y de hortalizas. Las

fotografías fueron tomadas a las tres de la tarde con un cielo parcialmente nublado, datos

importantes para tener una idea de la iluminación presente en ese instante. Se decidió

restringir las fotografías a un solo tipo de frutos que fueron manzanas, por tratarse de un fruto

que resalta del fondo en el que se encuentra y que al momento de tomarse las fotografías

estaban en etapa de cosecha por lo cual eran además bastante abundantes.

La transmisión de los datos de los sensores y la cámara no se la realizó en el mismo sitio por

dificultades del acceso a Internet. Estas pruebas se las realizó en un ambiente controlado con

la estación conectada a Internet mediante Wifi usando la batería de la misma estación como

fuente de energía.

5.3. Procesamiento y Análisis de Imágenes

Para el procesamiento de las imágenes capturadas se usó tanto el algoritmo de Thresholding

reducido como el algoritmo de GMM con EM. En primer lugar, se expondrán los resultados con

el uso del algoritmo de Thresholding reducido. Este algoritmo es casi idéntico al desarrollado

en el Capítulo 4, con la única diferencia que el elemento estructural utilizado para la operación

de closing es un disco de radio 2 pixeles en lugar de 3. Los resultados obtenidos se detallan en

la Figura 45.

En general los resultados son buenos puesto que la mayoría de los frutos han sido detectados,

sin embargo en la Figura 45(b) y 45(d) se observan ramas o lotes de suelo que han sido

identificadas como frutos, y en la Figura 45(e) existen ciertos frutos con coloración más tenue

que no han sido detectados.

Además de esto, si se realiza un acercamiento a ciertas zonas de las imágenes extrayendo la

parte segmentada como frutos, tal como se lo observa en la Figura 46, se aprecia que no toda

el área de los frutos ha sido segmentada, evitando una correcta extracción de las

características de los frutos. Aun así, se recalca que este algoritmo tiene la ventaja de un bajo

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 65

coste de procesamiento, notándose que el tiempo en procesar cada imagen en la Raspberry Pi

fue de aproximadamente 30 segundos.

Figura 45 Resultados de detección de frutos con Thresholding reducido en varias imágenes

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 66

Figura 46 Acercamiento con segmentación extraída

En cuanto al algoritmo de GMM con EM, se aplicó la misma solución de desarrollada en el

capítulo anterior, es decir con 11 clusters para la segmentación, aunque reduciendo en este

caso el elemento estructural de la operación closing a un disco de radio 2 pixeles.

Se aplicó el esquema clásico para el uso de estos modelos, en el cual se realiza el ajuste con

una imagen de prueba para posteriormente usarlo con todas las demás fotografías. No

obstante, se presentó la dificultad de encontrar una imagen que dé buenos resultados para la

detección de frutos en el resto de fotografías, tal como se lo observa en la Figura 47, en la cual

se ven 2 imágenes de ajuste junto a 2 imágenes de prueba con resultados muy deficientes

puesto que se pueden observar lotes de cielo y suelo identificados como frutos.

Figura 47 Resultados fallidos de GMM con EM

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 67

Finalmente, se realizó un experimento usando la Figura 48 como imagen de ajuste

obteniéndose en este caso buenos resultados, los cuales se los puede observar en la Figura 49.

Dichos resultados, son mejores a los obtenidos con el algoritmo de Thresholding puesto que se

observa menor cantidad de falsos positivos junto con una mejor segmentación. Sin embargo,

el coste de procesamiento es mucho más alto, teniendo un tiempo de aproximadamente 21

minutos en procesar una imagen en la Raspberry Pi.

Figura 48 Imagen de ajuste seleccionada para la segmentación con el modelo GMM-EM

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 68

Figura 49 Resultados de detección de frutos con GMM mediante EM en varias imágenes

5.4. Transmisión de Datos de Sensores y Video

Para probar la efectividad de la transmisión de mensajes, mediante el protocolo MQTT, se

diseñó un experimento que simula el envío simultáneo de datos desde seis nodos en intervalos

de 30 segundos, empleando el nivel más bajo de QoS. El experimento se desarrolló hasta

completar 100 mensajes por nodo, es decir un total de 600 mensajes en toda la simulación.

Del lado del receptor en la aplicación web, se implementó un contador de mensajes. En la

Figura 50 se muestra la programación realizada en Node-Red para dicha simulación.

Figura 50 Simulación de transmisión de datos de sensores

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 69

Aunque el nivel más bajo de QoS en MQTT no garantiza la transmisión de los mensajes, al

terminar la simulación se obtuvo que la totalidad de los mensajes fueron recibidos con éxito, lo

cual prueba la efectividad de este protocolo y de la plataforma IoT de IBM como broker MQTT.

En la Figura 51 se muestra el panel debug con los últimos mensajes que llegaron en la

simulación.

Figura 51 Panel debug con los resultados de la simulación

En cuanto a la transmisión de video, pese a las limitaciones del protocolo MQTT analizadas en

el apartado 4.4.3, durante los experimentos se consiguió una transmisión de video

satisfactoria, con retrasos no muy marcados de entre 1 a 4 segundos. Dicho retardo,

consideramos resulta admisible para la funcionalidad de video vigilancia que se desea incluir

en la estación prototipo.

5.5. Caracterización del Consumo Energético

Mediante el uso del sensor de corriente, se realizaron experimentos para caracterizar el

consumo de energía que demanda la estación prototipo, según la funcionalidad que se

encuentre activa. Con tal objetivo, se realizó un muestreo de la corriente cada 5 segundos,

durante distintos intervalos de tiempo. Finalmente, los resultados de dichos intervalos fueron

promediados para obtener una estimación. En primer lugar, se midió la corriente que consume

la estación al ejecutar únicamente la aplicación de Node-Red, sin ningún proceso extra durante

15 minutos. A continuación, se activaron todos los sensores incluyendo los sensores internos

de la Raspberry Pi (temperatura y carga de la CPU) y tomando mediciones durante 15 minutos.

Posteriormente, se obtuvieron las mediciones de corriente al realizar peticiones de ubicación

con el GPS cada 5 segundos, de igual forma durante 15 minutos. En cuanto al consumo de

corriente durante el procesamiento de imágenes se midió este parámetro durante los 22

minutos que duró el procesamiento. Finalmente, durante otros 15 minutos se midió la

corriente mientras se realizaba transmisión de video en vivo. Los resultados promedios de

estas mediciones se presentan en la Tabla 10. Adicionalmente se presenta una estimación de

la corriente que demandan las diferentes tareas de forma individual restando el consumo

correspondiente a la aplicación de Node-Red.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 70

Tabla 10 Consumo de corriente de las tareas de la estación

Tarea Medición Promedio(mA) Estimación Consumo por

Tarea (mA)

Plataforma Node-Red 301 301

Sensores 308 7

GPS 323 22

Procesamiento de

imágenes

398 97

Transmisión de video 456 155

Cabe indicar que la tarea “Plataforma de Node-Red” incluye el consumo de todos los procesos

del sistema operativo. Por otra parte, en la Tabla 11, se ha definido un tiempo estimado de

activación para cada una de las tareas a lo largo de un día. A partir, de dichos valores se calcula

el consumo total de energía que requiere la estación. Además, considerando que la batería

instalada en la estación tiene una capacidad de 10400mAH y el consumo total estimado es de

7337mAH, la estación tendrá una autonomía estimada de 34 horas.

Tabla 11 Consumo de energía estimado por tarea

Tarea Tiempo estimado(H)

Tiempo estimado(H) *

(Promedio(mA) - consumo

Plataforma Node-Red(mA))

Plataforma Node-Red 24 7224 mAH

Sensores 0,00923077 0,06461538 mAH

GPS 0,00555556 0,12222222 mAH

Procesamiento de imágenes 0,36666667 35,5666667 mAH

Transmisión de video 0,5 77,5 mAH

Consumo de energía total 7337,2535mAH

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 71

5.6. Conclusiones

En este capítulo se expuso los resultados de las pruebas realizadas sobre la estación para

validar los algoritmos de procesamiento de imágenes usando fotografías tomadas con la

cámara de la propia estación prototipo. Los resultados obtenidos con los dos algoritmos son

satisfactorios. Sin embargo, cabe resaltar que el algoritmo de GMM con EM produce una

mejor segmentación, aunque con un comportamiento mucho más lento que el algoritmo de

Thresholding, el cual se podría implementar si se desea ahorrar una pequeña cantidad de

energía. Además, se verificó la efectividad del protocolo MQTT para la transmisión de datos y

video con tiempos de retardo admisibles para la aplicación diseñada. Por último, se analizó la

autonomía energética de la estación, proceso necesario puesto que la estación podría

emplazarse en un lugar remoto sin una fuente externa de energía.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 72

6. CONCLUSIONES Y RECOMENDACIONES
En este capítulo se presentan las conclusiones finales del trabajo de tesis, revisando

brevemente sus principales características y funciones, junto con un conjunto de

recomendaciones que podrían ser útiles para investigaciones futuras o para llevar la estación

diseñada a operar en campos agrícolas.

6.1. Conclusiones

El trabajo realizado es un importante acercamiento entre la agricultura de precisión y el

internet de las cosas, necesario para incrementar la tecnificación del campo. El conocer las

variables ambientales de una parcela agrícola permite tomar acciones para optimizar recursos

y aumentar la producción, y las fotografías de los frutos permiten estimar la fecha y magnitud

de la cosecha, e incluso en trabajos futuros la información extraída podría ser usada para

detectar enfermedades en la planta o problemas en la parcela. La estación diseñada es

conveniente para nuestro medio en el cual el principal impedimento para esta tecnificación es

el factor económico.

Para su creación se revisó una gran cantidad de trabajos relacionados, estudiando los

principales algoritmos usados para la segmentación de imágenes, las tecnologías usadas en el

Internet de las cosas y las ventajas de usar servicios en la nube.

El uso de los servicios de la nube de IBM como PaaS junto con el protocolo MQTT coloca a este

trabajo en la escena actual de la emergente tecnología IoT y amplía la visión de las aplicaciones

futuras que se pueden crear con ella.

El problema de procesamiento de imágenes al que se hizo frente, mostró la complejidad de la

segmentación de imágenes como método para la detección de objetos dentro de un fondo con

texturas y tonalidades muy distintas en fotografías de resolución moderada.

Los resultados del procesamiento de imágenes son satisfactorios, cumpliendo el objetivo de

detectar efectivamente una gran cantidad de frutos y extraer información que puede ser útil

en trabajos futuros.

La transmisión de datos por MQTT mostró las ventajas de este protocolo, y por qué este se

está convirtiendo en el más popular para aplicaciones IoT. Además, la transmisión de video

mostró una aplicación no común sobre este protocolo con buenos resultados.

La aplicación web creada permite el monitoreo de las variables de forma muy sencilla y desde

cualquier lugar del mundo, además de permitir ubicar la estación gracias al sensor de geo-

localización.

Por último, la caracterización de la energía de la estación permitió estimar el tiempo de

autonomía energética, parámetro importante a considerar para mantener la estación

operativa.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 73

6.2. Recomendaciones

Entre las principales recomendaciones para futuros trabajos, en primer lugar, se resalta la

conveniencia de mejorar las capacidades del protocolo MQTT, para lo cual se podría crear un

broker propio, y así evitar las limitaciones del tamaño máximo de los paquetes.

En cuanto al procesamiento de imágenes, aunque los resultados obtenidos son en general muy

buenos, se sugiere realizar un mayor número de experimentos, probando más algoritmos de

segmentación, pre-procesamiento o post-procesamiento. No obstante, encontrar una solución

definitiva resulta de gran complejidad, puesto que este es un problema muy dependiente de

las condiciones lumínicas del lugar e incluso de la calidad de las imágenes que captura la

cámara, razón por la cual tanto en el presente trabajo de tesis como en los trabajos

relacionados que han sido analizados, se llega a una solución para un problema específico en

forma de aproximación.

Otra mejora que se podría dar al sistema, especialmente con un enfoque comercial, consiste

en reducir la energía que consumen las tareas del sistema operativo, para así llegar a tener

mayor tiempo de independencia. Esto se lo podría lograr desinstalando muchos de los

programas que Raspbian trae instalados por defecto, o incluso, aunque mucho más

demandante, se podría crear una distribución de Linux que solo tenga instalados los

programas absolutamente necesarios.

Una recomendación importante si se desea emplazar esta estación en el campo es construir un

mejor encapsulado que la proteja de todas las inclemencias del clima. En particular, si se desea

instalar la estación en un invernadero, el sistema debe estar muy bien refrigerado, debido a las

altas temperaturas que se generan en estos ambientes, lo cual podría hacer difícil que la

estación funcione sin una fuente de energía externa.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 74

REFERENCIAS

[1] Universidad Técnica del Norte, “La Importancia de la Agricultura en nuestro
país,” 2017. [Online]. Available:
http://www.utn.edu.ec/ficaya/carreras/agropecuaria/?p=1091.

[2] A. Monteros, E. Sumba, and S. Salvador, “Productividad Agrícola en el Ecuador,”
Magap, p. 12, 2014.

[3] Food and Agriculture Organization of the United Nations, “FAOSTAT,” Crops
Production, 2016. [Online]. Available: http://www.fao.org/faostat/en/#data/QC.

[4] V. M. Andrade, “La tecnificación agrícola,” El Telégrafo, p. 1, 26-Apr-2016.

[5] Diario EL Telégrafo, “Desarrollo y Tecnificación,” p. 1, 28-Jan-2014.

[6] E. García and F. Flego, “Agricultura de Precisión,” Cienc. Tecnol. Univ. Palermo,
pp. 99–116, 2018.

[7] Beecham, “Towards Smart Farming: Agriculture Embracing the IoT Vision,”
Beechham Res., vol. 44, no. 0, p. 6, 2014.

[8] P. Gennari, FAO Statistical Pocketbook 2015. Rome, 2015.

[9] M. Oxnam et al., “State of the Market THE INTERNET OF THINGS 2015,” Info, vol.
54, no. 1, pp. 1–31, 2014.

[10] V. Alchanatis, A. Navon, I. Glazer, and S. Levski, “An Image Analysis System for
measuring Insect Feeding Effects caused by Biopesticides,” J. Agric. Eng. Res.,
vol. 77, no. 3, pp. 289–296, 2000.

[11] S. Khanal, J. Fulton, and S. Shearer, “An overview of current and potential
applications of thermal remote sensing in precision agriculture,” Comput.
Electron. Agric., vol. 139, pp. 22–32, 2017.

[12] A. J. G. Sanchez, F. G. Sanchez, and J. G. Haro, “Wireless sensor network
deployment for integrating video-surveillance and data-monitoring in precision
agriculture over distributed crops,” Comput. Electron. Agric., vol. 75, no. 2, pp.
288–303, 2011.

[13] J. Senthilnath, A. Dokania, M. Kandukuri, R. K.N., G. Anand, and S. N. Omkar,
“Detection of tomatoes using spectral-spatial methods in remotely sensed RGB
images captured by UAV,” Biosyst. Eng., vol. 146, pp. 16–32, 2016.

[14] S. Lal, S. K. Behera, P. K. Sethy, and A. K. Rath, “Identification and counting of
mature apple fruit based on BP feed forward neural network,” Proc. 2017 3rd
IEEE Int. Conf. Sensing, Signal Process. Secur. ICSSS 2017, pp. 361–368, 2017.

[15] S. Abirami and M. Thilagavathi, “Classification of fruit diseases using feed
forward back propagation neural network,” Proc. 2019 IEEE Int. Conf. Commun.
Signal Process. ICCSP 2019, pp. 765–768, 2019.

[16] P. Ogallar, “Nuevas tecnologías: la potencia de la inteligencia artificial,” La
Nacion, 2017. [Online]. Available: https://www.lanacion.com.ar/2050218-
nuevas-tecnologias-la-potencia-de-la-inteligencia-artificial.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 75

[17] V. Mendoza, “Asimetría agrícola,” El Telégrafo, 04-Nov-2014.

[18] D. Evans, “Internet de las cosas Internet de las cosas Cómo la próxima evolución
de Internet lo cambia todo,” Inf. técnico Cisco, 2011.

[19] L. Columbus, “2017 Roundup Of Internet Of Things Forecasts,” Forbes, 2017.
[Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-
internet-of-things-forecasts/#dfed2061480e.

[20] K. Rose, S. Eldridge, and L. Chapin, “La Internet De Las Cosas — Una Breve
Reseña,” Internet Soc., p. 83, 2015.

[21] Statista.com, “Number of machine-to-machine (M2M) connections worldwide
from 2012 to 2018 (in millions)*,” 2018.

[22] A. dos Santos Ferreira, D. Matte Freitas, G. Gonçalves da Silva, H. Pistori, and M.
Theophilo Folhes, “Weed detection in soybean crops using ConvNets,” Comput.
Electron. Agric., vol. 143, no. November, pp. 314–324, 2017.

[23] M. Dyrmann, H. Karstoft, and H. S. Midtiby, “Plant species classification using
deep convolutional neural network,” Biosyst. Eng., vol. 151, no. 2005, pp. 72–80,
2016.

[24] Y. Lu and R. Lu, Quality Evaluation of Apples. 2016.

[25] N. Kulkarni, “Color Thresholding Method for Image Segmentation of Natural
Images,” Int. J. Image, Graph. Signal Process., vol. 4, no. 1, pp. 28–34, 2012.

[26] S. Wazarkar and B. N. Keshavamurthy, “A survey on image data analysis through
clustering techniques for real world applications,” J. Vis. Commun. Image
Represent., vol. 55, pp. 596–626, 2018.

[27] R. Lagani, OpenCV 2 Computer Vision Application Programming Cookbook, vol.
14, no. 4. 2011.

[28] V. Gupta, “Color spaces in OpenCV (C++ / Python),” Learn OpenCV, 2017.
[Online]. Available: https://www.learnopencv.com/color-spaces-in-opencv-cpp-
python/.

[29] J. Howse, OpenCV Computer Vision with Python Table of Contents. Birmingham,
2013.

[30] R. Zhou, L. Damerow, Y. Sun, and M. M. Blanke, “Using colour features of cv.
‘Gala’ apple fruits in an orchard in image processing to predict yield,” Precis.
Agric., vol. 13, no. 5, pp. 568–580, 2012.

[31] Scikit Learn, “Gaussian mixture models.” [Online]. Available: https://scikit-
learn.org/stable/modules/mixture.html.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, vol. 39, no. 3, pp.
293–297, 1977.

[33] I.J.Myung, “Computational Approaches to Model Evaluation,” Int. Encycl. Soc.
Behav. Sci., vol. 339, no. 16, pp. 2453–2457, 2001.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 76

[34] Scikit Learn, “Gaussian Mixture Model Selection.”

[35] C. Fraley, “How Many Clusters? Which Clustering Method? Answers Via Model-
Based Cluster Analysis,” Comput. J., vol. 41, no. 8, pp. 578–588, 2005.

[36] R. Gonzalez and R. Woods, Digital Image Processing. 2002.

[37] L. Di Stefano and A. Bulgarelli, “A simple and efficient connected components
labeling algorithm,” Proc. - Int. Conf. Image Anal. Process. ICIAP 1999, pp. 322–
327, 1999.

[38] Y. S. Halabi, “New Algorithm - Simulation Connected Components Labeling for
Binary Images .,” vol. 3, no. 12, 2013.

[39] T. Asano and H. Tanaka, “In-Place Algorithm for Connected Components
Labeling,” J. Pattern Recognit. Res., vol. 5, no. 1, pp. 10–22, 2013.

[40] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-component
labeling problem: A review of state-of-the-art algorithms,” Pattern Recognit.,
vol. 70, pp. 25–43, 2017.

[41] OpenCV.org, “About OpenCV.” [Online]. Available: https://opencv.org/about/.

[42] FFMEG, “About FFmpeg.” [Online]. Available:
https://www.ffmpeg.org/about.html.

[43] OpenJS Foundation, “Node-Red.” [Online]. Available: https://nodered.org.

[44] G. C. Hillar, MQTT Essentials - A Lightweight IoT Protocol. Birmingham: Packt
Publishing Ltd., 2017.

[45] MQTT.org, “MQTT Documentation.” [Online]. Available:
mqtt.org/documentation.

[46] J. Polo, G. Hornero, C. Duijneveld, A. García, and O. Casas, “Design of a low-cost
Wireless Sensor Network with UAV mobile node for agricultural applications,”
Comput. Electron. Agric., vol. 119, pp. 19–32, 2015.

[47] S. Sabzi, Y. Abbaspour-Gilandeh, and G. García-Mateos, “A new approach for
visual identification of orange varieties using neural networks and metaheuristic
algorithms,” Inf. Process. Agric., vol. 5, no. 1, pp. 162–172, 2018.

[48] A. Bakhshipour and A. Jafari, “Evaluation of support vector machine and artificial
neural networks in weed detection using shape features,” Comput. Electron.
Agric., vol. 145, no. December 2017, pp. 153–160, 2018.

[49] M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, and M. Y. Javed,
“Detection and classification of citrus diseases in agriculture based on optimized
weighted segmentation and feature selection,” Comput. Electron. Agric., vol.
150, no. April, pp. 220–234, 2018.

[50] T. J. R. Rozo, J. C. G. Alvarez, and C. G. C. Dominguez, “Infrared thermal image
segmentation using expectation-maximization-based clustering,” STSIVA 2012 -
17th Symp. Image, Signal Process. Artif. Vis., pp. 223–226, 2012.

[51] Yudong Guan, Qi Zhang, Xutao Zhang, Youhua Jia, and Shen Wang, “A Study of
Color Image Segmentation Base on Stochastic Expectation Maximization

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 77

Algorithm in HSV Model,” pp. 1198–1200, 2006.

[52] E. Fida, J. Baber, M. Bakhtyar, R. Fida, and M. J. Iqbal, “Unsupervised image
segmentation using lab color space,” 2017 Intell. Syst. Conf. IntelliSys 2017, vol.
2018-Janua, no. September, pp. 774–778, 2018.

[53] A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using
computer vision: A review,” J. King Saud Univ. - Comput. Inf. Sci., 2018.

[54] S. Chanthakit and C. Rattanapoka, “Mqtt based air quality monitoring system
using node MCU and node-red,” Proceeding 2018 7th ICT Int. Student Proj. Conf.
ICT-ISPC 2018, pp. 1–5, 2018.

[55] A. Rajalakshmi and H. Shahnasser, “Internet of things using node-red and alexa,”
2017 17th Int. Symp. Commun. Inf. Technol. Isc. 2017, vol. 2018-Janua, pp. 1–4,
2018.

[56] M. Lekić and G. Gardašević, “IoT sensor integration to Node-RED platform,”
2018 17th Int. Symp. INFOTEH-JAHORINA, INFOTEH 2018 - Proc., vol. 2018-
Janua, no. March, pp. 1–5, 2018.

[57] M. Tabaa, B. Chouri, S. Saadaoui, and K. Alami, “Industrial Communication based
on Modbus and Node-RED,” Procedia Comput. Sci., vol. 130, pp. 583–588, 2018.

[58] J. Skovranek, M. Pies, and R. Hajovsky, “Use of the IQRF and Node-RED
technology for control and visualization in an IQMESH network,” IFAC-
PapersOnLine, vol. 51, no. 6, pp. 295–300, 2018.

[59] Texas Instruments, “INA219: CURRENT / POWER MONITOR with I2CTM
Interface,” no. September, pp. 1–29, 2011.

[60] Silicon Labs, “PROXIMITY/UV/AMBIENT LIGHT SENSOR IC WITH I2C INTERFACE,”
2013.

[61] Adafruit Industries, “Adafruit BME280 Humidity + Barometric Pressure +
Temperature Sensor Breakout,” pp. 1–19, 2016.

[62] Lady Ada, “Adafruit Ultimate GPS,” Adafruit Ind., pp. 1–38, 2014.

[63] Logitech, “LOGITECH ® HD WEBCAM c270,” 2011.

[64] RavPower, “External Battery Pack Element Model RP-PB07.” p. 6.

[65] Numpy.org, “Numpy.” [Online]. Available: https://www.numpy.org.

[66] Scikit-learn.org, “Scikit-learn Machine learning in Python.” [Online]. Available:
https://scikit-learn.org/stable/.

[67] “ImageNet.” [Online]. Available: http://image-net.org/explore.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 78

APENDICES

A. Entorno de Trabajo IBM Cloud

Para la fecha de realización de este trabajo la empresa IBM se encuentra en una etapa de

transición de sus servicios en la nube, lo cual incluye, un cambio de nombre, de la dirección

web y de la interfaz gráfica de su plataforma, aunque esencialmente sus servicios son los

mismos. El nombre de dominio empleado inicialmente por la plataforma IBM Cloud fue

Bluemix con su dirección asociada Bluemix.net, por tal razón la gran mayoría de

documentación sobre este servicio está bajo ese nombre, e incluso dentro de la plataforma

aún existe mucha referencia a dicho nombre, lo cual con esta aclaración no debería causar

confusiones. Como se mencionó la interfaz gráfica también se encuentra en transición, pero

por el momento aún se puede trabajar sobre ella en el dominio Bluemix.net. Sin embargo,

considerando que esta interfaz se dará de baja a mediano plazo, no se trabajará sobre ella.

Para trabajar sobre la plataforma actualizada se debe ingresar a la dirección cloud.ibm.com.

Al ingresar en esta dirección se presenta la página de inicio de sesión como se muestra en la

Figura 52. Para poder iniciar una sesión, es necesario contar con una cuenta de IBM, la misma

que puede ser obtenida de forma gratuita, registrándose en su página.

Figura 52 Página de inicio IBM Cloud

Al iniciar sesión se presenta el panel de control de la plataforma IBM Cloud, en el cual se

muestran ventanas sobre el resumen de recursos, las aplicaciones creadas, los costes por uso,

manuales de usuario entre otras herramientas, como se muestra en la Figura 53.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 79

Figura 53 Panel de control IBM Cloud

En la esquina superior izquierda se muestra el menú de Navegación en el cual se encuentran

los principales recursos disponibles, tal como se lo observa en la Figura 54.

Figura 54 Menú de Navegación IBM Cloud

Otro elemento importante a destacar, es el catálogo, cuyo botón de acceso se muestra en la

parte superior de la interfaz de la plataforma. En el catálogo se puede visualizar todos los

servicios a los que se puede acceder como herramientas de desarrollo, contenedores,

inteligencia artificial, bases de datos, entre otros. En la Figura 55 se muestra dicho catálogo.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 80

Figura 55 Catálogo IBM Cloud

Para el caso del trabajo de tesis, los servicios empleados de este catálogo son Internet of

Things Plataform y Node-Red Starter como se lo observa en la Figura 56.

Figura 56 Servicios de IBM Cloud que se usarán

B. Entorno de Trabajo Node-Red Starter

Para iniciar la plataforma de desarrollo con Node-Red se busca en el catálogo la opción Node-

Red Starter que desplegará el formulario mostrado en la Figura 57:

Figura 57 Instanciación de servicio Node-RED Starter

Como se observa, se debe otorgar un nombre de la aplicación y un nombre de host. El resto de

campos pueden mantenerse con sus valores por defecto siempre y cuando sea conveniente.

En la sección de Selected Plan (Plan seleccionado) es importante colocar el servicio SDK for

Node.js como “Default” y el servicio Cloudant como “Lite”. Tal configuración, se realiza para

que el uso de la plataforma sea gratuito. Finalmente, es posible confirmar la opción “Create”, a

continuación de lo cual se mostrará la ventana de Figura 58:

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 81

Figura 58 Ventana de inicio Node-RED Starter

La captura de la Figura 58, corresponden a la interfaz gráfica de la plataforma. En particular, se

distinguen dos secciones importantes. Por una parte, 1) el menú de la plataforma, en el cual se

puede acceder tutoriales, detalles de uso, consola mediante conexión ssh (Secure Shell),

registro de uso, entre otros. Además, se encuentra 2) la lista de recursos, en la cual se puede

ver si la aplicación se está ejecutando, acceder a su URL y realizar acciones de gestión como

por ejemplo iniciar, detener o reiniciar la aplicación.

El uso de esta plataforma es gratuito si se trabaja bajo ciertas condiciones detalladas en los

términos y condiciones de uso de la aplicación. Una de estas condiciones es que el tamaño de

la aplicación no puede exceder los 256MB, lo cual para el presente trabajo resulta escaso. Para

ampliar la capacidad hay que dirigirse a la opción Overview (Visión General). Aquí, en la opción

MB Memory per instance hacemos clic en el signo más hasta llegar a 512, tal como se muestra

en la Figura 59:

Figura 59 Incremento de memoria de la instancia

Una vez hecho esto y dar clic en guardar, se mostrará un mensaje que advierte que debemos

cambiar de plan, lo que a su vez llevará a un formulario para ingresar la información de una

tarjeta de crédito y datos adicionales. Luego de realizar este trámite se mostrará un mensaje

confirmando que con el ingreso de los datos de la tarjeta de crédito ahora se puede usar hasta

512MB sin costo adicional, por lo que el uso de la aplicación seguirá siendo gratuito.

Finalmente hay que dirigirse al entorno de trabajo de Node-Red. Para esto, en la sección de

lista de recursos se da un clic en “Visitar URL de la aplicación”, lo que conducirá a la ventana de

inicio que se muestra en la Figura 60.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 82

Figura 60 Página de inicio del editor Node-RED

Al dar clic en la opción Go to your Node-RED flow editor, se redirigirá a un formulario en el cual

se debe ingresar los datos de un usuario que podrá modificar la aplicación, y luego de esto

finalmente se mostrará el editor de Node-RED como se lo aprecia en la Figura 61:

Figura 61 Editor Node-RED

En este editor se distinguen seis partes importantes. 1) La paleta de nodos, donde se ubican

todos los nodos o bloques con los que se programará la aplicación. 2) Pestañas de flujos de

trabajo, es aquí donde se desplegarán los nodos de programación, cabe resaltar que los

distintos flujos se ejecutan paralelamente. 3) Botón desplegar, este botón guarda los cambios

realizados sobre los flujos de trabajo e inicia su ejecución. 4) Botón de registro, es necesario

estar registrado para poder hacer cambios al programa. 5) Menú del editor, posteriormente se

describirán algunas de sus opciones. 6) Pestañas de información, las mismas que alojan

múltiple información, dependiendo de las librerías instaladas y de los nodos usados. Entre los

datos de mayor relevancia se encuentra, la información sobre los nodos, el panel de debug, la

configuración del panel de control y la configuración de los bloques.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 83

En cuanto al menú del editor, observado en la Figura 62, las opciones más importantes son:

Importar, que permite ingresar código en formato json para desplegar los nodos

correspondientes, además se puede encontrar ejemplos de las librerías instaladas. Exportar,

con el cual se puede respaldar la programación de los nodos en formato json. Manage palette,

esta opción desplegará una ventana en la cual es posible verificar las librerías instaladas, así

como instalar nuevas librerías. En la Figura 63 se muestra una captura de esta ventana.

Figura 62 Menú del editor Node-RED

Figura 63 Ventana de "Manage Palette"

Este editor estará disponible en la URL [Nombre de host].mybluemix.net. Para el caso del editor

en los dispositivos, se puede acceder con cualquier explorador web en la URL [ip privada del

host]:1880.

C. Entorno de Trabajo IBM Watson IoT

Para usar la plataforma IBM Watson IoT, se debe iniciar una nueva instancia de la plataforma

buscándola en el catálogo como Internet of Things Platform. Se solicitará asignar un nombre al

servicio, y en cuanto al resto de opciones, se pueden emplear los valores por defecto. El

formulario para ingresar estos datos se muestra en la Figura 64.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 84

Figura 64 Formulario de instanciación IBM Watson IoT

Al aceptar la opción “Create”, se mostrará la ventana indicada en la Figura 65, en la cual se

detalla la cantidad de datos intercambiados y disponibles. También se presenta la opción para

modificar el plan y vincular más servicios con la plataforma. En la sección, Manage se

encuentra el botón Lanzar, el cual conduce al entorno de trabajo de IBM Watson IoT.

Figura 65 Administrador de la instancia IBM Watson IoT

En la plataforma se distinguen dos partes importantes. 1) El Menú de la plataforma, en la cual

se puede observar botones con los cuales acceder a la administración de los dispositivos, los

usuarios, las aplicaciones, las reglas de seguridad, entre otros. Las dos opciones que se

emplearon en el presente trabajo fueron los dispositivos y las aplicaciones. 2) Información de

la cuenta, donde se muestra el usuario que está empleando la plataforma y el ID de la

organización, el cual será necesario al momento de configurar la comunicación entre el

dispositivo y la aplicación web. La ventana de esta plataforma se la observa en la Figura 66.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 85

Figura 66 Plataforma IBM Watson IoT

D. Registro de Dispositivos en la Plataforma IBM Watson IoT

Dentro de la plataforma IBM Watson IoT en la opción de Dispositivos, como primer paso se

debe crear un tipo de dispositivo. Los tipos de dispositivos sirven para englobar un conjunto de

características comunes entre un grupo de dispositivos. En este caso, se creará un tipo de

dispositivo al que se ha denominado “Raspberry”. Además del nombre, para crear un tipo de

dispositivo también se piden datos como el número de serie, modelo, descripción, versión del

hardware, fabricante, clase de dispositivo, versión del firmware y ubicación descriptiva. Sin

embargo, estos datos son opcionales y se los puede dejar en blanco. Los formularios para

ingresar esta información se presentan en la Figura 67 y Figura 68.

Figura 67 Formulario tipo de dispositivo

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 86

Figura 68 Datos adicionales tipo de dispositivo

Una vez definido el tipo, a continuación se procede a crear el dispositivo, para ello se

selecciona el tipo de dispositivo y se le coloca un ID única que en este caso será “RasPi1”,

como se puede apreciar en la Figura 69.

Figura 69 Ventana nuevo dispositivo

Posteriormente, se solicitan datos adicionales, los cuales en su mayoría son de tipo opcional y

pueden omitirse. Además, se pueden añadir metadatos en formato JSON. Dicho formulario se

muestra en la Figura 70.

Figura 70 Datos adicionales del dispositivo

Por último, se tendrá que proporcionar una señal de autenticación para el dispositivo, tal como

se lo observa en la Figura 71. En caso de no especificarse una, ésta será generada de forma

automática.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 87

Figura 71 Formulario para la señal de autenticación del dispositivo

Una vez creado el dispositivo se visualizará un resumen de sus datos junto con la señal de

autenticación, la cual deberá ser recordada, puesto que no se podrá acceder a ella

nuevamente.

Las credenciales del dispositivo habilitan la conexión del lado del dispositivo, pero para

habilitar la conexión del lado de la aplicación web es necesario generar una clave de API y sus

correspondientes tokens de aplicación. Para ello, hay que dirigirse a la pestaña de

“Aplicaciones” ubicada en el menú principal de la plataforma Watson y posteriormente dar clic

en el botón “Generar clave de API”. Como resultado, se desplegará el formulario mostrado en

la Figura 72, para agregar una descripción y una fecha de caducidad de la clave, los cuales son

opcionales.

Figura 72 Datos adicionales para la clave de API

Al presionar siguiente, se mostrará un formulario para ingresar el rol de la aplicación. En este

campo se selecciona la opción “Aplicación estándar”. Finalmente se genera la clave,

visualizándose en pantalla junto con la señal de autenticación. Nuevamente se debe tomar en

cuenta, que esta información debe ser anotada, puesto que no volverá a mostrarse. En la

Figura 73, se presentan estos datos

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 88

Figura 73 Datos de la clave de API

E. Instalación de los Sensores de Recolección de Datos

 Instalación Sensor INA219

Para poder usar el sensor INA219 es necesario instalar la librería que abstrae el uso de sus registros. Al

momento existen dos librerías, pi-ina219 y Adafruit_CircuitPython_INA219. Esta última se ejecuta sobre

CicuitPython. Se optó por la primera alternativa, la cual se puede instalar usando el siguiente comando

desde la terminal

$sudo pip uninstall pi-ina219

El programa desarrollado en Python realiza lecturas periódicas del sensor, empleando para ello el

método getCurrent_mA().

Cuando el nodo de ejecución en Node-RED corre este, o cualquier otro de los programas

implementados, recoge los datos impresos en pantalla y los envía al siguiente nodo, que en este caso es

el wiotp out, el cual se encarga de enviar los datos a la nube de IBM.

 Instalación Sensor BME280

Para manejar el sensor BME280, se usa la librería adafruit_bmp280, escrita originalmente para el

intérprete Circuitpython. Para usar dicha librería, previamente se debe instalar la librería adafruit-blinka

que funciona como una capa intermedia entre el intérprete Python 3.4 y la API de hardware en

Circuitpython. Esta librería se instala usando el Gestor de Paquetes de Python (pip) ingresando los

siguientes comandos en el terminal.

$ sudo pip3 install --upgrade setuptools

$ pip3 install RPI.GPIO

$ sudo pip3 install adafruit-blinka

A continuación, se instala la librería adafruit_bmp280 con el siguiente comando.

$ sudo pip3 install adafruit-circuitpython-bmp280

Hecho esto, es necesario adicionar un último paso. La librería adafruit_bmp280 está creada para el

sensor BMP280. El sensor BME280 es la nueva generación de los sensores de temperatura y presión, y

aunque tiene muchas semejanzas con el sensor BMP280, difiere en ciertos aspectos, uno de ellos es su

número de identificación de chip. En el BMP280 es 0x58 y en el BME280 es 0x60. Dicha identificación se

encuentra alojada en el registro 0xD0 de la memoria del sensor. Así, para poder usar la librería es

https://github.com/adafruit/Adafruit_CircuitPython_INA219

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 89

necesario modificarla para que reconozca este nuevo número de identificación. Para ello se ingresa en el

código de la librería con el comando.

$ sudo nano /usr/local/lib/python3.4/dist-packages/adafruit_bmp280.py

Aquí se buscará la línea 44 correspondiente al comando: _CHIP_ID = const(0x58) y se la cambiará por

_CHIP_ID = const(0x60).

Una vez completado estos pasos, es posible realizar lecturas de los datos de temperatura y presión con

los métodos temperature y pressure de la librería. Es importante resaltar que este programa correrá

solamente en Python3

 Instalación Sensor SI1145

El sensor SI1145 utiliza la librería disponible en Github bajo el nombre Python_SI1145. Una vez

descargada se la descomprime y dentro de su carpeta se ejecuta el siguiente comando desde la terminal.

$sudo python setup.py install

Una vez instalado, se puede leer los datos del sensor con el método readUV().

 Sensores de Temperatura y Carga del Procesador

Para la recolección de los datos de la temperatura del procesador no se requieren librerías extra, ya que

basta ejecutar el comando “vcgencmd measure_temp”, el cual imprime la temperatura en pantalla. En

este caso, se implementó un script en bash, para realizar periódicamente esta lectura y colocar los datos

en formato JSON.

Para obtener la carga del CPU es necesario instalar el módulo psutils, con los comandos:

$sudo apt-get install build-essential python-dev python-pip

$sudo pip install psutil

Con esto se puede realizar un script en Python obteniendo la carga del procesador con el método

get_cpuload().

 Instalación Sensor de Geo-localización

Para el funcionamiento del sensor de geo-localización es preciso instalar la librería gpsd con el comando.

$sudo apt-get install gpsd gpsd-clients

Luego es necesario desactivar la instancia de gpsd, la cual es inicializada durante la instalación, para esto

se ejecutan los siguientes comandos.

$sudo systemctl stop gpsd.socket

$sudo systemctl disable gpsd.socket

Después se debe iniciar el servicio de gpsd con el siguiente comando.

$sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock

Es importante que este comando sea ejecutado con el dispositivo USB correspondiente al GPS, en este

caso fue ttyUSB0. Este comando debe ser ingresado manualmente en cada ocasión luego de encender el

dispositivo.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 90

Luego de realizados estos pasos se requiere instalar la librería de Python, para lo cual se usa el gestor de

librerías pip3 con el siguiente comando.

$pip3 install gps

Con la librería ya instalada se puede escribir un script en Python para obtener las coordenadas del GPS.

En el script, luego de importar la librería, se pueden leer los reportes creados por el dispositivo. El

dispositivo crea gran cantidad de datos dispuestos en reportes expresados en formato JSON. Para el caso

de las coordenadas, se debe encontrar el reporte cuya clase sea ‘TPV’ y leer los campos “lat” y “lon”.

Luego estos datos se los coloca en formato JSON y se los imprime en pantalla para que puedan ser

recogidos por el nodo de ejecución de Node-RED.

F. Diseño de las Placas Electrónicas

El diseño de la placa electrónica para integrar los sensores ambientales y de corriente se lo

realizó sobre una placa de fibra de vidrio de doble cara. Además de las conexiones de estos 3

módulos de sensores, también se incluyó 3 indicadores leds, una salida para otra placa con

botones y pines para la conexión I2C (Inter Integrated Circuits) de un sensor extra que se

podría conectar eventualmente. El diseño electrónico de la placa se muestra en la Figura 74.

Figura 74 Placa electrónica de sensores (izq.) Cara superior (der.) Cara inferior

La placa de botones es más sencilla y de menor dimensión, tiene solo una cara con espacios

para conectar 3 botones. Estos botones tienen la finalidad de realizar acciones sobre la

estación sin tener que escribirlos sobre la línea de comandos, por ejemplo, para tomar

fotografías. El diseño de esta placa se muestra en la Figura 75.

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 91

Figura 75 Placa de botones

G. Encapsulado de la Estación
Con el fin de agrupar todos los elementos de la estación (Raspberry Pi, módulos de sensores,

placas electrónicas, cámara, batería, módulo GPS y cables), se construyó un encapsulado en

acrílico de 3mm como se lo observa en la Figura 76. En la Figura 77 se muestran los planos de

este encapsulado.

Por motivos de visualización se colaron solo las principales cotas, las cuales se encuentran en

milímetros.

Figura 76 Ensamble de la estación

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 92

1
8
6

216
7
0

200

3,5

184

Figura 77 Encapsulado de la estación

H. Código de Segmentación con GMM
A continuación, se detalla el código desarrollado para la segmentación de las imágenes

mediante el algoritmo GMM

#Librerías necesarias

import numpy as np

from sklearn.mixture import GaussianMixture

import cv2

import time

#####DATOS DE ENTRADA###########

n_clusters=11

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 93

#Definimos la imagen de entrada para ajustar el modelo

X = cv2.imread('ajuste.jpg')

#imagen en la que se realizará la predicción

X2= cv2.imread('test.jpg')

#Capturamos tiempo de ejecución

tiempo=time.strftime("%H%M%S")

#cambiamos el espacio de color a LAB

lab = cv2.cvtColor(X, cv2.COLOR_BGR2LAB)

#Se colocan los pixeles de forma plana en un array

#Cada columna será un color(dimensión)

a,b,c=X.shape#a+b es el número de pixeles, c las

dimensiones(componentes LAB)

ent=lab.reshape(a*b,c)

#####AJUSTE DEL MODELO##########

#Se ajusta los datos de entrada a los clusters deseados

GMM = GaussianMixture(n_components=n_clusters).fit(ent)

Predicción de la imagen#######

lab = cv2.cvtColor(X2, cv2.COLOR_BGR2LAB)

a,b,c=X2.shape

ent=lab.reshape(a*b,c)

#en clusters se guarda el número del cluster en el cual

#es más probable que pertenezca el pixel

clusters=np.array([],dtype=int)

#Se hace una predicción de cluster con cada pixel

for i in range(a*b):

#prediction devuelve un arreglo con la probabilidad de que el pixel

este en cada cluster

 prediction=GMM.predict_proba(ent[i].reshape(1,3))

#Se elige el cluster con mayor probabilidad

 pos=np.argmax(prediction)

 clusters=np.append(clusters,pos)

#Para saber en que cluster está el fruto

#muestra de un punto rojizo en LAB

muestraR=np.array([75, 151, 136])

pred=GMM.predict_proba(muestraR.reshape(1,3))

frutos=np.argmax(pred)

#Selec es el número de cluster seleccionado

selec=frutos

#binaria guardará los pixeles en binario

binaria = np.copy(X2[:,:,2].flatten())

#pinta de negro los elementos del cluster

for i in range(a*b):

 if clusters[i]==selec:

 binaria[i]=0

 #binaria=np.append(binaria,0)

 else:

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 94

 #binaria=np.append(binaria,254)

 binaria[i]=255#blanco

#Se guarda la imagen

cv2.imwrite('binaria.png',binaria)

######Elementos#####

#Se guardara los elementos con los colores normales

selec=frutos

#elementos = np.copy(X[:,:,2].flatten())

original=X2.reshape(a*b,c)

elementos = np.copy(original)

#pinta de negro los elementos del cluster

for i in range(a*b):

 if clusters[i]==selec:

 elementos[i]=original[i]

 #binaria=np.append(binaria,0)

 else:

 #binaria=np.append(binaria,254)

 elementos[i]=np.array([255,255,255])

 #elementos[i]=muestraR

Se guarda la imagen

elementos=elementos.reshape(a,b,c)

cv2.imwrite("elementos"+tiempo+".png",elementos)

#Operaciones Morfológicas

#####Entrada de datos##########

img =binaria

#Definicion del kernel

#kernel=np.array([[0,1,0],[1,1,1],[0,1,0]],np.uint8)

kernel=np.array([[0,1,1,1,0],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[0

,1,1,1,0]],np.uint8)

##Closing###########

closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imwrite("closing"+tiempo+".png",closing)

##########ETIQUETAS EN LOS OBJETOS#####################

#convertimos en binaria(0 o 1)

#Se usa THRESH_BINARY_INV para que el fondo sea cero y los objetos

255

entrada = cv2.threshold(closing, 127, 255,

cv2.THRESH_BINARY_INV)[1]

La conectividad puede ser 4 u 8

conectividad = 4

Algoritmo de Labeling Connected components con estadisticas

salida = cv2.connectedComponentsWithStats(entrada,conectividad,

cv2.CV_32S)

La salida se divide en 4 parametros:

Numero de etiquetas(labels)

num_labels = salida[0]

Imagen con etiquetas numeradas

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 95

labels = salida[1]

Estadisticas(leftmost, topmost, weight, height, area)

stats = salida[2]

centroides

centroids = salida[3]

#Conteo de frutos: Conteo de todas las manchas, y aquellas muy

grandes

#se las divide sobre el tamaño promedio del objeto y se toma el

entero

#El fondo de la imagen será el que más pixeles tenga

fondo=np.amax(stats[:,4])

#tamaño de un objeto promedio

prom=120

cont=0

for i in range(num_labels):

 if stats[i][4]<fondo:

 if stats[i][4]>=prom:

 temp=int(stats[i][4]/prom)

 cont=cont+temp

 else:

 cont=cont+1

#---

####Calculo del color promedio###########3

ImgColor = cv2.imread("elementos"+tiempo+".png")

vectorColor=np.array([])

####Color Promedio####

a,b=closing.shape

for i in range(a):

 for j in range(b):

 if closing[i][j]==0:

 vectorColor=np.append(vectorColor,ImgColor[i][j])

c=vectorColor.shape

vectorColor=vectorColor.reshape(int(c[0]/3),3)

ColorPromedio=np.mean(vectorColor,0)

ColorPromedio=ColorPromedio.astype(int)

##############################

#######Estadisticas#########

#Se obtiene el valor de area del mayor objeto, el menor y el

promedio

fondoIndex=np.argmax(stats[:,4])

statsSinFondo = np.delete(stats,fondoIndex,0)

objetoMin=np.amin(statsSinFondo[:,4])

objetoMax=np.amax(statsSinFondo[:,4])

objetoProm=int(np.mean(statsSinFondo[:,4]))

#####REPORTE#########

print("#######REPORTE DE ESTADÍSTICAS######")

print("Número de manchas: "+str(num_labels-1))

print("Número estimado de frutos: "+str(cont))

print("Color promedio de los frutos(BGR): "+str(ColorPromedio))

print("Tamaño objeto mínimo(pixeles): "+str(objetoMin))

print("Tamaño objeto máximo(pixeles): "+str(objetoMax))

print("Tamaño objeto promedio(pixeles): "+str(objetoProm))

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 96

print("###################################")

################################

#######Cuadrados sobre objetos

#original = cv2.imread('ImagTest.png')

#aqui se modifica el vector X2

for i in range(num_labels-1):

 cv2.rectangle(X2, (statsSinFondo[i][0], statsSinFondo[i][1]),

(statsSinFondo[i][0]+statsSinFondo[i][2],

statsSinFondo[i][1]+statsSinFondo[i][3]), (0, 255, 0), 1)

cv2.imwrite("cuadrados"+tiempo+".jpg",X2)

#cv2.imshow('cuadrados',original)

#cv2.waitKey(0)

I. Código de Segmentación con Thresholding
A continuación, se detalla el código desarrollado para la segmentación de las imágenes

mediante el algoritmo Thresholding.

import numpy as np

from sklearn.mixture import GaussianMixture

import cv2

import time

#####DATOS DE ENTRADA###########

#Definimos la imagen de entrada

X = cv2.imread('test.jpg')

tiempo=time.strftime("%H%M%S")

#cambiamos el espacio de color a HSV

hsv = cv2.cvtColor(X, cv2.COLOR_BGR2HSV)

#Definimos la máscara que se usará

#Esta máscara está compuesta por 2 sub-máscaras

#sub máscara 1

lower_red = np.array([0,65,70])

upper_red = np.array([20,255,255])

mask1 = cv2.inRange(hsv, lower_red, upper_red)

##sub máscara 2

lower_red = np.array([140,65,70])

upper_red = np.array([180,255,255])

mask2 = cv2.inRange(hsv,lower_red,upper_red)

#Máscara final

mask1 = mask1+mask2

#Invertimos las máscara

mask2 = cv2.bitwise_not(mask1)

res1 = cv2.bitwise_and(X,X,mask=mask1)

bina=np.copy(res1)

a,b,c=res1.shape

for i in range(a):

 for j in range(b):

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 97

 if (res1[i][j][0]==0) and (res1[i][j][1]==0) and

(res1[i][j][2]==0):

 res1[i][j][0]=255

 res1[i][j][1]=255

 res1[i][j][2]=255

cv2.imwrite("elementos"+tiempo+".png",res1)

binaria = cv2.bitwise_not(bina,mask=mask2)

binaria=binaria[:,:,0]

#--

#Operaciones Morfológicas

#####Entrada de datos##########

#img = cv2.imread('binaria.png',0)

img =binaria

#Definicion del kernel

kernel=np.array([[0,1,0],[1,1,1],[0,1,0]],np.uint8)

#kernel=np.array([[0,1,1,1,0],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[

0,1,1,1,0]],np.uint8)

##Closing###########

closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imwrite("closing"+tiempo+".png",closing)

##########ETIQUETAS EN LOS OBJETOS#####################

#convertimos en binaria(0 o 1)

#Se usa THRESH_BINARY_INV para que el fondo sea cero y los objetos

255

entrada = cv2.threshold(closing, 127, 255,

cv2.THRESH_BINARY_INV)[1]

La conectividad puede ser 4 u 8

conectividad = 4

Algoritmo de Labeling Connected components con estadisticas

salida = cv2.connectedComponentsWithStats(entrada,conectividad,

cv2.CV_32S)

La salida se divide en 4 parámetros:

Numero de etiquetas(labels)

num_labels = salida[0]

Imagen con etiquetas numeradas

labels = salida[1]

Estadisticas(leftmost, topmost, weight, height, area)

stats = salida[2]

centroides

centroids = salida[3]

#Conteo de frutos: Conteo de todas las manchas, y aquellas muy

grandes

#se las divide sobre el tamaño promedio del objeto y se toma el

entero

#El fondo de la imagen sera el que mas pixeles tenga

fondo=np.amax(stats[:,4])

#tamaño de un objeto promedio

prom=120

cont=0

for i in range(num_labels):

 if stats[i][4]<fondo:

Universidad de Cuenca

Pablo Esteban Villota Neira
Página 98

 if stats[i][4]>=prom:

 temp=int(stats[i][4]/prom)

 cont=cont+temp

 else:

 cont=cont+1

#---

####Calculo del color promedio###########3

ImgColor = cv2.imread("elementos"+tiempo+".png")

vectorColor=np.array([])

####Color Promedio####

a,b=closing.shape

for i in range(a):

 for j in range(b):

 if closing[i][j]==0:

 vectorColor=np.append(vectorColor,ImgColor[i][j])

c=vectorColor.shape

vectorColor=vectorColor.reshape(int(c[0]/3),3)

ColorPromedio=np.mean(vectorColor,0)

ColorPromedio=ColorPromedio.astype(int)

##############################

#######Estadisticas#########

#Se obtiene el valor de área del mayor objeto, el menor y el

promedio

fondoIndex=np.argmax(stats[:,4])

statsSinFondo = np.delete(stats,fondoIndex,0)

objetoMin=np.amin(statsSinFondo[:,4])

objetoMax=np.amax(statsSinFondo[:,4])

objetoProm=int(np.mean(statsSinFondo[:,4]))

#####REPORTE#########

print("#######REPORTE DE ESTADÍSTICAS######")

print("Número de manchas: "+str(num_labels-1))

print("Número estimado de frutos: "+str(cont))

print("Color promedio de los frutos(BGR): "+str(ColorPromedio))

print("Tamaño objeto mínimo(pixeles): "+str(objetoMin))

print("Tamaño objeto máximo(pixeles): "+str(objetoMax))

print("Tamaño objeto promedio(pixeles): "+str(objetoProm))

print("###################################")

################################

#######Cuadrados sobre objetos

#original = cv2.imread('ImagTest.png')

#aqui se modifica el vector X2

for i in range(num_labels-1):

 cv2.rectangle(X, (statsSinFondo[i][0], statsSinFondo[i][1]),

(statsSinFondo[i][0]+statsSinFondo[i][2],

statsSinFondo[i][1]+statsSinFondo[i][3]), (0, 255, 0), 1)

cv2.imwrite("cuadrados"+tiempo+".jpg",X)

