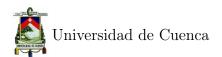


UNIVERSIDAD DE CUENCA Facultad de Ingeniería

Carrera de Ingeniería Civil


Análisis estructural de pavimentos rígidos a través de métodos no destructivos y aplicación de elementos finitos: vía Cuenca - Molleturo en el tramo Sayausí - Tres Cruces

Trabajo de titulación previo a la obtención del Título de Ingeniera Civil

Autora: Doris Anabel Prado Sánchez C.I. 0104267588

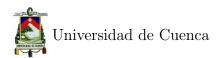
Tutor: Ing. Jaime Asdrúbal Bojorque Iñeguez., Ph.D C.I. 0102857885

> Cuenca - Ecuador 2018

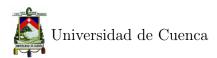
RESUMEN

En el presente trabajo de titulación se realizó la evaluación de la capacidad estructural del pavimento rígido con rehabilitación whitetopping de la vía Cuenca - Molleturo, en el tramo Sayausí - Tres Cruces con abscisas 6+813 -35+800, adoptando el enfoque de retrocálculo propuesto por la guía de diseño AASHTO de 1993 para la evaluación estructural de pavimentos. También se realizó una simulación del comportamiento del pavimento en el software Ansys, para caracterizar la estructura del pavimento estudiado. Se presenta en la introducción, los antecedentes, el alcance, la justificación y los objetivos planteados para el presente trabajo. Se discute también la importancia del mantenimiento y rehabilitación de las carreteras. Luego en el marco teórico del trabajo se aborda la rehabilitación y repayimentación con sobrecarpetas de hormigón donde se profundiza la rehabilitación whitetopping, además se presenta el enfoque de la evaluación de la capacidad estructural de pavimentos, el ensayo de deflectometría utilizando el deflectómetro de impacto, se presenta los parámetros estructurales que serán obtenidos por retrocálculo y una descripción de las herramientas que se emplearon. En cuanto a la metodología aplicada se dividió en cuatro fases (i) experimentación, (ii) sectorización (iii) retrocálculo y (iv) análisis de resultados. La fase de experimentación se desarrolló en tres etapas: (i) estándares para medir deflexiones en el pavimento, (ii) toma de datos, (iii) almacenamiento de datos crudos. La segunda fase llamada sectorización está constituida por tres etapas (i) preparación de los datos, (ii) aplicación del método de diferencias acumuladas y (iii) análisis estadístico. La tercera fase de retrocálculo tiene dos etapas que son: (i) retrocálculo por el método AASHTO y (ii) retrocálculo a través de elementos finitos. Del análisis de los resultados se puede resaltar que tanto los módulos de elasticidad del concreto como los módulos reacción de la subrasante obtenidos a través del método AASHTO se encuentra dentro de los rangos permitidos. La sección de la vía que cuenta con un soporte bajo de fundación es el carril izquierdo con abscisas 6+850 - 14+696, los tramos restantes califican con un soporte entre medio y muy alto. Además, mediante el software Ansys se obtuvo la caracterización de todas las capas que conforma la estructura del pavimento, permaneciendo todos estos valores dentro de los rangos permitidos, también se determinó que la vía cuenta con una eficiencia de transferencia de carga moderada. Finalmente, como un aporte al presente trabajo se realizó un análisis de sensibilidad de las variables que influyen en el diseño del pavimento y su incidencia en la deflexión de donde se determinó que la variable que genera cambios relevantes en el cuenco de deflexiones es el espesor de la losa.

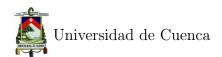
Palabras claves— Pavimento rígidos, Evaluación estructural, FWD, Elementos finitos.


ABSTRACT

In the present graduation project the structural capacity evaluation of the rigid pavement was carried out with whitetopping rehabilitation of the Cuenca -Molleturo route, in the section Sayausí - Tres Cruces with abscissas 6 + 813 - 35+ 800 adopting the backcalculation approach proposed by the AASHTO design guide of 1993 for the structural evaluation of pavements. A simulation of the pavement behavior was also carried out in the Ansys software, to characterize the pavement structure studied. It is presented in the introduction, the background, the scope, the justification and the objectives set for the present work. The importance roads maintenance and rehabilitation is also discussed. Then, in the theoretical framework of the work, the rehabilitation and resurfacing with concrete overlays is addressed where whitetopping rehabilitation is deepened, In addition, the approach of evaluating the structural capacity of pavements, the deflectometry test using the impact deflectometer, the structural parameters that will be obtained by rbackcalculation and a description of the tools that were used are presented. Regarding the applied methodology, it was divided into four phases (i) experimentation, (ii) sectorization (iii) backcalculation and (iv) results analysis. The experimentation phase was developed in three stages: (i) standards to measure deflections in the pavement, (ii) data collection, (iii) raw data storage. The second phase called sectorization is made up of three stages: (i) preparation of the data, (ii) application of the cumulative differences method and (iii) statistical analysis. The third phase of backcalculation has two stages that are: (i) backcalculation by the AASHTO method and (ii) backcalculation through finite elements. From the analysis of the results it can be highlighted that both, the modulus of elasticity of the concrete and the reaction modules of the subgrade obtained through the AASHTO method are within the permitted ranges. The section of the road that has a low base support is the left lane with abscissas 6 + 850 - 14 + 696, the remaining sections qualify with medium to very high support. In addition, through the Ansys software the characterization of all the layers that make up the pavement structure was obtained, remaining all these values within the standardized boundaries, it was also determined that the road has a moderate load transfer efficiency. Finally, as a contribution to the present work, it was carried out to a sensitivity analysis of the variables that influence the design of the pavement and its incidence in the deflection from where it was determined that the variable that generates significant changes in deflections basin is the slab thickness.

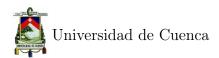

Key words— Rigid pavement, Structural evaluation, FWD, Finite elements.

Índice general


Li	sta d	e figuras		7
Li	sta d	e tablas		10
1.	Intr	oducción		18
	1.1.	Anteceder	ntes	20
	1.2.	Revisión o	de información recibida por parte del MTOP	21
	1.3.	Justificaci	ión	22
	1.4.	Localizaci	ión del estudio	23
	1.5.	Objetivos		24
	1.6.	Alcance		24
	1.7.	Estructur	a del trabajo	25
2.	Mar	co teóric	0	2 6
	2.1.	Paviment	OS	26
		2.1.1. Ti	pos de pavimentos	27
		2.1.2. Ca	apas que conforman un pavimento rígido	28
			chabilitación y repavimentación con sobrecarpetas de rmigón	30
	2.2.	Evaluació	n de la capacidad estructural de pavimentos	33

		2.2.1.	Ensayos no destructivos	34
		2.2.2.	Ensayo de deflectometría	36
	2.3.	Parám	etros estructurales	42
		2.3.1.	Módulo de reacción de la subrasante	43
		2.3.2.	Módulo elástico de la losa	45
		2.3.3.	Eficiencia de transferencia de carga	45
	2.4.	Anális	is estructural de pavimentos	46
		2.4.1.	Sectorización del pavimento por el método de las diferencias acumuladas	47
		2.4.2.	Retrocálculo	49
		2.4.3.	El método AASHTO para el retrocálculo	52
		2.4.4.	Generalidades de método de elementos finitos	54
3.	Met	odolog	gía y resultados	59
3.	Met 3.1.		gía y resultados mentación	59 61
3.				
3.		Experi	mentación	61
3.		Experi 3.1.1.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 61
3.		Experi 3.1.1. 3.1.2. 3.1.3.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 61 62
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 61 62 63
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3. Sector	Estándares para medir deflexiones en el pavimento y recopilación de información general	6161626363
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3. Sector 3.2.1.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 62 63 63
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3. Sector 3.2.1. 3.2.2.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61616263636365
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3. Sector 3.2.1. 3.2.2. 3.2.3. 3.2.4.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 62 63 63 63 65 68
3.	3.1.	Experi 3.1.1. 3.1.2. 3.1.3. Sector 3.2.1. 3.2.2. 3.2.3. 3.2.4.	Estándares para medir deflexiones en el pavimento y recopilación de información general	61 61 62 63 63 65 68 71

		3.3.2.	Método de elementos finitos	80
4.	Aná	alisis de	e resultados del retrocálculo	88
	4.1.	Anális	is de resultados del método AASHTO	88
		4.1.1.	Análisis de resultados del módulo de reacción de la subrasante	88
		4.1.2.	Análisis del módulo de elasticidad del concreto	90
		4.1.3.	Obtención de la eficiencia de transferencia de carga	91
	4.2.		ados del método AASHTO vs resultados del método eles finitos	92
		4.2.1.	Primera simulación	92
		4.2.2.	Segunda simulación	97
		4.2.3.	Análisis de deflexiones con espesor de 23 cm $ \dots \dots $	101
	4.3.		is de sensibilidad de las variables de diseño del pavimento acidencia en la deflexión	102
		4.3.1.	Modelo estructural de referencia	102
		4.3.2.	Variables que contempla el análisis de sensibilidad	103
		4.3.3.	Rango de variación de los parámetros de diseño	104
		4.3.4.	Análisis de sensibilidad de las variables de diseño de un pavimento rígido	106
		4.3.5.	Resumen de los resultados obtenidos en el análisis de sensibilidad	118
5.	Con	clusion	nes y recomendaciones	120
	5.1.	Conclu	asiones	120
	5.2.	Recom	nendaciones	122
	5.3.	Trabaj	jos futuros	123


Apéndices	12 4
A. Resultado de datos crudos del equipo de deflectometría (FWD)	127
B. Sectorización mediante deflexiones máximas	129
C. Módulos de reacción por método AASHTO	136
D. Módulos de elasticidad del concreto por método AASHTO	141
E. Eficiencia de la transferencia de carga por método AASHTO	145
F. Apéndice fotográfico: extracción de núcleos	147
Bibliografía	151

Índice de figuras

1.1.	Ubicación de la zona de estudio (Tomado de: Google Maps)	23
2.1.	Componentes principales de un pavimento rígido [6]	28
2.2.	Esquema de tipos de sobrecarpetas de hormigón	30
2.3.	Tipos de sobrecarpetas. Adaptado de [16]	32
2.4.	Estructura del pavimento evaluado en el trabajo	33
2.5.	Sensores de deflexión	38
2.6.	Partes principales del deflectómetro de impacto. Adaptado de [27].	38
2.7.	Deflectómetro de Impacto PRIMAX 2100	39
2.8.	Tipos de cuencos de deflexión normalizados [45]	41
2.9.	Concepto Estructural de Modulo de Soporte Winkler, k_{eff} [33].	44
2.10.	Enfoque de diferencia acumulativa [5]	49
2.11.	Carga de tráfico para modelos de deformación plana en 2-D [7].	55
2.12.	Carga de tráfico para modelos axisimétricos [7]	56
2.13.	Carga de tráfico para modelos 3-D [7]	57
3.1.	Metodología utilizada en el trabajo	60
3.2.	Ubicación de los puntos evaluados	61
3.3.	Espaciamiento de los geófonos	62

3.4.	Unidades homogéneas	66
3.5.	Sectorización de la carretera Sayausí - Tres Cruces carril derecho.	67
3.6.	Sectorización de la carretera Sayausí - Tres Cruces carril izquierdo.	68
3.7.	Unificación de los sectores del carril derecho e izquierdo	71
3.8.	Valores de la sectorización del tramo por el módulo de reacción de la subrasante.	75
3.9.	Sectorización del tramo por el módulo de reacción de la subrasante.	75
3.10	. Sectorización del tramo por el módulo de elasticidad carril derecho.	77
3.11.	. Valores de la sectorización del tramo por el módulo de reacción carril izquierdo	78
3.12	. Procedimiento del análisis de deflexiones en Ansys	81
3.13.	. Modelización, geometría y mallado de elementos.	85
3.14	. Condiciones de contorno	85
3.15.	. Gráfica de deformaciones totales obtenidas mediante Ansys	86
3.16	. Deformaciones verticales de la abscisa 9+248	87
4.1.	Clasificación de LTE del carril derecho e izquierdo	92
4.2.	Curvas comparativas de deflexiones entre FWD y Ansys abscisa $9{+}248.$	94
4.3.	Curvas comparativas de deflexión entre FWD y Ansys abscisa $19+100.$	94
4.4.	Curvas comparativas de deflexión entre FWD y Ansys abscisa $30+805.$	95
4.5.	Comparación de módulos de elasticidad del concreto entre Ansys y FWD	96
4.6.	Curvas comparativas de deflexión entre FWD y Ansys abscisa 19+100	98
4.7.	Curvas comparativas de deflexión entre FWD y Ansys abscisa 30+805	99

4.8. Comparación de módulos de elasticidad del concreto entre la y Ansys	100
4.9. Modelo estructural de referencia	 103
4.10. Variación de la deflexión en función del espesor de la los hormigón, h	108
4.11. Variación de la deflexión en función del módulo de elasticida concreto, Ec.	110
4.12. Variación de la deflexión en función del módulo de elasticida asfalto, Ea.	112
4.13. Variación de la deflexión en función del módulo de elasticida material granular, Eg.	115
4.14. Variación de la deflexión en función del módulo de reacción subrasante, k	117
F.1. Proceso de extracción de núcleos	 148
F.2. Medida de los espesores de los núcleos de losa de concreto	 149
F 3 Núcleos de la carpeta asfáltica	150

Índice de cuadros

1.1.	Módulos de elasticidad promedio de la estructura del pavimento dados por INEXTEC, [42]	22
1.2.	Módulos retrocalculados vs módulos ensayos NAT, [42]	22
2.1.	Clasificación de ensayos no destructivos de acuerdo a la aplicación de carga [24]	35
2.2.	Espaciamiento de sensores de deflexión para nueve sensores del FWD [35]	39
2.3.	Tipos de suelos de subrasante y valores aproximados de k [11]	44
2.4.	Módulos típicos de materiales para conformar capas de pavimento, [28]	45
2.5.	Calidad de eficiencia de transferencia de carga [14]	46
2.6.	Tipos de métodos de retrocálculo [46]	51
3.1.	Descripción y ubicación de las pruebas realizadas	63
3.2.	Deflexión detallada para cada sector carril derecho	70
3.3.	Deflexión detallada para cada sector carril izquierdo	71
3.4.	Valores de la sectorización del tramo por el módulo de reacción de la subrasante.	74
3.5.	Sectorización del tramo por el módulo de reacción de la subrasante.	75
3.6.	Sectorización del tramo por el módulo de elasticidad carril derecho.	78

3.7.	Valores de la sectorización del tramo por el módulo de reacción carril izquierdo	79
3.8.	Eficiencia de transferencia de carga carril derecho e izquierdo	80
3.9.	Consideraciones para el análisis del pavimento en Ansys	83
3.10	. Módulos elásticos y coeficientes de Poisson usados en Ansys	84
3.11	. Módulo de elasticidad del concreto y módulo de reacción de la subrasante iniciales usados para la simulación en Ansys	84
3.12	. Espesores de las capas consideradas en Ansys	86
4.1.	Módulo de reacción de la subrasante carril derecho	89
4.2.	Módulo de reacción de la subrasante carril izquierdo	90
4.3.	Análisis del módulo elástico del concreto carril derecho	91
4.4.	Análisis del módulo elástico del concreto carril derecho	91
4.5.	Módulos obtenidos por Ansys	93
4.6.	Comparación deflexiones Ansys vs FWD	95
4.7.	Comparación de módulos de elasticidad del concreto Ansys vs AASHTO	97
4.8.	Módulos obtenidos por Ansys	97
4.9.	Comparación deflexiones Ansys vs FWD	99
4.10	. Comparación de módulos de elasticidad del concreto FWD y Ansys.	101
4.11	. Comparación de deflexiones obtenidas con espesores de 20 cm y 23 cm	101
4.12	. Rango de variación del espesor de la losa del modelo estructural.	104
4.13	. Rango de variación del módulo de elasticidad de la losa de hormigón del modelo estructural de referencia	105
4.14	. Rango de variación del módulo de elasticidad de la capa asfáltica del modelo estructural de referencia.	105

4.16. Rango de variación del módulo de reacción de la subrasante 106
4.17. Escala para definir el grado de sensibilidad [19] 107
4.18. Variación del cuenco de deflexiones en función del espesor de la losa, h
4.19. Grado de sensibilidad en el cuenco de deflexiones, en función de la losa de concreto, h
4.20. Variación del cuenco de deflexiones en función del módulo de elasticidad del concreto, Ec
4.21. Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del concreto, Ec
4.22. Variación del cuenco de deflexiones en función del módulo de elasticidad del asfalto, Ea
4.23. Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del asfalto, Ea
4.24. Variación del cuenco de deflexiones en función del módulo de elasticidad del material granular, Eg
4.25. Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del material granular, Eg
4.26. Variación del cuenco de deflexiones en función del módulo de reacción de la subrasante, k
4.27. Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de reacción de la subrasante, k
4.28. Grado de sensibilidad de las variables que afectan a la deflexión. 118
A.1. Datos crudos del equipo de deflectometría
B.1. Sectorización del tramo por unidades homogéneas carril derecho 130
B.2. Sectorización del tramo por unidades homogéneas carril derecho 131

Universidad de Cuenca

В.3.	Sectorización del tramo por unidades homogéneas carril derecho	132
B.4.	Sectorización del tramo por unidades homogéneas carril izquierdo	133
B.5.	Sectorización del tramo por unidades homogéneas carril izquierdo	134
B.6.	Sectorización del tramo por unidades homogéneas carril izquierdo	135
C.1.	Módulos de reacción por método AASHTO	137
D.1.	Módulos de elasticidad del concreto por método AASHTO 0 $$	141
E.1.	Eficiencia de la transferencia de carga por método AASHTO	146

Cláusula de Licencia y Autorización para Publicación en el Repositorio Institucional

Yo, Doris Anabel Prado Sánchez, en calidad de autora y titular de los derechos morales y patrimoniales del trabajo de titulación "Análisis estructural de pavimentos rígidos a través de métodos no destructivos y aplicación de elementos finitos: vía Cuenca - Molleturo en el tramo Sayausí - Tres Cruces", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el Repositorio Institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, Octubre del 2018

Doris Anabel Prado Sánchez

Anabel Prado S.

C.I: 0104267588

Cláusula de Propiedad Intelectual

Yo, Doris Anabel Prado Sánchez, autora del trabajo de titulación "Análisis estructural de pavimentos rígidos a través de métodos no destructivos y aplicación de elementos finitos: vía Cuenca - Molleturo en el tramo Sayausí - Tres Cruces", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, Octubre del 2018

Doris Anabel Prado Sánchez

Anabel Prado S!

C.I: 0104267588

Dedicatoria

A mi madre Doris ese ser de luz que hace que mis días sean maravillosos. Por haberme apoyado en todo momento, por sus consejos, sus valores, por ayudarme a creer en mi, sí se la dedico a usted ma. Porque mi corazón le pertenece. Le amo.

A mi padre Wilson por su ejemplo de perseverancia que me ha infundado siempre, por el valor mostrado para salir adelante y por su amor.

A mi hermano José a quien prometí que terminaría este trabajo. Promesa cumplida.

A mis abuelitos Elisa, Elsie y Miguel porque con sus oraciones, consejos y palabras de aliento hicieron de mi una mejor persona y de una u otra forma me acompañan en todos mis sueños y mis metas esto también se lo debo a ustedes.

A mi ángel Isaiah quien fue, es y será mi gran inspiración y aunque ya no se encuentre físicamente, sé que en todo momento al desarrollar este trabajo estuvo conmigo, en las investigaciones, en mis desvelos, en mis momentos más difíciles, por eso a ti Ishaco te dedico mi esfuerzo donde te encuentres. Te amo, hasta luego, porque algún día nos volveremos a encontrar.

Agradecimientos

A Dios por haberme permitido llegar hasta este punto, haberme dado salud y fuerza para continuar en este proceso de obtener uno de los anhelos más deseados, además de su infinita bondad y amor.

A mis padres Doris y Wilson por apoyarme en todo momento, por los valores que me han inculcado, por la motivación constante, porque siempre confiaron en mi y nunca me abandonaron, por amarme, pero más que nada, gracias por nunca cortarme las alas. A mi hermano Josesito por su apoyo incondicional quien es uno de los seres más importantes en mi vida gracias por ser mi cómplice, mi confidente, mi amigo y apoyarme siempre y no puedo olvidar a mis abuelitos Elisa, Elsie y Miguel.

Al Ing. Jaime Bojorque Ph.D. por su tiempo y esfuerzo en la tutoría de este proyecto y que con sus conocimientos, experiencia y motivación ha logrado que pueda concluir el presente trabajo con éxito. Al Ing. Vinicio Sánchez por haber confiado en mí, quien siempre estuvo dispuesto a colaborar y ayudarme a resolver cualquier duda que se presentara durante el desarrollo de este proyecto.

Capítulo 1

Introducción

Las carreteras han sido y continúan siendo la columna vertebral de la red de transporte terrestre que brindan acceso a la movilidad requerida para apoyar el crecimiento económico y las actividades sociales de un país. A medida que se desarrollan modos de transporte más rápidos y avanzados, y que las actividades económicas de la sociedad humana crecen en ritmo y tecnología, los roles de las carreteras se han multiplicado y su importancia ha aumentado. Al mismo tiempo, los posibles impactos adversos del desarrollo vial también han crecido en magnitud, especialmente cuando no se lleva a cabo una planificación, diseño, construcción o gestión adecuados [12].

Existe una fuerte correlación entre la calidad de las instalaciones de transporte y el nivel de vida, por lo que la sociedad pone una gran expectativa en la primera. Las crecientes necesidades de desarrollo, la búsqueda de soluciones perdurables y la demanda de contar con más y mejores carreteras han contribuido para lograr que en la modernización y ampliación de las redes carretera del país, además obligan a conservar en buen estado la infraestructura vial, para evitar su deterioro, tratando de mantener una disposición, calidad y cantidad de elementos de seguridad y un adecuado diseño vial que beneficie al usuario. Con el crecimiento poblacional al que se ha visto afectado nuestro país en estos últimos años, las autoridades tienen la necesidad fundamental de construir nuevas rutas de conexión vial que permitan la comunicación entre los ciudadanos y realizar un mantenimiento adecuado de las carreteras existentes, mejorando la calidad de vida en la población e incentivando actividades como el comercio y el turismo.

Al igual que cualquier otra estructura de ingeniería, se espera que las carreteras sean suficientemente resistentes y que cumplan su vida útil, que funcionen correctamente al proporcionar una superficie de desplazamiento suave para el tráfico bajo diversas condiciones de entorno. Sin embargo, a partir de su construcción, un pavimento se empieza a deteriorar por las cargas del tránsito y agentes externos tales como: el agua, aceites, paso de vehículos pesados, entre otros, que disminuyen su vida útil. Por lo que es fundamental realizar el mantenimiento de los mismos en el momento oportuno, de tal manera que la rehabilitación sea económica, dado que una vía que se encuentre en las peores condiciones implicará un costo muy alto en la rehabilitación o reemplazo. Para saber el momento más apropiado para la intervención de las secciones afectadas, las redes viales deben contar con un inventario adecuado de la condición de los pavimentos por dos razones principales; la primera, de carácter económica, pues las entidades encargadas no cuentan con fondos suficientes para las rehabilitaciones de todas las carreteras de una red al mismo tiempo, y la segunda, hace referencia a la diferencia de velocidad con la que se deterioran las vías encontrándose cada una en distintas condiciones [25].

El procedimiento que abarca actividades de planificación y programación de inversiones, diseño, construcción, mantenimiento y evaluación periódica de su rendimiento se denomina Sistema de Gestión de Pavimentos, que trata gran parte de las actividades de manejo de los mismos, de manera sistemática y coordinada [1]. La gestión del pavimento se puede aplicar en dos niveles principales: nivel de red y de proyecto. La gestión a nivel de red se centra en crear un uso más efectivo de los recursos presupuestarios para toda la red, mientras que el nivel de proyecto es específico para un área determinada que se ha identificado para una rehabilitación potencial. El objetivo de la mayoría de los sistemas de gestión de pavimentos es maximizar la efectividad del mantenimiento y la rehabilitación del pavimento mediante el uso de los beneficios del fondo disponible. En general, el proceso del sistema de gestión de pavimentos consta de cuatro componentes principales: inventario de red, evaluación de condición del pavimento, modelos de predicción del rendimiento y método de planificación [37]. La evaluación de la condición del pavimento, también llamada rendimiento actual de la condición del pavimento depende de la evaluación funcional y estructural. La evaluación estructural se basa en la capacidad estructural o estructura de un pavimento, mientras que la evaluación funcional se basa en mediciones de campo relacionadas con las siguientes características: comodidad o aspereza, seguridad y dificultades en la superficie [36].

El presente trabajo se enfoca en la evaluación de condición del pavimento, específicamente en la evaluación estructural que puede ser ejecutada mediante ensayos destructivos y no destructivos (NDT, por sus siglas en inglés). Estos últimos se consideran herramientas eficaces pues no generan daños físicos en la carretera. El Deflectómetro de Impacto (Falling Weight Deflectometer - FWD),

se ha usado ampliamente para la evaluación de pavimento que funciona según el principio de evaluar deflexiones en la superficie de la vía bajo cargas dinámicas que representan las cargas del tránsito. Este ensayo no destructivo estima las propiedades del material de diferentes capas de pavimento utilizando las deflexiones medidas por el FWD.

En base a lo anterior se concluye que por medio de la evaluación estructural se puede entender el comportamiento de los pavimentos y verificar la capacidad estructural de las capas del mismo, con el fin de que se conozca el estado actual de la carretera y establecer un adecuado grado de serviciabilidad para la vía en estudio. Esta información es valiosa para las organizaciones de control como MTOP o GADs para el adecuado mantenimiento y rehabilitación de los pavimentos.

1.1. Antecedentes

Las carreteras son infraestructuras importantes en el desarrollo y sostenibilidad de la sociedad a través de los tiempos. Actualmente, el rol de las carreteras en el sistema de transporte continúa evolucionando y en la mayoría de las naciones hay una enorme inversión en lo referente a la infraestructura de transporte, dando el paso al mantenimiento y la rehabilitación de las infraestructuras viales [26]. Para mantener una infraestructura de transporte funcional, el mantenimiento es y será requerido a gran escala. El costo del mantenimiento puede reducirse al mínimo si se tiene un conocimiento más detallado de la condición estructural del sistema de carreteras deterioradas.

La mayoría de los países, asignan el 62 % de los fondos necesarios para el mantenimiento de sus sistemas de carreteras, porcentaje elevado debido principalmente a la falta de pronósticos exactos del alcance del trabajo y la falta de cifras de costos precisas [31]. Es evidente que se necesita una herramienta de gestión de mejores prácticas, como un sistema de gestión del pavimento, para operar con eficacia un sistema de carreteras. La tasa de deterioro de una carretera sin mantenimiento preventivo cambia de un estado excelente a un buen estado durante los primeros 10-12 años bajo un tráfico normal. Con la vida útil máxima de una carretera de aproximadamente 16 años (sin mantenimiento preventivo), en el año 12 habrá una disminución del 40 % en la calidad de la carretera. En los próximos cuatro años, habrá una caída adicional del 40-50 % en la calidad de la carretera [39]. Con esto se evidencia la importancia del mantenimiento.

La necesidad de una evaluación de las propiedades estructurales de los pa-

vimentos de carretera, en toda la red ha llevado al uso generalizado de ensayos no destructivos, siendo lo más común el procedimiento basado en la deflexión superficial, que consiste en mediciones de la cuenca de deflexión de la superficie y el cálculo de las propiedades de la capa del pavimento. Los equipos comúnmente utilizados para estas actividades son: la Viga Benkelman, el defletógrafo y el deflectómetro de peso descendente o deflectómetro de impacto. El deflectómetro de impacto (FWD) comenzó a recibir aceptación general a mediados de la década de 1980, actualmente es el ensayo de deflexión de superficie no destructivo que más impacto ha tenido [17].

Para el presente trabajo de investigación se ha tomado como caso de estudio la vía Cuenca – Molleturo en el tramo Sayausí – Tres Cruces, con abscisas 6+813 – 35+800. En el año 2006 la vía contaba con un pavimento flexible. Mientras que en el año 2014 la constructora FOPECA recomendó y ejecutó la rehabilitación denominada whitetopping, la cual consiste en una sobrecapa de concreto hidráulico sobre la carpeta asfáltica deteriorada. El espesor de concreto colocado fue de 20 cm. Seguidamente, se presentaron fallas de manera prematura en donde intervino el asesoramiento de PROMANVIAL para establecer causas del este problema [42]. Al momento no se registra un estudio actualizado de la vía que permita conocer su condición actual, por ello, se ha visto la necesidad de realizar la caracterización de la estructura del pavimento mediante un análisis estructural, para posteriormente tomar o disponer de medidas correctivas que se puedan ejecutar en caso de ser necesario por parte de las instituciones públicas.

1.2. Revisión de información recibida por parte del MTOP

Según el informe entregado por parte del MTOP realizado por la Consultora PROMANVIAL, aclara que en el diseño ejecutado por INEXTEC, se ha sobrestimado el valor del coeficiente k (módulo de reacción), pues al parecer lo que obtiene es el k dinámico y con éste se realiza el diseño del espesor de la losa, cuando lo que se debió hacer es ajustar el valor de k dinámico dividiendo para dos, y de esta manera obtener el k estático que se utiliza en el diseño del espesor de la losa. Se tiene un valor de módulo de reacción del cimiento promedio del tramo de $20.4~kg/cm^3$ según INEXTEC y un valor de 7 a $8~kg/cm^3$ según PROMANVIAL.

El informe también indica que el espesor que se debió haber colocado en el tramo Sayausí - Tres Cruces es de 23 cm y no de 20 cm como se ejecutó (Ver Tabla 6 de informe) [42].

El informe presenta los valores de módulos de elasticidad de toda la vía incluido el tramo Sayausí - Tres Cruces denominado Tramo 1B estos módulos fueron obtenidos por retrocálculo al 85 % percentil para la subrasante, capas granulares y capa asfáltica previa a la colocación de la capa de concreto rígido obtenidos por parte de INEXTEC estos valores se visualizan en el Cuadro 1.1.

Cuadro 1.1: Módulos de elasticidad promedio de la estructura del pavimento dados por INEXTEC, [42].

Módulos de elasticidad [Pa]				
$\operatorname{subrasante}$	capa	capa		
	granular	asfáltica		
1.25E + 08	1.14E + 08	1.033E+09		

También se reportan datos de módulos de elasticidad de la capa asfáltica en diferentes abscisas determinados por retrocálculo y a través del equipo Nottingham Asphalt Tester (NAT) que determina módulos dinámicos de las mezclas asfálticas. Estos valores se presentan en el Cuadro 1.2

Cuadro 1.2: Módulos retrocalculados vs módulos ensayos NAT, [42].

Abscisa	Módulos de elasticidad [Pa]	
km	ensayos NAT	FWD
7+213	3.92E + 09	3.59E + 09
12 + 813	_	$2.34\mathrm{E}{+09}$
18 + 813	$5.06\mathrm{E}{+09}$	$9.85\mathrm{E}{+08}$
24 + 813	_	1.29E + 09
30 + 713	2.73E + 09	4.12E + 09

1.3. Justificación

Los motivos de determinar la capacidad estructural de la vía Cuenca - Molleturo, en el tramo Sayausí - Tres Cruces, se centra en que este sector presenta una estructura de pavimento rígido con rehabilitación whitetopping que está deteriorándose rápidamente. Esta vía permite una constante comunicación entre las provincias de Azuay y Guayas, por lo que se le considera de gran importancia. En esta vía, se ha realizado estudios de deflectometría por parte del Ministerio de Transportes y Obras Públicas (MTOP) cuando la estructura consistía de pavimento flexible, posteriormente se realizó la rehabilitación whitetopping, que consiste en una sobrecapa de concreto hidráulico sobre la carpeta asfáltica

deteriorada, la misma que presentó fisuramientos de forma prematura [42]. Para la configuración actual del pavimento, no se cuenta con métodos y técnicas validados a nivel local que permitan establecer la condición actual en la que se encuentra la vía. Es por ello que se ha visto la necesidad de realizar la caracterización del pavimento a través de un análisis estructural. Los resultados obtenidos permitirán proponer medidas correctivas que pueden ser consideradas por parte de las instituciones responsables, lo cual influenciará de manera positiva en la serviciabilidad de la vía y además que este procedimiento pueda ser replicado en casos similares.

1.4. Localización del estudio

El proyecto se encuentra ubicado en la provincia de Azuay, en la vía Cuenca – Molleturo que tiene una longitud aproximada de 118 km, el tramo de estudio es Sayausí – Tres Cruces con abscisas 6+813 – 35+800 teniendo una longitud aproximada de 29 km. La vía cuenta con dos carriles que se desarrollan por una topografía montañosa y atraviesa una parte de los humedales del Parque Nacional Cajas. El desarrollo de este trabajo empieza desde la ciudad de Cuenca a una altura de 2761 m.s.n.m. hasta 4115 m.s.n.m. En la Figura 1.1 se indica la ubicación del proyecto.

Figura 1.1: Ubicación de la zona de estudio (Tomado de: Google Maps).

1.5. Objetivos

General:

Evaluar la capacidad estructural del pavimento rígido con whitetopping de la vía Cuenca – Molleturo, en el tramo Sayausí – Tres Cruces, con abscisas 6+813-35+800 mediante deflectometría de impacto y retrocálculo a través de método de Elementos Finitos (Finite Element Methods - FEM).

Específicos:

Los objetivos específicos que contribuirán a desarrollar el objetivo general propuesto son los siguientes:

- Evaluar el levantamiento de información del Deflectómetro de Impacto (Falling Weight Deflectometer - FWD) y analizar las deflexiones obtenidas por el equipo.
- Caracterizar el módulo de reacción efectivo de la subrasante y el módulo de elasticidad del concreto utilizando la metodología de la AASHTO para la estructura de pavimento que cuentan con la rehabilitación whitetopping.
- Evaluar, a través de una modelación, la información deflectométrica, mediante el Método de Elementos Finitos (Finite Element Methods -FEM) con el uso del software Ansys, para posteriormente caracterizar las capas que conforman la estructura del pavimento en estudio.
- Determinar la eficiencia de transferencia de carga (Load Transfer Efficient - LTE), para la configuración de capa de pavimento con rehabilitación whitetopping en las juntas, según lo propuesto por la metodología AASHTO

1.6. Alcance

En este trabajo de investigación se estudia la evaluación estructural en pavimentos con whitetopping en un tramo de la vía Cuenca - Molleturo con abscisas 6+813-35+800, aplicando para ello deflectometría de impacto, el método propuesto por AASHTO y métodos de elementos finitos. La obtención de los valores de las propiedades de los materiales se realizará a través del retrocálculo utilizando la metodología del AASHTO y con modelos de elementos finitos para lo cual se utilizará el software Ansys, que es un modelador de alto rendimiento que puede ser aplicado al análisis de pavimentos. De esta manera se determinará parámetros estructurales de la vía utilizando indicadores obtenidos por la

evaluación estructural que permitan establecer la condición actual de la vía y sus posibles medidas correctivas. Posteriormente se realizará una comparación y análisis de los parámetros obtenidos por cada método y como aporte al trabajo se realizará un análisis de sensibilidad de las variables de influyen en el diseño del pavimento y su incidencia en la deflexión.

1.7. Estructura del trabajo

Con el fin de conseguir cubrir los temas anteriores y aproximar los fundamentos de esta área de trabajo al lector, se ha decidido dividir el trabajo que aquí se presenta en los siguientes capítulos:

- 1. Introducción: Es el presente capítulo, en donde se presenta la descripción de lo que será desarrollado en el trabajo.
- 2. Marco teórico: Donde se presenta una breve descripción sobre pavimentos, rehabilitación con sobrecarpetas de hormigón, evaluación estructural de pavimentos, la descripción del procedimiento que se sigue para la obtención de los parámetros estructurales que permiten conocer la condición estructural de un pavimento, y finalmente se presentan aspectos sobre el análisis estructural de pavimentos, en ésta última sección se realiza una breve introducción del método que se utilizará para el retrocálculo de módulos y a la herramienta de elementos finitos Ansys utilizada para la comparación de deflexiones obtenidas en campo con el FWD.
- 3. Metodología y resultados: Este capítulo se dedica a la explicación detallada del procedimiento que se llevó a cabo para la ejecución del trabajo de titulación y presenta los resultados de los parámetros estructurales obtenidos a través de la metodología descrita.
- 4. Análisis de resultados: Se realiza una interpretación de los parámetros obtenidos y una comparación entre los módulos elásticos obtenidos por el método AASHTO y el método de elementos finitos, presentando la capacidad estructural en la que se encuentra la vía. Se realiza un estudio comparativo entre los resultados obtenidos mediante Ansys y los obtenidos de la aplicación del método AASHTO, para poder dar una conclusión acerca de esta herramienta
- **5. Conclusiones:** Por último, se finaliza el trabajo presentando las principales conclusiones y recomendaciones del estudio y se proponen futuras investigaciones.

Capítulo 2

Marco teórico

En este capítulo se realiza una recopilación bibliográfica de los conceptos básicos de un pavimento rígido, las rehabilitaciones existentes en los pavimentos dando mayor importancia a la rehabilitación whitetopping. Se presenta la clasificación de los ensayos no destructivos entre ellos el Deflectómetro de Impacto (FWD, por sus siglas en inglés) del cual se hace una descripción detallada. Adicionalmente, se expone los métodos que se van a utilizar para el análisis estructural de la vía en estudio y de las variables que se obtendrán con los mismos. Los métodos AASHTO y de elementos finitos presentados están en función de la deflexión que es un parámetro de respuesta del pavimento.

2.1. Payimentos

"Un pavimento está compuesto por un conjunto de capas relativamente horizontales, que se diseñan y construyen técnicamente con materiales apropiados y debidamente compactados. Estas estructuras estratificadas se asientan sobre la subrasante natural o mejorada y que han de resistir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el período para el cual fue diseñada la estructura del pavimento" [11].

Las características principales que debe cumplir un pavimento son [11]:

- Resistir adecuadamente las cargas impuestas por el tráfico.
- Resistir a los agentes ambientales (precipitación temperatura).
- Ser económicos.

- Poseer un adecuado drenaje.
- Poseer una textura superficial adecuada.
- Ser duradero.

2.1.1. Tipos de pavimentos

Dependiendo de la estructura del pavimento estos se pueden clasificar en cuatro tipos: pavimentos flexibles, pavimentos semi-rígidos o semi-flexibles, pavimentos articulados y pavimentos rígidos.

2.1.1.1. Pavimentos flexibles

Este tipo de pavimentos están formados por una carpeta bituminosa apoyada generalmente sobre dos capas no rígidas, la base y la subbase, o únicamente una de ellas, soportadas por la subrasante [11].

2.1.1.2. Pavimentos semi - rígidos

Estos pavimentos tienen la misma estructura de un pavimento flexible, la diferencia radica en que una de sus capas se encuentra rigidizada artificialmente con un aditivo que puede ser: asfalto, emulsión, cemento, cal y químicos. El empleo de estos aditivos tiene la finalidad básica de corregir o modificar las propiedades mecánicas de los materiales locales que no son aptos para la construcción de las capas del pavimento [11].

2.1.1.3. Pavimentos articulados

Los pavimentos articulados están compuestos por una capa de rodadura que está elaborada con bloques de concreto prefabricados, llamados adoquines, de espesor uniforme e iguales entre sí. Esta puede ir sobre una capa delgada de arena la cual, a su vez, se apoya sobre una capa de base granular o directamente sobre la subrasante, dependiendo de la calidad de ésta y de la magnitud y frecuencia de las cargas que circularan por dicho pavimento [11].

2.1.1.4. Pavimentos rígidos

Están constituidos por una losa de concreto hidráulico de gran rigidez, apoyada sobre la subrasante o una capa de material seleccionado (subbase del pavimento rígido). Puesto que el concreto hidráulico presenta una alta rigidez y un elevado módulo de elasticidad, la distribución de esfuerzos se produce en una zona muy amplia [18].

2.1.2. Capas que conforman un pavimento rígido

En la Figura 2.1 se ilustra los componentes principales de un pavimento rígido que son subrasante, base o subbase, losa o calzada de hormigón, esta última capa tiene pasadores y barras de unión.

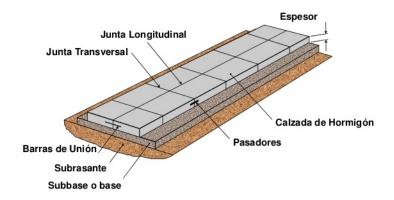


Figura 2.1: Componentes principales de un pavimento rígido [6].

A continuación, se describe cada una de las capas que conforman un pavimento rígido:

2.1.2.1. Subrasante

Sus funciones principales son proveer uniformidad y homogeneidad a la estructura de pavimento, mejorar la capacidad portante y facilitar la construcción de los pavimentos. Expertos en el área aseguran que las características a tener en cuenta para la utilización de un suelo como capa subrasante de un pavimento son [41]:

■ **Deformabilidad:** es el condicionante principal que determina el comportamiento de un suelo, por la subrasante ser el apoyo de toda la estructura

no puede presentar deformaciones excesivas que se reflejen en la capa de rodadura.

- **Apoyo uniforme:** servir de apoyo razonablemente uniforme a la estructura de pavimento con unas deformaciones compatibles con este.
- Potencial expansivo: es un factor importante en el diseño de pavimentos porque los cambios de volumen pueden generar deformaciones importantes.

La subrasante debe conservar en todo momento la mayor capacidad portante posible, pues mientras más alta sea, menor será el de las capas apoyadas sobre esta, lo que reducirá los espesores y el costo total de la estructura.

2.1.2.2. Base o subbase

La función más importante es impedir la acción del bombeo en las juntas, grietas y extremos del pavimento. Por bombeo se entiende la fluencia de material fino con agua fuera de la estructura. El agua penetra las juntas y licúa el suelo fino de la subrasante facilitando así su evacuación ejercida por la carga vehicular. Además, sirve como capa de transición y suministra apoyo uniforme, estable y permanente del pavimento [11].

2.1.2.3. Losa de concreto

Alivia los esfuerzos en las capas subyacentes por medio de su elevada resistencia a la flexión, cuando se generan esfuerzos y deformaciones de tracción debajo de la losa producen la fisuración por fatiga, después de un cierto número de repeticiones de carga.

Según [22] las características de un pavimento de concreto rígido:

- Alta resistencia y durabilidad (hasta 40 años antes de la revisión general), lo que permite pasar el tráfico pesado de camiones y equipos pesados con el mínimo daño; con la edad, el concreto aumenta su resistencia (hasta 1.5 veces).
- Estabilidad de las características de resistencia inducida por las variaciones de temperatura ambiente.
- Alto rendimiento de transporte y funcionamiento: cualidades de adherencia altas y estables, higiene, estética.

- El revestimiento de color claro garantiza una mejor visibilidad y seguridad del tráfico.
- Bajos costos de operación.
- Posible mecanización completa de los trabajos, para asegurar alta velocidad y calidad de construcción.

2.1.3. Rehabilitación y repavimentación con sobrecarpetas de hormigón

Las sobrecarpeta de concreto son soluciones rentables y de larga duración para la preservación del pavimento, por lo tanto, deben ser una parte integral del programa general de gestión de activos de cada entidad [16]. Las sobrecarpetas de hormigón pueden estar adheridas o no adheridas. La distinción entre estas dos opciones es estrictamente un problema de diseño de pavimento. Es decir, durante el proceso de diseño del pavimento, una capa de sobrecarpeta unida trata al pavimento existente como un componente estructural y sobrecarpeta no adherida trata el pavimento existente como una subbase de alta calidad (fuerte y rígida).

En la figura 2.2 se presenta un esquema de los tipos de sobrecarpetas de hormigón que existen.

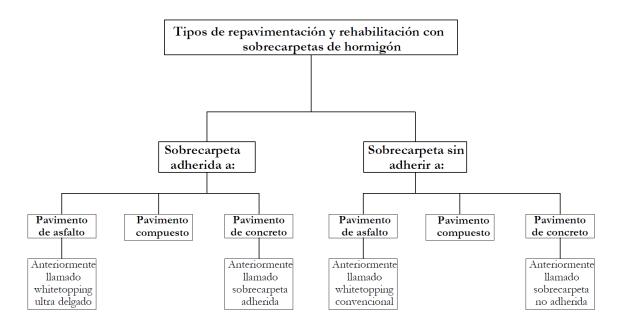


Figura 2.2: Esquema de tipos de sobrecarpetas de hormigón.

■ Sobrecarpeta adherida: Utiliza la capacidad estructural de los pavimentos existentes que se encuentran en condiciones estructurales buenas o moderadas. Generalmente brinda soluciones de repavimentación para el mantenimiento de rutina o preventivo del pavimento y para una rehabilitación menor. La unión garantiza que la sobrecarpeta y el pavimento existente se comporte como una sola estructura, y que el pavimento existente siga transportando una parte importante de la carga.

A continuación, se describe las rehabilitaciones más comunes de sobrecarpetas adheridas [15]:

- Sobrecarpeta adherida a pavimentos de asfalto: La sobrecarpeta tiene un espesor entre 2 y 4 pulgadas y con una buena unión entre el concreto y la capa asfáltica para que exista un buen funcionamiento de la estructura. La reducción del espesor se justifica por el uso de hormigón de alta calidad con una resistencia relativamente alta, un espaciado de juntas más corto y uniones entre el hormigón y el pavimento de asfalto existente.
- Sobrecarpeta adherida a pavimentos de concreto: Se trata de una capa de concreto construida directamente encima de un pavimento de concreto existente. Se emplean técnicas de construcción específicas para garantizar una unión sólida entre las capas.
- Sobrecarpeta sin adherir: Restaura la capacidad estructural de un pavimento existente que se deteriora de manera moderada a significativa, son estrategias de rehabilitación importantes. El término "sin adherir" significa que en el diseño no se considera el pavimento existente como un componente estructural. Por lo tanto, la sobrecapa funciona como un nuevo pavimento y el pavimento existente proporciona una base estable.

A continuación, se presenta una descripción de la rehabilitación con sobrecarpetas de hormigón más comunes [16]:

- Sobrecarpeta sin adherir a pavimentos de asfalto: La sobrecarpeta tiene un espesor de losa mayor o igual a 8 pulgadas (200 mm), considera que la capa de asfalto sirve como una capa de base para la nueva superposición de hormigón y se considera que no existe ninguna unión entre la superposición y el asfalto existente.
- Sobrecarpeta sin adherir a pavimentos de concreto: Se trata de una capa de concreto construida directamente encima de un pavimento de concreto existente pero separada intencionalmente por una mezcla de asfalto caliente.

La Figura 2.3 muestra los tipos de sobrecarpetas descritos anteriormente

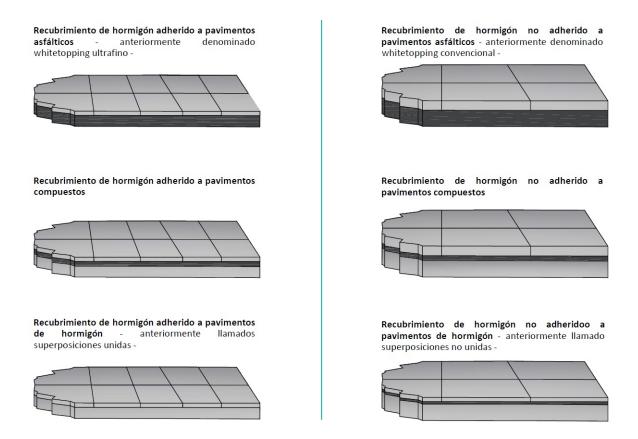


Figura 2.3: Tipos de sobrecarpetas. Adaptado de [16].

Como se mencionó en el capítulo 1 la vía cuenta con rehabilitación whitetopping, ya que inicialmente se trataba de un pavimento flexible, que se deterioró y se optó por esta rehabilitación. Esta sobrecarpeta de concreto que no cuenta con una unión entre pavimentos y que tiene un espesor de 20 cm corresponde a un whitetopping convencional denominado sobrecarpeta sin adherir a pavimentos asfálticos que para el presente trabajo se lo denominará únicamente whitetopping. Por lo tanto, según la teoría expuesta previamente, para el análisis y procesamiento de los datos, se considerará como un pavimento rígido con una subbase de alta calidad (carpeta asfáltica). El esquema del pavimento considerado para este trabajo se presenta en la Figura 2.4.

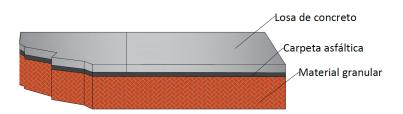


Figura 2.4: Estructura del pavimento evaluado en el trabajo.

2.2. Evaluación de la capacidad estructural de pavimentos

La evaluación del pavimento abarca una gama de mediciones cualitativas y cuantitativas destinadas a capturar la condición estructural y funcional de los pavimentos. La evaluación estructural de pavimentos se puede hacer de diferentes maneras, una de ellas es el cálculo de la deflexión de un pavimento cuando se somete a una carga específica. Dicha evaluación se utiliza para cuantificar la capacidad estructural [25].

Los enfoques para la evaluación estructural de pavimentos se pueden clasificar en: (i) ensayos destructivos cuyos métodos más comunes son: la extracción de muestras de varias capas de pavimento mediante perforación u otras técnicas, seguidas de ensayos de laboratorio; y pozos de prueba para ensayos in situ de las capas de pavimento, estos ensayos son usados rara vez para la evaluación estructural de las secciones de pavimento en servicio pues son costosas, tienden a causar obstrucción al tránsito y son lentas, además existe el problema de la alteración de la muestra porque se trata de una extracción a cielo abierto y (ii) ensayos no destructivos que se consideran como herramientas eficaces, que ha ido atrayendo más atención, en el sentido de confiabilidad y efectividad, pues es un medio ideal que se ha desarrollado para probar la estructura del pavimento de una manera simple, sin interrumpir el tráfico y no alterar el equilibrio ni la integridad de la estructura del pavimento. Se ha convertido en la norma para los sistemas de gestión de pavimentos a nivel de red o de proyecto. Se han adoptado varios enfoques de ensayos no destructivos para la evaluación estructural de las secciones de pavimento en servicio. Entre ellos, el enfoque basado en la deflexión ha recibido la mayor atención por parte de la comunidad de carreteras

[12].

La capacidad estructural se define como la capacidad de un pavimento para manejar físicamente las cargas de tráfico anticipadas a lo largo de su vida. La información obtenida acerca de la capacidad estructural posteriormente ayudará al monitoreo del rendimiento del pavimento a nivel de red y a la toma de decisiones por parte de las instituciones encargadas del mantenimiento de la vía y la planificación de rehabilitación. Históricamente, la desviación de la superficie se ha considerado como el atributo de pavimento asociado con la capacidad estructural. Existen varios dispositivos comerciales disponibles para medir la desviación de la superficie del pavimento in situ, conocidos como deflectómetros [30].

Junto con el desarrollo de dispositivos de ensayos de deflexión, se han desarrollado varios procedimientos empíricos y analíticos para estimar las propiedades del material de diferentes capas de pavimento utilizando las deflexiones medidas. Inicialmente, se ha utilizado métodos semi-mecanísticos basados en las magnitudes de las deflexiones superficiales y las formas de los cuencos deflectores [47]. Actualmente, existen procedimientos analíticos sofisticados, conocidos colectivamente como análisis de cálculo inverso, que se ha desarrollado para conocer las propiedades del material de cada capa de pavimento a partir de las mediciones de deflexión de la superficie.

2.2.1. Ensayos no destructivos

Los ensayos no destructivos (Non Destructive Testing - NDT) se refieren a una serie de métodos de ensayos de campo que facilitan las pruebas de materiales in situ, en lugar de los ensayos de laboratorio convencionales. Los NDT tienen gran aceptación. El ensayo in situ de los materiales de la subrasante y del pavimento conserva los esfuerzos presentes en el campo, mientras que los ensayos de laboratorio requieren la extracción de una muestra, y en consecuencia, introduce un cambio en el esfuerzo de confinamiento. Además, los NDT requiere menos tiempo y dinero para estimar las mismas propiedades del material que se medirían en el laboratorio, por lo tanto, los NDT pueden proporcionar una alternativa relativamente rápida, económica y precisa a los ensayos de laboratorio.

Los ensayos de laboratorio son el método convencional para medir las propiedades estructurales y la rigidez de los pavimentos, pero el tiempo y los gastos asociados con los ensayos de laboratorio solo permiten evaluar una cantidad mínima de ubicaciones. Los NDT, por otro lado, puede estimar las mismas pro-

piedades del material que los ensayos de laboratorio, pero en un número mucho mayor de ubicaciones y a un menor costo [9].

Los ensayos de deflexión no destructivos se pueden clasificar de acuerdo a los siguientes modos de aplicación de la carga: estáticos, móviles, vibratorios, de impacto y rodantes. El orden de los modos de aplicación de carga mencionados también es aproximadamente la secuencia cronológica en la que se introdujeron los diversos tipos de dispositivos [12].

En el Cuadro 2.1 se presenta la clasificación de los ensayos no destructivos de acuerdo a la aplicación de carga.

Cuadro 2.1: Clasificación de ensayos no destructivos de acuerdo a la aplicación de carga [24].

Técnica de acuerdo a la aplicación de carga	Descripción	
Carga	Estos ensayos no son eficaces por la magnitud	
estática	de carga requerida y no presentan de manera realista el modo de carga del tráfico real.	
Carga móvil	El ensayo de deflexión hace uso de un camión cargado que tiene un solo eje de doble rueda con una carga por eje de 80 kN (18000 lb) Equipos: Viga Benkelman, Deflectómetro de desplazamiento, Deflectómetro Lacroix, Deflectograph.	
	El ensayo mide las deflexiones del pavimento	
Carga vibratoria en estado	bajo una carga sinusoidal generada por el equipo. La carga aplicada normalmente se genera por medio de sistemas	
estacionario	electrohidráulicos.	
	Equipos: Dynaflect, Road Rater.	
Carga de impacto	El ensayo aplica una carga transitoria de impulso a la superficie del pavimento. Equipo: Deflectómetro de Impacto - FWD.	
Carga rodante	El ensayo consiste en aplicar una carga en movimiento, con el fin de lograr una mayor velocidad de prueba y proporcionar un registro continuo de los datos de la condición del pavimento. Equipos: Deflectómetro de Balanceo, Deflectómetro Dinámico de Rodillo-RDD, Deflectómetro de rueda giratoria - RWD.	

2.2.2. Ensayo de deflectometría

Actualmente, para la obtención de las deflexiones en un pavimento el FWD es el tipo de ensayo no destructivo más utilizado. De manera general, el ensayo consiste en dejar caer un peso en la superficie del pavimento y retrocalcular su rigidez a través de las deflexiones medidas. Si el sistema de pavimento consta de varias capas, se debe conocer una idea aproximada del espesor de cada capa antes del retrocálculo, de modo que se puedan establecer límites iterativos. A continuación, se presenta ciertas características importantes de este equipo, que fue utilizado en el presente trabajo.

Un deflectómetro de impacto se utiliza ampliamente para la estimación de los módulos de la capa de pavimento y para la determinación de la condición estructural de los pavimentos. La información obtenida de los ensayos con el FWD se puede utilizar en análisis estructural para determinar la capacidad, estimar la vida útil esperada y diseñar un plan de rehabilitación para pavimentos. Las deflexiones antes y después de las rehabilitaciones en el pavimento se realizan para evaluar la efectividad de los métodos de rehabilitación específicos. El equipo también se puede utilizar para probar la eficiencia de transferencia de carga (Load Transffer Eficiency - LTE) de las juntas dentro de los pavimentos de hormigón.

2.2.2.1. Descripción del equipo

Un FWD está típicamente equipado con siete o nueve sensores de deflexión (geófonos) para definir el cuenco de deflexión. Dicho cuenco está representado por desplazamientos máximos medidos en diferentes ubicaciones de los sensores. La rigidez del pavimento y/o subrasante se vuelve a calcular a partir de la magnitud de la carga impartida y de las medidas del cuenco de deflexiones. Comparado el ensayo de deflectometría, con otras formas de modo de carga, estas formas de carga tipo impulso ofrecen la mejor simulación en términos de efecto de carga y niveles de esfuerzo que son comparables con el tráfico normal de camiones [12].

En este ensayo, se genera una carga de impulso al dejar caer un peso desde cierta altura, que puede variar de 6.7 a 120 kN. Hay dos conjuntos de sensores: una celda de carga para medir la carga aplicada y una matriz de sensores (que se encuentran en la superficie del pavimento) para medir la deflexión resultante. Los ensayos de FWD se pueden realizar a diferentes niveles de carga, aunque algunos protocolos requerirían que las deflexiones se normalicen a una carga de 9000 lb y en caso de que se trate de pavimentos asfálticos que sean corregidas

por temperatura (si es diferente de la estándar de 25°C) [25].

La norma ASTM D4694 [2] presenta las siguientes partes del equipo de deflectometría:

Sistema de instrumentación:

- Instrumentos expuestos a los elementos (fuera del vehículo), deben ser operables en un rango de temperaturas de -10 a 50°C y deben soportar humedad relativa alta, lluvia y otras condiciones adversas como polvo, movimientos o vibraciones que se encuentran normalmente.
- Instrumentos no expuestos a elementos (en el interior del vehículo), deben operar en el rango de temperaturas de 5 a 40°C.
- Generador de fuerza (peso que cae): con un sistema de guía. El equipo generador de la fuerza debe ser capaz de subir a una o más alturas de caída.
 - Sistema de guía: Diseñado para operar con fricción o resistencia mínima y para que el peso se dirija de manera perpendicular a la superficie del pavimento.
- Placa de carga: capaz de distribuir la carga en forma uniforme en la superficie. La placa debe ser adecuada para permitir mediciones de deflexión en el centro de la placa. Su forma es redonda y tiene un radio de 15 cm.
- Sensor de deflexión: capaz de medir el movimiento vertical máximo del pavimento y montado de tal manera que se minimice la rotación angular con respecto al plano de medición para el movimiento máximo esperado. El número y espaciamiento de los sensores es opcional y dependerá del propósito del ensayo y las características de las capas del pavimento. (Ver figura 2.5)
- Sistema de adquisición y almacenamiento de datos: los datos de carga y deflexión deben registrarse en medios magnéticos o papel. La información de soporte como la temperatura del aire, temperatura del pavimento, distancias de medición y datos de identificación para cada punto deben registrarse manualmente o de forma automática.
- Celda de carga: para medir la carga aplicada en cada impacto debe colocarse en una posición de tal forma que se minimice la masa entre la celda de carga y el pavimento. La celda de carga debe posicionarse de tal

manera que no restrinja la medición de las deflexiones en el centro de la placa. La celda de carga debe ser resistente y soportar impactos durante el ensayo y el traslado.

En la figura 2.6 se ilustra las partes principales del deflectómetro de impacto.

Figura 2.5: Sensores de deflexión.

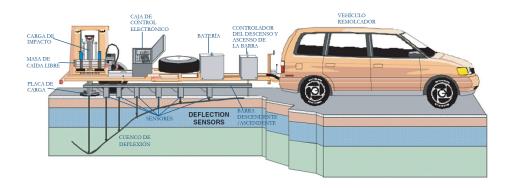


Figura 2.6: Partes principales del deflectómetro de impacto. Adaptado de [27].

El deflectómetro de impacto utilizado en este estudio fue proporcionado por el Ministerio de Transporte y Obras Públicas (MTOP), y se trata de un deflectómetro marca PRIMAX 2100, que se muestra en la Figura 2.7.

Figura 2.7: Deflectómetro de Impacto PRIMAX 2100.

2.2.2.2. Disposición de los sensores

Los espaciamientos de los sensores se miden desde el centro de la placa de carga hasta el centro del soporte del sensor (para evitar el error acumulado). Los desplazamientos delante de la placa de carga (es decir, en la dirección del enganche) se consideran positivos. Los desplazamientos detrás de la placa de carga (es decir, en la dirección del parachoques trasero) se consideran negativas. Los desplazamientos recomendados por Schmalzer et al. [35] se muestran en el Cuadro 2.2.

Cuadro 2.2: Espaciamiento de sensores de deflexión para nueve sensores del FWD [35].

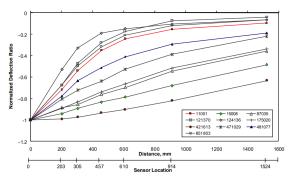
Sensor de deflexión	Espaciamiento
D1	0 mm
D2	203 mm (8")
D3	305 mm (12")
D4	457 mm (18")
D5	610 mm (24")
D6	914 mm (36")
D7	1219 mm (48")
D8	1524 mm (60")
D9	-305 mm (-12")

2.2.2.3. Consideraciones al aplicar la carga al pavimento

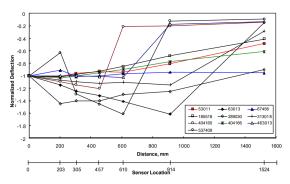
Existen dos condiciones adicionales a tomar en cuenta en el ensayo de deflexiones de pavimentos [32]:

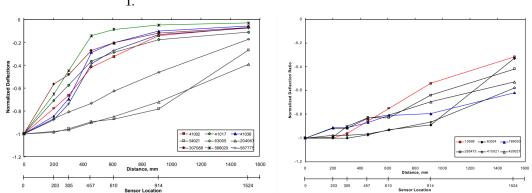
- Presencia de alcantarillas y puentes, esto provoca que las deflexiones sean excesivas, por el cual se debe tener en cuenta este aspecto, o en todo caso no realizar el ensayo en estos lugares puntuales.
- Proceso constructivo, las deflexiones son muy diferentes si la subrasante se ubica en corte o en relleno, obviamente en relleno las deflexiones serán mayores que aquellas construidas en corte. Se recomienda corregir por carga las deflexiones obtenidas del deflectómetro, con la finalidad de llevar las mediciones de impacto a uno estándar.

2.2.2.4. Recomendaciones para la toma de datos


- Variación longitudinal del ensayo. La variación longitudinal de los ensayos depende mucho de la magnitud del trabajo a realizar, pero como medidas generales, se toma como referencia que para trabajos a nivel de red (es decir, proyectos que involucren una o varias redes viales), los ensayos de deflexión se realizan típicamente a intervalos de 100 m a 500 m, dependiendo de las condiciones específicas del pavimento y la longitud de la sección del pavimento. A nivel de proyecto, es decir, en trabajos que involucran sectores de una red vial, los ensayos se deben realizar a intervalos de 50 m a 200 m, dependiendo de las condiciones específicas del pavimento y la longitud de la sección del pavimento [4].
- Variación transversal del ensayo. La variación transversal del ensayo depende mucho de la condición del pavimento, pero se sugiere que sea en una de las siguientes posiciones para pavimentos rígidos [4]:
 - En el centro geométrico de la losa
 - Juntas transversales
 - Juntas o grietas más cercanas de cada losa
 - En la esquina de la losa

2.2.2.5. Análisis del cuenco de deflexiones


Se define como cuenco de deflexiones a la forma del tazón de la superficie deformada del pavimento debido a una carga especificada como se representa


a partir de las mediciones de los picos de una serie de sensores de deflexión colocados en desplazamientos radiales desde el centro de la placa de carga [3]. El cuenco presenta en el eje de las abscisas la distancia de los sensores y en las ordenadas las mediciones de campo; es importante mencionar que por cada punto de ensayo se tiene un cuenco de deflexiones [45].

(a) Cuenco de deflexión normalizada típica.

(b) Cuenco de deflexiones normalizado Tipo

(c) Cuenco de deflexiones normalizado Tipo (d) Cuenco de deflexiones normalizado II. Tipo III.

Figura 2.8: Tipos de cuencos de deflexión normalizados [45].

Los datos de cuencos de deflexión normalizados se han dividido en cuatro tipos y se presentan a continuación:

La figura 2.10a muestra los cuencos típicos de deflexión normalizadas para concreto de cemento Portland (PCC) y pavimentos de superficie de concreto asfáltico. Estos cuencos de deflexión generalmente tienen errores bajos [45].

La figura 2.10b muestra los cuencos de deflexión normalizados tipo I. Para este tipo de cuenco de deflexión, las deflexiones medidas en algunos de los sensores son mayores que la deflexión de carga central. Los cuencos de deflexión Tipo I generalmente tienen los mayores términos de error, y la teoría de la capa elástica generalmente no es aplicable. Los cuencos de este tipo se excluyeron del proceso de cálculo posterior [45].

La figura 2.10c muestra cuencos de deflexión normalizados Tipo II. Estos cuencos muestran una disminución significativa en las deflexiones medidas entre dos sensores adyacentes. Dependiendo de la magnitud de esta caída o rotura en el cuenco de deflexión, algunos de los términos de error pueden ser grandes, mientras que otros con las diferencias más pequeñas están cerca de un valor de error de 2 % por sensor [45].

La figura 2.8d muestra los cuencos de deflexión normalizados tipo III. Para estos cuencos, la deflexión medida en un sensor adyacente (pero más lejos de la carga) es igual o mayor que la desviación más cercana a la carga. Los cálculos retrospectivos para algunos de estos cuencos de deflexión tienen términos de error que van desde más del 10 % hasta valores inferiores al 2 % de error por sensor. El error depende de la magnitud del aumento en las deflexiones entre dos sensores adyacentes y otros factores. Los cuencos de este tipo también se deben excluir del proceso de cálculo posterior [45].

2.3. Parámetros estructurales

El módulo elástico de la losa, E y el módulo de reacción de la subrasante, k, son las dos propiedades más importantes del pavimento de hormigón obtenidas por retrocálculo. A lo largo de los años, los investigadores han desarrollado muchas metodologías diferentes para el cálculo de las propiedades del pavimento de hormigón a partir de mediciones con el ensayo de deflectometría, incluido el método AREA para pavimentos rígidos [20].

2.3.1. Módulo de reacción de la subrasante

El módulo de reacción de la subrasante k también llamado coeficiente de Balasto o módulo de resorte Winkler es la relación entre la tensión capaz de generar una penetración de la placa en el terreno de 0.05 pulgadas que equivale a una deformación de 0.127 cm, es decir que este coeficiente es la pendiente de la recta que une el origen de coordenadas con el punto de la curva "tensión - deformación" que genera un asentamiento de la placa de 0.127 cm y este parámetro se define como:

$$k = \frac{\sigma}{\delta} \tag{2.1}$$

Donde:

 σ = esfuerzo normal, $lb/pulg^2$.

 δ = deformación en la dirección σ , pulg.

El objetivo de este parámetro es reemplazar una masa de suelo por resortes elásticos equivalentes, con una constante k por unidad de área, lo que realmente es una conveniencia matemática que facilita los cálculos de esfuerzos y deformaciones en las interfaces estructura - suelo, puesto que las deformaciones se hacen directamente proporcionales a los esfuerzos aplicados.

Dado que, este parámetro no es una propiedad intrínseca del suelo, hay múltiples modelos para su evaluación y no es posible determinarlo unívocamente con ensayos normalizados. Debido al carácter del módulo de reacción, necesariamente los modelos se basan en la teoría de elasticidad. Se consideran cargas verticales únicamente.

Varios de los métodos empleados en la actualidad para el diseño de estructuras de pavimento rígido consideran un modelo de subrasante tipo líquido denso o fundación de Winkler, la cual se caracteriza mediante el módulo de reacción de la subrasante (k), un parámetro constitutivo simple del suelo cuyos resultados numéricos son dependientes de su forma de medida.

Otros procedimientos de diseño se basan en el análisis de sistemas de capas elásticas, pero dada la alta relación modular entre el concreto de cemento Portland y una base granular típica o el suelo de subrasante, se requieren factores de corrección empíricos para considerar el efecto de la losa de dimensiones finitas propia de los sistemas de pavimento de concreto hidráulico [43]. En este trabajo se presenta el empleo de un modelo de subrasante elástica lineal, caracterizada por el módulo de Young (E) y la relación de Poisson (ν) , como una aproximación más realista para el análisis y diseño de pavimentos rígidos considerando su respuesta estructural frente a las cargas de tránsito.

El valor de soporte mediante el módulo de soporte "k" (módulo de winkler) es el parámetro comúnmente aplicado para el análisis de pavimentos rígidos.

En la Figura 2.9 se muestra de manera gráfica el concepto estructural del módulo de soporte Winkler.

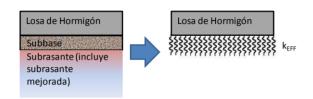


Figura 2.9: Concepto Estructural de Modulo de Soporte Winkler, k_{eff} [33].

 k_{eff} : módulo elástico de soporte de subrasante en $\frac{lb}{pulq^3}$.

A través de ensayos se puede obtener el valor de CBR como caracterización de la subrasante y este valor a la vez a través de figuras o fórmulas se puede convertir de un valor de CBR_{eff} , en un valor de k equivalente, llamado k efectivo (k_{eff}) [33], aplicando la ecuación 2.2

$$k_{eff} = \left(\frac{1500 * CBR_{eff}}{26}\right)^{0.7788} \tag{2.2}$$

.

A continuación, en el Cuadro 2.3 se presentan los tipos de suelos de subrasantes y valores aproximados del módulo de reacción con una descripción de los mismos a través de los términos bajo, medio, alto y muy alto.

Cuadro 2.3: Tipos de suelos de subrasante y valores aproximados de k [11].

Tipos de suelos de subrasante y valores aproximados de k					
Tipo de suelo	Soporte	Rango de			
		valores k pci			
Suelos de grano fino, en los que	Bajo	73-124			
predominan partículas del tamaño del					
limo y la arcilla					
Arenas y mezclas de grava y arena	Medio	128-179			
con cantidades moderadas de limo y					
arcilla.					
Arenas y mezclas de grava y arena	Alto	183-219			
relativamente libres de finos plásticos.					
Subbases tratadas con cemento.	Muy Alto	255-402			

2.3.2. Módulo elástico de la losa

Este parámetro indica la rigidez y la capacidad de distribuir cargas de tránsito que se ejerce a una losa de hormigón. Se define como la relación que existe entre el esfuerzo y la deformación. En el Cuadro 2.4 se presentan los módulos típicos de laboratorio recomendados por el Centro de investigaciones de Pavimentos de la Universidad de California.

Cuadro 2.4: Módulos típicos de materiales para conformar capas de pavimento, [28].

Material	Rango E [MPa]	Valor típico [MPa]
Hormigón	14.000 - 56.000	25000
Concreto asfáltico	480 - 14.000	2750
Base granular	70 -1000	345
Subbase granular	34-200	100
Suelo estabilizado	70 -1400	345

2.3.3. Eficiencia de transferencia de carga

El término eficiencia de transferencia de carga (Load Transfer Efficiency - LTE) se usa para expresar la capacidad de una junta de transmitir parte de la carga aplicada en la losa cargada a la descarga adyacente [20]. Es un factor importante en la sobrecarpeta convencional del *whitetopping* sin adherir.

La eficiencia de transferencia de carga (LTE) del pavimento de concreto se mide generalmente por la relación de deflexión de la losa descargada y cargada. La transferencia de carga a través de las juntas en un pavimento de concreto se logra principalmente mediante [21]:

- interbloqueo del agregado
- acción de barra de pasador
- por una combinación de los dos mecanismos

En el mecanismo de interbloqueo de agregado, la carga se transfiere por interacción de corte entre agregados individuales en una junta o grieta. Este tipo de mecanismo de transferencia de carga es efectivo para las losas que tienen una junta pequeña y un espaciado de junta corto. Para pavimentos con un gran volumen de tráfico, se colocan barras de acero a través de las juntas transversales para transferir la carga, incluidas aquellas con aberturas de juntas pequeñas <1.0 mm.

Las barras de pasador transfieren carga sin restringir el movimiento horizontal de la junta causado por la contracción y expansión térmica y la humedad, también ayudan a mantener las alineaciones horizontales y verticales de losas [21]. Los dispositivos de deflexión no destructivos se utilizan actualmente para evaluar la eficiencia de transferencia de carga in situ de juntas de pavimento rígidas y grietas en losas [29]. Dichas técnicas permiten evaluar el rendimiento conjunto real del pavimento en el campo en relación con su rendimiento previsto en la fase de diseño.

Todos los dispositivos de deflexión no destructivos son adecuados para evaluar la eficiencia de transferencia de carga en cualquier junta siempre que los sensores de deflexión puedan montarse lo suficientemente cerca uno del otro a través de la junta para medir el desplazamiento vertical de las losas cargadas y descargadas.

La transferencia efectiva de carga proporciona varios beneficios a los pavimentos rígidos o con *whitetopping* convencional [21]:

- 1. Reduce el desarrollo de bombeo y fallas al reducir las deflexiones de la losa.
- 2. Disminuye el agrietamiento dentro de la losa reduciendo los esfuerzos de tracción.

La clasificación de transferencia de carga en relación con la eficiencia de transferencia de carga se muestra en el cuadro 2.5.

Cuadro 2.5: Calidad de eficiencia de transferencia de carga [14].

Clasificación	Eficiencia de transferencia
de la transferencia de carga	$\mathrm{de}\;\mathrm{carga}\;(\%)$
Excelente	90 - 100
Bueno	75 - 89
Moderado	50 - 74
Pobre	25 - 49
Muy pobre	0 - 24

2.4. Análisis estructural de pavimentos

Las deflexiones obtenidas del ensayo con el deflectómetro de impacto requieren dos tipos de análisis: primero un tratamiento estadístico, que permita

identificar y agrupar sectores homogéneos con igual comportamiento estructural, y el segundo tipo de análisis que se realiza para cada sector definido anteriormente, y tiene como objetivo evaluar los módulos elásticos de las capas de pavimento y su subrasante. El procedimiento de mayor difusión internacional para el análisis de las deflexiones se conoce con el nombre de "retrocálculo" que es la traducción local del término backcalculation, para el cual se utiliza la expresión "cálculo inverso" que consiste en ajustar las deflexiones medidas con el equipo a las deflexiones teóricas o calculadas que se obtendrían con un modelo de estructura de pavimento (definido por espesores conocidos y módulos por determinar). Para ello, se necesita trabajar con todo el conjunto de deflexiones de la superficie de un pavimento, registradas por un deflectómetro de impacto. El proceso es complejo y requiere cuidado, ya que puede haber diversos ajustes, siendo necesario un conocimiento de los modelos de comportamiento de estructuras de pavimentos.

2.4.1. Sectorización del pavimento por el método de las diferencias acumuladas

Dado que se tiene una amplia cantidad de mediciones de deflexión producidas por la carga aplicada, se realiza la identificación de sectores homogéneos, con la finalidad de reducir los datos dados por el deflectómetro a información representativa y determinar qué partes de la serie de medición superan ciertos valores de umbral, y garantizar que estas partes no sean demasiado cortas para ser candidatos significativos para acciones tales como la repavimentación.

Esta herramienta permite delimitar estadísticamente tramos homogéneos utilizando la deflexión central (máxima). La metodología es de fácil visualización y entendimiento, pero su ejecución manual es una tarea larga, ya que puede involucrar bases de datos de gran tamaño. A pesar de lo mencionado anteriormente su adaptación a soluciones computarizadas y análisis gráfico es sencilla. El enfoque de las diferencias acumulada dado por la guía de la AASH-TO (AASHTO 1993, Apéndice J) compara la secuencia de sumas acumulativas reales en una serie de mediciones con las sumas que se hubieran obtenido al sumar promedios.

En este apartado se explica cómo se realizó la sectorización por el método de diferencias acumuladas. El procedimiento, se basa en el hecho estadístico simple de cuando la variable Z_x (Definida como la diferencia entre el área bajo la curva de respuesta a cualquier distancia y el área total desarrollada por la respuesta promedio de todo el proyecto hasta la misma distancia) se dibuja como función de la distancia a lo largo del tramo seleccionado de la carretera, los límites de

los sectores homogéneos ocurren en los puntos donde la pendiente de la línea que representa la variación de Z_x con la longitud, cambia de signo.

El enfoque de diferencia acumulada puede ilustrarse en la Figura 2.10, con suposiciones iniciales de los valores de respuesta constantes y continuos r_i con tres intervalos a lo largo del tramo de estudio L_s como se observa en la Figura 2.10a y se observa que se pueden obtener valores o datos del tipo respuesta pavimento - distancia. En la Figura 2.10b se muestra la tendencia que siguen las áreas acumuladas bajo las curvas de respuesta. La línea continua indica el resultado real de los valores de respuesta del pavimento. Dado que las funciones son continuas y constantes en cada tramo o unidad, el área acumulada, a cualquier distancia x es simplemente la integral de cada valor de respuesta, como se muestra en la ecuación 2.3:

$$A_x = \int_0^{x_1} r_1 dx + \int_{x_1}^x r_2 dx \tag{2.3}$$

Se tiene que:

$$\bar{r} = \frac{\int_0^{x_1} r_1 dx + \int_{x_1}^{x_2} r_2 dx + \int_{x_2}^{x_3} r_3 dx}{L_s} = \frac{A_T}{L_s}$$
 (2.4)

Por lo tanto, el área acumulada media se puede calcular como:

$$\bar{A}_x = \int_0^x \bar{r} dx = \bar{r} dx \tag{2.5}$$

En la Figura 2.10b, la línea punteada representa el área acumulada causada por la respuesta promedio general del proyecto. Si se grafica Z_x contra x se obtiene un resultado similar al que se muestra en la Figura 2.10c. En la gráfica se observa que cada límite de tramo o unidad coincide con el lugar de cambio de pendiente de Z_x (de positiva a negativa o viceversa). Este concepto fundamental es la base utilizada para determinar analíticamente la ubicación de los límites de las unidades o tramos homogéneos.

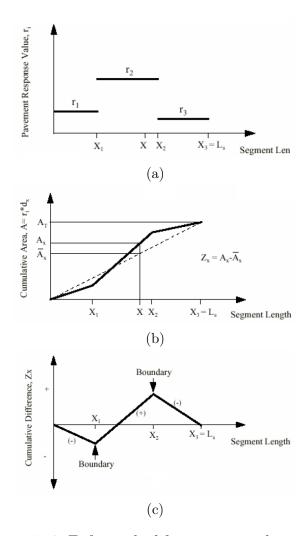


Figura 2.10: Enfoque de diferencia acumulativa [5].

2.4.2. Retrocálculo

Comúnmente las diferentes teorías estructurales permiten el cálculo de esfuerzos, deformaciones y deflexiones a partir de una estructura dada, si se conoce la carga aplicada, los espesores de las capas y sus parámetros estructurales (módulos y coeficientes de Poisson). Indudablemente, es posible calcular y obtener de esta manera la curva de deformación del pavimento, es decir, las deflexiones que se originan en la superficie del mismo a diferentes distancias de la carga.

El retrocálculo es precisamente el cálculo inverso. Conociendo la curva de deformación (cuenco de deflexiones obtenido con el FWD en este caso), la carga aplicada y los espesores que componen la estructura, se trata de determinar y

analizar parámetros estructurales (para pavimentos flexibles: módulo resiliente de la subrasante M_r y módulo de elasticidad de las capas asfálticas E_p ; y para pavimentos rígidos: módulo de elasticidad del hormigón E_c y módulo de reacción de la subrasante k) que caracterizan el pavimento [19]. El retrocálculo involucra el cálculo de deflexiones teóricas debido a la aplicación de la carga, conocidos los espesores del paquete estructural analizado y asumiendo, como primera aproximación, determinados valores para los módulos de cada una de las capas. Los valores teóricos de deflexiones se comparan con los valores medidos. A través de un proceso iterativo se ajustan entonces los módulos asumidos inicialmente, hasta que las curvas de deformación teórica (calculadas) y medida (FWD) ajusten razonablemente bien. Los módulos hallados de esta manera se consideran representativos de la respuesta del pavimento frente a la carga y por lo tanto pueden ser utilizados luego para el cálculo y análisis de los esfuerzos o deformaciones específicas en la estructura.

2.4.2.1. Tipos de métodos de retrocálculo

Existen varios programas y métodos que se pueden usar para estimar los valores de módulo de elasticidad de las capas estructurales del pavimento *in situ*, a partir de los cuencos de deflexión. Hou [48] desarrolló una de las primeras soluciones para retrocálculo de valores de módulo de capa elástica de más de dos capas [44]. El enfoque de Hou es buscar el conjunto de valores de módulo de capa que minimicen la suma de las diferencias cuadradas entre las deflexiones calculadas y medidas. Muchos programas de software para retrocálculo utilizan este enfoque general, haciendo coincidir las deflexiones medidas con las deflexiones calculadas con la teoría elástica multicapa. Los tipos de métodos de retrocálculo se pueden agrupar en cinco categorías generalizadas, que se resumen en el Cuadro 2.6:

2.4.2.2. Retrocálculo aplicado a pavimentos rígidos

Los métodos de retrocálculo varían de acuerdo con una serie de factores, como la teoría que se usó para desarrollar el método y el tipo de sistema de pavimento que está bajo investigación. Los pavimentos rígidos suelen ser los tipos más simples de estructuras de pavimento para analizar con NDT. Se supone que la(s) capa(s) de hormigón de cemento Portland actúan como placas rígidas, lo que puede permitir una solución cerrada. Una estructura de pavimento más común es un sistema de tres capas que consiste en un PCC, una capa base y bajo está se encuentra el suelo de la subrasante. La adición de la capa base agrega complejidad al procedimiento de retrocálculo, pero las soluciones de forma

Cuadro 2.6: Tipos de métodos de retrocálculo [46].

Métodos de	Descripción del
retrocálculo	método y programa
	El método hace llamadas repetidas a una función de
Búsqueda	capa elástica hasta que coincidan las deflexiones me-
iterativa	didas y calculadas para módulos de capa seleccionados
	por el programa o derivados.
	Programas: EVERCALC, MODCOMP
	Implica buscar en una base de datos de cuencos de
Búsqueda	deflexión calculadas generadas para valores de módulo
en base de	variables para una estructura de pavimento específica
datos	y así encontrar el cuenco de deflexión medida.
	Programas: MODULUS, COMDEF, DBCONPAS
	El enfoque de espesor equivalente reduce un sistema
	elástico multicapa a un sistema equivalente con
	menos capas (generalmente tres o menos) para las
Espesor	cuales la solución se obtiene de manera más sencilla.
equivalente -	Los métodos basados en espesor equivalente utilizan
Odemark	métodos de búsqueda iterativos o de base de datos
	para encontrar un cuenco de deflexiones calculado
	para un conjunto de módulos de capa que mejor se
	adapte al cuenco medido. Programa: ELMOD
Cálculo	Este método usa puntos específicos del cuenco de
directo o	deflexión medido, para calcular directamente el módu-
soluciones de	lo de capas limitadas. Estos métodos se conocen como
forma cerrada	métodos de cálculo "hacia adelante" proporcionan una
	solución única para cada cuenco de deflexiones.
Otros	Otros métodos que se han desarrollado recientemente
métodos	incluyen el uso de redes neuronales artificiales, algorit-
	mos genéticos y métodos de retrocalculación dinámica.

cerrada todavía son posibles.

La mayoría de los procedimientos de retrocálculo son demasiado sensibles para adherirse a las reglas o procedimientos generales, pero la investigación ha mostrado una tendencia general para los sistemas de pavimento rígido de 3 capas. En primer lugar, descuidar la presencia de una capa base tiende a sobre-estimar la rigidez de la capa de PCC superpuesta. En segundo lugar, suponiendo que una unión completa entre el PCC y la capa base generalmente subestima la rigidez del material base. El alabeo de la losa y la deformación de la humedad pueden causar que una losa rígida mantenga una unión completa en la losa media, donde se producen las pruebas de deflexión, sin mostrar adherencia en los bordes [35]. A partir de estas observaciones, se podría tomar una decisión para modelar la interfaz PCC-base como no ligada a menos que las condiciones del campo indiquen claramente una unión completa. El objetivo final de las pruebas de deflexión es proporcionar caracterizaciones de materiales que puedan usarse como entradas para el diseño de nuevos pavimentos o para superposiciones de pavimentos existentes.

Los suelos de subrasante para pavimentos rígidos se caracterizan por el Coeficiente de Reacción de Subrasante (k). Esta variable se puede estimar a partir del ensayo de deflectometría.

Es importante señalar que la losa de concreto y la carpeta asfáltica no se encuentra unidas por lo tanto es un *whitetopping* convencional.

2.4.3. El método AASHTO para el retrocálculo

El algoritmo de retrocálculo utilizado por la AASHTO es el método AREA, el cual estima el radio de rigidez relativa como una función del área del cuenco de deflexiones. Esta estimación junto con el cálculo posterior de la subrasante k y la losa E_c , se realiza sin iteración.

Este método es adecuado para determinar el valor k para el diseño de superposición de pavimentos existentes, para el diseño de un pavimento reconstruido o para el diseño de pavimentos similares en la misma ubicación con el mismo tipo de subrasante. Las secciones de corte y relleno probablemente produzcan valores de k diferentes, pero no se requiere un ajuste para estas secciones para los valores k retrocalculados si estas características son similares para el pavimento que se está probando y el pavimento diseñado, pero los valores k dinámicos retrocedidos deben reducirse a la mitad aproximadamente para estimar un valor de k estático elástico que se usará en diseño.

2.4.3.1. Obtención del módulo de reacción de la subrasante

Para determinar el valor del módulo de reacción de la subrasante k se realizó el siguiente proceso que será explicará de manera más amplia en el Capítulo 3:

- 1. Se mide las deflexiones del pavimento de concreto.
- 2. Se calcula el área correspondiente a cada cuenco de deflexión.
- 3. Se calcula una estimación inicial (suponiendo un tamaño infinito de losa) del radio de rigidez relativa, l.
- 4. Se calcula los factores de ajuste para la deflexión máxima d_0 y del radio de rigidez relativa l estimada inicialmente para tener en cuenta el tamaño de la losa finita.
- 5. Se ajusta el valor k inicialmente estimado para tener en cuenta el tamaño de losa finita.
- 6. Se calcula el valor k estático promedio estimado.

2.4.3.2. Obtención del módulo de elasticidad del concreto

El proceso de retrocálculo para la obtención del módulo de elasticidad es el siguiente:

- 1. Se calcula el área correspondiente a cada cuenco de deflexión.
- 2. Se calcula el radio de la rigidez relativa.
- 3. Se calcula el valor del módulo de reacción de la subrasante k.
- 4. Se determina el módulo elástico del concreto.

2.4.3.3. Evaluación de la eficiencia en la transferencia de carga en las juntas

El deflectómetro de caída de peso (FWD) es el dispositivo de ensayo no destructivo más comúnmente utilizado para medir la eficiencia de la transferencia de carga. Debido a su facilidad de uso, rapidez y precisión de las mediciones, la

guía de diseño de pavimento AASHTO [29] recomienda el uso de dicho dispositivo para las mediciones de deflexión requeridas para determinar la eficiencia de transferencia de carga.

La guía de diseño AASHTO recomienda medir la deflexión de la junta a lo largo de la trayectoria exterior de la rueda. La placa de carga debe colocarse en un lado de la junta con su borde tocando la junta. Las deflexiones se miden en el centro de la placa de carga y a 12 pulgadas del centro (6 pulgadas desde el borde de la junta en la losa adyacente).

2.4.4. Generalidades de método de elementos finitos

El MEF es una técnica de análisis numérico para obtener la tensión, deformación y desviación de las capas de pavimento. El método analítico usualmente usa el módulo elástico y la relación de Poisson de los materiales del pavimento como parámetros de diseño.

La transformación de un sistema de ingeniería (con infinitas incógnitas) en un modelo de elementos finitos es, quizás, uno de los métodos más importantes y requiere un conocimiento profundo del MEF.

En realidad, dicho modelo es una idealización matemática de un sistema real cuyo comportamiento debe, al menos ser intuido, pues de otro modo la modelización puede ser muy laboriosa o imposible [8].

El término elemento finito resume el concepto básico del método: la transformación de un sistema físico, con un número infinito de incógnitas, a uno que tiene un número finito de incógnitas relacionadas entre sí por elementos de un tamaño finito.

Un nodo es una localización en el espacio de un punto en el que se considera que existen ciertos grados de libertad (desplazamientos, potenciales, temperaturas) y acciones (fuerzas, corrientes, condiciones de contorno) del sistema físico.

Un elemento es una representación matemática matricial, denominada matriz de rigidez, de la interacción entre los grados de libertad de un conjunto de nodos. Los elementos pueden ser puntuales, lineales, superficiales, volumétricos, etc. y pueden estar en espacios bi y tridimensionales.

Cada nodo tiene ciertos grados de libertad que caracterizan la respuesta del campo (las ecuaciones diferenciales representan el problema que se quiere resolver) [8].

2.4.4.1. Consideraciones sobre la aplicación del método de elementos finitos en el análisis estructural del pavimento

Los modelos de elementos finitos se han aplicado ampliamente al diseño y análisis de estructuras de pavimento. Existen tres tipos de modelos para estudiar estructuras de pavimento de varias capas: deformación plana, axisimétrica y tridimensional (3-D). Dentro de la comunidad científica, una cuestión frecuentemente planteada sobre la aplicación del método de elementos finitos (MEF) a las estructuras del pavimento es la dependencia de la solución de las simplificaciones que se introducen para reducir el tiempo computacional y las configuraciones de malla y tamaño, tipo y relación de aspecto [7].

El MEF es un procedimiento numérico para obtener una solución aproximada para una estructura de ingeniería bajo varios tipos de carga y condiciones de contorno, generalmente usando una formulación de rigidez o energía. Es un método poderoso aplicable a estructuras de pavimento complejas que tienen propiedades de materiales inelásticos y sometidas a cargas dinámicas de tráfico bajo condiciones ambientales variables. A pesar de que la aplicación de técnicas MEF para la solución de problemas de ingeniería ha sido tremendamente mejorada por los desarrollos en hardware y software, su aplicación al modelado de pavimentos aún requiere un extenso conocimiento de ingeniería.

Las decisiones de ingeniería son tomadas en cuenta cuando se elige en el tamaño del elemento, la relación de aspecto (una relación de la longitud de los lados más largos y más cortos de un elemento) y el tipo de formulación MEF.

La formulación más común utiliza un modelo de deformación plana y bidimensional (2-D) que requiere relativamente poco tiempo de cálculo y memoria, razón por la cual muchos investigadores lo utilizan para modelar el comportamiento del pavimento. Sin embargo, los modelos de deformación plana no pueden reproducir con exactitud las cargas de tráfico reales. La huella de carga de tráfico en el pavimento es típicamente elíptica y puede representarse mediante dos semicírculos y un rectángulo, mientras que un modelo de deformación plana se limita al uso de cargas lineales, como se muestra en la Figura 2.11.

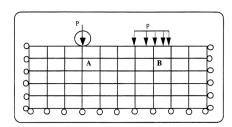


Figura 2.11: Carga de tráfico para modelos de deformación plana en 2-D [7].

Donde:

P = Cargas lineales.

La segunda formulación de MEF en uso es un enfoque de modelado axisimétrico. Este enfoque supone que la estructura del pavimento tiene propiedades constantes en planos horizontales, y la carga del tráfico se puede modelar como una carga circular, como se muestra en la Figura 2.12. La ventaja de este modelo es que una estructura 3-D real se puede resolver con una formulación bidimensional que utiliza coordenadas cilíndricas, siempre que la geometría sea axisimétrica. Es un poco más intensivo computacionalmente que las formulaciones de deformación del plano 2-D, pero también tiene una limitación inherente: la huella de la carga solo puede modelarse como un círculo. Por lo tanto, solo se puede considerar una sola carga circular, lo que crea una seria limitación cuando se debe estudiar la configuración de doble neumático. Además, el enfoque de modelado axisimétrico no puede considerar la cizalladura de la interfaz, aunque se puede modelar un caso especial de cizalladura radial general. Este tipo de modelo no puede explicar las condiciones en las que se encuentra la berma o las discontinuidades en la estructura del pavimento, como las juntas o grietas. Finalmente, solo se puede usar para analizar una estructura de pavimento bajo carga de tráfico si la ubicación de carga está lejos de la berma o la grieta.

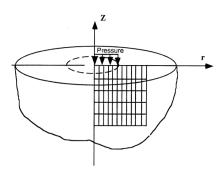


Figura 2.12: Carga de tráfico para modelos axisimétricos [7].

Donde:

r = Eje radial.

z= Eje vertical.

La tercera formulación es un modelo 3-D MEF completo. Puede representar la configuración del pavimento con precisión, incluida la posición de carga, las bermas y las discontinuidades, como juntas o grietas, mediante la introducción de elementos especiales, como muelles o elementos de presión. Sin embargo, requiere más tiempo de computación y memoria que los otros dos modelos. La preparación de los datos es también mucho más laboriosa dada la complejidad de

la configuración de la estructura del pavimento que considera, como se muestra en la Figura 2.13.

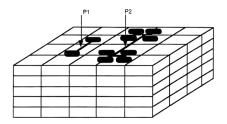


Figura 2.13: Carga de tráfico para modelos 3-D [7].

Donde:

 $P_1 = \text{Carga simple.}$

 $P_2 = \text{Carga tándem}.$

El modelo que se utilizará en este trabajo de investigación es el axisimétrico, ya que se la carga de tráfico se modelará como una carga circular y la estructura del pavimento se considerará con propiedades constantes en planos horizontales.

2.4.4.2. Programas de elementos finitos

Los programas de elementos finitos (MEF) permiten obtener soluciones aproximadas de problemas que son susceptibles de ser representados por un sistema de ecuaciones diferenciales. En ingeniería, la mayoría de los procesos actuales están definidos de ésta forma, por lo que estos programas permiten obtener resultados más confiables, mejorar procesos existentes, o estudiar el fallo de un componente estructural [8].

2.4.4.3. Ansys

Ansys Academic Research Mechanical, Release 17.0 es un programa creado para la resolución de diversos tipos del análisis en el ámbito ingenieril, mediante el uso del método de elementos finitos. Las capacidades de Ansys incluyen la habilidad para resolver problemas estructurales tanto estáticos como dinámicos, problemas de transferencia de calor, continuos y transitorios, problemas magnéticos, otros. [8]. En las últimas dos décadas se han empleado programas dimensionales de elementos finitos para analizar la respuesta del pavimento de la carretera. En los últimos años, el análisis tridimensional de elementos finitos

Universidad de Cuenca

surgió como una poderosa herramienta que es capaz de capturar la respuesta del pavimento [7].

Capítulo 3

Metodología y resultados

En este capítulo se presenta la metodología que se aplicó en el trabajo, dividiéndola en fases e indicando las etapas de cada fase. Así también, se presentan los resultados obtenidos a través de dicha metodología.

La metodología del presente trabajo de titulación consiste en 4 fases. En la Figura 3.1 se presenta un esquema general utilizado para desarrollar el presente proyecto.

A continuación de describe brevemente cada una de las fases.

Fase 1 - Experimentación: Esta fase consta de tres etapas: (i) estándares para medir deflexiones en el pavimento, (ii) toma de datos, (iii) almacenamiento de datos crudos; tanto en la etapa (i) como (ii) se considera las normas propuestas por la Asociación Americana de Ensayo de Materiales (American Society of Testing Materials - ASTM) designación D 4694 y D 4695, esta fase concluye con la etapa (iii) que es el almacenamiento de datos crudos en el ordenador.

Después de ésta fase empieza el trabajo en oficina en donde se pretende evaluar la estructura existente del pavimento, representada por el módulo de reacción de la subrasante y módulo de elasticidad del concreto.

Fase 2 - Sectorización: cuenta con tres etapas (i) preparación de los datos considerando la recomendación del método AASHTO, que a la vez cuenta con dos sub-etapas la primera corregir las deflexiones por carga y la segunda la selección de datos válidos, en donde se detectan y eliminan los datos erróneos o atípicos; (ii) aplicación del método de diferencias acumuladas que presenta la guía AASHTO en el Apéndice J; finalmente (iii) análisis estadístico.

Fase 3 - Retrocálculo: Que se divide en dos etapas que son: (i) retrocálculo por el método AASHTO y (ii) retrocálculo a través de elementos finitos. La primera etapa consta de 3 sub-etapas: obtención del módulo de reacción de la subrasante, obtención del módulo elástico del concreto y obtención de la eficiencia de carga. Mientras que en la segunda etapa se obtendrá el módulo elástico de: concreto, capa asfáltica y material granular, utilizando como parámetros de entrada los módulos obtenidos a través del método AASHTO.

Fase 4 - Análisis de resultados: Se presenta un análisis de los parámetros obtenidos por el método AASHTO. Seguidamente se realiza una comparación entre los resultados obtenidos por el método AASHTO y el método de elementos finitos. Finalmente se muestra un análisis de sensibilidad de las variables que influyen en el diseño del pavimento y su incidencia en la deflexión mediante simulaciones en Ansys.

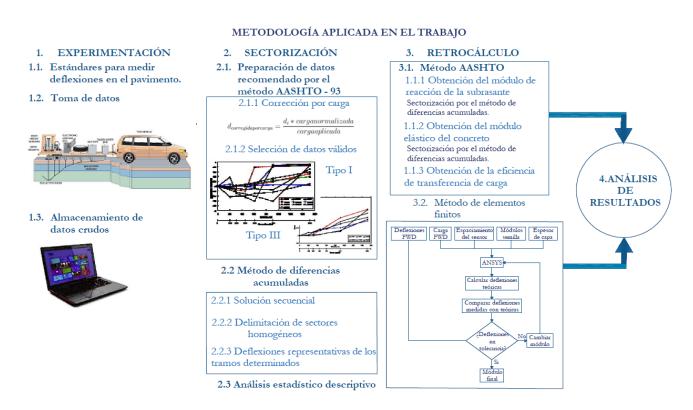


Figura 3.1: Metodología utilizada en el trabajo.

A continuación, se describe de manera detallada cada una de las fases:

3.1. Experimentación

3.1.1. Estándares para medir deflexiones en el pavimento y recopilación de información general

En esta etapa se toma en cuenta las consideraciones de la norma ASTM D 4695 denominada "Estándares para medir deflexiones en el pavimento y recopilación de información general" [3]. Entre los aspectos más importantes que hay que considerar de la norma se tienen:

• Frecuencia de mediciones:

En la Figura 3.2 se muestra el esquema general para las mediciones con el FWD. Dado que la evaluación se realizó sobre un pavimento rígido la aplicación de la carga fue en el centro de la losa y en la junta de la misma. Las pruebas realizadas se tomaron a nivel de proyecto. Es importante aclarar que aproximadamente los 3 primeros kilómetros (6+800 a 10+100 km), se registraron cuencos de deflexiones cada 100 m por carril, después del 10+100 los cuencos fueron registrados cada 200m esto se debe a que este primer tramo de coordenadas longitud: 79° 4'37.7904"W, latitud 2° 52'18.2964"S, altitud: 2751m en el km 6+800 y longitud: 79° 5'55.95"W, latitud: 2° 51'21.5880"S, altitud: 2857.1m presenta más fallas que el tramo de vía restante. Las dos frecuencias (de 100 m y 200 m) se encuentra dentro del rango que presenta la norma.

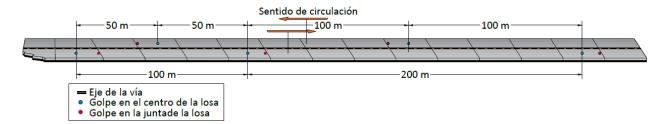


Figura 3.2: Ubicación de los puntos evaluados.

■ Posición de geófonos: En la Figura 3.3 se muestra un esquema de la disposición de los geófonos que presentaba el equipo de prueba FWD proporcionado por el MTOP. Como se puede apreciar los geófonos ubicados a 72 (D₉) y 84 (D₁₀) pulgadas del centro de carga no se encuentran dentro de la recomendación que presenta el Cuadro 2.2 por lo que no se utilizan dichos datos.

Puesto que no se cuenta con datos de deflexiones ubicadas a 18 (D_4) pulgadas del plato de carga, y que es necesario para cálculos posteriores, se procedió a realizar una interpolación lineal entre los geófonos D_3 y D_5 que se encuentran a 12 y 24 pulgadas del centro de carga respectivamente.

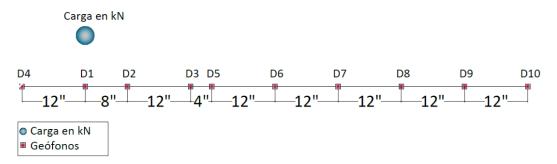


Figura 3.3: Espaciamiento de los geófonos.

3.1.2. Toma de datos

Para esta etapa se utilizará el procedimiento que proporciona la norma ASTM D 4694 denominada "Deflexiones con un dispositivo de carga de impulso de tipo de caída descendente" [2]. Este procedimiento, presenta los siguientes pasos para la toma de datos:

- 1. Se transporta el equipo al lugar de prueba y se coloca la placa de carga en el punto deseado. El lugar de prueba debe estar limpio de polvo y rocas para asegurar que la placa de carga este en contacto con la superficie.
- 2. Se baja la placa de carga y los sensores, se debe asegurar que estén en contacto con la superficie.
- 3. Se sube el generador de fuerza a la altura deseada y se deja caer. Se registra las deflexiones y carga máxima.
- 4. Se debe llevar a cabo al menos dos golpes y se debe comparar los resultados. Si la diferencia es mayor a 3 % para cualquier sensor, se registra esta variabilidad.
- 5. Se levanta el plato y los geófonos, y se continúa al siguiente punto.

Para el presente estudio se realizaron 307 pruebas en el centro de la losa y 297 pruebas en la junta de la misma, en cada prueba se realizaron 3 golpes y

antes de iniciar con el levantamiento se calibró con 6 golpes con la finalidad de que se regule la carga aplicada. Los golpes realizados en el centro de la losa se utilizan para retrocalcular el módulo de reacción de la subrasante y el módulo de elasticidad del concreto, mientras que las pruebas realizadas en la junta de la losa son utilizadas para calcular el porcentaje de transferencia de carga.

En el Cuadro 3.1 se presentan la descripción y la ubicación de las pruebas realizadas.

Cuadro 3.1: Descripción y ubicación de las pruebas realizadas.

Centro	de la losa	Junta de la losa			
Carril	Carril	Carril	Carril		
derecho	lerecho izquierdo		izquierdo		
151	156	148	149		
Total	1 = 307	Total	1 = 297		

3.1.3. Almacenamiento de datos crudos

Después de tomar la prueba en cada punto, los datos se van registrando en el ordenador para que, al finalizar el levantamiento de datos en campo, este registro de datos se exporte a un archivo tipo .xlsx para posteriormente procesar los mismos. Un resumen del formato de datos crudos que entrega el equipo se presenta en el Apéndice A.

3.2. Sectorización

3.2.1. Preparación de datos

Con la finalidad de conocer y ordenar la información recolectada se necesita subdividir el tramo de la vía en sectores, en base a parámetros que presentan cierta constancia en el tiempo [40] como son: estructura, tránsito, clima, deflexiones promedio y deflexiones máximas. Para el presente caso de estudio se considerará las deflexiones centrales máximas medidas por el geófono D_1 (ver Figura 3.3) como parámetro para sectorizar el tramo, ya que esta deflexión es la respuesta de todas las capas del pavimento en conjunto, y es la mejor representación de la capacidad estructural de la vía en cada punto evaluado [10]. Este procedimiento se realizará para cada carril.

Para la preparación de datos se consideran las siguientes recomendaciones dadas por la guía AASHTO 93:

3.2.1.1. Corrección de deflexiones por carga

La deflexión máxima normalizada representa la deflexión vertical de la superficie del pavimento bajo el punto de aplicación de carga. Este es un indicador general de la condición estructural de pavimentos, cuyo uso principal es definir tramos que presenten diferentes características estructurales. Con la finalidad de poder realizar el análisis del comportamiento del tramo se ha normalizado las deflexiones para una carga estándar por rueda doble, de 40 kN o 9000 lbs, utilizando la ecuación 3.1.

$$d_{corregida\ por\ carga} = \frac{d_i * carga\ normalizada}{carga\ aplicada}$$
(3.1)

Donde:

 d_i = deflexiones a 0, 8, 12, 18, 24, 36, y 60 pulg. desde el centro del plato de carga.

3.2.1.2. Selección de datos válidos

Puesto que existían valores de deflexiones que no seguían la forma del cuenco de deflexión teórica, esto significa, valores de deflexión que no disminuían con respecto a una distancia mayor del centro de aplicación de la carga, como los cuencos mostrados en las figuras 2.10b y 2.8d. Por lo que, fue necesario hacer una evaluación de los datos de deflexión ya que de la calidad de datos depende la confiabilidad de los resultados del retrocálculo. Para ello fue necesario crear filtros que sirvan para detectar los datos atípicos o incongruentes en los valores de deflexión. Este proceso se realizó antes de iniciar el cálculo y obtención de módulos de las capas del pavimento, en este caso para este pre-proceso de información se utilizó el software Excel.

Una vez realizada la corrección normalizada por carga y la selección de datos válidos se procedió a estimar zonas homogéneas contempladas por el método de diferencias acumuladas y con los datos de éstas se realizó una evaluación estadística que puede ser útil para determinar valores importantes, con los que se puede realizar cálculos asociados al análisis de la rehabilitación.

3.2.2. Método de diferencias acumuladas

A partir de la preparación de datos de los resultados de los ensayos deflectométricos, se definieron unidades homogéneas utilizando la metodología AASH-TO, cumpliendo con los siguientes requisitos:

- 1. No se debe superar el 30 % de coeficiente de variación de la deflexión máxima D_1 (variación promedio: AASHTO-93, Tabla 3.6, Página III-53).
- 2. Variación del tráfico no superior al 20 %. Se ha considerado que cada sección a lo largo de su extensión se encuentra sometida al mismo tráfico.
- 3. Longitud no menor a 600 metros (En caso que exista un tramo de longitud menor a 600 m con un paquete estructural diferente, será admitido para su análisis como sección homogénea).

Siguiendo el procedimiento descrito en el capítulo 2 y a criterio propio se presenta a continuación la sectorización del tramo. La vía no mantiene una sintonía en las deflexiones máximas obtenidas, es decir, visualmente existe una diferencia notoria que se puede observar en la figura 3.4, por lo que se realizó un análisis por carril. Los resultados del cálculo detallado se presentan en el Apéndice B.

Para el carril derecho:

- **Sector 1:** Del km 6+800 al 14+403
- **Sector 2:** Del km 14+403 al 21+400
- **Sector 3:** Del km 21+400 al 24+201
- **Sector 4:** Del km 24+201 al 29+000
- **Sector 5:** Del km 29+000 al 35+801

Para el carril izquierdo:

- **Sector 1:** Del km 6+850 al km 14+501
- **Sector 2:** Del km 14+501 al km 22+903
- **Sector 3:** Del km 22+903 al km 25+301
- **Sector 4:** Del km 25+301 al km 28+303
- **Sector 5:** Del km 28+303 al km 35+696

En la figura 3.4 se presentan los sectores obtenidos de la aplicación del método de diferencias acumuladas:

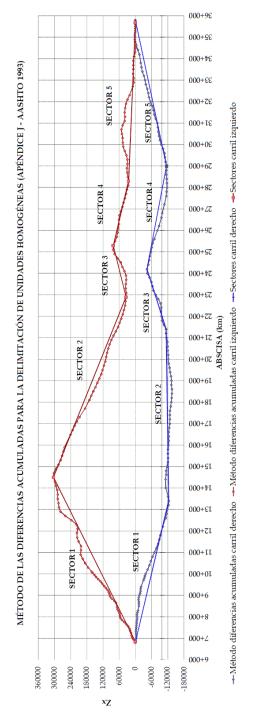


Figura 3.4: Unidades homogéneas.

En las figuras 3.5 se indica los resultados obtenidos de la medición de deflexiones y se presenta la sectorización del carril derecho con su respectiva deflexión media y en la Figura 3.6 se presenta la sectorización del carril izquierdo.

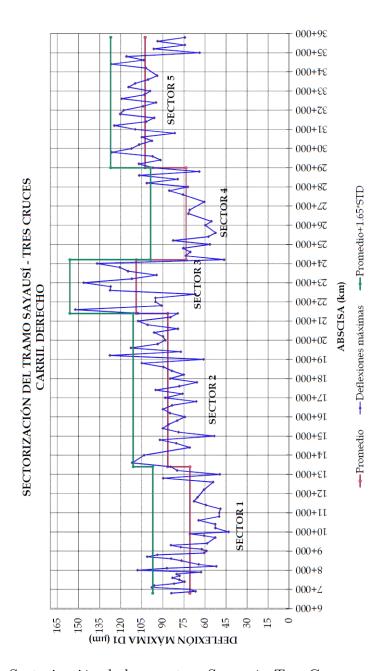


Figura 3.5: Sectorización de la carretera Sayausí - Tres Cruces carril derecho.

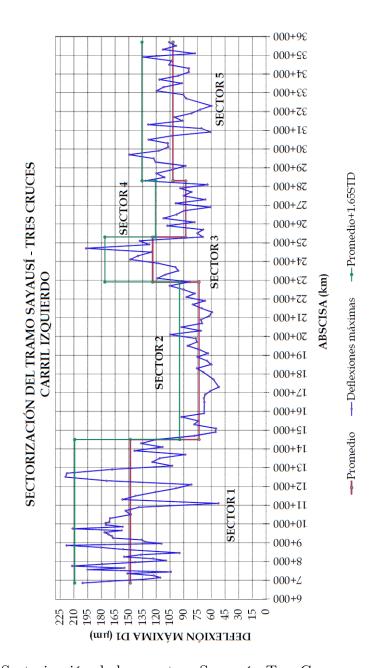


Figura 3.6: Sectorización de la carretera Sayausí - Tres Cruces carril izquierdo.

3.2.3. Análisis estadístico

Los estudios de deflexiones recuperables (elásticas) han demostrado que las deflexiones medidas en una sección de pavimento, presentan una distribución de frecuencias que se asemejan a una distribución normal [4]. Por lo tanto, a partir

de las deflexiones individuales, asumiendo que se hallan distribuidas de acuerdo a la ley de Gauss se han determinado la deflexión promedio D_m , deflexión máxima D_{max} , la deflexión mínima D_{min} , la desviación estándar D_{est} , el coeficiente de variación COV y la deflexión característica D_c que está representada por la línea superior en las Figuras 3.5 - 3.6 y que se explica a continuación.

3.2.3.1. Deflexión característica

Cada tramo homogéneo establecido se estudiará por separado y en él se determinará un valor de la deflexión que se considerará representativo del estado de la subrasante. Lo normal será emplear un valor de deflexión característica el cual, suponiendo que los valores de la deflexión se reparten como se mencionó anteriormente según una curva de Gauss y vendrá definido por la expresión 3.2:

$$D_c = D_m \pm 1,65 * s \tag{3.2}$$

Donde:

 D_c = deflexión característica

 D_m = deflexión promedio

s= desviación estándar

La desviación estándar se calcula con la ecuación 3.3

$$s = \sqrt{\frac{\sum D_{max}^2 - D_m * \sum D_{max}}{n - 1}}$$
 (3.3)

Donde:

 D_{max} = valor de la deflexión máxima en la sección de análisis n = número de pruebas

El término de promedio+1.65 la desviación estándar en la ecuación 3.2 indica un nivel de confianza de 90 %. Para puntos de evaluación dentro de la sección de análisis con deflexiones más grandes que D_c se recomienda un tratamiento especial. Es importante, aclarar que se trató independientemente los datos de deflexiones del carril derecho e izquierdo de la misma carretera, puesto que corresponden, a familias claramente diferenciadas, para evitar cometer un error no admisible en el tratamiento de datos. La diferencia entre los valores de deflexión de los diferentes carriles podría explicarse porque, aparte de que la

sección estructural de la subrasante es a veces distinta en los dos carriles (sobre todo, si se ha ensanchado la carretera por un lado), las condiciones de drenaje y del suelo suelen ser diferentes en las carreteras a media ladera, y también en ocasiones las de drenaje en los desmontes, ya que el agua del subsuelo puede provenir preferentemente del lado derecho o izquierdo de la carretera, en función de las pendientes longitudinales y transversales de la calzada y de la explanada.

Cuando la solución de rehabilitación estructural que se adopte consista en un recrecimiento por igual en toda la anchura de la calzada, a efectos de dimensionamiento del espesor necesario deberán tomarse las deflexiones del carril y su carril más desfavorables.

En los Cuadros 3.2 y 3.3 se presentan las secciones definidas y los valores estadísticos obtenidos para la deflexión máxima (D_1) corregida por carga.

Se puede apreciar que se cumplen los requisitos 1 y 3 de la metodología diferencias acumuladas presentados en la sección 3.2.2 de este capítulo, pues el coeficiente de variación de la deflexión máxima COV en todos los tramos se encuentra por debajo del 30 % y no existe longitudes de sectores menores a 600m.

El coeficiente de variación en la mayoría de los sectores es inferior al 27% en el carril derecho y 26% en el carril izquierdo. Un valor mayor a 20% del coeficiente de variación significa mayor heterogeneidad, de los valores y esto se debe a la gran variabilidad de los materiales del pavimento a lo largo del tramo y confirma el comportamiento no lineal de los materiales. En los dos carriles se tiene que tres de los cinco sectores presentan valores superiores al 20%.

Los cálculos realizados para la obtención de secciones homogéneas se presentan en el Apéndice B.

Cuadro 3.2: Deflexión detallada para cada sector carril derecho.

	Progresiva		Longitud	Deflexión	STD	COV	Deflexión	Deflexión	Deflexión
Sector				promedio			característica	máxima	mínima
	Inicio	Fin	km	um	um	%	um	um	um
1	6+800	13 + 403	6603	70.69	16.07	22.73	97.20	107.99	43.26
2	13 + 403	21 + 400	7997	86.46	14.93	17.27	111.09	127.68	53.40
3	21 + 400	24 + 201	2801	108.93	28.65	26.30	156.20	152.25	46.40
4	24 + 201	29 + 000	4799	73.46	15.35	20.89	98.77	106.72	52.46
5	29 + 000	35 + 801	6801	102.60	14.82	14.45	127.06	126.67	63.82

Cuadro 3.3: Deflexión detallada para cada sector carril izquierdo.

Sector	Progresiva		Longitud	Deflexión promedio	STD	COV	Deflexión característica	Deflexión máxima	Deflexión mínima
	.			promedio		~	Caracteristica	IIIaXIIIIa	ШШПа
	Inicio	Fin	$_{ m km}$	um	um	%	um	um	um
1	6 + 850	14 + 501	7651	148.40	36.84	24.83	209.19	219.05	52.26
2	14 + 501	22 + 903	8402	73.40	12.82	17.47	94.56	105.40	51.77
3	22 + 903	25 + 301	2398	124.01	31.66	25.53	176.25	196.80	69.22
4	25 + 301	28 + 303	3002	87.96	19.98	22.72	120.93	132.03	60.82
5	28 + 303	35 + 696	7393	101.90	20.55	20.16	135.80	149.63	59.82

3.2.4. Unificación de sectores

Para facilitar la formulación de medidas de mantenimiento y rehabilitación con mayor rapidez, precisión y aprovechando que existe cierta similitud en el seccionamiento del carril derecho e izquierdo, se ha generado una sola sectorización del tramo para los dos sentidos. La división se realizó tomando en cuenta la deflexión característica máxima (dprom+1.65STD) de cada sector, se realizó un traslape de deflexiones a fin de poder determinar un plan de rehabilitación que mejor se ajuste a las condiciones actuales que presenta la carretera. El resultado de este proceso se muestra en la Figura 3.7.

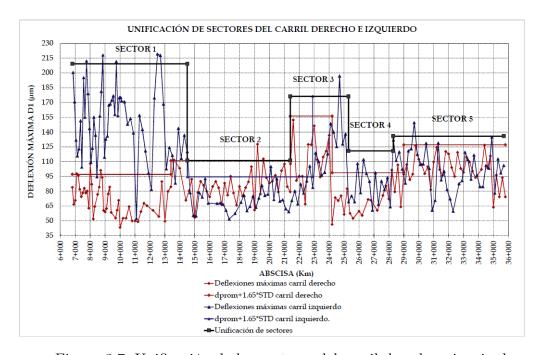


Figura 3.7: Unificación de los sectores del carril derecho e izquierdo.

A continuación, se presenta las secciones unificadas para el tramo:

■ **Sector 1:** Del km 6+800 al 14+501

■ **Sector 2:** Del km 14+501 al 21+400

■ **Sector 3:** Del km 21+400 al 25+301

■ **Sector 4:** Del km 25+301 al 28+303

■ **Sector 5:** Del km 28+303 al 35+801

3.3. Retrocálculo

3.3.1. Método AASHTO

El siguiente paso es realizar el retrocálculo siguiendo la metodología definida en la guía AASTHO [29] para obtener el módulo de reacción de la subrasante y módulo elástico del concreto para cada tramo homogéneo.

A continuación, se indica la metodología seguida para el cálculo de los parámetros estructurales y los resultados obtenidos.

3.3.1.1. Obtención del módulo de reacción de la subrasante

Metodología

Puesto que ya se cuenta con información de las deflexiones se procede a calcular el $AREA_7$ de cada cuenco de deflexión utilizando la ecuación 3.4:

$$AREA_7 = 4 + 6\left(\frac{d_8}{d_0}\right) + 5\left(\frac{d_{12}}{d_0}\right) + 6\left(\frac{d_{18}}{d_0}\right) + 9\left(\frac{d_{24}}{d_0}\right) + 18\left(\frac{d_{36}}{d_0}\right) + 12\left(\frac{d_{60}}{d_0}\right)$$

$$(3.4)$$

 $d_0 = \text{deflexión en el centro del plato de carga.}$

 d_i = deflexiones a 0, 8, 12, 18, 24, 36, y 60 pulg. [0, 203, 305, 457, 610, 915, y 1524 mm] desde el centro del plato de carga.

Se estima el valor del radio de rigidez relativa l_{est} suponiendo un tamaño

infinito de losa, usando la ecuación 3.5:

$$l_{est} = \left| \frac{ln\left(\frac{60 - AREA_7}{289,708}\right)}{-0,698} \right|^{2,566}$$
(3.5)

Se estima el valor del módulo de reacción de la subrasante definido como k_{est} suponiendo un tamaño infinito de losa usando la ecuación 3.6:

$$k_{est} = \frac{Pd_0^*}{d_0 (l_{est})^2}$$
 (3.6)

con:

k = valor k dinámico retrocalculado, psi/in.

P = carga, lb.

 d_0 = deflexión medida en el centro de la placa de carga, pulgadas.

 L_{est} = radio estimado de rigidez relativa, pulgadas, del paso anterior.

 d_0^* = Coeficiente de deflexión no dimensional en el centro de la placa de carga:

$$d_0^* = 0.1245e^{\left[-0.14707e^{(-0.07565l_{est})}\right]} \tag{3.7}$$

Se calcula los factores de ajuste para d_0 y l para un tamaño de losa finita:

$$AF_{d_0} = 1 - 1,15085e^{-0,71878\left(\frac{L}{l_{est}}\right)^{0,80151}}$$
(3.8)

$$AF_l = 1 - 0.89434e^{-0.61662\left(\frac{L}{l_{est}}\right)^{1.04831}}$$
(3.9)

Si la longitud de la losa es menor o igual que el doble del ancho de la losa, L es la raíz cuadrada del producto de la longitud y el ancho de la losa, ambos en pulgadas, se usa la ecuación 3.10 o si la longitud de la losa es mayor que el doble del ancho, L es el producto de la raíz cuadrada de dos y la longitud de la losa en pulgadas se utiliza la ecuación 3.11:

$$L_l \le 2 * L_w, L = \sqrt{L_l L_w}$$
 (3.10)

$$L_l > 2 * L_w, L = \sqrt{2} * L_l$$
 (3.11)

Se ajusta el valor de k_{est} inicialmente estimado para el tamaño de losa finita usando la ecuación 3.12 obteniendo un k dinámico $k_{dinámico}$:

$$k_{din\acute{a}mico} = \frac{k_{est}}{AF_l^2 AF_{d_0}} \tag{3.12}$$

Finalmente se calcula el valor k estático promedio estimado, dividiendo los valores k dinámicos medios para dos como se indica en la ecuación 3.13:

$$k_{est\'atico} = \frac{k_{din\'amico}}{2} \tag{3.13}$$

Resultados

Para el cálculo se utilizaron los siguientes datos de entrada que se requieren para aplicar la metodología descrita:

- Radio de carga del FWD (a)= 15cm o 5.9 pulg.
- Largo de la losa $(L_l) = 4.50 \text{m} = 177.17 \text{ pulg.}$
- Ancho de la losa $(L_w) = 3.80 \text{m} = 149.61 \text{ pulg.}$

Dado que:

177,17pulg. < 2*149,61pulg. = 299,22pulg., entonces se utiliza la ecuación 3.10 obteniendo así un valor de L=162,80pulg.

En los Cuadros 3.4 y 3.5, se presenta un resumen con valores importantes obtenidos de la sectorización del tramo, realizada por el método de diferencias acumuladas explicado anteriormente de acuerdo a los módulos de reacción de la subrasante obtenidos de los carriles derecho e izquierdo respectivamente y en la Figuras 3.8 y 3.9 se muestran los sectores en los que se ha dividido el tramo y sus valores promedio de módulos de reacción. Los cálculos de la obtención del parámetro k de cada punto se encuentra documentado en el Apéndice C.

Cuadro 3.4: Valores de la sectorización del tramo por el módulo de reacción de la subrasante.

Sector	Progresiva		Longitud	Espesor		k	Desviación	COV
				Concreto	Asfalto	$_{ m promedio}$	estándar	
	Inicio	\mathbf{Fin}	\mathbf{km}	\mathbf{cm}	\mathbf{cm}	pci	pci	pci
1	6+800	13 + 403	6603	20	11	335.75	126.45	37.66
2	13 + 403	20 + 202	6799	21	4.5	227.25	65.62	28.88
3	20 + 202	24 + 004	3802	20	11	165.82	56.97	34.36
4	24 + 004	28 + 002	3998	20	11	355.64	129.37	36.38
5	28 + 002	35 + 801	7799	20	11	184.48	69.18	37.50

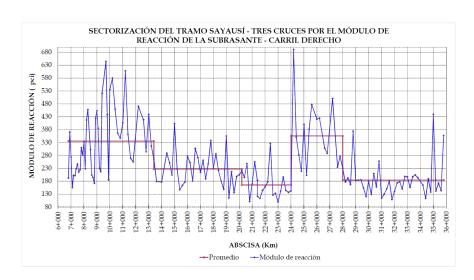


Figura 3.8: Valores de la sectorización del tramo por el módulo de reacción de la subrasante.

Cuadro 3.5: Sectorización del tramo por el módulo de reacción de la subrasante.

Sector	Progresiva		Longitud	Espesor		k	Desviación	COV
				Concreto	Asfalto	$_{ m promedio}$	estándar	
	Inicio	\mathbf{Fin}	\mathbf{km}	\mathbf{cm}	\mathbf{cm}	pci	pci	pci
1	6 + 850	14 + 696	7846	20	11	117.27	64.47	54.98
2	14 + 696	22 + 099	7403	21	4.5	320.72	101.58	31.67
3	22 + 099	25 + 301	3202	20	11	156.49	66.84	42.71
4	25 + 301	28 + 487	3186	20	11	247.98	90.18	36.37
5	28 + 487	32 + 100	3613	20	11	190.03	72.70	38.26
6	32 + 100	35 + 696	3596	20	11	204.00	68.08	33.37

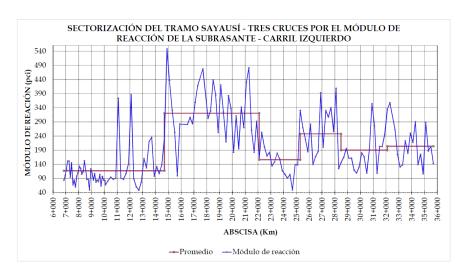


Figura 3.9: Sectorización del tramo por el módulo de reacción de la subrasante.

3.3.1.2. Obtención del módulo elástico del concreto

Metodología

Se calcula el área del cuenco de deflexión debajo de la losa de PCC utilizando la deflexión máxima a través de la ecuación 3.14:

$$AREA_{PCC} = 6 * \left[1 + 2 * \left(\frac{d_{12}}{d_0} \right) + 2 * \left(\frac{d_{24}}{d_0} \right) + \left(\frac{d_{36}}{d_0} \right) \right]$$
(3.14)

Donde:

 $AREA_{PCC}$ =área del cuenco de deflexión, pulgadas.

 d_0 = deflexión de la capa de PCC en el centro de la placa de carga, pulgadas d_i =deflexión a la distancia i desde el centro de la placa de carga, pulgadas Se calcula el radio de la rigidez relativa (l_k) mediante la ecuación 3.15:

$$l_k = \left\lfloor \frac{ln\left(\frac{36 - AREA_{PCC}}{1812,279}\right)}{-2,559} \right\rfloor^{4,387} \tag{3.15}$$

Se calcula el valor k usando la ecuación de deflexión de Westergard 3.16.

$$k = \left(\frac{P}{8*d_0*l_k^2}\right) \left\{ 1 + \left(\frac{1}{2\pi}\right) \left[ln\left(\frac{a}{2*l_k}\right) + \gamma - 1{,}25 \right] \left(\frac{a}{l_k}\right)^2 \right\}$$
(3.16)

Donde:

k =módulo efectivo de la reacción de subrasante, pci (dinámico).

 d_0 =deflexión máxima ajustada d0, pulgadas.

 l_k =radio ajustado de rigidez relativa.

P = carga FWD, libras.

 γ =constante de Euler, 0.57721566490.

a =radio de carga del FWD, 15 cm o 5.9 pulgadas.

Se determina el módulo elástico del concreto mediante la ecuación 3.17 y dividiendo el valor k para dos:

$$E_c = \frac{12 * (1 - \mu_{PCC}^2) * k * l^4}{D_{PCC}^3}$$
(3.17)

Donde:

 $E_c = \text{m\'odulo de elasticidad estimado del PCC existente, psi.}$

 $\mu = \text{relación de Poisson del PCC}.$

 $l_k =$ módulo efectivo de la reacción de subrasante, pci (estático).

l =radio ajustado de rigidez relativa.

 D_{PCC} =grosor de la losa de PCC existente, pulgadas.

Resultados

En los Cuadros 3.6 y 3.7 se presenta la sectorización del tramo, realizada por el método de diferencias acumuladas explicado anteriormente considerando el módulo de elasticidad del concreto del carril derecho e izquierdo respectivamente, y en las Figuras 3.10 y 3.11 se ilustra los valores de módulo de elasticidad de cada tramo. Los cálculos de la obtención del parámetro Ec de cada punto se encuentra documentado en el Apéndice D. Se presenta las variables que se consideraron para la aplicación de la metodología:

Constante de Euler (γ)= 0.57721566490

Relación de Poisson del PCC (μ)= 0.15

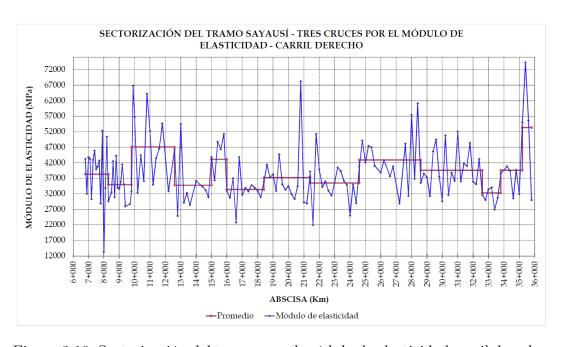


Figura 3.10: Sectorización del tramo por el módulo de elasticidad carril derecho.

Cuadro 3.6: Sectorización del tramo por el módulo de elasticidad carril derecho.

Sector	Progr	resiva	Longitud	\mathbf{Ec}	Desviación	\mathbf{COV}
				$\mathbf{promedio}$	estándar	
	Inicio	\mathbf{Fin}	\mathbf{km}	pci	pci	pci
1	6 + 800	8 + 301	1501	38322.1	9798.6	25.6
2	8 + 301	9 + 802	1501	34961.4	5260.7	15.0
3	9 + 802	12 + 600	2798	47066.7	11424.5	24.3
4	12 + 600	15 + 000	2400	34756.6	8623.6	24.8
5	15 + 000	16 + 000	1000	43126.2	8039.7	18.6
6	16 + 000	18 + 403	2403	33424.0	4860.3	14.5
7	18 + 403	21 + 400	2997	37217.7	9630.5	25.9
8	21 + 400	24 + 606	3206	35472.9	6661.3	18.8
9	24 + 606	28 + 603	3997	42876.3	8651.0	20.2
10	28 + 603	32 + 600	3997	39585.4	6804.9	17.2
11	32 + 600	33 + 804	1204	32290.7	3981.6	12.3
12	33 + 804	35 + 202	1398	39567.8	8746.0	22.1
13	35 + 202	35 + 801	599	53337.6	22268.7	41.8

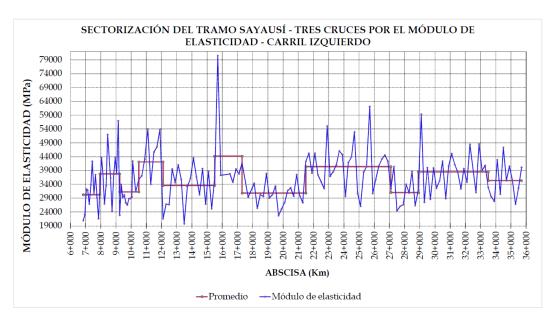


Figura 3.11: Valores de la sectorización del tramo por el módulo de reacción carril izquierdo.

Cuadro 3.7: Valores de la sectorización del tramo por el módulo de reacción carril izquierdo.

Sector	Progresiva		Longitud	k	Desviación	COV
				$\mathbf{promedio}$	estándar	
	Inicio	\mathbf{Fin}	\mathbf{km}	\mathbf{pci}	pci	\mathbf{pci}
1	6 + 850	7 + 951	1101	30230.6	6434.8	21.3
2	7 + 951	9 + 248	1297	37756.4	10373.3	27.5
3	9 + 248	10 + 503	1255	31223.5	4578.8	14.7
4	10 + 503	12 + 101	1598	42099.4	9060.5	21.5
5	12 + 101	15 + 500	3399	33570.6	6592.4	19.6
6	15 + 500	17 + 301	1801	44177.4	16187.4	36.6
7	17 + 301	21 + 502	4201	30821.8	4779.3	15.5
8	21 + 502	27 + 099	5597	40399.7	7935.0	19.6
9	27 + 099	28 + 899	1800	31007.9	5751.3	18.5
10	28 + 899	33 + 504	4605	38495.2	7587.8	19.7
11	33 + 504	35 + 696	2192	35343.4	6659.1	18.8

3.3.1.3. Obtención de la eficiencia de transferencia de carga

Metodología

La eficiencia de transferencia de carga de deflexión se puede calcular a partir de la siguiente ecuación:

$$LTE_{\delta} = 100 * \left(\frac{d_u}{d_l}\right) \tag{3.18}$$

Donde:

 LTE_{δ} =eficiencia de transferencia de carga de deflexión, porcentaje.

 $d_u = \text{deflexión producida en la losa sin carga, } \mu m.$

 d_l = deflexión producida en la losa cargada, μm .

Las pruebas de deflexión se realizaron en las juntas transversales. Se probaron 297 juntas transversales usando FWD para medir la eficiencia de la transferencia de carga. En cada prueba, se aplicaron tres golpes de 65kN de carga y se registra la cuenca de deflexión para cada golpe. La eficiencia de transferencia de carga se calcula para cada golpe y se tomó un valor promedio como la eficiencia de transferencia de carga medida [38].

Resultados

Para la eficiencia de transferencia de carga se consideró la sectorización rea-

lizada en la etapa 2 llamada con el mismo nombre, en este capítulo, para los dos carriles. Un resumen de los resultados obtenidos de la eficiencia de transferencia de carga se presenta en el Cuadro 3.8. Los resultados de la eficiencia de transferencia de carga obtenida de todos los puntos de prueba se presentan en el Apéndice E.

Cuadro 3.8: Eficiencia de transferencia de carga carril derecho e izquierdo.

Tra	mo	Promedio de	Clasificación	Promedio de	Clasificación
		LTE (%)	$\mathbf{d}\mathbf{e}$	LTE (%)	${f de}$
Inicio	\mathbf{Fin}	carril	\mathbf{LTE}	carril	\mathbf{LTE}
		derecho		izquierdo	
6+800	14 + 403	57.29	Moderado	70.69	Moderado
14 + 403	22 + 505	69.93	Moderado	68.39	Moderado
22 + 502	25 + 202	78.70	Buena	74.95	Buena
25 + 202	28 + 199	67.89	Moderado	71.74	Moderado
28 + 199	35 + 801	74.16	Buena	69.62	Moderado

3.3.2. Método de elementos finitos

En esta etapa se realizará el análisis de deflexiones aplicando método de elementos finitos para determinar la caracterización de los materiales que conforman el sistema del pavimento y de esta manera validar y afinar, en caso de ser necesario, los módulos encontrados con el método AASHTO.

De manera general el procedimiento que se sigue para este análisis es realizar la simulación en el programa de elementos finitos Ansys, tomando como datos de entrada: la carga aplicada al pavimento con el FWD; espaciamiento de sensores; módulos semilla obtenidos por el método AASHTO: módulo de elasticidad del concreto y módulo reacción de la subrasante y módulos de elasticidad de la capa asfáltica y material granular dados por la literatura y por información proporcionada por el MTOP; los espesores de las capas que vienen dadas de informes entregados por el MTOP y ensayos de extracción de núcleos realizados. Seguidamente se realizó la modelización de la estructura con los datos antes mencionados en el programa Ansys, se realizó el cálculo de deflexiones y se comparó la deflexión máxima obtenida en campo con la deflexión máxima simulada en el software. A continuación, se determinó si la diferencia entre las deflexiones máximas obtenidas es óptima utilizando el error de la media cuadrática (*Root Mean Square* - RMS). Que se explica en la siguiente sección. El flujo de este procedimiento se presenta en la figura 3.12.

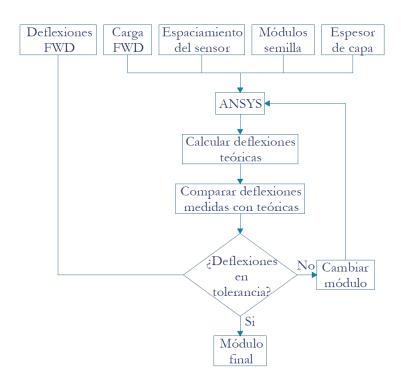


Figura 3.12: Procedimiento del análisis de deflexiones en Ansys.

3.3.2.1. Comprobación del error con la media cuadrática

Finalizando con la modelización en Ansys se obtuvo las deflexiones a las distancias de los geófonos para posteriormente comparar con las deflexiones obtenidas por el equipo FWD. Cuando la diferencia entre las deflexiones calculadas y medidas en campo no eran óptimas se varían los módulos empezando desde el material granular ya que este consta de base y subbase por lo tanto es el módulo que más incertidumbre tiene, seguidamente se varía el módulo del asfalto y finalmente el módulo de la losa de hormigón, siempre tratando de que estos módulos se encuentren en el rango establecido. Para definir cuál es la diferencia óptima se utilizó el error de la media cuadrática que se explica a continuación.

La bondad de ajuste entre el cuenco de deflexión calculado y el cuenco de deflexión medida se denomina medida de convergencia. La media cuadrática - RMS por sus siglas en ingles (*Root Mean Square*) o Error de la media cuadrática (*Root Mean Square Error* - RMSE), es una de las medidas más comunes de convergencia y se puede usar para proporcionar una medida de la magnitud de la diferencia entre el cuenco de deflexión calculado y medido está representada

por la ecuación 3.19 [13]:

$$RMS(\%) = \sqrt{\frac{1}{n_d} \sum_{i=1}^{n} \left(\frac{d_{ci} - d_{mi}}{d_{mi}}\right)^2 * 100}$$
 (3.19)

Donde:

 d_{ci} = deflexión calculada del sensor i Ansys.

 d_{mi} = deflexión medida del sensor i FWD.

 n_d = número de sensores utilizados en Ansys.

Se debe tratar de obtener coincidencias entre los cuencos de deflexión calculados y medidos, en términos de RMS, de aproximadamente 1 a 2 por ciento. A menudo, esto no se puede lograr y sugiere que se verifiquen los datos de entrada básicos (como el espesor de las capas). Los errores generales de convergencia "alta" indican que existe algún problema con los datos de deflexión, los tipos de capa y los espesores, o la falta de homogeneidad del material, que podría darse porque la losa presenta grietas o fisuras. Los errores de convergencia "altos" no significan necesariamente que los módulos de capa retrocalculados no son buenos [13].

Es importante señalar que inicialmente se realizará la comparación entre las deflexiones máximas teórica y medida, si esta diferencia es óptima entonces se procederá a realizar toda la simulación en Ansys obteniendo el cuenco de deflexiones y se calcula el RMS.

3.3.2.2. Modelización de la estructura del pavimento mediante Ansys

Una modelización es un modelo teórico en el cual, a través de herramientas computacionales se pueden extraer los valores de tensiones, deformaciones y desplazamientos de una estructura. En el caso de los pavimentos rígidos existen modelos clásicos de respuesta entre los que se pueden mencionar el modelo de Westergaard, la teoría de las capas elásticas y recientemente, con el avance de las computadoras, el Método de los Elementos Finitos (MEF) [23].

Consideraciones previas a la simulación

A continuación, en el Cuadro 3.9 se presenta los aspectos que se consideraron para la modelización en el software Ansys:

Cuadro 3.9: Consideraciones para el análisis del pavimento en Ansys.

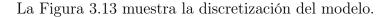
Losa	Asfalto	Material	Subrasante	Carga
		Granular		
Sólido	Material	Comportamiento		Estática con
homogéneo,	homogéneo,	homogéneo,	Macizo	ubicaciones
elástico e	elástico e	isótropo y	de	en el centro
isótropo	isótropo	linealmente	Winkler	de la losa
		elástico		

Análisis estructural en Ansys

Se utilizará la plataforma de Ansys llamada Workbench usada generalmente para crear proyectos de análisis de mecánica estructural. Para este análisis se realiza los siguientes pasos:

- 1. Modelo 3D: se dibuja y ensambla el modelo 3D del pavimento con las dimensiones y espesores del sistema en el programa Inventor. Se consideraron 3 capas: material granular, carpeta asfáltica y losa de hormigón, los espesores son variables para cada punto, esta información se muestra en el Cuadro 3.12. Finalmente, se exporta a un archivo con extensión .stp.
- 2. **Pre-procesamiento:** se realiza la configuración del modelo, dado que se trata de un análisis estructural estático. En la caja de herramientas se agrega al esquema del proyecto la opción *Static Structural* dando doble clic y arrastrándola al panel. Dentro de este procesador se tiene los siguientes comandos que deben ser editados en orden:
 - Engineering Data: en donde se genera cada material con sus propiedades o en caso de que el material requerido no este dentro de la librería de materiales se crea uno nuevo con las propiedades deseadas. Para cada capa se define los módulos elásticos y coeficientes de Poisson. En el Cuadro 3.10 se muestran los valores de estas variables que se utilizaron para la simulación en Ansys, estos valores se definieron considerando el Cuadro 2.4 para los valores mínimos y máximos de cada capa, en el caso del material granular puesto que para la simulación esta capa consta de base, subbase y subrasante se consideró los valores extremos de los últimos datos presentados en el Cuadro 2.4. Mientras que para los módulos con los que se iniciará la simulación se consideraron los valores del Cuadro 1.1 que se encuentran en los informes proporcionados por el MTOP:

Cuadro 3.10: Módulos elásticos y coeficientes de Poisson usados en Ansys.


Capa	Coeficiente	Módulos de	Elasticida	d [Pa]
	de Poisson	Inicial	Mínimo	Máximo
Losa de hormigón	0.15	ver Cuadro 3.11	1.40E + 10	5.60E + 10
Concreto asfáltico	0.35	1.03E + 09	4.80E + 08	$1.40\mathrm{E}{+10}$
Material granular	0.35	$1.14\mathrm{E}{+08}$	3.40E + 07	$1.40\mathrm{E}{+09}$

En el Cuadro 3.11, se muestran los módulos de elasticidad del concreto y los módulos de reacción de la subrasante, con los que se inició la simulación de los puntos en los que se realizó la extracción de núcleos, la abscisa 30+805 del carril derecho y las abscisas 9+248 y 19+100 del carril izquierdo. Estos valores fueron definidos a partir de los resultados obtenidos por el método AASHTO. En el Apéndice F se muestran las fotografías de las extracciones realizadas.

Cuadro 3.11: Módulo de elasticidad del concreto y módulo de reacción de la subrasante iniciales usados para la simulación en Ansys.

	Módulo	Módulo de	Módulo de
$\mathbf{Abscisa}$	\mathbf{Ec}	reacción	reacción
	(Pa)	k (pci)	k (N/mm3)
30 + 805	$3.61E{+}10$	535,01	0.145
19 + 100	$2.90\mathrm{E}{+10}$	929,28	0.252
9 + 248	$2.28\mathrm{E}{+10}$	203.25	0.055

- Geometry: en este punto se procedió a cargar el archivo extensión .stp en modelo 3D creado anteriormente.
- Model: aquí se visualiza la geometría cargada en el punto anterior. Dentro de esta opción se presentan las siguientes categorías:
 - Geometry: se asigna el material a cada capa.
 - Connections: en este punto se verifica que todas las capas se encuentren unidas, con la finalidad de que al momento de que al aplicar la carga el modelo se deforme en su totalidad, es decir se comporte de manera monolítica.
 - *Mesh:* se construye el mallado, que con la finalidad de que los resultados obtenidos sean confiables se consideró los siguientes criterios:
 - o Función de tamaño: aproximado
 - o Centro de relevancia: fino
 - o Semilla de tamaño inicial: ensamblaje activo
 - Suavizado: bajo
 - o Transición: lenta

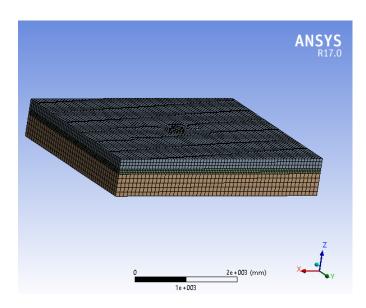


Figura 3.13: Modelización, geometría y mallado de elementos.

• Static Structural: se define las condiciones de contorno. Fixed Support: para confinar el modelo lateralmente. Elastic Support: para representar a la subrasante como un medio elástico (resorte).

Force: para aplicar la carga de 65 kN, en un radio de 15 cm. El eje de carga circular está restringido a movimientos horizontales. En la Figura 3.14 se muestran las condiciones de contorno mencionadas:

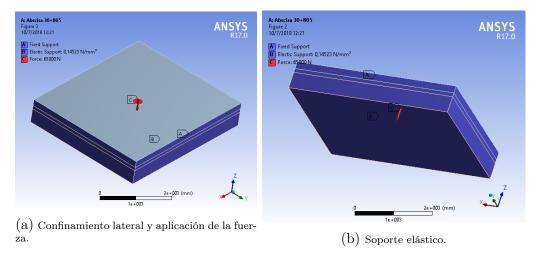


Figura 3.14: Condiciones de contorno.

3. Solución: se resuelve el modelo con las características asignadas y se presenta los esfuerzos, deformaciones, la tabulación de estos, la resolución del modelo de forma gráfica y se genera un reporte automático. En la Figura 3.15 se presenta las deformaciones totales de manera gráfica obtenidas con Ansys.

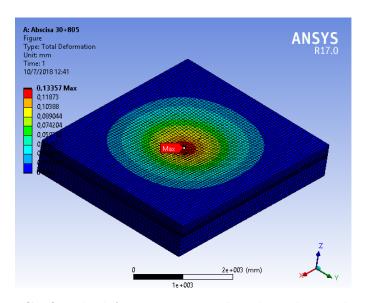
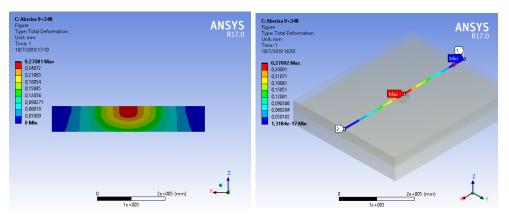


Figura 3.15: Gráfica de deformaciones totales obtenidas mediante Ansys.

En el Cuadro 3.12 se presenta los espesores considerados para la modelización de cada abscisa. Los espesores de la losa de hormigón y de la carpeta asfáltica se obtuvieron por extracción de núcleos, y el espesor de la capa de material granular se obtuvo de informes entregados por el MTOP.


Cuadro 3.12: Espesores de las capas consideradas en Ansys.

	Esp	pesores [n	nm]
Material	Abscisa	Abscisa	Abscisa
	9 + 248	19 + 100	30 + 805
Losa de	202	210	200
hormigón			
Carpeta	110	45	110
asfáltica			
Material	450	450	450
granular			

Datos de salida

Ansys permite analizar la información obtenida de manera detallada. En la Figura 3.16 se presenta la deformación vertical de la abscisa 9+248 y en la escala

gráfica se muestra los rangos de deformaciones asignado para cada color, como se esperaba en el material granular la carga no tiene gran influencia pues su deformación es cercana a cero, mientras que en la losa de concreto las deformaciones son apreciables. Es importante aclarar que Ansys no utiliza directamente las deflexiones obtenidas por el FWD, sino que utiliza los módulos obtenidos por el método AASHTO para la capa de concreto (módulo de elasticidad) y la subrasante (módulo de reacción) como módulos semilla y para la carpeta asfáltica y el material granular se toman los rangos de módulos expuestos anteriormente que se trata de afinar.

(a) Deformación vertical de la sección del pavimento. (b) Deformación vertical generada en la losa de mento.

Figura 3.16: Deformaciones verticales de la abscisa 9+248.

En el siguiente capítulo se describe con más detalle los resultados obtenidos.

Capítulo 4

Análisis de resultados del retrocálculo

En este capítulo se presenta el análisis de resultados obtenidos en el Capítulo 3. Se inicia con el análisis de los parámetros obtenidos por el método AASHTO. Seguidamente se presentan una comparación entre los resultados obtenidos por el método AASHTO y el método de elementos finitos, analizando el cuenco de deflexiones y el módulo de elasticidad a través de dos simulaciones en el software Ansys. Finalmente se realiza un análisis de sensibilidad de las variables que influyen en el diseño del pavimento y su incidencia en la deflexión mediante simulaciones en Ansys.

4.1. Análisis de resultados del método AASHTO

A continuación, se presenta el análisis de los parámetros obtenidos por el método AASHTO que son: módulo de elasticidad del concreto, módulo de reacción de la subrasante y eficiencia de la transferencia de carga.

4.1.1. Análisis de resultados del módulo de reacción de la subrasante

El módulo de reacción de la subrasante es una magnitud asociada a la rigidez del suelo que permite conocer el asentamiento de una estructura en el mismo,

así como la distribución de esfuerzos en ciertos elementos de cimentación. Al igual que la sectorización realizada considerando la deflexión máxima, en la sectorización por módulos de reacción los valores del carril derecho e izquierdo se encontraban dispersos, por lo que se realizó un análisis por carril.

En los Cuadros 4.1 y 4.2 se presenta el módulo de reacción de la subrasante de cada sector, de acuerdo a lo expuesto en el Cuadro 2.3 en el Capítulo 2 se presenta la clasificación de soporte de cada sector.

Para el carril derecho se ha sectorizado el tramo en 5 sectores de los cuales se puede apreciar que el sector que se encuentra en condiciones medias de soporte es el sector 3 de abscisas 20+202 a 24+004 y los sectores restantes se encuentran en condiciones aceptables de soporte pues su clasificación es de un soporte alto o muy alto según el Cuadro 4.1.

Mientras que para el carril izquierdo se tiene 6 sectores, en el que el primer sector tiene condiciones de soporte bajas, el tercer sector tiene un soporte medio y los cuatro sectores restantes cuentan con un soporte entre alto y muy alto.

Por lo tanto, el carril izquierdo tiene valores de módulo de reacción de la subrasante bajos en las abscisas 6+850 - 14+696 y por esta razón se puede considerar el sector más crítico.

Si se realiza un traslape del sector 3 del carril derecho sobre el izquierdo se puede concluir que de manera general el sector del tramo que se encuentra en peores condiciones de soporte es el sector 3 con abscisas 22+099 a 25+301 pues tanto en el carril derecho como el izquierdo tiene soporte medio.

Cuadro 4.1: Módulo de reacción de la subrasante carril derecho.

	Progresiva		k	
Sector			$\mathbf{promedio}$	Soporte
	Inicio	\mathbf{Fin}	\mathbf{pci}	
1	6+800	13 + 403	335.75	Muy alto
2	13 + 403	20 + 202	227.25	Alto
3	20 + 202	24 + 004	165.82	Medio
4	24 + 004	28 + 002	355.64	Muy alto
5	28 + 002	35 + 801	184.48	Alto

Cuadro 4.2: Módulo de reacción de la subrasante carril izquierdo.

	Progr	resiva	k	
Sector			$\mathbf{promedio}$	Soporte
	Inicio	\mathbf{Fin}	pci	
1	6 + 850	14 + 696	117.27	Bajo
2	14 + 696	22 + 099	320.72	Muy alto
3	22 + 099	25 + 301	156.49	Medio
4	25 + 301	28 + 487	247.98	Muy alto
5	28 + 487	32 + 100	190.03	Alto
6	32 + 100	35 + 696	204.00	Alto

4.1.2. Análisis del módulo de elasticidad del concreto

El módulo de elasticidad del concreto representa la rigidez de este material ante una carga impuesta. Se realizó el seccionamiento del tramo considerando el módulo de elasticidad del concreto y de manera similar a los parámetros anteriores se realizó un análisis por carril en donde se obtuvieron un total de 13 secciones para el carril derecho y para el carril izquierdo 11 secciones. Esto se debe a que los módulos de PCC varían considerablemente a lo largo de la duración del proyecto. Los valores de deflexión que producen valores ÁREA mayores que 36 no se usan en los cálculos de los módulos PCC ya que si ese fuera el caso la ecuación 3.15 no se podría resolver. En este trabajo no se presentaron valores ÁREA superiores a 36 por lo tanto se trabajó con todos los valores de deflexión (Ver Apéndice D).

Considerando los valores típicos de módulos los resultados son aceptables, pues los módulos obtenidos por retrocálculo se encuentra dentro de un rango, respecto a los módulos típicos de laboratorio recomendados por el Centro de investigaciones de Pavimentos de la Universidad de California mostrados en el Cuadro 2.4 que tiene un rango de 14.000 MPa a 56.000 MPa.

Analizando de manera más detallada los valores de módulos elásticos obtenidos se observa que para el carril derecho sectorizado en 13 partes, los sectores 2, 4, 6 y 11, que representan el 26 % del total del tramo, se encuentran por debajo de la mitad del rango recomendado (35.000 Mpa), esto podría indicar que dichos sectores cuentan con un módulo de elasticidad del concreto deficiente. Mientras que los sectores 1, 7, 8, 10 y 12 que reflejan el 45 % del total del tramo se encuentran en la mitad o bordeando la mitad del rango recomendado, por lo que se podría decir que es un valor aceptable. Por último, los sectores 3, 5 y 9 que significan el 27 % tiene un valor superior a la mitad del rango y el 2 % restante que es el último sector analizado (sector el 13) tienen un valor alto de módulo de elasticidad. En el Cuadro 4.3, se presenta el resumen de lo explicado

anteriormente.

Cuadro 4.3: Análisis del módulo elástico del concreto carril derecho.

Sectores	Porcentaje	Valores de	Calificación
	$\operatorname{del} \operatorname{tramo}$	$f m\'odulos$	de módulo
2 - 4 - 6 - 11	26	Debajo de la mitad del rango	Deficiente
1 - 7 - 8 - 10 - 12	45	En la mitad o bordeando la mitad del rango	Aceptable
3 - 5 - 9	27	Superior a la mitad del rango	Bueno
13	2	Valor alto	Excelente

Mientras que para el carril izquierdo se tiene que los sectores 1, 3, 5, 7 y 9 que representan el 41 % del total de sectores tienen un valor inferior a la mitad del rango recomendado se puede decir que cuentan con un módulo de elasticidad deficiente. Los sectores 2, 10 y 11 que son el 28 % del total de sectores tienen un valor que bordea a la mitad del rango recomendado, se podría decir que tienen valores aceptables de módulos de elasticidad. Finalmente, el 31 % restante tiene valores superiores a la mitad del rango recomendado, es importante señalar que este carril no cuenta con valores altos de módulos. En el Cuadro 4.4, se presenta un resumen de lo expuesto anteriormente.

Cuadro 4.4: Análisis del módulo elástico del concreto carril derecho.

Sectores	Porcentaje	Valores de	Calificación
	$\operatorname{del} \operatorname{tramo}$	$f m\'odulos$	de módulo
1 - 3 - 5 - 7 - 9	41	Debajo de la mitad del rango	Deficiente
2 - 10 - 11	28	En la mitad o bordenado la mitad del rango	Aceptable
4 - 6 - 8	31	Superior a la mitad del rango	Bueno

4.1.3. Obtención de la eficiencia de transferencia de carga

Basándose en el Cuadro 3.8 se puede observar que los valores de eficiencia de transferencia de carga en el carril derecho e izquierdo coinciden en la clasificación de LTE hasta el sector 4 y en el último sector la eficiencia de transferencia de carga es buena en el carril derecho y moderada en el carril izquierdo.

Para ilustrar de mejor manera la clasificación de todos los puntos de prueba del tramo que se encuentran en el Apéndice E se realizó el conteo de todos los datos que tenían la clasificación de LTE bueno, moderado, pobre y muy pobre de cada carril, los resultados de este proceso se presenta la Figura 4.1.

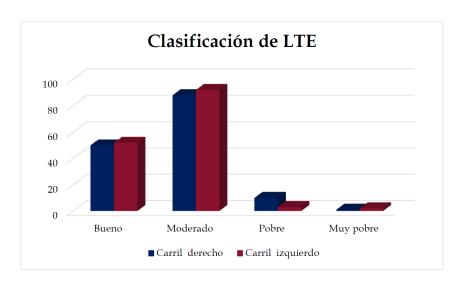


Figura 4.1: Clasificación de LTE del carril derecho e izquierdo.

En base a la Figura 4.1, el carril izquierdo presenta una mejor condición de eficiencia de transferencia de carga, ya que cuenta con valores superiores de LTE clasificación buena y moderada mientras que presenta valores bajos de LTE clasificación pobre. En general la clasificación más frecuente es una LTE moderada con un 61 %, seguida de una LTE de clasificación buena con un 34 %, en tercer lugar, una LTE pobre con un 4 % y finalmente una LTE muy pobre con un 1 %.

4.2. Resultados del método AASHTO vs resultados del método elementos finitos

Con la finalidad de evaluar los métodos aplicados en este trabajo se presenta un análisis comparativo entre los parámetros obtenidos por cada uno de ellos como: cuenco de deflexiones y módulo de elasticidad. Se presentan y analizan los resultados obtenidos de dos simulaciones realizadas en Ansys de cada abscisa.

4.2.1. Primera simulación

Para esta primera simulación se trató de que la deflexión máxima simulada en el software Ansys se acerque la deflexión obtenida en campo con el FWD, para los módulos de elasticidad del concreto se consideró como módulos semilla los obtenidos por el método AASHTO, variándolos sin dejar de lado los rangos de los módulos de elasticidad permitidos, para los módulos de elasticidad del asfalto y el material granular se tomó en cuenta un promedio de los rangos establecidos, para el módulo de reacción de la subrasante se mantuvo el dado en el método AASHTO. Es importante señalar que la única variable que se modificó fue el módulo de elasticidad del concreto.

4.2.1.1. Resultados obtenidos con Ansys

Como se mencionó anteriormente con los módulos obtenidos por el método AASHTO se procedió a simular en Ansys puntos en donde se realizó extracción de núcleos para tener información real del espesor de las capas de hormigón y asfalto, se afinó los módulos de elasticidad de las capas tratando que las deflexiones calculadas se ajusten a las medidas en campo. A continuación, en el Cuadro 4.5, se presenta de manera tabulada los módulos obtenidos a través de iteraciones en Ansys:

Capa Módulos de elasticidad obtenidos de Ansys [Pa] Abscisa 9+248Abscisa 19+100 Abscisa 30+805 Losa de hormigón 2.15E + 103.20E + 103.61E + 10Carpeta asfáltica 4.00E + 091.20E + 098.00E + 08Material granular 2.70E + 073.00E + 081.27E + 08Módulo de reacción 0.05517 0.25225 de la subrasante k N/mm3 0.14523

Cuadro 4.5: Módulos obtenidos por Ansys

4.2.1.2. Análisis comparativo de deflexiones entre FWD y Ansys.

En las Figuras 4.2, 4.3 y 4.4 se aprecia que hasta el geófono ubicado a 30 cm del centro de carga las deflexiones calculadas son menores a las medidas en campo, para los geófonos siguientes las deflexiones simuladas en Ansys son mayores a las obtenidas con el FWD, es decir, la forma de los cuencos de deflexiones varía de manera mínima.

La abscisa que más varía en la forma del cuenco de deflexiones es la 9+248 mostrada en la Figura 4.2, que presenta el mayor desfase con un valor de 0.02 mm a una distancia de 90 cm del centro de la placa de carga, este desfase notable puede deberse a que de acuerdo a inspecciones visuales la losa contaba con una grieta transversal, mientras que el cuenco de deflexiones calculado de las dos abscisas restantes de las Figuras 4.3 y 4.4, se ajustan de mejor manera a las deflexiones del cuenco medido en campo, debido a que estas losas se encontraban

superficialmente bien.

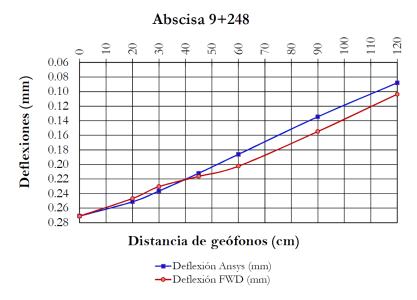


Figura 4.2: Curvas comparativas de deflexiones entre FWD y Ansys abscisa 9+248.

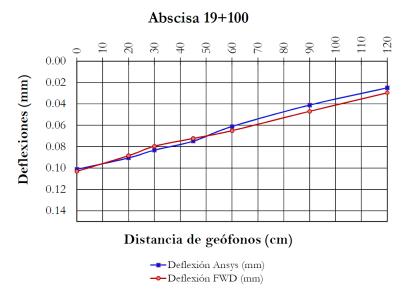


Figura 4.3: Curvas comparativas de deflexión entre FWD y Ansys abscisa $19{+}100$.

La abscisa 19+100 es la que tiene mayor aproximación al cuenco de deflexiones medido, el máximo desfase que esta abscisa presenta es de 0.0058 mm, en el geófono ubicado a 90 cm del centro de carga.

La abscisa 30+805 tiene un desfase máximo de 0.0094 mm en el geófono ubicado a 120 cm del centro de carga.

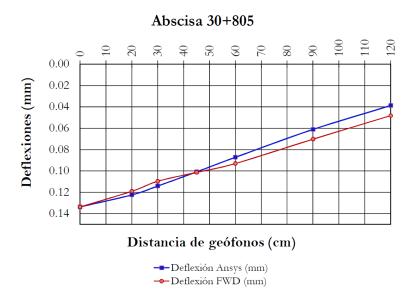


Figura 4.4: Curvas comparativas de deflexión entre FWD y Ansys abscisa 30+805.

Según lo mostrado en el Cuadro 4.6 todos los valores de RMS se encuentran en el rango permitido de error, la abscisa que tiene el mayor valor de RMS es la 30+805 ya que a partir de la deflexión medida a 30 cm del centro de carga se presenta un desfase notable. Por otro lado, Ansys mantiene un valor de RMS promedio de $0.81\,\%$ con respecto a las deflexiones obtenidas con el FWD.

Cuadro 4.6: Comparación deflexiones Ansys vs FWD

Distancia	A	$_{ m bscise}$ $9+$	248	A	bscisa 19-	+100	A	bscisa 30-	⊢805
\mathbf{cm}	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$
0	0.2710	0.2709	8.71E-06	0.1031	0.1012	0.034	0.1338	0.1337	4.25E-05
20	0.2467	0.2513	0.035	0.0884	0.0905	0.058	0.1191	0.1225	0.081
30	0.2305	0.2365	0.067	0.0796	0.0833	0.212	0.1097	0.1142	0.167
45	0.2165	0.2121	0.041	0.0723	0.0748	0.122	0.1014	0.1009	0.002
60	0.2024	0.1862	0.644	0.0650	0.0611	0.358	0.0931	0.0873	0.392
90	0.1548	0.1346	1.703	0.0469	0.0410	1.558	0.0703	0.0612	1.690
120	0.1036	0.0880	2.279	0.0296	0.0249	2.494	0.0482	0.0388	3.831
	RMS	0.7720	%	RMS	0.7776	%	RMS	0.8777	%

4.2.1.3. Análisis comparativo de módulos de elasticidad AASHTO y Ansys.

Los módulos obtenidos mediante el software Ansys se encuentran dentro de los rangos dados en el Cuadro 3.10. En la Figura 4.5 se presenta una comparación de los módulos elásticos obtenidos por los dos métodos, en donde se presenta la línea de igualdad 1:1, la pendiente de la línea de regresión lineal fue de 1.085, cercana a la línea de igualdad lo que indica una buena correlación de $R^2 = 0.92$ entre los datos.

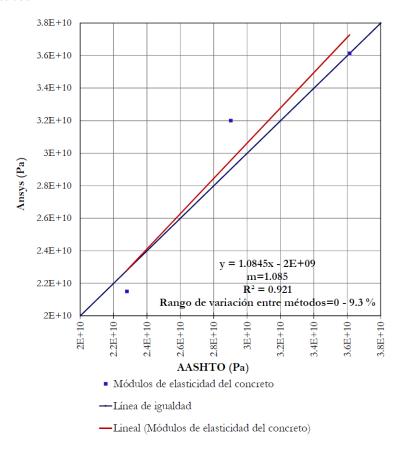


Figura 4.5: Comparación de módulos de elasticidad del concreto entre Ansys y FWD.

Además, según el Cuadro 4.7 los valores obtenidos a través de Ansys varían en un rango de 0 a 9.3 % de los valores obtenidos por el método AASHTO por lo que se podría decir que los resultados obtenidos por los dos métodos son similares. Finalmente se observa como en esta primera simulación el software Ansys tiene una buena aproximación de los módulos de elasticidad al método AASHTO con resultados cerca y sobre la línea de igualdad.

Cuadro 4.7: Comparación de módulos de elasticidad del concreto Ansys vs AASHTO.

-	Módulo el	asticidad	Variación
Abscisa	concreto [Pa]		de valores
\mathbf{km}	AASHTO	Ansys	entre métodos [$\%$]
9+248	$2.28E{+}10$	2.15E+10	5.7
19 + 100	$2.90\mathrm{E}{+10}$	$3.20E{+}10$	9.3
30 + 805	$3.61\mathrm{E}{+10}$	$3.61\mathrm{E}{+10}$	0

4.2.2. Segunda simulación

Para la segunda simulación se trató de que las deflexiones del cuenco simulado se ajusten a las deflexiones del cuenco medido, para los módulos de elasticidad del concreto se consideró como módulos semilla los obtenidos por el método AASHTO, variándolos sin dejar de lado los rangos de los módulos de elasticidad permitidos, para los módulos de elasticidad del asfalto y el material granular se tomó como referencia la información entregada por parte del MTOP y además se consideró los rangos establecidos, para el módulo de reacción de la subrasante se mantuvo el obtenido en el método AASHTO. En este caso se realizó una variación del módulo de elasticidad del concreto, módulo de elasticidad del asfalto y módulo de elasticidad del material granular en ese orden.

4.2.2.1. Resultados obtenidos con Ansys.

En el Cuadro 4.8 se presenta los módulos obtenidos de la segunda simulación mediante Ansys:

Cuadro 4.8: Módulos obtenidos por Ansys

	Módulos de elasticidad obtenidos de Ansys [Pa]				
	Abscisa $9+248$	Abscisa $19+100$	Abscisa $30+805$		
Losa de hormigón	$2.15E{+}10$	$3.90E{+}10$	$3.61E{+}10$		
Carpeta asfáltica	$8.00E{+}08$	5.06E + 09	1.03E + 09		
Material granular	2.70E + 07	$1.54\mathrm{E}{+08}$	$1.14\mathrm{E}{+08}$		
Módulo de reacción de					
la subrasante k $N/mm3$	0.05517	0.25225	0.14523		

4.2.2.2. Análisis comparativo de deflexiones entre FWD y Ansys.

En esta segunda simulación para la abscisa 9+248 se utilizó los mismos módulos obtenidos en la primera simulación de esta abscisa ya que al realizar las iteraciones en Ansys de los módulos el cuenco presentaba mayor desfase y mayor error RMS, por lo que el cuenco de deflexiones de la abscisa 9+248, es la misma que la figura 4.2.

De manera similar a la primera simulación la abscisa que más varía en la forma del cuenco de deflexiones es la 9+248, y como se mencionó este desfase puede deberse a que de acuerdo a inspecciones visuales la losa contaba con una grieta transversal.

Asimismo las deflexiones calculadas de la abscisa 19+100 sigue siendo la que se ajusta de mejor manera a las deflexiones medidas en campo como se puede observar en la Figura 4.6, su máximo desfase es de 0.0068 mm valor mayor al presentado en la misma abscisa en la primera simulación sin embargo según el Cuadro 4.8 el error es menor al presentado en la primera simulación esto se debe a que los valores restantes del cuenco de deflexiones de esta segunda simulación tiene mejor aproximación que los de la primera.

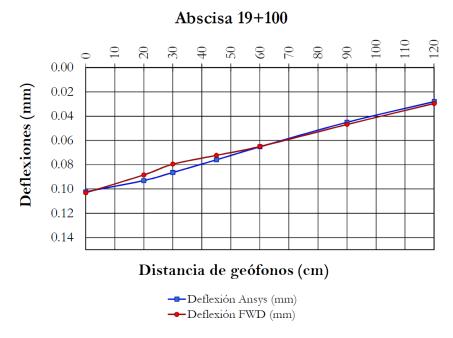


Figura 4.6: Curvas comparativas de deflexión entre FWD y Ansys abscisa 19+100.

La abscisa 30+805 tiene un desfase máximo de 0.0082 mm a 120 cm de la

aplicación de la carga, valor inferior al desfase máximo obtenido en la primera simulación. Por lo tanto, se puede inferir que el ajuste de deflexiones de esta abscisa es mejor en la segunda simulación.

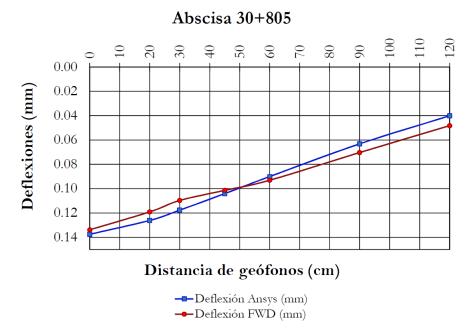


Figura 4.7: Curvas comparativas de deflexión entre FWD y Ansys abscisa 30+805.

Según lo mostrado en el Cuadro 4.9 todos los valores de RMS se encuentran en el rango permitido de error, la abscisa que tiene el mayor valor de RMS sigue siendo la 30+805 sin embargo este valor es inferior al obtenido en la primera simulación de esta abscisa. Por otro lado, Ansys mantiene un valor de RMS promedio de $0.67\,\%$ con respecto a las deflexiones obtenidas con el FWD, como era de esperarse este valor es inferior al valor obtenido en la primera simulación lo que indica que en la segunda simulación los cuencos de deflexiones calculados tienen una mejor aproximación a los cuencos de deflexiones medidos.

Cuadro 4.9: Comparación deflexiones Ansys vs FWD.

Distancia	Α	$_{ m bscise}$	248	A	bscisa 19-	+100	A	bscisa 30-	⊢805
\mathbf{cm}	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$	FWD	ANSYS	$\left(\frac{d_{ci}-d_{mi}}{d_{mi}}\right)^2$
0	0.2710	0.2709	8.71E-06	0.1031	0.1023	0.0057	0.1338	0.1375	0.077
20	0.2467	0.2513	0.035	0.0884	0.0930	0.2716	0.1191	0.1261	0.348
30	0.2305	0.2365	0.067	0.0796	0.0864	0.7289	0.1097	0.1177	0.525
45	0.2165	0.2121	0.041	0.0723	0.0760	0.2554	0.1014	0.1041	0.069
60	0.2024	0.1862	0.644	0.0650	0.0653	0.0017	0.0931	0.0900	0.108
90	0.1548	0.1346	1.703	0.0469	0.0451	0.1529	0.0703	0.0632	1.033
120	0.1036	0.0880	2.279	0.0296	0.0281	0.2640	0.0482	0.0401	2.864
	RMS	0.7720	%	RMS	0.4583	%	RMS	0.7925	%

4.2.2.3. Análisis comparativo de módulos de elasticidad AASHTO y Ansys

Los módulos obtenidos mediante el software Ansys se encuentran dentro de los rangos dados en el Cuadro 3.10. En la Figura 4.8 se presenta una comparación de los módulos elásticos obtenidos por los dos métodos,
en la figura se presenta la línea de igualdad 1:1, la pendiente de la línea de regresión lineal fue de
 1.061 y aunque es un valor más cercano a la pendiente de la línea de regresión obtenida en la primera simulación gráficamente se encuentra más alejada de la misma, lo que indica una correlación regular de $R^2=0.57$ entre los datos, este valor de correlación se debe a que la abscisa 19+100 se simuló con un módulo de elasticidad muy alejado al obtenido por el método del AASHTO, lo que se puede apreciar en el Cuadro 4.9 en donde se observa que el porcentaje de variación de módulos de elasticidad entre los métodos es de $25.6\,\%$ que es un valor alto. Por lo tanto, en la abscisa 19+100 el valor de los módulos de elasticidad difiere notablemente.

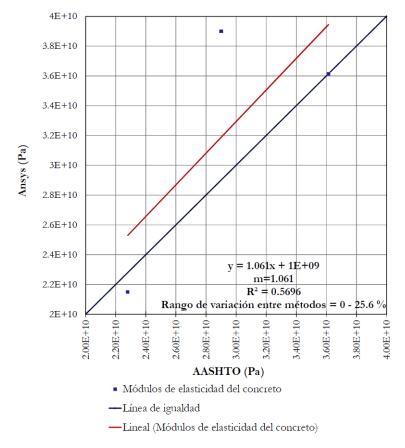


Figura 4.8: Comparación de módulos de elasticidad del concreto entre FWD y Ansys.

Además, según el Cuadro 4.10 los valores obtenidos a través de Ansys varían en un rango de 0 a 25.6 % de los valores obtenidos por el método AASHTO por lo que se podría decir que en esta segunda simulación existe una variabilidad relativamente alta entre los dos métodos, esto indica que, al tratar de tener un mejor ajuste de las deflexiones calculadas a las medidas en campo, los valores de módulos obtenidos por el método Ansys se alejan de los obtenidos por el método AASHTO.

Cuadro 4.10: Comparación de módulos de elasticidad del concreto FWD y Ansys.

	Módulo el	asticidad	Variación
Abscisa	concreto [Pa]		de valores
\mathbf{km}	AASHTO	Ansys	entre métodos [$\%$]
9+248	2.28E+10	2.15E+10	5.7
19 + 100	$2.90\mathrm{E}{+10}$	$3.90E{+}10$	25.6
30 + 805	$3.61\mathrm{E}{+10}$	$3.61\mathrm{E}{+10}$	0.0

4.2.3. Análisis de deflexiones con espesor de 23 cm

Se presenta un supuesto análisis del pavimento con una losa de 23 cm, para examinar la influencia del espesor de la losa en las deflexiones del pavimento.

En el Cuadro 4.11 se presenta el resultado de las deflexiones obtenidas con los datos de la segunda simulación presentados en el Cuadro 4.8, la razón por la que se utilizan estos datos para el análisis es porque tienen un menor valor de error RMS y gráficamente se ajustan mejor al cuenco de deflexiones obtenidos por el FWD.

Cuadro 4.11: Comparación de deflexiones obtenidas con espesores de 20 cm y 23 cm.

		Abscisa 9	+248		Abscisa 19	9+100		Abscisa 3	0+805
Distancia	Losa de	Losa de	Variación de	Losa de	Losa de	Variación de	Losa de	Losa de	Variación de
\mathbf{cm}	$20 \mathrm{cm}$	23cm	deflexión (%)	$20 \mathrm{cm}$	$23 \mathrm{cm}$	deflexión (%)	$20 \mathrm{cm}$	$23 \mathrm{cm}$	deflexión ($\%$)
0	2.71E-01	1.91E-01	29.7	1.02E-01	8.68E-02	15.2	1.38E-01	1.07E-01	22.05
20	2.51E-01	1.75E-01	30.4	9.30E-02	8.00E-02	14.0	1.26E-01	9.80E-02	22.29
30	2.36E-01	1.64E-01	30.6	8.64E-02	7.44E-02	13.9	1.18E-01	9.17E-02	22.04
45	2.12E-01	1.47E-01	30.8	7.60E-02	6.56E-02	13.6	1.04E-01	8.17E-02	21.46
60	1.86E-01	1.29E-01	30.9	6.53E-02	5.67E-02	13.2	9.00E-02	7.13E-02	20.76
90	1.35E-01	9.26E-02	31.2	4.51E-02	3.96E-02	12.2	6.32 E-02	5.11E-02	19.17
120	8.80E-02	6.03E-02	31.4	2.81E-02	2.49E-02	11.3	4.01E-02	3.31E-02	17.38
		Promedio	30.7		Promedio	13.3		Promedio	20.73

Las deflexiones obtenidas con un espesor de losa de 23 cm son menores a las obtenidas con un espesor de 20 cm. Las deflexiones de la abscisa 9+248 son las que tienen porcentajes de variación de deflexiones más altas de $30.7\,\%$

pues como se señaló esta losa contaba con una grieta transversal. Se analizará la abscisa 30+805 ya que es la que más se aproxima a las propiedades que presenta el tramo en estudio. Esta abscisa tiene un porcentaje de variación promedio de 20.73 %. Existe una considerable reducción de las deflexiones al colocar una losa de concreto de 23 cm lo que corrobora a los informes dados por el MTOP.

4.3. Análisis de sensibilidad de las variables de diseño del pavimento y su incidencia en la deflexión

Puesto que el módulo de reacción no es la única variable que influye en la obtención del cuenco de deflexiones, en esta sección se presenta un análisis de sensibilidad de las variables que inciden deflexión del modelo estructural simulado en Ansys. Para el desarrollo de este análisis se utilizará como base el artículo Análisis de sensibilidad de las variables de diseño de un pavimento rígido y su incidencia en la deflexión de Carlos Hernando Higera Sandoval [34], quien realizó un estudio de las diversas variables como los son la carga aplicada (P), espesor de la losa de concreto (h), radio del área de carga (a), módulo de elasticidad del concreto (E_c) , relación de poisson (μ) y el módulo de reacción del conjunto subbase y subrasante (k), para el análisis y el diseño de los pavimentos rígidos teniendo en cuenta la parte mecánica, y la incidencia de las variables anteriormente nombradas en las deflexiones.

Para este análisis de sensibilidad se escogió una estructura de referencia que cumple con la estructura general del tramo estudiado, se definió un rango de variación de cada una de las variables y se realizó la modelación en Ansys. Con la información de la modelación se realizó un análisis estadístico para definir los modelos de comportamiento, se generaron gráficas y tablas que ayuden a evaluar el comportamiento de las variables en lo referente a su grado de sensibilidad con relación a la deflexión del modelo de pavimento estudiado. Finalmente, se definió el grado de importancia de cada una de las variables, para de esta manera obtener conclusiones sobre el análisis de sensibilidad, que son útiles para el diseño, mantenimiento y conservación de estructuras de pavimentos rígidos.

4.3.1. Modelo estructural de referencia

Para realizar el análisis de sensibilidad de ciertas variables que influyen en la deflexión de un pavimento rígido con rehabilitación whitetopping se recurrió

al modelo estructural definido en la figura 4.9 que es el que corresponde a la abscisa 30+805 que es la que se aproxima más a la estructura general del tramo. El modelo estructural de referencia está constituido por una losa de hormigón de 20 cm de espesor, seguido de una carpeta asfáltica de 11 cm de espesor, una base granular de 45 cm de espesor y apoyada sobre una subrasante que tiene un módulo de reacción de $14.81 \ kg/cm^3$.

Para las condiciones de modelación se consideró la carga aplicada con el deflectómetro de 65 kN, las condiciones de contorno expuestas anteriormente en el Capítulo 3, se consideró una placa circular con un radio de carga de 15 cm.

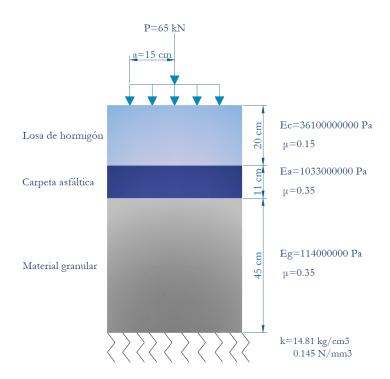


Figura 4.9: Modelo estructural de referencia.

4.3.2. Variables que contempla el análisis de sensibilidad

Las variables que se utilizarán en este análisis de sensibilidad y su influencia en la deflexión del modelo estructural son las siguientes:

- Espesor de la losa de hormigón, h.
- Módulo de elasticidad del concreto, E_c .

- Módulo de elasticidad de la carpeta asfáltica, E_a .
- Módulo de elasticidad del material granular, E_g .
- ullet Módulo de reacción de la subrasante, k.

4.3.3. Rango de variación de los parámetros de diseño

A continuación, se indican los rangos de variación de los parámetros que intervienen en el cálculo de la deflexión.

4.3.3.1. Rangos de variación del espesor de la losa

El análisis de diferentes espesores de losa de hormigón, como se presenta en el Cuadro 4.12; están definidos por valores típicos de uso común incluido el espesor de 23 cm que es el espesor que podría haberse colocado.

Cuadro 4.12: Rango de variación del espesor de la losa del modelo estructural.

Variable	cm	Rango de variación cm	cm
Espesor de la losa	17 20 23 26	17 - 26	3

4.3.3.2. Rangos de variación del módulo de elasticidad del hormigón

Se contempla el análisis de diferentes valores de módulo de elasticidad de la losa hormigón, como se indica en el Cuadro 4.13; estos valores están definidos por valores típicos de uso común.

Cuadro 4.13: Rango de variación del módulo de elasticidad de la losa de hormigón del modelo estructural de referencia.

Variable	Módulo del hormigón Pa	Rango de variación Pa	Variación Pa
Módulo de elasticidad del hormigón E_c	$\begin{array}{c} 1.51E{+}10 \\ 2.21E{+}10 \\ 2.91E{+}10 \\ 3.61E{+}10 \\ 4.31E{+}10 \\ 5.01E{+}10 \end{array}$	1.51E+10 - 5.01E+00	7.00E+09

4.3.3.3. Rangos de variación del módulo de elasticidad de la capa asfáltica

El análisis de diferentes valores de módulo de elasticidad de la capa asfáltica, como se muestra en el Cuadro 4.14; estos valores están definidos por valores típicos de uso común.

Cuadro 4.14: Rango de variación del módulo de elasticidad de la capa asfáltica del modelo estructural de referencia.

Variable	Módulo del asfalto Pa	Rango de variación Pa	Variación Pa
Módulo de	4.80E + 08		
elasticidad	7.55E + 08	$4.80E{+}08$	
del asfalto	1.03E + 09	-1.58E + 10	2.75E + 08
E_a	$1.31\mathrm{E}{+09}$		
	$1.58\mathrm{E}{+09}$		

4.3.3.4. Rangos de variación del módulo de elasticidad de la capa de material granular

Para el análisis de diferentes valores de módulo de elasticidad de la capa de material granular, se presenta en el Cuadro 4.15; estos valores están definidos por valores típicos de uso común.

Cuadro 4.15: Rango de variación del módulo de elasticidad de la capa de material granular.

Variable	Módulo del m. granular Pa	_	Variación Pa
Módulo de	2.70E + 07		
elasticidad	$7.05\mathrm{E}{+07}$	2.70E + 07	$4.35\mathrm{E}{+07}$
del m.granular	1.14E + 08	-1.58E + 08	
E_g	$1.58\mathrm{E}{+08}$		

4.3.3.5. Rangos de variación del módulo de reacción de la subrasante

Se tiene el análisis de diferentes valores de módulo de reacción de la subrasante, que constituye la fundación de la losa de hormigón del pavimento, como se indica en el Cuadro 4.16; estos valores están definidos por valores típicos de uso común.

Cuadro 4.16: Rango de variación del módulo de reacción de la subrasante.

Variable	Módulo de la subrasante kg/cm^3	Rango de variación kg/cm^3	Variación Pa
	4.6		
Módulo de	8.0		
reacción de	11.4		
la subrasante	14.8	4.6 - 21.6	3.4
k	18.2		
	21.6		

4.3.4. Análisis de sensibilidad de las variables de diseño de un pavimento rígido

Definida la estructura de referencia del pavimento y los rangos de variación de cada una de las variables consideradas, se realiza el análisis de sensibilidad del comportamiento de la deflexión en función de los rangos de variación de cada una de las variables. El análisis de sensibilidad se realizó en el software Ansys, que permite calcular el cuenco de deflexiones de una losa de hormigón mediante elementos finitos.

Para visualizar la información de las variables se elaboraron diferentes tablas y con la información de éstas se elaboraron las figuras que correlacionan la variable considerada con las deflexiones obtenidas. De esta manera, se analiza

la tendencia de las variables y la sensibilidad de ellas ante una variación, lo cual permite sacar conclusiones y definir su grado de sensibilidad e importancia.

4.3.4.1. Grado de sensibilidad de los parámetros de diseño de un pavimento rígido

Para determinar el grado de sensibilidad, el presente análisis adoptó la escala que proporciona Carlos Higuera Sandoval en su artículo [19], quien para definirla consultó varios estudios internacionales, dicha escala de calificaciones se presenta en el Cuadro 4.17, y se ha definido de acuerdo con la variabilidad o la proporción de variación de cada parámetro en el rango de variación establecido para el presente estudio.

Cuadro 4.17: Escala para definir el grado de sensibilidad [19].

Grado de sensibilidad	Variación [%]
Baja	<15
Media	15 - 30
Alta	>30

Los resultados del análisis de las variables de diseño de la estructura que inciden en el cuenco de deflexiones son los que se mencionan en los siguientes puntos.

4.3.4.2. Análisis de sensibilidad del espesor de la losa del modelo estructural

Variación del espesor de la losa, h: el espesor de la losa de hormigón se varió entre 17 y 26 cm, con un incremento de 3 cm, y su efecto en el cuenco de deflexiones se muestra en el Cuadro 4.18.

Cuadro 4.18: Variación del cuenco de deflexiones en función del espesor de la losa, h.

Espesor	Deflexiones [mm] a las distancias de:						
h [cm]	$0~\mathrm{cm}$	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
17	0.179	0.164	0.152	0.133	0.113	0.077	0.047
20*	0.138	0.126	0.118	0.104	0.090	0.063	0.040
23	0.107	0.098	0.092	0.082	0.071	0.051	0.033
26	0.083	0.077	0.072	0.064	0.056	0.041	0.027

^{*} Valores del modelo de referencia.

En el Cuadro 4.19 se presenta el grado de sensibilidad del espesor.

Cuadro 4.19: Grado de sensibilidad en el cuenco de deflexiones, en función de la losa de concreto, h.

I	Espesor, h				Variación	%		
\mathbf{cm}	% Variación	Δ 0 cm	Δ 20 cm	Δ 30 cm	Δ 45 cm	Δ 60 cm	Δ 90 cm	Δ 120 cm
17	-15.0	30.01	29.81	29.00	27.39	25.63	21.79	17.73
20*	0.0	_				—		_
23	15.0	-22.05	-22.29	-22.04	-21.46	-20.76	-19.17	-17.38
26	30.0	-39.41	-38.84	-38.62	-38.03	-37.27	-35.55	-33.76
	Sensibilidad	Alta	Alta	Alta	Alta	Alta	Alta	Alta

^{*} Valores del modelo de referencia.

De manera visual, se presenta en Figura 4.10 la variación de la deflexión en función del espesor.

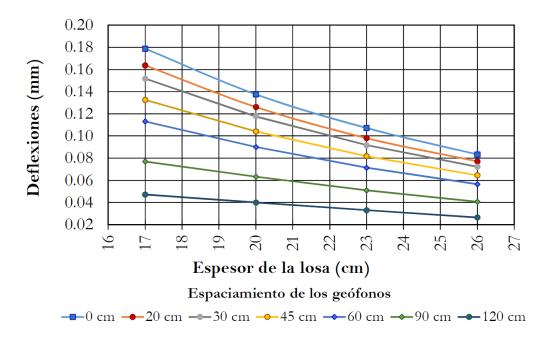


Figura 4.10: Variación de la deflexión en función del espesor de la losa de hormigón, h.

De la información presentada en los Cuadros 4.18, 4.19 y en la Figura 4.10 se concluye lo siguiente:

La relación entre el espesor de la losa de hormigón y el cuenco de deflexiones, es inversamente proporcional, es decir, que al aumentar el espesor disminuyen las deflexiones.

- En la Figura 4.10 se aprecia la tendencia y la relación entre las dos variables. Para espesores menores de losa, los cambios son más sensibles, y para espesores más grandes existe un cambio menos sensible en el cuenco de deflexiones.
- Del Cuadro 4.19 se observa que, al disminuir el espesor de la losa, del modelo de referencia, en una proporción de 15 %, se genera un aumento de deflexión en el centro del plato de carga del 30 %. Por otra parte, si el espesor de la losa aumenta en una proporción del 15 %, se produce una disminución de la deflexión máxima del 22.05 %. Por lo anteriormente expuesto se puede concluir que un cambio en el espesor de la losa genera cambios notables en el cuenco de deflexiones, ya que el grado de sensibilidad entre los parámetros es alto para todo el cuenco. Esta conclusión es importante en el diseño del espesor de la losa y en la evaluación de su capacidad portante.

4.3.4.3. Análisis de sensibilidad del módulo de elasticidad del concreto

Variación del módulo de elasticidad del concreto, E_c : el módulo de elasticidad del concreto se varió entre 1.51E+10 a 5.01E+10 Pa, con incrementos de 7E+09 Pa y el efecto que produce en el cuenco de deflexiones se puede observar en el Cuadro 4.20.

Cuadro 4.20: Variación del cuenco de deflexiones en función del módulo de elasticidad del concreto, Ec.

Módulo del		Defle	xiones [mm] a la	as distan	cias de:	
concreto E_c [Pa]	$0~\mathrm{cm}$	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
1.51E+10	0.215	0.192	0.176	0.151	0.128	0.085	0.051
$2.21\mathrm{E}{+10}$	0.180	0.163	0.150	0.131	0.112	0.076	0.047
$2.91\mathrm{E}{+10}$	0.156	0.142	0.132	0.116	0.100	0.069	0.043
3.61E + 10*	0.138	0.126	0.118	0.104	0.090	0.063	0.040
$4.31E{+}10$	0.129	0.119	0.112	0.100	0.087	0.062	0.040
$5.01\mathrm{E}{+10}$	0.117	0.109	0.102	0.091	0.080	0.057	0.037

^{*} Valores del modelo de referencia.

Mientras que en el Cuadro 4.21 se da el porcentaje de cambio de las deflexiones con respecto al referencial.

Cuadro 4.21: Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del concreto, Ec.

Módulo de	el concreto, E_c				Variación	%		
Pa	% Variación	Δ 0 cm	Δ 20 cm	Δ 30 cm	Δ 45 cm	Δ 60 cm	Δ 90 cm	Δ 120 cm
1.51E+10	-58.2	56.70	52.23	49.51	45.55	41.62	33.79	26.14
$2.21E{+}10$	-38.9	30.75	28.89	27.73	25.98	24.22	20.62	17.05
$2.91E{+}10$	-19.5	13.18	12.53	12.13	11.50	10.86	9.55	8.23
3.61E+10*	0.0	_		_				_
$4.31E{+}10$	19.3	-5.96	-5.31	-4.84	-4.10	-3.30	-1.57	0.28
$5.01\mathrm{E}{+10}$	38.6	-14.71	-13.88	-13.29	-12.38	-11.40	-9.29	-7.07
Sens	sibilidad	Alta	Alta	Alta	Alta	Alta	Alta	Media

^{*} Valores del modelo de referencia.

En la Figura 4.11, se muestra la variación de la deflexión en función del módulo de elasticidad del concreto.

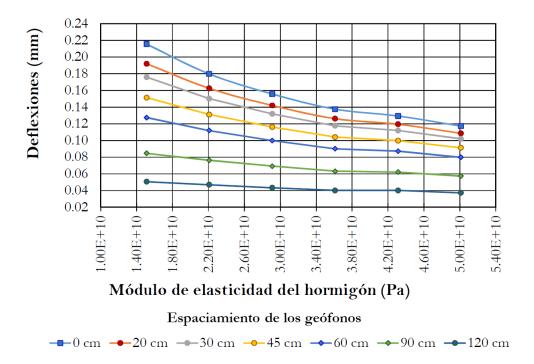


Figura 4.11: Variación de la deflexión en función del módulo de elasticidad del concreto, Ec.

De lo Cuadros 4.20 y 4.21 y de la figura 4.11 se concluye lo siguiente:

• La relación entre el módulo de elasticidad del concreto y el cuenco de deflexiones es inversamente proporcional, al igual que el espesor a mayor E_c menor deflexión.

- De la Figura 4.13 se puede observar la tendencia y la relación de estas dos variables. Para valores bajos de módulos de elasticidad, los cambios en la deflexión son más sensibles y para valores altos de módulos esta sensibilidad disminuye.
- Del Cuadro 4.21 se determina que, al bajar el valor del módulo de elasticidad del concreto, en una proporción del 38.9 % se produce un aumento de la deflexión máxima del 30.75 %. Mientras que al aumentar el módulo de elasticidad del concreto en una proporción del 38.6 % se produce una disminución de la deflexión máxima del 14.71 %. Esto indica que un cambio de módulo de elasticidad del concreto genera cambios relevantes en la magnitud de las deflexiones del cuenco. Por lo tanto, esta variable es importante en el diseño de las losas de concreto, en especial cuando se analizan las propiedades y características del concreto de la losa.
- El grado de sensibilidad entre el módulo de elasticidad del concreto y el cuenco de deflexiones es alta hasta los 90 cm del centro de carga, el último sensor analizado que se encuentra a 120 cm presenta una sensibilidad media, esto indica que sensibilidad disminuye a medida que los sensores se alejan del centro de la placa de carga.

4.3.4.4. Análisis de sensibilidad del módulo de elasticidad del asfalto

Variación del módulo de elasticidad del asfalto, E_a : el módulo de elasticidad del concreto se varió entre 4.8E+08 a 1.58E+09 Pa, con incrementos de 2.75E+08 Pa y el efecto que produce en el cuenco de deflexiones se puede observar en el Cuadro 4.22.

Cuadro 4.22: Variación del cuenco de deflexiones en función del módulo de elasticidad del asfalto, Ea.

Módulo del		Deflex	ciones [n	ım] a las	distanc	ias de:	
asfalto E_a [Pa]	$0~\mathrm{cm}$	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
4.80E + 08	0.1431	0.1313	0.1225	0.1082	0.0935	0.0654	0.0413
7.55E + 08	0.1404	0.1288	0.1201	0.1062	0.0919	0.0644	0.0407
1.03E+09*	0.1375	0.1261	0.1177	0.1041	0.0900	0.0632	0.0401
1.31E + 09	0.1354	0.1241	0.1158	0.1025	0.0887	0.0623	0.0396
1.58E + 09	0.1332	0.1221	0.1139	0.1008	0.0873	0.0614	0.0391

^{*} Valores del modelo de referencia.

En el Cuadro 4.23 se presenta la variación de las deflexiones al variar el módulo de elasticidad del asfalto.

Cuadro 4.23: Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del asfalto, Ea.

Módulo d	el asfalto, E_a				Variación	%		
Pa	% Variación	Δ 0 cm	Δ 20 cm	Δ 30 cm	Δ 45 cm	Δ 60 cm	Δ 90 cm	Δ 120 cm
4.80E + 08	-53.5	4.03	4.10	4.10	4.01	3.89	3.58	3.23
7.55E + 08	-26.9	2.08	2.12	2.12	2.08	2.02	1.89	1.73
1.03E+09*	0.0	_	_		_		_	
1.31E+09	26.3	-1.56	-1.60	-1.58	-1.54	-1.48	-1.33	-1.16
$1.58\mathrm{E}{+09}$	53.0	-3.16	-3.22	-3.20	-3.12	-3.00	-2.73	-2.41
Sens	ibilidad	Baja	Baja	Baja	Baja	Baja	Baja	Baja

^{*} Valores del modelo de referencia.

En la Figura 4.12, se muestra el comportamiento de las deflexiones al variar el módulo de elasticidad del asfalto.

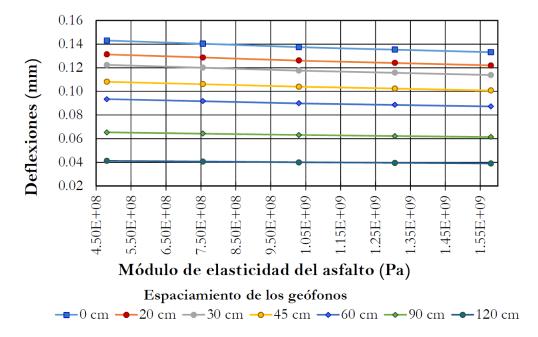


Figura 4.12: Variación de la deflexión en función del módulo de elasticidad del asfalto, Ea.

De lo Cuadros 4.22 y 4.23 y de la figura 4.12 se concluye lo siguiente:

- La relación entre el módulo de elasticidad del asfalto y el cuenco de deflexiones es inversamente proporcional, al igual que el espesor y E_c .
- De la Figura 4.12 se puede observar la tendencia y la relación de estas dos variables se muestra que, para valores inferiores y superiores de módulo de elasticidad del asfalto del modelo de referencia, los cambios en el cuenco

de deflexiones son poco sensibles. Lo que indica que un cambio del módulo de elasticidad del asfalto tiene una baja incidencia en la deflexión de la losa de concreto.

- Del Cuadro 4.23 se puede observar que, al disminuir el valor del módulo de elasticidad del asfalto en el modelo de referencia, en una proporción de 53.5%, se produce un incremento de la deflexión máxima de 4.03%. Mientras que al aumentar el valor del módulo de elasticidad del asfalto en una proporción de 53% se produce una disminución de la deflexión máxima de 3.16%. Esto indica que un cambio en el valor del módulo de elasticidad genera cambios de poca influencia en el cuenco de deflexiones. Como era de esperarse el asfalto no aporta significativamente en la disminución de deflexiones pues la función de un pavimento flexible es absorber cierta cantidad de carga y transmitirla carga a las capas inferiores, aspecto que es diferente en el pavimento rígido ya que este último absorbe todo el esfuerzo de la carga aplicada.
- El grado de sensibilidad entre el módulo de elasticidad del asfalto y el cuenco de deflexiones es bajo, es decir, que el módulo de elasticidad del asfalto es una variable que al modificar su valor no genera cambios importantes en el cuenco de deflexiones.
- Este resultado de sensibilidad bajo en todo el cuenco de deflexiones se debe a las consideraciones realizadas previo a la simulación, expuestas en el Capítulo 4, de que la capa asfáltica es un material homogéneo e isótropo (para futuras simulaciones se podría probar como una consideración con comportamiento visco elástico.)

4.3.4.5. Análisis de sensibilidad del módulo de elasticidad del material granular

Variación del módulo de elasticidad del material granular, E_g : el módulo de elasticidad del material granular se varió entre 2.70E+07 a 1.58E+08 Pa, con incrementos de 4.35E+07 Pa y el efecto que produce en el cuenco de deflexiones se puede observar en el Cuadro 4.24.

Cuadro 4.24: Variación del cuenco de deflexiones en función del módulo de elasticidad del material granular, Eg.

Módulo del m.		Defle	xiones [r	nm] a la	s distan	cias de:	
granular E_g [Pa]	$0~\mathrm{cm}$	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
2.70E + 07	0.1729	0.1607	0.1513	0.1357	0.1192	0.0861	0.0562
$7.05\mathrm{E}{+07}$	0.1490	0.1373	0.1285	0.1142	0.0992	0.0702	0.0449
1.14E + 08*	0.1375	0.1261	0.1177	0.1041	0.0900	0.0632	0.0401
$1.58E{+}08$	0.1303	0.1191	0.1108	0.0977	0.0843	0.0588	0.0372

^{*} Valores del modelo de referencia.

La variación del cuenco de deflexiones a medida que se cambia el módulo de elasticidad del material granular se presenta en el Cuadro 4.25.

Cuadro 4.25: Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de elasticidad del material granular, Eg.

Módulo de	el m. granular, E_a				variación	%		
Pa	% Variación	Δ 0 cm	Δ 20 cm	Δ 30 cm	Δ 45 cm	Δ 60 cm	Δ 90 cm	Δ 120 cm
2.70E+07	-76.3	25.71	27.40	28.60	30.44	32.39	36.39	40.35
7.05E + 07	-38.2	8.31	8.83	9.18	9.69	10.22	11.22	12.13
1.14E+08*	0.0	_	_	_	_	_	_	_
$1.58\mathrm{E}{+08}$	38.0	-5.28	-5.61	-5.80	-6.10	-6.37	-6.83	-7.16
Se	nsibilidad	Media	Media	Media	Alta	Alta	Alta	Alta

^{*} Valores del modelo de referencia.

En la Figura 4.13 se ilustra el cambio que se genera en el cuenco de deflexiones al variar el módulo de elasticidad del material granular.

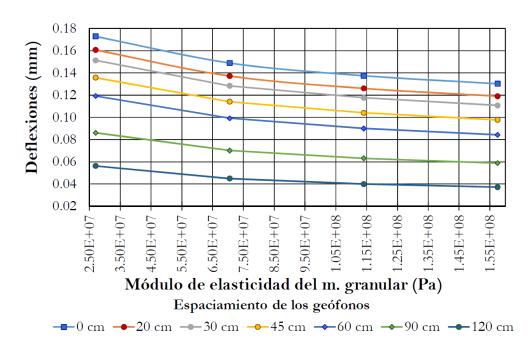


Figura 4.13: Variación de la deflexión en función del módulo de elasticidad del material granular, Eg.

De lo Cuadros 4.24 y 4.25 y de la figura 4.13 se concluye lo siguiente:

- La relación entre el módulo de elasticidad del material granular y el cuenco de deflexiones es inversamente proporcional, igual que los parámetros analizados anteriormente.
- De la Figura 4.13 se determina que para valores inferiores de módulo de elasticidad del material granular del modelo de referencia, los cambios en el cuenco de deflexiones son más sensibles. Mientras que para valores superiores de módulo de elasticidad de material granular los cambios en el cuenco de deflexiones son menos sensibles.
- Del Cuadro 4.25 se puede observar que al disminuir el valor del módulo de elasticidad del material granular, en una proporción de 38.2 %, se produce un incremento de la deflexión máxima de 8.31 %. Mientras que al aumentar el valor del módulo de elasticidad del asfalto en una proporción de 38 % se produce una disminución de la deflexión máxima de 5.28 %. Esto indica que un cambio de módulo de elasticidad del material granular genera cambios en la magnitud de las deflexiones del cuenco.
- El grado de sensibilidad entre el módulo de elasticidad del material granular y el cuenco de deflexiones es medio para los tres primeros geófonos (0 cm, 20 cm, 30 cm) y alto para los cuatro geófonos restantes. Esto

indica que el valor del módulo de elasticidad del material granular afecta en mayor porcentaje a la deflexión calculada a las distancias de 45, 60, 90 y 120 cm.

4.3.4.6. Análisis de sensibilidad del módulo de reacción de la subrasante

Variación del módulo de reacción de la subrasante, k: el módulo de reacción de la subrasante se varió entre 4.6 a 21.6 kg/cm^3 , con incrementos de $3.4 kg/cm^3$ y el efecto que produce en el cuenco de deflexiones se puede observar en el Cuadro 4.26.

Cuadro 4.26: Variación del cuenco de deflexiones en función del módulo de reacción de la subrasante, k.

Módulo reacción		Defle	xiones [r	nm] a la	s distan	cias de:	
subrasante $k \ kg/cm^3$	0 cm	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
4.6	0.1651	0.1533	0.1443	0.1295	0.1139	0.0828	0.0546
8	0.1530	0.1413	0.1326	0.1183	0.1034	0.0741	0.0481
11.4	0.1443	0.1328	0.1242	0.1103	0.0959	0.0679	0.0436
14.8*	0.1375	0.1261	0.1177	0.1041	0.0900	0.0632	0.0401
18.2	0.1327	0.1213	0.1130	0.0996	0.0858	0.0597	0.0375
21.6	0.1286	0.1173	0.1090	0.0958	0.0823	0.0568	0.0353

^{*} Valores del modelo de referencia.

En el Cuadro 4.27 el porcentaje de cambio de las deflexiones con respecto al modelo referencial.

Cuadro 4.27: Grado de sensibilidad en el cuenco de deflexiones, en función del módulo de reacción de la subrasante, k.

Módulo de	e reacción subrasante, k				Variación	%		
kg/cm^3	% Variación	Δ 0 cm	Δ 20 cm	Δ 30 cm	Δ 45 cm	Δ 60 cm	Δ 90 cm	Δ 120 cm
4.6	-68.9	20.08	21.53	22.62	24.43	26.47	31.09	36.24
8.0	-45.9	11.26	12.06	12.68	13.69	14.82	17.37	20.22
11.4	-23.0	4.94	5.28	5.55	5.98	6.46	7.56	8.78
14.8*	0.0			_	_	_	_	_
18.2	23.0	-3.53	-3.80	-3.99	-4.33	-4.69	-5.53	-6.45
21.6	45.9	-6.52	-7.00	-7.35	-7.96	-8.62	-10.12	-11.78
	Sensibilidad	Media	Media	Media	Media	Media	Alta	Alta

^{*} Valores del modelo de referencia.

En la Figura 4.14 se muestra la variación del cuenco de deflexiones en función del módulo de reacción de la subrasante.

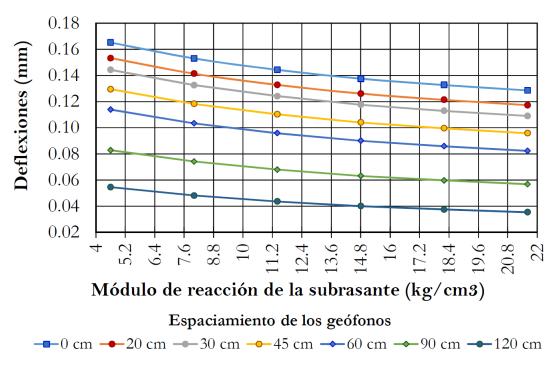


Figura 4.14: Variación de la deflexión en función del módulo de reacción de la subrasante, k.

De lo Cuadros 4.26 y 4.27 y de la figura 4.14 se concluye lo siguiente:

- La relación entre el módulo de reacción de la subrasante y el cuenco de deflexiones es de igual manera inversamente proporcional.
- De la Figura 4.16 se puede observar que para módulos de reacción de la subrasante bajos, los cambios en la deflexión son bastante sensibles y para valores altos de módulos esta sensibilidad disminuye. Lo que indica que el módulo de reacción de la subrasante tiene una alta incidencia en el cuenco de deflexiones de la losa de concreto.
- Cuando la subrasante tiene baja capacidad de soporte y se apoya directamente la losa sobre ella, las deflexiones de la losa son altas, lo cual genera grietas o fisuras de la losa. De ahi la necesidad de mejorar la capacidad de la fundación, colocando una capa de subbase granular o estabilizada, en un espesor adecuado, para mejorar el comportamiento mecánico de la losa de concreto y disminuir el valor de las deflexiones [19].
- En el Cuadro 4.27 se muestra que al bajar el valor del módulo de reacción de la subrasante del modelo de referencia, en una proporción del 45.9 % se produce un aumento de la deflexión máxima del 11.26 %. Mientras que

al aumentar el módulo de reacción de la subrasante en una proporción del 45.9 % se produce una disminución de la deflexión máxima del 6.52 %. Esto indica que un cambio de módulo de reacción de la subrasante genera cambios de mucha importancia en la magnitud de las deflexiones del cuenco. Por lo tanto, esta variable es importante en el diseño de las losas de concreto, en especial cuando se analizan las propiedades y características de la fundación de la losa.

- El grado de sensibilidad entre el módulo de reacción de la subrasante y el cuenco de deflexiones es medio para las deflexiones de los cinco primeros geófonos y alta para los dos geófonos restantes ubicados a 90 y 120 cm del centro de carga, esto indica que existe mayor sensibilidad de las deflexiones en los dos últimos geófonos al variar el módulo de reacción de la subrasante.
- Es importante aclara la necesidad de tener una fundación competente para las losas de concreto, con el fin de garantizar su comportamiento mecánico y disminuir las magnitudes de deflexión generada por cargas impuestas por el tránsito.

4.3.5. Resumen de los resultados obtenidos en el análisis de sensibilidad

Después de realizar el análisis de sensibilidad de las variables que afectan el diseño de la estructura del pavimento, se presenta en el Cuadro 4.28 su grado de sensibilidad, para la estructura de referencia.

Cuadro 4.28: Grado de sensibilidad de las variables que afectan a la deflexión.

Variable					de sens lexiones	sibilidad [mm]		
		$0~\mathrm{cm}$	$20~\mathrm{cm}$	$30~\mathrm{cm}$	$45~\mathrm{cm}$	$60~\mathrm{cm}$	$90~\mathrm{cm}$	$120~\mathrm{cm}$
Espesor de la losa	h	Alta	Alta	Alta	Alta	Alta	Alta	Alta
Módulo de elasticidad del concreto	E_c	Alta	Alta	Alta	Alta	Alta	Alta	Media
Módulo de elasticidad del asfalto	E_a	Baja	Baja	Baja	Baja	Baja	Baja	Baja
Módulo de elasticidad del m. granular	E_q	Media	Media	Media	Alta	Alta	Alta	Alta
Módulo de reacción de la subrasante	\vec{k}	Media	Media	Media	Media	Media	Alta	Alta

4.3.5.1. Variables más sensibles a la deflexión

Como resultado final del análisis de sensibilidad se presenta la clasificación de las variables más sensibles a la deflexión del modelo estructural de referencia.

- 1. Espesor de la losa, h.
- 2. Módulo de elasticidad del concreto, E_c .
- 3. Módulo de elasticidad del material granular, E_g .
- 4. Módulo de reacción de la subrasante, k.
- 5. Módulo de elasticidad del asfalto, E_a .

Capítulo 5

Conclusiones y recomendaciones

5.1. Conclusiones

En este trabajo de titulación se evaluó la capacidad estructural del pavimento rígido con whitetopping de la vía Cuenca – Molleturo, en el tramo Sayausí – Tres Cruces, con abscisas 6+813-35+800 mediante deflectometría de impacto y análisis inverso a través del método de elementos finitos

- A través de esta investigación se permitió caracterizar el módulo de reacción efectivo de la subrasante y el módulo de elasticidad del concreto utilizando la metodología de la AASHTO para la estructura de pavimento que cuentan con la rehabilitación whitetopping, obteniendo secciones homogéneas para el tramo. Dentro de este análisis se determinó que el carril izquierdo en las abscisas 6+850 14+696 cuenta con los valores de módulo de reacción de la subrasante más crítico pues presenta una calificación de soporte bajo, las secciones restantes presentaron una calificación de soporte entre media y muy alto. Por otro lado, con respecto a los módulos de elasticidad del concreto todos los valores obtenidos se encuentran dentro del rango de módulos recomendados por el Centro de investigación de Pavimentos de la Universidad de California.
- De acuerdo al análisis del módulo elástico del concreto para el carril derecho se tiene que solo el 29 % del tramo analizado cuenta con valores correctos de módulos de elasticidad y el 71 % restante tiene módulos deficientes y aceptables. Mientras que para el carril izquierdo el 69 % de los sectores cuenta con módulos de elasticidad deficientes y aceptables y el 31 % son valores correctos de módulos. Se podría concluir que el carril

izquierdo basado en los módulos de elasticidad se encuentra estructuralmente más deficiente.

- La evaluación de la información deflectométrica a través de la modelización realizada en Ansys bajo las condiciones específicas de entrada de: que el modelo se encuentra confinado lateralmente, cuenta con un medio elástico (resorte) en la parte inferior que representa a la subrasante, se aplica una carga de 65 kN, en un radio de 15 cm y que el eje de carga circular está restringido a movimientos horizontales, fue exitosa en cuanto al ajuste de cuencos, ya que con las dos simulaciones realizadas se obtuvieron errores promedios aceptables de 0.81% para la primera simulación y de 0.67%para la segunda simulación, en donde en la primera simulación los valores de módulos de elasticidad tienen un coeficiente de correlación de 0.92 con los módulos de elasticidad obtenidos por el método AASHTO, valor que es bastante bueno, además, los valores obtenidos a través de Ansys varía en un rango de 0 a 9.3 % de los valores obtenidos por el método AASHTO lo que indica que los resultados obtenidos por ambos métodos son similares. Por otro lado, el coeficiente de correlación en la segunda simulación es de 0.57 ya que el módulo de elasticidad utilizado en Ansys se aleja considerablemente del módulo obtenido por el método AASHTO en la abscisa 19+100, los valores obtenidos mediante Ansys varían en un rango de 0 a 25.6 % de los valores obtenidos por el método AASHTO por lo que se podría decir que existe una variabilidad relativamente alta entre los dos métodos.
- De los resultados del método AASHTO vs los resultados del método de elementos finitos se puede decir que, a pesar que en la segunda simulación se tiene un valor de error RMS promedio inferior al obtenido en la primera simulación, es decir, se tiene un mejor ajuste de los cuencos de deflexiones en la segunda simulación, esta disminución de error afecta directamente a la variabilidad de los valores de módulos de elasticidad del concreto obtenidos por el método de elementos finitos comparados con el método AASHTO.
- En caso de determinar qué simulación es la más apropiada se podría decir que la primera, pues los datos se encuentran al rededor y sobre la línea de igualdad y el error RMS de cada una de las abscisas está dentro de los rangos permitidos de error, mientras que la segunda simulación presenta una variabilidad relativamente alta entre los métodos.
- A través de la modelización en Ansys se obtuvo la caracterización de todas las capas que conforman la estructura del pavimento y se determinó que todos los valores obtenidos estaban dentro de los rangos permitidos, en el caso de los módulos de elasticidad los rangos recomendados por el Centro de investigaciones de Pavimentos de la Universidad de California y en el

- caso de módulos de reacción los recomendados por el libro de Ingeniería de Pavimentos para carreteras de Alfonso Fonseca.
- Mediante la metodología propuesta por AASHTO, se determinó la eficiencia de transferencia de carga, dando como resultado que el carril izquierdo presenta una mejor condición de transferencia de carga que el carril derecho. De manera general la vía cuenta con una eficiencia de transferencia de carga moderada.
- A partir del análisis de sensibilidad se determinó que la variable que genera cambios notables en el cuenco de deflexiones es el espesor de la losa, seguido del módulo de elasticidad del concreto, el módulo de elasticidad del material granular, el módulo de reacción de la subrasante y de menor influencia el módulo de elasticidad del asfalto que no genera cambios importantes en el cuenco de deflexiones.

5.2. Recomendaciones

- Al realizar el levantamiento de datos en campo, se recomienda asegurar que ninguna carga externa influya en los valores de deflexiones registrados, puesto que esto dará valores alterados, no confiables y resultados obtenidos no serán representativos.
- Para empezar con el levantamiento de campo es necesario realizar una prueba de mínimo 5 golpes para calibrar el equipo y de esta forma verificar que la carga aplicada por el deflectómetro sea la ingresada en el ordenador o valores cercanos a esta y así las deflexiones obtenidas sean confiables.
- Para tener una evaluación más completa sería conveniente realizar ensayos en las esquinas de la losa para analizar la capacidad estructural de la losa en las esquinas.
- Se debe evitar realizar ensayos en losas que presentan un alto grado de fallas, ya que no serían losas representativas del tramo, pues no cuenta con las propiedades más regulares del mismo. No realizar pruebas en alcantarillas y puentes pues los datos de deflexión que se obtengan darán datos erróneos.
- Al momento de realizar el seccionamiento de la vía, se debe realizar el análisis de secciones homogéneas para los dos carriles o se debe analizar por separado dependiendo del comportamiento de los resultados obtenidos. En caso de que los datos utilizados para el seccionamiento sean muy distintos para cada carril se debe realizar el análisis por separado y posteriormente se generaliza las secciones homogéneas para los casos más críticos.

• Se recomienda registrar la temperatura ambiente y de la superficie del pavimento en forma regular. En todos los sitios de medida se debe registrar la temperatura de la estructura. Esta información es indispensable para la posterior normalización de las deflexiones.

5.3. Trabajos futuros

Como propuestas de futuras investigaciones se sugiere:

- Profundizar el estudio de la evaluación de un pavimento realizando un análisis funcional que incluya todos sus indicadores de condición.
- Realizar la simulación de la eficiencia de transferencia de carga en el software Ansys para así poder comparar los resultados obtenidos por el método AASHTO y el método de elementos finitos.
- Realizar programación interna dentro del software Ansys para lograr convergencia inmediata y obtener las deflexiones medidas con FWD de una manera más eficiente.
- Investigar sobre evaluación no destructiva de pavimentos basada en redes neuronales método para evaluación instantánea de la condición de la estructura del pavimento, que emplea elementos finitos y ayuda a la predicción de las deflexiones de la superficie del pavimento por la aplicación de una carga de impulso.

Apéndices

Apéndices

Apéndice A

Resultado de datos crudos del equipo de deflectometría (FWD)

Cuadro A.1: Datos crudos del equipo de deflectometría

Hermitis														
(drops: 3 Fallbeight: 200 D(2) 167.3 177.2 177.2	5680"W Latitude: 2°52'18,0660"S Altitude: 27	761.7 m												
D(2) 167.3 171.2 172.2	Fallheight: 200 Time: 13:09	6												
167.3 171.3 172.2		П	D(4) D	D(5) D(D(6) D(D(7) D(8) I	(8) D(9)	D(10)	kPa			Sur.	Man.	Air Sur. Man. Pulse time
171.3 172.2		1		9.9	2.4 77	1 60	50.7	38.9	006	63.29	53	41.7	30.1	26.5
172.2		_		133.8 100	105.5 79	79.4 62.5	5 52.3	40.7	911	64.37	7.82	41.5	30.1	26
\$2 Chainage [m]		1	167.7 13	134.2 10	105.8 79	79.7 62.4	4 52.3	40.5	921		65.11 28.4	41.3 30.1	30.1	26.5
Chainage [m] 6850 Late														
Remarks														
Position of Drop: Longitude: 79Å-4'38.6400"W Latitude: 2Ű52'18.0420"S Altitude: 2761.9 m	3400"W Latitude: 2Ű52'18.0420"S Altitude: 27	761.9 m												

Apéndice B

Sectorización mediante deflexiones máximas

Cuadro B.1: Sectorización del tramo por unidades homogéneas carril derecho

	SECCIO	NES HOMO				l
Abscisa	Distancia	DEFLEXI Distancia	ONES MÁ	$\frac{\text{XIMAS (D}}{\text{Årea}}$	o) Área	Diferencia
km	intervalo	acumulada	Do	intervalo	acumulada	acumulada
KIII	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
6+800	$\frac{\Delta x_i}{0}$	$\frac{\sum \Delta x_i}{0}$	$\frac{100}{8,39}$	0,00	0.00	0.00
	100	100	6,67		7530,47	-1052,53
6+900	100	203	,	7530,47		,
7+003			7,07	7078,27	14608,75	-2814,75
7+103	100	303	9,78	8424,94	23033,69	-2972,81
7+202	99	402	9,59	9587,80	32621,49	-1882,19
7+302	100	502	8,20	8894,93	41516,41	-1570,27
7+401	99	601	7,45	7746,77	49263,18	-2320,68
7 + 501	100	701	7,83	7642,05	56905,24	-3261,63
7 + 601	100	801	8,31	8071,94	64977,17	-3772,70
7 + 705	104	905	7,82	8390,73	73367,90	-4308,29
7 + 799	94	999	8,03	7448,60	80816,51	-4927,71
7 + 903	104	1103	6,29	7441,66	88258,17	-6412,38
8+002	99	1202	10,80	8456,50	96714,67	-6453,05
8 + 102	100	1302	8,71	9756,77	106471,43	-5279,29
8 + 201	99	1401	5,20	6885,53	113356,96	-6890,94
8 + 301	100	1501	6,45	5821,05	119178,01	-9652,89
8 + 500	199	1700	7,67	14047,70	133225,71	-12685,37
8 + 603	103	1803	8,42	8284,72	141510,43	-13241,15
8 + 702	99	1902	10,11	9171,64	150682,07	-12566,68
8 + 802	100	2002	9,40	9754,79	160436,86	-11394,89
8 + 900	98	2100	6,06	7571,25	168008,11	-12234,99
9+004	104	2204	5,90	6217,37	174225,49	-14943,94
9 + 100	96	2300	6,23	5824,75	180050,24	-17358,87
9+200	100	2400	7,72	6975.88	187026,12	-18965,99
9 + 304	104	2504	8,42	8394,19	195420,31	-19498,13
9 + 403	99	2603	5,85	7066,57	202486,89	-20928,73
9 + 702	299	2902	5,27	16625,99	219112,87	-29965,93
9 + 802	100	3002	6,07	5670,25	224783,12	-32878,68
9+901	99	3101	7.08	6509.02	231292,14	-34866,84
10+001	100	3201	4,33	5702,69	236994,83	-37747,16
10+200	199	3400	5,26	9539,43	246534,25	-45287,91
10+404	204	3604	5,27	10744,70	257278,95	-52052,54
10+603	199	3803	6,45	11662,12	268941,08	-57470,60
10+801	198	4001	5,00	11328,55	280269,62	-63136,40
11+001	200	4201	4,99	9981,59	290251,21	-70320,82
11+001 11+200	199	4400	4,91	9842,85	300094,06	-77558,15
11+200 $11+400$	200	4600	5,94	10845,24	310939,29	-83878,93
11+400 $11+600$	200	4800	6,79	12726,76	323666,05	-88318,17
11+802	202	5002	6.53	13455,22	337121,28	-92200,62
11+802 12+206	404	5406	6,07	25453,89	362575,17	-101422,07
12+200 $12+600$	394	5800	5,43	22646,34	385221,50	-101422,07
12 + 800	200	6000	8,97	14403,81	399625,32	-115354,97

Cuadro B.2: Sectorización del tramo por unidades homogéneas carril derecho

	SECCIO	NES HOMO DEFLEXI	GÉNEAS I ONES MÁ			
Abscisa km	Distancia intervalo	Distancia acumulada	Deflexión Do	Área intervalo	Área acumulada	Diferencia acumulada
KIII	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
13+003	203	$\frac{\sum \Delta x_i}{6203}$	4,95	14138,12	413763,43	-118640,35
13+203	200	6403	7,98	12932,38	426695,81	-122873,99
13+403	200	6603	8,45	16430,52	443126,33	-123609,48
13+602	199	6802	11,18	19538,92	462665,24	-121150,74
14+000	398	7200	10,33	42822,17	505487,41	-112488,93
14 + 403	403	7603	7,09	35100,51	540587,92	-111977,93
14 + 620	217	7820	8,05	16417,39	557005,30	-114185,67
14 + 801	181	8001	9,21	15617,68	572622,98	-114103,23
15+000	199	8200	5,34	14478,51	587101,50	-116704,89
15 + 202	202	8402	7,88	13355,29	600456,79	-120687,27
15 + 401	199	8601	9,00	16803,38	617260,17	-120964,07
15 + 601	200	8801	8,61	17612,09	634872,26	-120517,99
15 + 804	203	9004	8,00	16851,50	651723,76	-121089,99
16+000	196	9200	7,43	15114,00	666837,76	-122798,68
16 + 200	200	9400	8,48	15909,13	682746,88	-124055,57
16+403	203	9603	8,99	17734,56	700481,44	-123744,50
16+603	200	9803	8,35	17338,00	717819,45	-123572,51
16 + 802	199	10002	6,62	14890,44	732709,89	-125762,24
17+000	198	10200	8,83	15293,05	748002,95	-127463,54
17+204	204	10404	7,61	16764,63	764767,57	-128208,24
17+402	198	10602	9,51	16943,07	781710,64	-128259,52
17+601	199	10801	7,82	17244,66	798955,30	-128095,04
17+804	203	11004	6,57	14614,16	813569,47	-130904,38
18+000	196	11200	8,49	14758,88	828328,34	-132968,19
18+200	200	11400	7,51	15995,89	844324,23	-134138,31 -135457,06
18+403 $18+602$	203 199	11603 11802	8,36 8,95	16104,75 17218,48	860428,99 877647,47	-135318,75
18+800	198	12000	10,49	19246,84	896894,31	-133066,26
19+004	204	12204	6,10	16924,17	913818,48	-133651,42
19+203	199	12403	12,77	18773,39	932591,87	-131958,21
19+400	197	12600	7,72	20176,49	952768,35	-128690,25
19+601	201	12801	11,27	19080,45	971848,81	-126861,63
19 + 800	199	13000	9,37	20538,16	992386,96	-123403,65
20+000	200	13200	8,83	18197,12	1010584,08	-122372,54
20 + 202	202	13402	9,00	18002,29	1028586,37	-121707,93
20 + 402	200	13602	9,62	18615,85	1047202,22	-120258,08
20 + 600	198	13800	7,93	17371,96	1064574,19	-119880,47
20 + 803	203	14003	10,08	18283,32	1082857,50	-119020,66
21 + 003	200	14203	10,76	20845,12	1103702,62	-115341,54
21 + 201	198	14401	8,47	19038,74	1122741,37	-113297,15
21 + 400	199	14600	7,94	16324,11	1139065,48	-114053,22
21 + 408	8	14608	10,77	748,35	1139813,82	-113991,51
21+600	192	14800	15,23	24956,62	$1164770,\!45$	-105514,26
21+803	203	15003	9,08	24672,25	1189442,70	-98265,50
22+002	199	15202	9,52	18509,51	1207952,21	-96836,17
22+207	205	15407	9,52	19513,94	1227466,16	-94917,39
22+402	195	15602	6,69	15802,11	1243268,27	-95852,13
22+601	199	15801	12,74	19335,03	1262603,30	-93597,29
22+800	199	16000	12,72	25333,36	1287936,66	-85344,10
23+000	200	16200	14,62	27340,32	1315276,97	-75169,80
23+203	203	16403	11,21	26216,65	1341493,62	-66376,65
23+402	199	16602	9,44	20546,52	1362040,14	-62910,31 -59198,06
23+600	198	16800	11,47 12,06	20706,60	1382746,74	-59198,06 -52767,99
23+802	202	17002	,	23767,74 25995,49	1406514,48	,
24+004	202 197	17204 17401	13,68 4,64	25995,49 18043,26	1432509,98 1450553,23	-44110,16 -42975,43
	197	1/401	4,04	10040,20	1400000,20	-42910,40
24+201 24+404		17604	7.26	19176 19	1/69790 36	-48999 70
24+201 24+404 24+606	203 202	17604 17806	7,36 7,05	12176,13 14548,74	1462729,36 1477278,10	-48222,79 -51011,73

Cuadro B.3: Sectorización del tramo por unidades homogéneas carril derecho

	SECCIO	NES HOMO DEFLEXI	GÉNEAS I ONES MÁ			
Abscisa	Distancia	Distancia	Deflexión	Área	Área	Diferencia
\mathbf{km}	intervalo	acumulada	Do	intervalo	acumulada	acumulada
	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
25+004	204	18204	5,65	13463,47	1504899,49	-57550,70
25 + 202	198	18402	8,26	13769,35	1518668,84	-60775,69
25 + 402	200	18602	5,76	14017,19	1532686,03	-63924,52
25 + 601	199	18801	5,25	10951,46	1543637,48	-70053,24
26+000	399	19200	5,98	22399,54	1566037,02	-81899,89
26 + 207	207	19407	5,55	11932,16	1577969,18	-87734,55
26 + 605	398	19805	7,18	25319,14	1603288,32	-96575,77
26 + 800	195	20000	7,08	13904,20	1617192,52	-99408,43
27 + 220	420	20420	6,05	27574,89	1644767,41	-107882,16
27 + 597	377	20797	7,57	25671,05	1670438,46	-114569,04
27 + 802	205	21002	8,54	16517,85	1686956,31	-115646,34
28+002	200	21202	7,22	15765,78	1702722,09	-117046,57
28 + 199	197	21399	10,14	17100,60	1719822,70	-116854,49
28 + 403	204	21603	7,94	18444,11	1738266,81	-115919,71
28 + 603	200	21803	10,67	18616,12	1756882,93	-114469,59
28 + 802	199	22002	6,42	17004,63	1773887,56	-114545,14
29 + 000	198	22200	9,70	15953,78	1789841,34	-115585,72
29 + 200	200	22400	10,70	20394,67	1810236,01	-112357,06
29 + 401	201	22601	9,16	19961,69	1830197,69	-109647,21
29 + 600	199	22800	9,74	18809,96	1849007,65	-107917,43
29 + 804	204	23004	12,63	22820,96	1871828,62	-102605,80
30 + 000	196	23200	11,24	23395,80	1895224,42	-96032,69
30 + 204	204	23404	10,69	22369,75	1917594,17	-91172,26
30 + 403	199	23603	9,78	20369,12	1937963,29	-87883,32
30 + 602	199	23802	10,49	20168,26	1958131,55	-84795,25
30 + 805	203	24005	8,15	18921,44	1977052,99	-83297,31
31 + 003	198	24203	10,97	18933,49	1995986,48	-81358,17
31 + 202	199	24402	12,44	23299,37	2019285,84	-75138,98
31 + 402	200	24602	10,19	22631,44	2041917,28	-69673,55
31 + 601	199	24801	9,62	19711,22	2061628,50	-67042,51
31 + 800	199	25000	12,03	21545,45	2083173,95	-62577,24
31 + 999	199	25199	11,78	23693,78	2106867,73	-55963,64
32 + 207	208	25407	10,40	23072,51	2129940,25	-50743,77
32 + 401	194	25601	9,49	19296,69	2149236,93	-48098,12
32 + 600	199	25800	11,93	21314,06	2170550,99	-43864,23
32 + 808	208	26008	10,30	23124,92	2193675,92	-38591,96
33 + 000	192	26200	9,91	19404,28	2213080,20	-35667,05
33 + 204	204	26404	11,44	21777,56	2234857,76	-31398,81
33 + 400	196	26600	10,97	21964,90	2256822,66	-26256,60
33 + 600	200	26800	10,05	21024,80	2277847,46	-22397,81
33 + 804	204	27004	9,40	19841,41	2297688,88	-20065,73
34 + 201	397	27401	10,21	38916,84	2336605,72	-15223,42
34 + 406	205	27606	12,67	23446,03	2360051,74	-9372,55
34 + 615	209	27815	10,35	24050,14	2384101,89	-3260,89
34 + 802	187	28002	11,58	20501,54	2404603,43	1190,44
35 + 000	198	28200	6,38	17781,98	2422385,41	1978,07
35 + 202	202	28402	9,64	16187,55	2438572,96	827,95
35 + 401	199	28601	7,43	16989,12	2455562,08	736,89
35 + 601	200	28801	9,37	16798,14	2472360,21	369,01
35 + 801	200	29001	7,43	16797,00	2489157,21	0,00

Cuadro B.4: Sectorización del tramo por unidades homogéneas carril izquierdo

	SECCIO	NES HOMO DEFLEXI	GÉNEAS I ONES MÁ			L
Abscisa	Distancia	Distancia	Deflexión	Área	Área	Diferencia
\mathbf{km}	intervalo	acumulada	Do	intervalo	acumulada	acumulada
	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
6+850	0	0	20,04	0,00	0,00	0,00
6+950	100	100	17,06	18548,77	18548,77	8061,71
7+050	100	200	13,18	15116,29	33665,06	12690,92
7 + 139	89	289	11,58	11018,71	44683,77	14376,15
7 + 248	109	398	12,30	13014,41	57698,18	15959,65
7 + 352	104	502	15,15	14271,17	71969,35	19324,27
7+442	90	592	10,44	11514,35	83483,70	21400,26
7 + 559	117	709	19,52	17525,08	101008,78	26655,47
7 + 649	90	799	15,50	15759,27	116768,05	32976,39
7 + 753	104	903	21,19	19081,37	135849,43	41151,21
7+852	99	1002	17,90	19351,10	155200,52	50120,11
7+951	99	1101	14,34	15961,05	171161,57	55698,96
8+047	96	1197	10,96	12144,75	183306,32	57776,13
8+150	103	1300	12,36	12006,54	195312,86	58980,99
8+245	95	1395	15,50	13233,25	208546,11	62251,52
8+353	108	1503	13,69	15765,62	224311,72	66691,10
8+452	99	1602	9,48	11469,34	235781,06	67778,24
8+648	196	1798	15,63	24605,39	260386,45	71828,98
8+747	99	1897	18,11	16700,57	277087,03	78147,36
8+851	104	2001	21,80	20750,91	297837,93	87991,72
8+951	104	2101	11,44	16620,04	314457,97	94124,69
9+050	99	2200	13,27	12231,35	326689,32	95973,84
9+153	103	2303	13,59	13831,49	340520,80	99003,65
9+248	95	2398	16,73	14404,04	354924,84	103444,97
9+348	100	2498	16,85	16793,52	371718,36	109751,43
9+446	98	2596	17,24	16703,56	388421,93	116177,66
9+549	103	2699	17,66	17971,53	406393,45	123347,51
9+652	103	2802	15,77	17217,39	423610,84	129763,22
9+748	96	2898	21,15	17723,31	441334,15	137418,94
9+852	104	3002	15,68	19150,95	460485,10	145663,34
9+951	99	3101	17,49	16418,80	476903,89	151699,94
10+050	99	3200	17,51	17328,79	494232,69	158646,53
10+000 10+100	50	3250	17,14	8663,28	502895,96	162066,28
10+300	200	3450	17,06	34198,83	537094,79	175290,97
10+503	203	3653	14,80	32335,83	569430,62	186338,05
10+702	199	3852	15,37	30016,02	599446,64	195484,81
10+896	194	4046	13,90	28387,61	627834,25	203527,51
11+099	203	4249	5,23	19409,40	647243,65	201648,16
11+099	199	4448	15,70	20820,23	668063,88	201599,13
11+500	202	4650	14,25	30245,56	698309,44	210660,81
11+700	200	4850	12,09	26335,48	724644,92	216022,16
11+902	202	5052	9,84	22144,51	746789,42	216982,79
12+101	199	5251	8,18	17922,44	764711,86	214035,96
12+101 12+300	199	5450	17,44	25490,79	790202,65	218657,49
12+504	204	5654	21,90	40135,39	830338,04	237399,26
12+702	198	5852	21,77	43239,60	873577,64	259874,47
12+702 12+902	200	6052	16,83	38605,27	912182,91	277505,61
12+902 $13+100$	198	6250	10,33	26830,17	939013,08	283571,38
						285297,92
13+299 13+498	199 199	6449 6648	12,44 $11,64$	22595,81 23959,91	961608,89 985568,80	288388,57
13+498 13+698	200	6848	8,84	20475,61	1006044,41	287890,04
13+991	203	7051	14,38	23567,38	1029611,78	290168,68
13+901 14+100	203 199	7250	11,34	25590,92	1029011,78	294890,33
14+100 $14+299$			13,67		1080090,15	294690,55
	199	7449 7651	12,00	24887,45		,
14+501	202	7651 7846		25931,70	1106021,85 1125373,02	303656,33
14+696 $14+899$	195 203	7846	7,85 5.55	19351,18 13597,33	1125373,02	302557,73 294866,32
14+899 15+092	203 193	8049 8242	5,55 5,49	10655,45	1138970,36	294800,32 285281,73
15+092 15+304	212	8454	7,87	14159,91	1163785,72	277209,06
10+304	414	0404	1,01	14109,91	1105765,72	411409,00

Cuadro B.5: Sectorización del tramo por unidades homogéneas carril izquierdo

	SECCIO	NES HOMO DEFLEXI	GÉNEAS I ONES MÁ			l
Abscisa	Distancia	Distancia	Deflexión	Área	Área	Diferencia
$_{ m km}$	intervalo	acumulada	Do	intervalo	acumulada	acumulada
	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
15+500	196	8650	7,40	14956,07	1178741,79	271610,48
15 + 705	205	8855	9,26	17069,79	1195811,58	267181,78
15 + 899	194	9049	6,79	15567,25	1211378,83	262404,12
16 + 495	596	9645	6,77	40402,04	1251780,88	240303,24
16 + 699	204	9849	6,81	13851,02	1265631,89	232760,64
16 + 898	199	10048	6,68	13425,43	1279057,33	225316,81
17+097	199	10247	6,08	12691,55	1291748,88	217139,10
17+301	204	10451	5,18	11477,49	1303226,37	207222,97
17+703	402	10853	5,75	21965,97	1325192,34	187030,94
18+100	397	11250	6,89	25093,67	1350286,01	170490,95
18+299	199	11449	7,58	14402,92	1364688,93	164024,60
18+502	203	11652	6,02	13807,29	1378496,21	156543,14
18+701	199	11851	6,47	12423,05	1390919,26	148096,92
18+901	200	12051	7,51	13974,34	1404893,60	141097,13
19+100	199	12250	6,37	13807,12	1418700,72	134034,98
19+298	198	12448	7,31	13539,10	1432239,82	126809,69
19+502 $19+701$	204 199	12652 12851	8,59 7,57	16215,55 16084,43	1448455,37 1464539,80	121631,63 116846,79
19+701 19+899	198	13049	7,70	15116,89	1479656,69	111199,29
20+102	203	13252	10,50	18467,33	1498124,02	108377,87
20+102 20+301	199	13451	7,16	17568,52	1515692,54	105077,13
20+301 20+499	198	13649	9,25	16245,14	1531937,67	100557,87
20+699	200	13849	7,01	16257,76	1548195,43	95841,49
20+893	194	14043	7,14	13717,51	1561912,94	89214,09
21+101	208	14251	6,21	13875,26	1575788,20	81276,25
21+296	195	14446	5,92	11825,19	1587613,39	72651,66
21+502	206	14652	7,06	13369,22	1600982,61	64417,52
21+701	199	14851	8,01	14994,37	1615976,98	58542,62
21+900	199	15050	6,72	14655,61	1630632,58	52328,97
22+099	199	15249	8,73	15364,85	1645997,43	46824,56
22 + 293	194	15443	7,81	16035,17	1662032,61	42514,82
22 + 502	209	15652	9,05	17610,45	1679643,05	38207,29
22 + 704	202	15854	10,54	19781,88	1699424,93	36805,29
22 + 903	199	16053	8,37	18817,82	1718242,75	34753,85
23 + 096	193	16246	11,88	19541,31	1737784,05	34055,11
23 + 300	204	16450	11,01	23349,42	1761133,47	36010,91
23 + 504	204	16654	9,61	21033,56	1782167,03	35650,86
23 + 702	198	16852	9,93	19340,20	1801507,23	34226,66
23 + 902	200	17052	11,79	21720,08	1823227,31	34972,61
24 + 103	201	17253	14,85	26779,16	1850006,47	40672,77
24 + 295	192	17445	14,01	27706,90	1877713,37	48244,49
24 + 502	207	17652	12,53	27466,50	1905179,87	54002,76
24+699	197	17849	19,68	31727,82	1936907,69	65071,07
24+902	203	18052	12,79	32961,61	1969869,30	76743,93
25+101	199	18251	13,81	26467,93	1996337,23	82342,59
25+301	200	18451	6,92	20728,91	2017066,14	82097,37
25+504	203	18654	7,54	14679,33	2031745,46	75487,95
25+702	198	18852	6,91	14310,29	2046055,76	69033,85
25+901	199	19051	10,80	17629,62	2063685,37	65794,20
26+100	199	19250	7,84	18550,32	2082235,70	63475,26
26+300	200	19450	11,21	19052,26	2101287,95	61553,38
26+499 26+702	199	19649 19852	9,80 9,01	20903,61 19087,21	2122191,56 2141278,78	61587,73 59386,19
26+702 26+900	203 198	20050	6,08	14939,77	2156218,55	53561,57
20+900 27+099	199	20249	9,88	15886,92	2172105,47	48579,23
27+099 27+302	203	20452	6,66	16795,65	2188901,12	44086,13
27+502 27+501	199	20452	9,03	15611,98	2204513,10	38828,85
$\frac{27+301}{27+707}$	206	20857	9,03 8,17	17710,01	2222223,11	34935,50
$\frac{27+707}{27+907}$	200	21057	9,37	17710,01	2239760,64	31498,90
28+099	192	21249	6,42	15161,27	2254921,91	26525,00
28+303	204	21453	13,20	20017,58	2274939,49	25148,96
28+303 28+487	184	21637	11,12	22375,56	2297315,05	28228,32
28+698	211	21848	11,12	24381,63	2321696,68	30482,23
28+899	201	22049	10,24	22348,10	2344044,78	31751,33
20 1.099	201	44043	10,44	22010,10	2011011,10	01101,00

Cuadro B.6: Sectorización del tramo por unidades homogéneas carril izquierdo

	SECCIO	NES HOMO DEFLEXI	GÉNEAS I ONES MÁ			L
Abscisa	Distancia	Distancia	Deflexión	Área	Área	Diferencia
\mathbf{km}	intervalo	acumulada	Do	intervalo	acumulada	acumulada
	Δx_i	$\sum \Delta x_i$	$\frac{1}{100}mm$	real a_i	$\sum a_i$	Z_x
29 + 101	202	22251	8,83	19260,41	2363305,18	29827,86
29 + 301	200	22451	12,08	20906,91	2384212,09	29760,63
29 + 499	198	22649	12,30	24142,03	2408354,12	33138,27
29 + 698	199	22848	14,96	27130,97	2435485,09	39399,97
29 + 901	203	23051	11,73	27098,10	2462583,19	45209,33
30 + 099	198	23249	10,71	22218,20	2484801,39	46663,13
30 + 301	202	23451	10,75	21674,44	2506475,83	47153,70
30 + 498	197	23648	12,86	23254,97	2529730,80	49749,14
30 + 701	203	23851	10,31	23519,70	2553250,49	51980,09
30 + 900	199	24050	6,08	16309,50	2569560,00	47420,33
31 + 099	199	24249	7,08	13087,13	2582647,13	39638,20
31 + 301	202	24451	12,90	20172,48	2602819,61	38626,80
31 + 502	201	24652	9,15	22153,31	2624972,92	39701,11
31 + 699	197	24849	10,02	18880,61	2643853,53	37922,20
31 + 897	198	25047	8,17	18004,91	2661858,44	35162,72
32 + 100	203	25250	7,22	15615,48	2677473,92	29489,45
32 + 303	203	25453	5,98	13399,09	2690873,01	21599,79
32 + 700	397	25850	8,76	29254,73	2720127,74	9220,86
32 + 899	199	26049	9,06	17726,11	2737853,85	6077,71
33 + 098	199	26248	11,95	20906,63	2758760,48	6115,08
33 + 301	203	26451	11,21	23511,28	2782271,76	8337,61
33 + 504	203	26654	9,21	20731,23	2803002,99	7780,09
33 + 701	197	26851	11,66	20560,62	2823563,61	7681,19
33 + 901	200	27051	9,62	21279,00	2844842,60	7986,05
34 + 100	199	27250	8,46	17990,30	2862832,91	5107,09
34 + 298	198	27448	8,46	16750,01	2879582,91	1092,70
34 + 499	201	27649	10,60	19152,31	2898735,22	-833,99
34 + 699	200	27849	10,33	20929,54	2919664,76	-878,58
34 + 900	201	28050	13,49	23937,04	2943601,81	1979,45
35 + 099	199	28249	7,80	21182,04	2964783,84	2292,23
35 + 303	204	28453	11,27	19453,23	2984237,08	351,84
35 + 498	195	28648	9,85	20596,43	3004833,50	498,49
35 + 696	198	28846	10,62	20265,90	3025099,41	0.00

Apéndice C

Módulos de reacción por método AASHTO

Cuadro C.1: Módulos de reacción por método AASHTO

Abscisa	AREA 7	l est (in)	P	D(1) (in)	do* (in)	kest (pci)	AF do	AF 1	k	k 004.64100.001
000	40.15	91 50	1 4 E 7 4 4 9	0.0054	0 1000	90E 01	0.0007	0.0719	20E 67	100 04
00+0	90.13	01.09	140/4.40	0.0034	0.1220	147 66	0.9207	0.9715	100.00	192.04
000+9	34.44	24.70	14630.33	0.0130	0.1217	694.44	0.9231	0.97.39	740.63	370 39
6+950	39.40	30.48	14794.75	0.0110	0.1227	176.80	0.9266	0.9748	200.78	100.39
7+003	37.75	28.26	14554.20	0.0045	0.1224	494.77	0.9383	0.9813	547.65	273.82
7+050	40.14	31.57	14610.40	0.0084	0.1228	213.56	0.9208	0.9714	245.80	122.90
7 + 103	40.98	32.90	14515.98	0.0062	0.1230	265.41	0.9136	0.9669	310.76	155.38
7 + 139	39.05	29.98	14819.48	0.0075	0.1226	268.96	0.9293	0.9764	303.61	151.81
7 + 202	37.72	28.21	14612.65	0.0061	0.1224	366.00	0.9385	0.9814	404.91	202.46
7 + 248	38.28	28.93	14677.84	0.0079	0.1225	271.76	0.9348	0.9794	303.06	151.53
7 + 302	39.89	31.19	14405.82	0.0052	0.1228	351.66	0.9228	0.9726	402.83	201.42
7 + 352	41.74	34.17	14745.29	0.0098	0.1231	158.99	0.9067	0.9624	189.34	94.67
7 + 401	39.52	30.65	14428.31	0.0047	0.1227	400.36	0.9258	0.9743	455.55	227.77
7 + 442	41.00	32.92	14601.41	0.0067	0.1230	248.25	0.9135	0.9668	290.74	145.37
7 + 501	37.80	28.32	14711.57	0.0050	0.1224	445.20	0.9380	0.9811	493.09	246.55
7+559	42.93	36.35	14383.34	0.0123	0.1233	109.24	0.8946	0.9541	134.14	67.07
7+601	38.78	29.61	14385.59	0.0052	0.1226	384.04	0.9312	0.9775	431.63	215.81
7+649	42.86	36.21	14554.20	0.0099	0.1233	138.55	0.8954	0.9546	169.81	84.90
7+705	39.02	29.98	14668.85	0.0050	0.1226	398.25	0.9293	0.9764	449.56	224.78
7+753	43.30	37.08	14774.51	0.0137	0.1234	96.71	0.8905	0.9512	120.04	60.02
$^{7+799}$	34.35	24.40	14599.16	0.0051	0.1216	581.32	0.9571	0.9902	619.49	309.75
7 + 852	38.97	29.87	14774.51	0.0116	0.1226	175.37	0.9299	0.9767	197.69	98.85
7+903	38.95	29.85	14608.15	0.0040	0.1226	500.13	0.9300	0.9768	563.65	281.83
7+951	40.39	31.96	14675.60	0.0092	0.1229	191.52	0.9187	0.9701	221.52	110.76
8+002	29.03	19.83	14605.91	0.0069	0.1205	648.23	0.9764	0.9967	668.30	334.15
8+047	41.50	33.76	14444.04	0.0069	0.1231	225.13	0.9089	0.9639	266.61	133.31
8+102	37.40	27.81	14569.94	0.0056	0.1223	414.34	0.9405	0.9825	456.41	228.21
8+150	40.70	32.44	14605.91	0.0079	0.1229	215.96	0.9161	0.9685	251.32	125.66
8+201	36.22	26.41	14435.05	0.0033	0.1220	769.10	0.9475	0.9859	835.08	417.54
8+245	40.01	31.38	15017.31	0.0102	0.1228	183.72	0.9218	0.9720	210.95	105.47
8+301	31.95	22.16	14576.68	0.0041	0.1211	873.62	0.9671	0.9939	914.49	457.24
8+353	40.65	32.36	14684.59	0.0088	0.1229	195.82	0.9166	0.9688	227.65	113.83
8+452	41.62	33.97	14421.56	0.0060	0.1231	257.06	0.9078	0.9631	305.31	152.65
8+500	35.32	25.41	14569.94	0.0049	0.1219	501.78	0.9524	0.9881	004.14	302.07
0+003	09.00	30.40 9 E E E	14011.49	0.0000	0.1227	149.64	0.9271	0.973	179 09	204.34
8+040	37.75	28.00	14470.02	0.0099	0.1233	350.02	0.8390	0.9372	388 74	107
8+747	40.29	31.81	14549.70	0.0115	0.1229	153.13	0.9195	0.9706	176.78	88.39
8+802	40.15	31.59	14594.67	0.0060	0.1228	299.13	0.9207	0.9713	344.37	172.19
8+851	45.33	41.55	14538.46	0.0139	0.1237	75.10	0.8656	0.9323	99.81	49.91
8+900	33.87	23.93	14538.46	0.0039	0.1215	800.25	0.9593	0.9910	849.40	424.70
8+951	41.86	34.38	14859.94	0.0074	0.1231	207.95	0.9055	0.9616	248.37	124.18
9+004	33.33	23.41	14506.99	0.0037	0.1214	857.37	0.9616	0.9919	906.12	453.06
$^{9+020}$	41.61	33.96	14356.37	0.0083	0.1231	183.79	0.9078	0.9631	218.24	109.12
$^{9+100}$	34.81	24.88	14540.71	0.0040	0.1217	720.87	0.9549	0.9892	771.42	385.71
9+153	44.63	39.92	14556.45	0.0087	0.1236	130.36	0.8747	0.9394	168.88	84.44
9+200	38.91	29.78	14540.71	0.0049	0.1226	409.00	0.9303	0.9770	460.61	230.30
9+240 0-20	00.00	10.62	14505.19	0.0107	0.1220	190.70	0.9312	0.97.75	495.90	07.70
9+304 8+348	43.03	36.55	14550.37	0.0033	0.1223	125.12	0.9555	0.9733	154.10	77.05
9+403	31.46	21.74	14446.29	0.0037	0.1210	999.33	0.9688	0.9945	1042.93	521.47
				Contin	Continua en la siguiente página	iente página				
)				

Abooto	ADEA 7	1 oct (in)	٥	D(1) (in)	(4:) *07	□ □ V (;□ C) +□ □ V (□ C) +□ □ V □ V (□ C) (□	A E A	۷ ک	<u>.</u>	<u>.</u>
km			libras	in (ii)	in (m)	pci			dinámico pci	estático pci
9+446	41.49	33.75	14572.18	0.0110	0.1231	143.21	0.9090	0.9639	169.57	84.79
9 + 549	42.10	34.81	14684.59	0.0114	0.1232	131.50	0.9032	0.9600	157.98	78.99
9+652	40.01	31.37	14533.97	0.0100	0.1228	180.69	0.9219	0.9720	207.45	103.72
9 + 702	29.92	20.50	14538.46	0.0034	0.1207	1244.87	0.9738	0.9960	1288.58	644.29
9+748	42.46	35.47	14551.95	0.0135	0.1233	105.76	0.8995	0.9575	128.25	64.13
$^{9+805}$	33.39	23.47	14635.13	0.0039	0.1214	829.56	0.9614	0.9918	877.13	438.56
$^{9+852}$	40.93	32.82	14444.04	0.0099	0.1230	166.32	0.9140	0.9672	194.52	97.26
$^{9+901}$	42.90	36.30	14506.99	0.0045	0.1233	301.93	0.8949	0.9543	370.52	185.26
9+951	41.31	33.44	14491.25	0.0111	0.1230	143.64	0.9107	0.9650	169.39	84.70
10+001	35.33	25.42	14569.94	0.0028	0.1219	995.28	0.9523	0.9881	1070.43	535.22
10+050	41.52	33.79	14581.18	0.0112	0.1231	140.56	0.9087	0.9637	166.54	83.27
10 + 100	44.50	39.62	14596.91	0.0110	0.1236	104.95	0.8764	0.9407	135.33	99.79
$^{10+200}$	31.46	21.74	14477.76	0.0033	0.1210	1111.31	0.9688	0.9945	1159.82	579.91
$^{10+300}$	41.95	34.54	14484.51	0.0108	0.1232	138.23	0.9046	0.9610	165.45	82.73
10 + 404	34.70	24.77	14444.04	0.0033	0.1217	859.60	0.9554	0.9894	918.99	459.49
18+502	33.50	23.58	14567.69	0.0038	0.1215	829.18	0.9609	0.9917	877.50	438.75
18+602	40.17	31.62	14691.33	0.0058	0.1228	313.52	0.9205	0.9712	361.07	180.54
18 + 701	34.32	24.38	14558.70	0.0041	0.1216	722.98	0.9573	0.9902	770.29	385.14
18+800	40.61	32.31	14560.94	0.0067	0.1229	256.38	0.9168	0.9689	297.85	148.92
18+901	38.05	28.64	14457.53	0.0048	0.1224	454.11	0.9363	0.9802	504.76	252.38
$^{19+004}$	36.22	26.41	14594.67	0.0039	0.1220	654.99	0.9475	0.9859	711.18	355.59
$^{19+100}$	33.31	23.39	14556.45	0.0041	0.1214	795.65	0.9617	0.9920	840.76	420.38
$^{19+203}$	41.39	33.58	14684.59	0.0082	0.1231	195.28	0.9099	0.9645	230.69	115.35
$^{19+298}$	34.99	25.06	14657.61	0.0047	0.1218	606.11	0.9540	0.9889	649.71	324.85
$^{19+400}$	39.72	30.95	14556.45	0.0049	0.1228	379.35	0.9242	0.9734	433.24	216.62
$^{19+502}$	38.11	28.71	14549.70	0.0055	0.1224	394.89	0.9359	0.9800	439.29	219.65
$^{19+601}$	40.91	32.78	14554.20	0.0072	0.1230	231.98	0.9143	0.9673	271.16	135.58
19+701	32.19	22.37	14578.93	0.0048	0.1212	730.23	0.9662	0.9936	765.55	382.77
19+800	38.31	28.97	14776.76	0.0061	0.1225	355.62	0.9346	0.9793	396.76	198.38
19+899	33.78	23.84	14455.28	0.0049	0.1215	634.58	0.9597	0.9912	673.03	336.52
20+000	38.68	29.48	14489.00	0.0056	0.1225	364.97	0.9319	0.9779	409.57	204.78
20+102	37.89	28.43	14680.09	0.0067	0.1224	329.42	0.9374	0.9808	365.31	182.65
20+202	37.40	27.81	14480.01	0.0057	0.1223	401.36	0.9405	0.9825	442.10	221.05
20+301	35.82	25.97	14623.89	0.0046	0.1220	577.18	0.9497	0.9869	623.97	311.99
20+402	38.18	28.80	14390.09	0.0061	0.1224	350.59	0.9355	0.9798	390.40	195.20
20 + 499	00.00 7.00 11.00	78.67	14503.94	0.0039	0.1220	040.04 440.46	0.9320	0.900	406.00	248.04
000+07	20.70	24.91	14747 54	0.0031	0.1217	639.66	0.9390	0.3820	684 74	349.37
20+803	46.19	43.75	14367.61	0.0063	0.1238	146.59	0.8534	0.9225	201.85	100.93
20 + 893	37.81	28.33	14731.80	0.0046	0.1224	487.95	0.9379	0.9811	540.54	270.27
21+003	38.51	29.24	14747.54	0.0069	0.1225	304.09	0.9332	0.9785	340.31	170.16
$21{+}101$	33.34	23.42	14475.52	0.0039	0.1214	814.77	0.9616	0.9919	861.16	430.58
21 + 201	36.27	26.47	14653.12	0.0054	0.1221	469.76	0.9472	0.9858	510.36	255.18
$^{21+296}$	32.43	22.58	14439.55	0.0037	0.1212	916.69	0.9653	0.9933	962.57	481.28
21+400	41.54	33.84	14626.14	0.0051	0.1231	309.39	0.9085	0.9636	366.78	183.39
21+408	42.95	36.39	14659.86	0.0069	0.1233	197.52	0.8944	0.9539	242.68	121.34
200+12	00.40	20.14	14402.03	0.0043	0.1220	400.91	0.9337	0.9769	26.130	119 69
21+600	09.77	20.73	14529.47	0.0097	0.1227	200.03	0.9277	0.9734	221.20	180.56
21+803	41.48	36.35	14603.66	0.0058	0.1233	234.77	0.8946	0.9541	288.29	144.14
21 + 900	37.56	28.01	14619.39	0.0043	0.1223	530.05	0.9395	0.9819	585.14	292.57
22 + 002	41.11	33.10	14659.86	0.0061	0.1230	269.30	0.9125	0.9662	316.14	158.07
22 + 099	41.79	34.26	14707.07	0.0056	0.1231	274.59	0.9062	0.9620	327.42	163.71
				Contin	Continua en la siguiente página	ente página				

APPLAY 1 18th (1984) 11 (1984) OF (10) (10) (10) (10) (10) (10) (10) (10)		4		٩		: 4		-	-	-	-
89.55 30.70 10.10 0.1027 312.50 0.9406 0.9472 355.80 87.15 27.92 14365.36 0.0041 0.1227 312.50 0.9406 0.9427 0.9406 0.9529 0.9472 355.80 35.80 <th>km</th> <th></th> <th>in in</th> <th>libras</th> <th>D(1) (III)</th> <th>uo (uu) ui</th> <th>kest (pci)</th> <th>Ar do</th> <th>AF I</th> <th>dinámico pci</th> <th>estático pci</th>	km		in in	libras	D(1) (III)	uo (uu) ui	kest (pci)	Ar do	AF I	dinámico pci	estático pci
86.7.4 27.7.9 1458.7.6 0.0049 0.122.9 64.90.0 0.9840 0.0882 65.25 88.7.5 26.3.9 1458.7.0 0.0049 0.1225 68.04 0.9829 0.0784 40.31 88.8.5 29.30 1465.7.0 0.0068 0.1226 30.24 0.9729 0.0784 40.31 88.8.1 20.66 1467.1.0 0.0068 0.1226 30.18 0.9784 40.31 88.8.1 20.66 1467.1.0 0.0068 0.1226 30.18 0.9773 28.93 9.93 41.5.2 20.80 0.0069 0.1229 20.93 0.9773 28.93 9.93 0.9773 28.93 9.94 0.9773 28.93 9.94 9.94 0.9773 28.93 9.94	22 + 207	39.55	30.70	14691.33	0.0061	0.1227	312.50	0.9255	0.9742	355.80	177.90
85.12 26.8.3 1462.86.7 0.0003 0.1220 602.44 0.9843 0.0862 63.38 40.15 31.66 1467.1.0 0.0002 0.1228 60.44 0.9841 0.0771 403.1 403.1 403.1 403.2 403.1 403.2 <td>22 + 293</td> <td>37.49</td> <td>27.92</td> <td>14365.36</td> <td>0.0049</td> <td>0.1223</td> <td>459.05</td> <td>0.9400</td> <td>0.9822</td> <td>506.26</td> <td>253.13</td>	22 + 293	37.49	27.92	14365.36	0.0049	0.1223	459.05	0.9400	0.9822	506.26	253.13
38.55 29.30 14012-56 0.01225 38.0.45 0.90724 0.9754 403.64 40.19 31.66 14477.10 0.00064 0.1226 38.0.43 0.9713 238.54 38.81 32.66 14477.11 0.00064 0.1226 30.18 0.9310 0.9773 38.93 39.94 38.81 30.66 14427.12 0.00064 0.1229 31.12 0.9773 23.94 39.54 37 41.52 32.81 1472.85 0.00064 0.1229 23.24 0.9872 0.9773 23.94 39.54 37 38.95 39.54 37 38.95 39.54 37 38.95 39.54 37 38.95 39.54 37.54 38.95 39.54 37.54 38.95 39.54 38.95 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54	22 + 402	36.12	26.30	14558.70	0.0043	0.1220	602.44	0.9481	0.9862	653.38	326.69
40.19 3.16.6 1.4677.1 0.0082 0.1228 219.71 0.9204 0.9711 353.14 40.19 3.16.6 1.4677.10 0.0082 0.1227 234.12 0.9260 0.9712 238.14 40.53 3.26.6 1.4675.0 0.0087 0.1227 234.12 0.9267 0.9712 256.50 40.53 3.28.81 1.4750.0 0.0087 0.1227 234.12 0.9370 0.9711 266.50 40.53 3.18.8 1.4350.24 0.0087 0.1227 234.12 0.9170 0.9711 266.50 40.53 3.13.80 1.4350.24 0.0087 0.1227 246.34 0.9180 0.9711 266.50 40.54 3.00.20 1.4656.4 0.0077 0.1227 245.26 0.9371 289.35 36.26 40.54 3.00.20 1.465.4 0.0077 0.1223 1.468.7 0.9829 0.971.2 247.2 40.54 3.00.20 1.466.7 0.0226 0.937.2 0.972.2	22 + 502	38.55	29.30	14612.65	0.0058	0.1225	360.45	0.9329	0.9784	403.64	201.82
38.8 1.20.66 1.4374.81 0.0006 0.1226 391.98 0.9310 0.9773 389.59 44.52 38.54 38.64 1.4674.81 0.0006 0.1220 391.85 0.9710 278.93 39.89 4.058 38.84 1.475.06 0.0054 0.1220 2.26.34 0.9772 28.85 39.47 39.83 4.038 3.188 1.438.73 0.0077 0.1220 2.26.34 0.9772 1.979 36.83 39.84 3.8.37 3.188 1.438.73 0.0077 0.1220 2.26.34 0.9712 28.85 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.85 39.84 39.84 39.84 39.84 39.84 39.84 39.84 39.84 39.84 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.74 39.84 39.84 39.84 39.84 39.84 39.84	22 + 601	40.19	31.66	14671.10	0.0082	0.1228	219.71	0.9204	0.9711	253.14	126.57
89.54 30.00 1467.7 0.0082 0.1227 234.11 0.9260 0.9742 266.50 40.93 33.84 14675.6 0.0083 0.1227 234.13 0.9741 0.9772 266.50 40.34 31.88 1463.77 0.0083 0.1231 168.26 0.0087 0.9711 266.50 40.34 31.88 1463.77 0.007 0.1229 246.34 0.918 0.9711 268.50 38.27 2.00 1.466.4 0.007 0.1229 246.34 0.918 0.9711 269.50 38.29 31.20 1466.4 0.007 0.1229 226.34 0.9241 0.9712 287.70 40.54 31.20 1466.7 0.007 0.1229 228.34 0.9241 0.9713 391.80 38.29 31.20 1466.7 0.0077 0.1229 228.84 0.9241 0.9713 391.80 40.54 2.00 0.0077 0.1229 228.85 0.9241 0.9713 <	22 + 704	38.81	29.66	14324.89	0.0066	0.1226	301.98	0.9310	0.9773	339.59	169.80
41.0.34 32.8.81 147.25.00 0.0054 0.1230 311.57 0.09471 0.9972 196.37 41.0.34 31.88 14.92.34 0.0075 0.1230 216.35 0.9912 0.9771 196.34 40.34 31.88 14.932.34 0.0077 0.1229 245.35 0.9912 0.9771 286.85 40.34 31.86 14.932.34 0.0077 0.1229 245.35 0.9912 0.9771 286.85 39.37 29.00 20.00 0.1220 245.34 0.9972 0.9971 0.9972 0.9971 0.9973	22 + 800	39.54	30.68	14657.61	0.0082	0.1227	234.12	0.9256	0.9742	266.50	133.25
4.1.5.2 3.3.80 145.3.7.7.2 1.0.033 0.1229 2.22.5.2 0.9967 0.9957 0.9957 0.9957 0.9957 0.9957 0.9957 0.9957 0.9957 0.9958 0.9957 <t< td=""><td>22+903</td><td>40.93</td><td>32.81</td><td>14725.06</td><td>0.0054</td><td>0.1230</td><td>311.57</td><td>0.9141</td><td>0.9672</td><td>364.37</td><td>182.19</td></t<>	22+903	40.93	32.81	14725.06	0.0054	0.1230	311.57	0.9141	0.9672	364.37	182.19
40.34 31.88 14382.34 0.0075 0.1229 245.34 0.99192 0.9712 0.88.65 40.34 31.88 31.88 14382.34 0.0077 0.1229 245.34 0.99182 0.9771 283.73 38.97 31.32 14665.44 0.0070 0.1229 245.34 0.99182 0.9772 289.79 38.92 31.02 1465.58 0.0063 0.1229 247.39 0.9752 289.79 38.82 31.20 14455.28 0.0063 0.1229 247.39 0.9752 289.70 0.9773 389.89 38.82 31.20 14455.28 0.0063 0.1229 247.39 0.9773 289.70 0.9773 389.89 389.89 389.89 31.30 0.9173 0.9753 289.89 389.89 31.40 37.44 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 389.89 <td>23+000</td> <td>41.52</td> <td>33.80</td> <td>14531.72</td> <td>0.0093</td> <td>0.1231</td> <td>168.26</td> <td>0.9087</td> <td>0.9637</td> <td>199.39</td> <td>99.66</td>	23+000	41.52	33.80	14531.72	0.0093	0.1231	168.26	0.9087	0.9637	199.39	99.66
3.8 3.1 <td>23 + 096</td> <td>40.34</td> <td>31.88</td> <td>14392.34</td> <td>0.0075</td> <td>0.1229</td> <td>232.52</td> <td>0.9192</td> <td>0.9704</td> <td>268.65</td> <td>134.33</td>	23 + 096	40.34	31.88	14392.34	0.0075	0.1229	232.52	0.9192	0.9704	268.65	134.33
8.8 JF 7 20.00 1.128 25.856 for 50.00 20.22 20.750 <t< td=""><td>23 + 203</td><td>40.38</td><td>31.95</td><td>14531.72</td><td>0.0071</td><td>0.1229</td><td>245.34</td><td>0.9188</td><td>0.9701</td><td>283.73</td><td>141.86</td></t<>	23 + 203	40.38	31.95	14531.72	0.0071	0.1229	245.34	0.9188	0.9701	283.73	141.86
83.2.9 30.20 30.0061 0.1225 35.08.2 0.9341 0.9341 0.9341.80 93.1.80 93	23 + 300	39.97	31.32	14565.44	0.0070	0.1228	259.66	0.9222	0.9722	297.90	148.95
39,229 30,329<	23 + 402	38.37	29.06	14693.58	0.0061	0.1225	350.82	0.9341	0.9791	391.80	195.90
38.82 31.09 1455.31 0.00673 0.1228 25.84 0.99729 289.26 38.82 31.09 14455.31 0.00675 0.1228 272.02 0.9175 0.99726 289.26 38.84 31.20 14455.29 0.0067 0.1229 278.29 0.99728 355.04 42.19 23.84 31.20 14450.47 0.0076 0.1229 158.27 0.9973 355.74 40.59 23.28 1450.47 0.0079 0.1229 158.42 0.9928 0.9817 255.74 40.59 23.28 1.0099 0.1229 158.43 0.9969 210.06 255.74 148.07 0.9973 0.9817 255.74 148.07 0.898 148.07 0.9973 0.9953 148.07 0.8818 148.07 0.8818 148.07 0.8818 148.07 0.8818 148.07 0.8818 148.07 0.898 148.07 0.898 148.07 0.898 148.07 0.898 148.07 0.898 148.07	23 + 504	39.29	30.32	14704.82	0.0062	0.1227	317.23	0.9275	0.9753	359.54	179.77
40.54 32.19 14.55.2 0.00763 0.1229 27.5 0.9275 0.99275 0.9928 315.58 4.2.19 34.97 14450.79 0.0075 0.1229 278.57 0.9928 0.9574 255.74 4.2.19 34.97 14450.79 0.0075 0.1229 28.55 0.9928 255.04 255.04 4.0.59 32.28 1450.47 0.0084 0.1229 18.42 0.9170 0.9993 255.04 255.04 4.3.19 36.86 1468.234 0.0094 0.1229 18.42 0.9170 0.9893 138.75 138.75 0.9993 177.21 16.06 0.9963 138.75 0.9963 138.75 138.75 0.9963 138.75 138.75 0.9963 138.75 0.9963 138.75 0.9963 138.75 0.9968 138.87 0.9963 138.75 0.9963 138.75 0.9964 138.75 0.9964 138.75 0.9964 138.75 0.9964 138.75 0.9964 138.75 0.996		39.82	31.09	14563.19	0.0073	0.1228	252.84	0.9234	0.9729	289.26	144.63
39.89 31.20 14460.79 0.0076 0.1228 238.97 0.9728 0.9726 273.74 43.64 34.7 1642.96 0.0077 0.1223 258.56 0.9920 0.9972 225.04 4.54 38.1 14542.96 0.0077 0.1223 258.56 0.9930 0.9817 225.04 4.54 38.1 21.15 14562.21 0.0030 0.1223 158.24 0.9930 218.6 43.19 36.84 21.15 14566.21 0.0030 0.1234 148.07 0.9930 0.9817 228.73 43.19 36.84 16.84 0.0047 0.1214 0.1234 16.84 0.9431 0.9831 138.33 37.4 27.82 14378.85 0.0044 0.1223 6.84 5.81 1438.83 138.33 138.33 138.33 138.33 138.33 138.33 138.33 138.25 1438.89 143.28 138.25 1438.82 138.33 143.84 143.84 143.84 143.	23 + 702	40.54	32.19	14455.28	0.0063	0.1229	272.92	0.9175	0.9693	316.58	158.29
42.19 34.57 10.0504 25.50 25.00 42.19 34.57 1454.59 0.0077 0.1223 195.21 0.9504 225.04 40.56 32.28 14504.74 0.0094 0.1229 181.42 0.9970 0.9690 210.69 40.56 32.28 14504.74 0.0090 0.1234 1430.73 0.8918 0.9521 182.00 43.19 36.86 14682.34 0.0090 0.1234 148.07 0.8918 0.9521 172.18 43.19 36.86 14682.34 0.0081 0.1234 148.07 0.8943 183.75 4.4 27.8 146.76 0.0081 0.1234 148.07 0.8943 183.75 4.5 145.14 0.0044 0.1239 148.07 0.9929 0.9773 183.33 3.6 4.6 1.4 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	23 + 802	39.89	31.20	14450.79	0.0076	0.1228	238.97	0.9228	0.9726	273.74	136.87
3.7.64 3.8.1 1.4594.74 0.0087 0.1229 18.142 0.9390 0.9817 2.85.73 3.0.74 3.2.8 14564.74 0.0084 0.1299 18.142 0.9730 0.9917 210.69 3.0.74 3.1.8 1456.21 0.0034 0.1299 11.30.30 0.9713 0.9953 183.18 4.3.19 36.86 14682.37 0.0047 0.1215 0.661.87 0.9521 183.18 3.3.81 23.88 1465.39 0.0048 0.1223 16.843 0.9529 0.9942 98.33 3.4.24 27.82 14347.37 0.0048 0.1229 66.32 0.9465 0.9942 98.33 3.8.93 29.81 14751.49 0.0048 0.1229 446.25 0.9769 437.51 3.8.63 2.8.74 1466.86 0.0083 0.1224 246.25 0.9873 277.42 3.8.64 2.8.74 1466.86 0.0083 0.1224 248.57 0.9946 437.51	23 + 902	42.19	34.97	14542.96	0.0075	0.1232	195.21	0.9023	0.9594	235.04	117.52
40.59 31.28 14564,74 0.00304 0.1229 18.14.2 0.9170 0.99690 210.69 30.74 21.15 14564,74 0.00304 0.1229 18.14.2 0.9170 0.99690 210.69 43.19 38.81 23.88 14682.34 0.0090 0.1224 148.07 0.8918 0.9221 183.18 42.26 36.41 14675.60 0.0044 0.1233 61.87 0.9959 0.9923 208.45 46.84 45.55 14377.37 0.0024 0.1239 66.92 0.9029 0.99726 437.51 46.84 45.56 1.0044 0.1229 38.19 0.9463 0.9824 56.83 38.93 2.98 1.4511.80 0.0044 0.1229 18.14 0.9453 18.33 38.93 2.98 1.4450.90 0.0088 0.1227 246.25 0.9473 18.33 39.63 2.98 1.4450.80 0.0038 0.1227 246.25 0.9463 0.9759	24 + 004	37.64	28.11	14594.67	0.0087	0.1223	258.56	0.9390	0.9817	285.73	142.86
30 74 2115 14586.21 0.0030 0.1209 1330.30 0.9713 0.9953 1382.75 43 19 36.86 14682.31 0.0030 0.1219 148.07 0.9913 0.72.18 43 19 36.86 14533.97 0.0047 0.1215 661.87 0.5919 0.72.18 183.18 42.96 36.41 14675.60 0.0044 0.1233 161.86 0.9905 0.9911 772.18 46.84 45.55 14347.37 0.0044 0.1239 69.32 0.8943 0.9905 0.9912 772.18 38.89 3.1.19 14511.49 0.0048 0.1226 246.25 0.9022 0.9766 497.51 38.66 2.26.17 14665.91 0.0088 0.1224 248.57 0.9873 0.7224 248.57 0.9876 497.35 0.9766 0.9766 0.9776 0.9776 0.9736 0.775.99 0.9776 0.9736 0.9736 0.775.99 0.9736 0.9736 0.775.99 0.9736 0.9736	24 + 103	40.59	32.28	14504.74	0.0094	0.1229	181.42	0.9170	0.9690	210.69	105.34
43.19 36.86 14682.34 0.0090 0.1234 148.07 0.8918 0.9521 183.18 43.19 36.86 14682.34 0.0090 0.1235 169.61 0.0596 0.9911 702.18 42.96 36.41 14673.60 0.0081 0.1233 169.61 0.8943 0.9521 0.8324 363.33 42.96 36.41 14675.60 0.0044 0.1228 51.85 0.9045 0.9726 0.9726 263.33 38.93 31.19 14511.49 0.0048 0.1226 247.51 0.9726 0.9726 437.51 38.93 20.81 14408.00 0.0088 0.1224 248.25 0.9605 0.9766 497.51 37.98 28.54 14408.00 0.0088 0.1224 248.57 0.9868 0.9805 277.42 38.47 28.64 14418.80 0.0044 0.1229 441.18 0.9876 0.9769 458.62 37.11 27.44 24.40 0.1224 24.	24 + 201	30.74	21.15	14536.21	0.0030	0.1209	1330.30	0.9713	0.9953	1382.75	691.38
33.81 23.88 1457.5 of 0.0047 0.1215 661.87 0.9556 0.9911 772.18 33.81 23.88 1457.5 of 0.0044 0.123 1681 0.9456 0.9911 772.18 46.84 25.5 1437.8 f 0.0044 0.1223 511.88 0.9405 0.9329 208.45 38.93 29.8 f 14511.49 0.0048 0.1226 246.25 0.9429 0.9726 477.42 38.93 29.8 f 1465.91 0.0088 0.1226 246.25 0.9329 0.9756 477.42 38.93 29.8 f 14468.62 0.0088 0.1224 248.57 0.9368 0.9873 800.52 37.08 28.54 14498.00 0.0088 0.1224 248.57 0.9368 0.9373 277.42 38.63 28.54 14428.80 0.0043 0.1220 414.51 0.9366 0.9873 277.50 38.63 28.54 14428.80 0.0043 0.1220 414.51 <th< td=""><td>24 + 295</td><td>43.19</td><td>36.86</td><td>14682.34</td><td>0.0090</td><td>0.1234</td><td>148.07</td><td>0.8918</td><td>0.9521</td><td>183.18</td><td>91.59</td></th<>	24 + 295	43.19	36.86	14682.34	0.0090	0.1234	148.07	0.8918	0.9521	183.18	91.59
42.96 36.41 14675 60 0.0081 0.1233 119.61 0.8943 0.9559 208.45 42.96 36.41 14675 60 0.0084 0.1239 169.61 0.8924 0.553 20.845 46.84 45.55 1437.37 0.0124 0.1229 69.32 0.8435 0.9426 457.51 39.89 31.19 14511.49 0.0048 0.1229 246.25 0.9405 0.9768 35.65 25.77 14665.91 0.0088 0.1224 248.57 0.9868 0.9805 277.59 36.88 30.88 30.88 0.9940 0.9878 661.90 277.52 36.74 25.58 14748.20 0.0044 0.1224 248.51 0.9878 466.30 36.74 25.58 14742.80 0.0044 0.1222 248.57 0.9869 298.78 466.30 37.11 27.40 1474.82 0.0044 0.1222 248.57 0.9869 248.52 298.33 37.11	24 + 404	33.81	23.88	14533.97	0.0047	0.1215	661.87	0.9596	0.9911	702.18	351.09
37.41 27.82 14378.85 0.0044 0.1223 511.88 0.9405 0.9824 558.33 38.93 31.19 14347.37 0.0124 0.1229 69.435 0.9424 56.33 38.93 31.19 14511.49 0.0048 0.1226 246.25 0.9729 0.9726 437.51 38.93 29.81 14498.00 0.0088 0.1226 246.25 0.9729 0.9726 437.74 36.63 29.84 14498.00 0.0088 0.1227 248.57 0.9876 0.9776 277.42 37.98 28.54 14498.00 0.0083 0.1227 248.57 0.9866 661.90 277.42 39.68 26.20 14704.82 0.0044 0.1220 744.66 0.986 0.9876	24 + 502	42.96	36.41	14675.60	0.0081	0.1233	169.61	0.8943	0.9539	208.45	104.23
46.84 45.55 14347.37 0.0124 0.1239 69.52 0.8435 0.9412 98.33 39.89 31.19 14347.37 0.0124 0.1226 246.25 0.9302 0.9776 977.42 97.53 38.93 31.19 14711.49 0.0083 0.1226 246.25 0.9302 0.9776 277.42 97.74 37.98 28.54 14468.00 0.0083 0.1224 248.57 0.9366 0.9786 0.9776 0.9946 0.9571 0.9776 0.9486 0.9876 0.9946 0.9571 0.9776 0.9946 0.9571 0.9776 0.9946 0.9876 0.9946 0.9876 0.9946 0.9876 0.9946 0.9876 0.9946 0.9876 0.	24+606	37.41	27.82	14378.85	0.0044	0.1223	511.88	0.9405	0.9824	563.93	281.97
38.93 37.19 14511.49 0.0048 0.1228 38.1.95 0.9229 0.9769 277.42 38.93 29.81 14511.49 0.0048 0.1224 248.57 0.9807 0.9776 277.42 35.65 25.77 14605.91 0.0083 0.1224 248.57 0.9868 0.9878 0.9878 277.42 36.63 26.80 14742.80 0.0044 0.1221 741.60 0.9878 0.9878 661.90 37.11 27.46 1479.28 0.0044 0.1220 774.66 0.9878 661.90 37.11 27.46 1473.73 0.0048 0.1220 774.66 0.9878 661.90 37.11 27.46 1473.73 0.0048 0.1220 774.66 0.9878 661.90 37.11 27.46 1453.73 0.0048 0.1220 770.70 0.9878 771.70 40.42 32.00 1468.84 0.0043 0.1220 790.70 0.9878 779.73 37.18 <td>24+699</td> <td>46.84</td> <td>45.55</td> <td>14347.37</td> <td>0.0124</td> <td>0.1239</td> <td>69.32</td> <td>0.8435</td> <td>0.9142</td> <td>98.33</td> <td>49.17</td>	24+699	46.84	45.55	14347.37	0.0124	0.1239	69.32	0.8435	0.9142	98.33	49.17
38.93 29.81 14731.80 0.00363 0.1226 246.25 0.9302 0.977.42 38.93 29.81 144731.80 0.00363 0.1219 741.89 0.9975 0.977.42 37.98 28.54 14498.00 0.0088 0.1224 248.57 0.9368 0.977.6 0.9366 0.9805 275.99 36.03 26.20 14704.82 0.0043 0.1227 491.8 0.9948 0.978 661.30 36.03 26.20 14704.82 0.0044 0.1220 491.18 0.9486 0.9864 763.52 37.11 27.46 14439.0 0.0044 0.1220 491.18 0.9486 0.9871 0.9876 0.9834 58.02 37.34 32.00 14764.43 0.0044 0.1229 491.18 0.9956 458.62 37.36 27.77 14574.43 0.0069 0.1229 491.18 0.9956 468.94 37.36 37.24 14686.84 0.0069 0.1220 491.18	24 + 800	39.89	31.19	14511.49	0.0048	0.1228	381.95	0.9229	0.9726	437.51	218.75
3.6.9 2.5.7 14005.31 0.1224 74.18 0.9368 0.9367 0.9367 0.9367 3.6.8 30.88 14648.62 0.0053 0.1224 748.77 0.9368 0.9573 0.0573 3.6.8 30.88 14648.62 0.0053 0.1227 356.07 0.9346 0.9873 66.190 3.6.03 26.20 14704.82 0.0037 0.1220 704.66 0.9425 0.9874 66.190 3.7.11 27.46 14513.73 0.0048 0.1222 491.18 0.9428 0.9834 530.02 3.7.12 27.40 14599.08 0.0048 0.1222 491.18 0.9428 0.534 763.52 3.7.24 14599.08 0.0048 0.1223 396.30 0.9186 6.9826 360.20 3.7.36 27.77 14586.84 0.0069 0.1223 335.33 0.9408 0.9527 0.9408 0.5570 3.7.36 27.77 14586.84 0.0063 0.1220 791.18	24+902	00.00 0.00	29.81	14731.80	0.0083	0.1226	240.25	0.9302	0.9769	27.1.42	138.71
3.6.8 3.0.88 1448.50 0.0053 0.1274 35.67 0.9516 0.9516 0.9736 4.06.31 3.6.47 25.58 14448.50 0.0063 0.1227 35.67 0.9516 0.9578 661.90 3.5.47 25.58 14432.80 0.0037 0.1220 704.66 0.9486 0.9578 661.90 3.4.24 24.30 14399.08 0.0043 0.1222 491.18 0.9486 0.9534 539.02 3.4.24 24.30 14450.08 0.0043 0.1229 396.30 0.9186 955.13 3.4.24 24.24 14674.43 0.0069 0.1226 897.10 0.9579 0.9569 3.4.18 24.24 14686.84 0.0063 0.1216 790.27 0.9579 0.9965 840.98 3.5.10 25.18 0.44412.57 0.0063 0.1226 292.23 0.9968 848.94 3.6.10 25.18 0.0071 0.1229 292.53 0.9969 848.94 <	25+101	37.08	100 200 200 200	14003.91	0.0036	0.1219	0.41.09 0.48 F.7	0.9507	0.307.0	275 00	138 00
35.47 25.58 14432.80 0.0044 0.1219 614.51 0.9516 0.9878 661.90 36.03 26.20 14704.82 0.0034 0.1220 704.66 0.9486 0.9878 661.90 36.03 26.20 14704.82 0.0037 0.1220 704.66 0.9486 0.9878 661.90 37.11 27.46 14530.63 0.0044 0.1229 396.30 0.9185 0.9699 458.62 37.24 32.00 14630.63 0.0044 0.1229 396.30 0.9185 0.9699 458.62 37.36 27.77 14630.63 0.0044 0.1229 396.30 0.9986 458.92 37.18 24.24 14686.84 0.0038 0.1216 790.77 0.9986 848.94 35.94 26.09 14716.06 0.0071 0.1220 790.24 0.9886 848.94 40.60 32.28 14567.69 0.0062 0.1229 240.26 0.917 0.9886 848.94	25+202	30.08	# 8 O.S	14648 62	0.0053	0.1224	356.07	0.9335	0.2220	406.31	203.26
36.03 26.20 14704.82 0.0037 0.1220 704.66 0.9486 0.9864 763.52 37.11 27.46 144704.82 0.0037 0.1222 491.18 0.9423 0.9834 763.52 37.24 24.30 14399.03 0.0044 0.1222 491.18 0.9659 458.62 37.36 27.77 14630.63 0.0044 0.1223 335.33 0.9408 0.9826 369.20 37.36 27.77 14486.84 0.0069 0.1223 335.33 0.9408 0.9826 369.20 35.94 26.09 14716.60 0.0051 0.1229 251.98 0.9491 0.9866 564.99 35.10 25.18 14412.57 0.0053 0.1229 220.24 0.9170 0.9170 0.9243 0.9489 35.90 26.11 14556.45 0.0062 0.1229 292.53 0.9490 0.9723 335.47 35.94 26.09 14468.74 0.0062 0.1229 292.53 <t< td=""><td>25+301</td><td>35.47</td><td>25.58</td><td>14432.80</td><td>0.0033</td><td>0.1219</td><td>614.51</td><td>0.9516</td><td>0.9878</td><td>661.90</td><td>330.95</td></t<>	25+301	35.47	25.58	14432.80	0.0033	0.1219	614.51	0.9516	0.9878	661.90	330.95
37.11 27.46 14513.73 0.0048 0.1222 491.18 0.9423 0.9374 539.02 4.43 4.439.08 0.0033 0.1216 897.10 0.9576 0.9994 955.13 4.0.42 32.00 14630.68 0.0043 0.1229 396.30 0.9169 458.62 37.36 27.77 14574.43 0.0069 0.1229 396.30 0.9168 0.9826 369.20 34.18 24.24 14686.84 0.0063 0.1220 521.08 0.9408 0.9826 369.20 35.94 26.09 14716.06 0.0051 0.1220 292.24 0.9866 564.99 35.10 25.18 14412.57 0.0062 0.1229 292.24 0.9866 564.99 40.60 32.28 1456.45 0.0067 0.1229 292.24 0.9866 516.35 35.96 26.11 14552.73 0.0067 0.1229 292.24 0.973 0.973 36.02 26.11 14567.45	25+402	36,03	26.20	14704.82	0.0037	0.1220	704.66	0.9486	0.9864	763.52	381.76
34.24 24.30 14399.08 0.0033 0.1216 897.10 0.9576 0.9904 955.13 40.42 32.00 14630.63 0.0044 0.1229 396.30 0.9185 0.9699 458.62 34.18 27.77 14574.43 0.0069 0.1229 335.33 0.9495 0.9905 840.98 35.94 26.09 14716.06 0.0051 0.1220 790.27 0.9979 0.9905 840.98 35.94 26.09 14716.06 0.0051 0.1220 791.11 0.9573 0.9966 564.99 40.60 32.28 14716.06 0.0051 0.1220 292.53 0.9491 0.9866 564.99 40.60 32.28 1456.45 0.0071 0.1228 292.53 0.9427 0.9723 335.47 39.95 31.28 1456.76 0.0067 0.1220 292.53 0.9424 0.9723 335.47 39.95 31.28 144922.73 0.0046 0.1220 525.72	25+504	37.11	27.46	14513.73	0.0048	0.1222	491.18	0.9423	0.9834	539.02	269.51
40.42 32.00 14630.63 0.0044 0.1229 396.30 0.9185 0.9699 458.62 34.36 24.24 14674.43 0.0069 0.1223 335.33 0.9408 0.9268 369.20 34.18 24.24 14686.44 0.0038 0.1216 790.27 0.9491 0.9866 564.99 35.94 26.09 14716.06 0.0051 0.1218 791.11 0.9536 0.848.94 40.60 32.28 14567.69 0.0071 0.1229 240.26 0.9491 0.9866 564.39 39.95 31.28 14567.69 0.0062 0.1229 292.53 0.9224 0.9723 335.47 39.95 31.28 14567.69 0.0062 0.1220 569.32 0.9224 0.9723 335.47 35.96 26.11 14522.73 0.0045 0.1228 224.61 0.9241 0.9733 370.79 37.04 27.38 14484.45 0.0045 0.1222 525.72 0.944 <t< td=""><td>25+601</td><td>34.24</td><td>24.30</td><td>14399.08</td><td>0.0033</td><td>0.1216</td><td>897.10</td><td>0.9576</td><td>0.9904</td><td>955.13</td><td>477.56</td></t<>	25+601	34.24	24.30	14399.08	0.0033	0.1216	897.10	0.9576	0.9904	955.13	477.56
37.36 27.77 14574.43 0.0069 0.1223 335.33 0.9408 0.9226 369.20 35.94 24.24 14686.84 0.0038 0.1216 790.27 0.9579 0.9905 840.98 35.94 26.09 14716.06 0.0051 0.1220 251.98 0.991 0.9866 840.98 35.10 25.18 14412.57 0.0051 0.1229 2240.26 0.9170 0.9686 848.94 40.60 32.28 1456.45 0.0062 0.1229 2240.26 0.9170 0.9686 848.94 35.96 26.11 14552.73 0.0062 0.1220 292.53 0.9490 0.9866 616.35 37.04 27.38 144493.50 0.0067 0.1222 292.53 0.9404 0.973 37.75 34.87 24.94 14504.74 0.0045 0.1222 525.72 0.9404 0.038 34.87 24.94 144433.50 0.0044 0.1223 364.85 0.991 7	25 + 702	40.42	32.00	14630.63	0.0044	0.1229	396.30	0.9185	0.9699	458.62	229.31
34.18 24.24 14686.84 0.0053 0.1216 790.27 0.9579 0.3905 840.98 35.14 26.09 14716.06 0.0051 0.1220 521.98 0.9915 0.8905 840.98 35.10 25.18 14412.76 0.0035 0.1220 521.98 0.9917 0.9866 564.39 40.60 32.28 14455.45 0.0071 0.1229 240.26 0.9170 0.5690 279.04 35.96 26.11 1455.45 0.0062 0.1228 292.53 0.924 0.9566 516.35 36.96 26.11 14423.73 0.0045 0.1228 525.72 0.924 0.973 370.79 37.04 27.38 14464.45 0.0045 0.1228 525.72 0.9404 0.983 17.79 37.41 27.83 14464.45 0.0064 0.1223 364.85 0.9944 1001.77 36.02 26.18 14468.45 0.0039 0.1223 364.86 0.9844 600.	25 + 901	37.36	27.77	14574.43	0.0069	0.1223	335.33	0.9408	0.9826	369.20	184.60
35.94 26.09 14716.06 0.00351 0.1120 55.198 0.9491 0.0866 564.39 4.0.60 32.28 144712.6 0.0035 0.1220 521.98 0.9566 564.39 4.0.60 32.28 14456.45 0.0071 0.1229 240.26 0.9770 0.9680 279.04 39.95 31.28 1456.45 0.0067 0.1228 292.53 0.9420 0.9723 335.47 39.70 30.96 14493.50 0.0067 0.1228 292.53 0.9420 0.9733 370.79 37.04 27.38 14493.50 0.0067 0.1222 525.72 0.9427 0.9836 576.45 37.04 27.38 14494.44 0.0045 0.1222 525.72 0.9427 0.9836 576.45 37.71 27.83 14464.62 0.0039 0.1218 734.96 0.9544 1001.77 36.02 26.18 14468.77 0.0042 0.1220 610.06 0.9686 0.9669	26+000	34.18	24.24	14686.84	0.0038	0.1216	790.27	0.9579	0.9905	840.98	420.49
35.10 25.18 14412.57 0.00735 0.1218 791.11 0.9533 0.2886 848.94 36.60 32.28 14556.45 0.0073 0.1229 240.26 0.9170 0.0886 848.94 39.95 31.28 14556.45 0.0074 0.1229 292.53 0.924 0.9723 335.47 35.96 26.11 14522.73 0.0046 0.1226 569.32 0.9490 0.3866 616.35 37.04 27.38 14458.77 0.0045 0.1228 252.72 0.9420 0.9836 576.45 34.87 24.94 14504.74 0.0039 0.1218 734.96 0.9546 0.9831 786.98 34.87 24.94 14504.74 0.0039 0.1218 734.96 0.9844 1001.77 36.02 26.18 14446.45 0.0042 0.1220 610.06 0.9486 0.60.90 38.02 22.92 14468.77 0.0042 0.1220 610.06 0.9486 0.60.90 <td>26+100</td> <td>35.94</td> <td>26.09</td> <td>14716.06</td> <td>0.0051</td> <td>0.1220</td> <td>521.98</td> <td>0.9491</td> <td>0.9866</td> <td>564.99</td> <td>282.49</td>	26+100	35.94	26.09	14716.06	0.0051	0.1220	521.98	0.9491	0.9866	564.99	282.49
40.00 32.28 14596.45 0.0071 0.1229 240.26 0.9170 0.1229 240.26 0.9170 0.1729 240.26 0.9170 0.7910 279.04 35.96 26.11 14567.69 0.0065 0.1228 292.34 0.9240 0.9866 616.35 39.73 30.96 14493.50 0.0067 0.1228 324.61 0.9241 0.9866 616.35 37.04 27.38 1456.37 0.0045 0.1228 324.61 0.9746 0.9866 616.35 34.87 24.94 14504.74 0.0049 0.1222 525.72 0.9491 786.98 37.41 27.83 14486.45 0.0064 0.1223 364.85 0.9944 401.98 37.50 26.18 14468.77 0.0042 0.1210 610.06 0.9486 0.9844 1001.77 38.02 22.92 14468.77 0.0042 0.1213 584.06 0.9638 0.9944 1001.77 38.92 29.80	26+207	35.10	25.18	14412.57	0.0035	0.1218	791.11	0.9535	0.9886	848.94	424.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26+300	40.60	32.28	14556.45	0.0071	0.1229	240.26	0.9170	0.9690	279.04	139.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20+499 36 - 60E	38.93	51.70	14507.09	0.0062	0.1228	292.03	0.9224	0.9723	616.95	107.74
37.04 27.38 14356.37 0.0045 0.1222 525.72 0.9427 0.9836 576.45 34.87 24.94 14504.74 0.0039 0.1218 734.96 0.9546 0.9836 576.45 34.87 24.94 14504.74 0.0039 0.1218 734.96 0.9546 0.9836 576.45 31.56 21.83 144486.45 0.0039 0.1210 959.28 0.9648 0.9944 401.98 36.02 26.18 14468.77 0.0042 0.1220 610.06 0.9486 0.9864 660.30 32.80 22.90 14466.11 0.0058 0.1226 416.39 0.9938 660.30 32.77 22.90 14460.141 0.0052 0.1218 647.16 0.9639 0.9928 681.17 35.01 25.09 14704.82 0.0052 0.1218 67.13 0.9539 0.9888 554.68	26+703	30.30	30.96	14493.50	0.0040	0.1220	324.61	0.9430	0.9800	370.79	185 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201+82	37.04	27.38	14356 37	0.0037	0.1223	525.72	0.927	0.9836	576.45	288 22
37.41 27.83 14846.45 0.0064 0.1223 364.85 0.9404 0.9924 401.98 31.56 21.83 14648.62 0.0039 0.1210 959.28 0.9685 0.9944 1001.77 36.02 22.18 14448.77 0.0042 0.1220 610.06 0.9486 660.90 32.80 22.92 14662.11 0.0058 0.1213 584.06 0.9638 0.9924 660.90 38.92 29.80 14453.03 0.0048 0.1226 416.39 0.9769 469.03 32.77 22.90 14601.41 0.0052 0.1213 647.16 0.9639 0.9928 681.17 35.01 25.09 14704.82 0.0055 0.1218 677.13 0.9539 0.9888 554.68	26+900	34.87	24.94	14504.74	0.0039	0.1218	734.96	0.9546	0.9891	786.98	393,49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 + 099	37.41	27.83	14846.45	0.0064	0.1223	364.85	0.9404	0.9824	401.98	200.99
36.02 26.18 14468.77 0.0042 0.1220 610.06 0.9486 0.9864 660.90 32.80 22.92 144662.11 0.0058 0.1213 584.06 0.9638 0.9927 614.88 38.92 29.80 14453.03 0.0048 0.1226 416.39 0.9932 0.9769 469.03 32.77 22.90 14601.41 0.0052 0.1218 647.16 0.9639 0.9928 681.17 35.01 25.09 14704.82 0.0055 0.1218 6.773 0.9539 0.9888 554.68	27 + 220	31.56	21.83	14648.62	0.0039	0.1210	959.28	0.9685	0.9944	1001.77	500.89
32.80 22.92 14662.11 0.0058 0.1213 584.06 0.9638 0.9927 614.88 ***92 29.80 14453.03 0.0048 0.1226 416.39 0.9302 0.9769 469.03 32.77 22.90 14601.41 0.0052 0.1218 647.16 0.9639 0.9228 681.17 35.01 25.09 14704.82 0.0055 0.1218 677.33 0.9539 0.9888 554.68	27 + 302	36.02	26.18	14468.77	0.0042	0.1220	610.06	0.9486	0.9864	06.099	330.45
38.92 29.80 14453.03 0.0048 0.1226 416.39 0.9302 0.9769 469.03 (35.77 22.90 14601.41 0.0052 0.1213 647.16 0.9539 0.9928 681.17 (35.01 25.09 14704.82 0.0052 0.1213 0.9539 0.9539 0.9888 554.68	27 + 501	32.80	22.92	14662.11	0.0058	0.1213	584.06	0.9638	0.9927	614.88	307.44
32.77 22.90 14601.41 0.0052 0.1213 647.16 0.9639 0.9928 681.17 35.01 25.09 14704.82 0.0052 0.1213 0.9539 0.9888 554.68	27+597	38.92	29.80	14453.03	0.0048	0.1226	416.39	0.9302	0.9769	469.03	234.51
55.01 Z5.09 14/04:82 0.01218 51.33 0.9589 0.9588 554.08	27+707	32.77	22.90	14601.41	0.0052	0.1213	647.16	0.9639	0.9928	681.17	340.59
outpout of activities of	27+802	35.01	25.09	14704.82	0.0055	0.1218	517.33	0.9539	0.9888	554.68	277.34

	4	(-1)	, Cura	- T L V (; -) + (- ;) (-) (- ;) (-) (- ;)	***	(;, ;	1	- 4		-
km		i est (iii)	libras	D(1) (III) in	ao (m) in	kest (pci)	AF do	AF I	dinámico pci	estático pci
27+907	34.82	24.89	14623.89	0.0060	0.1217	478.97	0.9549	0.9892	512.63	256.32
28+002	39.79	31.05	14392.34	0.0046	0.1228	402.69	0.9236	0.9731	460.46	230.23
28+099	33.58	23.65	14563.19	0.0041	0.1215	772.49	0.9606	0.9915	818.00	409.00
28 + 199	38.77	29.60	14794.75	0.0066	0.1226	315.13	0.9313	0.9775	354.14	177.07
28 + 303	39.88	31.19	14527.22	0.0084	0.1228	218.35	0.9229	0.9726	250.11	125.05
28 + 403	40.87	32.73	14500.25	0.0050	0.1230	330.13	0.9146	0.9675	385.63	192.81
28 + 487	40.13	31.56	14680.09	0.0071	0.1228	253.28	0.9209	0.9714	291.49	145.74
28 + 603	38.86	29.73	14788.00	0.0069	0.1226	296.89	0.9306	0.9771	334.13	167.06
28+698	37.46	27.89	14644.12	0.0077	0.1223	299.46	0.9401	0.9823	330.14	165.07
28 + 802	34.82	24.89	14473.27	0.0041	0.1217	699.28	0.9549	0.9892	748.43	374.22
28 + 899	37.23	27.60	14448.54	0.0065	0.1223	357.84	0.9416	0.9830	393.28	196.64
29 + 000	38.96	29.86	14605.91	0.0062	0.1226	323.88	0.9299	0.9767	365.08	182.54
29 + 101	41.82	34.31	14641.88	0.0057	0.1231	270.75	0.9059	0.9619	323.05	161.52
29 + 200	37.51	27.95	14785.75	0.0069	0.1223	334.35	0.9398	0.9821	368.83	184.42
29 + 301	37.61	28.08	14677.84	0.0078	0.1223	293.34	0.9392	0.9818	324.06	162.03
29 + 401	39.49	30.61	14610.40	0.0059	0.1227	326.33	0.9259	0.9744	371.16	185.58
29 + 499	41.38	33.56	14740.79	0.0079	0.1231	202.89	0.9100	0.9646	239.61	119.81
29 + 600	41.09	33.07	14439.55	0.0062	0.1230	263.73	0.9127	0.9663	309.48	154.74
29 + 698	40.02	31.39	14844.20	0.0097	0.1228	190.30	0.9218	0.9720	218.51	109.26
29 + 804	40.97	32.88	14819.48	0.0082	0.1230	205.72	0.9138	0.9670	240.78	120.39
29 + 901	40.84	32.68	14475.52	0.0074	0.1230	224.15	0.9148	0.9677	261.67	130.83
30 + 000	37.13	27.48	14560.94	0.0072	0.1222	328.91	0.9422	0.9833	361.04	180.52
33+000	37.65	28.13	14430.55	0.0063	0.1223	356.51	0.9389	0.9816	394.04	197.02
33 + 098	40.60	32.28	14805.99	0.0077	0.1229	225.39	0.9170	0.9690	261.77	130.89
33 + 204	38.87	29.74	14790.25	0.0074	0.1226	276.68	0.9306	0.9771	311.43	155.71
33 + 301	40.72	32.47	14774.51	0.0073	0.1229	237.53	0.9159	0.9684	276.55	138.27
33 + 400	36.27	26.46	14729.55	0.0071	0.1221	362.83	0.9473	0.9858	394.16	197.08
33 + 504	36.96	27.27	14551.95	0.0059	0.1222	407.26	0.9433	0.9838	446.08	223.04
33+600	36.95	27.26	14542.96	0.0064	0.1222	373.52	0.9433	0.9839	409.07	204.53
33 + 701	36.72	27.00	14761.02	0.0075	0.1221	328.34	0.9446	0.9845	358.60	179.30
33 + 804	38.58	29.33	14495.75	0.0060	0.1225	346.05	0.9327	0.9783	387.69	193.84
33 + 901	34.81	24.88	14630.63	0.0062	0.1217	466.97	0.9549	0.9892	499.75	249.87
34 + 100	38.44	29.15	14644.12	0.0054	0.1225	389.13	0.9336	0.9788	435.03	217.52
34+201	39.65	30.84	14430.55	0.0064	0.1227	288.83	0.9248	0.9737	329.41	164.70
34 + 298	34.48	24.54	14704.82	0.0054	0.1217	545.48	0.9565	0.9899	582.02	291.01
34+406	41.00	34.04	145/4.43	0.0081	0.1231	191.62	0.9074	0.9628	227.18	113.89
54+459 7-6-1	41.41	00.01	14059.80	0.0008	0.1231	234.70	0.9097	0.9044	27.1.40	150.75
24+615 24 - 600	20.09	20.03	14420.00	0.0069	0.1223	914.09	0.9595	0.9010	261.03	175.00
24 - 603	40.50	10:03	14747 54	0.0000	0.1220	024.00	0.0020	0.070	076 49	128.91
34+900	41.74	34.17	14533 97	0.00.0	0 1231	78.4	0.9067	0.000	210.42	106.21
35+000	32.66	22.79	14653 12	0.0033	0.1213	835.31	0.9644	0.0000	278.52	439.26
35+099	35,71	25,84	14421.56	0.0049	0.1219	534,90	0.9503	0.9872	577.54	288.77
35 + 202	42.36	35.28	14563.19	0.0061	0.1232	234.51	0.9006	0.9582	283.60	141.80
35 + 303	36.56	26.81	14623.89	0.0072	0.1221	344.38	0.9456	0.9850	375.40	187.70
35 + 401	43.19	36.86	14596.91	0.0047	0.1234	279.12	0.8918	0.9520	345.32	172.66
35 + 498	37.30	27.69	14702.57	0.0063	0.1223	369.54	0.9411	0.9828	406.55	203.28
35 + 601	42.55	35.63	14704.82	0.0060	0.1233	236.69	0.8986	0.9569	287.69	143.84
32 + 696	41.00	32.92	14601.41	0.0068	0.1230	244.12	0.9135	0.9668	285.89	142.94
35 + 801	33.43	23.51	14756.53	0.0048	0.1214	675.78	0.9612	0.9918	714.75	357.37
										ı

Apéndice D

Módulos de elasticidad del concreto por método AASHTO

Cuadro D.1: Módulos de elasticidad del concreto por método AASHTO 0

Abscisa	AREA	lk	P	D(1) (in)	E PCC	E PCC
\mathbf{km}	in^2	in	libras	$_{ m in}$	psi	Mpa
6+800	28.37	27.99	14574.43	0.0054	1E+08	689742.49
6 + 850	29.01	30.04	14850.95	0.0130	3.77E + 08	2601741.05
6+900	25.55	21.60	14493.50	0.0042	16826119	116011.79
6+950	28.72	29.08	14794.75	0.0110	2.63E + 08	1810357.47
7 + 003	27.59	25.89	14554.20	0.0045	52852625	364405.37
7+050	29.08	30.26	14610.40	0.0084	2.51E + 08	1732224.12
7 + 103	29.06	30.18	14515.98	0.0062	1.81E + 08	1248194.23
7 + 139	28.44	28.20	14819.48	0.0075	1.49E + 08	1028888.05
7 + 202	27.27	25.10	14612.65	0.0061	60109113	414437.00
7 + 248	27.91	26.70	14677.84	0.0079	1.12E + 08	773877.17
7 + 302	28.22	27.57	14405.82	0.0052	87231165	601436.63
7 + 352	29.85	33.18	14745.29	0.0098	5.09E + 08	3508922.68
7 + 401	28.08	27.18	14428.31	0.0047	73106035	504047.46
7 + 442	29.24	30.83	14601.41	0.0067	2.22E + 08	1531140.40
7 + 501	27.64	26.01	14711.57	0.0050	61332975	422875.21
7 + 559	30.39	35.61	14383.34	0.0123	9.52E + 08	6565931.08
7 + 601	28.05	27.08	14385.59	0.0052	79259203	546471.98
7 + 649	30.33	35.30	14554.20	0.0099	7.34E + 08	5061824.91
7 + 705	27.97	26.87	14668.85	0.0050	73981057	510080.51
7 + 753	30.55	36.38	14774.51	0.0137	1.24E+09	8543991.46
7 + 799	26.04	22.48	14599.16	0.0051	26069355	179741.55
7 + 852	28.65	28.85	14774.51	0.0116	2.62E + 08	1808609.06
7 + 903	27.89	26.66	14608.15	0.0040	56255097	387864.54
7 + 951	29.57	32.06	14675.60	0.0092	3.89E + 08	2682646.99
8+002	22.95	17.80	14605.91	0.0069	8792734	60623.65
8+047	29.58	32.08	14444.04	0.0069	2.89E + 08	1992633.68
8 + 102	27.35	25.29	14569.94	0.0056	56687184	390843.67
8 + 150	29.46	31.64	14605.91	0.0079	3.07E + 08	2115376.80
8+201	26.71	23.85	14435.05	0.0033	23409994	161405.93
8 + 245	29.00	29.99	15017.31	0.0102	2.95E + 08	2037075.53
8 + 301	24.87	20.46	14576.68	0.0041	11919705	82183.33
8 + 353	29.42	31.46	14684.59	0.0088	3.32E + 08	2291985.01
8 + 452	29.70	32.55	14421.56	0.0060	2.72E + 08	1873335.46
8 + 500	26.44	23.27	14569.94	0.0049	30481931	210165.14
8+603	28.30	27.79	14511.49	0.0053	95291494	657010.53
8+648	30.23	34.86	14475.52	0.0099	6.8E + 08	4685237.52
8 + 702	27.64	26.01	14671.10	0.0065	78813010	543395.59
8 + 747	29.22	30.77	14549.70	0.0115	3.78E + 08	2603701.75
8 + 802	28.98	29.92	14594.67	0.0060	1.67E + 08	1152231.38
8 + 851	31.48	41.81	14538.46	0.0139	2.83E + 09	19533562.75
8+900	25.32	21.20	14538.46	0.0039	13782573	95027.32
8+951	29.75	32.76	14859.94	0.0074	3.62E + 08	2497454.79
9+004	25.10	20.83	14506.99	0.0037	12017900	82860.35
9+050	29.75	32.78	14356.37	0.0083	3.93E + 08	2710862.92
9+100	25.82	22.08	14540.71	0.0040	18057577	124502.39
9+153	31.31	40.67	14556.45	0.0087	1.5E+09	10352550.26
		Con	tinua en la s	iguiente págin	a	

Abscisa	Cuadr AREA	o D.1 –	Continuació P		gina anterior E PCC	E PCC
Abscisa km	in2	in	libras	D(1) (in) in	psi	Mpa
9+200	27.76	26.31	14540.71	0.0049	63355326	436818.81
9+248	28.60	28.68	14563.19	0.0107	2.3E+08	1587490.58
9+304	27.36	25.32	14356.37	0.0053	53662239	369987.45
9+348	30.27	35.03	14560.94	0.0107	7.63E+08	5262703.78
9+403	23.87	18.99	14446.29	0.0037	6842203	47175.24
9 + 446	29.77	32.83	14572.18	0.0110	5.31E+08	3661706.42
9 + 549	30.00	33.81	14684.59	0.0114	6.58E + 08	4536487.27
9+652	29.13	30.44	14533.97	0.0100	3.08E + 08	2123470.37
9 + 702	23.32	18.27	14538.46	0.0034	4957969	34183.93
9 + 748	30.20	34.69	14551.95	0.0135	9.02E + 08	6221963.75
9 + 802	25.11	20.84	14635.13	0.0039	12633263	87103.12
9 + 852	29.33	31.15	14444.04	0.0099	3.47E + 08	2392077.29
9+901	29.53	31.89	14506.99	0.0045	1.82E + 08	1252570.96
9+951	29.79	32.94	14491.25	0.0111	5.43E + 08	3745608.13
10+001	26.36	23.12	14569.94	0.0028	16532953	113990.49
10+050	29.87	33.27	14581.18	0.0112	5.85E + 08	4036153.44
10+100	31.10	39.41	14596.91	0.0110	1.58E+09	10875897.27
10+200	24.12	19.34	14477.76	0.0033	6876082	47408.83
10+300	30.01	33.87	14484.51	0.0108	6.26E + 08	4313444.48
10+404	26.09	22.59	14444.04	0.0033	17231707	118808.22
10+503	29.97	33.67	14493.50	0.0094	5.25E+08	3617322.84
10+603	26.06	22.53	14365.36	0.0041	20552801	141706.31
10+702	30.26	34.98	14428.31	0.0097	6.78E+08	4674642.94
10+801	27.77	26.34	14671.10	0.0032	41983757	289467.29
10+896	30.43 26.69	35.80	14482.26	0.0088	7.09E+08	4886066.13
11+001	$\frac{26.69}{27.12}$	$23.80 \\ 24.75$	14644.12	0.0032	22846724 29879669	157522.33 206012.70
$11+099 \\ 11+200$	24.18	19.42	14556.45 14608.15	0.0033 0.0031	6702081	46209.14
$^{11+200}$ $^{11+298}$	30.01	33.84	14738.54	0.0101	5.93E+08	4090436.23
$^{11+298}_{11+400}$	26.64	23.69	14399.08	0.0037	25589029	176429.82
11+500	30.73	37.33	14623.89	0.0091	9.52E+08	6562802.71
11+600	27.70	26.15	14493.50	0.0043	53349545	367831.50
11+700	30.29	35.12	14513.73	0.0077	5.52E+08	3806211.02
11+802	28.29	27.77	14725.06	0.0042	75751152	522284.86
11+902	29.98	33.73	14644.12	0.0063	3.6E + 08	2481264.44
12 + 101	24.34	19.65	14574.43	0.0052	11895936	82019.44
12+206	25.13	20.88	14585.67	0.0039	12673781	87382.48
12 + 300	29.49	31.73	14563.19	0.0111	4.38E + 08	3020332.50
12 + 504	30.35	35.41	14635.13	0.0140	1.07E + 09	7373606.46
12+600	26.50	23.41	14410.32	0.0034	21837142	150561.52
12 + 702	31.63	42.84	14567.69	0.0139	3.29E + 09	22661651.28
12 + 800	25.82	22.07	14538.46	0.0057	25911099	178650.42
12+902	30.34	35.36	14583.42	0.0107	$8.09E{+}08$	5576711.27
13+003	26.88	24.22	14538.46	0.0032	24828438	171185.75
13+100	29.04	30.12	14538.46	0.0065	1.88E + 08	1298761.54
13+203	26.05	22.50	14709.32	0.0051	26447843	182351.13
$^{13+299}$	29.27	30.95	14592.42	0.0079	2.7E + 08	1864130.94
13+403	26.93	24.32	14585.67	0.0054	43660137	301025.51
13+498	25.98	22.37	14749.78	0.0075	37475909	258386.83
13+602	27.72	26.21	14689.09	0.0072	91589908	631489.04
13+698	27.32	25.22	14673.35	0.0057	57388099	395676.30
13+901	29.90	33.41	14549.70	0.0092	$^{4.9E+08}_{1.34E+08}$	3378741.94
14+000	28.50	28.38	14601.41	0.0066	3.31E+08	925722.72
$^{14+100}_{14+299}$	29.70 29.76	$32.56 \\ 32.79$	14538.46 14565.44	$0.0072 \\ 0.0087$	4.18E+08	2282091.32 2881975.19
14+299 $14+403$	27.11	24.73	14671.10	0.0046	4.18E+08 40888089	281912.94
14+403 $14+501$	29.03	30.10	14590.17	0.0040	2.21E+08	1522342.47
$^{14+501}$ $^{14+620}$	27.59	25.87	14551.95	0.0051	59761353	412039.28
14+696	28.33	27.88	14610.40	0.0050	91799586	632934.72
14 + 801	27.90	26.69	14623.89	0.0059	83163745	573392.80
14 + 899	24.20	19.45	14536.21	0.0035	7571689	52204.86
15+000	26.90	24.26	14617.15	0.0034	27335163	188468.97
15+092	26.37	23.14	14390.09	0.0035	20541455	141628.09
15+202	27.94	26.78	14623.89	0.0050	72667587	501024.47
15 + 304	25.95	22.32	14576.68	0.0050	24383897	168120.75
15 + 401	29.82	33.05	14500.25	0.0057	2.86E + 08	1969298.01
15 + 500	27.65	26.03	14614.90	0.0047	57491103	396386.49
15 + 601	29.43	31.53	14448.54	0.0054	$2.05E{+}08$	1411371.47
15 + 705	31.64	42.94	14657.61	0.0059	1.43E + 09	9893859.84
15 + 804	29.54	31.93	14464.28	0.0051	2.06E + 08	1417465.91
15 + 899	27.31	25.20	14459.78	0.0043	42653262	294083.36
16+000	27.13	24.78	14480.01	0.0047	42249141	291297.05
	27.47	25.59	14747.54	0.0055	60642366	418113.64
16 + 200	28.64	28.82	14612.65	0.0058	1.28E + 08	883598.09
$^{16+200}_{16+403}$		25.32	14684.59	0.0044	45031545	310481.01
16+200 $16+403$ $16+495$	27.36			0.0053	23132510	159492.76
16+200 $16+403$ $16+495$ $16+603$	25.73	21.91	14554.20			
16+200 $16+403$ $16+495$ $16+603$ $16+699$	25.73 26.96	$21.91 \\ 24.39$	14466.52	0.0043	35260931	243115.12
$16+200 \\ 16+403 \\ 16+495 \\ 16+603 \\ 16+699 \\ 16+802$	25.73 26.96 28.00	21.91 24.39 26.94	$14466.52 \\ 14484.51$	$0.0043 \\ 0.0042$	$\begin{array}{c} 35260931 \\ 62049073 \end{array}$	$\begin{array}{c} 243115.12 \\ 427812.53 \end{array}$
$\begin{array}{c} 16 + 200 \\ 16 + 403 \\ 16 + 495 \\ 16 + 603 \\ 16 + 699 \\ 16 + 802 \\ 16 + 898 \end{array}$	25.73 26.96 28.00 27.52	21.91 24.39 26.94 25.71	$14466.52 \\ 14484.51 \\ 14444.04$	0.0043 0.0042 0.0042	$\begin{array}{c} 35260931 \\ 62049073 \\ 47160059 \end{array}$	243115.12 427812.53 325156.58
$\begin{array}{c} 16+200 \\ 16+403 \\ 16+495 \\ 16+603 \\ 16+699 \\ 16+802 \\ 16+898 \\ 17+000 \end{array}$	25.73 26.96 28.00 27.52 27.81	21.91 24.39 26.94 25.71 26.45	$14466.52 \\ 14484.51 \\ 14444.04 \\ 14635.13$	0.0043 0.0042 0.0042 0.0057	35260931 62049073 47160059 75728998	243115.12 427812.53 325156.58 522132.12
$\begin{array}{c} 16 + 200 \\ 16 + 403 \\ 16 + 495 \\ 16 + 603 \\ 16 + 699 \\ 16 + 802 \\ 16 + 898 \end{array}$	25.73 26.96 28.00 27.52	21.91 24.39 26.94 25.71	$14466.52 \\ 14484.51 \\ 14444.04$	0.0043 0.0042 0.0042	$\begin{array}{c} 35260931 \\ 62049073 \\ 47160059 \end{array}$	243115.12 427812.53 325156.58

Abscisa	AREA	lk	P	D(1) (in)	gina anterior E PCC	E PCC	
km	in2	in	libras	in	psi	Mpa	
17+402	28.34	27.92	14707.07	0.0061	1.14E+08	782594.93	
17+402 $17+601$	27.68	26.12	14471.02	0.0050	60849949	419544.87	
17+703	25.01	20.69	14666.60	0.0037	11502344	79305.72	
17 + 804	26.65	23.71	14662.11	0.0042	29530067	203602.28	
18+000	27.81	26.45	14635.13	0.0054	72699406	501243.86	
18+100	26.96	24.39	14524.97	0.0044	35911278	247599.10	
18+200	26.85	24.15	14475.52	0.0048	36707738	253090.48	
18+299	25.79	22.03	14594.67	0.0048	21833372	150535.53	
18+403	28.15	27.36	14538.46	0.0053	86541872	596684.13	
18+502	25.48	21.47	14567.69	0.0038	14796912	102020.93	
18+602	29.12	30.39	14691.33	0.0058	1.77E+08	1219602.5	
				0.0038			
18+701	25.77	21.98	14558.70		18265172	125933.70	
18+800	29.35	31.24	14560.94	0.0067	2.4E + 08	1653901.4	
18+901	27.89	26.66	14457.53	0.0048	65895686	454333.94	
19+004	26.88	24.22	14594.67	0.0039	30821339	212505.27	
19+100	25.56	21.61	14556.45	0.0041	16270462	112180.69	
19+203	29.64	32.34	14684.59	0.0082	$3.65E{+}08$	2517350.16	
19+298	26.59	23.60	14657.61	0.0047	31894295	219903.02	
19+400	28.80	29.34	14556.45	0.0049	1.21E + 08	836807.08	
19+502	27.93	26.77	14549.70	0.0055	78218153	539294.21	
19+601	29.39	31.38	14554.20	0.0072	2.64E+08	1822468.90	
19+701	25.10	20.84	14578.93	0.0048	15634264	107794.26	
19+800	28.35	27.95	14776.76	0.0061	1.14E + 08	784139.74	
19 + 899	25.81	22.07	14455.28	0.0049	21949872	151338.76	
20+000	28.23	27.59	14489.00	0.0056	95338302	657333.26	
20+102	27.95	26.82	14680.09	0.0067	98473513	678949.74	
20+202	27.94	26.80	14480.01	0.0057	81617545	562732.15	
20+301	26.74	23.90	14623.89	0.0046	33542107	231264.27	
20+301 20+402	28.02	27.02	14390.09	0.0040	90464725	623731.20	
20+402 20+499	28.20	$\frac{27.02}{27.51}$	14569.94	0.0059	99271240	684449.87	
20+600	27.70	26.15	14684.59	0.0051	64012836	441352.17	
20+699	26.26	22.91	14747.54	0.0045	25968879	179048.80	
20 + 803	31.40	41.26	14367.61	0.0063	1.18E+09	8149289.14	
20 + 893	27.59	25.89	14731.80	0.0046	54557554	376160.41	
21+003	28.39	28.05	14747.54	0.0069	1.33E + 08	915828.96	
21+101	25.57	21.64	14475.52	0.0039	15783730	108824.79	
21+201	27.14	24.81	14653.12	0.0054	49688978	342592.82	
21+296	24.76	20.28	14439.55	0.0037	10219518	70460.97	
21+200 21+400	28.14	27.34	14626.14	0.0051	82838872	571152.88	
21+408							
	29.66	32.40	14659.86	0.0069	3.1E+08	2140059.0	
21+502	28.13	27.32	14462.03	0.0045	71702185	494368.27	
21+600	28.66	28.89	14529.47	0.0097	2.18E+08	1501214.58	
21 + 701	29.02	30.05	14556.45	0.0051	$1.45E{+08}$	1002883.3	
21+803	30.04	34.01	14603.66	0.0058	3.47E + 08	2391663.5	
21+900	27.36	25.31	14619.39	0.0043	44205627	304786.52	
22+002	29.22	30.76	14659.86	0.0061	2.01E + 08	1388690.04	
22+099	29.39	31.36	14707.07	0.0056	2.08E+08	1435382.88	
22+207	28.55	28.53	14691.33	0.0061	1.29E+08	889428.91	
22+293	28.03	27.04	14365.36	0.0049	73559203	507171.93	
22+402	27.05	24.58	14558.70	0.0043	36739880	253312.10	
22+502	28.41	28.11	14612.65	0.0058	1.11E+08	766722.48	
22+601	29.03	30.09	14671.10	0.0082	$2.37E{+08}$	1632304.78	
22 + 704	28.09	27.20	14324.89	0.0066	1.02E + 08	704471.25	
22+800	28.81	29.37	14657.61	0.0082	2.04E + 08	1407258.68	
22+903	29.42	31.49	14725.06	0.0054	2.05E + 08	1416489.5	
23+000	29.90	33.40	14531.72	0.0093	4.97E + 08	3423967.7	
23+096	29.21	30.72	14392.34	0.0075	2.4E+08	1656159.69	
23+203	29.35	31.22	14531.72	0.0073	2.55E+08	1755564.4	
			14565.44			1433397.5	
23+300	29.08	30.25		0.0070	2.08E+08		
23+402	28.48	28.32	14693.58	0.0061	1.22E+08	844478.13	
23 + 504	28.74	29.13	14704.82	0.0062	1.48E + 08	1019520.13	
23+600	28.98	29.91	14563.19	0.0073	2.03E + 08	1396431.0	
23 + 702	29.39	31.36	14455.28	0.0063	2.29E + 08	1579107.55	
23 + 802	29.03	30.10	14450.79	0.0076	2.18E + 08	1502550.6	
23+902	29.96	33.65	14542.96	0.0075	4.19E + 08	2891086.80	
24+004	28.08	27.18	14594.67	0.0087	1.37E+08	944941.09	
24+004 24+103	29.23	30.79	14504.74	0.0094	3.09E+08	2133364.56	
24+103 24+201					5344491		
	23.81	18.90	14536.21	0.0030		36848.90	
24+295	30.36	35.46	14682.34	0.0090	6.94E+08	4784974.55	
24 + 404	25.53	21.57	14533.97	0.0047	18504854	127586.25	
24 + 502	30.12	34.36	14675.60	0.0081	5.14E + 08	3540661.38	
24 + 606	27.21	24.96	14378.85	0.0044	41324596	284922.55	
24 + 699	32.17	47.12	14347.37	0.0124	5.09E+09	35082380.8	
24 + 800	28.47	28.29	14511.49	0.0048	95019926	655138.14	
24+902	28.74	29.14	14731.80	0.0043	1.98E+08	1363433.69	
24+902 25+004			14605.91				
	26.18	22.75		0.0036	19733403	136056.78	
25+101	28.33	27.87	14498.00	0.0088	1.59E+08	1094298.70	
25+202	28.72	29.06	14648.62	0.0053	1.24E+08	855801.52	
25 + 301	26.80	24.04	14432.80	0.0044	32727878	225650.37	
25 + 402	26.89	24.24	14704.82	0.0037	29658296	204486.38	
25 + 504	27.52	25.69	14513.73	0.0048	53512405	368954.38	
25+601	25.60	21.68	14399.08	0.0033	13371603	92193.79	
25+702	29.12	30.40	14630.63	0.0044	$1.36E{+}08$	936099.88	

	Cuadro D.1 – Continuación de la página anterior								
Abscisa	AREA	lk	P D(1) (in)		E PCC	E PCC			
km	in2	in	libras	in	psi	Mpa			
25+901	27.94	26.78	14574.43	0.0069	98983769	682467.83			
26+000	26.04	22.49	14686.84	0.0038	19699912	135825.87			
26 + 100	27.08	24.65	14716.06	0.0051	44727927	308387.64			
26 + 207	26.17	22.75	14412.57	0.0035	18826020	129800.61			
26 + 300	29.37	31.30	14556.45	0.0071	2.59E + 08	1788960.73			
26+499	29.05	30.16	14567.69	0.0062	1.82E + 08	1254685.72			
26+605	26.89	24.23	14522.73	0.0046	35979679	248070.70			
26 + 702	28.82	29.40	14493.50	0.0057	1.42E + 08	980445.62			
$^{26+800}$	27.25	25.05	14356.37	0.0045	42255635	291341.82			
26+900	26.62	23.65	14504.74	0.0039	26317653	181453.50			
$^{27+099}$	27.77	26.35	14846.45	0.0064	85212234	587516.61			
27+220	24.28	19.57	14648.62	0.0039	8676093	59819.45			
27+302	26.87	24.18	14468.77	0.0042	32745471	225771.67			
$^{27+501}$	25.75	21.95	14662.11	0.0058	25654373	176880.36			
$^{27+597}$	28.39	28.05	14453.03	0.0048	89904509	619868.65			
27+707	25.52	21.54	14601.41	0.0052	20596306	142006.27			
27+802	26.83	24.11	14704.82	0.0055	42650211	294062.32			
27+907	26.45	23.31	14623.89	0.0060	37807000	260669.62			
28+002	28.97	29.90	14392.34	0.0046	1.24E + 08	856331.69			
28+099	25.68	21.82	14563.19	0.0041	17398647	119959.23			
$^{28+199}$	28.50	28.38	14794.75	0.0066	1.35E+08	931320.18			
28 + 303	28.89	29.64	14527.22	0.0084	2.2E + 08	1514220.45			
28+403	29.63	32.31	14500.25	0.0050	2.2E + 08	1517791.00			
28+487	29.12	30.40	14680.09	0.0071	2.2E+08	1516029.85			
28+603	28.57	28.60	14788.00	0.0069	1.49E + 08	1024852.64			
$^{28+698}$	27.69	26.13	14644.12	0.0077	95675291	659656.72			
28+802	26.39	23.18	14473.27	0.0041	24588462	169531.17			
28+899	27.84	26.53	14448.54	0.0065	87166617	600991.58			
29+000	28.35	27.96	14605.91	0.0062	1.15E+08	793847.08			
29+101	29.93	33.53	14641.88	0.0057	3.11E+08	2145562.44			
29+200	27.98	26.90	14785.75	0.0069	1.04E+08	713895.78			
29+301	27.95	26.81	14677.84	0.0078	1.13E+08	778269.55			
29+401	29.01	30.02	14610.40	0.0059	1.66E+08	1147435.67			
29+499	29.69	32.52	14740.79	0.0079	3.66E+08	2525303.36			
29+600	29.60	32.19	14439.55	0.0062	2.62E+08	1805850.47			
29+698	29.12	30.39	14844.20	0.0097	3.02E+08	2079283.43			
29+804	29.54	31.93	14819.48	0.0082	3.41E+08	2352549.76			
29+901	29.48	31.72	14475.52	0.0074	2.9E+08	2002088.51			
30+000	27.96	26.83	14560.94	0.0072	1.04E+08	716753.39			
30+099	28.19	27.48	14545.21	0.0068	1.14E+08	784383.80			
30+204	30.08	34.15	14567.69	0.0068	4.16E+08	2870215.16			
30+301	28.57	28.59	14619.39	0.0069	1.46E+08	1007640.56			
30+403	27.58	25.86	14518.23	0.0062	72225308	497975.07			
30+498	30.09	34.19	14603.66	0.0082	5.07E+08	3495603.64			
30+602	28.89	29.61	14650.87	0.0067	1.77E+08	1217516.52			
30+701	27.39	25.40	14489.00	0.0065	68065584	469294.83			
30+805	27.34	25.27	14758.78	0.0053	54178732	373548.53			
30+900	26.38	23.16	14754.28	0.0039	24068974	165949.44			
31+003	30.27	35.01	14587.92	0.0070	4.97E+08	3427704.69			
31+099	27.74	26.26	14740.79	0.0046	59003138	406811.58			
31+202	29.30	31.04	14560.94	0.0079	2.74E+08	1889483.80			
31+301	29.98	33.74	14747.54	0.0083	4.79E+08	3303250.01			
31+402	29.08	30.26	14635.13	0.0065	1.95E+08	1343728.02			
31+502	28.21	27.54	14491.25	0.0058	97696651	673593.48			
31+601	28.74	29.15	14783.51	0.0062	1.5E+08	1035504.80			
31 + 699	27.82	26.48	14725.06	0.0065	87650278	604326.30			

Apéndice E

Eficiencia de la transferencia de carga por método AASHTO

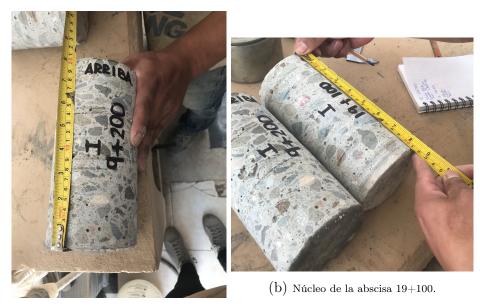
Cuadro E.1: Eficiencia de la transferencia de carga por método AASHTO

		LADO IZ	RDO		<i>a</i> ,	LADO D	НО				
Abscisa km	Cargada D(1) um	No cargada D(4) um	LTE %	Promedio %	Desviación estándar	Abscisa km	Cargada D(1) um	No cargada D(4) um	LTE %	Promedio %	Desviación estánda
6 + 848	200.70	162.10	80.77	80.95	0.16	6+802	273.00	189.00	69.23	69.2	0.01
	205.50	166.50	81.02				267.30	185.00	69.21		
C : 040	206.90	167.70	81.05	77.4	0.00	C : 00C	269.40	186.50	69.23	50.0	0.00
6+948 243.00 245.10	188.00	77.37	77.4	0.06	6+906	190.00	112.00	58.95	59.2	0.29	
	244.60	189.70 189.50	77.40 77.47				184.00 186.50	109.00 111.00	59.24 59.52		
7+047 168.30	130.10	77.30	77.3	0.07	7+005	162.90	105.40	64.70	64.9	0.14	
169.50	131.00	77.29	11.0	0.01	1 000	164.60	106.80	64.88	04.5	0.14	
	169.60	130.90	77.18				163.00	105.90	64.97		
7 + 137	166.80	138.70	83.15	83.5	0.30	7 + 304	199.30	138.50	69.49	69.3	0.15
167.20	139.70	83.55				198.20	137.40	69.32			
	167.80	140.50	83.73				197.70	136.80	69.20		
7+246 168.00 173.60	168.00	128.00	76.19	76.2	0.03	7 + 503	213.00	90.70	42.58	41.5	2.02
	132.20	76.15				213.40	91.20	42.74			
	173.00	131.70	76.13				231.10	90.50	39.16		
7+349 207.60 205.50	152.30	73.36	73.0	0.40	7 + 707	258.30	158.40	61.32	61.5	0.18	
		150.10	73.04				260.20	160.30	61.61		
7.557	211.80	153.70	72.57	70.0	0.00	7:000	257.90	159.00	61.65	47.1	0.27
7 + 557	206.40	155.00	75.10	76.2	0.98	7+906	229.20	108.80	47.47	47.1	0.37
	205.60 204.70	157.80 157.30	76.75 76.84				231.80 232.80	109.10 108.80	47.07 46.74		
7 + 751	311.50	251.50	80.74	81.0	0.22	8 + 104	453.80	136.80	30.15	30.1	0.11
1-101	306.20	248.50	81.16	01.0	0.22	0-104	452.20	136.20	30.13	30.1	0.11
	312.70	253.50	81.07				445.60	133.40	29.94		
7+950	181.00	138.90	76.74	77.0	0.26	8 + 303	205.40	113.30	55.16	55.5	0.27
	182.60	140.90	77.16				199.90	111.10	55.58		,,_,
	183.10	141.40	77.23				200.10	111.40	55.67		
8+148	189.60	133.10	70.20	70.5	0.26	8+502	148.40	81.90	55.19	55.4	0.15
	192.60	136.10	70.66				147.50	81.80	55.46		
	191.10	135.00	70.64				145.70	80.80	55.46		
8 + 351	180.50	142.00	78.67	78.7	0.05	8+705	207.80	148.80	71.61	72.1	0.50
	183.10	144.10	78.70				204.90	148.00	72.23		
	184.60	145.40	78.76				202.90	147.30	72.60		
8+550	148.70	108.50	72.97	72.9	0.05	8+903	328.90	104.20	31.68	31.7	0.02
	148.90	108.60	72.93				321.10	101.60	31.64		
0 - 745	150.00	109.30	72.87	07.7	0.00	0 : 100	320.90	101.60	31.66	00.0	0.10
8+745	134.10	90.40	67.41	67.7	0.28	9 + 102	390.50	102.10	26.15	26.0	0.13
	135.00 133.00	91.40 90.40	67.70 67.97				382.70 377.60	99.40 97.80	25.97 25.90		
8 + 948	196.70	104.20	52.97	53.2	0.22	9 + 306	311.70	209.60	67.24	67.2	0.06
0-940	194.80	104.20	53.23	33.2	0.22	5⊤300	308.80	207.30	67.13	07.2	0.00
	193.60	103.40	53.41				307.30	206.30	67.13		
9 + 151	206.10	132.80	64.43	64.5	0.21	9 + 506	330.70	93.40	28.24	28.5	0.25
	207.60	133.50	64.31				330.40	94.40	28.57		
	208.00	134.60	64.71				330.30	94.90	28.73		
9+345	256.70	203.90	79.43	79.7	0.24	9+506	348.20	97.00	27.86	26.7	2.17
	257.40	205.40	79.80				336.30	94.30	28.04		
	253.40	202.40	79.87				335.30	81.10	24.19		
9 + 547	222.60	170.80	76.73	76.7	0.05	9 + 705	161.90	104.70	64.67	65.0	0.36
	223.20	171.20	76.70				160.40	104.20	64.96		
	220.60	169.40	76.79				159.50	104.30	65.39		
9+745	217.40	169.10	77.78	77.9	0.16	9+904	215.80	156.10	72.34	72.4	0.07
	217.20	169.10	77.85				213.40	154.60	72.45		
0 . 0 .0	215.80	168.50	78.08	= 0.4		40.000	214.30	155.30	72.47		0.44
9+949	197.40	142.80	72.34	72.4	0.03	10+203	143.40	86.90	60.60	60.7	0.11
	198.80	143.80	72.33				141.10	85.70	60.74		
10+048	196.30	142.10 156.10	72.39 80.88	81.1	0.21	10+406	138.80	84.40	60.81 65.02	65.1	0.04
10+046	193.00 191.20	155.30	81.22	01.1	0.21	10+400	159.50 158.30	103.70 103.00	65.07	05.1	0.04
	187.90	152.70	81.27				155.00	100.90	65.10		
10+098 181.60	137.10	75.50	75.4	0.04	10+605	135.20	108.60	80.33	80.4	0.28	
10 1 000	181.20	136.70	75.44	10.1	0.01	10 000	133.40	107.00	80.21	00.1	0.20
	183.40	138.30	75.41				131.40	106.10	80.75		
10+297	206.70	136.60	66.09	66.5	0.39	10 + 804	164.50	102.10	62.07	63.8	1.60
	204.40	136.10	66.59				156.70	100.60	64.20		
	204.50	136.70	66.85				154.60	100.80	65.20		
10+500	163.90	122.20	74.56	74.5	0.05	11+003	187.80	116.10	61.82	62.1	0.21
	164.90	122.90	74.53				185.40	115.20	62.14		
	164.90	122.80	74.47				184.70	114.90	62.21		
10+699	1134.30	161.00	14.19	14.3	0.17	11 + 203	179.50	60.90	33.93	33.8	0.12
11	1110.00	157.90	14.23				179.50	60.60	33.76		
110	1108.80	160.90	14.51				178.40	60.10	33.69		
10 + 894	271.70	192.40	70.81	70.9	0.10	11 + 403	301.60	115.70	38.36	38.5	0.13
	273.60	193.90	70.87				300.00	115.80	38.60		
	270.70	192.20	71.00				296.20	114.30	38.59		
	1065.00	116.20	10.91	10.8	0.09	11 + 603	195.80	136.30	69.61	69.5	0.06
	1074.20	115.40	10.74				195.70	136.00	69.49		
	1076.90	115.90	10.76	06.	0.51		195.60	136.00	69.53		
11+296	185.60	159.60	85.99	86.6	0.51	11 + 804	239.40	170.60	71.26	71.2	0.05
	186.90	162.00	86.68				241.80	172.20	71.22		
	184.50	160.50	86.99				243.00	172.90	71.15		
11 + 497	225.80	174.80	77.41	77.4	0.05	12+005	148.10	95.80	64.69	64.6	0.08
	223.40	172.80	77.35				152.00	98.30	64.67		
	227.90	176.20	77.31				150.00	96.80	64.53		

Apéndice F

Apéndice fotográfico: extracción de núcleos

(a) Perforación de la losa de concreto.



(b) Hidratación de la losa de concreto.

 $\left(\mathbf{c}\right)$ Extracción del núcleo de concreto.

Figura F.1: Proceso de extracción de núcleos.

(a) Núcleo de la abscisa 9+200.

(c) Núcleo de la abscisa 30+700.

Figura F.2: Medida de los espesores de los núcleos de losa de concreto .

Figura F.3: Núcleos de la carpeta asfáltica.

Bibliografía

- [1] AASHTO, A. Policy on geometric design of highways and streets. American Association of State Highway and Transportation Officials, Washington, DC 1, 990 (2001), 158.
- [2] ASTM D4694, A. Standard test method for deflections with a falling-weight-type impulse load device. American Society Testing for Materials, West Conshohocken, PA (1996).
- [3] ASTM D4695, A. Standard guide for general pavement deflection measurements. American Society Testing for Materials, West Conshohocken, PA (2003).
- [4] Boza, J. C. Evaluación estructural de pavimentos flexibles usando el deflectómetro de impacto en la carretera tarma-la merced.
- [5] Cafiso, S., and Di Graziano, A. Definition of homogenous sections in road pavement measurements. *Procedia-Social and Behavioral Sciences* 53 (2012), 1069–1079.
- [6] CALO, D. H. Diseño de pavimentos rígidos. Jornadas de Actualización Técnica. Diseño y Construcción de Pavimetnos de Hormigón. ICPA, Instituto del Cemento Portland Argentino (2012).
- [7] Cho, Y.-H., McCullough, B., and Weissmann, J. Considerations on finite-element method application in pavement structural analysis. *Transportation Research Record: Journal of the Transportation Research Board*, 1539 (1996), 96–101.
- [8] DEL COZ DÍAZ, J. J., AND SUÁREZ DOMÍNGUEZ, J. Guía para ansys. Tech. rep.
- [9] Ellis, T. A comparison of nondestructive testing backcalculation techniques for rigid and flexible pavements. PhD thesis, 2008.

- [10] ESCOBAR AGUIRRE, K. A., GARCÍA GARCÍA, A. A., AND GUZMÁN LÓ-PEZ, C. R. Análisis comparativo de la evaluación de pavimentos por medio de la viga Benkelman y el deflectómetro de impacto Falling Weight Deflectómetro, FWD. PhD thesis, Universidad de El Salvador, 2007.
- [11] Fonseca, A. M. Ingeniería de Pavimentos para carreteras Tomo I. 2002.
- [12] FWA, T. F. The handbook of highway engineering. CRC Press, 2005.
- [13] Guide, E. U. Pavement analysis computer software and case studies. Washington State Department of Transportation, Olympia, Washington (2005).
- [14] GUIDE, M.-E. P. D. Guide for mechanistic empirical design of new and rehabilitated pavement structures. NCHRP Rep. 1-37A, Final Rep (2004).
- [15] Harrington, D., and Fick, G. Guide to concrete overlays: sustainable solutions for resurfacing and rehabilitating existing pavements. Tech. rep., 2014.
- [16] HARRINGTON, D., AND FICK, G. Technical brief: Performance history of concrete overlays in the united states. Tech. rep., 2014.
- [17] Hemsley, J. A. Design applications of raft foundations. Thomas Telford, 2000.
- [18] HIGERA SANDOVAL, C. H. Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras, vol. 1. Grupo Imprenta y Publicaciones, 2011.
- [19] HIGUERA-SANDOVAL, C. H. Caracterización de la resistencia de la subrasante con la información del deflectómetro de impacto. Facultad de Ingeniería 19, 28 (2010), 73–92.
- [20] IOANNIDES, A. M., AND KOROVESIS, G. T. Analysis and design of doweled slab-on-grade pavement systems. *Journal of Transportation Engineering* 118, 6 (1992), 745–768.
- [21] JUNDHARE, D., KHARE, K., AND JAIN, R. Load transfer efficiency of dowel bar system in unboded conventional whitetopping overlay. *Journal of The Institution of Engineers (India): Series A 2*, 3 (2012), 203–207.
- [22] KVITKO, A., KARPOV, B., PETUKHOV, P., AND USHAKOV, A. Criteria for substantiation of rational pavement design as bases of traffic safety throughout life cycle of transport structures. *Transportation Research Procedia 20* (2017), 384–392.

- [23] LÓPEZ, F. M. H., HERRERA, A. B., PIUSSEAUT, E. T., AND SERRANO, L. E. Estado del conocimiento en la modelación de pavimentos rígidos (modelos de respuesta).
- [24] LÓPEZ, L. C., AND MENDOZA, A. Evaluación estructural no destructiva de pavimentos. Tech. Rep. 107, Instituto Mexicano del Transporte, 1998.
- [25] MALLICK, R., AND EL-KORCHI, T. Pavement Engineering: Principles and Practice" second edition by Taylor & Francis Group. CRC press, Boca Raton London New York, 2013.
- [26] MANNERING, F., KILARESKI, W., AND WASHBURN, S. *Principles of highway engineering and traffic analysis*. John Wiley & Sons, 2007.
- [27] NAZZAL, M., ABU-FARSAKH, M., ALSHIBLI, K., AND MOHAMMAD, L. Evaluating the light falling weight deflectometer device for in situ measurement of elastic modulus of pavement layers. *Transportation Research Record: Journal of the Transportation Research Board*, 2016 (2007), 13–22.
- [28] OF CALIFORNIA PAVEMENT RESEARCH CENTER., U. Calback manual version 1.0. Tech. rep., University of California Pavement Research Center., 2008.
- [29] Officials, T. AASHTO Guide for Design of Pavement Structures, 1993, vol. 1. AASHTO, 1993.
- [30] Papagiannakis, A. T., and Masad, E. A. Pavement design and materials. John Wiley & Sons, 2007.
- [31] PATYK, S. Maintenance budgets firm, computersín': Survey. Roads and Bridges 27, 8 (1989).
- [32] PÉREZ SALAZAR, A., GARNICA ANGUAS, P., GÓMEZ LÓPEZ, J. A., AND MARTINEZ PENA, G. Uso y calibración de deflectómetros de impacto en la evaluación estructural de pavimentos. *Publicación Técnica*, 252 (2004).
- [33] S.A., E. L. C. Guía de pavimentos rígidos para carreteras de alto volumen. Asociación Dominicana de Productores de Cemento Portland (2013).
- [34] Sandoval, C. H. H. Análisis de sensibilidad de las variables de diseño de un pavimento rígido y su incidencia en la deflexión. *Facultad de Ingeniería* 15, 20 (2006), 3.
- [35] SCHMALZER, P. N., ET AL. Long-term pavement performance program manual for falling weight deflectometer measurements. Tech. rep., United States. Federal Highway Administration. Office of Infrastructure Research and Development, 2006.

- [36] Shahin, M. Y. Airfield pavement distress measurement and use in pavement management. Tech. rep., 1982.
- [37] Shahin, M. Y. Pavement management for airports, roads, and parking lots. Chapman & Hall, 1994.
- [38] SHOUKRY, S. N., WILLIAM, G. W., AND RIAD, M. Y. Evaluation of load transfer efficiency measurement. Tech. rep., Pennsylvania Transportation Institute, Pennsylvania State University, 2005.
- [39] STEVENS, L. Road surface management for local governments. resource notebook. Tech. rep., 1985.
- [40] TAMPIER SOLMINIHAC, H. Gestión de infrasestructura vial, 2 ed. Universidad Católica de Chile, 2001.
- [41] Torres Ortega, R. Materiales de construcción. Conferencia Magistral, Universidad de Cartagena, Programa de Ingeniería Civil, Cartagena.
- [42] TRUJILLO, I. Evaluación funcional y estructural de la vía cuenca molleturo - pto. inca. Tech. rep., Promavial Consulting Cia. Ltda., 2014.
- [43] VARELA, L. R. V. Comportamiento de pavimentos de concreto simple con juntas de losas convencionales y losas cortas sobre subrasante elástica. AsfaltosyPavimentos AsfaltosyPavimentos (2015), 84.
- [44] Von Quintus, H., and Roa, C. Determination of in-place elastic layer modulus: Selection and demonstration of backcalculation methodology. Tech. rep., 2012.
- [45] VON QUINTUS, H., AND SIMPSON, A. Back-calculation of layer parameters for ltpp test sections, volume ii: Layered elastic analysis for flexible and rigid pavements. Tech. rep., 2002.
- [46] Von Quintus, H. L., Rao, C., and Irwin, L. Long-term pavement performance program determination of in-place elastic layer modulus: Backcalculation methodology and procedures. Tech. rep., 2015.
- [47] Wang, M., Larson, T. D., Bhajandas, A. C., and Cumberledge, G. Use of road rater deflections in pavement evaluation. Transportation Research Record, 666 (1978).
- [48] Yih Hou, T. Evaluation of Layered Material Properties from Measured Surface Deflections. PhD thesis, Ph. D. Dissertation, University of Utah, Salt Lake City, UT, 1977.