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RESUMEN 

 

La intensidad lumínica es importante para la activación de biomateriales 
fotosensibles y su valor mínimo es de 400mW/cm2. Las lámparas más comunes son 
Halógenas y LED. La presencia de fracturas o residuos de biomateriales sobre la 
fibra óptica de las mismas, pueden afectar su intensidad lumínica. 

 

MATERIALES Y MÉTODOS: La muestra fue de 366 unidades, se determinó el tipo 
de lámpara, marca comercial, modelo, presencia o ausencia de fracturas y residuos 
de biomateriales sobre la fibra óptica. El radiómetro dental Bluephase Meter II, 
determinó el diámetro de la fibra y la intensidad lumínica. Los datos obtenidos fueron 
analizados con el programa IBM SPSS Stadistics versión 23. 

 

RESULTADOS: El 67,2% tenían intensidad adecuada y 32,8% inadecuada. 
Además, 19,1% eran lámparas halógenas y 80,9% LED. En cambio, 64,7% de 
unidades presentaban fibra óptica con diámetro de 8 mm; 15,6% de 9 mm; 12% de 
10 mm; 2,2% de 11 mm y 5,5% de 12mm. Aparte, 78,7% no tenían fracturas de la 
fibra óptica, pero 21,3% si las presentaban. Finalmente, 55,5% presentaban 
residuos de biomateriales dentales sobre la fibra óptica y 44,5% estaban libres de 
ellos.  

 

CONCLUSIONES:  
 
El 32,8% de dispositivos tenían intensidades menores de 400 mW/cm2, con un 
mayor porcentaje de lámparas halógenas respecto a las LED. 
 
Las fibras ópticas con diámetros de 8 y 9 mm, representaron los mayores 
porcentajes. 
 
La intensidad lumínica puede afectarse por la presencia de fracturas o residuos de 

biomateriales dentales sobre la fibra óptica.  

 

 

PALABRAS CLAVE: Intensidad lumínica. Lámparas de Fotopolimerización. Fibra 

Óptica. Radiómetro dental. 
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ABSTRACT 

 

The luminous intensity is important for the activation of photosensitive biomaterials 

and its minimum value is 400mW/cm2. The most common lamps are Halogen and 

LED. The presence of fractures or residues of biomaterials on their optical fiber can 

affect their light intensity. 

 

MATERIALS AND METHODS: The sample was 366 units, the type of lamp, 

trademark, model, presence or absence of fractures and residues of biomaterials on 

optical fiber was determined. The dental radiometer Bluephase Meter II, determined 

the diameter of the fiber and the light intensity. The data obtained was analyzed with 

the IBM SPSS Stadistics version 23 program. 

 

RESULTS: 67.2% had adequate intensity and 32.8% inadequate. In addition, 19.1% 

were halogen lamps and 80.9% LED. In contrast, 64.7% of units had optical fiber 

with a diameter of 8 mm; 15.6% of 9 mm; 12% of 10 mm; 2.2% of 11mm and 5.5% 

of 12mm. In addition, 78.7% did not have fiber optic fractures, but 21.3% did. Finally, 

55.5% had residues of dental biomaterials on the optical fiber and 44.5% were free 

of them. 

 

CONCLUSIONS:  

 

32.8% of devices had intensities lower than 400 mW / cm2, with a higher percentage 

of halogen lamps than LEDs. 

The optical fibers with diameters of 8 and 9 mm, represented the highest 

percentages. 

The light intensity can be affected by the presence of fractures or residues of dental 

biomaterials on the optical fiber. 

 

 

KEY WORDS: Light intensity. Light-curing Lamps. Fiber Optics. Dental Radiometer. 

  



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 4 

 

ÍNDICE DE CONTENIDO 

 

INTRODUCCIÓN ............................................................................................................. 13 

CAPÍTULO I ..................................................................................................................... 14 

JUSTIFICACIÓN .......................................................................................................... 14 

CAPÍTULO II .................................................................................................................... 15 

MARCO TEÓRICO ....................................................................................................... 15 

1. INTENSIDAD LUMÍNICA ................................................................................... 15 

2. UNIDADES DE FOTOPOLIMERIZACIÓN ......................................................... 16 

2.1 TIPOS DE UNIDADES DE FOTOPOLIMERIZACIÓN ..................................... 16 

2.1.1 HALÓGENAS DE CUARZO – TUNGSTENO ............................................ 16 

2.1.2 DIODOS EMISORES DE LUZ (LED)  ....................................................... 17 

2.1.2.1 LED DE PRIMERA GENERACIÓN .................................................... 18 

2.1.2.2 LED DE SEGUNDA GENERACIÓN ................................................... 18 

2.1.2.3 LED DE TERCERA GENERACIÓN .................................................... 19 

3. DIÁMETRO DE LA FIBRA ÓPTICA ................................................................... 19 

4. FACTORES QUE MODIFICAN LA INTENSIDAD LUMÍNICA ............................ 20 

4.1 FRACTURAS DE LA FIBRA ÓPTICA .............................................................. 20 

4.2 RESIDUOS DE BIOMATERIALES DENTALES SOBRE LA FIBRA ÓPTICA .. 20 

5. RADIÓMETROS DENTALES ............................................................................ 21 

CAPÍTULO III ................................................................................................................... 23 

OBJETIVOS ................................................................................................................. 23 

1. OBJETIVO GENERAL ....................................................................................... 23 

2. OBJETIVOS ESPECÍFICOS .............................................................................. 23 

CAPÍTULO IV .................................................................................................................. 24 

METODOLOGÍA .......................................................................................................... 24 

1. UNIVERSO Y MUESTRA .................................................................................. 24 

2. CRITERIOS DE INCLUSIÓN: ............................................................................ 25 

3. CRITERIOS DE EXCLUSIÓN: ........................................................................... 25 

4. VARIABLES DEL ESTUDIO .............................................................................. 25 

5. MÉTODO DE RECOLECCIÓN DE DATOS ....................................................... 26 

6. PLAN DE ANÁLISIS ESTADÍSTICO .................................................................. 28 

CAPÍTULO V ................................................................................................................... 29 

RESULTADOS ............................................................................................................. 29 



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 5 

CAPÍTULO VI .................................................................................................................. 33 

1. DISCUSIÓN .......................................................................................................... 33 

2. LIMITACIONES DEL ESTUDIO ............................................................................ 35 

CAPÍTULO VII ................................................................................................................. 36 

1. CONCLUSIONES  ................................................................................................ 36 

2. RECOMENDACIONES ......................................................................................... 37 

REFERENCIAS BIBLIOGRÁFICAS ................................................................................. 38 

ANEXOS .......................................................................................................................... 41 

 

  



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 6 

 

ÍNIDICE DE ILUSTRACIONES 

 

 

ILUSTRACIÓN 1: LÁMPARA HALÓGENA DE CUARZO - TUNGSTENO. ...................... 17 

ILUSTRACIÓN 2: LÁMPARA LED ................................................................................... 18 

ILUSTRACIÓN 3: FRACTURA DE LA FIBRA ÓPTICA. ................................................... 20 

ILUSTRACIÓN 4: RESIDUOS DE BIOMATERIALES DENTALES SOBRE LA FIBRA 

ÓPTICA. ................................................................................................................... 21 

ILUSTRACIÓN 5: RADIÓMETRO DENTAL BLUEPHASE METER II. ............................. 22 

ILUSTRACIÓN 6: PROGRAMACIÓN DEL RADIÓMETRO DENTAL: .............................. 27 

 

ÍNIDICE DE TABLAS 

 

TABLA 1: INTENSIDAD LUMÍNICA DE  LÁMPARAS DE FOTOPOLIMERIZACIÓN. ...... 29 

TABLA 2: TIPO DE LÁMPARA, DIÁMETRO, FRACTURAS Y RESIDUOS DE 

BIOMATERIALES DENTALES SOBRE LA FIBRA ÓPTICA. .................................... 30 

TABLA 3: INTENSIDAD LUMÍNICA DE LÁMPARAS HALÓGENAS Y LED ..................... 30 

TABLA 4: INTENSIDAD LUMÍNICA Y DIÁMETRO DE LA FIBRA ÓPTICA ..................... 31 

TABLA 5: INTENSIDAD LUMÍNICA Y FRACTURA DE LA FIBRA ÓPTICA ..................... 32 

TABLA 6: INTENSIDAD LUMÍNICA Y RESIDUOS DE BIOMATERIALES DENTALES 

SOBRE LA FIBRA ÓPTICA. ..................................................................................... 32 

 

 

 



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 7 

 

 

Cláusulas de licencia y autorización para publicación en el Repositorio 

Institucional   



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 8 

 

Cláusulas de licencia y autorización para publicación en el Repositorio 

Institucional 

 

 

  



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 9 

 

Cláusulas de Propiedad Intelectual  

   



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 10 

 

Cláusulas de Propiedad Intelectual 

 

 

  



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 11 

 

DEDICATORIAS 

 

 

A Dios por su infinita bondad y por guiar mis pasos siempre. 

 

A mis padres, Roberto y Magdalena, por creer en mí, por su amor incondicional y 

por ser parte esencial para que esta meta de vida sea una realidad.  

 

A mis hermanos, Andrés y Andrea, mis sobrinos Katty, Pablito y Sofi, por alegrar 

mi vida y ser motivo de inspiración para mejorar cada día. 

 

Al resto de mi familia y amigos por todo el apoyo y cariño brindado.  

 

Priscila 

 

 

A Dios, por darme salud y guiarme en las distintas etapas de mi vida. 

 A mis padres, Nila y Gerardo, por su apoyo incondicional y por brindarme de su 

amor y e inmensa sabiduría. 

A mi tío y a mi primo Marcos, por ser el motivo de mi inspiración y pasión por la 

odontología, y, así mismo por ser mis maestros durante toda mi formación no solo 

académica sino personal. 

Al resto de mi familia, por sus enseñanzas y valores, los cuales fueron 

indispensables en mí.  

A mis amigos, con los cuales he tenido el placer de compartir las mejores 

anécdotas de mi vida.  

 

Fernando  

  



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 12 

 

AGRADECIMIENTOS 

 

 

El agradecimiento es la memoria del corazón… 

 

Agradecemos a Dios por todas las bendiciones que hemos recibido durante 

nuestras vidas. 

 

A nuestros padres y familia por ser los pilares fundamentales en nuestra formación 

y por todos los sacrificios que han realizado para que podamos salir adelante. 

 

A nuestro director de tesis, Od. Andrés Palacios, por su ayuda y apoyo durante la 

elaboración de esta investigación.  

 

Al Doctor Diego Bravo, por guiarnos durante nuestra formación académica.  

 

A nuestros amigos, por acompañarnos durante este proceso y ser parte de 

inolvidables momentos. 

 

 

¡Muchas Gracias! 

 

Priscila y Fernando  

 

 

 
 

 



  Universidad de Cuenca  

Anabel Priscila Rodas Jaramillo  
Fernando Mauricio Villalta Mendoza 13 

 

INTRODUCCIÓN 

 

El presente estudio descriptivo observacional se centra en analizar la intensidad 

lumínica producida por las lámparas de fotopolimerización, que se define como la 

cantidad de fotones emitidos por estos dispositivos, siendo la intensidad mínima 

necesaria 400mW/cm2 (1), para asegurar la correcta activación de los fotoiniciadores 

presentes en los biomateriales fotosensibles(2). Actualmente existe una gran 

demanda estética y funcional a nivel de los tratamientos dentales (3) y por ello se ha 

popularizado el uso de estos biomateriales como: resinas compuestas, adhesivos, 

cementos, sellantes resinosos, y demás (4-7).  

 

A través de los años, se han desarrollado distintos tipos de lámparas de 

fotopolimerización como: Halógenas, Arco de plasma de xenón, LED (Diodos 

Emisores de Luz) y Láser(1), siendo las más populares las Halógenas y LED, las 

cuales no deben presentar fracturas o residuos de biomateriales dentales sobre la 

fibra óptica, ya que estos factores pueden afectar la intensidad lumínica emitida por 

las mismas(8, 9).  
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CAPÍTULO I 

JUSTIFICACIÓN 

 

Las repercusiones de una intensidad lumínica inadecuada ( - 400mW/cm2) se 

reflejan en una baja profundidad de fotopolimerización de los biomateriales 

dentales, lo que a su vez produce degradación, fracturas masivas y decoloración de 

la restauración(3). Además, una disminución de la biocompatibilidad y la fuerza de 

unión entre diente-restauración; todos estos factores influencian de forma negativa 

el éxito de los tratamientos(9, 10).  

Boksman L y Santos GC, mencionan que el 37% de las restauraciones directas 

de resina compuesta presentan una inadecuada fotopolimerización, asociada a una 

deficiente intensidad lumínica(11). Además, López O et al. en Colombia en el 2011, 

estudiaron la intensidad lumínica de 64 unidades de fotoactivación, obteniendo 

como resultado que el 39% no presentaban la intensidad mínima necesaria para 

una adecuada fotopolimerización(12). De igual manera, Martínez N en Guayaquil-

Ecuador en el 2016, evaluó la intensidad lumínica de 45 lámparas de 

fotopolimerización, en donde 83,5% presentaban una intensidad deficiente menor a 

400 mW/cm2 (13). 

En base a lo descrito previamente se puede evidenciar la necesidad de conocer 

cuál es la intensidad lumínica producida por las lámparas de fotopolimerización a 

nivel de la consulta privada, además, de concientizar a los profesionales de la salud 

a realizar controles periódicos de la intensidad lumínica de sus equipos, y así brindar 

un servicio óptimo y de calidad. De igual forma, a nivel local no se han realizado 

estudios sobre esta temática, por lo tanto, la presente investigación será pionera en 

el tema, estableciendo parámetros científicos para la elaboración de futuros 

estudios. 
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CAPÍTULO II 

MARCO TEÓRICO 

 

1. INTENSIDAD LUMÍNICA 
 

La intensidad lumínica se define como la cantidad de fotones emitida por una 

fuente de luz y su unidad de medida es mW/cm2 (mili watt por centímetro cuadrado). 

Varios autores como: Price R et al., Rueggeberg F et al., Lee YR et al., Martin FE, 

describen que la intensidad mínima necesaria para la correcta fotopolimerización es 

de 400mW/cm2 (9, 14-16).  

Dicha intensidad permite a la luz atravesar un incremento de resina compuesta 

de 2mm(16), dando inicio al proceso de fotopolimerización al descomponer al 

fotoiniciador en radical libre. Este nuevo radical libre buscará un área rica en 

electrones (dobles enlaces de carbono de los monómeros), los romperá y generará 

más radicales libes para dar lugar a una red de polímeros. Finalmente, esta reacción 

termina por combinación, desproporción o falta de monómeros; convirtiendo a la 

matriz de resina que inicialmente era un gel en una matriz dura como un vidrio(17). 

El uso de dispositivos de fotopolimerización con apropiadas intensidades 

lumínicas influye tanto en las propiedades mecánicas y físicas de los biomateriales 

dentales, como en el grado de conversión de los monómeros a polímeros y así 

también en la longevidad de la restauración(18). Alkhudhairy F. concluye en su 

estudio que intensidades altas como de 1200 mW/cm2 mejoran la resistencia a la 

tracción, compresión y la microdureza de Vickers del biomaterial(19). 

Contrario a esto, una inadecuada intensidad lumínica (- 400 mW/cm2) tiene 

repercusiones negativas sobre los biomateriales, al evitar que se produzcan 

cantidades suficientes de radicales libres durante el proceso de fotopolimerización 

y, por ende, las propiedades del material se verán afectadas. Clínicamente, esto se 

evidencia con micro filtración, decoloración del material y menor resistencia al 

desgaste, conllevando a una mayor susceptibilidad a fracturas. A esto se suma la 

disminución del módulo elástico, menor resistencia a la flexión, menor 
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biocompatibilidad, mayor colonización bacteriana y mayor absorción de agua. 

Además, se percibe una mayor cantidad residual de monómeros libres que 

producen efectos citotóxicos(20-22). 

 

2. UNIDADES DE FOTOPOLIMERIZACIÓN  
 

Las lámparas de fotopolimerización son instrumentos capaces de emitir energía 

electromagnética con una longitud de onda que oscila entre los 400 – 500 nm 

(nanómetros), permitiendo la activación de los fotoiniciadores presentes en los 

biomateriales dentales(1, 23). 

 

2.1 TIPOS DE UNIDADES DE FOTOPOLIMERIZACIÓN 
 

2.1.1 HALÓGENAS DE CUARZO – TUNGSTENO 
 

 Las lámparas halógenas (QTH) se introdujeron en la década de 1970. Se 

caracterizan por generar una gran cantidad de energía en forma de radiación 

infrarroja, al igual que de radiación electromagnética a manera de luz visible, con 

una longitud de onda de 400 – 500nm. La intensidad generada por este tipo de 

dispositivos oscila entre 400 – 800 mW/cm2 (23-26). 

Estas lámparas están constituidas de un cristal de cuarzo que tiene en su interior 

un filamento de tungsteno y gas halógeno. Cuando la electricidad fluye a través del 

filamento, se liberan átomos de tungsteno de su superficie, produciendo una gran 

cantidad de energía electromagnética. Al apagar la corriente eléctrica, el filamento 

se enfría y el gas halógeno permite depositar los átomos de tungsteno sobre el 

mismo; este proceso se conoce como “Ciclo Halógeno”(8, 17).  

Se necesitan filtros y reflectores para disminuir la cantidad de radiación 

generada; los filtros permiten seleccionar la longitud de onda para emitir luz azul. 

En cambio, el reflector destella la parte visible de la radiación y absorbe la luz 

infrarroja, disipando el calor ya que está cubierto por un filtro dicroico. Para impedir 
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su sobrecalentamiento, la temperatura generada se disipa por medio de un 

ventilador incluido en el dispositivo(8, 17). 

Se conoce que solo se utiliza 0,5% del total de la energía producida y el restante 

99,5% se elimina a través de los filtros y reflectores. En condiciones óptimas, la 

bombilla de QTH debe funcionar un aproximado de 50 horas(8, 17).  

                                    

Ilustración 1: Lámpara Halógena de Cuarzo - Tungsteno.   
 Fuente: Rodas, Villalta 

 

2.1.2 DIODOS EMISORES DE LUZ (LED)  
 

La introducción de la tecnología LED en odontología se dio en 1990, estas 

lámparas presentan ciertas ventajas con respecto a las unidades halógenas como: 

estrecha longitud de onda; larga vida útil; menor generación de calor, evitando la 

necesidad de un ventilador; menor costo y mayor eficiencia de conversión de la 

energía eléctrica en un 14%, ya que convierten directamente la electricidad en luz 

azul por medio de electroluminiscencia causada por el movimiento de los electrones 

en sus semiconductores. Estos semiconductores presentan una estructura cristalina 

y están constituidos de nitruro de galio-indio (InGaN)(1, 27-29). 
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Ilustración 2: Lámpara LED   
Fuente: Rodas, Villalta 

 

 

2.1.2.1 LED DE PRIMERA GENERACIÓN 
 

La primera generación de unidades LED poseían una intensidad lumínica baja 

de 100 – 280 mW/cm2, misma que no producía una adecuada fotopolimerización. 

Por ello, se requería de tiempos de exposición demasiado largos como de 60 

segundos; sin embargo, a pesar de estos inconvenientes, generaban mucho interés 

debido a que necesitaban poco mantenimiento y eran livianas(8, 17, 30). 

 

2.1.2.2 LED DE SEGUNDA GENERACIÓN  
 

La principal diferencia con las unidades de primera generación es la inclusión 

del “Chip LED”, el cual aumenta la intensidad lumínica de las unidades. Se utilizan 

chips de 1W – 5W (watt), los cuales se distribuyen en cuatro áreas y cada una de 

estas consta de cuatro superficies emisoras, obteniendo un total de 16 áreas de 

emisión de luz. Sin embargo, la producción de una mayor intensidad también 

aumenta la cantidad de calor; por lo que fue necesario implementar revestimientos 

de metal para disipar el calor producido(8, 17). Estos dispositivos producen una 

intensidad lumínica de aproximadamente 1000 mW/cm2 (26) y una longitud de onda 

de 410 – 470nm, que es menor en comparación con las lámparas QTH, lo que trae 

dificultades para fotopolimerizar biomateriales que presenten fotoiniciadores 

alternativos(8, 31).  
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2.1.2.3 LED DE TERCERA GENERACIÓN 
 

Las lámparas LED de tercera generación aparecieron por la necesidad de 

sustituir a la canforquinona que, debido a su tonalidad amarillenta, afectaba a las 

propiedades estéticas del material. Por ello, las casas comerciales empezaron a 

utilizar fotoiniciadores alternativos como: fenilpropanediona (PPD), Lucirin TPO, 

entre otros. Estos necesitan una longitud de onda más corta y cercana a la luz 

violeta (– 410 nm), lo que hace que estas lámparas incorporen un emisor de color 

adicional al panel LED de color azul, emitiendo una longitud de onda de 380 –  500 

nm, obteniendo una combinación de luz violeta y azul(17, 32) con una intensidad 

lumínica que oscila entre 1000 - 2000 mW/cm2 (26). 

 

3. DIÁMETRO DE LA FIBRA ÓPTICA 
 

La luz es conducida por medio de un sistema óptico o fibra óptica, el cual 

generalmente se presenta en forma de varillas rígidas intercambiables y de distintos 

diámetros o anchos a nivel de la punta(1). Estos diámetros oscilan entre 6 – 12 mm(33) 

y presentan el mismo tamaño en su extremo proximal (cercano a la fuente de luz) y 

distal (cercano al objetivo a fotopolimerizar)(9, 34). Price R, recomienda el uso de 

dispositivos con fibras ópticas de diámetro grande, ya que permiten abarcar 

superficies más amplias durante cada ciclo de fotopolimerización; pero se requieren 

tiempos de exposición prolongados ya que, al aumentar el diámetro de la punta, la 

intensidad lumínica disminuye significativamente(8, 21, 35).  

En contraste a las fibras convencionales, las tipo “Turbo-Tip” presentan un 

diámetro proximal de tamaño grande y un distal pequeño, permitiendo que una 

mayor cantidad de fotones ingresen en la fibra, y el mismo número de ellos sean 

emitidos sobre una superficie más pequeña, aumentando así la intensidad lumínica; 

no obstante, esta intensidad disminuye notablemente conforme la fibra se aleja del 

material a fotopolimerizar; Price R, describe que con una distancia de 6 mm entre la 

punta de la fibra y el material, se emite menos intensidad lumínica al compararla 

con una fibra de vidrio convencional(8, 34). 
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4. FACTORES QUE MODIFICAN LA INTENSIDAD LUMÍNICA 
 

4.1 FRACTURAS DE LA FIBRA ÓPTICA 
 

La presencia de daños físicos como la fractura o pérdida de continuidad de la 

fibra óptica, representa un factor modificante a la intensidad lumínica(17). Strassler 

H y Price R, describen la importancia de mantener una condición optima de la 

misma, ya que la presencia de fracturas sobre ella, disminuyen tanto la intensidad 

lumínica(36) como también la homogeneidad de la luz irradiada, efecto  indeseado 

durante la fotopolimerización(12). Miyazaki M et al., describen que la intensidad 

lumínica aumenta un 46,2% al reemplazar las fibras ópticas fracturadas por otras 

nuevas(37). 

                                 

Ilustración 3: Fractura de la Fibra Óptica.     
Fuente: Rodas, Villalta 

 

4.2 RESIDUOS DE BIOMATERIALES DENTALES SOBRE LA FIBRA 

ÓPTICA 
 

La intensidad lumínica de las lámparas puede reducirse debido a la presencia 

de residuos o fragmentos de biomateriales dentales que tienden a adherirse al 

extremo distal de la fibra óptica(21), impidiendo el correcto suministro de luz y 

afectando a las características de los materiales empleados en la práctica clínica(17).  

Hedge V et al., explican que, al eliminar los residuos de biomateriales sobre la 

fibra óptica, se mejora notablemente la intensidad lumínica emitida; sin embargo, 
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este autor no analiza la relación entre la cantidad de residuos con la disminución de 

la intensidad lumínica(38). Por otro lado, Khode R et al., recomiendan el uso de 

barreras físicas translucidas desechables para evitar la contaminación cruzada y el 

depósito de desechos de biomateriales a nivel de la fibra óptica(39). Además, en caso 

de existir residuos biomateriales, estos se pueden eliminar usando una goma de 

pulido en una pieza de mano de baja velocidad(1). 

                            

Ilustración 4: Residuos de Biomateriales Dentales sobre la Fibra Óptica.     
 Fuente: Rodas, Villalta 

 

5. RADIÓMETROS DENTALES 
 

Los radiómetros dentales son medidores de luz que cuantifican la intensidad 

lumínica de las unidades de fotopolimerización y son comercializados en forma de 

dispositivos portátiles o integrados en las lámparas. Están constituidos por 

fotodiodos de silicio o selenio que pueden transformar la luz en corriente eléctrica, 

y cuyo valor de intensidad se muestra por medio de un medidor analógico o 

digital(40).  

La norma ISO 10650 establece el uso de un medidor de potencia de laboratorio, 

mismo que se calibra en función a la radiación emitida por los dispositivos de 

fotopolimerización. Este medidor no está disponible en consultorios dentales 

particulares, ya que su uso es netamente industrial; por lo cual es imperativo el 

empleo de radiómetros dentales para monitorear el funcionamiento de las lámparas. 

Shimokawa CAK et al., evaluaron la precisión de 4 radiómetros dentales 

(“Bluephase Meter II, SDI LED Radiómetro, Kerr LED Radiometer y LEDEX 
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CM4000”) y concluyen que el radiómetro “Bluephase Meter II” (Ivoclar-Vivadent, 

Schaan, Liechtenstein) no muestra diferencias significativas al compararlo con el 

medidor de potencia de laboratorio. Por lo tanto, es el más indicado para la medición 

de la intensidad lumínica(41). 

Este último permite obtener lecturas de la intensidad en base al diámetro de 

cada dispositivo, presenta un rango de intensidad entre los 300 – 12000 mW/cm2 y 

un rango de longitud de onda de 380 – 550 nm(33). 

Así mismo, el radiómetro “Bluephase Meter II” (Ivoclar-Vivadent, Schaan, 

Liechtenstein) es avalado por la “International Electrotechnical Commission” 

(Comisión Electrotécnica Internacional) bajo la normativa IEC 61010-1 (EN 61010-

1) y cumple con los estándares de “Electromagnetic Compatibility” (EMC) 

(Compatibilidad Electromagnética), acatando las regulaciones de la Unión Europea 

(U.E); por lo que su elaboración y distribución se realiza en condiciones 

“técnicamente seguras”. Adicionalmente, cuenta con la certificación del “Nationally 

Recognized Testing Laboratory” (NRTL) (Programa de Laboratorio de Pruebas 

Reconocido Nacionalmente), el cual es a la vez reconocido por la “Occupational 

Safety and Health Administration” (O.S.H.A) (Administración de Seguridad y Salud 

Ocupacional) de los Estados Unidos, como una entidad capacitada para realizar 

pruebas y certificaciones de seguridad de productos independientes, por lo tanto se 

garantiza  el cumplimiento de los estándares de fabricación y de las normas de 

seguridad apropiadas(33, 42) (Anexo 1).  

 

Ilustración 5: Radiómetro Dental Bluephase Meter II.        
Fuente: Rodas, Villalta 

https://www.osha.gov/
https://www.osha.gov/
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CAPÍTULO III 

OBJETIVOS 

 

 

1. OBJETIVO GENERAL  
 

- Evaluar la intensidad lumínica generada por lámparas de fotopolimerización 

utilizadas en consultorios privados de la ciudad de Cuenca. 2018. 

 

2. OBJETIVOS ESPECÍFICOS 
  

- Reconocer el tipo de lámpara de fotopolimerización. 

- Determinar el diámetro de la fibra óptica de las unidades de fotopolimerización. 

- Analizar la presencia o ausencia de fracturas de la fibra óptica de las lámparas de 

fotopolimerización.  

- Analizar la presencia o ausencia de residuos de biomateriales dentales sobre la 

fibra óptica de las lámparas de fotopolimerización.  
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CAPÍTULO IV 

METODOLOGÍA 

 

1. UNIVERSO Y MUESTRA 
 

El presente estudio descriptivo observacional, estuvo constituido por un universo 

desconocido de lámparas de fotopolimerización; debido a que se solicitó a la 

“Agencia de Aseguramiento de la Calidad de los Servicios de Salud y Medicina 

Prepagada - ACESS” brindar información relacionada al número de consultorios 

privados que cuenten con permiso de funcionamiento de la ciudad de Cuenca 

(Anexo 2), sin embargo, los datos otorgados por esta entidad estuvieron 

contemplados a nivel de toda la provincia del Azuay en general, y no 

específicamente de la ciudad de Cuenca (Anexo 3). Es por ello, que se realizó el 

cálculo muestral en base a un universo desconocido, considerando que no se 

contaba con un registro oficial del número de dispositivos de fotopolimerización 

utilizados en cada consultorio a nivel privado en la localidad.  

  El cálculo muestral se efectuó con la fórmula propuesta para estudios con 

universos desconocidos descrita a continuación:   

n = 
𝑍2𝑝𝑞

𝑑2
 

En donde:  

n = tamaño de la muestra 

Z = nivel de confianza: 1.96 

p = proporción esperada: 0.39 basado en el estudio de López O et al. “Evaluación 

de la intensidad de salida de la luz de las lámparas de fotocurado de una clínica 

dental”(12). 

q = (1-p): 1- 0.39 = 0.61 

d = Error muestral: 0.05 
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A partir de esto, la muestra estuvo constituida por 366 lámparas de 

fotopolimerización, las cuales fueron escogidas a través de un muestreo no 

probabilístico a conveniencia de las parroquias urbanas y rurales de la ciudad de 

Cuenca.  Mismas que fueron analizadas una vez aplicados los criterios de inclusión 

y exclusión descritos a continuación. 

 

2. CRITERIOS DE INCLUSIÓN 
 

-Lámparas de fotopolimerización Halógenas y LED. 

-Centros odontológicos donde el profesional a cargo permita el análisis de sus 

dispositivos de fotopolimerización previo una aprobación verbal. 

 

3. CRITERIOS DE EXCLUSIÓN  
 

-Lámparas de fotopolimerización que no se usen actualmente. 

 

4. VARIABLES DEL ESTUDIO  
 

 

La operacionalización de las variables del estudio se detalla en el (Anexo 4).  

Las variables utilizadas en el estudio son:  

-Tipo de lámpara de fotopolimerización (1. Halógena o 2. LED)  

-Fracturas de la fibra óptica (1. Ausente o 2. Presente) 

-Residuos de biomateriales dentales sobre la fibra óptica (1. Presente o 2. Ausente) 

-Diámetro de la fibra óptica (1. 6mm; 2. 7mm, 3. 8mm, 4. 9mm; 5. 10mm; 6. 11mm 

y 7. 12mm)  

-Intensidad lumínica de los dispositivos (1. Adecuada o 2. Inadecuada) 
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5. MÉTODO DE RECOLECCIÓN DE DATOS  
 

Previo a la recolección de datos, se realizó un muestreo no probabilístico, 

seleccionando por conveniencia 12 parroquias urbanas: Bellavista, Cañaribamba, 

El Batán, El Sagrario, El Vecino, Gil Ramírez Dávalos, Huaynacápac, Monay, San 

Blas, San Sebastián, Sucre, Totoracocha y 4 parroquias rurales: Baños, Sayausí, 

El Valle y Ricaurte, a razón de la accesibilidad que estas parroquias representaban 

para los investigadores(43). En estas parroquias se realizaron los análisis de 366 

lámparas de fotopolimerización provenientes de consultorios privados. 

 

Posteriormente, a través de observación directa se determinó el tipo de lámpara 

de fotopolimerización, marca comercial y modelo. Además, se analizó la presencia 

o ausencia de fracturas y/o residuos de biomateriales sobre la fibra óptica.  

 

El radiómetro dental “Bluephase Meter II” (Ivoclar-Vivadent, Schaan, 

Liechtenstein) fue adquirido nuevo de fábrica para la realización de esta 

investigación (Anexo 5), por lo tanto, el mismo cumple con todos los estándares de 

fabricación y de seguridad avalados por las instituciones internacionales 

mencionadas en el capítulo anterior(33) . 

 

Mediante el uso del mismo, se determinó el diámetro de la fibra óptica por medio 

de la plantilla de medidas que está incluida en la parte posterior del dispositivo. 

Luego se programó el radiómetro, ingresando cada medida del diámetro por medio 

de los botones más (“+”) o menos (“-”) presentes en la parte anterior del mismo. Una 

vez programado el radiómetro, se colocó la fibra óptica centrada sobre el sensor del 

aparato y se activó la luz para así obtener las mediciones de la intensidad lumínica. 
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Ilustración 6: Programación del Radiómetro Dental: 
A. Determinación del diámetro de la fibra óptica.  

B. Digitación del diámetro obtenido.  
C. Lecturas brindadas por el Radiómetro 

Fuente: Rodas, Villalta 

 

Siguiendo los parámetros usados por López O et al., los dispositivos analizados 

se encendieron un minuto previo a cada medición para obtener su mayor potencia. 

Luego, se midió tres veces la intensidad de cada lámpara por 20 segundos; en caso 

de discrepancias de +/-25mW/cm2 en un mismo dispositivo, se repitió el 

procedimiento, caso contrario, se calculó el promedio (Media) de los tres valores y 

este resultado determinó la intensidad definitiva. Las mediciones fueron ejecutadas 

por un solo investigador para evitar sesgos en la investigación(12).  

A 

C 

B 
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Toda la información obtenida fue registrada en el formulario propuesto para la 

recolección de datos, desarrollado con el programa “Microsoft Word 2016” 

(Microsoft Company, Washington, EEUU), detallado en el (Anexo 6). El instructivo 

sobre el llenado del mismo está detallado en el (Anexo 7). 

 

6. PLAN DE ANÁLISIS ESTADÍSTICO 
  

La información obtenida en esta investigación fue registrada en el formulario de 

recolección de datos, en el cual se calculó el promedio de las tres intensidades 

obtenidas para determinar la intensidad definitiva. Posteriormente estos datos 

fueron procesados en el programa “Microsoft Excel 2016” (Microsoft Company, 

Washington, EEUU) para luego realizar un análisis estadístico descriptivo a través 

del uso del programa de computador “IBM SPSS Stadistics versión 23” (IBM 

corporation, Armonk, NY, EEUU), donde las variables de tipo cualitativo nominales 

y ordinal fueron clasificadas según frecuencia y porcentaje. Todos los resultados 

obtenidos fueron expresados a través de tablas con criterios de evaluación, 

frecuencias y porcentajes.  
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CAPÍTULO V 

RESULTADOS 
 

 

Luego de haber evaluado la intensidad lumínica de 366 lámparas de 

fotopolimerización, el 67,2% de las mismas contaban con una intensidad lumínica 

adecuada, mientras que el 32,8% restante mostraban una intensidad inadecuada. 

(Tabla 1) 

Tabla 1: Intensidad lumínica de  lámparas de fotopolimerización. 

Fuente: Rodas, Villalta 

 

Así también, los resultados arrojaron que el 19,1% eran lámparas Halógenas 

y el 80,9% restante eran lámparas LED. Además, el 64,7% de unidades analizadas 

presentaban un diámetro de fibra óptica de 8 mm; el 15,6% de 9 mm; el 12% de 10 

mm; el 2,2% de 11 mm y el 5,5% de unidades con un diámetro de 12mm. 

Adicionalmente, el 78,7% de unidades no mostraban fractura de la fibra óptica, 

contrario al 21,3% que si presentaban fractura(s). Finalmente, el 55,5% de las 

lámparas presentaban residuos de biomateriales dentales sobre la fibra óptica, 

dejando al 44,5% restantes, libres de ellos. (Tabla 2) 

 

Intensidad lumínica Frecuencia Porcentaje 

"Adecuada" 246 67,2 % 

"Inadecuada" 120 32,8% 

Total 366 100% 

Tipo de Lámpara de Fotopolimerización Frecuencia Porcentaje 

"Halógena" 70 19,1% 

"LED" 296 80,9% 

Total 366 100% 

Diámetro de la Fibra Óptica Frecuencia Porcentaje 

"8 mm" 235 64,7 % 

"9 mm" 57 15,6 % 
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Tabla 2: Tipo de lámpara, diámetro, fracturas y residuos de biomateriales dentales sobre la fibra óptica. 

 Fuente: Rodas, Villalta  

 

Del total de lámparas halógenas estudiadas, el 41,4% presentaban una 

intensidad lumínica adecuada, mientras que el 58,6% presentaban una intensidad 

inadecuada. Del total de lámparas LED analizadas, el 73,3% contaban con una 

intensidad adecuada, pero la intensidad del 26,7% restante era inadecuada (Tabla 

3).  

 

 
Tipo de Lámpara de Fotopolimerización 

"Halógena" "LED" 

Frecuencia Porcentaje Frecuencia Porcentaje 

Intensidad 

Lumínica 

"Adecuada" 29 41,4% 217 73,3% 

"Inadecuada" 41 58,6% 79 26,7% 

Total  70 100% 296 100% 

Tabla 3: Intensidad lumínica de lámparas Halógenas y LED 

Fuente: Rodas, Villalta 

"10 mm" 44 12,0 % 

"11 mm" 8 2,2 % 

"12 mm" 20 5,5 % 

Total 366 100% 

Fractura de la Fibra Óptica Frecuencia Porcentaje 

"Ausente" 288 78,7% 

"Presente" 78 21,3% 

Total 366 100% 

Residuos de Biomateriales dentales sobre la Fibra 
Óptica 

Frecuencia Porcentaje 

"Presente" 203 55,5% 

"Ausente" 163 44,5% 

Total 366 100% 
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Del total de dispositivos con un diámetro de la fibra óptica de 8mm, el 68,4% 

tenían una intensidad lumínica adecuada, mientras que la intensidad del 31,6% 

restante, era inadecuada. A su vez, del total de unidades con 9mm de diámetro 

analizadas, el 59,6% mostraban una intensidad adecuada y 40,4% restante, 

inadecuada. Así mismo, de todas las unidades con diámetro de 10mm un 63,6% 

tenían una intensidad adecuada, contrastando con un 36,4% cuya intensidad era 

inadecuada. Del mismo modo, del total de dispositivos con 11mm de diámetro, el 

75% tenían una intensidad adecuada y 25% inadecuada. Por último, del total de 

unidades analizadas con un diámetro de 12mm, un 80% de estas tenían una 

intensidad adecuada y el 20% restante poseía una intensidad inadecuada (Tabla 4). 

 

 Diámetro de la Fibra Óptica 

"8mm" “9mm” "10mm" "11mm" "12mm" 

Intensidad 

Lumínica 

"Adecuada" 162 68,4% 34 59,6% 28 63,6% 6 75% 16 80% 

"Inadecuada" 75 31,6% 23 40,4% 16 36,4% 2 25% 4 20% 

Total 237 100% 57 100% 44 100% 8 100% 20 100% 

Tabla 4: Intensidad Lumínica y Diámetro de la Fibra Óptica 

Fuente: Rodas, Villalta 

 

 

 En el grupo de lámparas con ausencia de fracturas en la fibra óptica, el 

74,3% presentaban una intensidad lumínica adecuada y el 25,7% restante, 

inadecuada. En cambio, de aquellas lámparas con presencia de fracturas en la fibra 

óptica, el 41,0% mostraban una intensidad lumínica adecuada y 59,0% inadecuada 

(Tabla 5). 
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Fractura de la Fibra Óptica 

“Ausente" "Presente" 

Frecuencia Porcentaje Frecuencia Porcentaje 

Intensidad 

Lumínica 

"Adecuada" 214 74,3% 32 41,0% 

"Inadecuada" 74 25,7% 46 59,0% 

Total 288 100% 78 100% 

Tabla 5: Intensidad Lumínica y fractura de la fibra óptica 

Fuente: Rodas, Villalta 

 

De las unidades que presentaban residuos de biomateriales dentales sobre 

la fibra óptica, el 61,1% emitían una intensidad lumínica adecuada y el 38,9% 

inadecuada. En cambio, del total de dispositivos con ausencia de biomateriales 

sobre la fibra óptica el 74,8% presentaban una intensidad lumínica adecuada y el 

25,2% inadecuada (Tabla 6).  

 

 Residuos de Biomateriales dentales sobre la Fibra 

Óptica 

"Presente" "Ausente" 

Frecuencia Porcentaje Frecuencia Porcentaje 

Intensidad 

Lumínica 

"Adecuada" 124 61,1% 122 74,8% 

"Inadecuada" 79 38,9% 41 25,2% 

Total 203 100% 163 100% 

Tabla 6: Intensidad Lumínica y Residuos de biomateriales dentales sobre la fibra óptica. 

Fuente: Rodas, Villalta 
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CAPÍTULO VI 
 

1. DISCUSIÓN 

 

La intensidad lumínica de las lámparas de fotopolimerización es un factor 

importante a ser considerado por los profesionales en la práctica clínica. El 

porcentaje de lámparas con una intensidad inadecuada representa el 32,8%, 

resultado similar a los estudios de López O et al. quienes describen un 39% de 

unidades con intensidad inadecuada(12) y diferentes a los de Madhusudhana K et 

al., quienes reportan 44% de dispositivos con inadecuada intensidad(44). 

 

Nuestros resultados demuestran que el 80,9% de las unidades analizadas 

son dispositivos LED y un 19,1% halógenos. Además, las lámparas halógenas 

presentan un mayor porcentaje de intensidades deficientes con el 58,6%, en 

comparación a las LED con un 26,7%. Estos resultados son comparables a los 

obtenidos por Al-Shafi M et al., quienes catalogan al 67,5% de dispositivos 

halógenos y 15,6% LED con intensidades insuficientes(24), y a los de Madhusudhana 

K et al., donde informan que el 43,7% de lámparas halógenas y el 13,1% de 

lámparas LED poseían intensidades inadecuadas(44). No obstante, estos resultados 

difieren completamente con los de Hegde V et al., quienes mencionan un elevado 

porcentaje de dispositivos con intensidades inadecuadas tanto halógenas como 

LED, los cuales fueron del 98% y 90% respectivamente(38). 

 

Con respecto al diámetro de la fibra óptica, se observan mayores porcentajes 

para los diámetros de 8 y 9 mm con 64,7% y 15,6% respectivamente en 

comparación con diámetros más grandes; donde el 12%, 2,2% y 5,5% corresponden 

a diámetros de 10, 11 y 12 mm.  Así mismo, Price R y Soares C et al., describen 

que las fibras con diámetro grande pueden emitir luz de forma homogénea y cubrir 

completamente la superficie de la restauración. Por el contrario, en el caso de fibras 

ópticas con diámetros pequeños, se tiene que emitir varias exposiciones 
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secuenciales para abarcar toda la superficie antes mencionada(8, 34, 45). Por otro 

lado, Shortall AC et al., comentan que al aumentar la superficie del extremo distal 

de la fibra óptica se produce una disminución de la intensidad lumínica y describen 

que, al aumentar el diámetro de la fibra de 7 mm a 10 mm, la intensidad lumínica 

disminuye en un 50%(35).  En esta investigación, aquellos dispositivos que presentan 

fibras ópticas con diámetros pequeños de 8mm, el 68,4% emiten una intensidad 

adecuada, y el 31,6% inadecuada. De igual manera, aquellas lámparas con las 

fibras ópticas más grandes de 12mm, el 80% de ellas emiten intensidades 

adecuadas y un 20% emiten intensidades inadecuadas. 

 

En cuanto a los distintos factores que interfieren con la intensidad lumínica, 

el 21,3% de lámparas analizadas presentan fracturas a nivel de la fibra óptica, 

resultados distintos a los descritos por López O et al. quienes presentan un 

porcentaje inferior de 12%(12) y Meda R. quien reporta un 10% de fibras ópticas 

fracturadas(46). Al analizar la intensidad lumínica de las unidades con fracturas de la 

fibra óptica, se observa que el 59% presentan una intensidad inadecuada, lo que 

demuestra la importancia de preservar la integridad de las mismas. 

 

Los resultados de este estudio describen un 55,5% de las unidades 

presentan residuos de biomateriales dentales sobre la fibra óptica, porcentaje 

similar al de López O et al. quienes relatan un 48%(12) y al de Meda R. quien reporta 

un 45% de residuos sobre la misma(46). Además, al analizar la intensidad lumínica 

de dispositivos con presencia de residuos, se obtiene que el 38,9% emiten una 

intensidad insuficiente. De igual forma, autores como Madhusudhana K et al., 

concuerdan que la presencia de contaminantes de resina sobre la fibra interfiere 

con la intensidad lumínica(44) y Sword R et al., recomiendan el uso de barreras 

protectoras como de polivinilo o de poliuretano las cuales no disminuyen 

significativamente la intensidad(47).  
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2. LIMITACIONES DEL ESTUDIO 

 

 Los resultados obtenidos a partir de esta investigación no permiten englobar 

a toda la ciudad de Cuenca-Ecuador, ya que no se cubrió todas las 

parroquias urbanas – rurales de la presente ciudad, debido a la gran 

extensión de la misma, y los limitados recursos humanos. Así como también 

el período y tiempo de aplicación otorgados para el estudio.   

 

 El presente estudio descriptivo-observacional, no determinó el grado de 

fracturas al igual que la cantidad de biomateriales dentales sobre la fibra 

óptica, ya que únicamente se realizó un análisis observacional calificando a 

estos factores como “Presente” o “Ausente”. 

 
 

 No fue posible determinar la menor intensidad obtenida por los dispositivos 

de fotopolimerización, ya que la configuración del radiómetro dental da como 

lectura las siglas “MIN” al momento de medir intensidades menores a 300 

mW/cm2(33) (Anexo 8). 
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CAPÍTULO VII 
 

1. CONCLUSIONES  

 

 El 32,8% del total de dispositivos presentaron intensidades por debajo de 400 

mW/cm2 (intensidad mínima), donde las lámparas halógenas presentaron un 

mayor porcentaje de intensidades inadecuadas (58,6%). Con respecto al tipo 

de dispositivos utilizados hubo un mayor porcentaje para el tipo LED en 

comparación a las halógenas (80,9%). 

 

 La mayoría de lámparas de fotopolimerización presentaron fibras ópticas de 

diámetros pequeños de 8 y 9mm. Además, al analizar la intensidad lumínica 

emitida por las unidades con fibras ópticas de diámetros pequeños (8mm) y 

de diámetros grandes (12 mm) se determinó que emitían intensidades 

lumínicas adecuadas. 

 

 La intensidad lumínica de las unidades de fotopolimerización puede verse 

afectada por la existencia de fracturas o presencia de residuos de 

biomateriales dentales sobre el extremo distal de la fibra óptica.  
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2. RECOMENDACIONES 

 

 Es importante que los profesionales realicen un monitoreo periódico de la 

intensidad lumínica de sus dispositivos de fotopolimerización, reemplazando 

aquellas fibras ópticas que presenten fracturas y eliminando cualquier 

desecho o residuo sobre la fibra óptica, así como también realizando la 

desinfección de la misma.  

 

 Se recomienda realizar similares investigaciones a nivel de establecimientos 

públicos que brinden atención odontológica. 
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ANEXOS 
 

Anexo 1: Documento de certificación del radiómetro dental “Bluephase Meter II” 

(Ivoclar-Vivadent, Schaan, Liechtenstein). 
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Anexo 1: Sello de cerficación en el radiómetro dental “Bluephase Meter II” (Ivoclar-

Vivadent, Schaan, Liechtenstein). 

.  
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Anexo 2: Solicitudes enviadas a la “ACESS”.  
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Anexo 3: Respuestas recibidas por la “ACESS” 
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Anexo 4.  Tabla de Operacionalización de Variables. 

  

Variable Definición Indicador Escala 

Intensidad de la 

luz. 

Cantidad de fotones emitida 

por una fuente de luz, su 

unidad de medida es mW/cm2. 

Siendo 400mW/cm2 la 

intensidad mínima necesaria 

para la fotopolimerización. 

Radiómetro 

“Bluephase Meter 

II”. 

1. Adecuado 
     (=>400 mW/ cm2) 
 

2. Inadecuado 
(< 400mW/cm2) 

Tipo de lámpara de 

fotopolimerización. 

Instrumentos capaces de emitir 
energía electromagnética, con 

una longitud de onda que 
oscila entre los 400 – 500 nm, 

y que puede ser de varios 
tipos. 

Observacional. 
1. Halógena 
2. LED 

 

Diámetro de la fibra 

óptica. 

Distintos anchos a nivel de la 
punta (extremo distal) de la 

fibra óptica.  

Radiómetro 

“Bluephase Meter 

II”. 

1. 6mm 
2. 7mm 
3. 8mm 
4. 9mm 
5. 10mm 
6. 11mm 
7. 12mm 

Fracturas de la 

fibra óptica. 
Pérdida de continuidad de la 

fibra óptica. 
Observacional. 

1. Ausente 
2. Presente 

Residuos de 

biomateriales 

dentales sobre la 

fibra óptica. 

Residuos o fragmentos de 
biomateriales que tienden a 

adherirse al extremo distal de 
la fibra óptica. 

Observacional. 
1. Presente 

      2. Ausente 
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Anexo 5. Comprobante de adquisición del radiómetro dental “Bluephase Meter II” 

(Ivoclar-Vivadent, Schaan, Liechtenstein). 
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Anexo 6. Formulario de Recolección de Datos 

 

 

Formulario de Recolección de Datos: 
 

    Número: __________ 

      

a) Tipo de lámpara de fotopolimerización:   

 1) Halógena  2)LED   

      

      

b) Marca Comercial:     

____________________________________________________________________ 

      

c) Modelo:      

____________________________________________________________________ 

      

d) Fractura de la fibra óptica:   

1) Ausente  2) Presente   

      

e) Residuos de biomateriales dentales sobre la fibra óptica:    

1)Presente  2)Ausente    
 
 
f) Diámetro de la fibra óptica  
 
1) 6mm   2) 7mm    3) 8mm  4) 9mm  5) 10mm   6) 11mm   7) 12mm 

 

g) Intensidad lumínica:    

1)Primera Medición: ___________ mW/cm2   

2)Segunda Medición: ___________ mW/cm2   

3)Tercera Medición: ___________ mW/cm2   

 Promedio: ___________ mW/cm2   

      

 1)Adecuada  2)Inadecuada   
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Anexo 7. Instructivo para llenado de Formulario de Recolección de Datos  

 

Instructivo: 

 

El formulario para recolección de datos se llenará siguiendo cada uno de los siguientes 

parámetros, los cuales serán explicados a continuación:  

 

- Número: Se enumerará cada lámpara desde 1 a 366. 

 

- Tipo de lámpara de fotopolimerización: Se reconocerá el tipo de lámpara que se 

evaluará y se clasificará como: 1) Halógena o 2) LED 

 

- Marca Comercial: Se anotará la marca comercial de cada dispositivo, en caso de no 

presentar, se detallará como “No define”. 

 

- Modelo: Se anotará el modelo de cada dispositivo, en caso de no presentar, se detallará 

como “No define”. 

 

- Fractura de la fibra óptica: Se observará la fibra óptica de cada lámpara de 

fotopolimerización para identificar la perdida de continuidad o fractura de la fibra óptica y se 

codificará como: 1) Ausente o 2) Presente. 

 

- Residuos de biomateriales sobre la fibra óptica: Se analizará la fibra óptica y se 

identificará cualquier resto de biomaterial dental para considerarlo como: 1) Presente o 2) 

Ausente. 

 

-Diámetro de la fibra óptica: Se medirá el diámetro de cada dispositivo por medio la 

plantilla de medidas, la que está incluida en la parte posterior del dispositivo, las cuales se 

catalogarán como: 1) 6mm; 2) 7mm, 3) 8mm, 4) 9mm; 5) 10mm; 6) 11mm y 7) 12mm 

 

-Intensidad lumínica: Se utilizará el radiómetro dental "BluePhase Meter II" (Ivoclar-

Vivadent, Schaan, Liechtenstein) y se medirá tres veces cada dispositivo para finalmente 

realizar un promedio de las mediciones para categorizarlo como: 1) Adecuada o 2) 

Inadecuada 
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Anexo 8. Fotografías de intensidades catalogadas como MIN. 

  

 

 

 

 

A B C 

D 

Anexo 6: A. Primera medición; B. Segunda medición; C. Tercera medición; D. Radiómetro 

Dental y Lámpara de fotopolimerización. 

Fuente: Rodas, Villalta 


