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Resumen: 

La agricultura de precisión es una actividad que mediante la observación de variables 

ambientales permite actuar de forma precisa y oportuna sobre las parcelas agrícolas para así 

lograr una mayor y más eficiente producción. En Ecuador, esta es una actividad poco explotada 

por pequeños y medianos productores, tanto por falta de conocimiento de las tecnologías que 

pueden utilizarse para este propósito, como por falta de los recursos económicos necesarios 

para llevarla a cabo. 

Si bien existen varias tecnologías que están ayudando al despliegue de la agricultura de 

precisión, en el presente trabajo de tesis se hará énfasis en tres de ellas. En primer lugar, se 

utilizan técnicas de procesamiento de imágenes para la detección de frutos de una parcela. 

Posteriormente se emplean dos tecnologías que llevarán este proyecto a un ámbito actual de 

investigación, como es el desarrollo de aplicaciones basada en el Internet of Things (IoT). 

Específicamente, computación en la nube para la gestión de la información generada por 

sensores y el protocolo Message Queue Telemetry Transport (MQTT) para la mensajería de los 

datos. 

Es por esto que se propone el diseño y construcción de una estación prototipo, con capacidad 

para monitorizar variables ambientales, desarrollar tareas de video-vigilancia así como capturar 

y procesar imágenes para la detección de frutos. Esta estación enviará los datos recolectados 

a través de Internet a una aplicación web alojada en la nube de IBM; finalmente los resultados 

podrán ser monitorizados por un usuario a través del navegador. 

 

 

 

Palabras claves: Agricultura de precisión. Internet of Things. Thresholding. Modelos de 

Mezclas Gaussianas. Node-Red. IBM cloud, MQTT. 
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Abstract: 

Precision agriculture is an activity that, through the observation of environmental variables, 

allows precise and timely action on agricultural plots in order to achieve greater and more 

efficient production. In Ecuador, this is an activity little exploited by small and medium 

producers, both for lack of knowledge of the technologies that can be used for this purpose 

and for lack of the necessary economic resources to carry it out. 

Although there are several technologies that are helping to deploy precision agriculture, in the 

present thesis work, emphasis will be placed on three of them. First, image processing 

techniques are used for the detection of fruits of a plot. Subsequently, two technologies are 

used that will take this project to a current field of research, such as the development of 

applications based on the Internet of Things (IoT). Specifically, cloud computing for the 

management of information generated by sensors and the Message Queue Telemetry 

Transport (MQTT) protocol for data messaging. 

Thus, the design and construction of a prototype station is proposed, with the ability to 

monitor environmental variables, develop video surveillance tasks as well as capture and 

process images for the detection of fruits. This station will send the data collected through the 

Internet to a web application hosted in the IBM Cloud; finally, the results can be monitored by 

a user through the browser. 

 

 

Keywords: Precision agriculture. Internet of Things. Thresholding. Gaussian Mixture Models. 

Node-Red. IBM Cloud, MQTT. 
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1. INTRODUCCIÓN Y OBJETIVOS DE LA TESIS 

En este capítulo se presenta una introducción al trabajo de tesis, en particular se describe la 

problemática de la limitada aplicación tecnología en el sector agrícola de nuestro país, a partir 

de lo cual se propone un dispositivo tecnológico de bajo coste el cual contribuirá en los 

procesos de análisis de los cultivos. Además, se describe el alcance y los objetivos del presente 

trabajo de tesis 

1.1. Definición del Problema 

En Ecuador, la agricultura representó el 7% del producto interno bruto del año 2017, siendo 

además la actividad que produce más empleos en el país, como se resaltan en [1],[2]. Sin 

embargo, pese a los grandes avances de la tecnología, la producción de los campos en Ecuador 

es considerablemente baja. Para citar un ejemplo, según la base de datos de la Organización 

de Alimentos y Agricultura de las Naciones Unidas (FAOSTAT, 2016), [3], la producción de 

tomates en Ecuador en 2016 fue de 31,4 ton/hec (tonelada/hectárea) que está muy por 

debajo de países desarrollados como es el caso de Estados Unidos, donde se producen 90,2 

ton/hec e incluso es inferior a la media mundial (37 ton/hec). 

Las causas de esta baja producción son varias, como por ejemplo, el limitado acceso a 

fertilizantes o el bajo despliegue de sistemas de riego. Sin embargo, uno de los mayores 

inconvenientes es la limitada aplicación de tecnología en los cultivos[4]. Ciertamente en 

Ecuador es reducida la aplicación de tecnologías que permiten optimizar y mejorar los 

procesos agrícolas, especialmente en el ámbito de la pequeña producción. Cabe resaltar, que 

en nuestro país 3 de cada 4 productores tienen superficies de producción inferiores a 5 hec [5]. 

Bajo tal condición, los pequeños productores se encuentran en desventaja y resulta complejo 

asumir los costes de la tecnificación en los cultivos. 

Sin ir muy lejos, la situación es muy distinta en otros países de la región, por ejemplo, en 

Argentina existen varias empresas dedicadas a la implementación de tecnología aplicada a la 

agricultura. Específicamente, se han construido estaciones de monitoreo que permiten hacer 

estudios de la productividad de una parcela, mediante el uso de sensores y actuadores, 

plataformas SIG (Sistema de Información Geográfica), dispositivos GPS (Global Positioning 

System) así como software para la monitorización remota de cultivos [6].  

La tecnificación de los cultivos con la ayuda de tecnologías emergentes recibe el nombre de 

agricultura de precisión. Actualmente, en la industria agrícola, se emplean robots tanto para la 

recopilación de datos para elementos actuadores, cámaras fotográficas como sensores de 

imagen, además de diversas estructuras de redes inalámbricas con la finalidad de conectar 

sensores y actuadores y de brindar conectividad hacia Internet. Este último punto es muy 

importante ya que permite integrar la agricultura de precisión junto con soluciones tipo IoT 

(Internet of Things). En particular, las arquitecturas IoT son cada vez más empleadas en 

diversas áreas como la industria, la domótica e incluso con fines de entretenimiento. En cuanto 

a la agricultura de precisión, las soluciones IoT permiten monitorizar ciertos parámetros de 

interés en los cultivos como humedad, temperatura, imágenes de los cultivos, gases, entre 
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otros. De ésta forma es posible realizar tareas de control y vigilancia remota, planificación y 

previsión de cosechas, comunicación M2M (Machine to Machine) para automatización e 

incluso análisis de big data [7]. 

Bajo tales condiciones, resulta evidente la necesidad de mejorar la tecnificación agrícola en 

nuestro país, priorizando a los pequeños productores, con soluciones de bajo costo que 

permitan incrementar la producción de cultivos por hectárea. 

1.2. Justificación y Alcance 

De acuerdo a la FAO (Food and Agriculture Organization), la producción agrícola deberá crecer 

en un 70% para el 2050 para poder alimentar a una población mundial de ocho mil millones de 

personas que se estima habrá para ese entonces. Para alcanzar tal objetivo considerando 

problemas tales como el cambio climático y el limitado acceso al agua, es imprescindible que 

todos los sectores agrícolas y ganaderos estén equipados con tecnologías digitales [7]. Este 

organismo también resalta, que la inversión en el sector agrícola es la forma más efectiva de 

reducir el hambre y la pobreza y proveer sostenibilidad en un país [8]. En tal sentido, se prevé 

que gran parte de la industria agrícola empleará soluciones basadas en tecnologías IoT[8] y 

redes de sensores[9]. Ante tal escenario, nuestro país no puede ser la excepción. Las ventajas y 

posibilidades que ofrece la tecnología aplicada a los cultivos, ha sido una de las principales 

motivaciones para el planteamiento y desarrollo del presente trabajo de tesis. 

En particular, una tecnología que está siendo cada vez más utilizada para el análisis remoto de 

cultivos es la visión artificial. Las aplicaciones del procesamiento de imágenes en agricultura 

son numerosas, tal como, la identificación de los efectos de los insectos en los cultivos [10], la 

medición del estrés de las plantas según la temperatura del suelo [11], tareas de video 

vigilancia [12] así como la identificación del estado de los cultivos [13], entre otros. Esta 

tecnología ofrece mucha flexibilidad en sus aplicaciones, y dependiendo del hardware usado, 

un mismo equipo puede cubrir áreas extensas. 

Con base en esto, la propuesta de este trabajo de tesis se enfoca en el desarrollo de una 

solución aplicada a la agricultura de precisión, la misma que integra tecnologías tipo IoT junto 

con mecanismos de visión artificial. Puntualmente, se ha planteado crear una estación 

prototipo que realice operaciones de visión artificial tales como extracción de características 

de color y tamaño de los frutos, parámetros que a futuro pueden emplearse para determinar 

la madurez o salud de un cultivo [14],[15]. Además, se contempla la capacidad de video 

vigilancia, posibilitando así una mejor planificación de los cultivos. 

Por otra parte, la estación contará con un módulo GPS que podrá ser usado para ubicar la 

estación, por ejemplo, en un escenario conformado por un conjunto muy grande de estaciones 

de monitoreo, dotando de escalabilidad al proyecto. La cámara estará conectada a una 

plataforma de desarrollo tipo SBC (Single Board Computer) para tener la capacidad de realizar 

el procesamiento de la imagen. El GPS estará conectado al SBC mediante sus puertos de 

entrada digitales. En cuanto, a la gestión de la información capturada, se desarrollará una 

aplicación web, que permita visualizar en tiempo real los datos obtenidos de los sensores 
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disponibles en la estación. El prototipo contará con una interfaz de comunicación para su 

conexión a internet, actuando como gateway para el envío de los datos de los sensores.  

Para mejorar la autonomía energética del prototipo, se realizarán pruebas para caracterizar el 

consumo eléctrico de las diferentes tareas que realizará la estación y así estimar el tiempo de 

autonomía con la que esta contará.  

Siendo el factor económico un limitante para el acceso a la tecnología en los campos agrícolas 

del Ecuador, la elaboración de este prototipo tomará como base hardware abierto junto 

soluciones en software libre con el objetivo de reducir su costo al mínimo posible. 

Concretamente se usarán tarjetas SBC Raspberry Pi como hardware, y la librería Open CV de 

Python para el procesamiento de las imágenes como base de software. Finalmente, el 

prototipo contará con una batería, lo que permitirá su portabilidad y fácil instalación. 

1.3. Objetivo General 

Diseñar y desarrollar una estación prototipo que use visión artificial enfocada a la agricultura 

de precisión 

1.4. Objetivos Específicos 

1. Implementar en la estación prototipo un módulo GPS que permita la ubicación de la parcela 

a analizar. 

2. Caracterizar el consumo de energía del prototipo implementado. 

3. Implementar un sistema de visión artificial para la identificación del tamaño y color de los 

frutos. 

4. Configurar interfaces de comunicación que permitan el acceso del prototipo a Internet, así 

como su integración futura a una red de sensores inalámbrica 

5. Desarrollar una aplicación web que permita la gestión y monitorización remota de la 

estación prototipo 

1.5. Estructura del Documento  

El documento está estructurado de la siguiente forma. En el Capítulo 2 se presenta el marco 

teórico; en particular se resaltan conceptos fundamentales acerca de la agricultura de 

precisión, Internet of Things, redes de sensores, así como conceptos básicos del 

procesamiento de imágenes y video; finalmente, se describen brevemente las herramientas 

empleadas para el desarrollo web. A continuación, en el Capítulo 3, se presentan los 

principales trabajos relacionados, disponibles en la literatura. Posteriormente, en el Capítulo 4, 

se detalla la implementación de la estación prototipo. Las pruebas realizadas en campo y los 

resultados obtenidos, se describen en el Capítulo 5. Finalmente, en el Capítulo 6, se exponen 

las conclusiones y recomendaciones generales del presente trabajo de tesis.  
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2. MARCO TEÓRICO 

2.1. Introducción 

El trabajo de tesis propuesto tiene como propósito el diseño e implementación de una 

estación prototipo para la monitorización de variables de interés en el ámbito de la agricultura 

de precisión. Con tal finalidad, en este capítulo se exponen los conceptos fundamentales para 

entender el trabajo en su conjunto, así como una introducción a las tecnologías empleadas. 

2.2. Agricultura de Precisión 

La agricultura de precisión es el término que se le da a la administración de lotes agrarios en 

los que se ejecutan tareas de medición y actuación sobre los cultivos, utilizando tecnología 

moderna para desarrollar un plan de acción. La agricultura de precisión tiene principalmente 

tres objetivos, incrementar la producción de las plantas, reducir el impacto ambiental y 

obtener mayores ingresos económicos en las prácticas agrícolas.  

Para la captura de datos y toma de medidas, las tareas habituales consisten en levantamientos 

topográficos, emplazamiento de sensores y toma de imágenes fotográficas con cámaras fijas, 

móviles o satelitales. Mientras que las tareas destinadas a los actuadores se enfocan 

principalmente en la fertilización, fumigación, cosecha y riego. 

Las tecnologías usadas para llevar a cabo estas tareas son muy variadas, desde infraestructuras 

complejas para los sistemas de riego, redes de sensores, sistemas robóticos para fertilización y 

fumigación, sistemas de visión e inteligencia artificial [16], análisis de datos, entre otros. 

Además, puesto que cada parcela presenta condiciones distintas, los sistemas de 

posicionamiento son de gran importancia para identificar el lugar exacto en el cual se 

desarrolla un evento. En esta área está muy difundido el uso de sistemas GPS (Global 

Positioning System) y GNSS (Global Navigation Satellite System) con los que es posible generar 

mapas de variabilidad espacial y actuar sobre los cultivos con propósitos varios. 

En el Ecuador, la agricultura de precisión se encuentra principalmente en los sistemas 

automatizados de riego. Por otra parte, existen algunos proyectos en etapas iniciales que 

emplean imágenes satelitales y ortofotos captadas por drones, que permiten determinar 

niveles de clorofila, humedad y otros factores en las plantas. Sin embargo, debido a su alto 

costo, tal sistema está limitado a los productos de alta exportación y consumo como por 

ejemplo, el banano, el cacao o la cebada, mientras que para los pequeños productores resulta 

casi imposible entrar en la era de la denominada agricultura 3.0 [17].  

2.3. Tecnología IoT 

El término Internet of Things (IoT), apareció en los años 90 para referirse a la conexión de 

objetos cotidianos hacia Internet. Si bien en esa época eran muy limitados los objetos 

conectados a Internet, con el paso de los años y la reducción en costo y tamaño de los 

microprocesadores, este número se ha incrementado exponencialmente. Como un ejemplo en 

el año 2010 existían más objetos conectados que personas en el mundo [18] y según los 
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pronósticos del portal Forbes [19] para 2025 la cifra de dispositivos conectados a Internet será 

de 75 mil millones. 

Los factores que han favorecido este enorme crecimiento han sido principalmente la ubicuidad 

de Internet, la caída en los precios de miniordenadores, la estandarización de los protocolos de 

comunicaciones, los avances en los análisis de datos y el crecimiento de la computación en la 

nube [20]. 

El impacto de esta tecnología ha sido tal que no solo ha cambiado nuestra relación con los 

objetos, sino también ha motivado el desarrollo de nuevas arquitecturas de comunicación. Un 

claro ejemplo son las conexiones M2M (Machine to Machine) que pasaron de 106 millones en 

2012 a 360 millones en 2018 [21]. Además, existen otros modelos de comunicación propios del 

Internet of Things, tales como las conexiones dispositivo-nube, dispositivo-puerta de enlace y 

el intercambio de datos a través del back-end [20]. 

En cuanto a los ámbitos de aplicación, se extienden a casi cualquier aspecto de la vida 

cotidiana, desde dispositivos conectados al cuerpo humano, pasando por aplicaciones 

industriales hasta dispositivos destinados al entretenimiento, y por supuesto también está 

presente en la agricultura. Entre las aplicaciones típicas en las que se emplea tecnología IoT en 

la agricultura, se encuentra el envío de la información recolectada por sensores hacia la nube 

para posteriormente realizar un análisis y ejercer algún tipo de control, por ejemplo, mediante 

sistemas robóticos como tractores o vehículos aéreos no tripulados. En el presente trabajo de 

tesis se emplea una estrategia similar, capturando y enviando en este caso imágenes de un 

cultivo, hacia un servidor para que estas puedan ser procesadas y analizadas. 

2.4. Procesamiento de Imágenes 

Al hablar de procesamiento de imágenes se cuenta con un amplio abanico de algoritmos y 

procedimientos para llegar a una gran cantidad de resultados posibles. Así, es posible realizar 

tareas como el filtrado, la segmentación, la clasificación, cambios de espacio de color, entre 

otros mecanismos de procesamiento [18], [19]. En cuanto, al nivel de análisis, los algoritmos 

pueden actuar a nivel de pixeles, por lotes o global, en el dominio del espacio o en el dominio 

de la frecuencia. Adicionalmente, existen métodos de mayor complejidad como por ejemplo, 

las redes neuronales [22],[23] o los algoritmos de aprendizaje supervisado tipo Support Vector 

Machine (SVM) [24]. La aplicación de un mecanismo u otro depende en gran medida del 

problema al que se enfrente. Estas tareas y algoritmos de procesamiento de imágenes por lo 

general se usan conjuntamente formando marcos de trabajo por los cuales las imágenes a 

procesarse pasan secuencialmente. 

El problema de procesamiento de imágenes al cual se hará frente en este trabajo de tesis, 

consiste en la detección de frutos sobre fotografías capturadas a una distancia entre cinco y 

diez metros. En concreto la tarea fundamental se enfoca en identificar y separar los frutos del 

fondo de la imagen. Por tanto, la complejidad del procesamiento se debe a la existencia de 

elementos adicionales en las fotografías, tales como hojas, lotes de tierras, ramas, cielo, nubes 

o montañas.  
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Como solución al problema planteado, se propone la aplicación de dos algoritmos descritos en 

la literatura. El primer mecanismo consiste en realizar un filtrado espectral de los pixeles, dicho 

esquema se denomina Thresholding [25]. El otro método que se evaluará está basado en el 

agrupamiento o clustering de los píxeles de la imagen, en el cual cada pixel se coloca dentro de 

un grupo o cluster acorde a un criterio previamente definido [26]. 

Se contará con un marco de trabajo para cada algoritmo; estos serán desarrollados mediante 

una serie de experimentos a partir de los datos provistos por un conjunto de imágenes 

tomadas en campo. El esquema del marco de trabajo basado en Thresholding se muestra en la 

Figura 1. Este marco de trabajo comienza con una conversión al espacio de color HSV para 

posibilitar una segmentación por color más sencilla. Luego se implementa el algoritmo de 

Thresholding para filtrar los pixeles con los matices deseados, segmentando la región de 

interés del fondo de la imagen. Posteriormente se genera la imagen binaria que permitirá 

realizar las operaciones subsecuentes. La binarización de la imagen consiste en colocar los 

pixeles de la región de interés en color negro, dándole un valor binario de 1, mientras que el 

fondo de la imagen pasará a estar de color blanco con un valor binario de 0 (este proceso 

también podría ser inverso). 

Las operaciones morfológicas permiten eliminar o agregar pixeles a la imagen para reducir el 

ruido o rellenar espacios y así mejorar los resultados. Posteriormente se utiliza el algoritmo de 

etiquetado de componentes conectados para colocar una etiqueta en cada una de las manchas 

de la imagen binaria. Después de esto se realiza el conteo de objetos que servirá para estimar 

el número de frutos presentes. Luego se realiza un encuadre de las manchas encontradas en la 

imagen original para visualizar los frutos encontrados. Finalmente se calculan estadísticas de la 

imagen tales como el número de manchas encontrado, número de frutos estimado, tamaño 

mínimo, máximo y promedio de las manchas y color promedio de los frutos. 

 

Figura 1 Marco de trabajo del procesamiento de imágenes con Thresholding 

El marco de trabajo basado en clustering se muestra en la Figura 2. En primer lugar se realiza 

un cambio de espacio de color. En el Capítulo 4 se describe como se encontró el espacio de 

color usado finalmente. Luego se realiza la agrupación de píxeles (clustering) mediante el 

algoritmo de Esperanza-Maximización (EM, por las siglas en inglés de Expectation-

Maximization). Luego es necesario identificar que cluster es el que agrupa a los frutos. 
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Posteriormente se genera la imagen binaria y se procede de manera similar que en el marco 

de trabaja basado en Thresholding. 

 

Figura 2 Marco de trabajo del procesamiento de imágenes con GMM 

2.4.1. Espacios de Color 

Los colores en una imagen están definidos por una tupla de tres números. El significado de 

cada uno de estos números y su mapeo en la gama de colores es lo que define un espacio de 

color [27]. El espacio de color más usado en la mayoría de sistemas digitales es el espacio RGB 

(Red-Green-Blue), sin embargo, existen otras alternativas, cada una con diferentes 

características que las hacen atractivas según el problema que se intente abordar. En cuanto a 

los sistemas digitales, la forma más común de representar los espacios de color es mediante 24 

bits, 8 por cada canal. Como resultado se tiene 256 niveles por cada canal y un total de 16.7 

millones de tonalidades posibles. En el presente trabajo se experimentó con algunos de ellos, 

cuyas características se presentarán a continuación. 

El espacio RGB es un espacio de color aditivo formado por una combinación lineal de los 

valores de color rojo (Red), verde (Green) y azul (Blue). La información de crominancia 

(información del color) y luminancia se encuentra en la mezcla de los tres componentes, por lo 

que ante cambios de luminosidad del ambiente los tres canales sufren cambios notables, 

siendo este un problema al intentar segmentar imágenes con diferente iluminación[28]. Otra 

desventaja de este espacio, es que no es perceptivamente lineal, es decir, que un cambio 

percibido como pequeño por la vista no siempre es así numéricamente. 

El espacio HSV tiene como componentes el matiz de la longitud de onda dominante (Hue), la 

saturación (S) y el valor (Value) que es la magnitud de intensidad lumínica del pixel. La 

principal ventaja de este espacio es que tiene un solo canal para representar el color (el canal 

Hue), a diferencia de RGB que tiene tres. Por esta razón este espacio de color es muy utilizado 

cuando se desea filtrar una gama específica de colores [29]. Otra ventaja de este espacio es 

que ante cambios de luz en el ambiente el único canal que se verá notablemente afectado es 

el canal Value. Como principal desventaja se tiene que es dependiente del dispositivo en el que 

se visualiza.  

El espacio LAB tiene como componentes la luminosidad (Lightness), el canal de color A 

(componente de color desde el verde al magenta) y canal de color B (componente de color 

desde el azul hasta el amarillo). En este caso, la información de color está codificada en dos 
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canales, mientras que el canal restante provee información de la intensidad lumínica. La 

principal ventaja del espacio LAB, es que es independiente del dispositivo en el que se 

visualiza, además de ser perceptualmente lineal.  

2.4.2. Thresholding 

Thresholding consiste en un algoritmo muy sencillo que logra segmentar imágenes al pasar sus 

pixeles por un umbral o serie de umbrales con valores específicos. Se distinguen dos tipos de 

Thresholding, aquel realizado sobre la imagen en escala de grises y aquel que trabaja sobre la 

imagen a color. En el presente trabajo de tesis se empleará el segundo tipo.  

El Thresholding a color comúnmente trabaja sobre el espacio HSV, el cual como se mencionó 

previamente tiene la ventaja de que solo uno de sus canales muestra el color. Adicionalmente, 

en la literatura se describe que es posible obtener buenos resultados combinando el algoritmo 

de Thresholding y el espacio de color RGB [30].  

La principal ventaja del Thresholding es su sencillez y bajo costo de procesamiento. No 

obstante, tiene como desventaja, la dificultad para segmentar objetos con matices semejantes 

al fondo de la imagen. Además, que al aumentar el tamaño del umbral para ampliar la 

cantidad de objetos segmentados, el número de falsos positivos se incrementa de forma 

significativa. Por otra parte, el principal desafío con este método, consiste en determinar los 

valores óptimos para el umbral, tarea que depende mucho de las características de la imagen 

como por ejemplo la iluminación o la resolución. 

2.4.3. Clustering 

El Clustering o agrupación es un proceso de aprendizaje no supervisado, es decir que a priori 

no se conoce una salida para los datos de entrada, con el cual se separan los elementos del 

conjunto de entrada en diferentes grupos o clusters. En el procesamiento de imágenes, dicho 

mecanismo es útil para realizar la tarea de segmentación de la imagen, es decir para separar 

del resto de elementos, la parte de la imagen que es de interés para el problema.  

Existen varias formas de lograr esta agrupación, una de ellas es el uso de modelos de mezclas 

de distribuciones gaussianas (GMM por las siglas en inglés de Gaussian Mixture Models). Estos 

modelos parten de la premisa de que los datos del conjunto de entrada fueron generados por 

la mezcla de una cantidad finita y conocida de distribuciones gaussianas con parámetros 

desconocidos [31]. 

Los parámetros a determinar que definen un modelo GMM con  clusters y un conjunto de 

entrada , donde cada una de sus entradas  es un vector de dimensión , son la ubicación y 

forma de cada una de las distribuciones gaussianas multivariables, que para un cluster  se 

definen mediante la ecuación (1): 

 

 
(1) 
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Donde  es la distribución gaussiana multivariable para el cluster , es el vector 

de medias con  entradas (una por cada cluster ) de dimensión  y  es el vector de 

covarianzas con  entradas de dimensión x . Además, es necesario determinar el vector  

de dimensión ; este vector define la probabilidad de que un punto de dato  se encuentre 

en cada cluster. 

Para la estimación de estos parámetros se utiliza el algoritmo de Expectation-Maximization 

(EM) que iterativamente ejecuta una etapa de esperanza (E), en la cual se crea una función 

para el cálculo de la esperanza de la verosimilitud logarítmica usando la estimación actual de 

los parámetros, y una etapa de maximización (M) que maximiza la esperanza de la 

verosimilitud logarítmica para obtener parámetros de máxima verosimilitud [32]. 

Para empezar, el algoritmo inicializa los parámetros ( ,  y ) de manera aleatoria para un 

número de clusters dado. Luego de esto se procede con la etapa E en la que para cada dato  

se calcula la probabilidad  de que dicho punto pertenezca al cluster , mediante la ecuación 

(2). 

 

 
(2) 

En la etapa M se calcula para cada cluster  el peso total  que es la porción de probabilidad 

de cada cluster calculada sobre todos los puntos del conjunto de datos de entrada, como se 

muestra en la ecuación (3): 

 

 
(3) 

Luego se normaliza sobre la suma total de  de todos los clusters para formar el vector , 

como se aprecia en la ecuación (4): 

 

 
(4) 

Dónde: 

 

 
(5) 

Y a continuación se actualiza también  y  como se muestra en las ecuaciones (6) y (7) 

respectivamente: 

 

 
(6) 



Universidad de Cuenca 

   

Pablo Esteban Villota Neira 
Página 25 

 

 
(7) 

Estas se etapa se las repite iterativamente hasta que la función de verosimilitud logarítmica del 

modelo converja. Esta función se la calcula como se muestra en la ecuación (8): 

 

 

(8) 

Los resultados de aplicar el modelo GMM en conjunto con el algoritmo EM, depende en gran 

medida de la cantidad de clusters que se seleccione para realizar los cálculos. En particular, un 

pequeño número de clusters podría agrupar en un solo grupo tanto características deseadas 

como no deseadas de la imagen, lo que se traduce en una segmentación deficiente que 

presenta la región de interés rodeada de pixeles que no le corresponden. Por otro lado, un 

número grande de clusters puede producir un sobre-ajuste del modelo, ocasionando regiones 

de interés incompletas, además de que esto conlleva un coste de procesamiento mayor. 

Consecuentemente, existen varios criterios con los cuales estimar un número adecuado de 

clusters, entre ellos el criterio de Akaike o la Validación Cruzada [33]. Sin embargo, uno de los 

criterios más utilizados actualmente, mismo que se empleó en el presente trabajo, es el 

Criterio de Información Bayesiano (BIC por las siglas en inglés de Bayesian Information 

Criterion) [32],[34]. Este criterio se calcula como se muestra en la ecuación (9): 

 

 
(9) 

Dónde: 

 
 (10) 

 es la medida de la verosimilitud maximizada del modelo  con el conjunto de datos de 

entrada .  es el valor de los parámetros que maximizan la función de verosimilitud. La 

constante  es el número de parámetros libres que se estiman en el modelo y  es el número 

de observaciones, es decir la cantidad de entradas en .  En los modelos GMM los parámetros 

libres son los valores de las medias y las matrices de covarianzas, por lo que el número de 

parámetros libres para un modelo con  clusters y con datos de entrada de dimensión  se 

puede calcular con la ecuación (11): 

 
 (11) 

El criterio BIC se aplica sobre el modelo una vez sus parámetros hayan sido ajustados con el 

algoritmo EM, por lo que el proceso de encontrar el número adecuado de cluster se torna 

iterativo. El proceso inicia ajustando el modelo con , se evalúa BIC y luego se incrementa 

el número de clusters en 1. El procedimiento se repite hasta alcanzar el número límite de 
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clusters impuesto. Una vez se cuente con la evaluación de BIC en todos los modelos ajustados, 

algunos autores recomiendan elegir el modelo con el menor valor de BIC, mientras que otros 

recomiendan elegir el primer mínimo local encontrado, como se resalta en [35]. En la práctica, 

elegir el modelo con el menor valor de BIC suele añadir un costo de procesamiento a veces 

innecesario, por lo que, el segundo enfoque suele ser el más indicado. Además en ciertas 

fuentes se suele definir BIC como el negativo de la ecuación (9), en este caso se elige el modelo 

con el máximo local[13]. 

Por otra parte, para que el modelo sea útil para la segmentación de imágenes, el conjunto de 

entrada debe consistir en los pixeles de una imagen que contengan una considerable cantidad 

de los elementos que se quieren segmentar. Naturalmente incluyendo el fondo característico 

que tenga las imágenes a ser segmentadas. El procedimiento descrito se puede comprender 

con mayor claridad mediante el diagrama de flujo mostrado en la Figura 3.  

 

Figura 3 Diagrama de flujo del ajuste del modelo 

Finalmente, una vez que el modelo ha sido ajustado y se han obtenido los parámetros 

específicos de cada cluster, el siguiente paso consiste en determinar el cluster en el cual los 

frutos han sido agrupados. Sin embargo, puesto que se está trabajando con un modelo de 

aprendizaje no supervisado, el modelo no contendrá esta información. En tal sentido, la 

solución implementada consistió en analizar las características espectrales que debe tener un 

pixel para ser parte del cluster de frutos y realizar una predicción de tal pixel con el modelo 

ajustado. Por ejemplo, si los frutos son de color rojo, se predecirá el cluster al que pertenece 

un pixel rojizo. 
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2.4.4. Operaciones Morfológicas 

Una vez que se cuenta con la imagen segmentada y sus elementos han sido binarizados, es 

posible mejorar los resultados obtenidos mediante la aplicación de Operaciones Morfológicas. 

Las Operaciones Morfológicas permiten realizar un procesamiento sobre estructuras 

geométricas disponibles en una imagen. Los operandos para dicho procedimiento, por lo 

general consisten en una imagen binaria de entrada y un elemento estructural. En cuanto a los 

elementos estructurales, son formas con las cuales la imagen de entrada interactuará según la 

operación morfológica lo defina. Estos elementos suelen ser estructuras binarias, siendo las 

formas más comunes, círculos, cuadrados y óvalos, aunque también es posible definir 

estructuras más complejas. 

 Las dos operaciones morfológicas básicas son la dilatación y la erosión. La dilatación, 

representada por el signo ⊕, expande la imagen en sus bordes al interactuar con un elemento 

estructural. Para una imagen  y un elemento estructural , la dilatación se define como se 

muestra en la ecuación (12): 

 

 
(12) 

Donde  es la traslación de  por . Así, se puede entender la dilatación como el 

emplazamiento de los puntos de  en , cuando el centro de  se encuentra en algún punto 

de  [36]. 

La erosión, representada por el signo ⊖, contrae los bordes de la imagen de acuerdo a su 

interacción con el elemento estructural. Para una imagen  y un elemento estructural , la 

erosión se define como se observa en la ecuación (13): 

 

 
(13) 

Donde , es la traslación de  por . La erosión puede ser entendida como la translación 

del centro de  sobre cada punto de , en la cual, si todos los puntos de  están contenidos 

en , el punto permanece, caso contrario dicho punto se elimina. 

De la dilatación y la erosión se derivan dos operaciones morfológicas muy usadas en el 

procesamiento de imágenes, que son la Apertura (Opening) y la Cerradura (Closing). La 

operación Opening, tiene la capacidad de rellenar espacios en blanco dentro de una imagen 

binaria. En cuanto a su representación, se emplea el signo ο. Además, matemáticamente se 

define como la dilatación de la erosión de una imagen  por un elemento estructural , tal 

como se muestra en la ecuación (14). 

  (14) 
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La operación Closing, tiene la capacidad de eliminar elementos semejantes al elemento 

estructural, como pueden ser manchas de ruido en la imagen. Está representada por el signo •, 

y está matemáticamente definida como la erosión de la dilatación de una imagen  por un 

elemento estructural , como se lo puede observar en la ecuación (15). 

  (15) 

2.4.5. Etiquetado de Componentes Conectados 

El algoritmo de etiquetado de componentes conectados (CCL, por las siglas en inglés de 

Connected-Components Labeling) actúa sobre imágenes binarias, asignando una etiqueta única 

a cada mancha (conjunto de píxeles conectados) de la imagen [37]. Este procesamiento resulta 

indispensable en tareas como conteo de objetos, reconocimiento de patrones y extracción de 

características. La funcionalidad básica de este algoritmo consiste en buscar los pixeles con un 

valor binario igual a 1 y verificar en toda su vecindad si hay más pixeles con valor igual a 1, 

como un indicador de que existe conexión. Para aquellos casos donde se tenga un conjunto 

aislado de pixeles se asigna una etiqueta a dicho grupo. En la práctica, implementar el 

algoritmo en la forma descrita, no es la opción más adecuada,  por lo que en la literatura se 

proponen algunas alternativas para su optimización [38], [39], [40]. En el presente trabajo de 

tesis, se utilizará la librería OpenCV [41] que cuenta con un método que implementa dos 

versiones del algoritmo, una que verifica los pixeles vecinos en las líneas horizontal y vertical, y 

otro que verifica los 8 píxeles circundantes. 

2.4.6. Conteo de Objetos 

Para realizar un conteo de objetos existen dos enfoques muy empleados. El más simple de 

ellos consiste en contar la cantidad de manchas. A su vez, dicha tarea resulta más simple 

cuando se ha realizado un etiquetado de los componentes conectados, ya que el proceso se 

reduce a tomar el número de etiquetas colocadas. El problema de emplear este enfoque para 

el conteo de frutos, es que podrían existir manchas que agrupan múltiples frutos, que en este 

caso serían contados como solo uno. El otro enfoque propone tomar el número total de 

pixeles y dividirlo para el área esperada de un fruto. En este caso, el inconveniente es que 

podría darse el caso de muchos frutos aislados con un área reducida por estar solapados por la 

vegetación que se contarían como una cantidad menor a la real.  

Como solución alternativa en el presente trabajo de tesis se emplea una combinación de estos 

dos enfoques, es decir, se cuenta el número de manchas, y en el caso de tener manchas muy 

grandes que indique un posible agrupamiento de frutos, se las divide por el área esperada de 

un fruto. 

2.5. Procesamiento de Video 

El procesamiento de video involucra una amplia cantidad de tareas posibles de acuerdo al 

resultado buscado. En el presente trabajo, se hará mención solo a las tareas necesarias para su 

transmisión y almacenamiento. Como punto de partida, es necesario considerar que en un 

video los fotogramas sin procesamiento, es decir en formato raw presentan una cantidad 
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significativa de información que en gran parte son inapreciables o redundantes. En tal sentido, 

es necesario aplicar mecanismo de compresión para que su transmisión y almacenamiento 

sean más sencillos y eficientes. Con tal objetivo se emplean algoritmos especializados 

denominados CODECs, encargados de codificar y decodificar archivos de video. Existen varios 

estándares de compresión o codificación de video, entre los más usados en la actualidad, se 

encuentran, H.265, H264, VP8 y VP9. 

En tal contexto resulta útil el software FFmpeg [42], que es un programa de manejo de 

contenido multimedia que agrupa un conjunto de herramientas para codificar, decodificar, 

multiplexar, hacer streaming, filtrar y reproducir video. 

2.6. Tecnologías para el Desarrollo de Aplicaciones Web 

A diferencia de las aplicaciones de escritorio que son programas que se ejecutan sobre el 

sistema operativo de una plataforma nativa, las aplicaciones web están alojadas y se ejecutan 

en el servidor del desarrollador para ser visualizadas en un navegador. Este tipo de soluciones 

presenta grandes ventajas tales como, un ahorro de espacio en disco, la facilidad de 

actualización, la compatibilidad entre distintas plataformas, portabilidad y seguridad. Además, 

existen aplicaciones híbridas, en las cuales la plataforma del usuario aloja un programa 

pequeño que se complementa con las funcionalidades del servidor, tal es el caso de las 

aplicaciones móviles de Facebook o Twitter. 

En el trabajo de tesis, se desarrollará una aplicación web para visualizar la información 

capturada por la cámara fotográfica y los sensores, para que pueda ser visualizada desde 

cualquier lugar con la ayuda de un navegador web. 

Específicamente, el desarrollo de la aplicación web se la realizó sobre la plataforma IBM Cloud. Esta 

plataforma provee una gran variedad de servicios sobre la nube que permiten diseñar y desarrollar 

aplicaciones, incluso es posible configurar gran parte de la infraestructura tecnológica que una empresa 

clásicamente implementaba dentro de sus Data Centers. Estos servicios tienen la ventaja de ser ubicuos, 

además de escalables, es decir, se puede incorporar mayor cantidad de servicios o recursos según el 

cliente lo necesite y solo se pagará por los recursos utilizados. En el presente trabajo se hará uso de dos 

servicios prestados por la IBM Cloud, el servicio de Node-Red Starter y el servicio de Internet of Things 

Platform. En el Apéndice A se describe el entorno de trabajo de la IBM Cloud. 

Para el caso de la comunicación entre la estación y la aplicación web desarrollada en la nube, se utilizará 

el protocolo MQTT, el cual está especialmente diseñado para el ámbito de soluciones IoT. 

2.6.1. Node-Red Starter 

Node-Red starter es un servicio en la nube del tipo Platform as a Service (Plataforma como servicio, 

PaaS por sus siglas en inglés), en el cual la empresa dueña de la nube proporciona una plataforma a los 

desarrolladores de aplicaciones para crear y desplegar aplicaciones. Así estas plataformas incluyen 

distintos lenguajes de programación además de servicios de red para que los usuarios accedan a las 

aplicaciones. En este servicio en particular, las aplicaciones se desarrollan en Node-Red [43], una 

herramienta de programación gráfica construida sobre el entorno de ejecución Node.js. Dicho entorno 

se encuentra optimizado para trabajar sobre aplicaciones de red, además cuenta con una gran cantidad 

de librerías, entre ellas algunas que permiten desplegar páginas web de manera rápida sin necesidad de 

ocuparse de la programación de las etiquetas HTML o del estilo en CSS. El editor de Node-Red, se 
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ejecuta en el navegador web, lo cual permite la compatibilidad con muchas plataformas. En el Apéndice 

B se describe como crear una nueva instancia de este servicio así como los detalles de su entorno de 

trabajo. 

2.6.2. Internet of Things Platform 

Este servicio también llamado IBM Watson IoT Platform, está destinado a la fácil gestión de 

dispositivos tipo IoT. Para ello proporciona los servicios de registro de dispositivo, conexión, 

almacenamiento, visualización de datos además de simulación de dispositivos y conectividad 

con la plataforma IBM Cloud.  Adicionalmente, es posible configurar distintos niveles de 

seguridad en los dispositivos, y crear grupos para su administración. Internamente este 

servicio implementa un broker MQTT al que se puede acceder desde el servicio de Node-Red 

para conectar la aplicación web con los dispositivos IoT. El tamaño máximo de los paquetes 

MQTT que este broker permite es de 128kB. En el Apéndice C se describen los pasos para crear 

una nueva instancia de este servicio, así como los detalles de su entorno de trabajo. 

2.6.3. Protocolo MQTT 

MQTT es un protocolo para la transmisión de mensajes, diseñado especialmente para 

arquitecturas tipo IoT. Su popularidad sobre protocolos similares, es consecuencia de su fácil 

implementación y especialmente por ser liviano y usar pocos recursos, lo cual es indispensable 

para dispositivos IoT, que por lo general tienen limitados recursos energéticos y de ancho de 

banda. 

MQTT está basado en la pila TCP/IP y es un protocolo con un modelo publicación/suscripción, 

es decir, los clientes se conectan mediante TCP/IP con un servidor denominado broker 

localizado en la nube o en una red local. A partir de la conexión establecida, el cliente puede 

enviar mensajes con cierto tópico para que luego estos puedan ser alcanzados por los 

dispositivos suscritos al mismo. Este esquema convierte a MQTT en un protocolo asíncrono, es 

decir que los extremos de la comunicación no deben tener conexión directa, lo cual es muy 

conveniente cuando se cuenta con una gran cantidad de dispositivos interesados en recibir 

mensajes [44]. 

MQTT utiliza por defecto el puerto 1883, y en el caso de funcionar sobre TLS (Transport Layer 

Security) utiliza el puerto 8883. El protocolo puede manejar paquetes de hasta 256MB. Sin 

embargo, en la práctica este tamaño depende de la implementación en el broker, por lo que 

suele ser considerablemente menor. 

Un aspecto muy importante en MQTT es la calidad de servicio. La calidad de servicio (QoS por 

las siglas en inglés de Quality of service) es un mecanismo para afrontar las posibles fallas de 

conexión debidas al medio u otros factores. MQTT implementa 3 niveles de QoS. En el nivel 0, 

los mensajes se envían solo una vez, por lo que ante un fallo de conexión los mensajes no 

llegarán al receptor y no se tendrá constancia del error. El nivel 1, se envía los mensajes hasta 

garantizar la entrega, por lo que el suscriptor podría recibir mensajes duplicados. En el nivel 2, 

se garantiza la entrega de los mensajes a los suscriptores una única vez [45]. 
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En cuanto al broker, es posible crearlo instalando el servidor Eclipse MQTT en un ordenador 

tanto para una red local como para su acceso a Internet, en caso de que se cuente con una 

dirección IP pública. Sin embargo, lo más sencillo es usar un servicio de broker MQTT público o 

privado. 

El esquema de funcionamiento de MQTT, se muestra en la Figura 4. En particular, el cliente 

que desea publicar contenido tiene que registrarse en el broker mediante un mensaje 

CONNECT que lleva información del nombre de usuario y contraseña, lo cual es respondido por 

el servidor con un mensaje CONNACK. A continuación, los clientes que quieran suscribirse a la 

información que se publique deben enviar un mensaje SUBSCRIBE al broker con la información 

del tópico de los mensajes que desea recibir. El broker responde a esta solicitud con un 

mensaje SUBACK. Cuando el cliente publicista desea enviar contenido al broker, lo hace 

mediante un mensaje PUBLISH que lleva información del tópico del mensaje. Finalmente, el 

broker se encarga de distribuir este mensaje a todos los clientes que estén suscritos al tópico. 

 

Figura 4 Esquema de funcionamiento de MQTT 

2.7. Conclusiones 

En este capítulo se ha revisado los principales conceptos relacionados con el trabajo de tesis, 

desde aquellos que tienen que ver con su contexto tales como la definición de IoT y la 

agricultura de precisión, hasta los detalles técnicos requeridos para comprender el 

funcionamiento de la aplicación, como por ejemplo las tecnologías web y los algoritmos 

usados para el procesamiento de imágenes. Además, de manera particularmente importante 

se expuso las diferentes etapas requeridas para el tratamiento y análisis de las imágenes, 

como son la binarización, segmentación, operaciones morfológicas y conteo. Dichos procesos 

definen el marco de trabajo a seguir en el Capítulo 4.  
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3. TRABAJOS RELACIONADOS 

En este capítulo se describen brevemente los principales trabajos disponibles en la literatura 

relacionados con el tema de tesis. Conforme a esto, se reseñan trabajos en torno a la creación 

de estaciones de monitoreo, el procesamiento de imágenes, comunicación inalámbrica entre 

dispositivos y tecnologías para el desarrollo de aplicaciones web. 

En la actualidad existen una gran variedad de plataformas de desarrollo, las mismas que 

pueden emplearse para el despliegue de redes se sensores y sistemas de monitorización. En 

particular, se destaca el trabajo descrito en [46], donde se emplea una plataforma Raspberry 

Pi, como estación móvil. Para ello, dicha plataforma fue emplazada en un dron con el objetivo 

de gestionar los datos que recibe de los sensores, la conexión a Internet, así como la 

adquisición de imágenes y video. Por otra parte, en cuanto a la arquitectura de comunicación, 

se emplea la red celular para la conexión con la estación base. Esto debido al tráfico 

significativo generado por la cámara de video que restringe otro tipo de soluciones tales como 

redes basadas en ZigBee o LoRa. Además, que por las características de su aplicación es 

necesario contar con un rango de cobertura bastante amplio. En cuanto, a la adquisición y 

transmisión de video, para que la información de la cámara sea útil, los fotogramas deben 

tener la suficiente calidad para ser evaluadas por un experto, y a la vez mantener una tasa de 

datos baja para no producir latencia en el video. Con esta premisa, a partir de las pruebas 

realizadas, los autores proponen una resolución de 240x120 pixeles a una tasa de 15 fps 

(fotogramas por segundo). Finalmente, otro aspecto a destacar del mencionado trabajo, es el 

ahorro de energía, para lo cual se plantea el uso de un protocolo que reduzca al mínimo la 

permanencia en estado activo de los nodos, incluyendo al nodo móvil. 

Por otra parte, en cuanto al rol de la agricultura de precisión en la actualidad,  en [47], se 

presenta un análisis sobre la importancia de las nuevas tecnologías como medio para optimizar 

la producción y los recursos dentro del entorno agrícola. Específicamente, se hace énfasis en 

los retos de implementación y de seguridad a los que se enfrentan este tipo de soluciones. 

Además, se exponen las principales aplicaciones y beneficios que se podrían obtener al 

integrar la agricultura con el mundo del Internet of Things. 

En cuanto al ámbito de las técnicas de procesamientos de imágenes enfocados en la 

agricultura de precisión, en [13], se describe un trabajo donde se realiza una detección de 

tomates a partir de imágenes de alta resolución obtenidas por un vehículo aéreo no tripulado 

o UAV (Unmanned Aerial Vehicle). Con tal objetivo, se emplea un framework de clasificación 

espectral-espacial. Específicamente, se propone el uso de tres métodos de clasificación 

espectral, Expectation-Maximization (EM), Mapas Auto-organizados y K-medias. Como punto 

importante de este trabajo se destaca que en lugar de usar solo dos clusters de clasificación 

(tomates y no tomates), se recurre al uso del criterio de información Bayesiano (BIC) para 

obtener el número óptimo de clusters. Posteriormente realizan una clasificación espacial con 

el fin de eliminar falsos positivos y remover ruido. Como resultado de todo el proceso se 

concluye que el uso de un número adecuado de clusters, genera mayor precisión en la 

clasificación en cada uno de los tres métodos utilizados. Particularmente el método que 

obtuvo mayor precisión en la clasificación fue EM. 
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En [48], se describe un trabajo donde se realiza la clasificación entre plantas y maleza en un 

cultivo de remolacha azucarera, para lo cual se realiza tareas de segmentación y operaciones 

morfológicas para comparar las formas de las plantas. De manera similar, en [49], se detalla el 

uso de operaciones morfológicas para mejorar los resultados de la segmentación. La 

extracción de las características tiene por objetivo alimentar una red neuronal para la 

posterior clasificación de frutos con enfermedades. En [47], se realiza un procedimiento similar 

al trabajo descrito previamente, en este caso para la extracción de características útiles para la 

detección de enfermedades en naranjas. Además, se desarrollan experimentos empleando 

varios espacios de color, eligiendo finalmente el espacio RGB para el procesamiento de las 

imágenes. Por otra parte, en [30], se realiza una segmentación de imágenes de plantaciones de 

manzanas mediante Thresholding, a partir de lo cual se implementa un algoritmo para 

manzanas rojas y otro para manzanas verdes. 

En cuanto al análisis de los espacios de color, en [50],[51],[52], se describen estudios donde 

realizan segmentación de imágenes mediante EM experimentando con los espacios de color 

YUV, HSV y LAB respectivamente, consiguiendo resultados sobresalientes y mostrando que la 

elección del espacio de color depende del escenario en el que se aplique. 

Un aspecto a evaluar durante el procesamiento de imágenes, sin duda es la selección de los 

mecanismos o algoritmos adecuados. En tal sentido, en [53], se presenta una revisión 

detallada de las técnicas usadas en el procesamiento de imágenes. En particular, se mencionan 

algoritmos para pre-procesamiento, segmentación, extracción de características y clasificación. 

Aunque el artículo se enfoca en la evaluación de frutas y vegetales analizadas bajo un entorno 

controlado, con fotografías cercanas y con elementos aislados, lo cual dista de lo que se busca 

en el presente trabajo de tesis, sin embargo, ofrece comparativas muy útiles sobre los distintos 

algoritmos usados, ampliando el panorama de la visión artificial. 

En cuanto al despliegue de aplicaciones web y su integración con el ámbito del Internet of 

Things, en [54], se hace uso de la herramienta de desarrollo Node-Red para desplegar 

rápidamente una aplicación que gestione los datos de una estación de monitoreo de la calidad 

del aire. Además, se destaca el uso del protocolo MQTT para el intercambio de datos entre la 

estación y los sensores. En [55], se describe otro ejemplo que emplea Node-Red, en este caso 

con el objetivo de implementar una aplicación que interactúa con el servicio de asistente de 

voz Alexa y un conjunto de sensores. En cuanto al intercambio de datos se utiliza el protocolo 

MQTT, y como broker los servicios web de Amazon. Por otra parte, el trabajo descrito en [56], 

resulta particularmente atractivo, puesto que se propone un sistema que interconecta una 

estación de monitoreo de variables ambientales dentro de una Raspberry Pi con la nube de 

IBM, ambos extremos usando Node-Red para desplegar sus aplicaciones. En [57], se muestra el 

uso de Node-Red para el despliegue de aplicaciones en un campo industrial, destacando la 

importancia del protocolo MQTT como un protocolo de comunicación asíncrono. Finalmente, 

en [58], se presenta una propuesta que hace uso del broker MQTT Mosquitto que es de código 

abierto, además de detallar algunas características de MQTT como el tamaño máximo de 

mensajes y el parámetro de calidad de servicio, que son vitales en cierto tipo de aplicaciones 

para asegurar la recepción de los mensajes. 
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4. IMPLEMENTACIÓN DEL SISTEMA DE MONITOREO 

4.1. Introducción 

En el presente capítulo se detallará la implementación del sistema de monitoreo planteado. 

Este sistema tiene tres partes principales, la estación prototipo encargada de la adquisición y 

procesado de datos, la aplicación web encargada del control y visualización de los datos, y el 

sistema de comunicación para el intercambio de datos de sensores e información de control. El 

esquema de este sistema se muestra en la Figura 5. 

 

Figura 5 Esquema del sistema implementado 

El capítulo está organizado de la siguiente forma. En la sección 4.2 se detalla el hardware 

utilizado para la implementación de la estación. En la sección 4.3 se describen las librerías 

utilizadas para el procesamiento de imágenes. En la sección 4.4 se describen los sistemas que 

hacen posible la comunicación entre la estación y la aplicación web. En la sección 4.5 se detalla 

el funcionamiento de los sensores y el procesamiento de imágenes y video, ejecutados sobre 

la estación prototipo. Finalmente, en la sección 4.6 se presenta la implementación de la 

aplicación web en la nube de IBM (IBM Cloud). 

4.1.1. Descripción del Equipamiento 

El prototipo diseñado en este trabajo de tesis, tiene la capacidad de adquirir señales 

ambientales tales como temperatura, presión, humedad e índice UV (Ultravioleta). Además de 

ello, incluye la capacidad de adquirir imágenes fotográficas y señales de video por lo que la 

estación está provista de una cámara. Además, puesto, que se busca tener precisión en la 

ubicación de la parcela en la que se emplace el prototipo, se cuenta con un sensor de geo-

localización. Todas las señales adquiridas son procesadas por la estación y enviadas hacia 

Internet, por lo que todos los sensores y la cámara deberán estar concentrados en un mini-

computador con capacidades de red. Adicionalmente, el prototipo cuenta con un periodo de 

autonomía energética para poder operar en lugares remotos, es decir, lleva incorporado una 

batería. Para agrupar todos estos elementos se construyó un encapsulado, cuya construcción y 

ensamblaje se muestran en el Apéndice G. A continuación, se detallará las características de 

los dispositivos usados. 
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4.1.2. Mini Computador Raspberry Pi 

El hardware principal a ser usado para la implementación de la estación es el miniordenador 

Raspberry Pi modelo 2 B, un microordenador que cuenta con una interfaz para conexión 

Ethernet, memoria RAM de 1Gb, procesador Broadcom BCM2836 ARM Cortex-A7 a 900MHz, 

tarjeta gráfica Broadcom VideoCore IV 250 MHz.  

OpenGL ES 2.0, 4 puertos USB y un precio de fábrica de USD 35. En [46], se hace una 

comparación entre varias plataformas: Raspberry Pi, Minnow Board, Minnow Board Max, 

BeagleBone Low-spec, BeagleBone High-Spec, Humming Board y Banana Pi, comparando su 

CPU, RAM, conectividad, comunidad de usuarios y costo. A partir del análisis se concluye que 

la plataforma Raspberry Pi, conjuga buenas características técnicas junto con un bajo costo y 

una amplia comunidad de usuarios. 

Para su funcionamiento es necesario agregar una tarjeta de memoria microSD con un mínimo 

recomendable de 4GB de espacio, sobre la cual se instalará el sistema operativo. El sistema 

operativo más utilizado en la Raspberry Pi y que se hará uso en el presente trabajo es 

Raspbian, que es una distribución de Linux basada en Debian. 

4.1.3. Sensores 

Con el fin de medir el consumo energético de la estación se utilizó el sensor de corriente 

Adafruit INA219 [59] que tiene la capacidad de medir hasta 3.2A con una resolución de 0.8mA 

e incluso aumentar la precisión aceptando menores rangos de corriente. Las principales 

características de este sensor se muestran en la Tabla 1. 

Tabla 1 Características técnicas del sensor de corriente Adafruit INA219 

Voltaje de la fuente 3V - 5.5V 

Temperatura de operación -40ᵒC - 

125ᵒC 

Comunicación I2C 

ADC 12bits 

Resistencia de medición 0.1Ω, 1% 

Para medir el índice UV se utiliza el sensor Adafruit SI1145 [60], el cual a partir de un análisis 

del espectro visible e infrarrojo, consigue estimaciones muy precisas del índice UV. Las 

principales características de este sensor se muestran en la Tabla 2. 

Tabla 2 Características técnicas del sensor UV Adafruit SI1145 

Voltaje de la fuente 3V - 5V 

Temperatura de -40ᵒC - 85ᵒC 
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operación 

Comunicación I2C 

Espectro IR 550nm - 

1000nm 

Espectro visible 400nm - 0nm 

La medición de temperatura, humedad y presión se agrupa en un solo sensor, en este caso se 

empleó el sensor Adafruit BME280 [61]. Cabe destacar, que pertenece a la nueva línea de 

sensores que reemplazan a los de la línea BMP. Las principales características de este 

dispositivo se muestran en la Tabla 3. 

 

Tabla 3 Características técnicas del sensor de temperatura, humedad y presión Adafruit BME280 

Voltaje de la fuente 3V - 5V 

Temperatura de operación -40ᵒC - 85ᵒC 

Comunicación I2C, SPI 

Precisión sensor humedad ±3% 

Precisión sensor 

temperatura 

±1ᵒC 

Precisión sensor presión ±1hPa 

El GPS utilizado para la ubicación de la estación es el Adafruit Ultimate GPS v3 [62]. Este 

módulo tiene una alta sensibilidad de rastreo de -165dBm, puede rastrear señal de hasta 22 

satélites en 66 canales, tiene una antena interna y la posibilidad de instalar una antena externa 

para mejorar la recepción. Las principales características de este módulo se muestran en la 

Tabla 4. 

Tabla 4 Características técnicas del sensor de geo-localización Adafruit Ultimate GPS 

Voltaje de la fuente 3V - 5.5V 

Tamaño antena de parche 15mm x 15mm x 

4mm 

Comunicación USB 

Precisión de posición 1.8metros 
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Velocidad máxima 515m/s 

La cámara utilizada para la adquisición de imágenes es la webcam Logitech c270 [63], con 

capacidad  de adquirir video en alta definición e imágenes con calidad mejorada por software 

de tres megapixeles. Las principales características de esta cámara se muestran en la Tabla 5. 

Tabla 5 Características técnicas de la cámara web Logitech c270 

Resolución máxima 720p 

Enfoque Foco fijo 

Comunicación USB 

Fps máximo 30fps 

Campo visual 60ᵒ 

Los módulos de sensores de BME280, INA219 y SI1145 se integraron en una sola placa 

electrónica junto con tres botones y tres indicadores leds. El diseño de esta placa se muestra 

en el Apéndice F. 

4.1.4. Batería 

Para dotar de autonomía energética, la estación cuenta con un paquete de batería externo. 

Esta batería es la Ravpower External Battery Pack Element Series [64], que cuenta con 2 salidas 

USB. Sus principales características se muestran en la Tabla 6. 

Tabla 6 Características técnicas del paquete de batería externo Ravpower Element Series 

Capacidad 10400mAh 

Entrada 5V/2A max 

Salida 1 5V/2A max 

Salida 2 5V/1.5A max 

4.2. Descripción del Software 

Para el desarrollo de los scripts se usó en su mayoría el lenguaje de programación Python, y en 

menor medida Bash. Las librerías usadas para el funcionamiento de los sensores se describen 

en el Apéndice E. Para el procesamiento de imágenes se utilizaron tres librerías Numpy, 

OpenCV y Sklearn. 

Numpy, es un paquete que extiende las capacidades matemáticas de Python al proporcionar 

un gran número de funciones y facilidades para el uso de arreglos N-dimensionales [65]. Dicha 

característica es fundamental para el procesamiento ya que las imágenes se tratan como 
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arreglos tridimensionales si son imágenes a color y bidimensionales si están en escala de 

grises. 

OpenCV, es una librería de código abierto creada para el desarrollo de la visión artificial y 

aplicaciones tipo machine learning. Contiene una amplia cantidad de algoritmos y 

herramientas optimizadas para el procesamiento de imágenes [41]. En el presente trabajo se 

hará uso de sus herramientas para el manejo de las imágenes capturadas, así como del 

algoritmo para realizar etiquetado de componentes conectados, y obtener sus estadísticas. 

Sklearn, es una librería diseñada para realizar tareas de minería y análisis de datos [66]. Cuenta 

con una implementación optimizada del algoritmo GMM mediante EM. Dicho algoritmo ha 

sido empleado en el presente trabajo de tesis, además de la herramienta para el análisis del 

número de clusters (BIC). 

4.3. Sistemas de Comunicación 

El sistema desarrollado cuenta con tres interfaces de comunicación, la interfaz para la 

comunicación de la estación a la IBM Cloud, la interfaz de comunicación desde la IBM Cloud a 

la estación y aquella que permite a la estación su conexión hacia Internet. 

En cuanto al intercambio de datos entre la plataforma Node-Red en IBM Cloud y la estación de 

monitoreo, es necesario recurrir a la plataforma IBM Watson IoT. En esta plataforma se debe 

registrar los dispositivos que se usarán y generar una clave de API, este proceso se explica con 

detalle en el Apéndice D. 

Cabe resaltar que, para posibilitar esta comunicación, se requiere previamente instalar las 

librerías node-red-contrib-ibm-watson-iot y node-red-contrib-scx-ibmiotapp. Dicha acción 

debe ser efectuada en el editor de Node-Red, tanto en el lado del dispositivo como de la 

aplicación web. 

En cuanto a la interfaz que permite el acceso a Internet, dependiendo del lugar de 

emplazamiento de la estación, es posible emplear una conexión de tipo Ethernet, Wifi o 

incluso mediante un módulo 3G o 4G. En cualquier caso, se requiere configurar una dirección 

IP fija. En tal sentido, con el propósito que la conexión se realice de forma automática, dicha 

configuración se realizó mediante la edición del archivo interfaces ubicado en el directorio 

/etc/network/ del sistema operativo Raspbian. 

4.3.1. Comunicación Estación – IBM Cloud 

Una vez que se ha registrado el dispositivo, se requiere seguir un conjunto de pasos para 

enviar datos desde la estación hacia la aplicación web en IBM Cloud. En concreto, en el editor 

de Node-RED se tendrán que configurar bloques tanto del lado del dispositivo como de la 

aplicación web, como se detalla a continuación 

4.3.1.1. Configuración de los Bloques en el Dispositivo 

En el lado del dispositivo, se requiere trabajar con el nodo wiotp out, el cual permite enviar 

mensajes de eventos a la plataforma IBM Watson IoT mediante el protocolo MQTT. En la 

Figura 6, se muestra el nodo wiotp out, disponible en el entorno de Node-Red. 
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Figura 6 Nodo wiotp out 

En cuanto a la configuración, se requiere ingresar a las propiedades del nodo y especificar el 

tipo de conexión como Dispositivo Registrado. En la Figura 7, se presenta una captura de la 

configuración realizada sobre dicho nodo. 

 

Figura 7 Propiedades del nodo wiotp out 

Por otra parte, en la Figura 8, se presenta la edición de las credenciales para el dispositivo. 

Como se puede apreciar, el nombre del servidor puede omitirse ya que su valor por defecto es 

[organization id].messaging.internetofthings.ibmcloud.com. En cuanto al tipo de dispositivo, el 

ID de dispositivo y el token de autenticación son los colocados durante el registro del 

dispositivo. Es necesario aclarar que el token de autorización no se trata del obtenido al 

generar la clave de la API. Una vez que se ha completado los pasos anteriores, el nodo de envío 

estará completamente configurado por lo que resta configurar el nodo de recepción en el lado 

de la aplicación web. 

 

Figura 8 Credenciales nodo wiotp out 
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4.3.2. Configuración de los Bloques en la Nube 

En cuanto al entorno Node-Red de lado de la nube IBM, se requiere trabajar con el nodo 

ibmiot in. En la Figura 9, se presenta una captura del mencionado nodo. 

 

Figura 9 Nodo ibmiot in 

La funcionalidad del nodo ibmiot in, consiste en que permite recibir mensajes de la plataforma 

IBM Watson IoT, provenientes de dispositivos y aplicaciones. Además, emplea el protocolo 

MQTT así como el formato json por defecto. Para su configuración, en primer lugar se debe 

modificar la opción de autenticación a “API Key”, el tipo de entrada a “Device Event” y se 

ingresa la ID del dispositivo en el campo correspondiente como se muestra en la Figura 10. 

 

Figura 10 Propiedades nodo ibmiot in 

A continuación, se procede a editar el campo API Key dando clic en su botón de edición. 

Específicamente, se debe ingresar un nombre, y los datos obtenidos en la API que fue 

generada previamente. En el campo API Key se ingresa la clave de API y en API Token la señal 

de autenticación de la API. De igual forma que en el lado del dispositivo, no es necesario 

colocar el nombre del servidor puesto que su valor por defecto es [organization 

id].messaging.internetofthings.ibmcloud.com. Una vez finalizado el procedimiento, se deben 

guardar los cambios y el nodo quedará configurado. En la Figura 11, se presenta una captura 

con los parámetros de edición del nodo.  
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Figura 11 Formulario para ingresar credenciales de API 

4.3.2.1. Prueba de Conexión 

Para verificar el funcionamiento de la comunicación Estación-IBM Cloud, es posible emplear 

los nodos inject y debug, como se describe en el diagrama de la Figura 12.  

 

Figura 12 Comunicación Dispositivo - Nube 

Al ingresar datos mediante el bloque de inyección (nodo inject), éstos serán recibidos por la 

aplicación web y serán visualizados en el panel debug como se demuestra en la Figura 13. 

 

Figura 13 Panel debug en el lado IBM Cloud 

4.3.3. Comunicación IBM Cloud – Estación 

Hasta el momento se ha creado una comunicación unidireccional desde la estación hacia la 

aplicación web. A continuación, para crear la comunicación en el otro sentido es necesario 

registrar otro dispositivo, el cual se ha denominado como “RasPi2” y estará ligado al mismo 

dispositivo físico. Cabe indicar que es posible usar el mismo dispositivo registrado; sin 

embargo, suelen existir problemas de disponibilidad. En la Figura 14, se muestra una captura 

con los registros de los dispositivos creados. 
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Figura 14 Lista de dispositivos registrados 

4.3.3.1. Configuración de los Bloques en el Dispositivo 

En el lado de la estación, se desplegará un bloque ibmiot in y se lo configurará de manera casi 

idéntica a la efectuada para la recepción de mensajes en el lado de la aplicación web, con la 

única diferencia de que el ID del dispositivo apuntado será en este caso “RasPi2”, como se 

resalta en la captura de la Figura 15. 

 

Figura 15 Propiedades nodo ibmiot in en dispositivo 

Los datos de la clave de API serán los de la clave de API creada anteriormente. Nótese que ahora, para la 

comunicación bidireccional se tiene en el dispositivo un nodo wiot y otro ibmiot, lo mismo sucederá en 

el lado de la aplicación web. 

4.3.3.2. Configuración de los Bloques en la Nube 

En este lado se usará el bloque wiotp out. Se editan sus propiedades de forma similar a como 

ya se lo hizo en el lado del dispositivo para el envío de mensajes, pero ahora el dispositivo al 

que se apuntará será RasPi2 en lugar de RasPi1, colocando sus respectivas credenciales como 

se muestra en la Figura 16. 
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Figura 16 Propiedades nodo wiotp out en la nube 

4.3.3.3. Prueba de Conexión 

De igual forma es posible realizar una prueba de funcionamiento de la comunicación, 

mediante una conexión de bloques como se muestra en la Figura 17. 

 

Figura 17 Comunicación Nube - Dispositivo 

Al inyectar datos, en este caso se los recibe en el dispositivo y se visualizan en el panel de 

debug como se muestra en la Figura 18. 

 

Figura 18 Panel debug en el lado del dispositivo 

4.3.4. Estructura de los Mensajes 

En el trabajo de tesis, los mensajes a ser transmitidos tienen como finalidad el transporte de datos de los 

sensores o de información de control.  Al llegar, estos mensajes deben ser asignados a un nodo 

específico para su procesamiento. Con tal motivo los mensajes deben ser enviados con cierta estructura, 

incluyendo en su cabecera información necesaria para conocer a que nodo de procesamiento 

corresponde. 

Los mensajes en Node-Red son enviados por defecto en formato JSON, de tal manera que la estructura 

de los mensajes que se ha diseñado es la siguiente: 

 

{"codigo":"[código del sensor]","valor":"[]","topic":"treal"} 
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Como se puede apreciar, los mensajes constan de tres campos, codigo, valor y topic. En el campo codigo 

se coloca un código único para cada sensor o comando. Los códigos usados se detallan en la Tabla 7. 

 

 

 

 

 

 

Tabla 7 Código de sensores/comandos 

Sensor/Comando Código 

Corriente corr 

Temperatura temp 

Presión pres 

Índice uv uvix 

GPS gps 

Temperatura del cpu tcpu 

Carga del cpu cpuload 

Estadísticas stat 

Captura de fotos Cam 

Captura de video vid 

En el campo valor se coloca el valor de la medición. Por otra parte, si se trata de un comando para 

encender o apagar el sensor, los valores serán “true” o “false” respectivamente. El campo topic es una 

denominación necesaria para colocar correctamente los datos en los cuadros. 

Para el caso de los mensajes generados por el módulo GPS, se adicionan dos campos adicionales, “lat” y 

“lon” con la información de las coordenadas de la estación. 

Por otro lado, es necesario tomar en cuenta que, al enviar un mensaje, Node-Red empaqueta todo bajo 

una etiqueta “d”, por lo que los mensajes tendrán una apariencia como la indicada a continuación. 

 

{“d”:” {"codigo":"[codigo del sensor]","valor":"[]","topic":"treal"}”} 
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Dicha característica, debe considerarse para retirar este envolvente cuando el mensaje es 

recibido. Finalmente, es importante mencionar que los mensajes de los sensores se 

configuraron con el nivel de QoS más bajo, puesto que la pérdida de uno de estos mensajes no 

tiene una relevancia mayor (aunque esto podría depender de la aplicación). Mientras que los 

mensajes de comandos están configurados con el mayor nivel de QoS para asegurar su llegada 

al receptor, puesto que la pérdida de uno de estos mensajes puede ocasionar problemas en el 

funcionamiento del sistema. 

4.4. Implementación de la Estación Prototipo 

En esta sección se detallarán todos los procesos que realiza la estación prototipo como la 

integración de la cámara y los sensores, el desarrollo de los algoritmos de procesamiento de 

imágenes y la forma en la que se transmite las imágenes y el video a través de MQTT. Todos 

estos procesos están integrados por una aplicación en Node-Red de un solo flujo, la cual se 

puede observar en la figura 19. El  funcionamiento de sus nodos se explicará a lo largo de esta 

sección. 

 

Figura 19 Aplicación Node-Red en la estación prototipo 

4.4.1. Integración de la Web Cam 

Para el control y uso de la web cam desde la aplicación en Node-RED, se utiliza un nodo de 

ejecución (exec) que realiza una llamada a la aplicación fswebcam. Dicha aplicación tiene la 
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capacidad de capturar fotografías y video especificando sus parámetros en la misma línea de 

comandos. En la Figura 20, se muestra el despliegue del nodo de ejecución que realiza la 

captura de una fotografía con una resolución de 544x280 pixeles y almacena el resultado en el 

fichero ./imagen.jpg. 

 

Figura 20 Nodo de ejecución para la cámara web 

4.4.2. Procesamiento de Imágenes 

El procesamiento de imágenes desarrollado en el presente trabajo de tesis, tiene como 

objetivo identificar frutos en fotografías de plantaciones en campo abierto y obtener 

información estadística de los mismos. Para cumplir con dicho objetivo, se emplearon los 

procedimientos expuestos en el apartado 2.4. Durante esta etapa, con el objetivo de analizar 

con mayor rapidez las diferentes variables involucradas en el procesamiento de las imágenes, 

los experimentos se realizaron mediante una computadora de escritorio. En cuanto a los 

experimentos con la estación prototipo, estos se presentarán posteriormente en el Capítulo 5. 

Cabe indicar, que en este caso la cámara utilizada para la adquisición de las imágenes, sobre 

las cuales se probaron los algoritmos, es ligeramente superior a la usada en la estación. 

Adicionalmente, también se emplearon fotografías obtenidas de bancos de imágenes libres y 

disponibles en [67], juntando en total un conjunto de diez fotografías con frutos rojos. 

Para el caso del procesamiento de imágenes basado en GMM con EM, en primera instancia se 

experimentó el ajuste del modelo usando tres tipos de espacios de color, RGB, HSV y LAB. Para 

estos experimentos se utilizó una cantidad de 5 clusters, cantidad escogida sin ningún criterio 

previo.  

En cuanto a la imagen seleccionada para ajustar el modelo, se empleó una fotografía con una 

resolución de 480 x 380 pixeles, la misma que se presenta en la Figura 21. 
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Figura 21 Imagen de muestra empleada para el ajuste del modelo mediante el esquema GMM 

En la Figura 22(a), (b) y (c), se muestran los resultados obtenidos de la segmentación 

empleando 5 clusters, para los espacios de color, RGB, HSV y LAB respectivamente. 

 

Figura 22 Resultados de la segmentación empleando el modelo GMM, con 5 clusters y tres tipos de espacios de 

color. (a) RGB. (b) HSV. (c) LAB 

De estos experimentos se puede concluir que los resultados en RGB y LAB son bastante 

parecidos, y muy eficientes para la tarea de segmentación, mientras que el resultado en HSV 

dista mucho de los elementos que debieron ser detectados como frutos. 
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En tal sentido, en un intento de proveer al modelo información no solo de cada pixel, si no de 

lo que sucede en su contexto, se realizó dos experimentos adicionales, en los que además de la 

información provista por los tres canales del espacio de color, se añadió otras tres dimensiones 

al modelo GMM. En el primero de estos experimentos estas dimensiones fueron el promedio 

de los canales de los espacios de color de los píxeles circundantes. En el segundo experimento 

en lugar de hacerlo con el promedio, se añadió información de la varianza de los pixeles 

circundantes. Los resultados obtenidos de estos experimentos se muestran en la Figura 23 y 23 

(b) respectivamente. 

 

Figura 23 Resultados de la segmentación incluyendo información adicional en el modelo GMM. (a) Promediado 
de pixeles. (b) Varianza de pixeles 

Como se puede apreciar en la Figura 23 (a), para el caso del experimento usando el promedio 

de los pixeles, se observa que, si bien la segmentación es buena, no mejora los resultados 

obtenidos al emplear solo los canales de color. Además, de que se añade una considerable 

cantidad de pixeles aislados. En cuanto a los resultados del segundo experimento indicados en 

la Figura 23 (b), la segmentación se torna muy deficiente. Estos dos modelos fueron 

descartados. 

Hasta el momento se cuenta dos modelos candidatos, sin embargo, al analizar nuevamente los 

resultados de las Figuras 22(a) y 22 (c) correspondiente a los modelos en RGB y LAB con 5 

clusters se detectan problemas semejantes. Es decir, en estos modelos los frutos aparecen 

rodeados de pixeles que no les pertenecen y que posiblemente están ahí por reflectancia de 

las hojas que los rodean. Además, existen ciertos píxeles aislados que no deberían ser parte del 

cluster de frutos. Estos problemas podrían deberse a que no se han creado la suficiente 

cantidad de clusters para separar a estos píxeles. Por consiguiente, se procedió a emplear el 

criterio BIC para estimar la cantidad de clusters adecuada que deberían utilizarse para estos 

modelos. En la Figura 24(a) y 24 (b), se presentan los resultados de aplicar el criterio BIC para 

los modelos en RGB y LAB respectivamente. 
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Figura 24 Resultados del criterio BIC para estimar el número de clusters. (a) RGB. (b) LAB 

Como se puede apreciar, para el caso del espacio RGB, el primer mínimo local se encuentra en 

15 clusters y el mínimo de todos los modelos analizados en 18 clusters con un valor muy 

parecido al modelo de 15 clusters, por lo que se lo descartará a este último. En el espacio LAB 

se tiene un primer mínimo local en el modelo de 11 clusters y un mínimo general en el modelo 

de 18 clusters con un valor de BIC considerablemente menor. 

A continuación, se realizaron experimentos con estos 3 modelos considerados y sus resultados 

se exponen en las Figuras 25(a), 25(b) y 25(c) respectivamente. 

 

Figura 25 Resultados de la segmentación. (a) RGB, 15 clusters. (b) LAB 11 clusters. (c) LAB 18 clusters 



Universidad de Cuenca 

   

Pablo Esteban Villota Neira 
Página 50 

De estos tres modelos, se observa que el modelo en espacio LAB con 11 clusters, Figura 25 (b), 

se ajusta mejor a los resultados esperados, puesto que tiene menor cantidad de píxeles no-

frutos que rodean a los frutos (como sucede en el modelo RGB de 15 clusters) y no elimina 

pixeles pertenecientes a los frutos (como sucede en el modelo LAB de 18 clusters, lo cual 

podría indicar un sobre ajuste del modelo). Este modelo también tiene la ventaja de que 

requiere el menor número de clusters de los tres analizados, lo cual lo es una característica 

deseada en términos de carga de procesamiento. Una última ventaja de este modelo es que al 

encontrarse en espacio LAB será más inmune a cambios de luz en el ambiente. 

A partir de los experimentos y los resultados obtenidos, se empleará el modelo LAB con 11 

clusters para realizar la segmentación. En cuanto, a los inconvenientes que aún se observan, 

como pequeños píxeles aislados y puentes entre algunos frutos, se requiere un tratamiento 

adicional para eliminarlos. Específicamente, para eliminar estos píxeles se realizó una 

operación de closing sobre la imagen binaria empleando un elemento estructural con forma de 

disco de radio 3 pixeles. En la Figura 26, se muestran una comparación de los resultados antes 

y después de la operación de closing. 

 

Figura 26 Imagen binaria. (a) Antes de la operación closing. (b) Después de la operación closing 

Como se puede apreciar, los resultados son satisfactorios. Un efecto secundario de la 

operación closing, con el elemento estructural escogido, es el pulido de las manchas en formas 

más redondas, lo cual no aporta mayor problema. Otro inconveniente que tiene la aplicación 

de esta operación es el hecho de que puede eliminar frutos que tengan un tamaño similar al 

elemento estructural, provocando que inevitablemente los frutos muy pequeños no sean 

detectados. 

Por último, se realizó un encuadre de los elementos ubicados para poder identificarlos con 

mayor claridad en su contexto. Los resultados de aplicar dicha operación se muestran en la 

Figura 27: 
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Figura 27 Imagen de muestra con elementos ubicados 

A continuación, mediante un script implementado en Python se obtuvieron las estadísticas de 

los objetos encontrados en esta imagen. En la Figura 28, se presenta los resultados obtenidos 

 

Figura 28 Estadísticas de la imagen de muestra 

Los resultados obtenidos luego de la secuencia de experimentos desarrollados, son 

satisfactorios. En particular, se han encontrado prácticamente la totalidad de los frutos que se 

pueden detectar con la visión humana. Además, se destaca que no ha sido seleccionada 

ninguna zona que no corresponda a un fruto, por lo que ahora se puede actualizar el marco de 

trabajo por uno más específico, modificando en este caso el primer y quinto bloque, que será 

usado para la predicción de las imágenes que validarán el modelo. Este marco de trabajo 

actualizado se muestra en la Figura 29. En cuanto a la implementación en código, en el 

Apéndice H, se presenta el script desarrollado en Python. 

 

Figura 29 Marco de trabajo actualizado, incluyendo el espacio de color LAB y la operación closing 
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Por otra parte, para verificar si el modelo definido, servirá para segmentar otras imágenes 

diferentes a la empleada para el ajuste, es necesario realizar una tarea de validación, probando 

dicho modelo con imágenes distintas, pero dentro del mismo contexto, es decir mismos frutos, 

fondo similar y niveles similares de iluminación. 

Para llevar a cabo dicha validación, se utilizó dos imágenes tomadas cerca de la ubicación 

donde fue capturada la imagen empleada en la etapa de ajuste, asegurando de esta forma, 

que tendrán el mismo contexto. Además, se incluyeron dos imágenes adicionales en contextos 

distintos, esto con el objetivo de forzar las capacidades del modelo. Estas imágenes se 

muestran en la Figura 30. 

 

Figura 30 Imágenes empleadas para la validación del modelo. (a) y (b) Contexto similar. (c) y (d) Contexto distinto 

La Figura 30(a) y la Figura 30(b) muestran las dos imágenes en un contexto similar a la imagen 

de ajuste. En particular, los frutos son los mismos (manzanas) y la vegetación e iluminación son 

similares. Por otra parte, en la Figura 30(c), se muestra una imagen con otros frutos (tomate de 

árbol) y diferente nivel de iluminación y vegetación. Sin embargo, los frutos son de un color 

semejante a los frutos de la imagen de ajuste. Finalmente, la Figura 30(d), de igual forma 

consiste en una imagen en otro contexto, con frutos diferentes (tomates) y con un color 

semejante a los frutos de la imagen de ajuste aunque con un mayor brillo. Al ejecutar el 

procesamiento indicado por el marco de trabajo desarrollado (Figura 29), se obtienen los 

resultados mostrados en la Figura 31. 

La Figura 31(a), muestra excelentes resultados puesto que han sido localizados casi la totalidad 

de los frutos, sin contabilizar ningún falso positivo. En la Figura 31(b), se han localizado todos 

los frutos, pero también cuenta con algunos falsos positivos que deberán tomarse en cuenta al 

probar la estación en el campo. La Figura 31(c), aunque está en otro contexto ha localizado 

casi todos los frutos presentes, pero el número de falsos positivos también es considerable. 
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Finalmente, la Figura 31(d), aun pese a estar en otro contexto, muestra un gran número de 

elementos ubicados, sin contabilizar falsos positivos.  

 

Figura 31 Imágenes de validación procesadas. (a) y (b) Contexto similar. (c) y (d) Contexto distinto 

Los resultados obtenidos luego de la validación del modelo son muy satisfactorios por lo que 

se podrá utilizar este esquema de visión artificial en campo, cuyos resultados se mostrarán en 

el Capítulo 5. 

Para el caso del marco de trabajo basado en Thresholding el procedimiento fue bastante 

sencillo, en primera instancia se decidió crear un umbral que abarque el área total de todos los 

frutos de las imágenes del conjunto usado. En cuanto a las operaciones morfológicas se 

decidió usar solamente la operación de closing con un disco de radio igual a 3 pixeles, como 

elemento estructural. Los valores de umbral usado en este algoritmo se especifican en la Tabla 

8, mientras que los resultados de este algoritmo con un Thresholding amplio, se muestran en 

la Figura 32. 
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Tabla 8 Valores de Thresholding amplio 

Valores HSV de Umbral Thresholding Amplio 

Canal Mínimo Máximo 

HUE -100ᵒ 60ᵒ 

Saturation 35 255 

Value 70 255 

 

Figura 32 Resultados obtenidos con un Thresholding amplio en varias imágenes. 

En la Figura 32(a) el resultado es muy bueno puesto que se han encuadrado todos los frutos 

presentes en la imagen y la cantidad de falsos positivos es baja. Por otro lado en la Figura 32(b) 

y en la Figura 32 (c) la cantidad de falsos positivos es significativa, motivo por el cual no se 

realizaron más pruebas y se decidió descartar este modelo. 

A continuación, se realizó otro experimento con un umbral más reducido descartando matices 

rojizos tenues para así reducir la cantidad de falsos positivos. Los valores de umbral en este 
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algoritmo de Thresholding reducido se muestran en la Tabla 9 y los resultados obtenidos se 

presentan en la Figura 33: 

Tabla 9 Valores Thresholding reducido 

Valores HSV de umbral thresholding reducido 

Canal Mínimo Máximo 

HUE -80ᵒ 20ᵒ 

Saturation 65 255 

Value 70 255 

 

Figura 33 Resultados obtenidos mediante Thresholding reducido en varias imágenes. 
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Los resultados con este algoritmo con un umbral reducido muestran una gran reducción en la 

cantidad de falsos positivos, aunque aún existe una considerable cantidad de ramas que son 

contadas como frutos tal como se observa en las Figuras 33(b) y 33(d). Otro problema que 

tiene este modelo se lo puede observar realizando un acercamiento a la Figura 33(b) y 

extrayendo la parte segmentada como se lo observa en la Figura 34. Como se puede apreciar, 

una gran parte del fruto no ha sido segmentada, lo cual podría ocasionar que ciertos frutos no 

sean detectados en determinadas fotografías. 

 

Figura 34 Acercamiento Figura 21(b) con extracción de segmentación 

Pese a estos problemas, al tener en cuenta las ventajas de bajo coste de procesamiento de 

este algoritmo, los resultados son satisfactorios y podría ser considerado en la implementación 

de la estación. El código fuente del script en Python que se utilizó para esta segmentación se 

encuentra en el Apéndice G.  

4.4.3. Transmisión de Imágenes y Video en Tiempo Real 

La transmisión de video en tiempo real a través del protocolo MQTT está fuertemente limitada 

por el máximo tamaño de los paquetes que admite el broker utilizado, que en este caso es de 

128kB, dificultando el envío de los segmentos de video. Además, el hecho de que MQTT sea un 

protocolo asíncrono añade retraso al video transmitido. Pese a estas restricciones se 

implementó un algoritmo básico para la transmisión de video mediante MQTT. 

De manera general este algoritmo al recibir una señal de la aplicación web, captura un frame a 

la vez, para luego enviarlo por MQTT a la nube de IBM. Para esto, en primer lugar, se utilizó 

una cantidad muy baja de cuadros por segundo, siendo esta de 1 fps. Luego se configuró el 

tamaño de los cuadros en 272x140 usando el formato jpg. Posteriormente, se realizó una 

verificación del tamaño de los cuadros, esto es muy importante puesto que cuando se intenta 

enviar un mensaje mayor a 128kB, el nodo de envío de mensajes MQTT se colapsa, 

incrementando el retraso en la transmisión de video y ocasionando problemas en el sistema en 

general, ya que todos los mensajes se envían por el mismo nodo.  

Una vez capturada la fotografía es necesario guardarla en un buffer, convertirla a base 64 y 

finalmente colocar el encabezado con el código correspondiente. Se configuró el QoS en su 

nivel más bajo, ya que, al tratarse de video en vivo, los cuadros que lleguen con desorden no 

son de utilidad. El diagrama de flujo correspondiente a la programación indicada, se presenta 

en la Figura 35. 
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Figura 35 Diagrama de flujo en Node-Red, para la transmisión de video 

En cuanto a la transmisión de imágenes, el procedimiento es muy similar al del video, con la 

diferencia de que no se espera una señal desde la aplicación web para iniciar su 

funcionamiento. En este caso se realizó la configuración para la captura automática de una 

fotografía al día, la misma que posteriormente es procesada para la detección de frutos y 

obtención de las estadísticas. Luego de esto se procede de igual manera que en la transmisión 

de video, tal como se muestra en la Figura 36. 

 

Figura 36 Diagrama de flujo en Node-red para la transmisión de imágenes 

4.4.4. Funcionamiento de los Sensores 

Además de los sensores indicados en el apartado 4.1.3, (Temperatura, presión, corriente, 

índice UV y GPS), se incluyeron las lecturas de dos sensores internos de la Raspberry Pi, la 

temperatura del procesador y la carga del procesador. Esto se realizó con la finalidad de 

verificar el estado de la plataforma durante el funcionamiento de la estación. 

Todos los sensores funcionarán de manera similar, esto es, cuando se reciba un mensaje desde 

la IBM Cloud destinado a prender o apagar un sensor, la aplicación en Node-Red evaluará el 

mensaje leyendo el campo “codigo” y los asignará al nodo de ejecución del sensor que 

corresponda para encenderlo o apagarlo según el campo “valor” lo indique. Si el mensaje es de 

apagado (false) se envía una señal kill al script que controla al sensor para detener su 

ejecución. Si, por el contrario, el mensaje es de encendido (true), el nodo de ejecución en 

Node-Red dará inicio a un script en Python o Bash. Dicho script tiene como finalidad realizar la 

lectura del sensor, escribir dicha lectura en un archivo de texto y finalmente conformar un 

mensaje JSON para que posteriormente sea enviado a la aplicación web para su visualización. 

Este funcionamiento se lo puede observar analizando el flujo de Node-Red presentado en la 

Figura 37 y en el diagrama de flujo presentado en la Figura 38. 
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Figura 37 Flujo Node-Red para el funcionamiento de los sensores 

 

Figura 38 Diagrama de flujo correspondiente al funcionamiento de los sensores 

La instalación de las librerías de los sensores de adquisición de datos y geo-localización, así 

como algunos detalles necesarios para su funcionamiento e implementación los scripts se 

presentan en el Apéndice E. 

4.5. Implementación de la Aplicación Web 

En la presente sección se detallará el funcionamiento de la aplicación web, con una explicación 

de los nodos usados en la programación y mostrando el diseño y configuración de la interfaz 

gráfica. 

4.5.1. Programación de la Aplicación 

 La programación en Node-Red de la aplicación web se la realizó en dos flujos, uno destinado a 

la presentación de los datos provenientes de la estación y otro que contiene los controles que 
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envían comandos a la estación para realizar peticiones de datos a los sensores. El flujo de 

petición de datos se muestra en la Figura 39.  

Este flujo se encarga en primer lugar de recibir los datos de los sensores, la cámara y las 

estadísticas resultado del procesamiento de imágenes. Luego, mediante un nodo de función se 

asigna cada uno de estos datos, a los cuadros de visualización que correspondan. Estos 

cuadros de visualización para el caso de los datos de los sensores se tratan de gráficos 

cartesianos. Para el mapa es una plantilla web que muestra un mapa proveniente de 

OpenStreetMap. Para el caso de las imágenes y video son plantillas web capaces de visualizar 

imágenes y para las estadísticas son cuadros de texto. Además de esto, se cuenta con el nodo 

del botón borrar que permite limpiar los gráficos en los cuadros de datos de los sensores. 

Finalmente, la región con el comentario “Despliegue del Mapa en Dashboard” realiza la 

configuración de la plantilla web en la que se visualiza el mapa. 

 

Figura 39 Flujo en Node-Red para la Presentación de Datos 

El flujo de los Controles se muestra en la Figura 40. En este flujo se implementa los 

interruptores que permiten activar/desactivar los sensores, el botón que envía una petición al 

GPS para ubicar la estación, así como el interruptor que activa/desactiva la transmisión de 

video. Todos estos nodos se encuentran conectados a un nodo wiotp out que envía esta 

información a la estación mediante el protocolo MQTT. 
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Figura 40 Flujo de Controles implementado en Node-Red 

4.5.2. Configuración y Diseño de la Interfaz Gráfica 

Para poder crear la interfaz gráfica de la aplicación web es necesario instalar la librería node-

red-dashboard. Dicha librería, provee de un conjunto de nodos para implementar un panel de 

control dentro de una página web. El URL por defecto de la página es [URL del editor Node-

RED]/ui. Para el caso de tener múltiples pestañas sus URLs serán [URL del editor Node-

RED]/ui/#!/n donde n=0,1,2… es el número de pestaña. 

La configuración de la interfaz gráfica se la realiza sobre la pestaña dashboard, ubicada en el 

panel derecho del editor. Aquí se pueden crear pestañas que aparecerán en el menú de la 

interfaz. Además, la información de cada pestaña puede ser organizada en grupos y se puede 

modificar el tamaño y la disposición de cada uno de los elementos. En la Figura 41 se muestra 

las pestañas creadas con sus respectivos grupos. 

 

Figura 41 Panel de configuración dashboard 

Se crearon tres pestañas, una para mostrar un panel con los datos provenientes de los 

sensores en la estación, otro para mostrar las imágenes provenientes de la cámara en la 

estación y la última para mostrar la ubicación de la estación en un mapa con la información del 

GPS emplazado en la estación. 
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En la Figura 42, se muestra el diseño de la pestaña del panel de sensores. En la Figura 43 se 

observa el diseño de la pestaña de imagen y video y en la Figura 44 se muestra la pestaña para 

la visualización del mapa. 

 

Figura 42 Pestaña Panel de sensores 

 

Figura 43 Pestaña Imagen y Video 
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Figura 44 Pestaña para la visualización del Mapa 

La pestaña del panel de sensores tiene tres grupos: el panel de control, los datos de la estación 

y los datos ambientales. El panel de control tiene la función de activar o desactivar los 

sensores, además de borrar los datos mostrados en los cuadros de los sensores. Los datos de la 

estación muestran los datos provenientes de los sensores de corriente, temperatura del 

procesador y carga del procesador. El grupo de datos ambientales muestra los datos 

provenientes de los sensores de temperatura, índice UV y presión atmosférica. 

La pestaña Imagen y Video contiene dos grupos, Estadísticas y cámara (Cam). El grupo de 

estadísticas contiene los datos estadísticos provenientes del procesamiento de imágenes de 

campos frutales. Dichas estadísticas consisten en el número de manchas, el número estimado 

de frutos, el color promedio, y las dimensiones de los objetos con los valores mínimo, 

promedio y máximo, especificados en pixeles. El grupo cámara, contiene la imagen procesada 

con un encuadre de los frutos detectados, un control para activar/desactivar la transmisión de 

video y un cuadro que muestra el video transmitido en tiempo real. 

La pestaña mapa muestra un solo grupo que contiene una plantilla que muestra un mapa y un 

botón que realiza una petición al sensor de geo-localización para mostrar la ubicación de la 

estación en el mapa. 

4.6. Conclusiones 

En este capítulo se expusieron todos los detalles respecto a la implementación de la estación y 

la aplicación web, comenzando con una descripción del hardware y el software utilizado junto 

con las configuraciones necesarias para la comunicación entre los dos extremos del sistema, 

para posteriormente desarrollar dos algoritmos de procesamiento de imágenes para el 
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problema objetivo de la tesis. Por último, se detalló la programación tanto de la estación como 

de la aplicación web. 
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5. EVALUACIÓN Y PRUEBAS EXPERIMENTALES 

5.1. Introducción 

En el presente capítulo se mostrarán los resultados de las pruebas realizadas empleando la 

estación prototipo. Estas pruebas consisten en el procesamiento de imágenes capturadas con 

la cámara web de la estación y la transmisión de los datos de los sensores y video a través de 

Internet con el protocolo MQTT. Además, se caracterizará el consumo energético de la 

estación considerando las diferentes funcionalidades disponibles. 

5.2. Escenarios de Pruebas 

Para las pruebas de procesamiento de imágenes se capturaron fotografías con la cámara web 

instalada en la estación. Dicha cámara permite capturar imágenes con una calidad ligeramente 

menor a la empleada para el desarrollo de los algoritmos en el Capítulo 4. En este caso, las 

fotografías tienen un tamaño de 544x288 pixeles y fueron tomadas en la granja “El Romeral”, 

propiedad de la Universidad de Cuenca, ubicada en el kilómetro 10 de la vía Paute-

Guachapala, que cuenta con gran cantidad de plantaciones frutales y de hortalizas. Las 

fotografías fueron tomadas a las tres de la tarde con un cielo parcialmente nublado, datos 

importantes para tener una idea de la iluminación presente en ese instante. Se decidió 

restringir las fotografías a un solo tipo de frutos que fueron manzanas, por tratarse de un fruto 

que resalta del fondo en el que se encuentra y que al momento de tomarse las fotografías 

estaban en etapa de cosecha por lo cual eran además bastante abundantes. 

La transmisión de los datos de los sensores y la cámara no se la realizó en el mismo sitio por 

dificultades del acceso a Internet. Estas pruebas se las realizó en un ambiente controlado con 

la estación conectada a Internet mediante Wifi usando la batería de la misma estación como 

fuente de energía. 

5.3. Procesamiento y Análisis de Imágenes 

Para el procesamiento de las imágenes capturadas se usó tanto el algoritmo de Thresholding 

reducido como el algoritmo de GMM con EM. En primer lugar, se expondrán los resultados con 

el uso del algoritmo de Thresholding reducido. Este algoritmo es casi idéntico al desarrollado 

en el Capítulo 4, con la única diferencia que el elemento estructural utilizado para la operación 

de closing es un disco de radio 2 pixeles en lugar de 3. Los resultados obtenidos se detallan en 

la Figura 45. 

En general los resultados son buenos puesto que la mayoría de los frutos han sido detectados, 

sin embargo en la Figura 45(b) y 45(d) se observan ramas o lotes de suelo que han sido 

identificadas como frutos, y en la Figura 45(e) existen ciertos frutos con coloración más tenue 

que no han sido detectados. 

Además de esto, si se realiza un acercamiento a ciertas zonas de las imágenes extrayendo la 

parte segmentada como frutos, tal como se lo observa en la Figura 46, se aprecia que no toda 

el área de los frutos ha sido segmentada, evitando una correcta extracción de las 

características de los frutos. Aun así, se recalca que este algoritmo tiene la ventaja de un bajo 
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coste de procesamiento, notándose que el tiempo en procesar cada imagen en la Raspberry Pi 

fue de aproximadamente 30 segundos. 

 

Figura 45 Resultados de detección de frutos con Thresholding reducido en varias imágenes 
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Figura 46 Acercamiento con segmentación extraída 

En cuanto al algoritmo de GMM con EM, se aplicó la misma solución de desarrollada en el 

capítulo anterior, es decir con 11 clusters para la segmentación, aunque reduciendo en este 

caso el elemento estructural de la operación closing a un disco de radio 2 pixeles. 

Se aplicó el esquema clásico para el uso de estos modelos, en el cual se realiza el ajuste con 

una imagen de prueba para posteriormente usarlo con todas las demás fotografías. No 

obstante, se presentó la dificultad de encontrar una imagen que dé buenos resultados para la 

detección de frutos en el resto de fotografías, tal como se lo observa en la Figura 47, en la cual 

se ven 2 imágenes de ajuste junto a 2 imágenes de prueba con resultados muy deficientes 

puesto que se pueden observar lotes de cielo y suelo identificados como frutos.  

 

Figura 47 Resultados fallidos de GMM con EM 
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Finalmente, se realizó un experimento usando la Figura 48 como imagen de ajuste 

obteniéndose en este caso buenos resultados, los cuales se los puede observar en la Figura 49. 

Dichos resultados, son mejores a los obtenidos con el algoritmo de Thresholding puesto que se 

observa menor cantidad de falsos positivos junto con una mejor segmentación. Sin embargo, 

el coste de procesamiento es mucho más alto, teniendo un tiempo de aproximadamente 21 

minutos en procesar una imagen en la Raspberry Pi. 

 

Figura 48 Imagen de ajuste seleccionada para la segmentación con el modelo GMM-EM 
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Figura 49 Resultados de detección de frutos con GMM mediante EM en varias imágenes 

5.4. Transmisión de Datos de Sensores y Video 

Para probar la efectividad de la transmisión de mensajes, mediante el protocolo MQTT, se 

diseñó un experimento que simula el envío simultáneo de datos desde seis nodos en intervalos 

de 30 segundos, empleando el nivel más bajo de QoS. El experimento se desarrolló hasta 

completar 100 mensajes por nodo, es decir un total de 600 mensajes en toda la simulación. 

Del lado del receptor en la aplicación web, se implementó un contador de mensajes. En la 

Figura 50 se muestra la programación realizada en Node-Red para dicha simulación. 

 

Figura 50 Simulación de transmisión de datos de sensores 
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Aunque el nivel más bajo de QoS en MQTT no garantiza la transmisión de los mensajes, al 

terminar la simulación se obtuvo que la totalidad de los mensajes fueron recibidos con éxito, lo 

cual prueba la efectividad de este protocolo y de la plataforma IoT de IBM como broker MQTT. 

En la Figura 51 se muestra el panel debug con los últimos mensajes que llegaron en la 

simulación. 

 

Figura 51 Panel debug con los resultados de la simulación 

En cuanto a la transmisión de video, pese a las limitaciones del protocolo MQTT analizadas en 

el apartado 4.4.3, durante los experimentos se consiguió una transmisión de video 

satisfactoria, con retrasos no muy marcados de entre 1 a 4 segundos. Dicho retardo, 

consideramos resulta admisible para la funcionalidad de video vigilancia que se desea incluir 

en la estación prototipo. 

5.5.  Caracterización del Consumo Energético 

Mediante el uso del sensor de corriente, se realizaron experimentos para caracterizar el 

consumo de energía que demanda la estación prototipo, según la funcionalidad que se 

encuentre activa. Con tal objetivo, se realizó un muestreo de la corriente cada 5 segundos, 

durante distintos intervalos de tiempo. Finalmente, los resultados de dichos intervalos fueron 

promediados para obtener una estimación. En primer lugar, se midió la corriente que consume 

la estación al ejecutar únicamente la aplicación de Node-Red, sin ningún proceso extra durante 

15 minutos. A continuación, se activaron todos los sensores incluyendo los sensores internos 

de la Raspberry Pi (temperatura y carga de la CPU) y tomando mediciones durante 15 minutos. 

Posteriormente, se obtuvieron las mediciones de corriente al realizar peticiones de ubicación 

con el GPS cada 5 segundos, de igual forma durante 15 minutos. En cuanto al consumo de 

corriente durante el procesamiento de imágenes se midió este parámetro durante los 22 

minutos que duró el procesamiento. Finalmente, durante otros 15 minutos se midió la 

corriente mientras se realizaba transmisión de video en vivo. Los resultados promedios de 

estas mediciones se presentan en la Tabla 10. Adicionalmente se presenta una estimación de 

la corriente que demandan las diferentes tareas de forma individual restando el consumo 

correspondiente a la aplicación de Node-Red. 
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Tabla 10 Consumo de corriente de las tareas de la estación 

Tarea Medición Promedio(mA) Estimación Consumo por 

Tarea (mA) 

Plataforma Node-Red 301 301 

Sensores 308 7 

GPS 323 22 

Procesamiento de 

imágenes 

398 97 

Transmisión de video 456 155 

Cabe indicar que la tarea “Plataforma de Node-Red” incluye el consumo de todos los procesos 

del sistema operativo. Por otra parte, en la Tabla 11, se ha definido un tiempo estimado de 

activación para cada una de las tareas a lo largo de un día. A partir, de dichos valores se calcula 

el consumo total de energía que requiere la estación. Además, considerando que la batería 

instalada en la estación tiene una capacidad de 10400mAH y el consumo total estimado es de 

7337mAH, la estación tendrá una autonomía estimada de 34 horas. 

 

 

 

 

 

Tabla 11 Consumo de energía estimado por tarea 

Tarea Tiempo estimado(H) 

Tiempo estimado(H) * 

(Promedio(mA) - consumo 

Plataforma Node-Red(mA)) 

Plataforma Node-Red 24 7224 mAH 

Sensores 0,00923077 0,06461538 mAH 

GPS 0,00555556 0,12222222 mAH 

Procesamiento de imágenes 0,36666667 35,5666667 mAH 

Transmisión de video 0,5 77,5 mAH 

Consumo de energía total 7337,2535mAH 
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5.6. Conclusiones 

En este capítulo se expuso los resultados de las pruebas realizadas sobre la estación para 

validar los algoritmos de procesamiento de imágenes usando fotografías tomadas con la 

cámara de la propia estación prototipo. Los resultados obtenidos con los dos algoritmos son 

satisfactorios. Sin embargo, cabe resaltar que el algoritmo de GMM con EM produce una 

mejor segmentación, aunque con un comportamiento mucho más lento que el algoritmo de 

Thresholding, el cual se podría implementar si se desea ahorrar una pequeña cantidad de 

energía. Además, se verificó la efectividad del protocolo MQTT para la transmisión de datos y 

video con tiempos de retardo admisibles para la aplicación diseñada. Por último, se analizó la 

autonomía energética de la estación, proceso necesario puesto que la estación podría 

emplazarse en un lugar remoto sin una fuente externa de energía. 
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6. CONCLUSIONES Y RECOMENDACIONES 
En este capítulo se presentan las conclusiones finales del trabajo de tesis, revisando 

brevemente sus principales características y funciones, junto con un conjunto de 

recomendaciones que podrían ser útiles para investigaciones futuras o para llevar la estación 

diseñada a operar en campos agrícolas. 

6.1. Conclusiones 

El trabajo realizado es un importante acercamiento entre la agricultura de precisión y el 

internet de las cosas, necesario para incrementar la tecnificación del campo. El conocer las 

variables ambientales de una parcela agrícola permite tomar acciones para optimizar recursos 

y aumentar la producción, y las fotografías de los frutos permiten estimar la fecha y magnitud 

de la cosecha, e incluso en trabajos futuros la información extraída podría ser usada para 

detectar enfermedades en la planta o problemas en la parcela. La estación diseñada es 

conveniente para nuestro medio en el cual el principal impedimento para esta tecnificación es 

el factor económico. 

Para su creación se revisó una gran cantidad de trabajos relacionados, estudiando los 

principales algoritmos usados para la segmentación de imágenes, las tecnologías usadas en el 

Internet de las cosas y las ventajas de usar servicios en la nube. 

El uso de los servicios de la nube de IBM como PaaS junto con el protocolo MQTT coloca a este 

trabajo en la escena actual de la emergente tecnología IoT y amplía la visión de las aplicaciones 

futuras que se pueden crear con ella. 

El problema de procesamiento de imágenes al que se hizo frente, mostró la complejidad de la 

segmentación de imágenes como método para la detección de objetos dentro de un fondo con 

texturas y tonalidades muy distintas en fotografías de resolución moderada. 

Los resultados del procesamiento de imágenes son satisfactorios, cumpliendo el objetivo de 

detectar efectivamente una gran cantidad de frutos y extraer información que puede ser útil 

en trabajos futuros. 

La transmisión de datos por MQTT mostró las ventajas de este protocolo, y por qué este se 

está convirtiendo en el más popular para aplicaciones IoT. Además, la transmisión de video 

mostró una aplicación no común sobre este protocolo con buenos resultados. 

La aplicación web creada permite el monitoreo de las variables de forma muy sencilla y desde 

cualquier lugar del mundo, además de permitir ubicar la estación gracias al sensor de geo-

localización. 

Por último, la caracterización de la energía de la estación permitió estimar el tiempo de 

autonomía energética, parámetro importante a considerar para mantener la estación 

operativa. 
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6.2. Recomendaciones 

Entre las principales recomendaciones para futuros trabajos, en primer lugar, se resalta la 

conveniencia de mejorar las capacidades del protocolo MQTT, para lo cual se podría crear un 

broker propio, y así evitar las limitaciones del tamaño máximo de los paquetes. 

En cuanto al procesamiento de imágenes, aunque los resultados obtenidos son en general muy 

buenos, se sugiere realizar un mayor número de experimentos, probando más algoritmos de 

segmentación, pre-procesamiento o post-procesamiento. No obstante, encontrar una solución 

definitiva resulta de gran complejidad, puesto que este es un problema muy dependiente de 

las condiciones lumínicas del lugar e incluso de la calidad de las imágenes que captura la 

cámara, razón por la cual tanto en el presente trabajo de tesis como en los trabajos 

relacionados que han sido analizados, se llega a una solución para un problema específico en 

forma de aproximación. 

Otra mejora que se podría dar al sistema, especialmente con un enfoque comercial, consiste 

en reducir la energía que consumen las tareas del sistema operativo, para así llegar a tener 

mayor tiempo de independencia. Esto se lo podría lograr desinstalando muchos de los 

programas que Raspbian trae instalados por defecto, o incluso, aunque mucho más 

demandante, se podría crear una distribución de Linux que solo tenga instalados los 

programas absolutamente necesarios. 

Una recomendación importante si se desea emplazar esta estación en el campo es construir un 

mejor encapsulado que la proteja de todas las inclemencias del clima. En particular, si se desea 

instalar la estación en un invernadero, el sistema debe estar muy bien refrigerado, debido a las 

altas temperaturas que se generan en estos ambientes, lo cual podría hacer difícil que la 

estación funcione sin una fuente de energía externa. 
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APENDICES 

A. Entorno de Trabajo IBM Cloud 

Para la fecha de realización de este trabajo la empresa IBM se encuentra en una etapa de 

transición de sus servicios en la nube, lo cual incluye, un cambio de nombre, de la dirección 

web y de la interfaz gráfica de su plataforma, aunque esencialmente sus servicios son los 

mismos. El nombre de dominio empleado inicialmente por la plataforma IBM Cloud fue 

Bluemix con su dirección asociada Bluemix.net, por tal razón la gran mayoría de 

documentación sobre este servicio está bajo ese nombre, e incluso dentro de la plataforma 

aún existe mucha referencia a dicho nombre, lo cual con esta aclaración no debería causar 

confusiones. Como se mencionó la interfaz gráfica también se encuentra en transición, pero 

por el momento aún se puede trabajar sobre ella en el dominio Bluemix.net. Sin embargo, 

considerando que esta interfaz se dará de baja a mediano plazo, no se trabajará sobre ella. 

Para trabajar sobre la plataforma actualizada se debe ingresar a la dirección cloud.ibm.com. 

Al ingresar en esta dirección se presenta la página de inicio de sesión como se muestra en la 

Figura 52. Para poder iniciar una sesión, es necesario contar con una cuenta de IBM, la misma 

que puede ser obtenida de forma gratuita, registrándose en su página. 

 

Figura 52 Página de inicio IBM Cloud 

Al iniciar sesión se presenta el panel de control de la plataforma IBM Cloud, en el cual se 

muestran ventanas sobre el resumen de recursos, las aplicaciones creadas, los costes por uso, 

manuales de usuario entre otras herramientas, como se muestra en la Figura 53. 
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Figura 53 Panel de control IBM Cloud 

En la esquina superior izquierda se muestra el menú de Navegación en el cual se encuentran 

los principales recursos disponibles, tal como se lo observa en la Figura 54. 

 

Figura 54 Menú de Navegación IBM Cloud 

Otro elemento importante a destacar, es el catálogo, cuyo botón de acceso se muestra en la 

parte superior de la interfaz de la plataforma. En el catálogo se puede visualizar todos los 

servicios a los que se puede acceder como herramientas de desarrollo, contenedores, 

inteligencia artificial, bases de datos, entre otros. En la Figura 55 se muestra dicho catálogo. 
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Figura 55 Catálogo IBM Cloud 

Para el caso del trabajo de tesis, los servicios empleados de este catálogo son Internet of 

Things Plataform y Node-Red Starter como se lo observa en la Figura 56. 

 

Figura 56 Servicios de IBM Cloud que se usarán 

B. Entorno de Trabajo Node-Red Starter 

Para iniciar la plataforma de desarrollo con Node-Red se busca en el catálogo la opción Node-

Red Starter que desplegará el formulario mostrado en la Figura 57: 

 

Figura 57 Instanciación de servicio Node-RED Starter 

Como se observa, se debe otorgar un nombre de la aplicación y un nombre de host. El resto de 

campos pueden mantenerse con sus valores por defecto siempre y cuando sea conveniente. 

En la sección de Selected Plan (Plan seleccionado) es importante colocar el servicio SDK for 

Node.js como “Default” y el servicio Cloudant como “Lite”. Tal configuración, se realiza para 

que el uso de la plataforma sea gratuito. Finalmente, es posible confirmar la opción “Create”, a 

continuación de lo cual se mostrará la ventana de Figura 58: 
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Figura 58 Ventana de inicio Node-RED Starter 

La captura de la Figura 58, corresponden a la interfaz gráfica de la plataforma. En particular, se 

distinguen dos secciones importantes. Por una parte, 1) el menú de la plataforma, en el cual se 

puede acceder tutoriales, detalles de uso, consola mediante conexión ssh (Secure Shell), 

registro de uso, entre otros. Además, se encuentra 2) la lista de recursos, en la cual se puede 

ver si la aplicación se está ejecutando, acceder a su URL y realizar acciones de gestión como 

por ejemplo iniciar, detener o reiniciar la aplicación. 

El uso de esta plataforma es gratuito si se trabaja bajo ciertas condiciones detalladas en los 

términos y condiciones de uso de la aplicación. Una de estas condiciones es que el tamaño de 

la aplicación no puede exceder los 256MB, lo cual para el presente trabajo resulta escaso. Para 

ampliar la capacidad hay que dirigirse a la opción Overview (Visión General). Aquí, en la opción 

MB Memory per instance hacemos clic en el signo más hasta llegar a 512, tal como se muestra 

en la Figura 59: 

 

Figura 59 Incremento de memoria de la instancia 

Una vez hecho esto y dar clic en guardar, se mostrará un mensaje que advierte que debemos 

cambiar de plan, lo que a su vez llevará a un formulario para ingresar la información de una 

tarjeta de crédito y datos adicionales. Luego de realizar este trámite se mostrará un mensaje 

confirmando que con el ingreso de los datos de la tarjeta de crédito ahora se puede usar hasta 

512MB sin costo adicional, por lo que el uso de la aplicación seguirá siendo gratuito. 

Finalmente hay que dirigirse al entorno de trabajo de Node-Red. Para esto, en la sección de 

lista de recursos se da un clic en “Visitar URL de la aplicación”, lo que conducirá a la ventana de 

inicio que se muestra en la Figura 60. 



Universidad de Cuenca 

   

Pablo Esteban Villota Neira 
Página 82 

 

Figura 60 Página de inicio del editor Node-RED 

Al dar clic en la opción Go to your Node-RED flow editor, se redirigirá a un formulario en el cual 

se debe ingresar los datos de un usuario que podrá modificar la aplicación, y luego de esto 

finalmente se mostrará el editor de Node-RED como se lo aprecia en la Figura 61: 

 

Figura 61 Editor Node-RED 

En este editor se distinguen seis partes importantes. 1) La paleta de nodos, donde se ubican 

todos los nodos o bloques con los que se programará la aplicación. 2) Pestañas de flujos de 

trabajo, es aquí donde se desplegarán los nodos de programación, cabe resaltar que los 

distintos flujos se ejecutan paralelamente. 3) Botón desplegar, este botón guarda los cambios 

realizados sobre los flujos de trabajo e inicia su ejecución. 4) Botón de registro, es necesario 

estar registrado para poder hacer cambios al programa. 5) Menú del editor, posteriormente se 

describirán algunas de sus opciones. 6) Pestañas de información, las mismas que alojan 

múltiple información, dependiendo de las librerías instaladas y de los nodos usados. Entre los 

datos  de mayor relevancia se encuentra, la información sobre los nodos, el panel de debug, la 

configuración del panel de control y la configuración de los bloques. 
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En cuanto al menú del editor, observado en la Figura 62, las opciones más importantes son: 

Importar, que permite ingresar código en formato json para desplegar los nodos 

correspondientes, además se puede encontrar ejemplos de las librerías instaladas. Exportar, 

con el cual se puede respaldar la programación de los nodos en formato json. Manage palette, 

esta opción desplegará una ventana en la cual es posible verificar las librerías instaladas, así 

como instalar nuevas librerías. En la Figura 63 se muestra una captura de esta ventana. 

 

Figura 62 Menú del editor Node-RED 

 

Figura 63 Ventana de "Manage Palette" 

Este editor estará disponible en la URL [Nombre de host].mybluemix.net. Para el caso del editor 

en los dispositivos, se puede acceder con cualquier explorador web en la URL [ip privada del 

host]:1880. 

C. Entorno de Trabajo IBM Watson IoT 

Para usar la plataforma IBM Watson IoT, se debe iniciar una nueva instancia de la plataforma 

buscándola en el catálogo como Internet of Things Platform. Se solicitará asignar un nombre al 

servicio, y en cuanto al resto de opciones, se pueden emplear los valores por defecto. El 

formulario para ingresar estos datos se muestra en la Figura 64. 



Universidad de Cuenca 

   

Pablo Esteban Villota Neira 
Página 84 

 

Figura 64 Formulario de instanciación IBM Watson IoT 

Al aceptar la opción “Create”, se mostrará la ventana indicada en la Figura 65, en la cual se 

detalla la cantidad de datos intercambiados y disponibles. También se presenta la opción para 

modificar el plan y vincular más servicios con la plataforma. En la sección, Manage se 

encuentra el botón Lanzar, el cual conduce al entorno de trabajo de IBM Watson IoT. 

 

Figura 65 Administrador de la instancia IBM Watson IoT 

En la plataforma se distinguen dos partes importantes. 1) El Menú de la plataforma, en la cual 

se puede observar  botones con los cuales acceder  a la administración de los dispositivos, los 

usuarios, las aplicaciones, las reglas de seguridad, entre otros. Las dos opciones que se 

emplearon en el presente trabajo fueron los dispositivos y las aplicaciones. 2) Información de 

la cuenta, donde se muestra el usuario que está empleando la plataforma y el ID de la 

organización, el cual será necesario al momento de configurar la comunicación entre el 

dispositivo y la aplicación web. La ventana de esta plataforma se la observa en la Figura 66. 
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Figura 66 Plataforma IBM Watson IoT 

D. Registro de Dispositivos en la Plataforma IBM Watson IoT 

Dentro de la plataforma IBM Watson IoT en la opción de Dispositivos, como primer paso se 

debe crear un tipo de dispositivo. Los tipos de dispositivos sirven para englobar un conjunto de 

características comunes entre un grupo de dispositivos. En este caso, se creará un tipo de 

dispositivo al que se ha denominado “Raspberry”. Además del nombre, para crear un tipo de 

dispositivo también se piden datos como el número de serie, modelo, descripción, versión del 

hardware, fabricante, clase de dispositivo, versión del firmware y ubicación descriptiva. Sin 

embargo, estos datos son opcionales y se los puede dejar en blanco. Los formularios para 

ingresar esta información se presentan en la Figura 67 y Figura 68. 

 

Figura 67 Formulario tipo de dispositivo 
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Figura 68 Datos adicionales tipo de dispositivo 

Una vez definido el tipo, a continuación se procede a crear el dispositivo, para ello se 

selecciona el tipo de dispositivo y se le coloca un ID única que en este caso será “RasPi1”, 

como se puede apreciar en la Figura 69. 

 

Figura 69 Ventana nuevo dispositivo 

Posteriormente, se solicitan datos adicionales, los cuales en su mayoría son de tipo opcional y 

pueden omitirse. Además, se pueden añadir metadatos en formato JSON. Dicho formulario se 

muestra en la Figura 70. 

 

Figura 70 Datos adicionales del dispositivo 

Por último, se tendrá que proporcionar una señal de autenticación para el dispositivo, tal como 

se lo observa en la Figura 71. En caso de no especificarse una, ésta será generada de forma 

automática.  
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Figura 71 Formulario para la señal de autenticación del dispositivo 

Una vez creado el dispositivo se visualizará un resumen de sus datos junto con la señal de 

autenticación, la cual deberá ser recordada, puesto que no se podrá acceder a ella 

nuevamente. 

Las credenciales del dispositivo habilitan la conexión del lado del dispositivo, pero para 

habilitar la conexión del lado de la aplicación web es necesario generar una clave de API y sus 

correspondientes tokens de aplicación. Para ello, hay que dirigirse a la pestaña de 

“Aplicaciones” ubicada en el menú principal de la plataforma Watson y posteriormente dar clic 

en el botón “Generar clave de API”. Como resultado, se desplegará el formulario mostrado en 

la Figura 72, para agregar una descripción y una fecha de caducidad de la clave, los cuales son 

opcionales. 

 

Figura 72 Datos adicionales para la clave de API 

Al presionar siguiente, se mostrará un formulario para ingresar el rol de la aplicación. En este 

campo se selecciona la opción “Aplicación estándar”. Finalmente se genera la clave, 

visualizándose en pantalla junto con la señal de autenticación. Nuevamente se debe tomar en 

cuenta, que esta información debe ser anotada, puesto que no volverá a mostrarse. En la 

Figura 73, se presentan estos datos 
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Figura 73 Datos de la clave de API 

E. Instalación de los Sensores de Recolección de Datos 

 Instalación Sensor INA219 

Para poder usar el sensor INA219 es necesario instalar la librería que abstrae el uso de sus registros. Al 

momento existen dos librerías, pi-ina219 y Adafruit_CircuitPython_INA219. Esta última se ejecuta sobre  

CicuitPython. Se optó por la primera alternativa, la cual se puede instalar usando el siguiente comando 

desde la terminal 

$sudo pip uninstall pi-ina219 

El programa desarrollado en Python realiza lecturas periódicas del sensor, empleando para ello el 

método getCurrent_mA().  

Cuando el nodo de ejecución en Node-RED corre este, o cualquier otro de los programas 

implementados, recoge los datos impresos en pantalla y los envía al siguiente nodo, que en este caso es 

el wiotp out, el cual se encarga de enviar los datos a la nube de IBM. 

 Instalación Sensor BME280 

Para manejar el sensor BME280, se usa la librería adafruit_bmp280, escrita originalmente para el 

intérprete Circuitpython. Para usar dicha librería, previamente se debe instalar la librería adafruit-blinka 

que funciona como una capa intermedia entre el intérprete Python 3.4 y la API de hardware en 

Circuitpython. Esta librería se instala usando el Gestor de Paquetes de Python (pip) ingresando los 

siguientes comandos en el terminal. 

$ sudo pip3 install --upgrade setuptools 

$ pip3 install RPI.GPIO 

$ sudo pip3 install adafruit-blinka 

A continuación, se instala la librería adafruit_bmp280 con el siguiente comando. 

$ sudo pip3 install adafruit-circuitpython-bmp280 

Hecho esto, es necesario adicionar un último paso. La librería adafruit_bmp280 está creada para el 

sensor BMP280. El sensor BME280 es la nueva generación de los sensores de temperatura y presión, y 

aunque tiene muchas semejanzas con el sensor BMP280, difiere en ciertos aspectos, uno de ellos es su 

número de identificación de chip. En el BMP280 es 0x58 y en el BME280 es 0x60. Dicha identificación se 

encuentra alojada en el registro 0xD0 de la memoria del sensor. Así, para poder usar la librería es 

https://github.com/adafruit/Adafruit_CircuitPython_INA219
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necesario modificarla para que reconozca este nuevo número de identificación. Para ello se ingresa en el 

código de la librería con el comando. 

$ sudo nano /usr/local/lib/python3.4/dist-packages/adafruit_bmp280.py 

Aquí se buscará la línea 44 correspondiente al comando: _CHIP_ID = const(0x58) y se la cambiará por 

_CHIP_ID = const(0x60). 

Una vez completado estos pasos, es posible realizar lecturas de los datos de temperatura y presión con 

los métodos temperature y pressure de la librería. Es importante resaltar que este programa correrá 

solamente en Python3 

 Instalación Sensor SI1145 

El sensor SI1145 utiliza la librería disponible en Github bajo el nombre Python_SI1145. Una vez 

descargada se la descomprime y dentro de su carpeta se ejecuta el siguiente comando desde la terminal. 

$sudo python setup.py install 

Una vez instalado, se puede leer los datos del sensor con el método readUV(). 

 Sensores de Temperatura y Carga del Procesador 

Para la recolección de los datos de la temperatura del procesador no se requieren librerías extra, ya que 

basta ejecutar el comando “vcgencmd measure_temp”, el cual imprime la temperatura en pantalla. En 

este caso, se implementó un script en bash, para realizar periódicamente esta lectura y colocar los datos 

en formato JSON. 

Para obtener la carga del CPU es necesario instalar el módulo psutils, con los comandos: 

$sudo apt-get install build-essential python-dev python-pip 

$sudo pip install psutil 

Con esto se puede realizar un script en Python obteniendo la carga del procesador con el método 

get_cpuload(). 

 Instalación Sensor de Geo-localización 

Para el funcionamiento del sensor de geo-localización es preciso instalar la librería gpsd con el comando. 

$sudo apt-get install gpsd gpsd-clients 

Luego es necesario desactivar la instancia de gpsd, la cual es inicializada durante la instalación, para esto 

se ejecutan los siguientes comandos. 

$sudo systemctl stop gpsd.socket 

$sudo systemctl disable gpsd.socket 

Después se debe iniciar el servicio de gpsd con el siguiente comando. 

$sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock 

Es importante que este comando sea ejecutado con el dispositivo USB correspondiente al GPS, en este 

caso fue ttyUSB0. Este comando debe ser ingresado manualmente en cada ocasión luego de encender el 

dispositivo. 
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Luego de realizados estos pasos se requiere instalar la librería de Python, para lo cual se usa el gestor de 

librerías pip3 con el siguiente comando. 

$pip3 install gps 

Con la librería ya instalada se puede escribir un script en Python para obtener las coordenadas del GPS. 

En el script, luego de importar la librería, se pueden leer los reportes creados por el dispositivo. El 

dispositivo crea gran cantidad de datos dispuestos en reportes expresados en formato JSON. Para el caso 

de las coordenadas, se debe encontrar el reporte cuya clase sea ‘TPV’ y leer los campos “lat” y “lon”. 

Luego estos datos se los coloca en formato JSON y se los imprime en pantalla para que puedan ser 

recogidos por el nodo de ejecución de Node-RED. 

F. Diseño de las Placas Electrónicas 

El diseño de la placa electrónica para integrar los sensores ambientales y de corriente se lo 

realizó sobre una placa de fibra de vidrio de doble cara. Además de las conexiones de estos 3 

módulos de sensores, también se incluyó 3 indicadores leds, una salida para otra placa con 

botones y pines para la conexión I2C (Inter Integrated Circuits) de un sensor extra que se 

podría conectar eventualmente. El diseño electrónico de la placa se muestra en la Figura 74. 

 

Figura 74 Placa electrónica de sensores (izq.) Cara superior (der.) Cara inferior 

La placa de botones es más sencilla y de menor dimensión, tiene solo una cara con espacios 

para conectar 3 botones. Estos botones tienen la finalidad de realizar acciones sobre la 

estación sin tener que escribirlos sobre la línea de comandos, por ejemplo, para tomar 

fotografías. El diseño de esta placa se muestra en la Figura 75. 
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Figura 75 Placa de botones 

G. Encapsulado de la Estación 
Con el fin de agrupar todos los elementos de la estación (Raspberry Pi, módulos de sensores, 

placas electrónicas, cámara, batería, módulo GPS y cables), se construyó un encapsulado en 

acrílico de 3mm como se lo observa en la Figura 76. En la Figura 77 se muestran los planos de 

este encapsulado. 

Por motivos de visualización se colaron solo las principales cotas, las cuales se encuentran en 

milímetros. 

 

Figura 76 Ensamble de la estación 
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Figura 77 Encapsulado de la estación 

H. Código de Segmentación con GMM 
A continuación, se detalla el código desarrollado para la segmentación de las imágenes 

mediante el algoritmo GMM 

#Librerías necesarias 

import numpy as np 

from sklearn.mixture import GaussianMixture 

import cv2 

import time 

 

#####DATOS DE ENTRADA########### 

n_clusters=11 
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#Definimos la imagen de entrada para ajustar el modelo 

X = cv2.imread('ajuste.jpg') 

#imagen en la que se realizará la predicción 

X2= cv2.imread('test.jpg') 

#Capturamos tiempo de ejecución 

tiempo=time.strftime("%H%M%S") 

################################################ 

################################################ 

#cambiamos el espacio de color a LAB 

lab = cv2.cvtColor(X, cv2.COLOR_BGR2LAB) 

#Se colocan los pixeles de forma plana en un array 

#Cada columna será un color(dimensión) 

a,b,c=X.shape#a+b es el número de pixeles, c las 

dimensiones(componentes LAB) 

ent=lab.reshape(a*b,c) 

 

#####AJUSTE DEL MODELO########## 

#Se ajusta los datos de entrada a los clusters deseados 

GMM = GaussianMixture(n_components=n_clusters).fit(ent)  

######################################## 

#### Predicción de la imagen####### 

######################################## 

lab = cv2.cvtColor(X2, cv2.COLOR_BGR2LAB) 

a,b,c=X2.shape 

ent=lab.reshape(a*b,c) 

#en clusters se guarda el número del cluster en el cual 

#es más probable que pertenezca el pixel 

clusters=np.array([],dtype=int) 

 

#Se hace una predicción de cluster con cada pixel 

for i in range(a*b): 

#prediction devuelve un arreglo con la probabilidad de que el pixel 

este en cada cluster 

    prediction=GMM.predict_proba(ent[i].reshape(1,3)) 

#Se elige el cluster con mayor probabilidad 

    pos=np.argmax(prediction) 

    clusters=np.append(clusters,pos) 

 

######################################### 

######################################### 

######################################### 

#Para saber en que cluster está el fruto 

#muestra de un punto rojizo en LAB 

muestraR=np.array([ 75, 151, 136]) 

pred=GMM.predict_proba(muestraR.reshape(1,3)) 

frutos=np.argmax(pred) 

 

 

#Selec es el número de cluster seleccionado 

selec=frutos 

#binaria guardará los pixeles en binario 

binaria = np.copy(X2[:,:,2].flatten()) 

#pinta de negro los elementos del cluster 

for i in range(a*b): 

    if clusters[i]==selec: 

        binaria[i]=0 

        #binaria=np.append(binaria,0) 

    else: 
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        #binaria=np.append(binaria,254) 

        binaria[i]=255#blanco 

 

 

#Se guarda la imagen 

cv2.imwrite('binaria.png',binaria) 

 

######Elementos##### 

#Se guardara los elementos con los colores normales 

selec=frutos 

#elementos = np.copy(X[:,:,2].flatten()) 

original=X2.reshape(a*b,c) 

elementos = np.copy(original) 

#pinta de negro los elementos del cluster 

for i in range(a*b): 

    if clusters[i]==selec: 

        elementos[i]=original[i] 

        #binaria=np.append(binaria,0) 

    else: 

        #binaria=np.append(binaria,254) 

        elementos[i]=np.array([255,255,255]) 

        #elementos[i]=muestraR 

 

 

# Se guarda la imagen 

elementos=elementos.reshape(a,b,c) 

cv2.imwrite("elementos"+tiempo+".png",elementos) 

################################################# 

 

#Operaciones Morfológicas 

 

#####Entrada de datos########## 

img =binaria 

#Definicion del kernel 

#kernel=np.array([[0,1,0],[1,1,1],[0,1,0]],np.uint8) 

kernel=np.array([[0,1,1,1,0],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[0

,1,1,1,0]],np.uint8) 

 

##Closing########### 

closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) 

cv2.imwrite("closing"+tiempo+".png",closing) 

 

 

##########ETIQUETAS EN LOS OBJETOS##################### 

#convertimos en binaria(0 o 1) 

#Se usa THRESH_BINARY_INV para que el fondo sea cero y los objetos 

255 

entrada = cv2.threshold(closing, 127, 255, 

cv2.THRESH_BINARY_INV)[1] 

# La conectividad puede ser 4 u 8 

conectividad = 4   

# Algoritmo de Labeling Connected components con estadisticas 

salida = cv2.connectedComponentsWithStats(entrada,conectividad, 

cv2.CV_32S) 

# La salida se divide en 4 parametros: 

# Numero de etiquetas(labels) 

num_labels = salida[0] 

# Imagen con etiquetas numeradas 
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labels = salida[1] 

# Estadisticas(leftmost, topmost, weight, height, area) 

stats = salida[2] 

# centroides 

centroids = salida[3] 

 

 

#Conteo de frutos: Conteo de todas las manchas, y aquellas muy 

grandes 

#se las divide sobre el tamaño promedio del objeto y se toma el 

entero 

#El fondo de la imagen será el que más pixeles tenga 

fondo=np.amax(stats[:,4]) 

#tamaño de un objeto promedio 

prom=120 

cont=0 

for i in range(num_labels): 

 if stats[i][4]<fondo: 

  if stats[i][4]>=prom: 

   temp=int(stats[i][4]/prom) 

   cont=cont+temp 

  else: 

   cont=cont+1 

 

#----------------------------------------------------------------- 

####Calculo del color promedio###########3 

ImgColor = cv2.imread("elementos"+tiempo+".png") 

vectorColor=np.array([]) 

####Color Promedio#### 

a,b=closing.shape 

for i in range(a): 

 for j in range(b): 

  if closing[i][j]==0: 

   vectorColor=np.append(vectorColor,ImgColor[i][j]) 

 

c=vectorColor.shape 

vectorColor=vectorColor.reshape(int(c[0]/3),3) 

ColorPromedio=np.mean(vectorColor,0) 

ColorPromedio=ColorPromedio.astype(int) 

 

############################## 

#######Estadisticas######### 

#Se obtiene el valor de area del mayor objeto, el menor y el 

promedio 

fondoIndex=np.argmax(stats[:,4]) 

statsSinFondo = np.delete(stats,fondoIndex,0) 

objetoMin=np.amin(statsSinFondo[:,4]) 

objetoMax=np.amax(statsSinFondo[:,4]) 

objetoProm=int(np.mean(statsSinFondo[:,4])) 

 

#####REPORTE######### 

print("#######REPORTE DE ESTADÍSTICAS######") 

print("Número de manchas:                 "+str(num_labels-1)) 

print("Número estimado de frutos:         "+str(cont)) 

print("Color promedio de los frutos(BGR): "+str(ColorPromedio)) 

print("Tamaño objeto mínimo(pixeles):     "+str(objetoMin)) 

print("Tamaño objeto máximo(pixeles):     "+str(objetoMax)) 

print("Tamaño objeto promedio(pixeles):   "+str(objetoProm)) 
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print("###################################") 

################################ 

#######Cuadrados sobre objetos 

#original = cv2.imread('ImagTest.png') 

#aqui se modifica el vector X2 

for i in range(num_labels-1): 

 cv2.rectangle(X2, (statsSinFondo[i][0], statsSinFondo[i][1]), 

(statsSinFondo[i][0]+statsSinFondo[i][2], 

statsSinFondo[i][1]+statsSinFondo[i][3]), (0, 255, 0), 1) 

 

cv2.imwrite("cuadrados"+tiempo+".jpg",X2) 

#cv2.imshow('cuadrados',original) 

#cv2.waitKey(0) 

 

I. Código de Segmentación con Thresholding 
A continuación, se detalla el código desarrollado para la segmentación de las imágenes 

mediante el algoritmo Thresholding. 

import numpy as np 

from sklearn.mixture import GaussianMixture 

import cv2 

import time 

 

#####DATOS DE ENTRADA########### 

#Definimos la imagen de entrada 

X = cv2.imread('test.jpg') 

tiempo=time.strftime("%H%M%S") 

################################################ 

################################################ 

#cambiamos el espacio de color a HSV 

hsv = cv2.cvtColor(X, cv2.COLOR_BGR2HSV) 

 

#Definimos la máscara que se usará 

#Esta máscara está compuesta por 2 sub-máscaras 

#sub máscara 1 

 

lower_red = np.array([0,65,70]) 

upper_red = np.array([20,255,255]) 

mask1 = cv2.inRange(hsv, lower_red, upper_red) 

 

##sub máscara 2 

lower_red = np.array([140,65,70]) 

upper_red = np.array([180,255,255]) 

mask2 = cv2.inRange(hsv,lower_red,upper_red) 

#Máscara final 

mask1 = mask1+mask2 

 

#Invertimos las máscara 

mask2 = cv2.bitwise_not(mask1) 

res1 = cv2.bitwise_and(X,X,mask=mask1) 

 

bina=np.copy(res1) 

 

a,b,c=res1.shape 

for i in range(a): 

 for j in range(b): 
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  if (res1[i][j][0]==0) and (res1[i][j][1]==0) and 

(res1[i][j][2]==0): 

   res1[i][j][0]=255 

   res1[i][j][1]=255 

   res1[i][j][2]=255 

 

 

cv2.imwrite("elementos"+tiempo+".png",res1) 

 

binaria = cv2.bitwise_not(bina,mask=mask2) 

binaria=binaria[:,:,0] 

#---------------------------------------------------------------- 

#Operaciones Morfológicas 

#####Entrada de datos########## 

#img = cv2.imread('binaria.png',0) 

img =binaria 

#Definicion del kernel 

kernel=np.array([[0,1,0],[1,1,1],[0,1,0]],np.uint8) 

#kernel=np.array([[0,1,1,1,0],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[

0,1,1,1,0]],np.uint8) 

 

##Closing########### 

closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) 

cv2.imwrite("closing"+tiempo+".png",closing) 

 

##########ETIQUETAS EN LOS OBJETOS##################### 

#convertimos en binaria(0 o 1) 

#Se usa THRESH_BINARY_INV para que el fondo sea cero y los objetos 

255 

entrada = cv2.threshold(closing, 127, 255, 

cv2.THRESH_BINARY_INV)[1] 

# La conectividad puede ser 4 u 8 

conectividad = 4   

# Algoritmo de Labeling Connected components con estadisticas 

salida = cv2.connectedComponentsWithStats(entrada,conectividad, 

cv2.CV_32S) 

# La salida se divide en 4 parámetros: 

# Numero de etiquetas(labels) 

num_labels = salida[0] 

# Imagen con etiquetas numeradas 

labels = salida[1] 

# Estadisticas(leftmost, topmost, weight, height, area) 

stats = salida[2] 

# centroides 

centroids = salida[3] 

 

 

#Conteo de frutos: Conteo de todas las manchas, y aquellas muy 

grandes 

#se las divide sobre el tamaño promedio del objeto y se toma el 

entero 

#El fondo de la imagen sera el que mas pixeles tenga 

fondo=np.amax(stats[:,4]) 

#tamaño de un objeto promedio 

prom=120 

cont=0 

for i in range(num_labels): 

 if stats[i][4]<fondo: 
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  if stats[i][4]>=prom: 

   temp=int(stats[i][4]/prom) 

   cont=cont+temp 

  else: 

   cont=cont+1 

 

#----------------------------------------------------------------- 

####Calculo del color promedio###########3 

ImgColor = cv2.imread("elementos"+tiempo+".png") 

vectorColor=np.array([]) 

####Color Promedio#### 

a,b=closing.shape 

for i in range(a): 

 for j in range(b): 

  if closing[i][j]==0: 

   vectorColor=np.append(vectorColor,ImgColor[i][j]) 

 

c=vectorColor.shape 

vectorColor=vectorColor.reshape(int(c[0]/3),3) 

ColorPromedio=np.mean(vectorColor,0) 

ColorPromedio=ColorPromedio.astype(int) 

 

############################## 

#######Estadisticas######### 

#Se obtiene el valor de área del mayor objeto, el menor y el 

promedio 

fondoIndex=np.argmax(stats[:,4]) 

statsSinFondo = np.delete(stats,fondoIndex,0) 

objetoMin=np.amin(statsSinFondo[:,4]) 

objetoMax=np.amax(statsSinFondo[:,4]) 

objetoProm=int(np.mean(statsSinFondo[:,4])) 

 

#####REPORTE######### 

print("#######REPORTE DE ESTADÍSTICAS######") 

print("Número de manchas:                 "+str(num_labels-1)) 

print("Número estimado de frutos:         "+str(cont)) 

print("Color promedio de los frutos(BGR): "+str(ColorPromedio)) 

print("Tamaño objeto mínimo(pixeles):     "+str(objetoMin)) 

print("Tamaño objeto máximo(pixeles):     "+str(objetoMax)) 

print("Tamaño objeto promedio(pixeles):   "+str(objetoProm)) 

print("###################################") 

################################ 

#######Cuadrados sobre objetos 

#original = cv2.imread('ImagTest.png') 

#aqui se modifica el vector X2 

for i in range(num_labels-1): 

 cv2.rectangle(X, (statsSinFondo[i][0], statsSinFondo[i][1]), 

(statsSinFondo[i][0]+statsSinFondo[i][2], 

statsSinFondo[i][1]+statsSinFondo[i][3]), (0, 255, 0), 1) 

 

cv2.imwrite("cuadrados"+tiempo+".jpg",X) 

 

 

 

 


