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Resumen: 

Con el objetivo de determinar la viabilidad productiva del sistema biofloc en cultivo dulceacuícola 

de L. vannamei Post larva 14 (PL14) durante 90 días, se emplearon un total de 25000 organismos; 

distribuidos en 3 lotes, cada uno con 5000 individuos: L1 con sus dos repeticiones: L2 y L3 

conformaron el lote de estudio; Lote 4 = control positivo y Lote 5= control negativo; las PL fueron 

distribuidas mediante un diseño completamente al azar, se evaluaron las variables : supervivencia 

en el período de aclimatación y el análisis químico del agua(Nitrogeno Amoniacal Total). Durante 

el período de aclimatación (día 13) se registró la mortalidad del 100 % de las PL14 al alcanzar 

salinidades de 0 ppt. El desarrollo de los flóculos microbianos en agua dulce durante 14 semanas 

fue viable, reportando volúmenes de 16 ml/L. Se registró un desbalance iónico del ratio Na+: K+ 2:5, 

en la calidad de agua usada para el período de aclimatación y el crecimiento de los flóculos. Se 

concluye que existió concentraciones altas de NAT (Nitrógeno Amoniacal Total) y variaciones de 

pH (P < 0.05) durante la aclimatación. Si embargo, no se reportó influencia de temperatura (P >0.05) 

sobre el período de aclimatación y crecimiento del flóculo microbiano. 
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Abstract:  

 

To determinate the productive viability of the biofloc system in freshwater cultivation of L. 

vannamei Post larva 14 (PL14) for 90 days, n = 25,000 total organisms were used, distributed in 3 

lots, each one with 5000 individuals: L1 with two repetitions: L2 and L3, formed the study lot; Lot 4= 

positive control, Lot 5= negative  control, the PL were distributed  by a completely randomized 

design, the studied variables were: survival in the acclimation period and water chemical analyzes 

(Total Ammoniacal Nitrogen ). However, in the acclimation period (day 13), mortality of 100% of 

the PL14 was recorded when reaching salinities of 0 ppt. The development of microbial flocks in 

fresh water for 14 weeks was viable, reporting volumes of 16 ml / L. An ionic imbalance of the Na +: 

K + 2: 5 ratio was noted in the quality of the water used for the acclimation period and flocs 

development. It is concluded that, there are high variations of NAT (Total Ammoniacal Nitrogen) and 

pH variations (P <0.05) during acclimation. However, no temperature influence (P> 0.05) on the 

period of acclimation and growth of the microbial floc was reported. 
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ABREVIATURAS Y SIMBOLOGÍA 

BF : Biofloc. 

BFT: tecnología biofloc 

NAT: Nitrógeno amoniacal total 

PL: Post Larvas 

m: metros 

g: gramos 

mg: miligramos 

µ: micras 

oC: grados centígrados. 

t: tonelada 

ha: hectárea. 

cam: camarón 

m2: metro cuadrado 

ppt: partes por mil 

ppm: partes por millón 
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1. INTRODUCCIÓN 
 

Uno de los mayores desafíos a nivel mundial es, abastecer la demanda alimenticia de más de 9.000 

millones de personas para el año 2050; en términos de este propósito, se plantea el uso de prácticas 

acuícolas, como el cultivo de especies marinas en medios dulces y que brinden seguridad 

alimentaria. La acuicultura como práctica ha alcanzado un importante desarrollo productivo frente 

a la pesca, superándola, en el 2014 con 73.8 millones de toneladas(FAO, 2016). Actualmente 

representa el 44,1% de la producción acuícola global. En América Latina y el Caribe se produce el 

76% del pescado de agua dulce además del 42% del camarón que se consume en el mundo(FAO, 

2017).  

Ecuador es el tercer país de la región dedicado a la práctica acuícola, por consiguiente, la 

camaronicultura se ha convertido en una gran fuente económica; su comercialización permite 

ingresos de 2372 millones de dólares equivalente al 19% de las exportaciones no 

petroleras(Darwin, 2015); por lo tanto el sector camaronero demanda la implementación de 

biotecnologías que generen bajo impacto ambiental y ayuden a reducir costos de inversión y 

producción. La acuicultura de L. vannamei en agua dulce se desarrolla con gran potencial, estudios 

(Leon, 2015) demuestran que la larva tiene una supervivencia del 70 a 80%, a temperatura de 24 

oC en este medio, pero, la alimentación representa el 50% de los costos de 

producción(Emerenciano, 2011). 

La implementación de  tecnología biofloc en la camaronicultura de agua dulce, podría reducir el uso 

y desperdicio  del alimento (Leon, 2015). Además el sistema biofloc evita el recambio de agua de 

los estanques(Emerenciano, Ballester, Cavalli, y Wasielesky, 2012), además , la cantidad de 

nitrógeno inorgánico producida por el metabolismo de los camarones es controlada gracias al 

crecimiento de organismos heterotróficos que compiten por las fuentes de nitrógeno (Emerenciano, 

2013). El  crecimiento de estos organismos se logra por el uso de fuentes de carbono, obteniendo 

1.6 kg de biomasa por cada kilogramo de fuente de carbohidrato(Leon, 2015). La acumulación de 

microrganismos permite la formación del flóculo, del cual se alimentan mayormente los camarones, 

cada mililitro de flóculos contiene entre 10-30 mg de materia seca(Avnimelech, 2014).  

Otro aspecto a resaltar de los biofloc es su actividad probiótica, prebiótica, antibiótica y antifúngica 

(Ekasari, 2014). Los microorganismos formadores del flóculo, primordialmente los de  las familias 

Proteobacteria, Bacteroidetes, Cianobacteria, Actinobacteria, Plantomycetes, Verrumibrobia 

(Cardona et al., 2016),  actúan como ácidos orgánicos, ejerciendo un bio-control en el intestino del 
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camarón. Un componente sintetizado por estos microorganismos es el granulo de poly-ß-

hydroxybutyrato (PHB), el cual actúa como antibiótico inhibiendo el crecimiento de bacterias 

patógenas mediante la alteración en la permeabilidad de la pared bacteriana(Salmah, Ahmed, 

Atkinson, Desbois, y Little, 2018). A nivel externo los componentes del flóculo compiten contra los 

patógenos por el espacio, substrato y nutrientes como el nitrógeno, lo que limita el crecimiento de 

microorganismos perjudiciales(Emerenciano, 2013). 

En Ecuador no existe suficientes datos sobre el uso de biofloc en agua dulce para la crianza de 

L.vannamei aclimatado a 0ppt; el implemento de esta biotecnología en el país permitiría la 

optimización de recursos naturales y cuidado ambiental, esto le otorgaría una mejor competitividad 

con los países productores de camarón como China y Tailandia(FAO, 2016).  

 

1.1.1. Objetivos 

1.1.2. Objetivo general. 

 

Analizar el efecto de la sustitución de alimento comercial por sistema biofloc en cultivo 

dulceacuícola de camarón (Litopenaeus vannamei) para determinar su viabilidad.  

 

1.1.3. Objetivos Específicos. 
 

1.1.3.1. Fase 1: Sistemas de aclimatación para Post larvas (PL14) y Formación del 
Biofloc  

 

• Evaluar la viabilidad de las Post Larvas 14 en medio dulceacuícola mediante el parámetro 

de supervivencia. 

 

• Comprobar la formación de floculo microbiano en medio dulceacuícola mediante el descenso 

en las concentraciones del Nitrógeno Amoniacal Total (NAT). 

 

1.1.3.2. Fase 2: Bioensayo de cultivo L. vannamei  

• Comparar el efecto de los tratamientos sobre los parámetros productivos (factor de 

conversión alimenticia, ganancia de peso, supervivencia, tasa de crecimiento específica) de 

L. vannamei. 
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• Comparar el efecto de los tratamientos sobre los parámetros de calidad de agua (oxígeno 

disuelto, nitrógeno amoniacal total) en el sistema biofloc. 

 

1.2.  Hipótesis   

La sustitución de alimento comercial por sistema biofloc en cultivo de camarón (Litopenaeus 

vannamei) en agua dulce es viable para fines productivos. 
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2. REVISIÓN DE LITERATURA 
 

2.1. Sistema Biofloc  
 

2.1.1.  Generalidades del Sistema Biofloc 

 

 

El desarrollo de la tecnología biofloc inició en los años 70 en Francia, experimentando con el cultivo 

de Penaeus monodon, Fenneropenaeus merguiensis, L. stylirostris y L. vannamei (Cuzon,2011). 

Sin embargo, en 1980 se iniciaron estudios que permitieron entender mejor la función del biofloc. 

Al inicio de 1990, Israel y USA incursionaron con el cultivo de tilapia y L. vannamei mediante el uso 

de sistemas biofloc. En Latinoamérica, la implementación del biofloc con fines comerciales, permitió 

que Belice alcanzará una producción de 26 ton/ha/ciclo de camarón (Emerenciano M, Cuzon, 

Goguenheim, y Gaxiola, 2011), donde se ratificó el beneficio productivo del sistema. Actualmente 

está biotecnología se ha expandido mundialmente, por lo tanto, numerosos estudios se llevan a 

cabo en busca de un mejor entendimiento y aplicación del BFT. 

 

La demanda alimenticia mundial y la creciente producción de especies acuícolas promueven la 

implementación de nuevas técnicas y sistemas de cultivo; de entre ellas, la tecnología biofloc es 

una metodología en creciente uso, debido a sus ventajas sobre la optimización de recursos 

naturales y económicos. La función del sistema biofloc radica en el crecimiento de microrganismos 

bajo un nulo recambio de agua. Los microorganismos compiten por el nitrógeno inorgánico 

(Emerenciano, 2013) y lo transforman en proteína microbiana, aprovechada como alimento en los 

cultivos de camarón. 

2.1.2 Implementación de biofloc en Agua de Mar 

 

Krummenauer (2011), plantea el cultivo (agua de mar) de L. vannamei a diferentes densidades bajo 

invernadero mediante sistemas biofloc. El mismo, indica que a densidades de 300 cam/m2 para 

cultivos super-intensivos, obtiene una productividad 4,09 kg/m2 (Krummenauer, Peixoto, Federal, 

Pernambuco, y Cavalli, 2017) en comparación con los cultivos tradicionales que alcanzan entre 

0.177 y 0.350 kg/m2. La calidad del agua no mostro niveles tóxicos de nitrógeno amoniacal y nitritos, 

no obstante, se registró niveles bajos de oxígeno disuelto 2.02 mg/L (letal: 1mg/L) (Hopkins, 

Browdy, y Sandifer, 1991) al tercer mes en todos los tratamientos. El porcentaje de supervivencia 
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no se vio afectado 75-92 %. Sin embargo, niveles bajos de pH se registraron (6.1-6.3) lo que pudo 

afectar el rendimiento productivo, debido a la densidad del cultivo.  

 

Así mismo Emerenciano (2012), menciona que el uso de BFT en el cultivo (agua de mar) de larvas 

fantepenaeus brasiliensis durante 30 días, con el uso de dos fuentes de carbohidrato sin 

suplemento de alimento (melaza y salvado de trigo), produjo mayor crecimiento, peso y biomasa 

final del camarón en comparación con el sistema de flujo abierto, además la calidad del agua se 

conservó; no hubo diferencias significativas de nitrógeno inorgánico entre los sistemas BFT y el 

sistema de flujo abierto; el porcentaje de oxígeno disuelto se mantuvo dentro de los parámetros 

aceptables. La cantidad de solidos suspendidos(TSS) fue de 257.88 ± 105.21 mg L-1; indicativo de 

un consumo positivo del biofloc por parte de los camarones (Emerenciano, 2012). El porcentaje de 

supervivencia fue de 67-80 % que se halla dentro del rango para fantepenaeus brasiliensis. Por lo 

tanto, el autor menciona que  la camaronicultura mediante BFT resulta productivamente viable. 

 

2.1.3. Uso de fuentes de carbohidrato en biofloc 

 

Serra (2015), experimenta con el uso de diferentes fuentes de carbohidrato (melaza, dextrosa, 

salvado de arroz) más suplemento de alimento, usando sistemas biofloc durante la fase de larva y 

crecimiento de L. vannamei. La autora señala que el uso de melaza y dextrosa tienen mejor acción 

en cuanto a la reducción de nitrógeno inorgánico y por ende al mantenimiento del agua, debido a 

su rápida dilución, no así el salvado de arroz. Pese a esto el rendimiento productivo del tratamiento 

a base de salvado de arroz muestra un mejor porcentaje de supervivencia 88 %, productividad 2,03 

kg/m3 e índice aparente de conversión alimenticia 2.03, en relación con el cultivo de dextrosa que 

obtuvo 82% de supervivencia, 1.23 kg/m2 de productividad y 3.25 de índice aparente de conversión 

alimenticia(Gaona, Furtado, Poersch, y Wasielesky, 2015); esto puede deberse al mayor porcentaje 

de proteína (6%) que posee el salvado de arroz (Ekasari, 2014).  

 

2.1.4. Avances del cultivo biofloc 

 

Zhao (2016), plantea el efecto de diferentes fuentes de carbono (melaza, salvado de trigo) en los 

sistemas biofloc de L. vannamei, y el impacto en parámetros productivos, calidad de agua e 

inmunidad. Los resultados del estudio demuestran que la combinación de las dos fuentes de 
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carbohidrato en 50/50 %, obtuvo mejor desempeño en peso final 11,36 g y ganancia de peso 65.84 

%; el rango de supervivencia 87-9 1%, no tuvo diferencias significativas entre los tres tratamientos 

y el control. Cabe recalcar que Zhao (2016), contrasta con lo enunciado por Serra (2015), con 

respecto al efecto de la melaza y dextrosa sobre la diminución de nitrógeno inorgánico y nitritos; 

Zhao (2016),  menciona que la combinación de melaza más salvado de trigo, es mayormente 

efectiva (0.10 mg/L- nitrógeno inorgánico) (Zhao, Pan, Huang, Wang, y Xu, 2016),  comparada con 

la adición única de melaza.  

 

Ballester (2017), menciona que el cultivo de Macrobrachium rosenbergii en agua dulce bajo 

sistemas biofloc es productivamente viable. Los resultados indican que no existieron diferencias 

significativas entre el sistema BFT y el de recirculación, sobre los parámetros de supervivencia, 

crecimiento específico y ganancia de peso. Por otra parte, si hubo diferencia significativa en el 

índice de conversión alimenticia, fue mejor para el sistema de recirculación. La calidad del agua se, 

mantuvo dentro de los parámetros normales, no obstante, la cantidad de nitrógeno inorgánico y 

nitritos fue mayor en BFT (Luis, Ballester, Marzarotto, y Castro, 2017) lo que explicaría el aumento 

del índice de conversión alimenticia en este tratamiento. 

 

Conforme con las investigaciones realizadas sobre BFT, resulta productivamente viable su 

aplicación a la camaronicultura. No obstante, se requiere de nuevas investigaciones que 

demuestren si la aplicación de BFT en cultivos de agua dulce para L. vannamei, sea viable; también 

se carece de información sobre el uso de fuentes de carbohidrato, formadoras del flóculo 

microbiano, como único alimento y su efecto en el rendimiento productivo de camarones cultivados 

en agua dulce. 

 

2.2. Sistema de Aclimatación 
 

2.2.1.  Generalidades del Sistema de Aclimatación 

 

La innovación en acuacultura plantea nuevos desafíos como la adaptación de especies marinas a 

medio dulce. Acorde con Ednoff (2001), el cultivo de L. vannamei en agua dulce se desarrolla con 

gran interés en países de América como Estados Unidos y Brasil. La producción de estas especies 

requiere someterse a procesos de aclimatación para su adaptación al medo de cultivo en el que se 

desarrollaran productivamente. En términos generales, la aclimatación se refiere a un proceso de 
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adaptación de un organismo procedente de un medio habitual a un medio nuevo, con el que antes 

no ha tenido familiaridad según lo expuesto por Thi, Huong, Jayasankar, y Wilder (2010). 

 

Crawford (1999), menciona que el cultivo de L. vannamei cultivado en salinidades inferior a 5 ppt, 

medio considerado como salobre, poseen desarrollo exitoso y no difiere de los camarones 

cultivados en medio salado tradicional. Sin embargo, Mcgraw (2002), menciona que no existen 

investigaciones, las cuales especifiquen una concentración especifica de iones en agua dulce para 

L. vannamei y que permitan la adaptación de la especie al medio de cultivo.    

 

Por otro lado  (Kumlu y Jones, 1995) describe la importancia de la salinidad en parámetros de 

supervivencia y crecimiento de L. vannamei. No obstante, el autor menciona que debido a los 

cambios climáticos, aumento de pluviosidad y cambios en la salinidad marina, varias especies 

cultivadas en medios costaneros, han evolucionado y poco a poco se han ido adaptando a 

salinidades por debajo de los 8 ppt, lo que se conoce como período de aclimatación.  

 

2.2.2. Implementación de Sistemas de aclimatación 

 

William J Mcgraw y Scarpa (2004) plantean la aclimatación de L. vannamei a diferentes períodos 

de tiempo, el autor reporta que, lotes de 30 ppt de salinidad fueron sometidos a 32, 40 y 48 horas 

de aclimatación hasta llegar a 0ppt. Los períodos de aclimatación se efectuaron con 0, 1 y 2 días 

de habituación a medio dulce. Como resultado se obtuvo que el lote sometido a 40 horas de 

aclimatación con 2 días habituación tuvo el 100 % de supervivencia en las post larvas, no así los 

lotes sometidos a 32 y 48 horas donde el porcentaje de supervivencia fue del 86 % 

aproximadamente para ambos casos. El mismo autor menciona que la aclimatación continua dentro 

de un periodo de tiempo específico no tiene significancia estadística sobre los lotes aclimatados en 

períodos con descenso de salinidades no continuas, los porcentajes de supervivencia fueron del 

80 % para ambos casos.  No obstante, Leal (2019), plantea que las larvas de L. vannamei  son 

capaces de sobrevivir en condiciones de salinidad de 1 ppt, y este parámetro no es dependiente 

del período de aclimatación, el autor menciona que se obtienen porcentajes de supervivencia del 

97 %, don ratifica que la concentración iónica en la salinidad 1 ppt es imprescindible para la 

supervivencia de las post-larvas.   
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2.2.3. Avances en sistemas de aclimatación  

 

Sanjoy, Kumar, Arunachalam, Koyadan, y Vijayan (2019) reportan estudios más actualizados sobre 

la aclimatación de L. vannamei a bajas salinidades, los autores plantean la aclimatación de los 

organismos a diferentes salinidades de 35, 14, 10 y 3 ppt, sin especificación de límite de tiempo, 

donde los porcentajes de supervivencia no superaron el 78% para la salinidad 3 ppt, de la misma 

manera reportan que a salinidades por debajo de los 3 ppt los organismos ingresan en estrés de 

osmoregulación lo que compromete negativamente su supervivencia y desarrollo productivo. No se 

ha encontrado estudios actuales que aclimaten L. vannamei para llegar a salinidades 0ppt. 

 

2.2.4.  Mecanismo de Osmoregulación a bajas salinidades. 
 

La capacidad de osmoregulación en organismos acuáticos, se define como la diferencia entre el 

gradiente de concertación del medio exterior y la hemolinfa (Freire, Cavassin, Rodrigues, Torres, y 

Mcnamara, 2003). Para realizar este mecanismo fisiológico se necesita  la activación de la bomba 

de Na +  y K+ ubicada en la membrana basolateral de las branquias ; a bajas salinidades la Na+  y 

K+ ATPasa incrementa su actividad, con el fin de balancear los iones del medio exterior con los de 

la hemolinfa (Siebers, Winkler, Lucu, y Thedens, 1985). 

Los organismos en medios salados tienden a perder agua fácilmente por la superficie corporal, 

principalmente por las branquias, para compensar esta pérdida de líquido, el organismo ingiere 

grandes cantidades de agua con los solutos disueltos en ella. Los excesos de Na+   y Cl- son 

eliminados a través de las branquias permitiendo mantenerse hiposmóticos en relación con el 

medio exterior (Sommer y Mantel, 1991). 

Las especies acuáticas adaptadas a bajas salinidades se enfrentan a un nuevo gradiente de 

contracción, donde ellos pasan de tener un medio hiposmótico a hiperosmótico, por lo tanto la 

bomba de Na+  y K+ ATPasa  se activa y produce un efluente de Na+  y Cl-  hacia el medio exterior 

para que no exista un ingreso excesivo de agua en el organismo causando, tumefacción de los 

tejidos y posterior muerte(Hurtado Oliva, 2004). 
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3. MATERIALES Y MÉTODOS  

 

3.1. Materiales:  

 

3.1.1. Biológicos: 
 

• 25000 organismos de camarón blanco L. vannamei PL14 de BIOGEMAR S.A. 

3.1.2. Equipos de laboratorio: 
 

• Tubos Imhoff 

• Waterproof Tester 99720: Equipo multiparámetros para agua (pH, conductividad, TDS, 

salinidad, temperatura).  

• Aqua test Colombo Dorpsweg 11 NL-3257: Test de medición química para agua (Alcalinidad 

total [GH], Nitrógeno Amoniacal Total [NH3/NH4], Nitrito[NO2], Nitratos[NO3], Fosfato[PH4]).  

• Api Master test Test de medición química para agua (Alcalinidad total [GH], Nitrógeno 

Amoniacal Total [NH3/NH4], Nitrito[NO2], Nitratos[NO3], Fosfato[PH4]). 

• Oxímetro Milwaukee Mw600  

• Balanza analítica MIX-SL marca LEXUS 

• Ictiómetro 

3.1.3. Equipo y Materiales de Campo. 
 

• Alimento Comercial ABA Empagram S.A 

• Harina de haba comercial 

• Harina de arrocillo comercial 

• Recipientes-tanques (35 litros) de polipropileno, color oscuro. 

• Recipientes-tanques (100 litros) de polipropileno, color oscuro. 

• Cobertor Malla Sombra. 
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• Mangueras de aireación de un octavo de pulgada color negro. 

• Manguera para agua ¾” 

• Areador Air pomp 300 lh.  

• Calentadores de 30 vatios 

• Red de pesca cuchara 

• Pesas 500 g 

• Accesorios de PVC:  

 

3.1.4. Materiales Químicos: 
 

• Carbonato de calcio (CaCO3) 

• Superfosfato triple (P2O5) 

• Urea 46% 

 

3.1.5. Equipos de Oficina  
 

• Laptop Samsung 7th Gen 

• Cámara fotográfica Nikon 20.1 

• Impresora Epson L555  

• Resma de papel bond Xerox  

• Tablero de registro 

 

3.2.  Métodos:  
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3.2.1. Área de Estudio 
 

El experimento se llevó a cabo en el invernadero perteneciente a las instalaciones de ECCOPONIA 

en Rio Negro. El área de estudio se encuentra a 30 Km del cantón Baños, provincia de Tungurahua 

a una altitud de 1820 m.s.n.m.; latitud -1,4 longitud -78,2167, posee una temperatura promedio de 

21°C, pluviosidad 1226 mm y clima tropical húmedo.  

 

 

 

 

 

 

 

 

 

Figura 1. Mapa geopolítico; ubicación de la colonia Nicolás Martínez (N.M.) en la Parroquia 
Rio-Negro (GAD Baños de Agua Santa, 2011). 

 

3.2.2. Manejo del experimento 

 

Para llevar a cabo el experimento se realizó la metodología posteriormente descrita. 

3.2.2.1. Fase 1: Sistemas de aclimatación para Post larvas (PL14) y Formación del 

Biofloc 

 

N.M 
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 3.2.2.1.1. Sistemas de aclimatación para Post larvas (PL14)  

 

 Se aclimató un total de 5 lotes cada uno con 5000 organismos. Las PL14 fueron obtenidas del 

laboratorio BIOGEMAR y transportadas vía terrestre en bolsas plásticas con un peso de 0.00025 g 

y salinidad de 3 ppt (3 lotes: aclimatación experimental y 1 lote: control negativo), y 0ppt (1 lote: 

control positivo). Posteriormente fueron aclimatadas en tanques de color oscuro de polipropileno 

con un volumen de 100 litros, aireación constante y alimentación ad libitum . La salinidad  disminuyó 

en  razón  de 0.8 ppt diarios hasta llegar a 0 ppt según lo propuesto por Araneda, Pérez, y Gasca-

leyva (2008) y Sanjoy, Kumar, Arunachalam, Koyadan, y Vijayan,( 2019). El lote con salinidad 0ppt 

(control positivo) fue aclimatado bajo las mismas condiciones de los lotes experimentales; un lote 

de 3ppt considerado como control negativo se mantuvo con la misma salinidad de 3 ppt hasta el 

final del experimento, con sistema de flujo abierto y bajo las mismas condiciones de temperatura y 

aireación de los anteriores lotes.  

3.2.2.1.2. Tanques de Aclimatación 

Se emplearon cuatro tanques de polipropileno, color oscuro en forma de cono truncado invertido, 

con un volumen de 100 L. En los tanques se realizaron dos orificios inferiores cercanos a la base 

del tanque, uno en el lado derecho (tubería de drenaje ½ ) a 0.05 m de la base y el otro en el lado 

izquierdo (tubería de cosecha 2”) a 0.08 m de la base. Cada tubería estuvo compuesta por un 

adaptador para tanque, conector macho, tubería PVC (0.15 m de largo) y llave de PVC de 2 y ½ 

(Vaca Nuñez, 2016) pulgada respectivamente. Para asegurar las uniones de las tuberías se empleó 

pegamento para PVC y teflón de uso comercial. Cada tanque estuvo cubierto en su superficie por 

el cobertor malla sombra. 

3.2.2.1.3. Sistema de Aireación  

 

El sistema de aireación se diseñó empleando 5 aireadores Air pomp de 300 lh de los cuales salieron 

mangueras de aireación de 1/8 ,  para los tanques de aclimatación. Cada ramificación estuvo 

conectada a una tubería de ½   (0.15m de largo x lado) de forma cuadrangular (uniones con codos 

PVC 1/2 ) con 4 perforaciones de 1/16 sobre la superficie del cuadrante. En las esquinas del 

cuadrado se usaron pesas de 500 g para mantenerlo en el fondo del tanque de cultivo. Los 

cuadrantes de aireación individualmente se colocaron en el centro de cada unidad experimental, 

según o propuesto por Lekang (2007). 
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3.2.2.2. Sistemas Biofloc 

 

Se emplearon seis tanques de polipropileno, color oscuro en forma de cono truncado invertido, con 

una superficie de 0.0572 m2, volumen de 35L aproximadamente. En los tanques se realizaron dos 

orificios inferiores cercanos a la base del tanque, uno en el lado derecho (tubería de drenaje ½ ) a 

0,05 m de la base y el otro en el lado izquierdo (tubería de cosecha 2”) a 0,08 m de la base. Cada 

tubería estuvo compuesta por un adaptador para tanque, conector macho, tubería PVC (0.15 m de 

largo) y llave de PVC de 2 y ½ (Vaca Nuñez, 2016) pulgada respectivamente. Para asegurar las 

uniones de las tuberías se empleó pegamento para PVC y teflón de uso comercial. Cada tanque 

estuvo cubierto en su superficie por el cobertor malla sombra. 

3.2.2.2.1 Sistema de Aireación  

 

El sistema de aireación se diseñó empleando 3 aireadores Air pomp de 300 lh de los cuales salió 

2 mangueras de aireación de 1/8 ,  para los tanques de sistemas biofloc. Cada ramificación estuvo 

conectada a una tubería de ½   (0.15m de largo x lado) de forma cuadrangular (uniones con codos 

PVC 1/2 ) con 4 perforaciones de 1/16 sobre la superficie del cuadrante. En las esquinas del 

cuadrado se usaron pesas de 500 g para mantenerlo en el fondo del tanque de cultivo. Los 

cuadrantes de aireación individualmente se colocaron en el centro de cada tanque (Lekang, 2007). 

3.2.2.2.2.  Formación del biofloc 

 

Para dar inicio a la formación de los flóculos microbianos (25 ± 5 días), cada unidad experimental 

de los sistemas biofloc fue llenada con 35 L de agua dulce, subsiguiente se fertilizó el agua con 

fuentes de nitrógeno y fósforo (urea y superfosfato triple) a 3.0 mg /L de N. y 0.3 mg/L P(Maia y 

col., 2016); este método de fertilización se repitió cada tres días a las 08:00 h. Después de tres días 

de la primera fertilización química (N+P), se empezó la fertilización orgánica, relación 

Carbohidrato/Nitrógeno amoniacal (C/N), añadiendo para T1: seis g de carbohidrato por un gramo 

de nitrógeno amoniacal y para T2 : 15 g de carbohidrato por un gramo de nitrógeno amoniacal,  a 

las 08:00 h (Krummenauer , 2017); simultáneamente muestras de agua en vasos de 100 ml se 

tomaron 2/semana para analizar las concentraciones de NAT. La formación del flóculo se ratificó 

mediante el volumen ml/L de este en los tubos Imhoff(Salmah, Ahmed, Atkinson, Desbois, y Little, 

2018). 
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3.2.2.3. Fase 2: Bioensayo de cultivo L. vannamei 

 

Esta fase no se llevó a cabo por la mortalidad temprana de las PL en el período de aclimatación. 

 

  3.2.2.4. Análisis y Monitoreo de la calidad de Agua 

3.2.2.4.1. Parámetros fisicoquímicos. 

 

Durante el experimento, los parámetros de temperatura, salinidad y pH fueron medidos 

diariamente, para esto se tomó una muestra de agua de cada lote en recipientes de poliestireno 

con capacidad de 100 mL, posteriormente se introdujo la sonda del equipo multiparámetros 

(Waterproof Tester 99720®) para obtener los resultados. La medición diaria de oxígeno disuelto se 

realizó introduciendo la sonda del oxímetro (oximeter Milwaukee ®) a la altura media del tanque de 

cultivo.  

Además, se realizó el monitoreo de nitrógeno amoniacal total (NAT), alcalinidad y dureza de 

carbonato de calcio (CaCO3) se realizó 2 veces por semana. Para el análisis de estos parámetros 

se tomaron muestras de agua en vasos de 100 mL, posteriormente se  empleó el Test de medición 

química para agua (Aquatest Colombo Dorpsweg 11 NL-3257, API test water) siguiendo la 

metodología indicada por el proveedor(Colombo, 2011). 

 

Figura 2. Análisis químico de la calidad de agua. AGROLAB (2019). 

 

3.2.2.4.2.   Mantenimiento de la Alcalinidad del agua. 
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Durante el experimento se presentaron niveles por de debajo de 7 para pH y 100 mg/L para 

CaCO3, por lo tanto para mantener la calidad de agua se añadió carbonato de calcio según la 

metodología descrita por Arana Vinatea, (1997) , Loyless  y Malone, (1997).  

3.2.2.4.3. Monitoreo del flóculo Microbiano 

 

El  volumen de flóculo microbiano (ml/L) se medió con el empleo de los tubos Imhoff  siguiendo 

la metodología indicada por Kumar (2018). 

3.3.    Diseño experimental y Análisis estadístico. 
 

3.3.1. Fase 1: Sistemas de aclimatación para Post larvas (PL14) y Formación del 

Biofloc 

Dentro del sistema de aclimatación para PL14 se empleó un diseño experimental aleatorizado con 

tres repeticiones a 3 ppt de salinidad, un control positivo a 0 ppt de salinidad y control negativo a 

3 ppt de salinidad, con flujo abierto. Para la formación de los biofloc se empleó un diseño 

experimental aleatorizado con 2 tratamientos, T1 (seis g de carbohidrato por un gramo de 

nitrógeno amoniacal,) T2 (15 g de carbohidrato por un gramo de nitrógeno amoniacal,) cada uno 

con tres repeticiones. Los datos de calidad de agua del período de aclimatación y de la formación 

de los Biofloc, fueron analizados con la prueba de Shapiro-Wilk para comprobar la normalidad de 

los datos, la cual se rechazó, por lo tanto, se aplicó el test no paramétrico para muestras pareadas 

de Wilcoxon.   

4. RESULTADOS Y DISCUSIÓN  
 

4.1. Resultados 
 

4.1.2. Fase 1: Aclimatación de Post Larvas (PL) 
 

Lote 1: Las PL14 de 5000 organismos con salinidad 3 ppt, fue sometido a la metodología 

anteriormente descrita; en 48 horas de aclimatación se presentó mortalidad instantánea del 100% 

de los organismos a temperatura de 27.57 °C, pH 6.83, salinidad de 0ppt, NAT 1.17 mg/L, 

alcalinidad 119.05 mg/L y oxígeno 6.10 mg/L. 
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Lote 2: Las PL14 de 5000 organismos con 3 ppt de salinidad fue sometido al período de 

aclimatación, los individuos presentaron mortalidad instantánea del 100% a los 9 días (216 horas), 

registrándose datos de temperatura de 21 °C, pH 7.03, salinidad de 0 ppt, NAT 1.5 mg/L, 

alcalinidad 107.14 mg/L y oxígeno 3.2 mg/L. 

Lote 3: Las PL14 de 5000 organismos con 3 ppt de salinidad fue sometido al período de 

aclimatación, los individuos presentaron mortalidad instantánea del 100% a los 13 días (312 

horas), registrándose datos de temperatura de 24.7 °C, pH 7.83, salinidad de 0 ppt, NAT 2mg/L, 

alcalinidad 107.14 mg/L y oxígeno 4.06 mg/L (Tabla 1). 

Lote 4 (lote control positivo): Las PL14 de 5000 organismos con 0 ppt de salinidad fue sometido 

al período de aclimatación, se presentó el 100% de mortalidad instantánea a las 24 horas con 

temperatura de 24.7 °C, pH 6.22, salinidad de 0 ppt, NAT 1mg/L, alcalinidad 89.29 mg/L y oxígeno 

6.2 mg/L.  

Lote 5 (lote control negativo): Las PL14 de 5000 organismos con 3 ppt de salinidad fue mantenido 

con salinidad (3 ppt) constante, se presentó mortalidad del 1.14% de los individuos hasta el final 

del experimento. Temperatura 25.94 °C, pH 7.43, salinidad de 3.01 ppt, NAT 0.43 mg/L, alcalinidad 

107.69 mg/L y oxígeno 5.35 mg/L.  

 

Tabla 1. Supervivencia de las PL en cada uno de los lotes. 

 

Wilcoxon Matched Pairs test. Marked tests are significant at p<.05000. Temp: p-value 0.173072. Salinidad: p-value 
0.37426. NAT: p-value 0.001086, Alcalinidad: p-value 0.916512. Oxígeno: p-value 0.37426. pH: p-value 0.01515. 
* Control positivo; **Control negativo: supervivencia determinada por sacrificio programado a la finalización del 
experimento. 

Lotes pH Temp. 

(oC) 

Salinidad 

(ppt) 

NAT 

(NH3 + 

NH4) 

(mg/L) 

Alcalinidad 

(mg/L) 

Oxígeno 

mg/L 

Mortalidad 

% 

Supervivencia 

horas (h) 

1 6.83 27.57 0.00 1.17 119.05 6.10 100 48 

2 7.03 21.00 0.00 1.50 107.14 3.20 100 216 

3 7.83 24.70 0.00 2.00 107.14 4.06 100 312 

4* 

5**  

6.22 

7.43 

24.7 

25.94 

0 

3.01 

1 

0.43 

89.29 

107.69 

6.2 

5.35 

100 

1.14 

24 

360 
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Los lotes dos y tres presentaron salinidades por debajo de 0.05 ppt hasta los días 6 y 10 

respectivamente, pese a la habituación de los organismos por 3 a partir de los días 6 y 10 días en 

medio considerado como dulce se manifiesta mortalidad instantánea del 100% (Figura 3).  

 

Figura 3. Salinidad de los organismos, L2 y L3 

 

Este estudio demuestra estadísticamente que no hubo diferencias significativas (P > 0.05) sobre 

los parámetros de temperatura, salinidad, alcalinidad y oxigeno entre lotes 2 y 3, sin embargo, 

existió diferencia significativa sobre los parámetros de pH y en las concentraciones de NAT (P < 

0.05) entre los lotes 2 y 3 de PL14; la metodología de aclimatación fue la misma empleada para 

todos los lotes. Pese a las fluctuaciones en las concentraciones de NAT, no se observa una 

influencia directa sobre la supervivencia de los organismos.  

En el lote dos, los días 2 y 3, muestran las concentraciones más altas de NAT 1.6 y 1.8 mg/L 

respectivamente (Figura 4) y en el lote tres, los días 9 y 8 muestran concentraciones de 4 y 4.5 

mg/L respectivamente (Figura 5).  
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Figura 4. Variación en las concentraciones de NAT en L2 

 

 

 

Figura 5. Variación en las concentraciones de NAT en L3. 
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Se observa en la Figura 6 que no existe una influencia directa en la muerte instantánea de los 

organismos por las variaciones de pH y temperatura tanto en el lote 2 y lote 3. 

 

 

 

 

 

 

 

 

 

 

Figura 6.Variaciones de pH y temperatura en Lote 2 y Lote 3. 

 

 

Figura 7. Variaciones de pH, Oxígeno, y NAT en el Lote 5. 
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Figura 8. Relación de alcalinidad y pH, Lote 5. 

 

Figura 9. Salinidad y Temperatura en el Lote 5. 
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organismos hasta el final del experimento. 
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4.1.1.  Fase1: Formación del biofloc 
 

La formación del biofloc (flóculo microbiano) en los Tratamientos 1 y 2, se muestra en la 

semana 4 con un volumen de sedimentación de 8 ml/L y 11.3ml/L respectivamente, 

continuando su crecimiento progresivo hasta su maduración en la semana 9, 10 para el 

tratamiento 1 y en la semana 8 para el tratamiento 2.  

 

 

 

 

 

 

 

Figura 10.Tratamiento 1, Maduración del biofloc y su estabilización en crecimiento hacia la 
semana 14. 
 

 

 

 

 

 

 

 

 

Figura 11.Tratamiento 2, Maduración del biofloc y su estabilización en crecimiento hacia la 

semana 14. 
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semana 3 y 4 se observa la disminución   de NAT  3-1.8 mg/L y 2.8-1.5 mg/L respectivamente, a 

la par que el volumen del flóculo crece (Figura 12 y Figura 13); desde la semana 6 a la 14 se 

estabiliza las concentraciones de NAT por debajo de 0.5 mg/L. 

 

Figura 12. Tratamiento 1, disminución de los niveles NAT a medida que crece y se estabiliza 
el flóculo. 

 

 

Figura 13. Tratamiento 2, disminución de los niveles NAT a medida que crece y se estabiliza 
el flóculo. 
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Wilcoxon Matched Pairs test. Marked tests are significant at p<.05000 
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Durante el experimento en el T1 y T2 se observó descenso progresivo en las concentraciones de 

oxígeno, 1.8 mg/L y 1.5 mg/L, respectivamente, a partir de la semana 4 (Figura 14 y Figura 15), 

lo que plantea, estar relacionado con el establecimiento de comunidades bacterianas del biofloc.  

 

Figura 14. Tratamiento 1, disminución en los niveles de oxígeno a medida que crece el flóculo 
bacteriano. 

 

 

Figura 15. Tratamiento 2, disminución en los niveles de oxígeno a medida que crece el flóculo 
microbiano. 
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Wilcoxon Matched Pairs test. Marked tests are significant at p<.05000 
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En la Figura 16 y Figura 17, se observa que, pese a las fluctuaciones de temperatura registradas 

durante el experimento, no se ve afectado el volumen del flóculo manteniéndose constante y con 

tendencia de crecimiento. 

 

Figura 16. Tratamiento 1, Fluctuaciones de temperatura sobre el crecimiento del floculo 
bacteriano. 

 

 

Figura 17. Tratamiento 2, Fluctuaciones de temperatura sobre el crecimiento del floculo 
bacteriano. 
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La concentración de salinidad y TDS aumentaron durante las 14 semanas de experimento para 

ambos tratamientos, T1:  Salinidad 270 mg/L, TDS 379.7 mg/L  y  T2: Salinidad 325.3 mg/L, TDS 

409 mg/L, a la par del crecimiento del biofloc (Figura 18 y Figura 19).  

 

Figura 18. Tratamiento 1, Crecimiento en las concentraciones de Salinidad TDS y flóculo. 

 

 

Figura 19. Tratamiento 2, Crecimiento en las concentraciones de Salinidad TDS y flóculo. 
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El pH y la alcalinidad se mantuvieron en rangos por encima de 7(pH) y 100 mg/L(alcalinidad) 

respectivamente para ambos tratamientos (Figura 20 y Figura 21); no se observó un descenso 

en el volumen del biofloc por fluctuaciones de pH y alcalinidad.  

 

 

Figura 20. Tratamiento 1, Variaciones de pH y alcalinidad sobre el floculo. 

 

 

 

Figura 21.Tratamiento 2, Variaciones de pH y alcalinidad sobre el floculo. 
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La metodología antes descrita fue la misma aplicada para ambos tratamientos, sin embargo, se 

encontró diferencias significativas (P < 0.05) en las concentraciones de salinidad y sedimentación 

entre tratamientos. En la semana 4 el tratamiento 2, muestra un crecimiento de 11.3 mg/L, por 

otro el tratamiento 1 muestra un crecimiento de 8 mg/L, no obstante en la semana 10 en ambos 

tratamientos se observa la estabilización del flóculo con un crecimiento paulatino de 16 mg/L hasta 

16.7 mg/L(T1) y 16.4 mg/L (T2) en la semana 14, la salinidad en ambos tratamientos muestra un 

aumento, registrándose mayores concentraciones en el T2 de 325 mg/L en la semana 14, mientras 

el T1  270 mg/L (Tabla 2).  No existió diferencias significativas (P > 0.05) en las concentraciones 

de NAT, Oxígeno, pH, alcalinidad, Temperatura y TDS. 

 

Tabla 2. Diferencia entre concentraciones de salinidad y floculo de los tratamientos 1 y 2 durante 
la semana 4, 10 y 14. 

T1 T2 

Semanas Sedimentación 

(Flóculo ml/L) 

Salinidad 

(ppm) 

Sedimentación 

(Flóculo ml/L) 

Salinidad(ppm) 

4 8.0 29.0 11.3 83.7 

10 15.9 252.7 16.2 317.7 

14 16.7 270.3 16.4 325.3 

Wilcoxon Matched Pairs test. Marked tests are significant at p<.05000. Sedimentación: p-value 0.016605. Salinidad: 
p-value 0.009182 

 

4.1.3.  Fase 2: Bioensayo de cultivo L. vannamei 

 

No es viable debido a la muerte de las PL en el periodo de aclimatación. En esta investigación, 

los organismos no sobreviven a salinidades por debajo de los 0 ppt por más de tres días. Los 

biofloc están formados en medio dulce, por lo tanto, es poco probable que las   PL vivan y tengan 

un fin viable productivo bajo los parámetros de calidad de agua usada en este experimento. 
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4.2. Discusión 

 

4.2.2. Fase 1: Aclimatación de Post Larvas (PL) 

 

Allan y Maguire (1992); Mcgraw (2002); Gao y col. (2016); Leal y col. (2019) reportan en sus 

investigaciones que los organismos sometidos a periodos de aclimatación, donde la salinidad tope 

sea de 2 ppt y 3 ppt poseen una supervivencia por encima del 80% lo cual concuerda con lo 

expuesto en los resultados obtenidos del lote 5 (control negativo), donde se observó mortalidad 

del 1.14% durante el experimento; por otra parte, Crawford (l999) menciona que el período mínimo 

de aclimatación de organismos salados a medio dulce es de 48 h con un 50% de supervivencia, 

aunque en este estudio el lote 1 sometido a 48 h de aclimatación tubo 100% de mortalidad 

alcanzando 0 ppt  a las 48 h. Los lotes 2 y 3 sobrepasaron los 6 y 10 días de aclimatación 

respectivamente, con dos días de habituación como mínimo a 0ppt lo que concuerda con lo 

expuesto por Mcgraw y Scarpa (2004) sin embargo, después de este período se presenta 

mortalidad del 100% en ambos lotes. Según Araneda (2008), la aclimatación de post-larvas L. 

vannamei por debajo de salinidades de 0.5 ppt ponen al organismo al límite de su capacidad de 

osmoregulación, comprometiendo la supervivencia de las PL, sin embargo, en este estudio se 

demostró que en los lotes 2 y 3, los organismos sobrevivieron a salinidades de 0 ppt durante dos 

días, presentándose mortalidad del 100% al tercer día.  

Mcgraw y Scarpa (2016) mencionan en su estudio que L. vannamei puede sobrevivir a salinidades 

por debajo de 0.2 ppt, no obstante Araneda (2008) indica en su investigación que las PL mayores 

a 14 días de edad, aclimatadas durante 10 días con un descenso de salinidad de 4 ppt diarios 

sobreviven a salinidad 0 ppt durante 30 semanas en su respectivo cultivo; esto coincide con los 

resultados obtenidos en el presente estudio ya que las PL 14 de los lote 2 y 3  sobrevivieron 

durante 2 días bajo salinidad 0 ppt, lo que sugiere que L. vanammei si es capaz de subsistir en 

agua dulce (0ppt), sin embargo Araneda (2008) revela que el tiempo de supervivencia estaría 

estrechamente relacionado con la importancia del balance iónico presente en la calidad del agua 

del cultivo. Mientras que  Roy, Davis, Saoud, y Henry (2007) concluyen en su estudio que los 

valores óptimos de iones para el cultivo y crecimiento de PL L. vannamei en salinidades menores 

a 4 ppt deben ser:  SO4 (262.3 mg/L), K+ (40 mg/L), Na+(1,114 mg/L) y Mg2+ (40 mg/L), y el ratio 

entre los iones Na+ : K+ de 29:1 respectivamente ; de la misma manera Mcgraw y Scarpa (2004) 

señalan en su investigación que a ratios de   Na+ : K+  mayores a 20.4: 1 respectivamente es viable 
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la supervivencia y crecimiento de post larvas en agua dulce (0 ppt). Perez, Davis, Roy, y González 

(2012) señalan en su estudio que a concentraciones predominantes de Na+ sobre K+ la 

supervivencia de los organismos es mayor al 50%. 

Crawford (1999) sugieren iones como  Cl-, deben poseer una concentración mínima de 300 mg/L 

en calidad de agua. Estas investigaciones difieren con los parámetros de calidad de agua usados 

en este estudio donde, las concentraciones de los iones fueron de  S2-
 (0.16 mg/L), K+ (5.85 mg/L), 

Na+(2.3 mg/L) y Mg2+ (1.68 mg/L), Cl- (6.57 mg/L) y el ratio entre los iones Na+ : K+ de 2:5 es decir 

las concentraciones de potasio fueron notablemente mayores en relación al sodio; por otra parte 

no se ha encontrado estudios que indiquen el efecto del ratio Na+ : K+, donde los valores de K+  

sean mayores a los de Na+, además la influencia sobre los parámetros de supervivencia y 

crecimiento de los organismos.  

En esta investigación la presencia de concentraciones mayores de K+ sobre Na+ sugieren un 

desbalance iónico que afecta la supervivencia de los camarones por la variación entre las 

concentraciones de soluto a nivel de la hemolinfa (medio interno) y el agua de cultivo (medio 

externo). La hemolinfa del camarón está constituida en un 88%  por Na+ y Cl-, por lo tanto Hurtado 

Oliva (2004) menciona que el organismo al enfrentarse a un medio hipotónico (medio externo), 

por gradiente de concentración, inicia un eflujo de Na+ con la finalidad de osmoregularse 

(incremento de la actividad en la bomba de Na+ - K+ ATPasa  ), lo que evita la tumefacción de 

tejidos, sin embargo al realizar este proceso la hemolinfa pierde su osmolalidad (concentración 

mínima de soluto Na+ 700 mmol/Kg)(Leal y col., 2019) y al estar en un medio dulce con flujo abierto 

(renovación de agua constante), no existe un influjo retornable de Na+ hacia la hemolinfa, 

ocasionando un shock iónico que interfiere en el intercambio gaseoso, perdiendo la capacidad de 

osmoregulación y posterior muerte. 

El balance iónico entre el ratio de S2- : Mg2+ según Mcgraw y Scarpa (2016) está relacionado con 

el crecimiento y ciclo de muda del organismo, el autor señala que en ratios mayores de S- : Mg+, 

3:1 existe crecimiento uniforme de los individuos. No obstante, en la presente investigación se 

observó crecimiento disparejo entre los organismos de un mismo lote, lo cual se estipula es 

consecuencia de la calidad de agua empleada en este experimento, donde el ratio de  S2- : Mg+2 

es de 1:2. 

Las variaciones en las concentraciones de NAT obtenidas en el estudio se relacionan con el 

aumento en la excreción de heces , debido a que existe un incremento en actividad de la bomba 

de Na+ - K+ ATPasa a bajas salinidades, lo que demanda mayor gasto energético para el proceso 

de osmoregulación, por lo tanto, el camarón ingiere mayor cantidad de alimento, esto concuerda 
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con lo expuesto por Thi, Huong, Jayasankar, y Wilder (2010) , Mcgraw y Scarpa ( 2004). La 

concentración de NH3  obtenidas en el presente estudio se encuentra dentro de los parámetros 

conocidos como  normales (0.2 mg/L) Willingham (1976), de esta manera se descarta que la 

mortalidad de las PL haya sido afectada por niveles tóxicos de amoníaco. Se sugiere que las 

variaciones de pH obtenidas en este estudio podrían estar influenciadas por el recambio constante 

de agua (sistema de flujo abierto), que se efectuó para mantener la calidad de cultivo 

disminuyendo las concentraciones de NAT, no obstante los niveles de pH se mantuvieron por 

encima de 6.5(Allan y Maguire, 1992), niveles óptimos para el desarrollo de L.vannamei. 

 

4.2.1.  Fase 1: Formación del biofloc 

 

Emerenciano (2012), menciona en su estudio que el crecimiento del floculo microbiano usando 

diferentes fuentes de carbohidrato puede desarrollarse de 25 días a 30 días, lo cual concuerda 

con los resultados de este estudio donde el crecimiento del floculo fue notable a partir del día 

28(semana 4) (Fig.2) (Fig3.). La maduración del biofloc acorde con Salmah (2018)  puede ir de 10 

ml/L a 15 ml/L sin embargo, Avnimelech (2014) menciona que en cultivos de camarones puede ir 

de 1 ml/L a 40ml/L, estos parámetros concuerdan con los encontrados en este estudio (Fig.2) 

(Fig3.). En los tratamientos 1 y 2 se observa en la semana 10 que la curva de crecimiento de los 

microrganismos alcanza una meseta, también conocida como curva estacionaria, con un 

crecimiento paulatino hacia la semana 16; se sugiere que la curva estacionaria inició cuando hubo 

saturación de CO2 y sustancias tóxicas del metabolismo, debido a la cantidad de organismos 

aerobios, esta explicación coincide con lo reportado por Apella ( 2016) . 

Según Ballester y Cupertino (2017), se presentan picos de NAT de hasta 8.34 mg/L por la 

inestabilidad de la comunidad microbiana y su capacidad de inhibir las concentraciones de amonio 

durante las primeras semanas de su desarrollo, esto concuerda con lo expuesto en esta 

investigación donde se registraron picos de 8 mg/L NAT hasta la semana 3, Schveitzer (2013), 

también mencionó en su estudio que los niveles altos de NAT pueden permanecer por 3 semanas 

(Fig.4) (Fig.5). A medida que el flóculo bacteriano creció, se observa el descenso drástico en las 

concentraciones de NAT, manteniendo los niveles por debajo de 1mg/L (Fig.4) (Fig.5) en los 

tratamientos 1 y 2, coincidiendo con lo reportado por  Emerenciano (2013) . En la Fig.6 y Fig. 7 se 

observó el descenso en las concentraciones de oxígeno disuelto a medida que el flóculo 

microbiano crecía; esto se debe al desarrollo de microorganismos aerobios, bacterias 

heterotróficas (Ray, Lewis, Browdy,  Lef , 2010), encargadas de controlar los niveles de NAT.  
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Existieron fluctuaciones de temperatura a lo largo de las 14 semanas de experimento, sin 

embargo, no se observó influencia sobre el volumen de sedimentación (flóculo), White, Kalff, 

Rasmussen, y Gasol (1991) reportó que bacterias heterotróficas pueden crecer a temperaturas 

de 15 ºC hasta 40 ºC; en el presente experimento la temperaturas de los biofloc no descendió de 

19 ºC. 

 

El incremento de salinidad y TDS fue a la par con el crecimiento del flóculo, esto se explica por la 

adición del carbohidrato y de carbonato de calcio durante el experimento. El carbohidrato permitió 

el crecimiento de los microorganismos, lo mismo que se ve reflejado en el incremento del volumen 

de sedimentación, el aumento en la salinidad se debe a la adición de carbonato de calcio, más las 

sales de calcio, potasio y sodio que posee la harina de arrocillo. La alcalinidad y pH se mantuvieron 

por encima de 100 mg/L y 7 respetivamente, los mismos parámetros fueron registrados por Ray 

(2010). 

 

 

4.2.3. Fase 2: Bioensayo de cultivo L. vannamei 

 

Mcgraw(2002) evaluó la supervivencia de las PL 10, PL 15 y PL 20, una vez alcanzada salinidad 

0ppt, el porcentaje de supervivencia fue de 0% y 50% a las 24h, por otro parte, a las 48% el 

porcentaje de supervivencia fue de 0%, concluyendo que L.vannamei no sobrevive a salinidades 

por debajo de 0.5 ppt, lo cual  concuerda  con los periodos de supervivencia presentados en este 

estudio. El mismo autor en su estudio no menciona en su experimento, si existió analices de los 

iones en la calidad de agua usada para la aclimatación de las PL.  Araneda (2008) reportó en su 

investigación que el cultivo de L.vannamei en 0 ppt de salinidad es viable, obteniendo el 60% de 

supervivencia, al finalizar el cultivo de 210 días (30 semanas) , sin embargo esto contrasta con 

los resultados obtenidos en el presente estudio donde se alcanzó  0 ppt , pero existió mortalidad 

del 100% en todos los lotes una vez alcanzada está salinidad, lo que sugiere que la calidad de 

agua empleada en el experimento de Araneda (2008) tubo influencia determinante en la 

supervivencia de los organismos, ya que el balance iónico entre el ratio Na+ : K+  fue de 20.4: 1, 

mientras que en el presente experimento fue de  2:5 respectivamente; como se mencionó en la 

sección anterior este desbalance iónico causa eflujo del ion Na+  desde la hemolinfa hacia el medio 

exterior (agua de cultivo), provocando que las PL pierdan la capacidad de osmoregulación al no 

poseer suficiente Na+  para generar el intercambio iónico con el medio exterior. 
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La calidad de agua usada en el tanque de aclimatación fue la misma que se empleó para el 

crecimiento de los flóculos bacterianos, por lo tanto, es poco probable que los organismos PL 14 

L.vannamei sobrevivieran  y tuvieran un desarrollo viable sobre  los parámetros productivos (factor 

de conversión alimenticia, ganancia de peso, supervivencia, tasa de crecimiento específica), por 

estas razones no se pudo cumplir con los objetivos específicos planteados en la fase dos del 

experimento , planteado en este   estudio. 
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5. CONCLUSIONES 

 

Se concluye que la post larva no es capaz de sobrevivir a salinidades por debajo de 0.05 ppt por 

más de tres días debido al desbalance iónico del ratio Na+: k+, lo que dificulta su proceso de 

osmoregulación a través de la hemolinfa, causando un shock por déficit de sodio y cloro. El 88% 

de la hemolinfa está constituida por iones de Na+ y Cl- . La calidad de agua en cuanto a balance 

iónico es fundamental para la supervivencia de las larvas, este estudio establece que un 

desbalance en el ratio de Na+: k+ ,2:5, es insuficiente para la supervivencia de los organismos. Por 

lo tanto el cultivo dulceacuícola de L.vannamei bajo las condiciones de calidad de agua usadas 

en este experimento no es viable con fines productivos. 

 

La presente investigación concluye que el desarrollo de flóculos microbianos en agua dulce es 

factible, sin embargo, el crecimiento y desarrollo productivo del camarón L. vannamei en biofloc 

dulce no es viable, debido a la calidad de agua usada en cuanto al balance iónico del ratio Na+: k+ 

,2:5, sin embargo, estos bioflocs pueden evaluarse en otras especies acuáticas de medio dulce.  
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6. RECOMENDACIONES. 

 

• Es necesario realizar análisis fisicoquímicos y microbiológicos del agua para que nos permitan 

conocer la cantidad, numero de iones disponibles y microorganismos, de esta manera se puede 

determinar si la calidad del agua es la adecuada para el cultivo de L. vannamei. 

 

 

• Se recomienda la implementación de sistemas de recirculación, más el uso de membranas para 

osmosis inversa, permitiría mantener la calidad de agua durante el período de aclimatación, 

teniendo un favorable impacto sobre el corregimiento del balance iónico entre el ratio Na+: k+ y 

las concentraciones de NAT, lo que mejoraría el peso y porcentaje de supervivencia en post-

larvas. 
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8. ANEXOS 
 

 

Anexos 1.Construcción de tanques para sistemas de cultivo. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2019) 
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 Anexos 2.Instalación de sistemas de aireación en tanques Biofloc. 

      

 

 

 

 

 

 

 

 

 

 

 

 

Anexos 3.Turbidez del tanque, formación del biofloc. 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 4. Niveles altos de NAT 8mg/L. 

 

 

 

 

 

 

 

 

 

 

 

 

Anexos 5.Descenso de los niveles de NAT 0.025 mg/L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 6. Medición de floculo microbiano en conos Imhoff. 

 

 

 

 

 

 

 

 

 

 

 

Anexos 7. Medición de larvas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2018) Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 8. Mortalidad de larvas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 9. Tamaño irregular en el crecimiento de las PL 

 

 

 

 

 

 

 

 

 

 

 

 

Anexos 10. PL14 del Lote 5 control negativo, salinidad 3 ppt. 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2018) 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 11. Lote 5, día de cultivo 6, edad de las PL :20 días. 

 

 

 

 

 

 

 

 

 

 

 

 

Anexos 12. Post larvas del Lote 5, edad: 30 días. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 13. Sedimentos de los tanques de aclimatación. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anexos 14. Equipos usados en la investigación, multiparámetros(I) y oxímetro(D). 

 

 

 

 

 

 

 

 

 

 

 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 
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Anexos 15.Reactivos empleados para la medición de NAT y Alcalinidad 

 

 

 

 

 

 

 

 

  

 

 

 

Anexos 16. Calentadores usados en los tanques de aclimatación. 

 

 

 

 

 

Fuente: (Ortiz, 2019) 

Fuente: (Ortiz, 2019) 


