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RESUMEN 

El presente trabajo de titulación forma parte del proyecto de Investigación presentado 

a la DIUC de la Universidad de Cuenca, mismo que lleva por nombre “Evaluación de 

contaminantes emergentes presentes en las aguas residuales de Ucubamba y su 

eliminación por biosorción y fitoremediación”, aportando el estudio de la influencia de 

las variables operacionales en la adsorción de fármacos sobre residuos vegetales 

aplicando diseño experimental multivariante. 

En primer lugar, se desarrolló el diseño factorial completo 23, para tres variables o 

factores a manipularse, la concentración inicial del fármaco, temperatura y tiempo de 

contacto, a su vez se mantuvo fijas los factores Cantidad de biomasa (según el 

fármaco), pH 6 y velocidad de agitación a 150 rpm. El proceso matemático y la 

interacción de los factores se realizó en el software Minitab, para determinar una 

ecuación que modele el comportamiento de adsorción. 

Los resultados de las pruebas de diseño experimental se reflejan en ecuaciones 

polinomiales de simulación de comportamiento durante un proceso de adsorción por 

lotes (batch) con agitación, para cada una de las biomasas siendo estas, Bagazo de 

Caña de azúcar y Coronta o tuza de Maíz maduro, los fármacos adsorbidos en 

solución acuosa fueron Sulfametoxazol, Ciprofloxacina, Paracetamol e Ibuprofeno. 

Se aplicaron los modelos cinético y de equilibrio demostrando que ambas biomasas se 

ajustan mejor al modelo cinético de Pseudo Segundo Orden y a diferentes modelos de 

isotermas de equilibrio dependiendo del fármaco estudiado, para las isotermas de 

Langmuir y Freundlich. 

Palabras clave: Adsorción. Contaminante emergente. Diseño experimental. Bagazo 

de Caña. Coronta de maíz. UV-Vis. 
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ABSTRACT 

The present titration work is part of the research project presented to the DIUC of the 

University of Cuenca, which is entitled "Evaluation of emerging pollutants present in 

Ucubamba wastewater and its elimination by biosorption and phytoremediation, 

providing the study of the influence of operational variables in the adsorption of drugs 

on plant residues, applying multivariate experimental design. 

In the first place, the complete factorial design was developed 23, for three variables or 

factors to be manipulated, the initial concentration of the drug, temperature and contact 

time, in turn, the factors were kept fixed. Amount of biomass (according to the drug), 

pH 6 and Stirring speed at 150 rpm. The mathematical process and the interaction of 

the factors was carried out in the Minitab® 18 software, to determine an equation that 

models the adsorption behavior. 

The results of the experimental design tests are reflected in polynomial equations of 

simulation of behavior during a process of batch adsorption (batch) with agitation, for 

each of the biomasses being these, Sugar Cane Bagasse and corn cob, the drugs 

adsorbed in aqueous solution were Sulfamethoxazole, Ciprofloxacin, Paracetamol and 

Ibuprofen. 

The kinetic model and equilibrium were applied, demonstrating that both biomasses 

are better suited to the kinetic model of Pseudo Second Order and different models of 

equilibrium isotherms depending on the drug studied, for the Langmuir and Freundlich 

isotherms. 

Keywords: Adsorption. Emerging contaminant. Experimental design. Cane bagasse. 

ear of corn. UV-Vis. 
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INTRODUCCIÓN 

Los contaminantes emergentes (CE), factor con el que se conocen a los elementos 

xenobióticos conocidos por su naturaleza residual y por pasar desapercibidos en su 

mayoría durante los tratamientos convencionales de aguas residuales (Gil, Soto, 

Usma, & Gutiérrez, 2012) resaltan por la dificultad de su remoción de los cuerpos de 

agua, además de que su presencia no se considera significativa en factores de 

concentración razón por la cual no existe normas que defina valores prestablecidos 

(Petrovic, Gonzales, & Barceo, 2003). 

El ambiente y su equilibrio es un sistema delicado, tanto que las actividades diarias de  

aseo personal así como el cuidado de nuestro cuerpo en lo que a ingesta de fármacos 

refiere pone en riesgo este débil equilibrio, dado que así como hay fármacos que son 

sintetizados en su totalidad en el organismo, otros son eliminados sin generar reacción 

alguna, provocando bioacumulación en el medioambiente (Cartagena, n.d.). Este 

mismo problema se genera cuando se desecha fármacos ya sea por fecha de 

caducidad o por el simple desuso. A nivel mundial cada año se desechan hacia las 

aguas servidas millones de estos metabolitos sintetizados o sin sintetizar, producto del 

posterior uso humano y/o veterinario (Heberer, 2002). 

Muchas técnicas hoy en día son usadas para la reducción de estos contaminantes 

como el uso de membranas, reactores fotocataliticos, adsorción con carbón activado, 

bioadsorción. Esta última, utiliza biomateriales como adsorbente, entre los cuales 

están los residuos agrícolas, con o sin modificaciones químicas. 
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IDENTIFICACIÓN DEL PROBLEMA 

Dentro del grupo de los llamados contaminantes emergentes están, entre otros, los 

fármacos, en especial antibióticos, analgésicos y antiinflamatorios, debido a su alta 

tasa de consumo, tanto en medicina como en veterinaria. Entre los antibióticos más 

usados cuya presencia en aguas residuales y superficiales ha sido ampliamente 

reportada están; Sulfametoxazol (SMX) y Ciprofloxacina (CPX): y entre los analgésicos 

y antiinflamatorios más vendidos están: Paracetamol (PRT), e Ibuprofeno (IBU), 

medicamentos muy comunes y de consumo masivo. 

Todos estos fármacos en el agua generan un desequilibrio en la vida tanto vegetal 

como animal, si son dispuestos o vertidos en el sistema de aguas servidas y que 

finalmente llegan a los cuerpos de agua superficiales. 

El Sulfametoxazol, por ejemplo, genera fitotoxicidad en la planta acuática Lemma 

Gibba, causando la inhibición del crecimiento de la planta (Brain et al., 2004). 

El Ibuprofeno y la Ciprofloxacina  inhiben el crecimiento de células embrionarias 

humanas, específicamente las células embrionarias del riñón humano 293 (Pomati et 

al., 2006). 

Desde hace varios años se han reportado  los posibles impactos hacia la salud 

humana y del ambiente por parte de los fármacos, tales como daños renales y 

hepáticos, además de cambios de sexualidad y alteraciones en tasas de mortalidad en 

peces de agua dulce (De Prada, 2009). Por lo tanto, el estudio de técnicas eficaces, 

ambientalmente amigables y de bajo costo, es prioritario para la remoción de 

contaminantes emergentes que presentan un problema actual para la calidad del 

agua. 
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JUSTIFICACIÓN 

Dentro de un proceso de adsorción son varias las variables o factores que influyen en 

la capacidad de adsorber el adsorbato. Estos parámetros principalmente se estudian 

por separado, es decir su influencia, en el proceso de manera individual o 

independiente. Sin embargo, es necesario estudiar la interacción de los parámetros 

entre sí, y la influencia que estas interacciones tienen en el resultado final de la 

adsorción. Por esta razón en el presente trabajo, se estudia la influencia de varios 

factores en el proceso de biosorción para la eliminación de fármacos sobre residuos 

vegetales en un proceso de adsorción en batch con tanque agitado. Se centra en la 

determinación de las interacciones de los factores temperatura, tiempo y 

concentración inicial del fármaco y su influencia en el proceso de adsorción usando un 

diseño factorial, generando ecuaciones de predicción. Además, con los datos 

obtenidos se generan el modelamiento cinético y de equilibrio para cada fármaco. 
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OBJETIVOS 

 

1.1 Objetivo General  

 Establecer un diseño de experimento con el fin de analizar la influencia de los 

diferentes parámetros operacionales en el proceso de adsorción de fármacos 

sobre residuos vegetales con dos biomasas residuales. 

 

1.2 Objetivos específicos 

 Aplicar el diseño experimental sobre esas variables. 

 Seleccionar las variables de mayor influencia para la adsorción. 

 Obtener una ecuación que modele el comportamiento de las variables a 

manejarse. 

 Analizar el comportamiento cinético y de equilibrio del proceso, con el fin de 

estudiar el comportamiento de las variables. 
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CAPITULO I: MARCO TEÓRICO 

El agua es un recurso vital, esencial para la vida humana y la sostenibilidad ambiental 

que conforman el planeta. Sin embargo, el crecimiento poblacional, el desarrollo 

económico y el manejo inadecuado de tan esencial recurso, ha llevado en los últimos 

años a un deterioro alarmante.(Álvarez, Ovejero, & García, 2003). Al nivel mundial, el 

80% de las aguas residuales regresan al ecosistema sin haber recibido algún 

tratamiento previo o reutilizadas, además se estima que 663 millones de personas 

carecen de agua potable y que para el 2030 aumentara en un 50% la demanda 

(Bokava, 2017). 

1.1 Contaminante Emergente 

Se conoce como contaminante emergente a los compuestos de origen y naturaleza 

distinta, es decir un elemento xenobiótico, del cual no es necesaria su presencia 

dentro de un ecosistema, existen diferentes tipos de contaminantes emergentes, los 

que se encuentran con mayor frecuencia en los efluentes para el tratamiento del agua 

son: antibióticos, antiácidos, esteroides, antidepresivos, analgésicos, antiinflamatorios, 

antipiréticos, tranquilizantes y estimulantes (Gil et al., 2012; Ternes, 1998). 

1.1.1 Fármacos como contamínate Emergente  

La incorporación de CE en los cuerpos de agua se da principalmente por la inserción 

de vertidos de la industria farmacéutica, residuos hospitalarios, la disposición 

inadecuada de fármacos caducados y principalmente por los medicamentos 

excretados por orina y heces que son incorporados en las aguas residuales (García 

Gómez, Moroyoqui, & Drogui, 2011; Gil et al., 2012). 

Estos fármacos no se remueven con facilidad en las plantas de tratamiento de agua 

residuales, y terminan en aguas superficiales y aguas para el consumo humano 

(Watkinson, Murby, Kolpin, & Costanzo, 2009), exponiendo de forma crónica (a lo 

largo de mucho tiempo) a la especie humana y sus efectos tóxicos (Cartagena, n.d.). 

Raloff, 1998 indica que en cualquier cuerpo de agua dulce se pude dar con la 

presencia de entre 30 o 60 productos farmacéuticos. 

Dentro de este contexto de contaminante hay que entender la importancia de un 

fármaco sobre cualquier otro contamínate dada su naturaleza, ya que este está hecho, 

fabricado de tal manera que prevalezca en el tiempo, para que sea persistente, es 

decir, el fármaco tiene que mantener su estructura química un tiempo suficientemente 

prolongado como para ejercer su acción terapéutica, así que una vez que entran al 

medio ambiente persisten en el mismo (Quesada, Jáuregui, Wilhelm, & Delmas, 2009). 
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Todo esto junto con el hecho de la normativa inexistente de control de este tipo de 

sustancias genera un problema de tiempos modernos en el cual la ciencia y la 

ingeniería tanto química como ambiental, se ven inmiscuidas para lograr la eliminación 

efectiva de los productos farmacéuticos, junto con otros contaminantes prioritarios, de 

las aguas residuales antes de su descarga (Rivera, Sánchez, Ferro, Prados, & 

Ocampo, 2013). 

1.1.2 Sulfametoxazol (SMX) 

Sulfametoxazol es un fármaco (medicamento) de fórmula  C10H11N3O3S, utilizado para 

tratar infecciones bacteriles, es un antibiótico, el cual inhibe enzimas secuenciales que 

intervienen en la síntesis del ácido fólico bacteriano, con lo cual puede ser tanto 

bacteriostático como bactericida (Gilman, 2007). 

En torno al fármaco, éste no se elimina por completo fácilmente una vez incorporado 

en el agua, en especial sus residuos, así como también es difícil de hidrolizar y por lo 

tanto biodegradar dada su naturaleza (Rivera et al., 2013). 

Es el fármaco más frecuente encontrado en los ambientes acuáticos, este produce 

efectos en los seres humanos como daño hepático (Tonucci, Gurgel, & Aquino, 2015). 

1.1.3 Ciprofloxacina (CPX) 

La Ciprofloxacina es un antibiótico, utilizado de manera global en el contexto 

farmacéutico, de formula C17H18N3FO3
 , forma parte del grupo de fluorquinolonas las 

cuales tienen efecto bactericida. Posee, además, un amplio espectro de acción según 

el nivel de actividad.  

Presentan una mayor actividad ante gérmenes gramnegativos (incluida 

la Pseudomonas a eruginosa), también son activas ante algunos patógenos atípicos, 

poseen actividad moderada frente a traspositivos y prácticamente nula frente a 

anaerobios (Suárez & Vera, 2011). 

1.1.4 Paracetamol (PRT) 

Fármaco de formula C8H9NO2  conocido también como Acetaminofén, analgésico, 

seguro y eficaz puede utilizarse en vez de la aspirina como agente analgésico-

antipirético; sin embargo, son mucho más débiles sus efectos antiinflamatorios 

(Acevedo, Severiche, Jaimes, & Morales, 2017; Gilman, 2007). 

Por otro lado, y una vez incorporado al medio ambiente, es un compuesto tóxico, dado 

que presenta toxicidad aguda y crónica además es persistente ante los procesos de 

los tratamientos convencionales de aguas residuales. En organismos acuáticos como 

la anguila (Anguilla anguilla) inhibe la actividad de la acetilcolinesterasa causando 

https://es.wikipedia.org/wiki/Carbono
https://es.wikipedia.org/wiki/Hidr%C3%B3geno
https://es.wikipedia.org/wiki/Nitr%C3%B3geno
https://es.wikipedia.org/wiki/Fl%C3%BAor
https://es.wikipedia.org/wiki/Fl%C3%BAor
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neurotoxicidad  y en almejas ocasiona estrés oxidativo que deriva en necrosis y 

muerte celular (Hugo et al., 2016). 

1.1.5 Ibuprofeno (IBU) 

De formula C13H18O2 forma parte de la familia de los antiinflamatorios no esteroides 

que se caracterizan por su actividad antiinflamatoria, antipirética y analgésica. 

A diferencia del SMX el IBU posee altos valores de biodegradabilidad y sus diferentes 

cinéticos, ejercen un efecto inhibidor (crecimiento, movilidad) sobre determinadas 

funciones en vertebrados (Zambrano, 2013). 

1.2 Técnicas de remoción  

Los tratamientos convencionales de aguas residuales no son suficiente para la 

eliminación de compuestos de naturaleza persistente como los son los fármacos, los 

cuales se ha detectado que muchos de estos  persisten sin alteración alguna aún 

después de aplicar dichos tratamientos (Teijon, Candela, Tamoh, Molina-Díaz, & 

Fernández-Alba, 2010). 

El éxito de su eliminación varía mucho en función de sus propiedades particulares. Por 

lo tanto, existen muchos métodos de tratamiento para la eliminación dentro los cuales 

tenemos: ultrafiltración, oxidación, adsorción, tratamientos biológicos, tratamientos con 

membranas y tratamientos avanzados de nano filtración con membranas (Janet Gil, 

María Soto, Iván Usma, & Darío Gutiérrez, 2012). 

1.3 Adsorción 

La adsorción es un fenómeno fisicoquímico de gran importancia, debido a sus 

aplicaciones múltiples en la industria química y en el laboratorio. Durante la adsorción 

de un gas o de un soluto en disolución, sus partículas se acumulan sobre la superficie 

de otro material. La sustancia que se adsorbe se denomina adsorbato y el material 

sobre el que lo hace es el adsorbente (el proceso inverso a la adsorción se conoce 

como desorción). La adsorción se distingue de la absorción, en que esta última implica 

la acumulación de la sustancia absorbida en todo el volumen del absorbente, no 

solamente en su superficie. En general se identifican dos tipos básicos de adsorción: 

la adsorción física, o fisiadsorción y la adsorción química, o quimiadsorción. La 

diferencia entre ellas radica en el tipo de interacciones entre el adsorbente y el 

adsorbato (Tubert & Talanquer, 2018). 
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1.4 Biosorción y biomasas 

En la actualidad, existe un interés creciente en el uso de materiales alternativos no 

convencionales de bajo costo en lugar de los adsorbentes tradicionales. El uso de 

biomateriales naturales es una alternativa prometedora debido a su relativa 

abundancia y su bajo valor comercial. Recientemente, muchas fuentes industriales, 

agrícolas y forestales se utilizan como adsorbentes (Barka, Abdennouri, Boussaoud, & 

EL Makhfouk, 2010). 

Para que la técnica de biosorción sea factible económicamente, la relación  

beneficio/costo debe ser alta y para ello se deben utilizar biomasas que provengan de 

la naturaleza y que sean de rápido crecimiento, o incluso sean un material de desecho 

de la misma (Muñoz Torres, 2007). 

El concepto biosorción se refiere a la captación de contaminantes por medio de una 

biomasa viva o muerta, a través de mecanismos físicos y químicos, como la adsorción 

y el intercambio iónico. Cuando se utiliza biomasa viva, los diferentes procesos 

metabólicos indispensables para el desarrollo de cualquier organismo vivo pueden 

contribuir en el proceso. El proceso básico de biosorción es igual al proceso de 

adsorción, y utiliza los modelos matemáticos de Freundlich y Langmuir para cuantificar 

la remoción del contaminante (Mejía Sandoval, 2006). 

1.4.1 Bagazo de caña  

El bagazo de caña de azúcar es un material lignocelulósico constituido principalmente 

por celulosa, hemicelulosa y lignina. Se obtiene como subproducto o residuo en los 

ingenios azucareros después de la extracción del jugo de caña de azúcar y representa 

aproximadamente entre el 25 y 40 % del total de materia procesada, dependiendo del 

contenido de fibra de la caña y la eficiencia en la extracción del jugo (Pernalete, Piña, 

Suarez, Ferrer, & Aiello, 2008). 

Su estructura está compuesta por sacarosa, fibra, ácido ascórbico, ácido cianhídrico y 

minerales.(Castro Gutierres, 2016). 

Es un residuo presente en cantidades elevadas, en especial en la provincia de Guayas 

donde las tierras se concentran es su mayoría en esta actividad, este bagazo genera 

problemas de almacenamiento y transporte ya que ocupa un gran espacio. En el 

Ecuador la caña de azúcar es un cultivo Agro Industrial de gran importancia por la 

capacidad de generar empleo, se utiliza un 20% para la fabricación de panela y el 80% 

en la producción de azúcar y alcohol etílico del total de la cosecha (Marmol & 

Livipoma, 2014). 
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1.4.2 Coronta de maíz 

El maíz es uno de los cultivos con mayor producción en el mundo, y genera residuos 

agrícolas como tuza o coronta, hoja y bagazo, los cuales son incinerados en una gran 

proporción. Por lo tanto es un subproducto agrícola renovable, disponible y de bajo 

costo, para el cual se han reportado capacidades de adsorción de colorantes y 

metales pesados tanto para el material nativo como para el modificado, que señalan 

su uso alternativo como potencial adsorbente (Gupta & Suhas, 2009). 

Este se presenta como el desecho luego de la extracción del grano ya sea en estado 

fresco o maduro, los residuos de maíz y en el caso particular de la tuza son 

abundantes, pues se tiene destinado a su cultivo 761224 toneladas métricas, de los 

cuales el 40% son residuos totales y el 20% es tuza, coronta u olote (Infante, 

Cuadrado, Arco, Perez, & Barrera, 2016). 

1.5 Factores de influencia en la Adsorción 

1.5.1 pH 

El pH es un factor de influencia dentro de un sistema de adsorción ya que al fluctuar 

sus valores, cambia la solubilidad de la solución, teniendo entonces mayores o 

menores sitios de contacto por lo tanto el pH debe ser idóneo, aunque en adsorción de 

CE mucho tiene que ver la naturaleza del fármaco, dado que de antemano se tiene 

que conocer el comportamiento de este en lo referente a su solubilidad (Fallati, 

Ahumada, & Manzo, 1994). 

1.5.2 Cantidad de Biomasa 

La cantidad de adsorbente juega un papel concluyente y está muy ligado al parámetro 

anterior ya que a mayor cantidad mayor serán los sitios activos o superficie de 

contacto (Rheinheimer, 2016), pero el hecho de un aumento significativo de biomasa 

no conlleva una mejor adsorción, dado que se puede generar saturación y por ende 

disminución del rendimiento y porcentaje de remoción, además de que se debe tener 

un equilibrio, dado que una de las premisas es biosorción factible económicamente. 

1.5.3 Tiempo de Contacto 

El intervalo de tiempo entre el fármaco y la biomasa durante la adsorción a velocidad y 

temperatura controlada es determinante, para que se genere una buena remoción 

durante este lapso,  dado que conforme avanza la adsorción sigue aumentando el 

porcentaje de fármaco removido, pero al llevarlo a cabo durante tiempos muy 

prolongados sin haber hecho estudios o experiencias pilotos (o en su defecto no 
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conocer la cinética del proceso) puede dar lugar a una desorción, superar el equilibrio,  

obteniendo valores porcentajes menores a lo esperado.  

1.5.4 Concentración Inicial  

La concentración de la solución, está ligada con el anterior parámetro dado que el 

tiempo que durante el cual es adsorbida por la biomasa, generara una relación de 

disminución de la concentración inicial aunque según Krishnan & Anirudhan, 2003 solo 

la cantidad de adsorbente y el pH forman las factores de importancia. 

1.5.5 Temperatura  

La temperatura de la solución es un factor importante para el proceso de adsorción 

debido a su variación puede afectar a la velocidad de muchos procesos. Las 

temperaturas más altas pueden facilitar la difusión para aumentar la movilidad de las 

moléculas o intensificar el número de sitios activos para la adsorción (Rheinheimer, 

2016). 

1.6 Caracterización estadística 

El diseño de experimentos ha jugado un papel fundamental dentro de la investigación 

y a la vez ha sido empleado como una herramienta estadística en diferentes áreas del 

conocimiento como química, biología, ingeniería y economía (Ferré & Rius, 2017). 

El objetivo de experimentar es obtener nuevos procesos o productos ya sea analítico o 

industrial, además de la optimización que va de la mano con la experimentación. 

1.6.1 Diseño Experimental 

El diseño de experimentos es la aplicación del método científico, con el fin de generar 

conocimiento acerca de un sistema o proceso, con la utilización de pruebas planeadas 

adecuadamente. Esta metodología consolida un conjunto de técnicas estadísticas y de 

ingeniería, que permiten entender mejor las situaciones complejas de relación causa-

efecto (Douglas C. Montgomery, 2004). 

Un modelo factorial considera todas las combinaciones posibles de los factores de 

estudio, haciéndoles variar en diferentes niveles o valores extremos. El número de 

experimentos crece en forma exponencial con el número de factores (Beltran Suito, 

2015; Box & Wilson, 1951). 

Los aspectos más influyentes para la selección de un diseño experimental, en el 

sentido de que cuando cambian uno de ellos por lo general nos llevan a cambiar de 

diseño son: 
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1. El objetivo del experimento.  

2. El número de factores a estudiar.  

3. El número de niveles que se prueban en cada factor.  

4. Los efectos que interesa investigar (relación factores-respuesta).  

5. El costo del experimento, tiempo y precisión deseada. 

Estos 5 puntos descritos no deben ser tomados de manera independiente, dado que al 

cambiar uno de estos cambiara el tipo de modelo a utilizarse (Douglas C. Montgomery, 

2004). 

1.6.2 Software Minitab® 18 

Es un programa estadístico que ofrece un conjunto de herramientas para el análisis de 

datos, encontrar soluciones a problemas que conlleven un factor matemático, 

demostrando el uso de explorar datos, realizar análisis estadísticos, control de calidad, 

diseños experimentales y un sin número de aplicaciones útiles en el ámbito profesional 

(Introducción a Minitab 18, 2017). 

1.6.3 Porcentaje de remoción  

 

 

( 1 ) 

 

Donde: 

 Concentración inicial del adsorbato [ . 

 Concentración del adsorbato en el tiempo t [ . 

 

1.6.4 Cantidad de adsorbato adsorbido por unidad de adsorbente 

 

 

( 2 ) 

Donde: 

 Concentración inicial del adsorbato [ . 

 Concentración del adsorbato en el tiempo t [ . 

 Masa del adsorbente . 
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 Volumen de la solución . 

 

1.7 Estudio cinético 

1.7.1 Modelo de Pseudo Primer Orden 

El modelo de cinética de Pseudo Primer Orden fue desarrollada por Lagergren en 

1898 siendo la primera ecuación en describir el comportamiento de la sorción para un 

sistema liquido sobre sólido (Ho & Mckay, 1998). 

El modelo cinético de Pseudo Primer Orden para describir la cinética de adsorción 

está dada por la siguiente ecuación (Gómez, 2012): 

 

 

( 3 ) 

Donde: 

 

 Constante de velocidad de adsorción de Lagergren [ . 

Cantidad de soluto adsorbido en el equilibrio [ . 

Cantidad de soluto adsorbido en un tiempo t [ . 

 

 

Integrando la ecuación de Pseudo Primer Orden con respecto a las condiciones de: 

; ;  ;  

 
( 4 ) 

Linealizando: 

 

( 5 ) 

 

En donde  y  son parámetros que pueden ser determinados por regresión lineal, 

graficando t versus  , donde  corresponderá a la pendiente. 
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1.7.2 Modelo de Pseudo Segundo Orden 

El modelo cinético de Pseudo Segundo Orden está dado por la ecuación (Murillo, 

Giraldo, & Moreno, 2011): 

 

( 6 ) 

Donde: 

  Constante de velocidad de adsorción de pseudo segundo orden ]. 

 Cantidad de soluto adsorbido en el equilibrio [ . 

 Cantidad de soluto adsorbido en un tiempo t [ . 

Integrando la ecuación de Pseudo Segundo Orden con respecto a las condiciones de: 

; ;   

 

( 7 ) 

Linealizando: 

 

( 8 ) 

Donde obtiene la estructura de una recta de la forma  y los valores de  y 

  son calculados mediante la pendiente de la recta y su intercepto 

respectivamente. 

1.8 Estudio equilibrio 

1.8.1 Isoterma de Adsorción de Langmuir 

La isoterma de Langmuir se puede representar mediante la siguiente fórmula: 

 

( 9 ) 

Donde: 

 Cantidad de soluto adsorbido en el equilibrio . 

 Capacidad máxima de adsorción de la fase sólida en monocapa [ . 
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 Constante de energía relacionada con el calor de adsorción . 

 Concentración final en equilibrio . 

Linealizando: 

 

( 10 ) 

Para obtener los parámetros de la Isoterma de Langmuir se grafican  versus  y 

se tienen los valores de la pendiente y la ordenada al origen. 

 

1.8.2 Isoterma de Adsorción de Freundlich 

La isoterma de Freundlich se puede representar mediante la siguiente fórmula: 

 
( 11 ) 

Donde: 

 Cantidad de soluto adsorbido en el equilibrio [ . 

 Constante de capacidad de adsorción . 

 Concentración final en equilibrio . 

 Constante relacionada con la afinidad entre el adsorbente y el soluto 

(adimensional). 

 

Linealizando: 

 

( 12 ) 

 

Para obtener los parámetros de la Isoterma de Freundlich se grafican  versus 

, se obtienen los valores de la pendiente y la ordenada al origen, parámetros 

de la isoterma de Freundlich (Adane, Siraj, & Meka, 2015). 
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CAPÍTULO II: MATERIALES Y MÉTODOS 

2.1 Materiales, Reactivos y Equipo 

En la preparación de las biomasas residuales de bagazo de caña y coronta de maíz 

necesarias para el presente trabajo de titulación se utilizó materiales, reactivos y 

equipos, especificados en la Tabla 1 a continuación. 

Tabla 1 Materiales, Reactivos y Equipos para los procesos de preparación y caracterización de las 
biomasas 

Materiales Reactivos Equipos 

Erlenmeyer 
Solución NaOH 

(0,05N) 
Balanza analítica( AND HM-200) 

Balones 
Solución HCL 

(0,05N) 
pH metro (Hanna Instruments HI 2221) 

Probetas Agua potable 
Shaker-Tanque Agitado (Thermo Scientific 

MAXQ 4000) 

Vasos de 

Precipitación 
Agua destilada 

Espectrómetro infrarrojo Thermo Scientific 

Nicolet iS5, 

Papeles Filtro  
Estufa 20AF Lab Oven (Quincy Lab Inc.) 

 

Crisoles   

 

2.2 Métodos  

2.2.1 Preparación Biomasa Bagazo de caña 

El bagazo de caña de azúcar fue recolectado en el cantón Paute, provincia del Azuay 

en las localidades del El Cabo, Descanso y La Higuera.  

El proceso de preparado de la caña de azúcar fue el siguiente: 

2.2.1.1 Desfibrado 

Se separó la corteza o fibra del bagazo de caña de la pulpa, descartando la que se 

encuentre en mal estado en función de su color y aspecto. 

2.2.1.2 Lavado 

Se realizó tres lavados con agua potable, en un intervalo de 30 minutos 

respectivamente moviendo constantemente para remover los azucares, materiales 

sólidos, pigmentos y otros compuestos presentes en el bagazo. Se realizó un pre 

secado en contacto con el sol para eliminar la mayor cantidad de agua presente en el 

bagazo. 

A continuación, se realizó tres lavados con agua destilada por 20 minutos para 

remover las sales presentes en el agua potable realizadas en el anterior lavado. 
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Figura No. 1 Lavado del Bagazo de Caña de azúcar 

Fuente: Autores 

2.2.1.3 Secado 

El bagazo fue secado en una estufa de laboratorio a 60 oC por 24 horas a peso 

constante. 

 

 

 

 

 

Figura No. 2 Secado de Bagazo de Caña de azúcar 

Fuente: Autores 

2.2.1.4 Molienda  

La reducción de tamaño se efectuó en un molino de martillos marca (SK 100 standard 

rostfrei) para reducir su tamaño de partícula. 

 

Figura No. 3 Proceso de molido del Bagazo de Caña de azúcar 

Fuente: Autores 
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2.2.1.5 Tamizaje 

El tamizado del bagazo se realizó con el uso de tamices marca Newark, con 3 

diferentes tipos de diámetros como se indica en la Tabla 2, se obtuvieron cuatro clases 

de biomasa de diferente tamaño de partícula.  

Tabla 2 Clasificación de los tamices según el número y tamaño 

Número (No) 5 20 40 

Tamaño (mm) 4 0,850 0,425 

Las biomasas fueron almacenadas en bolsas herméticas como se ilustra en la Figura 

No. 4 

 

Figura No. 4 Proceso de Tamizado y Clasificación de partículas de Bagazo de Caña 

Fuente: Autores 

2.2.2 Preparación Biomasa Coronta de maíz 

La coronta de maíz fue proporcionada por plantaciones de la zona rural del cantón 

Cuenca provincia del Azuay.  

La coronta de maíz debe estar seca, libre de las hojas y otros aquellos elementos que 

pudieran estar adheridos al mismo. El proceso de preparación de la coronta de maíz 

es el siguiente:  

2.2.2.1 Molienda 

La molienda se la realizo en dos etapas: una pre molienda en un molino de martillos 

de mayor capacidad como se ilustra en la Figura No. 5 y luego una molienda en el 

molino marca (SK 100 standard rostfrei) para reducir su tamaño de partícula. 

 

Figura No. 5 Proceso de molienda de la Coronta de maíz 

Fuente: Autores 
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2.2.2.2 Tamizaje 

El tamizado de la Coronta de maíz se realizó con el uso de tamices marca Newark, 

con 3 diferentes tipos de diámetros como se indica en la Tabla 2 utilizada para el 

Bagazo de caña de azucar. Las biomasas fueron almacenadas en bolsas herméticas. 

2.2.2.3 Lavado 

La fracción de biomasa más fina< 0,425 mm se utilizó para el lavado, se detalla el 

proceso del lavado: 

 Colocar en un vaso de precipitación de 600 mL una cantidad de biomasa. 

 Añadir agua destilada hasta cubrir la biomasa por completo.  

 Agitar con la ayuda del agitador magnético a la temperatura de 60OC y 300 rpm 

por 20 minutos.  

 Filtrar. 

 Realizar 3 lavados siguiendo los pasos anteriores. 

 

Figura No. 6 Proceso de lavado de la Coronta de Maíz 

Fuente: Autores 

 

2.2.2.4 Secado 

Para el secado se colocó en bandejas de aluminio para ser llevados a la estufa por 24 

horas a 60 OC. 

2.2.3 Preparación de soluciones  

Las soluciones de los fármacos se preparan en agua destilada con 1%v/v de metanol. 

Todos los fármacos son de grado analítico proporcionados por Sigma Aldrich y el 

metanol por Merck grado analítico HPLC. 

2.2.4 Blanco 

La preparación del blanco consta de una solución metanol y agua destilada al 1% v/v. 
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2.2.5 Pruebas de Diseño Factorial 

En el presente trabajo se implementó el diseño factorial completo 23 para estudiar la 

influencia de los factores: concentración inicial del fármaco, tiempo de contacto y 

temperatura. Los factores y niveles del diseño factorial 23 se reportan en la Tabla 3. 

Tabla 3 Factores y niveles del diseño factorial 23 

Factores 
Niveles 

(-1) (0) (+1) 

Concentración inicial del fármaco (mg/L) (A) 20 50 80 

Temperatura (oC) (B) 20 30 40 

Tiempo (min) (C) 2 31 60 

 

2.2.6 Descripción de experimentación 

Se realizó la matriz de diseño experimental como se indica la Tabla 4 para todos 

los experimentos a realizarse. 

Tabla 4 Matriz de diseño experimental 23 

A B C 

20 20 2 

80 20 2 

20 40 2 

80 40 2 

20 20 60 

80 20 60 

20 40 60 

80 40 60 

50 30 31 

 

Se estableció la cantidad de biomasa conforme la Tabla 5 para los respectivos 

experimentos. 

Tabla 5 Cantidad de biomasa empleada en cada análisis. 

Contaminante emergente 
Pesos de Biomasa 

Bagazo de caña Coronta de maíz 

Sulfametoxazol 1 gramo 1,5 gramos 

Ciprofloxacina 0,15 gramos 0,15 gramos 

Paracetamol 1,25 gramos 1,25 gramos 

Ibuprofeno 1 gramo 1 gramo 
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Se estableció un pH=6 para cada una de las soluciones, tamaño de partícula < 

0,425 mm y una velocidad de agitación de 150 rpm. 

El proceso de experimentación se describe a continuación: 

 

1. Establecer las corridas a realizarse según la matriz de diseño de 

experimentos. 

2. Preparar las soluciones de fármaco. 

3. Corregir el pH de la solución a un valor de 6 con NaoH o HCl 0,05 N. 

4. Medir en el equipo UV- Visible su concentración. 

5. Pesar la cantidad de biomasa según la Tabla 4. 

6. Colocarlo la biomasa en un Erlenmeyer de 250 mL de capacidad. 

7. Añadir 50 ml de solución de fármaco. 

8. Poner en marcha en el equipo Shaker Tanque Agitado con sus respectivos. 

parámetros dependiendo de la corrida a realizarse. 

9. Filtrar la solución. 

10. Medir la solución filtrada en el equipo UV-Visible. 

11. Reportar los datos de CF (concentración final) en una hoja de Excel para 

respaldo de información. 

12. Exportar los datos a Minitab® 18. 

13. Analizar los datos obtenidos en el software Minitab® 18. 

2.2.7 Análisis de datos en Minitab® 18 

De los datos del diseño completo 23 con punto central y su respectiva respuesta se 

analizaron los estadísticos descriptivos más significativos para los análisis de la 

varianza. 

Los gráficos, los cuales nos proporciona Minitab® 18 para cada uno de los casos de 

contaminante emergente sobre biomasa analizaran las gráficas de Diagrama de 

Pareto, grafica de residuos y grafica de efectos principales. 
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2.2.8 Analisis de Varianza (ANOVA) 

Se verificará el coeficiente de correlación ajustado para los datos, donde Minitab® 18 

proporciona un indice de correlacion establecido entre los factores y la respuesta del 

diseño experimental, para lo cual se acepta un coeficiente de correlacion ajustado 

superior a 99%. (Penedo Medina, Manals Cutiño, Vendrell Calzadilla, & Salas Tort, 

2015). 

Los valores de la varianza obtenidos por el software Minitab® 18 analizados son los 

correspondientes a F (Distribución de la probabilidad continua) y p (nivel se 

significancia).  

El valor F es la estadística de prueba usada para determinar si el factor está asociado 

con la respuesta. Un valor F suficientemente grande indica que el factor o el modelo es 

significativo. 

Para establecer un valor de F contribuyente, se aplica que cuyos valores sean iguales 

o superiores al valor crítico se consideran que son estadísticamente aceptables. Se 

obtiene el valor de F critico en función del número de niveles de los factores, los 

grados de libertad para el error y un nivel de significancia del 95% obteniendo se de 

esta manera el valor 5,12 el cual se usa para los posteriores análisis en ANOVA. 

Con los datos de p se establece la significancia que tiene el factor sobre cada 

estadístico descriptivo, los cuales pueden ser iguales o menores a 0,05 demostrando 

el nivel de significancia, así como su influencia directa sobre el estadístico (Dobrosz, 

Gómez, & Santa, 2018). 

Los grados de libertad (GL) son la cantidad de información suministrada por los 

datos, que se pueden utilizar para estimar los valores de parámetros de población 

desconocidos y calcular la variabilidad de esas estimaciones. Este valor se determina 

según el número de observaciones de la muestra y el número de parámetros del 

modelo. 

El error por lo general se refiere al grado en que las funciones, fórmulas y estadísticos 

no pueden explicar o modelar totalmente un valor real o teórico. En otras palabras, el 

error es la diferencia entre un valor real y uno pronosticado. 

Las réplicas representan el "error puro", porque solo la variación aleatoria puede 

causar diferencias entre los valores de respuesta observados. 

La falta de ajuste es un modelo de regresión, que exhibe falta de ajuste cuando no 

puede describir adecuadamente la relación funcional entre los factores experimentales 
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y la variable de respuesta. La falta de ajuste puede ocurrir si no se incluyen factores 

importantes del modelo, tales como factores de interacción o cuadráticos.  

2.2.9 Prueba t-Student 

Se estableció la prueba t-Student, para un nivel de confianza del 95%, se muestra en 

el Diagrama de Pareto la línea de referencia que indica cuáles son los factores más 

significativos estadísticamente. 

La línea de referencia depende del nivel de significancia (denotado por α), para 

aquellos factores representados por barras que sobrepasen la línea de referencia 

indicaran que son los más significativos estadísticamente.    

2.2.10 Graficas de residuos 

En las gráficas de residuos se aprecian el ajuste de los datos para el estudio del 

modelo. Entre los cuales se encuentra el Histograma de residuos, Residuos vs 

Ajustes, Residuos vs Orden y Grafica de probabilidad normal. 

2.2.11 Grafica de efectos principales 

Con la ayuda de los gráficos de efectos principales se establece los factores de mayor 

influencia (A, B y C) sobre el factor respuesta (CF), se analizará la pendiente positiva o 

negativa estableciendo de esta forma si el factor de interés aporta positiva o 

negativamente al factor respuesta (Peñaranda & Vizhco, 2016). 

2.2.12  Metodología de diseño experimental para la construcción de la expresión 

polinomial 

Con los criterios de análisis de varianza, prueba t Student y grafica de efectos 

principales se aplicará la selección de aquellos factores más influyentes para la 

construcción de la ecuación polinómica. Como se detallada a continuación: 

 

 
( 13 ) 

Los coeficientes influyentes se reemplazarán para cada uno de los factores descritos 

en la ecuación polinómica y aquellos quienes sean poco o nada influyentes no 

formarán parte de la expresión polinómica.  

Se planteó un diseño factorial completo simple para el análisis de los resultados, pero 

debido a que las adsorciones presentan curvaturas tipo polinómicas, se planteó un 

modelo de superficie de respuesta ya que este modelo se ajusta a un polinomio de 

primer o segundo grado, característica de la adsorción siendo factible el uso del 

modelo de superficie de respuesta. 



Universidad de Cuenca   
_____________________________________________________________ 
 

 

41 

Christian Guillermo Barros Tenecora 
Pedro Diego Quiroz Ortiz 

 

CAPITULO III: ANÁLISIS RESULTADOS Y DISCUSIÓN 

Para cada uno de los fármacos (Sulfametoxazol, Ciprofloxacina, Paracetamol e 

Ibuprofeno) sobre las biomasas (Bagazo de Caña y Coronta de Maíz) se establece los 

criterios de análisis de varianza, prueba t Student, gráfico de residuos y gráfico de 

efectos principales para obtener las ecuaciones que modelan el comportamiento de 

adsorción. 

3.1 ANÁLISIS DE RESULTADOS: BAGAZO DE CAÑA DE AZÚCAR 

3.1.1 Experimento con Sulfametoxazol 

En la Tabla 6 se muestran los valores reales del diseño factorial completo 23 como los 

resultados obtenidos por cada factor respuesta de concentración final, por duplicado 

del Sulfametoxazol sobre Bagazo de Caña de azúcar. 

Tabla 6 Resultados numéricos del diseño factorial experimental de la adsorción del Sulfametoxazol sobre 

Bagazo de Caña de azúcar 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 15,027 15,015 

2 20 40 2 17,454 17,576 

3 20 20 60 14,754 14,665 

4 20 40 60 10,265 10,303 

5 80 20 2 50,435 51,33 

6 80 40 2 49,518 51,19 

7 80 20 60 43,569 43,44 

8 80 40 60 45,255 43,638 

9 50 30 31 33,361 34,23 

Dónde: 

A= Concentración inicial de la solución del fármaco en mg/L. 

B= Temperatura a la cual se llevó acabo la Adsorción.  

C= tiempo durante el cual las biomasas con la solución estuvieron en contacto. 

CF1= Concentración final obtenida luego una primera experiencia de adsorción. 

CF2= Concentración final obtenida luego de una segunda experiencia de adsorción 

(replica). 

Los datos de la Tabla 6 se exportaron a Minitab® 18, se obtuvo el análisis de varianza, 

diagrama de Pareto, gráficos de residuos, gráfico de efectos principales, como se 

detalla a continuación: 
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Tabla 7 Análisis de la varianza de la adsorción del Sulfametoxazol sobre Bagazo de Caña de azúcar 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 4475,06 639,29 302,96 0,000 

Lineal 3 4442,48 1480,83 701,76 0,000 

A 1 4333,46 4333,46 2053,6 0,000 

B 1 0,58 0,58 0,27 0,613 

C 1 108,45 108,45 51,39 0,000 

Cuadrado 1 15,53 15,53 7,36 0,022 

A*A 1 15,53 15,53 7,36 0,022 

Interacción de 2 
factores 

3 17,04 5,68 2,69 0,103 

A*B 1 1,37 1,37 0,65 0,438 

A*C 1 8,25 8,25 3,91 0,076 

B*C 1 7,42 7,42 3,52 0,0900 

Error 10 21,1 2,11 
  

Falta de ajuste 1 17,6 17,6 45,2 0,000 

Error puro 9 3,5 0,39 
  

Total 17 4496,16 
   

 F=MC Ajust/MC Ajust; R2=99,53%; R2ajust=99,20% 

3.1.1.1 Analisis de varianza (ANOVA) 

De la Tabla 7 el modelo ajustado presenta un coeficiente de correlación R2 ajustado 

corresponde a 99.20% demostrando un adecuado ajuste de los datos para el modelo 

matematico propuesto, en contraste con la falta de ajuste, su valor es menor al criterio 

p , pero el elevado valor de R2 ajustado para el modelo se acepta para continuar con 

los analisis de F y p. 

Dado el valor de F crítico, se elimina los factores que no cumplen con la condición 

establecida, para este modelo los factores son (C, A*B, A*C y B*C). A su vez para el 

valor de p los factores anteriormente mencionados no aportan al modelo matemático 

por ende no son significativos estadísticamente. 

Para el Sulfametoxazol sobre Bagazo de Caña de azúcar, el análisis de la varianza 

como indica la Tabla 7 los factores (A, C y A*A) presentan la mayor significancia 

estadística.  

3.1.1.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 7 se puede observar que los factores (A, C 

y AA) son los que aportan un mayor efecto a diferencia de los factores (AC, BC, AB y 

B) que resultan ser estadísticamente poco significativas. 
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Figura No. 7 Diagrama de Pareto de efectos del Sulfametoxazol sobre Bagazo de Caña de azúcar 

3.1.1.3 Graficas de residuos para desviación estándar 

Mediante el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Sulfametoxazol sobre Bagazo de Caña de azúcar. 

 

Figura No. 8 Graficas de residuos para Desviación Estándar para Sulfametoxazol sobre Bagazo de Caña 
de azúcar 

En la Figura No. 8, se observa la gráfica de la probabilidad normal donde los valores 

de residuo tienden a un ajuste lineal demostrando un comportamiento adecuado de la 

probabilidad normal, por ende no hay sesgo. El sesgo se define como la desviación de 

los resultados obtenidos con el valor verdadero. 
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El Histograma no se analiza para este modelo matemático debido a que se requiere de 

un mínimo de 20 corridas para apreciar la frecuencia sobre los residuos, por lo cual se 

indica que en posteriores análisis no se describe el Histograma.  

 En la gráfica de Valor ajustado vs residuo, se evidencia que ninguno presenta un 

patrón significativo como forma de embudo o cuello de botella, puesto que se 

encuentran dispersos alrededor de cero, explicando que existe una varianza 

constante, no tiene puntos atípicos ni influyentes. 

En la gráfica de residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende la independencia de los 

resultados. 

3.1.1.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 9 se observa que el factor A consta de una pendiente positiva, 

mostrando una elevada influencia positiva, directamente proporcional sobre el factor 

de respuesta. En cambio, el factor B no influye en el comportamiento de respuesta, 

reflejándose como una dependencia nula y el factor C aporta negativamente al valor 

de esta y/o es inversamente proporcional. 
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Figura No. 9 Grafico de efectos principales del Sulfametoxazol sobre Bagazo de Caña de azúcar 

3.1.1.5 Ecuación polinomica para Sulfametozaxol 

La ecuación que refleja el comportamiento de adsorción del Sulfametoxazol 

estableciendo los criterios descritos con anterioridad y usando el modelo matemático 

de Minitab® 18, establece la ecuación que modela el comportamiento del 

Sulfametoxazol sobre Bagazo de Caña de azúcar. 

 
( 14 ) 
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Del modelo matemático Sulfametoxazol sobre Bagazo de Caña de azúcar se definió 

las mejores condiciones de trabajo, dándonos, que para una concentración inicial de 

20 mg/L, temperatura de 40°C y un tiempo de 60 minutos un valor del 41,1% como el 

valor máximo de remoción que puede alcanzar para este modelo descrito. 

3.1.2 Experimento con Ciprofloxacina 

En la Tabla 8 se muestran los valores del diseño factorial completo 23 y los resultados 

de concentración final, por duplicado de la Ciprofloxacina sobre Bagazo de Caña de 

azúcar.  

Tabla 8 Resultados numéricos del diseño factorial experimental de la adsorción de la Ciprofloxacina sobre 
Bagazo de Caña de azúcar 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 5,782 5,971 

2 20 40 2 6,156 6,44 

3 20 20 60 4,594 4,33 

4 20 40 60 5,88 5,123 

5 80 20 2 37,675 36,012 

6 80 40 2 38,954 39,363 

7 80 20 60 31,533 32,067 

8 80 40 60 35,024 35,854 

9 50 30 31 20,73 20,561 

 

Los datos de la Tabla 8 se exportaron a Minitab® 18, se obtuvo el análisis de varianza, 

Diagrama de Pareto, gráficos de residuos, gráfico de efectos principales como se 

detalla a continuación: 

Tabla 9 Análisis de la varianza de la adsorción de la Ciprofloxacina sobre Bagazo de Caña de azúcar 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 3727,06 532,44 2153,96 0,000 

Lineal 3 3710,34 1236,78 5003,35 0,000 

A 1 3666,48 3666,48 14832,63 0,000 

B 1 13,75 13,75 55,61 0,000 

C 1 30,11 30,11 121,8 0,000 

Cuadrado 1 0 0 0,01 0,944 

A*A 1 0 0 0,01 0,944 

Interacción de 2 factores 3 16,72 5,57 22,55 0,000 

A*B 1 5,05 5,05 20,42 0,001 

A*C 1 10,73 10,73 43,42 0,000 

B*C 1 0,94 0,94 3,81 0,079 
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Error 10 2,47 0,25 
  

Falta de ajuste 1 0,12 0,12 0,48 0,507 

Error puro 9 2,35 0,26 
  

Total 17 3729,53 
   

F=MC Ajust/MC Ajust; R2=99,93%; R2ajust=99,89% 

3.1.2.1 Analisis de varianza (ANOVA) 

En la Tabla 9 el modelo ajustado presenta un coeficiente de correlación R2  ajustado 

de 99,89% dandonos un adecuado ajuste de los datos para el modelo matematico 

propuesto. Se analiza el valor de F crítico, demostrando que los factores (A*A y B*C) 

son poco significativos, a su vez para el valor de p los factores anteriormente 

mencionados no aportan al modelo matemático, por ende no son significativos 

estadísticamente. 

Para la Ciprofloxacina sobre Bagazo de Caña de azúcar en el análisis de la varianza 

según la Tabla 9 los factores (A, B, C, A*B y A*C) presentan la mayor significancia 

estadística.  

3.1.2.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 10, se observa que los factores (A, B, C, 

A*C y A*B) son los que aportan un mayor efecto a diferencia de los factores (B*C y 

A*A) que resultan ser estadísticamente poco significativas. 

 

Figura No. 10 Diagrama de Pareto de efectos de la Ciprofloxacina sobre Bagazo de Caña de azúcar 

 

3.1.2.3 Graficas de residuos para desviación estándar 

Mediante el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para la Ciprofloxacina sobre Bagazo de Caña de azúcar. 
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Figura No. 11 Graficas de residuos para Desviación Estándar para la Ciprofloxacina sobre Bagazo de 
Caña de azúcar 

En la Figura No. 11, se observa la gráfica de la probabilidad normal, de donde los 

valores de residuos tienen un ajuste lineal, contrastando que los resultados no 

presentan sesgo. 

En la gráfica de Residuo vs ajuste, se evidencia que ninguno presenta un patrón 

significativo de embudo o cuello de botella, puesto que se encuentran dispersos 

alrededor de cero existiendo una varianza constante, además los puntos no son 

atípicos ni influyentes. 

En la gráfica de Residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende los resultados son 

independientes unos de otros. 

3.1.2.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 12 se observa el factor A consta de  una pendiente positiva, 

mostrando una elevada influencia positiva sobre el factor de respuesta, el factor B 

aporta positivamente al factor respuesta y el factor C aporta negativamente sobre el 

factor respuesta.  
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Figura No. 12 Grafico de efectos principales de la Ciprofloxacina sobre Bagazo de Caña de azúcar 

3.1.2.5 Ecuación polinomica para la Ciprofloxacina 

La ecuación que refleja el comportamiento de adsorción de la Ciprofloxacina sobre 

Bagazo de Caña de azúcar los factores que no aportan significancia estadística son 

(BC y A*A), usando el modelo matemático de Minitab® 18 se establece la ecuación 

que modela el comportamiento. 

 

 

( 15 ) 

 

Del modelo matemático Ciprofloxacina sobre Bagazo de Caña de azúcar se estableció 

las mejores condiciones de trabajo, para una concentración inicial de 20 mg/L, 

temperatura de 20°C y tiempo de 60 minutos, da como resultado un valor de 77% 

como el valor máximo de remoción que puede alcanzar para este modelo descrito. 
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3.1.3 Experimento con Paracetamol 

En la Tabla 10 se muestran los valores del diseño factorial completo 23 como los 

resultados de concentración final por duplicado del Paracetamol sobre Bagazo de 

Caña de azúcar.  

Tabla 10 Resultados numéricos del diseño factorial experimental de la adsorción del Paracetamol sobre 

Bagazo de Caña de azúcar 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 17,137 17,532 

2 20 40 2 16,247 15,98 

3 20 20 60 19,141 19,084 

4 20 40 60 18,31 18,176 

5 80 20 2 70,408 69,048 

6 80 40 2 67,95 67,47 

7 80 20 60 69,382 70,758 

8 80 40 60 63,175 62,971 

9 50 30 31 44,369 44,825 

Los datos de la Tabla 10 se exportaron a Minitab® 18, se obtuvo el análisis de 

varianza, Diagrama de Pareto, gráficos de residuos y efectos, como se detalla a 

continuación:  

Tabla 11 Análisis de la varianza de la adsorción del Paracetamol sobre Bagazo de Caña de azúcar 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 10049,4 1435,62 1537,19 0,000 

Lineal 3 10008,6 3336,21 3572,24 0,000 

A 1 9977,8 9977,76 10683,65 0,000 

B 1 30,8 30,83 33,01 0,000 

C 1 0 0,04 0,04 0,845 

Cuadrado 1 6,6 6,58 7,05 0,024 

A*A 1 6,6 6,58 7,05 0,024 

Interacción de 2 factores 3 34,2 11,39 12,19 0,001 

A*B 1 12 11,99 12,84 0,005 

A*C 1 16,8 16,82 18,01 0,002 

B*C 1 5,4 5,35 5,73 0,038 

Error 10 9,3 0,93 
  

Falta de ajuste 1 7,1 7,1 28,6 0,000 

Error puro 9 2,2 0,25 
  

F=MC Ajust /MC Ajust; R2=99,91%; R2ajust=99,84% 

3.1.3.1 Analisis de varianza (ANOVA) 

En la Tabla 11 el modelo ajustado presenta un coeficiente de correlación R2 ajustado 

de 99,84% ofeciendo un ajuste adecuado de los datos para el modelo matematico 

propuesto. Se demuestra que el valor de F crítico para este modelo en el factor (C) no 
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es significativo, a su vez este se corrobora con la condición del p factor anteriormente 

mencionado (p<0.05), no aporta al modelo matemático por ende no es significativo 

estadísticamente. 

Para el Paracetamol sobre Bagazo de Caña de azúcar en el análisis de la varianza de 

la Tabla 11 los factores (A, B, A*B, B*C y A*C) presentan la mayor significancia 

estadística.  

3.1.3.2 Prueba T-Student 

En el diagrama de Pareto Figura No. 13 se observa que los factores (A, B, A*B, A*C y 

B*C) son los que aportan un mayor efecto a diferencia del factor (C) el cual no aporta 

al modelo estadístico. 

 

Figura No. 13 Diagrama de Pareto de efectos del Paracetamol sobre Bagazo de Caña de azúcar 

3.1.3.3 Graficas de residuos para desviación estándar 

Mediante el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Paracetamol sobre Bagazo de Caña de azúcar. 
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Figura No. 14 Graficas de residuos para Desviación Estándar para el Paracetamol sobre Bagazo de Caña 
de azúcar 

En la Figura No. 14, se observa la gráfica de la probabilidad normal, de la cual los 

valores de residuos tienen un ajuste lineal donde no existe sesgo entre los resultados 

obtenidos para el modelo estadístico. 

En la gráfica de Residuo vs ajustes, se observa que los datos están dispuestos 

aleatoriamente, no presentan un patrón significativo de embudo o cuello de botella, se 

afirma la varianza constante, además, los puntos no son atípicos ni influyentes. 

En la gráfica de Residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende los resultados son 

independientes unos de otros. 

3.1.3.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 15 se observa que el factor A consta de una pendiente positiva, 

mostrando una elevada influencia positiva sobre el factor de respuesta, el factor B 

aporta negativamente al  factor respuesta y el factor C es un factor nulo para el factor 

respuesta. 
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Figura No. 15 Grafico de efectos principales del Paracetamol sobre Bagazo de Caña de azúcar 

3.1.3.5 Ecuación polinomica para el Paracetamol 

La ecuación que refleja el comportamiento de adsorción del Paracetamol sobre 

Bagazo de Caña de azúcar, el termino (C) no se descartó de la ecuación debido a su 

característica jerárquica con los datos a analizarse. Razón por la cual se mantuvo el 

factor obteniéndose la siguiente ecuación que modela su comportamiento. 

 

 

( 16 ) 

 

Del modelo matemático Paracetamol sobre Bagazo de Caña de azúcar se estableció 

las mejores condiciones de trabajo, para una concentración inicial de 20 mg/L, 

temperatura de 40°C y un tiempo de 2 minutos, con estas condiciones se obtiene un 

valor de 19% como el valor máximo de remoción que puede alcanzar para este 

modelo descrito. 
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3.1.4 Experimento con Ibuprofeno 

En la Tabla 12 constan los valores del diseño factorial completo 23 y los resultados de 

concentración final, por duplicado del Ibuprofeno sobre Bagazo de Caña de azúcar.  

 
Tabla 12 Resultados numéricos del diseño factorial experimental de la adsorción del Ibuprofeno sobre 

Bagazo de Caña de azúcar 

Experimento A 
(mg/L) 

B 
(oC) 

C 
(min) 

CF1 CF2 

1 20 20 2 11,095 12,082 

2 20 20 60 0,000 0,000 

3 20 40 2 6,613 9,382 

4 20 40 60 10,218 14,456 

5 80 20 2 51,366 53,063 

6 80 20 60 31,961 33,379 

7 80 40 2 32,641 34,670 

8 80 40 60 27,282 29,797 

9 50 30 31 19,273 20,296 

 

Los datos de la Tabla 12 se exportaron a Minitab® 18 se obtuvo el análisis de 

varianza, Diagrama de Pareto, gráficos de residuos y efectos como se detalla a 

continuación: 

Tabla 13 Análisis de la varianza de la adsorción del Ibuprofeno sobre Bagazo de Caña de azúcar 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 4183,56 597,65 271,01 0,000 

Lineal 3 3618,41 1206,14 546,93 0,000 

A 1 3315,25 3315,25 1503,33 0,000 

B 1 48,61 48,61 22,04 0,001 

C 1 254,55 254,55 115,43 0,000 

Cuadrado 1 11,93 11,93 5,41 0,042 

A*A 1 11,93 11,93 5,41 0,042 

Interacción de 2 factores 3 553,22 184,41 83,62 0,000 

A*B 1 247,05 247,05 112,03 0,000 

A*C 1 75,79 75,79 34,37 0,000 

B*C 1 230,38 230,38 104,47 0,000 

Error 10 22,05 2,21 
  

Falta de ajuste 1 0,56 0,56 0,24 0,639 

Error puro 9 21,49 2,39 
  

F=MC Ajust/MC Ajust; R2=99,48%; R2ajust=99,11% 

3.1.4.1 Analisis de varianza (ANOVA) 

En la Tabla 13 el modelo ajustado, presenta un coeficiente de correlación R2 ajustado 

de 99,11 aportando un adecuado ajuste de los datos para el modelo propuesto de 
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superficie. Para la condicion de F crítico y p valor, en el análisis de la varianza todos 

los factores cumplen siendo significativos estadísticamente. 

Para el Ibuprofeno sobre Bagazo de Caña de azúcar en el análisis de la varianza de la 

Tabla 13 los factores (A, B, C, A*A, A*B, B*C y A*C) presentan la mayor significancia 

estadística.  

3.1.4.2 Prueba T-Student 

En el diagrama de Pareto Figura No. 16 todos los factores aportan al modelo 

estadístico. 

 

Figura No. 16 Diagrama de Pareto de efectos del Paracetamol sobre Bagazo de Caña de azúcar 

3.1.4.3 Graficas de residuos para desviación estándar 

Mediante el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Ibuprofeno sobre Bagazo de Caña de azúcar. 
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Figura No. 17 Graficas de residuos para Desviación Estándar para el Ibuprofeno sobre Bagazo de Caña  

En la Figura No. 17, se observa la gráfica de la probabilidad normal evidenciando los 

valores una tendencia lineal, lo cual demuestra que no hay sesgo entre los resultados 

obtenidos. 

En la gráfica de Residuo vs ajustes, se evidencia un patrón que se observa en la parte 

superior e inferior de la línea central del gráfico, se concluye que la varianza no es 

constante al verse los datos distribuidos en forma de abanico. 

En la gráfica de Residuo vs orden, los datos se disponen de forma escalonada, hace 

referencia que los datos son dependientes unos de otros. 

3.1.4.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 18 se observa que el factor A consta de una pendiente positiva, 

mostrando una elevada influencia positiva sobre el factor de respuesta, el factor B 

aporta negativamente al factor respuesta y el factor C aporta negativamente al factor 

respuesta. 
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Figura No. 18 Grafico de efectos principales del Ibuprofeno sobre Bagazo de Caña de azúcar 

3.1.4.5 Ecuación polinomica para el Ibuprofeno 

En la ecuación que refleja el comportamiento de adsorción de Ibuprofeno sobre 

Bagazo de Caña de azúcar todos los factores conforman la ecuación que modela el 

comportamiento. 

 

( 17 ) 

 

Del modelo matemático Ibuprofeno sobre Bagazo de Caña de azúcar se estableció las 

mejores condiciones de trabajo, para una concentración inicial de 20 mg/L, 

temperatura de 20°C y un tiempo de 60 minutos se obtiene un valor de 92,3% como el 

valor máximo de remoción que puede alcanzar para este modelo descrito. 
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3.2 ANÁLISIS DE RESULTADOS: CORONTA DE MAÍZ 

3.2.1 Experimento con Sulfametoxazol 

En la Tabla 14 se muestran los valores reales del diseño factorial completo 23 como 

los resultados obtenidos por cada factor respuesta de concentración final, por 

duplicado del Sulfametoxazol sobre Coronta de maíz. 

Tabla 14 Resultados numéricos del diseño factorial experimental de la adsorción del Sulfametoxazol 
sobre Coronta de Maíz 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 16,523 16,067 

2 20 20 60 16,245 14,563 

3 20 40 2 15,359 14,823 

4 20 40 60 15,473 14 

5 80 20 2 69,199 69,953 

6 80 20 60 66,24 67,073 

7 80 40 2 64,529 66,176 

8 80 40 60 62,64 60,557 

9 50 30 31 37,076 36,314 

 

Los datos de la Tabla 14 se exportaron hacia Minitab® 18 para su procesamiento, con 

la ayuda del software se obtuvo el análisis de varianza, Diagrama de Pareto, gráficos 

de residuos y efectos principales. 

Tabla 15 Análisis de la varianza de la adsorción del Sulfametoxazol sobre Coronta de Maíz 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 10261,2 1465,9 1912,64 0,000 

Lineal 3 10213,2 3404,4 4441,92 0,000 

A 1 10166,4 10166,4 13264,73 0,000 

B 1 31,1 31,1 40,57 0,000 

C 1 15,7 15,7 20,46 0,001 

Cuadrado 1 27 27 35,17 0,000 

A*A 1 27 27 35,17 0,000 

Interacción de 2 factores 3 21,1 7 9,18 0,003 

A*B 1 13,7 13,7 17,91 0,002 

A*C 1 7,4 7,4 9,61 0,011 

B*C 1 0 0 0,03 0,868 

Error 10 7,7 0,8 
  

Falta de ajuste 1 0,5 0,5 0,59 0,463 

Error puro 9 7,2 0,8 
  

Total 17 10268,9 
   

F=MC Ajust/MC Ajust; R2=99,93%; R2ajust=99,87% 
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3.2.1.1 Analisis de varianza (ANOVA) 

En la Tabla 15,  el modelo ajustado presenta un coeficiente de correlación R2 ajustado 

de 99,87% demostrando un adecuado ajuste de los datos para el modelo matematico. 

Por consecuencia del valor F critico se eliminan los factores que no cumplen con la 

condición establecida para este modelo, el termino (B*C) no cumple con la condición y 

para el valor p el termino (B*C) es el único que no aporta estadísticamente. 

Para el Sulfametoxazol sobre Coronta de maíz, el análisis de la varianza como indica 

la Tabla 15 a excepción del termino (B*C) todos los demás aportan sobre el 

estadístico. 

3.2.1.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 19  los factores (A, B, C, AB, AC y AA) son 

los que aportan un mayor efecto, a diferencia del factor (BC) quien no es influyente 

estadísticamente.  

 

Figura No. 19 Diagrama de Pareto de efectos del Sulfametoxazol sobre Coronta de Maíz 

3.2.1.3 Graficas de residuos para desviación estándar 

Con el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Sulfametoxazol sobre Coronta de maíz. 
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Figura No. 20 Graficas de residuos para Desviación Estándar para Sulfametoxazol sobre Coronta de maíz 

En la Figura No. 20, se observa la gráfica de la probabilidad normal, donde los valores 

de residuos tienen un ajuste lineal, de tal manera que los resultados no tienen sesgo. 

En la gráfica de Residuo vs ajuste, se observa que los datos no presentan un patrón 

tipo embudo o cuello de botella, puesto que se encuentran dispersos alrededor de cero 

existiendo una varianza constante, determinando que dichos datos no son atípicos ni 

influyentes. 

En la gráfica de Residuo vs orden, los residuos caen aleatoriamente alrededor de la 

línea central explicando que los residuos son independientes unos de otros. 
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3.2.1.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 21 se observa que el factor A consta de una pendiente positiva, 

mostrando una elevada influencia positiva sobre el factor de respuesta, el factor B y C 

aportan negativamnete al factor respuesta.  
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Figura No. 21 Grafica de efectos principales para el Sulfametoxazol 

 

3.2.1.5 Ecuación polinomica para el Sulfametoxazol 

En la ecuación que refleja el comportamiento de adsorción del Sulfametoxazol, 

estableciendo los criterios de eliminación, solo el termino BC no consta en la ecuación 

que modela el comportamiento para el Sulfametoxazol sobre Coronta de maíz. 

 

 

( 18 ) 

 

Para el modelo matemático Sulfametoxazol sobre Coronta de Maíz se estableció las 

mejores condiciones de trabajo, con una concentración inicial de 20 mg/L, temperatura 

de 40°C y un tiempo de 60 minutos se obtiene un 27% como el valor máximo de 

remoción que puede alcanzar para este modelo descrito. 
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3.2.2 Experimento con Ciprofloxacina 

En la Tabla 16 se muestran los valores del diseño factorial completo 23 y los 

resultados de concentración final, por duplicado de la Ciprofloxacina sobre Coronta de 

maíz. 

Tabla 16 Resultados numéricos del diseño factorial experimental de la adsorción de la Ciprofloxacina 
sobre Coronta de Maíz 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 3,672 3,451 

2 20 20 60 0,473 0,366 

3 20 40 2 4,137 3,535 

4 20 40 60 2,109 2,183 

5 80 20 2 26,752 26,819 

6 80 20 60 26,819 25,835 

7 80 40 2 26,59 25,837 

8 80 40 60 24,436 24,76 

9 50 30 31 11,754 10,806 

 

Los datos de la Tabla 16 se exportaron hacia Minitab® 18 para su procesamiento, con 

la ayuda del software se obtuvo el análisis de varianza, Diagrama de Pareto, gráficos 

de residuos y efectos principales. 

Tabla 17 Análisis de la varianza de la adsorción de la Ciprofloxacina sobre Coronta de Maíz 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 2241,2 320,17 1004,45 0,000 

Lineal 3 2219,11 739,7 2320,62 0,000 

A 1 2207,17 2207,17 6924,4 0,000 

B 1 0,02 0,02 0,07 0,796 

C 1 11,92 11,92 37,41 0,000 

Cuadrado 1 15,53 15,53 48,73 0,000 

A*A 1 15,53 15,53 48,73 0,000 

Interacción de 2 factores 3 6,55 2,18 6,85 0,009 

A*B 1 4,63 4,63 14,52 0,003 

A*C 1 1,9 1,9 5,97 0,035 

B*C 1 0,02 0,02 0,07 0,799 

Error 10 3,19 0,32 
  

Falta de ajuste 1 1,7 1,7 10,31 0,011 

Error puro 9 1,49 0,17 
  

Total 17 2244,38 
   

F=MC Ajust/MC Ajust; R2=99,86%; R2ajust=99,76% 
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3.2.2.1 Analisis de varianza (ANOVA) 

En la Los datos de la Tabla 16 se exportaron hacia Minitab® 18 para su 

procesamiento, con la ayuda del software se obtuvo el análisis de varianza, Diagrama 

de Pareto, gráficos de residuos y efectos principales. 

Tabla 17 el modelo ajustado presenta un coeficiente de correlación R2 ajustado de 

99,76% demostrando un adecuado ajuste de los datos para el modelo matematico. 

Con el criterio de F critico se excluyen los factores que no cumplen con la condición 

establecida, para este modelo los factores (B y B*C) no cumplen con la condición.   

Para la Ciprofloxacina sobre Coronta de maíz, en el análisis de la varianza como 

indica la Los datos de la Tabla 16 se exportaron hacia Minitab® 18 para su 

procesamiento, con la ayuda del software se obtuvo el análisis de varianza, Diagrama 

de Pareto, gráficos de residuos y efectos principales. 

Tabla 17 los factores que influyen sobre el comportamiento son (A, C, A*A, A*B y A*C) 

siendo estos significativos estadísticamente. 

3.2.2.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 22 los factores (A, C, A*A, A*B y A*C) son 

los que aportan un mayor efecto a diferencia de los factores (B y B*C) no aportan 

estadísticamente.  

 

Figura No. 22 Diagrama de Pareto de efectos de la Ciprofloxacina sobre Coronta de Maíz 
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3.2.2.3 Graficas de residuos para desviación estándar 

Con el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para la Ciprofloxacina sobre Coronta de maíz. 

 

 

Figura No. 23 Graficas de residuos para Desviación Estándar para la Ciprofloxacina sobre Coronta de 
maíz 

 

En la Figura No. 23 , en la gráfica de la probabilidad normal los valores de residuo 

tienden al ajuste lineal,  los resultados para el modelo matemático no cuentan con 

sesgo. 

En la gráfica de Residuo vs ajustes, se observa que los datos están dispuestos 

aleatoriamente alrededor de cero, no presentan un patrón del tipo embudo o cuello de 

botella, se afirma la varianza constante, además los puntos no son atípicos ni 

influyentes. 

En la gráfica de Residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende los resultados son 

independientes unos de otros. 
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3.2.2.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 24 se observa que el factor A consta de una pendiente positiva, 

mostrando una elevada influencia sobre el factor de respuesta, el factor C aporta 

negativamente el factor respuesta y el factor B no influye por presentar una pendiente 

cercana a cero. 
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Figura No. 24 Grafica de efectos principales para la Ciprofloxacina 

3.2.2.5 Ecuación polinomica para la Ciprofloxacina 

En la ecuación que refleja el comportamiento de adsorción de la Ciprofloxacina sobre 

Coronta de maíz se excluyó el factor (BC) por los análisis anteriores descritos, sin 

embargo, el termino (B) no se pudo excluir debido a su característica jerárquica por 

este motivo se lo incluye en la ecuación polinómica.  

 

 

( 19 ) 

 

Para el modelo matemático Ciprofloxacina sobre Coronta de Maíz se estableció las 

mejores condiciones de trabajo, con una concentración inicial de 20 mg/L, temperatura 

de 20°C y un tiempo de 60 minutos se obtiene un 98,1% como el valor máximo de 

remoción que puede alcanzar para este modelo descrito. 
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3.2.3 Experimento con el Paracetamol 

De la Tabla 18 se muestran los valores del diseño factorial completo 23 como los 

resultados de concentración final por duplicado del Paracetamol sobre Coronta de 

maíz. 

Tabla 18 Resultados numéricos del diseño factorial experimental de la adsorción del Paracetamol sobre 
Coronta de Maíz 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 18,532 19,219 

2 20 20 60 19,628 18,182 

3 20 40 2 19,145 19,98 

4 20 40 60 17,759 17,771 

5 80 20 2 74,123 72,263 

6 80 20 60 70,579 68,122 

7 80 40 2 72,624 73,208 

8 80 40 60 61,646 61,451 

9 50 30 31 38,912 38,741 
 

Los datos de la Tabla 18 se exportaron hacia Minitab® 18 para su procesamiento, con 

la ayuda del software se obtuvo el análisis de varianza, Diagrama de Pareto, gráficos 

de residuos y efectos principales. 

Tabla 19 Análisis de la varianza de la adsorción del Paracetamol sobre Coronta de Maíz 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 10409,6 1487,1 1012,54 0,000 

Lineal 3 10280,2 3426,7 2333,2 0,000 

A 1 10189,9 10189,9 6938,11 0,000 

B 1 18,2 18,2 12,36 0,006 

C 1 72,2 72,2 49,13 0,000 

Cuadrado 1 47,9 47,9 32,6 0,000 

A*A 1 47,9 47,9 32,6 0,000 

Interacción de 2 factores 3 81,6 27,2 18,52 0,000 

A*B 1 14,6 14,6 9,93 0,010 

A*C 1 45,1 45,1 30,71 0,000 

B*C 1 21,9 21,9 14,92 0,003 

Error 10 14,7 1,5 
  

Falta de ajuste 1 8,1 8,1 11,03 0,009 

Error puro 9 6,6 0,7 
  

Total 17 10424,3 
   

F=MC Ajust/MC Ajust; R2=99,86%; R2ajust=99,76% 
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3.2.3.1 Analisis de varianza (ANOVA) 

En la Los datos de la Tabla 18 se exportaron hacia Minitab® 18 para su 

procesamiento, con la ayuda del software se obtuvo el análisis de varianza, Diagrama 

de Pareto, gráficos de residuos y efectos principales. 

Tabla 19 el modelo ajustado presenta un coeficiente de correlación R2 ajustado de 

99,76% demostrando un adecuado ajuste de los datos para el modelo matematico. 

El valor de F y p como criterios de selección de factores influyentes para ambas 

condiciones todos los factores cumplen, viéndose reflejada en la ecuación polinómica. 

Es decir para el Paracetamol sobre Coronta de maíz, en el análisis de la varianza 

como indica la Los datos de la Tabla 18 se exportaron hacia Minitab® 18 para su 

procesamiento, con la ayuda del software se obtuvo el análisis de varianza, Diagrama 

de Pareto, gráficos de residuos y efectos principales. 

Tabla 19 todos los factores influyen sobre el modelo estadístico. 

3.2.3.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 25 todos los factores aportan 

estadísticamente al modelo matemático. 

 

Figura No. 25 Diagrama de Pareto de efectos del Paracetamol sobre Coronta de Maíz 

 

3.2.3.3 Graficas de residuos para desviación estándar 

Con el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Paracetamol sobre Coronta de maíz. 
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Figura No. 26 Graficas de residuos para Desviación Estándar para el Paracetamol sobre Coronta de maíz 

En la Figura No. 26, la gráfica de la probabilidad normal sus datos se ajustan a una 

tendencia lineal, demostrando que no existe sesgo entre los resultados. 

En la gráfica de Residuo vs ajustes, se observa que los datos están dispuestos 

aleatoriamente, no se evidencia un patrón tipo embudo o cuello de botella, se afirma la 

varianza constante, además los puntos no son atípicos ni influyentes. 

En la gráfica de Residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende los resultados son 

independientes unos de otros. 

 

3.2.3.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 27 se observa que la factor A consta de una pendiente positiva, 

mostrando una elevada influencia directamente proporcional sobre el factor de 

respuesta, el factor B aporta negativamente al factor respuesta y el factor C tambien 

aporta negativamente al factor respuesta.  
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Figura No. 27 Grafica de efectos principales para el Paracetamol 

3.2.3.5 Ecuación polinomica para el Paracetamol 

La ecuación del Paracetamol sobre Coronta de maíz consta de todos los factores que 

se analizan en los datos de la varianza y el diagrama de Pareto. A continuación, se 

muestra la ecuación que modela el comportamiento. 

 

 

( 20 ) 

 

En el modelo matemático Paracetamol sobre Coronta de Maíz se estableció las 

mejores condiciones de trabajo, para una concentración inicial de 34,33 mg/L, 

temperatura de 40°C y un tiempo de 60 minutos se obtiene un 23,18% como el valor 

máximo de remoción que puede alcanzar para este modelo descrito. 
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3.2.4 Experimento con Ibuprofeno 

En la Tabla 20 constan los valores del diseño factorial completo 23 y los resultados de 

concentración final, por duplicado del Ibuprofeno sobre Coronta de maíz.  

Tabla 20 Resultados numéricos del diseño factorial experimental de la adsorción del Ibuprofeno sobre 
Coronta de Maíz 

Experimento 
A 

(mg/L) 
B 

(oC) 
C 

(min) 
CF1 CF2 

1 20 20 2 17,609 18,961 

2 20 20 60 14,199 16,445 

3 20 40 2 14,321 14,799 

4 20 40 60 8,361 8,412 

5 80 20 2 64,011 65,867 

6 80 20 60 54,628 54,003 

7 80 40 2 56,757 54,544 

8 80 40 60 53,087 52,984 

9 50 30 31 30,425 31,987 

 

Los datos de la Tabla 20 se exportaron hacia Minitab® 18 para su procesamiento, con 

la ayuda del software se obtuvo el análisis de varianza, Diagrama de Pareto, gráficos 

de residuos y efectos principales. 

Tabla 21 Análisis de la varianza de la adsorción del Ibuprofeno sobre Coronta de Maíz 

Fuente GL SC Ajust. MC Ajust. Valor F Valor p 

Modelo 7 7624,90 1089,27 268,23 0,000 

Lineal 3 7581,20 2527,07 662,28 0,000 

A 1 7343,38 7343,38 1808,28 0,000 

B 1 112,67 112,67 27,74 0,000 

C 1 125,16 125,16 30,82 0,000 

Cuadrado 1 33,73 33,73 8,31 0,016 

A*A 1 33,73 33,73 8,31 0,016 

Interacción de 2 factores 3 9,96 3,32 0,82 0,513 

A*B 1 0,00 0,00 0,00 0,982 

A*C 1 4,21 4,21 1,04 0,333 

B*C 1 5,76 5,76 1,42 0,261 

Error 10 40,61 4,06 
  

Falta de ajuste 1 31,47 31,47 30,97 0,000 

Error puro 9 9,14 1,02 
  

Total 17 7665,51 
   

F=MC Ajust/MC Ajust; R2=99,47%; R2ajust=99,10% 



Universidad de Cuenca   
_____________________________________________________________ 
 

 

70 

Christian Guillermo Barros Tenecora 
Pedro Diego Quiroz Ortiz 

 

3.2.4.1 Analisis de varianza (ANOVA) 

En la Los datos de la Tabla 20 se exportaron hacia Minitab® 18 para su 

procesamiento, con la ayuda del software se obtuvo el análisis de varianza, Diagrama 

de Pareto, gráficos de residuos y efectos principales. 

Tabla 21 el modelo ajustado presenta un coeficiente de correlación R2 ajustado de 

99,10 % demostrando un ajuste de los datos para el modelo matematico. 

A partir de los criterios de valor F critico y p los factores (A*B, A*C y B*C) son poco 

siginificativos al modelo siendo descartados en la obtención de la ecuación polinómica. 

Para el Ibuprofeno sobre Bagazo de Caña de azúcar en el análisis de la varianza de la 

Los datos de la Tabla 20 se exportaron hacia Minitab® 18 para su procesamiento, con 

la ayuda del software se obtuvo el análisis de varianza, Diagrama de Pareto, gráficos 

de residuos y efectos principales. 

Tabla 21 los factores (A, B, C y A*A) presentan la mayor significancia estadística.  

3.2.4.2 Prueba T-Student 

En el Diagrama de Pareto de la Figura No. 28  los factores (A, B, C y A*A) son los que 

aportan un mayor efecto a diferencia de los factores (A*B, A*C y B*C) al ser nada 

influyentes sobre el modelo. 

 

Figura No. 28 Diagrama de Pareto de efectos del Ibuprofeno sobre Coronta de Maíz 

3.2.4.3 Graficas de residuos para desviación estándar 

Con el análisis de ANOVA para la desviación estándar se genera los gráficos de 

residuos para el Paracetamol sobre Coronta de maíz. 
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Figura No. 29 Graficas de residuos para Desviación Estándar para el Ibuprofeno sobre Coronta de maíz 

En la Figura No. 29, la gráfica de la probabilidad normal los datos se observa una 

tendencia lineal, debida a que los datos no presentan sesgo. 

En la gráfica de Residuo vs ajustes, se observa que los datos están dispuestos 

aleatoriamente, no hay un patrón tipo embudo o cuello de botella, se afirma la varianza 

constante, además los puntos no son atípicos ni influyentes. 

En la gráfica de Residuo vs orden, los datos caen aleatoriamente alrededor de la línea 

central debido a la aleatorización de las corridas por ende los resultados son 

independientes unos de otros. 
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3.2.4.4 Graficas de efectos principales para desviación estándar 

De la Figura No. 30 se observa que el factor A consta de una pendiente positiva 

aportando de manera directamente proporcional al factor respuesta, mientras el factor 

aporta negativamente al igual que el factor C por presentar una pendiente negativa en 

el gráfico de efecto principales. 
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Figura No. 30 Grafica de efectos principales para el Ibuprofeno 

 

3.2.4.5 Ecuación polinomica para el Ibuprofeno 

La ecuación para el Ibuprofeno sobre Coronta de maíz presenta los factores (A, B, C y 

A*A) siendo influyentes para el modelo matemático que considera Minitab® 18 para 

este caso de estudio. 

 
( 21 ) 

 

El modelo matemático Ibuprofeno sobre Coronta de Maíz estableció las mejores 

condiciones de trabajo, para una concentración inicial de 20 mg/L, temperatura de 

40°C y un tiempo de 60 minutos obteniendo un 55% como el valor máximo de 

remoción que puede alcanzar para este modelo descrito. 
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3.3 CINÉTICA DE ADSORCIÓN  

Para el estudio de la cinética de adsorción, los modelos se llevan a cabo con las 

ecuaciones polinómicas de cada fármaco, cuyos valores son reemplazados por las 

concentraciones finales en un rango de tiempos de 2 a 60 min, temperatura de 30°C y 

concentración inicial de la solución de 20 mg/L. Con los datos obtenidos se calcula el 

porcentaje de remoción y la capacidad de adsorción. La cinética del proceso se evaluó 

los modelos de Pseudo Primer Orden y Pseudo Segundo Orden. 

3.3.1 CINÉTICA DE ADSORCIÓN: BAGAZO DE CAÑA DE AZÚCAR 

3.3.1.1 Bagazo de caña de azúcar: Pseudo Primer Orden 

El ajuste de los datos experimentales al  modelo de Pseudo Primer Orden se muestra 

en la Figura No. 31 y Figura No. 32, como se puede observar ninguno de los cuatro 

fármacos en estudio se ajusta a este modelo, por lo tanto, según lo que indica el 

modelo, la tasa de adsorción no disminuye linealmente con el aumento de la 

capacidad de adsorción (Divband Hafshejani et al., 2016), es decir los sitios activos 

ocupados no son proporcionales a los sitios activos libres. 

Se puede observar en la Tabla 22 que los valores del coeficiente de correlación R2 son 

bajos y que los valores de la capacidad de adsorción qe difieren con los 

experimentales.  

Tabla 22 Parámetros del Modelo Cinético de Pseudo Primer Orden, aplicados a la adsorción de cada 
fármaco con la Biomasa de Bagazo de Caña de azuzar 

Fármaco qe (mg/g) k1 (1/min) R2 

Sulfametoxazol 0,347 0,037 0,90 

Ciprofloxacina 1,768 0,045 0,67 

Paracetamol 0,006 -0,053 0,87 

Ibuprofeno 0,837 0,037 0,91 
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Figura No. 31 Modelo Pseudo Primer Orden de SMX y CPX con Bagazo de Caña de azúcar 

 

Figura No. 32 Modelo Pseudo Primer Orden de PRT e IBU con Bagazo de Caña de azúcar 

3.3.1.2 Bagazo de caña: Pseudo Segundo Orden 

La  Tabla 23 muestra el ajuste de los datos obtenidos al modelo de Pseudo Segundo 

Orden, este ajuste puede sugerir un proceso físico de biosorción como lo propone 

(Moubarik & Grimi, 2015). En la Tabla 23 se muestra los datos de ajuste de los 

fármacos al modelo de Pseudo Segundo Orden.  

Excepto para el Paracetamol, el proceso de adsorción es rápido, llegando al equilibrio 

aproximadamente a los 40 min, consistente con lo encontrado por (Divband Hafshejani 
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et al., 2016), usando caña de azúcar modificada. Además, el Paracetamol presenta un 

valor de R2 de 0,882, que es bajo a comparación de los otros fármacos. 

El proceso de adsorción sobre los residuos vegetales es más rápido que procesos 

realizados sobre otros materiales como fibras de óxido de grafeno que tiene un tiempo 

de adsorción de hasta 6 horas para remover Ciprofloxacina de concentración 9.8 mg/L 

(Wu, Zhao, Li, & Zhao, 2015),  o 100 min para remover Ibuprofeno sobre biocarbones 

(Mondal, Kaustav, & Gopinath, 2016) . 

Tabla 23 Parámetros del Modelo Cinético de Pseudo Segundo Orden, aplicados a la adsorción de cada 
fármaco con la Biomasa de Bagazo de Caña de azúcar 

Fármaco qe (mg/g) k2 (1/min) R2 

Sulfametoxazol 0,564 0,303 0,977 

Ciprofloxacina 7,350 0,117 0,999 

Paracetamol 0,040 3,720 0,882 

Ibuprofeno 1,321 0,120 0,974 

 

 

Figura No. 33 Modelo Pseudo Segundo Orden de SMX sobre Bagazo de Caña 
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Figura No. 34 Modelo Pseudo Segundo Orden de CPX sobre Bagazo de Caña 

 

 

Figura No. 35 Modelo Pseudo Segundo Orden de PRT sobre Bagazo de Caña 



Universidad de Cuenca   
_____________________________________________________________ 
 

 

77 

Christian Guillermo Barros Tenecora 
Pedro Diego Quiroz Ortiz 

 

 

Figura No. 36 Modelo Pseudo Segundo Orden de IBU sobre Bagazo de Caña 

3.3.2 CINÉTICA DE ADSORCIÓN: CORONTA DE MAÍZ 

3.3.2.1 Coronta de maíz Pseudo Primer Orden 

Al igual que el bagazo de caña de azúcar, los datos obtenidos no se ajustan al modelo 

de Pseudo Primer Orden tal como se aprecia en la Figura No. 37, Figura No. 38, 

Figura No. 39  y Figura No. 40 

La Tabla 24 presenta los valores de las constantes de Pseudo Primer Orden y el valor 

del coeficiente de correlación.  

Tabla 24 Parámetros del Modelo Cinético de Pseudo Primer Orden, aplicados a la adsorción de cada 
fármaco con la Biomasa de Coronta de maíz 

Fármaco qe (mg/g) k1 (1/min) R2 

Sulfametoxazol 0,062 0,045 0,6588 

Ciprofloxacina 1,392 0,048 0,5862 

Paracetamol 0,001 -0,056 0,8583 

Ibuprofeno 0,340 0,035 0,9514 
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Figura No. 37 Modelo Pseudo Primer Orden de SMX sobre Coronta de maíz. 

 

 

Figura No. 38 Modelo Pseudo Primer Orden de CPX sobre Coronta de maíz 
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Figura No. 39 Modelo Pseudo Primer Orden de PRT sobre Coronta de maíz 

 

Figura No. 40 Modelo Pseudo Primer Orden de IBU sobre Coronta de maíz 
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3.3.2.2 Coronta de maíz: Pseudo Segundo Orden 

El Pseudo Segundo Orden se ajusta a los datos obtenidos por la ecuación de cada 

fármaco. Las constantes obtenidas y valores de correlación se muestran en la Tabla 

25, donde se observa que los valores del coeficiente de correlación son altos. 

El fármaco que más tiempo se toma en llegar al equilibrio es el SMX dado que alcanza 

el equilibrio alrededor de los 45 minutos, mientras que la CPX alcanza su equilibrio a 

los cerca de 30 minutos. 

Tabla 25 Parámetros del Modelo Cinético de Pseudo Segundo Orden, aplicados a la adsorción de cada 
fármaco con la Biomasa de Coronta de maíz 

Fármaco qe (mg/g) k2 (1/min) R2 

Sulfametoxazol 0,271 3,416 0,9988 

Ciprofloxacina 8,865 0,176 0,9995 

Paracetamol 0,204 -11,11 0,9998 

Ibuprofeno 0,576 0,269 0.9733 

 

 

Figura No. 41 Modelo Pseudo Segundo Orden de SMX sobre Coronta de maíz 
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Figura No. 42 Modelo Pseudo Segundo Orden de CPX sobre Coronta de maíz 

 

Figura No. 43 Modelo Pseudo Segundo Orden de PRT sobre Coronta de maíz 

 

Figura No. 44 Modelo Pseudo Segundo Orden de IBU sobre Coronta de maíz 
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3.4 ISOTERMAS DE EQUILIBRIO  

3.4.1 ISOTERMA DE EQUILIBRIO: BAGAZO DE CAÑA DE AZÚCAR 

El equilibrio del proceso de adsorción se estudia través del tipo de curva obtenido y de 

los modelos de equilibrio de Langmuir y Freundlich. Los datos fueron obtenidos 

mediante las ecuaciones polinomiales generadas de cada fármaco. El rango de 

estudio de la concentración inicial del fármaco es de 10 a 80 mg/L. 

3.4.1.1 Bagazo de caña de azúcar: Isoterma de Langmuir 

El valor obtenido en el proceso de adsorción de cada fármaco con el Bagazo de caña 

se observa en la Tabla 26, a excepción del paracetamol que evidencia valores 

negativos de qmax y kL, los cuales son propios de isotermas tipo III según la IUPAC, 

los demás valores son positivos y se ajustan mejor al modelo de Langmuir y muestran 

isotermas Tipo I y II según la clasificación de IUPAC, según la Figura No. 46. Estos 

resultados, se pueden apreciar en la Figura No. 45 en donde muestra la mayor 

pendiente del paracetamol en relación con los demás fármacos, lo que implica es 

menos afín con la biomasa. Las isotermas obtenidas muestran que el SMX presenta 

una isoterma de Tipo II al igual que la CPX que son isotermas favorables para la 

adsorción, mientras que el Paracetamol muestra una isoterma tipo III, conocida como 

isoterma desfavorable.  

Tabla 26 Parámetros de la Isoterma de Langmuir, aplicados a la adsorción de cada fármaco con la 
Biomasa de Bagazo de Caña de azúcar a 20oC 

Fármaco 
Temperatura 

(oC) 
qmax (mg/g) kL (L/mg) R2 

Sulfametoxazol 20 19,65 0,0017 0,9598 

Ciprofloxacina 20 20,366 0,0554 0,9635 

Paracetamol 20 -0,092 -0,0119 0,977 

Ibuprofeno 20 2,46 0,254 0,9429 
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Figura No. 45 Linealización de la ecuación de Langmuir a 20oC del SMX, CPX, PRT e IBU con Bagazo de 
Caña de azúcar 

 

 

Figura No. 46 Isoterma de Langmuir de SMX sobre Bagazo de Caña de azúcar 
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Figura No. 47 Isoterma de Langmuir de CPX sobre Bagazo de Caña de azúcar 

 

 

Figura No. 48 Isoterma de Langmuir de PRT sobre Bagazo de Caña de azúcar 
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Figura No. 49 Isoterma de Langmuir de IBU sobre Bagazo de Caña de azúcar 

3.4.1.2 Bagazo de caña de azúcar: Isoterma de Freundlich. 

El ajuste de los datos calculados al modelo de Freundlich se muestra en la Tabla 27. 

Todos los fármacos presentan un mejor ajuste hacia el modelo de Freundlich con unos 

coeficientes R2 bastante alto expresados en la Tabla 27. Un valor de la constante n 

igual o mayor a 1 indica un proceso favorable, esto se logra con todos los fármacos, 

excepto con el paracetamol que presenta un valor muy inferior 1, lo que indica un 

proceso poco favorable que se refleja en el tipo de isoterma que se obtiene con este 

fármaco. 

El SMX presenta una isoterma favorable tipo II, presentada en la Figura No. 51 que 

indica también una adsorción en multicapas. 

La CPX presenta un valor de n 1,58, lo que se refleja en la concavidad de la isoterma 

de tipo I, como se muestra en la Figura No. 52. 

El paracetamol muestra una isoterma de tipo III y se demuestra por el valor de n 

inferior a 1, además los datos de qt (Cantidad de fármaco adsorbido por unidad de 

masa de adsorbente), en la isoterma de Freundlich no corresponden a los 

experimentales debido a su escala de valor de q difieren entre los dos según la Figura 

No. 53 

El IBU, con un valor de n de 3,35 se presenta como el más favorable para el proceso 

de biosorción que todos los demás fármacos, lo que se demuestra al ser el fármaco 

con mayor porcentaje de remoción según la Figura No. 54 
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Tabla 27 Parámetros de la Isoterma de Freundlich, aplicados a la adsorción de cada fármaco con la 
Biomasa de Bagazo de Caña de azúcar a 20oC 

Fármaco 
Temperatura 

(oC) 
n kF (L/mg)) R2 

Sulfametoxazol 20 0,92 0,025 0,9561 

Ciprofloxacina 20 1,58 0,1657 0,9907 

Paracetamol 20 0,33 0,0025 0,9967 

Ibuprofeno 20 3,35 0,9259 0,9979 

 

 

Figura No. 50 Linealización de la ecuación de Freundlich a 20oC del SMX, CPX, PRT e IBU con Bagazo 
de Caña de azúcar 

 

Figura No. 51 Isoterma de Freundlich de SMX sobre Bagazo de Caña de azúcar 
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Figura No. 52 Isoterma de Freundlich de CPX sobre Bagazo de Caña de azúcar 

 

Figura No. 53 Isoterma de Freundlich de PRT 
sobre Bagazo de Caña de azúcar 
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Figura No. 54 Isoterma de Freundlich de IBU sobre Bagazo de Caña de azúcar 

 

3.4.2 ISOTERMAS DE EQUILIBRIO CORONTA DE MAÍZ 

3.4.2.1 Coronta de maíz: Isoterma de Langmuir 

Utilizando coronta de maíz como adsorbente, se refleja que de los cuatro fármacos 

solo uno se ajusta al modelo de Langmuir, los coeficientes generados obtenidos no 

sobrepasan el 0,88 para R2 a excepción del Ibuprofeno el cual consta de un R2 de 

0,9454 

Tabla 28 Parámetros de la Isoterma de Langmuir, aplicados a la adsorción de cada fármaco con la 
Biomasa de Coronta de maíz a 20oC 

Fármaco 
Temperatura 

(oC) 
qmax (mg/g) kL (L/mg) R2 

Sulfametoxazol 20 6,57 0,0025 0,8898 

Ciprofloxacina 20 14,99 0,889 0,8566 

Paracetamol 20 0,741 0,0319 0,6644 

Ibuprofeno 20 3,082 0,0128 0,9454 
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Figura No. 55 Linealización de la ecuación de Langmuir a 20oC del SMX, CPX, PRT e IBU con Coronta de 
maíz 

 

 

Figura No. 56 Isoterma de Laungmuir de IBU sobre Coronta de maíz 
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3.4.2.2 Coronta de Maíz: Isoterma de Freundlich 

Diferencia del Bagazo en esta ocasión, el comportamiento de los fármacos no está de 

acuerdo al modelo de Freundlich, exceptuando CPX el cual refleja un índice de 

correlación R2 de 0,98 como se ve en la Tabla 29 siendo el único comportamiento 

acorde al este modelo. 

CPX revela su ajuste hacia el modelo de Freundlich, siendo este el único fármaco con 

ajuste aceptable, que indica una adsorción heterogenia en multicapa, que no tiene en 

cuenta la saturación de la superficie (Tonucci et al., 2015). El proceso es favorable con 

n mayor a 1. 

SMX presenta también un coeficiente n mayor a la unidad, siendo también un proceso 

favorable, aunque no esté sujeto al modelo de Langmuir, presenta una similitud hacia 

la isoterma de tipo I según la IUPAC, teniendo entonces una adsorción en monocapa, 

bastante obvio ya que esta es característica del modelo de Langmuir y con SMX se 

tenía el coeficiente más alto. 

PRT presenta un modelo semejante al tipo V de isoterma según IUPAC en el cual se 

forman multicapas, pero el adsorbente y adsorbato interactúan débilmente. 

 

Tabla 29 Parámetros de la Isoterma de Freundlich, aplicados a la adsorción de cada fármaco con la 
Biomasa de Coronta de maíz a 20oC 

Fármaco 
Temperatura 

(oC) 
n kF (L/mg)) R2 

Sulfametoxazol 20 1,35 0,0376 0,8243 

Ciprofloxacina 20 3,23 6,5027 0,9827 

Paracetamol 20 0,46 0,00009 0,6105 

Ibuprofeno 20 1,567 0,097 0,9083 
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Figura No. 57 Linealización de la ecuación de Freundlich a 20oC del SMX, CPX, PRT e IBU sobre Coronta 
de maíz 

 

 

Figura No. 58 Isoterma de Freundlich de SMX sobre Coronta de maíz 
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Figura No. 59 Isoterma de Freundlich de CPX sobre Coronta de maíz 

 

 

Figura No. 60 Isoterma de Freundlich de PRT sobre Coronta de maíz 
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Figura No. 61 Isoterma de Freundlich de IBU sobre Coronta de maíz 
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CONCLUSIONES 

 El diseño experimental estableció ecuaciones que reproducen los datos 

experimentales satisfactoriamente, para el bagazo de caña de azúcar y el 

maíz, con los fármacos de estudio. 

 Las variables de mayor influencia son la concentración inicial y el tiempo de 

contacto y sus interacciones varían en dependencia de la biomasa utilizada, 

para SMX, CPX sobre CM la interacción concentración-temperatura rige el 

proceso, con el mismo comportamiento en PRT e IBU para BGZ, pero SMX y 

CPX sobre BGZ la interacción concentración-Tiempo es la de mayor influencia 

igual resultado en PRT e IBU sobre CM. 

  En general la concentración inicial de la solución tiene un efecto directamente 

proporcional de mayor influencia en la adsorción a mayor concentración mayor 

valor de la variable concentración final. La temperatura es un efecto 

inversamente proporcional, es decir una mejor adsorción se da temperaturas 

bajas, lo que indica que los procesos de adsorción son físicos. En el caso del 

tiempo, este parámetro es importante al inicio de la adsorción, teniendo luego 

una influencia casi nula; es decir al aumentar el tiempo disminuimos el factor 

respuesta, en este caso la concentración final 

 El estudio cinético y de equilibrio realizado a partir de los datos obtenidos de 

las ecuaciones polinomicas, mostraron que se reproducen los resultados 

obtenidos en el estudio sin usar el diseño experimental.  Todos los fármacos se 

ajustaron al modelo de Pseudo Segundo Orden, y reprodujeron los tipos de 

isoterma de cada fármaco.  

 De igual manera se reprodujo el estudio de equilibrio, con el ajuste al modelo 

de Freundlich indicando una adsorción heterogénea en multicapas. 

 Con la Coronta de maíz los resultados fueron más diversos, debido 

principalmente a la menor afinidad que tienen los fármacos con esta biomasa 

que puede deberse a su baja superficie especifica. 

 El estudio confirmo que el Paracetamol es un fármaco que no se adsorbe 

fácilmente en las biomasas estudiadas, dando isotermas desfavorables. 
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RECOMEDACIONES 

- Ampliar el estudio con otros fármacos y con otros adsorbentes a través del 

diseño experimental, pues este, permitirá la reducción del número de 

experimentos a realizar.  
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