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RESUMEN 
 

La necesidad de que las estructuras hagan frente a eventos sísmicos, 

para preservar la seguridad de sus ocupantes, ha sido puesta de manifiesto por 

terremotos históricos y recientes. Para el análisis sismorresistente, se propone 

el análisis por desempeño de una estructura formada por pórticos especiales 

de acero, cuya geometría y condiciones de carga está dado por el documento 

FEMA P-695. La estructura es modelada mediante el software OpenSees como 

un modelo de plasticidad concentrada con capacidad de formación de rótulas 

elasto-plásticas y se valida mediante su comparación con un modelo más 

detallado que incluye degradación, logrando resultados de periodo, 

sobreresistencia y ductilidad similares. El análisis se realiza para tres niveles de 

desempeño y se verifica su comportamiento en función de los límites de 

derivas máximas dados por FEMA 356. En los niveles de diseño y prevención 

de colapso MCE se obtiene un desempeño adecuado, aunque demasiado 

cercano a los límites; mientras que en el nivel de servicio no se cumplen los 

criterios de aceptabilidad, provocando una respuesta negativa de la estructura. 

Dentro de los diferentes análisis, se estudia la influencia de los efectos P-Delta 

y de reducción axial en columnas sobre la respuesta del sistema, 

determinándose que su inclusión dentro del modelo es indispensable puesto 

que generan cambios considerables en la misma. Por último, este proyecto 

está encaminado hacia el estudio de la influencia de la modelación en el 

desempeño de componentes estructurales y no estructurales ante diferentes 

niveles de riesgo sísmico. 

 

Palabras clave: Modelación estructural, Rótulas elasto-plásticas, Análisis por 

desempeño, MCE, Análisis no lineal, Sismo.  
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ABSTRACT 

 

The need for structures to resist seismic events, to preserve the safety of 

their occupants, has been highlighted by historic and recent earthquakes. For 

the seismic analysis, is proposed the analysis of performance of a structure with 

steel moment frames, whose geometry and loading conditions are given by the 

FEMA P-695 document. The structure is modeled using the OpenSees software 

as a concentrated plasticity model with the capacity to form elasto-plastic 

hinges and is validated by comparing it with a more detailed model that includes 

degradation, achieving similar period, overstrength and ductility results. The 

analysis is performed at three levels of performance and its behavior is verified 

according to the limits of maximum drifts given by FEMA 356. At the levels of 

design and prevention of collapse MCE an adequate performance is obtained, 

although too close to the limits; while at the service level the acceptability 

criteria are not met, causing a negative response from the structure. Within the 

different analyzes, the influence of P-Delta effects and axial reduction in 

columns on the response of the system is studied, determining that its inclusion 

within the model is essential since they generate considerable changes in it. 

Finally, this project is aimed at studying the influence of modeling on the 

performance of structural and non-structural components at different levels of 

seismic risk. 

 

Keywords: Structural modeling, Elasto-plastic hinges, Performance analysis, 

MCE, Non-linear analysis, Earthquake. 
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1. INTRODUCCIÓN 

1.1. Antecedentes 

Los movimientos telúricos son constantes en la zona de Ecuador debido a 

su ubicación dentro del Cinturón de Fuego del Pacífico, una de las áreas de 

mayor actividad sísmica del planeta. A lo largo de los años, estos fenómenos 

naturales han significado gran cantidad de víctimas mortales. Sin embargo, “es 

importante crear conciencia de que los sismos no matan, lo que matan son las 

estructuras que no han sido diseñadas adecuadamente” (Aguiar, 2008) [1].  

A partir de los eventos más críticos nace el estudio sismorresistente de las 

estructuras, el cual ha cambiado y progresado sustancialmente en los últimos 

70 años [2], logrando desarrollar diferentes metodologías que ayudan a mejorar 

la respuesta de las estructuras y así preservar la seguridad de las personas.  

Dentro de estas metodologías, la ingeniería ha reconocido durante décadas 

la necesidad de incluir en el análisis los efectos de segundo orden tanto de 

material (plasticidad) como geométricos (P-delta). Esto debido a que un diseño 

únicamente elástico deriva en estructuras excesivamente grandes y costosas. 

Además, mediante el teorema de desplazamientos iguales desarrollado por 

Newmark [3], se ha demostrado que los desplazamientos máximos inelásticos 

permanecen casi iguales al desplazamiento máximo elástico cualquiera que 

sea la fuerza aplicada sobre una estructura con ductilidad definida.  

Tradicionalmente y en la actualidad, estos aspectos muchas veces son 

solventados únicamente mediante el detallamiento de los elementos durante el 

diseño, para luego utilizar análisis convencionales estáticos de primer orden 

con menor complejidad. Sin embargo, los avances computacionales 

principalmente en análisis y procesamiento de datos, están haciendo cada vez 

más fácil el desarrollo de métodos de análisis estructurales sofisticados que a 

su vez significan semejanza con la realidad, ahorro económico y mayor 

seguridad [4]. 

Una de las estrategias más utilizadas es permitir que las estructuras 

respondan en el rango inelástico y disipen energía por medio del daño en 

zonas localizadas de ciertos elementos del sistema, esperando por lo tanto, 

una respuesta no-lineal distinta a la estimada mediante procedimientos lineales 

en los que muchas veces se reduce la verdadera acción del sismo [4].  
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La no-linealidad de los elementos, está definida por sus modelos 

constitutivos o sus leyes de estado, que definen la relación entre el esfuerzo y 

la deformación de un material cuando se le aplican cargas externas o esfuerzos 

internos [5]. Dentro de la literatura estructural, existen gran cantidad de 

modelos constitutivos entre los cuales se destacan los modelos lineal-elástico, 

elasto-plástico y modelos que tienen en cuenta la degradación de la rigidez y 

del material debido a la acción de cargas cíclicas. La utilización de uno u otro 

modelo constitutivo define el comportamiento y la respuesta de una estructura 

ante cargas sísmicas. 

Dentro de los modelos más conocidos podemos mencionar:  el 

desarrollado  por Sivaselvan & Reinhorn [6] que incluye deterioro de fuerza y 

rigidez pero no una posible rigidez negativa;  Menegotto & Pinto [7] incluyen un 

endurecimiento isotrópico pos-fluencia y un deterioro cíclico de rigidez; 

Ramberg & Osgood [8] proponen una relación esfuerzo–deformación trilineal; 

Chaboche [9] propone un modelo de comportamiento cíclico basado en la 

teoría de elasto-plasticidad; y uno de los más utilizados que es el desarrollado 

por Ibarra, Medina & Krawinkler [10] y modificado por Lignos & Krawinkler [11], 

que simula la respuesta estructural dentro del rango inelástico mediante un 

modelo constitutivo propuesto a partir de su comparación y calibración con 

curvas histeréticas obtenidas de ensayos de laboratorio. El modelo base con el 

cual se comparan los resultados de nuestro proyecto incluye estos últimos 

criterios de calibración que permiten incluir las componentes de deterioro de 

fuerza y rigidez ante fuerzas monotónicas y cíclicas.  

Las zonas en donde se espera la no-linealidad también definen varios 

modelos diferentes para predecir el rendimiento tanto a nivel global como local 

en una estructura [12]. Estos modelos se pueden clasificar en dos grandes 

grupos: los modelos de plasticidad concentrada que consideran que las 

deformaciones se concentran en zonas específicas llamadas rótulas plásticas, 

y que los tramos de los elementos entre ellas quedan indeformables axial y 

transversalmente;  y los modelos de plasticidad distribuida, como los de fibras o 

elementos finitos, que se utilizan para tratar de representar de manera más 

detallada el comportamiento de un elemento, puesto que consideran 

deformaciones a lo largo de toda su extensión [12].  
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Distintos son los modelos que estos y otros investigadores han 

desarrollado, cada uno más detallado que otro, pero a su vez con expresiones 

de gran complejidad que requieren la evaluación de varios parámetros.  

Las normativas nacionales e internacionales, como parte del análisis 

sismorresistente, exigen una modelación matemática-computacional de las 

estructuras en la cual se incluyan todos los elementos que conforman el 

sistema estructural resistente y la distribución espacial de masas y rigideces, 

de tal forma que sea capaz de capturar las características más significativas del 

comportamiento dinámico [13]. Motivo por el cual, debido a la limitación de 

tiempo, los diseñadores y especialistas prefieren utilizar métodos tradicionales 

y menos detallados para el cálculo estructural. 

 Dadas las claras diferencias entre los métodos de análisis y la falta de 

un procedimiento definitivo para la modelación estructural, la comparación 

entre estos modelos incluyendo cambios en decisiones subjetivas del diseño, 

como diferentes propiedades de los materiales, distintos modelos constitutivos 

o diferentes tipos de conexiones viga-columna [14], es necesaria para definir el 

comportamiento de una estructura y las demandas sísmicas desde la 

perspectiva del desempeño ante diferentes niveles de riesgo.   
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1.2. Justificación 

 La variabilidad existente entre los modelos matemáticos-

computacionales que intentan predecir el comportamiento de una estructura 

antes esfuerzos sísmicos, previos a su construcción o rehabilitación, provoca la 

necesidad de definir un procedimiento detallado para la modelación, identificar 

sus problemas y límites de utilización.       

 Este proyecto desarrolla un procedimiento simplificado para la 

modelación de una estructura de 8 pisos, formada por pórticos especiales 

resistentes a momentos de acero con zonas de plasticidad concentradas con 

un comportamiento elasto-plástico. Se verifica si este modelo predice 

adecuadamente el comportamiento de una estructura ante eventos sísmicos y 

hasta que nivel de riesgo lo puede hacer. Además, se compara los límites 

establecidos en las normativas que definen el correcto diseño y 

comportamiento de una estructura. 

 Para lograr este propósito es necesario realizar un análisis por 

desempeño de una estructura en 2D, el cual incluye análisis estáticos y 

dinámicos considerando los efectos de la no-linealidad. El software a utilizar es 

OpenSees (Open System for Earthquake Engineering Simulation), el cual fue 

desarrollado por la Universidad de California, Berkeley, para la simulación de la 

respuesta sísmica de sistemas estructurales y geotécnicos [15]. 

 La importancia de este estudio radica en la necesidad de seguir 

desarrollando el análisis dinámico sismorresistente de las estructuras mediante 

la evaluación y modelación de sistemas estructurales capaces de resistir estos 

fenómenos naturales.  

 Además, vale mencionar que este trabajo forma parte del proyecto 

“Efectos del modelamiento en el análisis de colapso de estructuras de acero” 

desarrollado por el área de Estructuras de la carrera de Ingeniería Civil de la 

Universidad de Cuenca. 
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1.3. Objetivo General 

 Realizar el análisis por desempeño de una estructura en 2D con 

capacidad de formación de rótulas elasto-plásticas utilizando el software 

OpenSees.  

 

1.4. Objetivos Específicos 

 Calibrar y validar la modelación elasto-plástica de una estructura. 

 Definir problemas y límites de modelamiento. 

 Comparar resultados con modelos más detallados. 

 Ejecutar no lineales análisis estáticos y dinámicos en una estructura. 

 Determinar la pertinencia del modelo para predecir colapsos.  

 Determinar si la estructura colapsa para eventos de periodo de retorno 

de 2500 años. 

 Evaluar el efecto P-delta. 

 Crear herramientas de modelamiento y posprocesamiento en 

OpenSees y Matlab. 
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2. MODELACIÓN ESTRUCTURAL 
 

 La existencia de diferentes metodologías, procedimientos y materiales 

para la modelación de una misma estructura nos incentiva a realizar un 

procedimiento simplificado y sencillo que sea capaz de representar su 

comportamiento ante eventos sísmicos. La modelación estructural se realiza 

mediante el software OpenSees y se verifica su adecuado funcionamiento 

mediante herramientas desarrolladas en Matlab (Anexo 1).  

La estructura de estudio sobre la cual se realizan todos los análisis es un 

pórtico especial resistente a momentos de acero (SMF) de 8 niveles y 3 vanos 

cuya configuración pertenece a los prototipos empleados en el capítulo 6 de la 

validación de la metodología FEMA P695 [16]. 

2.1. OpenSees 

OpenSees (Open System for Earthquake Engineering Simulation), es un 

software libre desarrollado por la Universidad de California, Berkeley, que 

permite desarrollar aplicaciones y herramientas para la simulación de la 

respuesta sísmica de sistemas estructurales y geotécnicos [15]. Este software 

es utilizado principalmente como una plataforma computacional para 

investigación en ingeniería sísmica y define los problemas de geometría, 

cargas, formulación y métodos de solución mediante lenguaje de programación 

Tcl. OpeenSees es una de las plataformas con mayor avance en cuanto a 

modelación y análisis no-lineales de estructuras usando un amplio rango de 

materiales, modelos constitutivos, tipos de elementos, tipos de conexiones y 

algoritmos de solución. 

2.2. Pórticos Especiales de Acero Resistentes a Momento (SMF) 

Los pórticos especiales resistentes a momento son aquellos formados 

por columnas y vigas descolgadas del sistema de piso, que resisten cargas 

verticales y de origen sísmico, en los cuales tanto el pórtico como la conexión 

viga-columna son capaces de resistir tales fuerzas y están especialmente 

diseñados y detallados para presentar un comportamiento estructural dúctil 

[13]. Todos sus elementos son de acero laminado en caliente y su factor de 

reducción sísmica R tiene un valor igual a 8 según ASCE 7-16 [17]. El objetivo 
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de estos pórticos es que la mayor parte del comportamiento inelástico ocurra 

por flexión en las rótulas de las vigas y por corte en los panel zones, aunque 

también es posible que ocurra fluencia en las columnas y bases de columna 

[18].  

2.3. Estructura de Análisis  

La estructura de análisis sirve como sistema de resistencia a cargas 

laterales de un edificio de 8 niveles y está formada por SMFs de 3 vanos [16]. 

Estos modelos fueron diseñados y detallados de acuerdo con los 

requerimientos de la normativa AISC 341-05 [19] y los requerimientos de 

diseño sísmico de ASCE/SEI 7-05 [17], incluyendo el cortante basal mínimo y 

los límites de derivas de entrepiso. Mientras que los criterios dados en AISC 

358-05 [20] fueron utilizados para el diseño de las conexiones RBS utilizadas 

en todas las vigas que conforman la estructura. Todas estas normativas han 

sido el resultado de años de investigación y experiencia tras sismos de gran 

magnitud. 

2.3.1. Características Geométricas y de Material 

El edificio es simétrico y regular en planta como se muestra en la 

Figura 1, lo cual nos permite resumir el estudio de la estructura a solo el 

análisis en 2D de uno de los pórticos que lo conforman puesto que este 

representará el comportamiento de la estructura completa.  

 

Figura 1.Configuración en planta de estructura. [16] 

 

El ancho de cada vano, medido de centro a centro entre columnas 

es de 20 ft como indica la Figura 1. Mientras que las alturas de piso son de 
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15 pies en el primero y 13 pies todos los demás. Las bases de la estructura 

se asumen como perfectamente empotradas.  

Todos los miembros de los pórticos fueron diseñados utilizando 

acero ASTM A992 con un esfuerzo de fluencia del acero Fy=50 ksi. 

Además, trabajan con un límite de elasticidad efectivo My=1.1Mp, con un 

Mp probable basado en el esfuerzo de fluencia Fy multiplicado por un factor 

de esfuerzo de fluencia probable Ry=1.1. [16]  

2.3.2. Tamaño de Vigas y Columnas 

Todos los elementos del pórtico son de sección W. Estos fueron 

diseñados por criterios de rigidez, derivas de piso límite y efectos P-Delta 

[16]. El tamaño de las vigas y columnas que conforman la estructura se 

muestra a continuación en la Tabla 1. 

Tabla 1. Tamaño de vigas y columnas. [16] 

Piso Tamaño de 
viga 

Tamaño Columna 
Exterior 

Tamaño Columna 
Interior 

1 W30x108 W24x131 W24x162 

2 W30x116 W24x131 W24x162 

3 W30x116 W24x131 W24x162 

4 W27x94 W24x131 W24x162 

5 W27x94 W24x131 W24x131 

6 W24x84 W24x131 W24x131 

7 W24x84 W24x94 W24x94 

8 W21x68 W24x94 W24x94 

 

Las partes de una sección W se presentan en la Figura 2 para 

futuros cálculos de la modelación. 

 

  Figura 2. Partes de sección W. 
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Una vez conocidas las características geométricas y el tamaño de 

las secciones que conforman una estructura se pueden definir los nodos y 

elementos para su modelación. La nomenclatura utilizada se presenta en el 

Anexo 2.   

En Opensees los nodos se definen mediante el comando: 

node $nodeTag (ndm $coords) 

Donde, 

$nodeTag,  Etiqueta de nodo. 

(ndm $coords),  Coordenadas del nodo en ejes X, Y y Z. 

La definición de los elementos se indicará en las siguientes 

secciones en función del tipo de elemento.   

 

2.3.3. Cargas de Gravedad y Masas de Piso 

Los pórticos especiales fueron diseñados para resistir toda la carga 

sísmica, pero solo reciben una carga de gravedad tributaria como se indica 

en el área sombreada de la Figura 1.  

Las cargas correspondientes a los vanos exteriores al pórtico, pero 

pertenecientes al área tributaria, son cargadas como puntuales en las 

columnas exteriores del sistema de 3 vanos. La carga sobre los vanos 

interiores es aplicada como distribuida sobre sus respectivos elementos. 

Mientras que para incluir el efecto del sistema de gravedad interno sobre la 

amplificación de los efectos P-Delta en el pórtico especial, se carga a una 

columna externa (Sección 2.5) una carga puntual correspondiente al resto 

de la mitad de las cargas de piso [16].  

Las condiciones de carga a utilizarse son las siguientes: carga 

muerta D de 90 psf uniformemente distribuida sobre cada piso, carga viva L 

de 50psf en cada piso y 20 psf sobre el techo de la estructura; además se 

incluye una carga perimetral de 25 psf que se considera como parte de la 

carga muerta. 

Las cargas de gravedad para el análisis estructural son distintas de 

las cargas de diseño, y estas están dadas por la siguiente combinación 

recomendada por FEMA P695 [21]: 

   (1) 
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 Donde D es la carga muerta nominal de la estructura y L es la carga 

viva nominal. 

Las cargas calculadas y aplicadas en la estructura se muestran a 

continuación en la Tabla 2: 

Tabla 2. Cargas gravitacionales y masas de piso. 

Piso Carga 
Muerta 
D (kips) 

Carga 
Viva L 
(kips) 

Carga 
Perimetral D 

(kips) 

Carga 
por vano 

(kips) 

Carga 
P-Delta 
(kips) 

Masa de 
piso 

(kips*s2/in) 

1 36.00 20.00 7.00 50.15 586.45 0.79 

2 36.00 20.00 6.50 49.63 582.78 0.78 

3 36.00 20.00 6.50 49.63 582.78 0.78 

4 36.00 20.00 6.50 49.63 582.78 0.78 

5 36.00 20.00 6.50 49.63 582.78 0.78 

6 36.00 20.00 6.50 49.63 582.78 0.78 

7 36.00 20.00 6.50 49.63 582.78 0.78 

8 36.00 8.00 3.25 43.21 521.39 0.69 

 

En el software utilizado, las cargas puntuales se definen mediante el 

comando: 

 load $nodetag (ndf $load Values) 

Donde, 

$nodetag,  Nodo en el que se aplica la carga puntual. 

(ndm $loads),   Cargas en cada uno de los grados de 

libertad. 

 

Mientras que las cargas distribuidas se aplican mediante: 

eleLoad -ele $eleTag -type -beamUniform $Wy 

 Donde, 

-ele $eleTag, Elemento sobre el que se aplica la carga distribuida. 

$Wy,   Carga distribuida en dirección Y. 

 

La masa de la estructura, factor fundamental para los análisis 

dinámicos, se divide y se aplica como puntual en un solo nodo de cada 

piso. Para su cálculo se utiliza las mismas condiciones y combinación de 

carga definidas anteriormente para las cargas de gravedad. Las masas de 

cada piso calculadas se muestran en la Tabla 2.  



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
23 

Para aplicar las masas a los nodos seleccionados en el modelo de 

OpenSees, se utiliza el siguiente comando: 

 

mass $nodeTag (ndf $massValues) 

Donde, 

$nodetag,    Nodo en el que se aplica la masa puntual. 

(ndf $massValues), Masa aplicada en cada uno de los grados de 

libertad. 

 

2.4. Modelo Típico de Piso 

El modelo planteado para el análisis no lineal de la estructura ante 

fuerzas sísmicas se basa en los criterios de plasticidad concentrada [12]. Este 

modelo consiste en la formación de rótulas elasto-plásticas en los extremos de 

las columnas y en las zonas RBS de las vigas, que son las zonas en las cuales 

se espera la fluencia de los elementos.   

 

Figura 3. Modelo típico de piso [15] 

En la Figura 3, se puede observar que el modelo de piso consta de tres 

vigas elásticas que se ubican entre las conexiones RBS, seis elementos 

elásticos entre las conexiones RBS y las caras de las columnas y cuatro 

paralelogramos rígidos conocidos como Panel Zones que representan la zona 

de unión viga-columna y cuentan a su vez con una rótula cuyo comportamiento 

será explicado en las sección 2.4.3. Todos estos elementos son conectados 

mediante las rótulas elasto-plásticas para representar la no-linealidad de la 

estructura y por tanto las zonas en donde se espera el daño de los elementos. 

Detalles de la modelación de cada una de las partes y su 

implementación en OpenSees son presentados a continuación. 

 

2.4.1. Elementos Elásticos 

Todas las vigas y columnas se modelan como un elemento elástico 

conectado en serie con rótulas plásticas en cada extremo. Las propiedades 
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estructurales de cada miembro son una combinación de las propiedades de 

estos tres subelementos. Debido a esto, la rigidez de estos subelementos 

debe modificarse de tal forma que la rigidez equivalente del conjunto sea 

igual a la rigidez del elemento verdadero [10].  

La rigidez rotacional de un elemento Kelem sometido a doble 

curvatura es igual a:    

   (2) 

Donde, E es el módulo de elasticidad, I es el Momento de inercia y L 

la longitud del elemento. 

Pero esta rigidez rotacional debe ser relacionada a la rigidez de la 

rótula plástica Ks y la rigidez del elemento elástico Kbc (Figura 4) de 

acuerdo con la siguiente ecuación: 

  (3) 

Para resolver la ecuación (3) evitando problemas de computación e 

inestabilidad numérica, Ibarra y Krawinkler [10] proponen usar rótulas 

plásticas con una rigidez “n” veces mayor que la rigidez rotacional del 

elemento elástico.  Donde n es un número mucho mayor a 1, generalmente 

usado con valor de 10. 

 

 

Figura 4. Distribución de rigideces de vano. 

Entonces, la rigidez rotacional de los subelementos puede ser 

expresada como una función de la rigidez total del elemento y el factor 

multiplicador n, como se muestra a continuación: 

   (4) 

    (5) 

Este procedimiento además nos permite asignar todo el 

amortiguamiento de la viga o columna al subelemento elástico, evitando la 
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asignación del mismo a las rótulas plásticas que generaría falsos 

momentos amortiguados en las uniones de los elementos.  

La implementación de los elementos elásticos en OpenSees se 

realiza mediante uno de los elementos predefinidos en el software como 

“elastic BeamColumn” [15]. Su comando es:  

element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz $transfTag  

 

Donde, 

$eleTag,   nombre o etiqueta del elemento. 

$iNode $jNode,  nodos inicial y final respectivamente. 

$A,   área transversal del elemento. 

$E,   Módulo de elasticidad. 

$Iz,    Segundo momento de inercia respecto al eje local z. En 

este caso modificado por el factor n definido previamente. 

$transfTag,  Identificador de la transformación de coordenadas 

requerido. 

 

2.4.2. Conexiones RBS 

Todas las conexiones viga-columna de la estructura son del tipo 

RBS (Reduce Beam Section). En estas conexiones la porción de los 

patines de la viga se recorta en la región adyacente a la zona de conexión. 

El objetivo es que la fluencia y formación de rótulas ocurran principalmente 

dentro de la conexión RBS. Estas conexiones son precalificadas para 

usarse en pórticos especiales de acero resistentes a momento y se diseñan 

según los requerimientos de AISC 358-05 [20].Un esquema de este tipo de 

reducción se muestra en la Figura 5. 

 

Figura 5. Esquema conexión RBS [18]. 
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 Las dimensiones de reducción utilizadas en esta estructura son: 

  (6) 

 (7) 

 (8) 

Donde bf y db son partes de la sección W de la viga, identificados en 

la Figura 2.  

Además, debido a la evidente reducción de sección, el módulo 

plástico de la sección en el centro del RBS debe ser modificado según la 

siguiente ecuación: 

  (9) 

Donde,  

ZRBS:  Módulo plástico en el centro del RBS 

Zx:  Módulo plástico de toda la sección alrededor del eje X 

tf:  Espesor del patín de la viga representado en la  

 Figura 2. 

 

Dentro del modelo de la estructura de estudio estas conexiones se 

representan por rótulas elasto-plásticas, ubicadas en el centro de la 

reducción y con un máximo momento de fluencia calculado en función del 

módulo modificado . 

 

2.4.3. Rótulas Elasto-Plásticas 

Las rótulas plásticas son zonas localizadas donde se supone y 

espera la fluencia de los elementos. Como se mencionó anteriormente, su 

rigidez rotacional será “n” veces mayor que el elemento elástico con el cual 

conforman el elemento estructural completo [10]. 

Estos elementos pueden tener varios modelos constitutivos como se 

observa en la Figura 6. Entre ellos encontramos, el histerético (a) con 

deterioro por fuerza y deformación, daño y degradación de rigidez por 

ductilidad, elástico-perfectamente plástico (b) que implica la aparición de 

deformaciones irreversibles apenas se llega a la fluencia, elasto-plástico (c) 

que considera el endurecimiento por deformación pos-fluencia; y otro 
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modelo más detallado como el Bilin (d), sobre el cual se construye el 

modelo de Ibarra-Medina-Krawinkler [16], que tiene en cuenta degradación 

de rigidez y material debido a la acción de cargas cíclicas y es  

         

(a)                                                          (b) 

 

      

                             (c)                                                         (d) 

Figura 6. Modelos constitutivos de rotulas plásticas [15]. 

En este proyecto, las rótulas plásticas son modeladas con un 

comportamiento elasto-plástico, con el objetivo de comparar si este modelo 

constitutivo puede representar lo mismo que materiales más detallados y 

por tanto el comportamiento real de la estructura ante acciones sísmicas. 

Para su modelación dentro del software Opensees se usa el 

elemento tipo “ZeroLength” y el material Steel01 [15], cuyos comandos son: 

 

element zeroLength $eleTag $iNode $jNode -mat $matTag -dir $dir1 $dir2 

Donde, 

$eleTag,  Etiqueta de elemento. 

$iNode $jNode,  nodos inicial y final respectivamente. 

uniaxialMaterial Steel01 $matTag $Fy $E0 $b 
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Donde, 

$ matTag,  etiqueta para el material. 

$Fy,    en nuestro modelo, puesto que son rótulas plásticas, 

representa My o momento efectivo de fluencia. 

$E0,   representa k0 o rigidez rotacional inicial. 

$ b,   relación entre la rigidez pos-fluencia y la rigidez 

rotacional inicial.  

 Los parámetros para definir el material Steel01 son sencillos a 

comparación de materiales más detallados en los cuales es necesario 

definir y calibrar más de 25.  

Sin embargo, estos cuatro parámetros deben ser calibrados para 

cada una de las rótulas plásticas debido a sus diferentes propiedades. Así 

tenemos: 

 

2.4.3.1. Momento de fluencia y rigidez inicial de rótulas en columnas 

El momento efectivo de fluencia para la modelación de las rótulas en 

los elementos tipos columna se define mediante: 

  (10) 

 (11) 

Donde,  

Mycol:  Momento efectivo de fluencia en rótulas de columnas 

Rd:  Factor de reducción axial, definido en sección 2.6. 

Mpcol: Momento plástico esperado en rótulas de columnas. 

Ry:  Factor de esfuerzo de fluencia probable 

Fy:  Esfuerzo de fluencia 

Zx:  Módulo plástico de la sección alrededor del eje X 

 

La rigidez rotacional inicial de los elementos tipo columna se define 

mediante: 

  (12) 

Donde,  
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K0:  Rigidez rotacional inicial en rótulas de columnas. 

n:  Factor proporcional de rigidez, igual a 10. 

E:  Módulo de elasticidad del acero. 

Ix:  Segundo momento de inercia de la sección respecto al eje x. 

L: Longitud libre de columna, medida entre extremos de las 

vigas. 

 

2.4.3.2. Momento plástico y rigidez inicial de rótulas en vigas 

El momento efectivo de fluencia para la modelación de las rótulas en 

los elementos tipo viga se define mediante: 

    (13) 

  (14) 

Donde,  

Myviga:  Momento efectivo de fluencia en rótulas de vigas 

Mpviga:  Momento plástico esperado en rótulas de vigas. 

ZRBS:   Módulo plástico en el centro del RBS. 

 

La rigidez rotacional inicial de los elementos tipo viga se define de 

manera similar a las columnas mediante la ecuación (12). L será la longitud 

medida de centro a centro entre secciones RBS de una misma viga. 

 

2.4.3.3. Relación entre rigidez pos-fluencia y rigidez rotacional inicial 

El factor b del material Steel01, que define la relación entre la rigidez 

pos-fluencia y la rigidez rotacional inicial, puede tomar cualquier valor 

generalmente pequeño. Este valor modificará la pendiente pos-fluencia de 

la rótula elasto-plástica y por tanto su comportamiento. 

Para su calibración, se probó inicialmente distintos valores con el 

objetivo de observar la variación en su comportamiento; obteniendo así 

mediante herramientas desarrolladas en Matlab, como se muestra en las 

Figura 7 y Figura 8, la curva momento-deformación para cada caso. 
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Figura 7. Factor b=0.0001, material Steel01 

 

Figura 8. Factor b=0.002, material Steel01 

En las figuras anteriores se puede observar que, mientras más bajo 

sea el valor de b más se asemeja el modelo constitutivo al elástico-

perfectamente plástico, mientras que con el aumento del valor b se 

incrementa considerablemente la pendiente pos-fluencia del material. 

Al ser uno de los objetivos del proyecto comparar si este material o 

modelo constitutivo puede representar lo mismo que materiales más 

detallados, se realiza la calibración del factor b en función de la curva 

característica del material (Figura 9) utilizado en el modelo de Ibarra-

Medina-Krawinkler [16].  
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Figura 9. Curva característica del modelo Ibarra-Medina-Krawinkler [16]. 

A partir de la curva presentada, cambiando las fuerzas por 

momentos al ser rótulas plásticas, se puede estimar el factor b mediante la 

fórmula: 

  (15) 

Donde, 

Mc:  Momento último, Mc=1.1My. 

My:  Momento efectivo de fluencia 

θp:  Rotación plástica pre-capping 

K0:  Rigidez rotacional inicial. 

 

El único término que no ha sido definido hasta ahora es la rotación 

plástica pre-capping θp. Este factor se calcula mediante las fórmulas 

desarrolladas por Ibarra et al. [10] y modificadas por Lignos & Krawinkler 

[11]. Las fórmulas se dividen por tipo y tamaño del elemento, teniendo así 

las siguientes: 

Para vigas con RBS, con d ≥ 21”: 

 

  (16) 

     

Para vigas sin RBS o columnas, con 4” ≤ d ≤ 36”: 

 

(17) 
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Donde, 

θp:   Rotación plástica pre-capping 

h, tw, bf, tf, d:  Características geométricas de la sección,  

 Figura 2. 

L:   Longitud del elemento. 

Lb:    Distancia desde la cara de la columna hasta las 

arriostra más cercana 

ry:   Radio de giro alrededor del eje y. 

Fy:   Esfuerzo de fluencia 

 

Los valores de θp obtenidos para cada uno de los elementos tipo 

columna se presentan en la Tabla 3 mientras que los valores para los 

elementos tipo viga se muestran en la Tabla 4. 

 

Tabla 3. Valores θp para columnas. 

 

 

    

Tabla 4. Valores θp para vigas. 

 

 

 

 

 

 

Una vez calibrado el factor b del material Steel01 para cada una de 

las rótulas elasto-plásticas, se realizó la curva momento-deformación de 

una de ellas y se la compara con una rótula de la misma sección modelada 

con el material Bilin. 

Columnas 

Sección L (in) θp 

24x131 180 0.0312 

24x162 180 0.0334 

24x131 156 0.0297 

24x162 156 0.0318 

24x94 156 0.0293 

Vigas 

Sección θp 

30x108 0.0211 

30x116 0.0215 

27x94 0.0231 

24x84 0.0260 

21x68 0.0291 
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Figura 10. Calibración factor b, Steel01 vs Bilin 

En la Figura 10, se puede observar cómo tanto la pendiente de 

rigidez inicial como la pendiente de rigidez pos-fluencia son exactamente 

iguales en ambos materiales, lo cual garantiza un comportamiento similar al 

menos en las dos primeras etapas del material. 

 

2.4.4. Panel Zones 

Los panel zones representan las regiones donde vigas y columnas 

se intersectan. Dentro de la porción de columna de la conexión, la 

trasferencia de momentos genera altas tensiones axiales en los patines y 

tensiones de corte elevadas en la zona del panel provocando grandes 

deformaciones. 

Para capturar estas deformaciones, esta zona es modelada 

utilizando el enfoque de Gupta y Krawinkler [14], que se basa en un 

rectángulo o paralelogramo, limitado por el peralte de la viga y el ancho del 

patín de la columna, compuesto por ocho elementos elásticos y una rótula 

plástica con comportamiento bilineal histerético en la esquina superior 

derecha para representar las distorsiones que por corte se presentan en 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
34 

esta zona. Un esquema de Panel Zone se presenta a continuación en la 

Figura 11. 

 

Figura 11. Esquema Panel Zone [14]. 

En las demás esquinas, sin una rótula plástica, los elementos se 

unen mediante una conexión fija en donde se restringen ambos grados de 

libertad traslacional. Además, los ocho elementos elásticos tienen un área y 

momento de inercia grande para proporcionarles una alta rigidez axial y 

flexural. 

Al modelar algunos de estos elementos es necesario incluir los 

llamados “doubler plates” que son placas que se ubican como refuerzo en 

el alma de las columnas para prevenir la falla a corte en los panel zones. El 

diseño propuesto de la estructura [16] incluye estos elementos de refuerzo 

en las columnas de ciertos pisos como se presenta en la Tabla 5. 

Tabla 5. Tamaño de Doubler Plates [16] 

Piso Tamaño de Doubler Plate (in) 

Col. Exterior Col. Interior 

1 1/16 9/16 

2 1/16 3/8 

3 1/16 11/16 

4 0 3/8 

5 0 9/16 

6 0 7/16 

7 0 9/16 

8 0 5/16 

 

La modelación en Opensees de los 8 elementos elásticos, que 

conforman el paralelogramo que limita el panel zone, se realiza mediante el 
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comando “elastic BeamColumn” de la misma manera como ya se indicó 

anteriormente en la sección 2.4.1. 

Mientras que para la modelación de la rótula plástica bilineal se 

utiliza un procedimiento desarrollado por Dimitrios Lignos (2008). El 

comando que llama y define a este procedimiento es el siguiente: 

rotPanelZone2D $eleID $nodeR $nodeC $E $Fy $dc $bf_c $tf_c $tp $db $Ry $as      

Donde, 

 $ eleID,   etiqueta para la rótula. 

 $nodeR $nodeC, nodos de la esquina superior derecha del panel zone. 

 $E,   módulo de elasticidad. 

 $Fy,   Esfuerzo de fluencia. 

 $dc $db,   Peralte de columna y viga respectivamente. 

 $bf_c,   Ancho del patín de la columna 

 $tf_c,   Espesor del patín de la columna 

 $tp,  Espesor del panel zone. Igual al espesor del alma de 

la columna más el doubler plate. 

 $Ry,   Factor de esfuerzo de fluencia probable 

 $as,   Endurecimiento por tensión supuesto. Se asume un 

valor bastante alto. 

 

2.5. Columna Fantasma o Leaning Column 

Para incluir el efecto del sistema de gravedad interno sobre la 

amplificación de los efectos P-Delta o de segundo orden en el pórtico especial, 

se modela una “Leaning Column” o columna fantasma sin rigidez flexural 

colocada en paralelo al marco como se observa en la Figura 12 [22]. Esta 

columna, considerada articulada en la base, es cargada puntualmente en cada 

piso con el resto de carga correspondiente a la mitad del sistema de gravedad 

que no es directamente tributaria al pórtico en análisis.  

 

Figura 12. Esquema Leaning Column [22]. 
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Su modelación se realiza mediante elementos elásticos con conexiones 

fijas en donde se restringen ambos grados de libertad traslacional. Mientras 

que, la unión con el pórtico se realiza mediante elementos tipo armadura a 

través de los cuales solo se transmiten esfuerzos de tipo axial. 

Los elementos tipos armadura pueden ser definidos en OpenSees 

mediante el comando: 

element truss $eleTag $iNode $jNode $A $matTag 

Donde, 

$eleTag,   Etiqueta de elemento. 

$iNode $jNode  nodos inicial y final respectivamente. 

$A,    área transversal del elemento, valor generalmente 

grande. 

$matTag,   material asignado a elemento. 

El tipo de material para modelar elementos tipo armadura es 

completamente elástico y se define mediante: 

uniaxialMaterial Elastic $matTag $E 

Donde, 

$matTag, Etiqueta de material. 

$E,   Módulo de elasticidad. 

 

2.6. Reducción Axial en Columnas 

La modelación de las columnas y sus rótulas plásticas no incluyen 

directamente la interacción fuerza axial-momento flector que se produce en 

ellas, y debido a que la mayoría están sometidas a importantes cargas axiales 

se debe tomar en cuenta su efecto en la resistencia a flexión. Para este 

propósito, se reduce la capacidad a flexión considerando una fuerza axial 

representativa estimada mediante la combinación Pr=Pgrav+0.5PE,max 

recomendada por Zareian et. al [16], donde Pgrav es la fuerza axial debida a 

cargas de gravedad y PE,max es la fuerza axial máxima debida únicamente a 

cargas laterales estimada del análisis Pushover (sección 3.2). 

Posteriormente, utilizando estas fuerzas axiales y las ecuaciones de 

interacción P-M (18) y (19) dadas por AISC 360-10 [23] se calcula un factor de 

reducción de resistencia para utilizarlo en los análisis posteriores. 
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     (18) 

     (19) 

Donde,  

Pr,  Resistencia requerida a la tensión axial. 

Pc,  Resistencia nominal a la tensión axial, ecuación E3-1 AISC 360-

10. 

Mr,  Resistencia requerida a la flexión. 

Mc,  Resistencia nominal a la flexión. 

A continuación, en las Tabla 6 y Tabla 7, se presenta un resumen del 

cálculo de factores de reducción de resistencia para las columnas interiores y 

exteriores de la estructura: 

Tabla 6. Factores de reducción axial, columnas interiores. 

 

Tabla 7. Factores de reducción axial, columnas exteriores. 

 

 

Estudios recientes como el de Suzuki & Lignos [24] han demostrado que 

las fuerzas axiales en columnas, principalmente de aquellas producidas por 

cargas de gravedad únicamente, muchas veces dominan la respuesta sísmica 

de las estructuras. Motivo por el cual, se puede estimar su efecto considerando 
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una fuerza representativa solo de las cargas de gravedad, es decir Pr=Pgrav. 

Utilizando esta metodología se obtienen valores de reducción menores y se 

evaluará su influencia dentro de los análisis a realizar.  

 A continuación, en las Tabla 8 y Tabla 9, se presenta un resumen del 

cálculo de factores de reducción de resistencia para las columnas interiores y 

exteriores de la estructura considerando únicamente la carga de gravedad: 

Tabla 8. Factores de reducción axial por cargas de gravedad, columnas interiores 

 

 

Tabla 9. Factores de reducción axial por cargas de gravedad, columnas exteriores 

 

 

2.7. Amortiguamiento 

El término amortiguamiento se refiere a los mecanismos de disipación de 

energía presentes en una estructura, debido a la respuesta de los 

componentes estructurales y no estructurales, a una excitación dinámica [16]. 

El modelo más común y de mayor análisis en sistemas de múltiples grados de 

libertad lineales y no-lineales es el tipo Rayleigh [25], que considera un 

amortiguamiento c proporcional a la masa y a la rigidez. 

    (20) 

Donde, α y β son factores de proporcionalidad; m es la matriz de masa de la 

estructura y k es la matriz de rigidez. Para la determinación de los factores α y 

β se debe imponer una razón de amortiguamiento a dos de los modos de 

vibración de la estructura y se obtienen mediante las siguientes ecuaciones: 
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En donde wi y wj son las frecuencias correspondientes a los modos de 

vibración –i y –j respectivamente. En este caso, la estructura es analizada 

usando una razón de amortiguamiento ξ=2.5% impuesta al periodo del primer 

modo (T1) y a T=0.2T1 obtenidos del Análisis Modal (sección 3.1). Los valores α 

y β calculados se presentan en la Tabla 10. 

Tabla 10. Coeficientes amortiguamiento Rayleigh 

Coeficientes Amortiguamiento Rayleigh 

Alfa 0.1128 

Beta 0.0031 

Beta‘ 0.0034 

 

Zareian & Medina [26], en su estudio sobre la modelación del 

amortiguamiento en estructuras inelásticas, proponen que la forma adecuada 

de modelarlo es modificando el amortiguamiento proporcional a la rigidez en los 

elementos elásticos que fueron modificados por el factor n (Sección 2.4.1). 

Motivo por el cual es necesario la obtención de un nuevo factor β’ (ecuación 23) 

cuyo valor se presenta en la Tabla 10.  
 

 (23) 

 

Para asignar estos factores a la estructura, dentro del software 

OpenSees se utiliza el siguiente comando: 

rayleigh $alphaM $betaK $betaKinit $betaKcomm  

Donde, 

$ alphaM, Factor aplicado a elementos o nodos con masa. 

$betaK,  Factor aplicado a los elementos y su rigidez en el tiempo. 

$betaKinit, Factor aplicado a los elementos y su rigidez inicial, factor β.  

$betaKcomm,  Factor aplicado a los elementos comprometidos con la 

matriz de rigidez. 
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3. ANÁLISIS DE VALIDACIÓN 
 

Para la verificación del modelo, con el fin de comprobar que este sea 

realizado de manera correcta, es necesario realizar análisis de validación que 

nos permiten tener una idea de la respuesta de la estructura previa a los 

análisis dinámicos. Dentro de estos procedimientos se incluyen: análisis modal, 

análisis Pushover y vibración libre. 

 

3.1. Análisis Modal 

El análisis modal consiste en plantear la ecuación de movimiento, 

suponer una forma de respuesta e imponer que esta cumpla la ecuación que 

gobierna el movimiento del sistema, lo que supone resolver un problema de 

eigenvalores y eigenvectores, como lo indica Ewins [27]. Para obtener la 

ecuación de movimiento es necesario calcular las matrices de masa M y rigidez 

K. 

La ecuación que gobierna el movimiento, considerando una respuesta 

libre, se puede escribir en forma matricial: 

  (24) 

Se supone que la solución es de la forma armónica , 

donde  es un vector compuesto por Nx1 amplitudes independientes del 

tiempo. 

Sustituyendo el concepto anterior en la ecuación (24) se llega a: 

 (25) 

Las soluciones diferentes de la trivial satisfacen: , y 

de donde se obtienen los N valores de , que son las frecuencias naturales 

del sistema. Para cada valor de  se calcula un T=  que es el periodo 

fundamental para esa frecuencia y además se calcula un eigenvector que 

corresponde a los modos naturales de vibración de la estructura. Una 

propiedad importante de los modos es que cualquier respuesta de la estructura 

puede ser expresada como una combinación de una serie de modos. Además, 

se puede calcular la participación y la masa modal efectiva de cada uno [27]. 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
41 

El análisis modal es un proceso que permite describir la estructura en 

términos de sus propiedades dinámicas o parámetros modales que son la 

frecuencia, modos de vibración y participación modal. En el diseño y análisis 

estructural es necesario identificar estos parámetros y conocer cómo afectan a 

la respuesta de la estructura. El análisis modal es una herramienta eficiente 

para la validación de modelos analíticos puesto que permite describir y 

comprender el comportamiento de cada una de las partes de una estructura y 

ver su influencia dentro del sistema. Además, permite realizar un análisis de 

ensamblaje de la estructura verificando que todos sus elementos están 

conectados correctamente.  

A continuación, aplicando una de las utilidades del análisis modal 

descritas anteriormente, se verifica el correcto ensamblaje de los elementos y 

la influencia de cada una de las partes importantes del modelo dentro de la 

respuesta de la estructura. 

3.1.1. Estructura básica 

Inicialmente, se modela la estructura solo con elementos elásticos 

conectados directamente. Para luego ir incluyendo en el modelo cada una 

de las partes importantes de la estructura y verificar su influencia 

principalmente en la rigidez del sistema. En la Figura 13 se muestran el 

primer periodo fundamental Tn y su frecuencia natural Wn como resultado 

del análisis modal para la estructura básica. 

 

Figura 13. Análisis Modal, estructura básica 
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La forma del primer modo de vibración varía linealmente con la 

altura como es de esperarse. Sin embargo, se puede observar que este 

primer modo tiene una participación menor al 90% por lo cual los modos 

altos tendrán gran influencia en la respuesta dinámica del sistema. Esto 

significa también que los análisis estáticos o lineales no serán suficientes 

para el estudio de la estructura y que es obligatorio el análisis dinámico de 

la misma. 

3.1.2. Inclusión de rótulas elasto-plásticas 

La inclusión de las rotulas elasto-plásticas en las zonas RBS de las 

vigas, así como en la partes inferior y superior de las columnas no se 

puede apreciar gráficamente puesto que son modeladas como elementos 

sin longitud o longitud nula. El análisis modal nos permite verificar su 

correcta inclusión mediante un aumento del primer periodo fundamental 

puesto que se espera que estos elementos flexibilicen la estructura. 

 

Figura 14. Análisis Modal, inclusión de rótulas. 

En la Figura 14 se puede observar que efectivamente la estructura 

es más flexible con la inclusión de rótulas y conexiones RBS. Además, se 

verifica un correcto ensamblaje de estos elementos debido a que se 

mantiene la forma del primer modo de vibración. 

3.1.3. Inclusión de zonas de conexión viga-columna (Panel Zones) 

Al contrario de las rótulas plásticas, la inclusión de los panel zones 

provocan mayor rigidez en la estructura, como se puede observar en los 
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resultados del análisis modal en la Figura 14. Esto se debe a que los 

elementos con los que se modelan estas zonas se consideran con gran 

área e inercia y además incluyen los doubler plates que aumentan la 

sección de las columnas y por tanto provocan una mayor rigidez en la 

misma. 

 

Figura 15. Análisis Modal, inclusión de panel zones. 

3.1.4. Inclusión de columna fantasma 

Una columna fantasma o leaning column es una columna sin rigidez 

flexural colocada en paralelo al marco. Entonces según su definición, la 

inclusión de este elemento no debe provocar ningún cambio en la rigidez 

de la estructura. Esto se puede comprobar a través de los resultados del 

análisis modal que deben ser exactamente iguales a los presentados en el 

análisis anterior. 

 

Figura 16. Análisis modal, inclusión leaning column. 
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Efectivamente, en la Figura 16 se puede observar gráficamente la 

inclusión de la columna lateral y como se esperaba no afecta el 

comportamiento de la estructura y todos los parámetros del análisis modal 

se mantienen iguales que en el anterior que no contaba con este tipo de 

elemento. 

3.1.5. Aplicación de cargas de gravedad y efectos P-Delta  

Finalmente, se aplican las cargas de gravedad tanto al marco 

principal como a la columna lateral para incluir los efectos de segundo 

orden geométricos P-Delta. Este modelo es considerado como el modelo 

final sobre el cual se realizarán todos los análisis dinámicos y el que se 

compara con los modelos más detallados.  

 

Figura 17. Análisis modal, modelo final. 
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En la Figura 17 se presentan los resultados del análisis modal de la 

estructura incluyendo efectos P-delta. A pesar de que por su configuración 

la estructura posee ocho modos fundamentales de vibración se presentan 

únicamente los cuatro primeros puesto que estos representan un factor de 

participación de masa considerable y son lo que más influencia tendrán en 

la respuesta de la estructura. El efecto de segundo orden P-Delta 

claramente provoca mayor flexibilidad en la estructura aumentando su 

primer periodo fundamental.  

Además, pese a que la participación del primer modo aumenta con 

respecto al modelo básico, esta sigue siendo baja y por lo tanto como se 

mencionó anteriormente se necesitarán análisis dinámicos para el estudio 

sismorresistente de esta estructura. 

Es importante mencionar también que la influencia de la reducción 

axial en el análisis modal de la estructura es nula puesto que este proceso 

no lleva la estructura a la fluencia que es en donde se obtiene efecto de las 

reducciones. 

En el estudio de Zareian et. al. [16] se presenta el primer periodo 

fundamental obtenido para esta misma estructura con un valor igual a 2.29 

segundos. El primer periodo en nuestra modelación es de 2.32 segundos. 

Estos resultados son bastante similares, sin embargo, la diferencia puede 

deberse a los diferentes modelos constitutivos empleado en las rótulas de 

cada uno de los modelos y también a la distribución de las cargas gravedad 

dentro del pórtico que no fue especificada en la literatura de la modelación 

original. 

  

3.2. Análisis Pushover 

El análisis Pushover o análisis estático no lineal incremental es un 

método de capacidad de gran uso para análisis de vulnerabilidad. Este 

procedimiento nos permite obtener la curva de capacidad (fuerza-

desplazamiento) de una estructura y consiste en someter a la misma a cargas 

laterales las cuales se incrementan en pequeños intervalos y de manera 

monotónica hasta llegar al colapso o a una deriva especificada por el analista, 

esto con el fin de detectar cambios significativos en el comportamiento 
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individual de cada elemento (fluencia o falla) que no se permite con un análisis 

lineal. Este análisis se basa en el procedimiento no lineal estático especificado 

de la sección 7.4.3 de ASCE/SEI 41-13 [28]. 

La distribución vertical de las fuerzas laterales Fx para cada nivel de piso 

x debe ser proporcional a la forma del primer modo fundamental de la 

estructura, como se muestra en la ecuación 6-4 de FEMA P695 [21]: 

   (26) 

Donde, mx es la masa correspondiente al piso de nivel x y  

corresponde a la ordenada del primer modo fundamental del piso de nivel x. 

 

Figura 18. Curva idealizada de análisis Pushover [19] 

Dentro de las utilidades de este análisis se encuentra el cálculo de la 

máxima capacidad a cortante en la base Vmax tomada como la máxima fuerza 

en cualquier punto del Pushover y el desplazamiento último δu tomado como el 

desplazamiento del último piso cuando se produce una disminución del 20% de 

la máxima fuerza cortante (0.8 Vmax) como se muestra en la Figura 18. Estos 

valores a su vez nos permiten estimar la sobreresistencia Ω y la ductilidad µ de 

la estructura que son valores característicos de su comportamiento. 

La sobreresistencia Ω está definida como la relación entre la máxima 

capacidad a cortante Vmax y el cortante basal de diseño V, especificado en el 

diseño de la estructura [16]: 

  (27) 
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Mientras que la ductilidad µ se puede estimar mediante la relación entre 

el desplazamiento último δu y el desplazamiento efectivo de fluencia δy,eff 

definidos como se muestra en la Figura 18: 

  (28) 

Estos valores característicos son un indicador del modelo y deben ser 

comparados con el modelo original y con otros más detallados. 

Otra de las utilidades de este análisis es la obtención del 

comportamiento de los elementos tipo rótulas-plásticas ante el desplazamiento 

lateral, es decir sus curvas histeréticas, lo cual nos permite tener una idea de 

su respuesta ante un futuro análisis dinámico tiempo-historia y verificar que sus 

parámetros de calibración como rigidez y momento de fluencia sean correctos. 

Además, nos permite comprobar el comportamiento total de la estructura 

puesto que como se indica en la Tabla 2-1 de NIST [18] en un pórtico especial 

sismorresistente de acero (SMF) se espera que la fluencia se dé principalmente 

por momento en vigas y por corte en columnas, aunque es posible también la 

fluencia en columnas.      

3.2.1. Curva Pushover 

La estructura de análisis se empuja hasta un desplazamiento de 40 

pulgadas y se grafica su curva de fuerza vs desplazamiento del último piso 

para verificar su comportamiento. Esta curva se presenta a continuación en 

la Figura 19: 
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Figura 19. Curva Pushover 

Los parámetros principales obtenidos de la curva Pushover se 

observan gráficamente en la figura anterior. Sus valores y el cálculo de la 

sobreresistencia y ductilidad del sistema se presentan en la Tabla 11 y en 

la Tabla 12 respectivamente. El valor del cortante de diseño V se obtiene 

de la información (V/W) dada para los prototipos empleados en la 

validación de la metodología FEMA P695 [16] y el peso de la estructura 

que se puede estimar a partir de los valores presentados en la Tabla 2. 

Tabla 11. Factor de Sobreresistencia 

Sobreresistencia Ω 

V/W 0.039 

W (kips) 5631 

V (kips) 219.609 

Vmax (kips) 715.841 

Ω 3.26 

 

Tabla 12. Factor de ductilidad 

Ductilidad µ 

du (in) 28.00 

dy,eff (in) 9.80 

µ 2.86 
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En el estudio de Zareian et. al. [16] se presentan los factores de 

sobreresistencia y ductilidad obtenidos en el modelo original de esta misma 

estructura cuyos valores son 3.27 y 2.72 respectivamente. Como se puede 

observar en las tablas presentadas anteriormente, el factor de 

sobreresistencia es muy similar al original mientras que la ductilidad varía, 

pero no demasiado. Esta disparidad se debe principalmente a la diferencia 

en el detallamiento de los modelos, sin embargo, su similitud es aceptable 

y muestran un correcto modelamiento de la estructura. 

   

3.2.2. Secuencia de fluencia 

En esta sección se presenta, mediante varias figuras, el orden con 

que fluyen los elementos del sistema y su relación con el desplazamiento 

de la estructura. El objetivo es observar el comportamiento de los distintos 

elementos en el tiempo ante un desplazamiento lateral y el cumplimiento o 

no de los propósitos de un pórtico especial sismorresistente. 

Además, se presenta la curva histerética de una de las rótulas de las 

vigas del primer piso, la cual está representada en la primera gráfica con un 

círculo negro, para demostrar su adecuado comportamiento y calibración. 

La fluencia de los elementos se marcará en rojo una vez que se produzca. 

 

Figura 20. Secuencia de fluencia Pushover, inicio. 

 En la Figura 20 se puede observar a la estructura en equilibrio antes 

de empezar el análisis Pushover. Las curvas Pushover e histerética no 

presentan ningún desplazamiento ni curvatura inicial. El avance a través de 
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las curvas mencionadas se mostrará mediante un indicador cuadrado para 

mejor entendimiento del análisis. 

 

Figura 21. Secuencia de fluencia Pushover, primeras fluencias. 

Los primeros elementos en fluir son las rótulas de las bases de las 

columnas del primer piso como se observa en la Figura 21, esto debido a la 

gran carga axial que soportan y a la fuerte reducción axial que se realiza en 

ellas. Aunque este fenómeno no es el más esperado, se da con frecuencia 

y es aceptable según NIST [18]. 

 

Figura 22. Secuencia de fluencia Pushover, cambio de rigidez. 

 A continuación, como se muestra en la Figura 22, se da la fluencia 

de las demás columnas del primer piso en su base, también de algunas 

rótulas de vigas e incluso del primer panel zone; efectos o fenómenos que 

también son permitidos en SMFs. En la curva Pushover se puede observar 

como la fluencia de estos elementos provoca un cambio en la rigidez total 
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de la estructura, mientras que la curva histerética muestra como ese 

elemento se va acercando a la fluencia.  

 

Figura 23. Secuencia de fluencia Pushover, fluencia de elemento. 

Con el avance del análisis, mostrado en la Figura 23, se observa 

como la curva histerética del elemento seleccionado muestra un cambio de 

rigidez total del elemento y por tanto su fluencia, los valores aproximados 

en que esto se produce, como la fuerza cortante de 700 kips o el momento 

de 14000 kips∙in, pueden ser comparados con los de calibración para 

asegurar su adecuado funcionamiento. 

 

Figura 24. Secuencia de fluencia Pushover, cortante máximo. 

La máxima fuerza cortante que soporta el sistema se ve limitada por 

la fluencia de las columnas; es decir, una vez alcanzada la fluencia en una 

de las columnas la capacidad de la estructura se ve disminuida y no 

soporta mayores fuerzas cortantes. La fluencia de las partes altas de las 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
52 

columnas exteriores del primer piso, observado en la Figura 24, no es muy 

recomendable ni común en los pórticos especiales de acero puesto que 

pueden significar falla de la estructura y posteriormente su colapso. 

 

Figura 25. Secuencia de fluencia Pushover, colapso. 

Finalmente, cuando se lleva a la estructura a un desplazamiento 

mayor a 24 pulgadas o una deriva de 1.88% se forma un mecanismo de 

piso débil en los dos primeros pisos de la estructura, es decir fluyen todas 

sus columnas, como se observa en la Figura 25. Esto provoca el colapso 

de la estructura y por tanto una pérdida total de capacidad. Algunos 

elementos como la rótula de la viga presentada en la curva histerética no 

llegan a perder toda su capacidad debido a que las columnas dejan de 

generar esfuerzos sobre ellos y se da una redistribución de esfuerzos en 

los que regresan a una rigidez similar a la inicial, pero con una deformación 

residual permanente.  

Este análisis de secuencia de fluencia es muy importante para 

observar hasta que desplazamiento trabajan en el rango elástico y plástico 

cada uno de los elementos de la estructura. Y así definir una probabilidad 

de colapso junto con el comportamiento de la estructura tras dicho efecto. 

 

3.2.3. Influencia efecto P-Delta 

Uno de los objetivos específicos de este proyecto de titulación es 

identificar la influencia del efecto de segundo orden P-Delta dentro la 

respuesta del sistema. Para ello se realizó un análisis Pushover a la misma 
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estructura sin incluir el efecto P-Delta y se compara sus resultados con el 

modelo final utilizado. 

 

Figura 26. Influencia efecto P-Delta 

Como se puede evidenciar en la Figura 26, en desplazamientos 

bastante pequeños el efecto P-Delta no tiene gran influencia dentro de la 

respuesta del sistema. Pero para desplazamientos mayores el efecto P-

Delta reduce la carga que produce fluencia a la vez que reduce la rigidez 

elástica de la estructura. Además, produce una rigidez post-fluencia 

negativa luego de un desplazamiento de 24 pulgadas que lleva a la 

estructura a grandes deformaciones y al colapso.  

En el caso de que se analizara la estructura sin efecto P-Delta, esta 

tendría una mayor capacidad, un mayor cortante máximo y por supuesto 

mayor sobreresistencia. No obstante, es indispensable incluir el efecto de 

segundo orden geométrico en los análisis puesto que el objetivo es simular 

el comportamiento real de la estructura y claramente este es un parámetro 

que controla el rendimiento del sistema ante esfuerzos laterales y sísmicos. 
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3.2.4. Influencia Reducción Axial 

Al igual que el efecto P-delta, la reducción de resistencia que se 

realiza en las columnas por los esfuerzos axiales que estas reciben 

provoca cambios significativos en la respuesta de la estructura.  

Para analizar su influencia, se comparan tres curvas Pushover: la 

primera sin ningún tipo de reducción axial, la segunda con la reducción 

propuesta por Suzuki & Lignos [24] en función únicamente de las cargas de 

gravedad, y la tercera con la reducción utilizada en el modelo propuesto de 

la estructura [16] con la cual se obtuvo nuestro modelo final. La 

comparación se presenta a continuación en la Figura 27: 

 

Figura 27. Influencia Reducción Axial. 

La diferencia de reducciones axiales no modifica la rigidez elástica 

de la estructura, todas las curvas tienen la misma pendiente inicial. 

Mientras que la carga máxima a cortante si se ve afectada por este efecto, 

y esto se debe principalmente a que la fluencia de las columnas en los 

modelos con reducciones axiales menores se da ante desplazamientos y 

fuerzas mayores. Debido a esto los parámetros de sobreresistencia y 

ductilidad también se ven afectados y su comparación se presenta en la 

Tabla 13: 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
55 

Tabla 13. Influencia Reducción axial, sobreresistencia y ductilidad 

 Sobreresistencia Ductilidad 

Reducción Modelo Original 3.26 2.86 

Reducción Cargas de Gravedad 3.38 4.41 

Sin Reducción  3.51 4.74 

 

Otra característica importante que se puede apreciar de la influencia 

de las reducciones axiales es que cuanto menores sean las reducciones el 

colapso provocado por el mecanismo de piso débil en los primeros pisos se 

da ante mayores desplazamientos. Esto sin duda tiene una gran influencia 

dentro del sistema puesto que al no formarse un mecanismo ante cierto 

desplazamiento esto permite que la estructura siga trabajando como una 

sola y no se incrementan excesivamente los desplazamientos de esos 

pisos. 

La secuencia de fluencia de los elementos también cambia, para su 

demostración se realizará este análisis con el modelo con reducciones axial 

únicamente por cargas de gravedad y se compara con los resultados 

anteriores obtenidos en la sección 3.2.2 sobre el modelo final: 

 

Figura 28. Secuencia de fluencia Pushover, reducción por gravedad 

En la Figura 28 se puede observar la diferencia en la secuencia de 

fluencia desde el principio, puesto que a comparación del modelo anterior 

en este caso los primeros elementos que fluyen son vigas y panel zones. 

La curva Pushover se mantiene con la rigidez elástica debido a la no 

fluencia de elementos tipo columna que son los que más la afectan y 

además se comprueba que los mismos valores de fuerza (700 kips) y 
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momento (14000 kips∙in) son los que provocan la fluencia de la rótula de la 

viga presentada en el gráfico. 

 

Figura 29. Secuencia de fluencia, reducción por gravedad, carga máxima 

En este caso la máxima capacidad a cortante y la posterior 

disminución de fuerza no se da por una fluencia de las partes altas de las 

columnas sino por una fluencia de todas las vigas de los primeros 5 niveles 

como se observa en la Figura 29. 

 

Figura 30. Secuencia de fluencia, reduccion por gravedad, colapso. 

Finalmente, se puede apreciar mediante la secuencia de fluencia 

que también se producen mecanismos de piso débil en los dos primeros 

pisos, pero en este caso en el segundo piso se produce ante un 

desplazamiento de 34 pulgadas o una deriva de 2.7% y en el primer piso 

ante un desplazamiento de 44 pulgadas que corresponde a una deriva de 

3.5% como se muestra en la Figura 30.  
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Con estos resultados, se espera que ante un análisis dinámico la 

estructura con menores reducciones axiales tenga menos probabilidad de 

colapso y los desplazamientos sean mucho menores. 

Después de estos análisis, se ha demostrado que la influencia de las 

reducciones axiales es muy importante dentro de la respuesta del sistema 

ante desplazamientos significativos por lo que es necesario hacer un 

estudio más detallado de estos factores para determinar un procedimiento 

definitivo para su aplicación.      

 

3.3. Vibración Libre  

Por vibración libre se entiende el movimiento de una estructura sin 

ninguna excitación dinámica de fuerzas externas. La vibración libre inicia al 

mover la estructura de su estado de reposo o desde su posición de equilibrio 

mediante algunos desplazamientos iniciales y/o al impartir algunas velocidades 

iniciales. Una de sus utilidades principales es verificar el amortiguamiento en 

las estructuras.  

La respuesta del sistema a la vibración libre con amortiguamiento está 

regida por la siguiente ecuación en forma matricial, en donde M, C y K son las 

matrices de masa, amortiguamiento y rigidez respectivamente: 

  (29) 

Lo que se desea es encontrar la solución  de la ecuación (29) que 

satisfaga las condiciones iniciales  y  en t=0. Los 

procedimientos para obtener la solución deseada varían en función del tipo de 

amortiguamiento [29].  En nuestro caso se aplica un amortiguamiento clásico 

tipo Rayleigh. Una propiedad importante de los sistemas clásicamente 

amortiguados es que su desplazamiento se puede expresar en términos de los 

modos naturales del sistema asociados a su vibración no amortiguada. 

Según Chopra [29], el amortiguamiento influye en las frecuencias y 

periodos de vibración naturales en los sistemas de múltiples grados de libertad, 

sin embargo, su efecto es pequeño para razones de amortiguamiento ξ 

inferiores al 20%, intervalo que incluye a la mayoría de estructuras. Motivo por 

el cual el análisis modal se realiza sin considerar las componentes del 

amortiguamiento en el sistema.   



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
58 

3.3.1. Respuesta de la estructura 

La estructura de análisis sin cargas de gravedad es sometida a un 

desplazamiento unitario inicial en la forma del primer modo sin provocar 

desplazamientos residuales, se retiran las cargas que provocaron ese 

desplazamiento y se suelta, es decir se inicia con una velocidad cero, para 

provocar un movimiento de vibración libre hasta que la estructura vuelva a 

su reposo. La respuesta de la estructura, su desplazamiento vs tiempo, se 

presenta a continuación en la Figura 31: 

 

Figura 31. Respuesta a vibración libre 

En esta figura se puede evidenciar claramente el efecto del 

amortiguamiento, puesto que con el avance del tiempo la estructura se 

acerca al reposo; caso contrario la amplitud del desplazamiento sería 

constante y la estructura se mantendría moviendo infinitamente.   

 

3.3.2. Verificación del amortiguamiento  

Una de las formas de verificación de la taza de amortiguamiento 

impuesta en una estructura se realiza mediante el análisis del decaimiento 

logarítmico del movimiento que obtiene una relación entre dos picos máximos 

sucesivos de una vibración libre amortiguada [29]. 
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Esta relación está dada por la ecuación: 

  (30) 

Donde,  representa la relación de los picos sucesivos máximos 

obtenidos a partir de la respuesta del sistema y ξ es la razón de 

amortiguamiento de la estructura. 

El logaritmo natural de esta relación, llamado decremento logarítmico, se 

indica mediante : 

  (31) 

Despejando de (25) el valor de ξ se puede obtener la razón de 

amortiguamiento a partir de la relación . 

En la Tabla 14 se presenta el resumen de cálculos realizados para la 

verificación de la taza de amortiguamiento ξ: 

Tabla 14. Verificación de amortiguamiento 

Verificación de  ξ 

t1 (s) 2.25 

u(t1) (in) 0.8582 

t2=t1+TD (s) 4.50 

u(t2) (in) 0.7363 

δ 0.1532 

ξ (%)  2.44 

 

 Para un mejor entendimiento, en la Figura 32 se presenta la respuesta 

de la estructura a la vibración libre y el decremento logarítmico del movimiento, 

evidenciándose que las curvas logarítmicas actúan como una envolvente de la 

respuesta y por tanto permiten estimar la taza de amortiguamiento del sistema. 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
60 

 

Figura 32. Decaimiento logarítmico en respuesta de la estructura 

El coeficiente ξ impuesto a la estructura mediante el amortiguamiento 

Rayleigh en el modelo es de 2.50%, sin embargo, al realizar la verificación se 

evidencia que la taza que en realidad está trabajando en la estructura es de 

2.44%. La razón de esta diferencia es que el amortiguamiento está aplicado 

únicamente a los elementos elásticos y no en las rótulas elasto-plásticas que 

también deberían incluir. No obstante, se omite su inclusión para evitar la 

generación falsos momentos amortiguados en las uniones de los elementos 

[10].  
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4. ANÁLISIS POR DESEMPEÑO 

El análisis sísmico por desempeño consiste en someter a la estructura a 

sismos de diferentes magnitudes mediante un análisis dinámico no lineal y 

verificar si su comportamiento o diseño es adecuado en función de los criterios 

de aceptabilidad de cada uno de los niveles de desempeño o magnitudes 

sísmicas. Este proceso se lo realiza con el objetivo de evaluar la respuesta de 

la estructura ante posibles acciones sísmicas a lo largo del tiempo y así 

determinar hasta qué nivel de sismicidad se mantiene funcional y garantiza la 

seguridad de sus ocupantes.  

En la Tabla 15, se clasifica los sismos según los niveles de peligro y su 

periodo de retorno como se indica en NEC-SE-DS [13], 

Tabla 15. Niveles de amenaza sísmico [12]. 

Nivel de 
sismo 

Sismo 
Probabilidad de 
excedencia en 

50 años 

Periodo de 
retorno Tr 

(años) 

Tasa de 
excedencia 

(1/Tr) 

1.  
Frecuente 
(menor) 

50% 72 0.01389 

2 
Ocasional 

(moderado) 
20% 225 0.00444 

3 
Raro 

(severo) 
10% 475 0.00211 

4 
Muy raro 
(extremo) 

2% 2500 0.0004 

 

Cada uno de estos niveles de amenaza se asocia a un nivel de 

desempeño sísmico, obteniendo los siguientes: 

a) Nivel de Servicio (sismo menor): Periodo de retorno de 72 años. Se 

espera que no ocurra ningún daño tanto en los elementos estructurales 

como en los no estructurales.  

b) Nivel de Ocupación (sismo moderado): Periodo de retorno de 225 años. 

Se espera un mínimo de daño en componentes estructurales y un daño casi 

nulo en componentes no estructurales. 

c) Nivel de Seguridad de Vida (sismo severo): Este nivel de desempeño 

corresponde al sismo de diseño con un periodo de retorno de 475 años. Su 

objetivo general es preservar la vida de sus ocupantes. Se espera que la 

estructura trabaje en el rango inelástico experimentando daño en 

componentes estructurales y no estructurales.   
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d) Nivel de Prevención de Colapso (sismo extremo): Periodo de retorno de 

2500 años, conocido como MCE (Maximum Considered Earthquake). Se 

aplica principalmente a estructuras de ocupación esencial. Se espera daños 

mayores en sus componentes no estructurales y estructurales, pero estos 

últimos deben evitar el colapso de la estructura. 

Para someter la estructura a tres de estos niveles de desempeño 

(72,475 y 2500 años) como lo indica NEC-SE-DS [13] es necesario obtener 

espectros sísmicos en función del periodo de retorno de cada nivel y 

posteriormente escalar los sismos de análisis al espectro objetivo como lo 

indica ASCE 7-16 [17]. 

4.1.  Espectros sísmicos suavizados 

Debido a las diferentes características que presentan los sismos, una 

construcción no puede ser diseñada para resistir un terremoto en particular en 

una zona dada, sino que debe realizarse a partir de espectros suavizados que 

representan la respuesta a varios terremotos típicos de la zona. Estos se 

obtienen generalmente mediante procedimiento estadísticos.  

En el capítulo 11 de ASCE 7-16 [17] se presenta un espectro suavizado 

de 4 partes en función de dos parámetros SS y S1 (Figura 33) que se pueden 

obtener para cada nivel de sismicidad.  

 

Figura 33. Espectro suavizado ASCE7-16 [16] 

   Las ecuaciones para el cálculo de la aceleración espectral (Sa) son las 

siguientes: 
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Donde,  

Sa,  Aceleración espectral. 

Ss,  Aceleración de respuesta espectral para periodos cortos. 

S1,  Aceleración de respuesta espectral para el periodo de 1 segundo. 

T,  Periodo fundamental de la estructura. 

To,  0.2 (S1/Ss) 

Ts,  S1/Ss 

 

Los parámetros Ss y S1 deben ser estimados para cada nivel de 

desempeño. En FEMA P695 se presentan los valores para el nivel de 

desempeño MCE con periodo de 2500 años en función de la categoría de 

diseño. Se toman los valores pertenecientes a la categoría Dmax para la que fue 

diseñada la estructura [21].  

Para el nivel de desempeño de diseño, con periodo de 475 años, los 

parámetros Ss y S1 son iguales a dos tercios de los valores de MCE, según 

ASCE 7-16 [17]. 

Para el espectro de 72 años, correspondiente al nivel de servicio, los 

parámetros Ss y S1 se estiman a partir de la metodología especificada en FEMA 

356 [30]. Se utiliza la ecuación (33) aplicable para periodos de retorno menores 

a 475 años. 

  (33) 

Donde,  

Si,   Parámetro a escalar. 

,  Parámetro del espectro de diseño. 

Tr,    Periodo de retorno objetivo. 

n,  Factor de región, igual a 0.44 tomado de tabla 1-2 de 

FEMA 356 [28] 

(32) 
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Los valores de Ss y S1 utilizados para cada nivel de desempeño se 

presentan a continuación en la Tabla 16: 

Tabla 16. Parámetros Ss y S1 por nivel de desempeño 

Nivel de desempeño Ss S1 

MCE 1.50 0.90 

Diseño 1.00 0.60 

Servicio 0.44 0.26 

 

Los espectros suavizados obtenidos a partir de los valores anteriores se 

observan en la Figura 34: 

 

Figura 34. Espectros por nivel de desempeño. 

 

4.2. Escalamiento de sismos 

Según ASCE 7-16 [17], un conjunto de no menos de 11 registros 

sísmicos debe ser seleccionado y escalado para cada espectro objetivo.  Cada 

registro consiste en un par de componentes horizontales ortogonales del 

movimiento de piso. Estos registros deben ser seleccionados de eventos con 

características similares de condiciones suelo, magnitud, distancia a la falla y 

otras que se puede presentar en la zona de estudio.  

Para este proyecto se obtiene 11 registros sísmicos de la base de datos 

de PEER NGA [31], los cuales se muestran en la Tabla 17. Sus acelerogramas 

se presentan en el Anexo 3. 
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Tabla 17. Registros sísmicos 

           Sismos Registros Sísmicos 

ID No. Año Nombre Componente1 Componente 2 

1 1990 Manjil, Iran ABBAR--L ABBAR--T 

2 1999 Duzce, Turquía BOL000 BOL090 

3 1989 Loma Prieta CAP000 CAP090 

4 1999 Kocaeli, Turquía DZC180 DZC270 

5 1989 Loma Prieta G03000 G03090 

6 1999 Hector Mine HEC000 HEC090 

7 1994 Northridge LOS000 LOS270 

8 1994 Northridge MUL009 MUL279 

9 1995 Kobe, Japón NIS000 NIS090 

10 1992 Cape Mendocino RIO270 RIO360 

11 1995 Kobe, Japón SHI000 SHI090 

 

Para su escalamiento se sigue el procedimiento detallado en ASCE 7-16 

[17], pero previamente se realiza una normalización de estos sismos como 

indica FEMA P695 [21] para contrarrestar la variabilidad de los registros. 

El factor de normalización para cada par de sismos se calcula mediante 

(34): 

  (34) 

 Donde, 

  , Factor de normalización para el par de 

componentes del registro i. 

, Velocidad máxima del registro i, tomada como 

la media geométrica del PGV de las dos 

componentes horizontales. 

, Mediana de todos los  del conjunto 

de registros. 

Una vez normalizados los registros se realiza el escalamiento. A 

continuación, se presenta el procedimiento para el escalamiento al espectro 

MCE, para los otros dos niveles de desempeño el procedimiento es el mismo: 

1) Se obtiene el espectro de respuesta de los 11 registros sísmicos (22 

sismos) asumiendo un coeficiente de amortiguamiento de 5% (Figura 35). 
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Figura 35. Escalamiento, espectros de respuesta. 

2) Utilizando el método SRSS (square root of sum of squares), se obtiene un 

solo espectro para cada par de componentes (Figura 36). 

 

Figura 36. Escalamiento, SRSS. 

3) Se determina un factor Fs para cada registro, de manera que al multiplicarlo 

por su espectro, este iguale el valor de aceleración del espectro MCE en el 

periodo fundamental de la estructura T=2.32. Los valores Fs calculados se 

muestran en la Tabla 18. Mientras que su efecto sobre los registros se 

observa en la Figura 37. 
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Figura 37. Escalamiento, Factor Fs. 

4) Con todos los espectros de los registros multiplicados por su factor Fs se 

obtiene un espectro promedio de ellos (Figura 38). 

 

Figura 38. Escalamiento, Espectro Promedio 

5) Se determina un factor Ss para el espectro promedio, de manera que al 

multiplicarlo este supere o al menos iguale la aceleración del espectro MCE 

en un rango comprendido entre 0.2T a 1.5T (Figura 39). 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
68 

 

Figura 39. Escalamiento, Factor Ss. 

6) El valor final de escalamiento para caga registro será la multiplicación de los 

factores de normalización NM, Fs y Ss. Estos valores se presentan en la 

Tabla 18 para los 11 sismos con que se realizará el análisis dinámico.  

Aunque ASCE 7-16 [17] indica que se debe realizar el análisis con las dos 

componentes del registro, se conoce que ese criterio es aplicado para 

estudios en 3D por lo que para nuestro proyecto se realizará el análisis 

tiempo historia únicamente con la componente de mayor PGA de cada 

registro. 

Tabla 18. Factores de escalamiento MCE. 

Factores MCE 

 NM FS SS Factor 

ABBAR--L 0.899 1.03 1.62 1.51 

BOL000 0.713 2.02 1.62 2.34 

CAP090 1.318 2.27 1.62 4.88 

DZC270 0.813 1.22 1.62 1.61 

G03000 1.070 1.47 1.62 2.56 

HEC090 1.239 1.74 1.62 3.51 

LOS270 0.977 1.47 1.62 2.34 

MUL279 0.700 2.27 1.62 2.58 

NIS000 1.151 1.28 1.62 2.41 

RIO270 1.000 3.00 1.62 4.89 

SHI090 1.328 1.71 1.62 3.71 
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Los valores de escalamiento para los espectros con diferente periodo de 

retorno se muestran a continuación en la Tabla 19: 

Tabla 19. Factores de escalamiento por nivel de desempeño. 

 SERVICIO DISEÑO MCE 

ABBAR--L 0.44 1.01 1.51 

BOL000 0.68 1.56 2.34 

CAP090 1.42 3.25 4.88 

DZC270 0.47 1.08 1.61 

G03000 0.74 1.71 2.56 

HEC090 1.02 2.34 3.51 

LOS270 0.68 1.56 2.34 

MUL279 0.75 1.72 2.58 

NIS000 0.70 1.60 2.41 

RIO270 1.42 3.26 4.89 

SHI090 1.08 2.47 3.71 

    

4.3. Criterios de aceptabilidad por nivel de desempeño 

El resultado positivo de un análisis por desempeño se basa en el 

cumplimiento de ciertos criterios de aceptabilidad establecidos para cada nivel 

de desempeño o magnitud sísmica y en la correcta convergencia de cada uno 

de los análisis dinámicos realizados sobre la estructura. En caso de no cumplir 

con alguno de ellos se considera como una “Respuesta Inaceptable” de la 

estructura, lo cual indica un diseño sísmico no adecuado y se requiere una 

revisión de la misma [17].  

Existen varios criterios de aceptabilidad tanto a nivel global de estructura 

como a nivel de elemento. En este proyecto se analizará el criterio global de 

derivas de piso máximas, medidas como la mayor diferencia de deflexión de 

dos puntos alineados verticalmente en la parte superior e inferior del piso en 

consideración, a lo largo de cualquiera de los bordes de la estructura. El valor 

máximo de promedio de derivas para cada nivel de desempeño se muestra en 

la Tabla 20, tomados como un fragmento de la Tabla C1-3 de FEMA 356 [30]. 

Tabla 20. Derivas máximas por nivel de desempeño FEMA 356 [30] 

 
Deriva MCE Diseño Servicio 

Pórticos de Acero 
Resistentes a Momentos 

Transitoria (%) 5 2.5 0.7 

Permanente (%) 4 1 0 
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La normativa ASCE 7, presenta criterios más conservadores para los 

niveles de prevención de colapso y de seguridad de vida. Este documento 

establece que el promedio de deriva de piso máxima no debe exceder el valor 

de dos veces el límite establecido en la Tabla 12.12-1 [17] en función del tipo 

de estructura y su categoría de riesgo.  

La estructura de estudio es clasificada como “Otra estructura” y 

corresponde a una categoría de riesgo II. Por lo cual, el valor límite de diseño 

es igual a 0.02 y el valor máximo será de 0.04. 

En la Tabla 21, se presentan los valores límites definitivos para el 

promedio de derivas de piso con los cuales se evalúa la estructura en el 

análisis por desempeño. 

Tabla 21. Criterio de aceptabilidad de derivas de piso máximas. 

 
Deriva MCE Diseño Servicio 

Pórticos de Acero 
Resistentes a Momentos 

Transitoria (%) 4 2 0.7 

Permanente (%) 4 1 0 

 

4.4. Análisis Dinámico no Lineal 

El análisis dinámico no lineal consiste en someter a la estructura a la 

acción de un sismo, representado por un registro de aceleración de piso, para 

obtener las fuerzas y desplazamientos de cada uno de sus elementos.  Este 

análisis se realiza con el objetivo de demostrar criterios de resistencia, rigidez y 

ductilidad adecuados para resistir el máximo sismo considerado (MCE) con un 

rendimiento aceptable.  

La no linealidad está incluida directamente en el modelo computacional y 

permite observar el verdadero comportamiento de la estructura sin reducir la 

acción de los sismos.   

El procedimiento a seguir se detalla en el Capítulo 16 de ASCE 7 [17] y 

en la sección 7.4.4 de ASCE 41 [28]. Uno de los principales problemas que se 

presenta es que este tipo de análisis puede ser muy sensible a las 

características de un solo registro sísmico por lo cual es recomendado someter 

a la estructura a un mayor número de sismos [28]. 

El análisis dinámico resuelve la ecuación de equilibrio dinámico para 

estructura con varios grados de libertad (34), en donde M, C y K son las 
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matrices de masa, amortiguamiento y rigidez respectivamente.  es el 

desplazamiento en el tiempo y  es la fuerza sísmica dada por el registro de 

aceleración de piso. Para su integración se utiliza el método de Newmark de 

promedio constante. 

  (34) 

  

De cada análisis se obtiene el desplazamiento de cada nodo de la 

estructura para calcular las derivas de piso que son evaluadas con los criterios 

de aceptabilidad antes definidos. Además, se obtiene las curvas histeréticas de 

los elementos elasto-plásticos para verificar su comportamiento durante el 

movimiento.  

 

4.5. Evaluación de Derivas y Aceptabilidad de Análisis 

Los resultados de derivas de piso son obtenidos luego de realizar los 

análisis dinámicos no lineales, al someter a la estructura a la acción de los 11 

sismos indicados en la sección 4.2 para cada uno de los niveles de 

desempeño.  

La deriva transitoria es tomada como la máxima deriva en el tiempo que dura el 

análisis, mientras que la deriva permanente es calculada como el punto medio 

del último ciclo de movimiento de la estructura.  

De estas derivas se obtiene el promedio para cada piso y se comprueba si este 

cumple o sobrepasa el límite de aceptabilidad. 
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Figura 40. Resultado de derivas, nivel de servicio. 

Para el nivel de servicio, presentado en la Figura 40, las derivas 

promedio de todos los pisos sobrepasan el límite de derivas transitorias y 

permanentes. La deriva transitoria mayor ocurre en el piso 6 mientras que la 

deriva permanente es mayor en el piso 1.  

La deriva permanente máxima tiene un valor de 0.15% que representaría 

un desplazamiento de 0.27 pulgadas o 7 milímetros del primer piso con 

respecto a la base de la estructura. Este desplazamiento al ser pequeño no 

generaría daños estructurales ni no estructurales en el sistema.  

La deriva transitoria sobrepasa el límite de 0.7%, sin embargo, al ser una 

estructura sin un uso especial se permite que a nivel de servicio las derivas 

sean mayores. 

(%) (%) 
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Figura 41. Resultado de derivas, nivel de diseño. 

En cuanto al nivel de diseño (Figura 41), las derivas permanentes 

promedio de todos los pisos están por debajo del límite de 1%. Mientras que 

las derivas transitorias cumplen con el límite de 2% excepto en el primer piso 

donde se obtiene un valor de 2.2%.  

Si consideramos el límite propuesto por FEMA 356 [30] de 2.5% para el 

nivel de diseño, el desempeño de la estructura sería adecuado, pero con un 

criterio menos conservador.  

Debido a la cercanía de los valores de derivas obtenidos con los límites 

establecidos en las diferentes normativas es recomendable revisar el diseño de 

la estructura en análisis y reconsiderar algunos criterios de seguridad para la 

misma.     

(%) (%) 
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Figura 42. Resultado de derivas, nivel MCE. 

En el nivel de Prevención de colapso (MCE) el límite de 4% para derivas 

promedio se cumple tanto en transitorias como permanentes. El máximo valor 

se da en el primer piso con un promedio de 3.95%. Lo cual indicaría que la 

estructura cumple con los criterios de aceptabilidad en este nivel de 

desempeño. Sin embargo, se puede observar que algunos de los sismos 

provocarían el colapso en la estructura. 

El sismo más representativo es el de Northridge (MUL279) que provoca 

en la estructura una deriva transitoria y permanente aproximada a 8% en el 

primer piso. Ante este registro sísmico la estructura presentaría daños 

irreparables tanto a nivel estructural como no estructural considerándose como 

un colapso total del sistema.  Debido a su efecto sobre la estructura, se usará 

(%) (%) 
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la respuesta ante este sismo para analizar la secuencia de fluencia del sistema, 

la influencia de los efectos P-Delta y la reducción axial. 

En resumen, los criterios de aceptabilidad se cumplen para los niveles 

de desempeño de diseño y MCE, aunque es recomendable una revisión de la 

estructura debido a su cercanía con los límites establecidos. Para el nivel de 

servicio el límite para derivas transitorias es bastante bajo debido a que las 

estructuras especiales como hospitales, estaciones de bombero, policía, etc., 

deben mantenerse serviciales durante la acción de un sismo de cualquier 

magnitud. Nuestra estructura al no ser de uso especial no cumple este límite y 

por tanto no tiene un buen desempeño en el nivel de servicio. 

4.6. Secuencia de fluencia 

Al igual que en análisis Pushover (Sección 3.2.2) la secuencia de 

fluencia durante un análisis dinámico nos permite observar el comportamiento 

de los distintos elementos en el tiempo y su relación con un movimiento cíclico 

de la estructura, contrario al desplazamiento monotónico que se presentaba en 

el Pushover.  

En esta sección se observa mediante el uso de figuras el orden en que 

fluyen los elementos. Además, se presenta la curva histerética de una de las 

rótulas de una columna del primer piso, la cual está representada en la primera 

gráfica con un círculo negro, para analizar su comportamiento. La fluencia de 

los elementos se marcará en rojo una vez que se produzca. 

 

Figura 43. Secuencia de fluencia Análisis Dinámico, inicio. 
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 En la Figura 43 se puede observar a la estructura en equilibrio antes de 

empezar el análisis Dinámico. Las curvas de desplazamiento e histerética no 

presentan ningún desplazamiento ni curvatura inicial. El avance a través de las 

curvas mencionadas se mostrará mediante un indicador cuadrado para mejor 

entendimiento del análisis. 

 

 

Figura 44. Secuencia de Fluencia Análisis Dinámico, primeras fluencias 

Al igual que en el análisis Pushover, los primeros elementos en fluir son 

las rótulas de las bases de las columnas externas del primer piso como se 

observa en la Figura 44, esto debido a la gran carga axial que soportan y al 

movimiento cíclico que soporta la estructura por encima de ellas. El 

desplazamiento de la parte superior del primer piso con respecto a la base es 

de 0.8 pulgadas que representa una deriva en el primer piso del 0.5%. Esta 

fluencia temprana se debe a la gran reducción axial que se realiza en las 

columnas.  

Al mismo tiempo, la rótula superior de la columna externa de la cual se 

muestra la curva histerética se mantiene con su rigidez inicial, pero con 

curvatura y momento negativos debido al movimiento de la estructura hacia la 

izquierda en ese instante.  

 



   
Universidad de Cuenca 

 
 

 

David Barrera Salamea 

 

 
77 

 

Figura 45. Secuencia de Fluencia Análisis Dinámico, Fluencia de elementos pisos superiores. 

En la Figura 45, se puede observar un correcto comportamiento de la 

estructura puesto que se da primero la fluencia de la mayoría de vigas y panel 

zones de los pisos superiores manteniéndose la estructura servicial y con poco 

daño en la parte baja donde no se presentan mayores desplazamientos. Este 

comportamiento ayuda a la estructura a mantenerse en funcionamiento durante 

las primeras etapas de los sismos preservando la seguridad de sus ocupantes.  

En cuanto a la curva histerética, se observa que esta se acerca a su 

punto de fluencia debido a que los esfuerzos que tomaban los elementos de los 

pisos superiores se redistribuyen hacia las columnas. 

 

 

Figura 46. Secuencia de Fluencia Análisis Dinámico, Fluencia de elemento. 
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Con el avance del análisis, mostrado en la Figura 46, se observa como 

la curva histerética del elemento seleccionado muestra un cambio de rigidez 

total del elemento y por tanto su fluencia, el valor aproximado de momento 

igual a 12000 kip∙in en que esto se produce puede ser comparados con el de 

calibración para asegurar su adecuado funcionamiento. 

 

Figura 47. Secuencia de Fluencia Análisis Dinámico, Mecanismo piso débil. 

Luego de la fluencia de las columnas del primer piso (Figura 47) se 

forma un mecanismo de piso débil, en donde la estructura deja de funcionar 

como una sola y el movimiento del primer piso no acompaña el de los pisos 

superiores. Además, los elementos redistribuyen sus esfuerzos debido a los 

constantes ciclos de carga y descarga, pero mantienen deformaciones 

residuales mayores. 

 

Figura 48. Secuencia de Fluencia Análisis Dinámico, Pérdidal de capacidad. 
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Así se mantiene la estructura durante algunos segundos más de 

movimiento, hasta que un mayor número de columnas llegan a la fluencia, 

como se muestra en la Figura 48, con lo cual se produce una pérdida de 

capacidad del sistema y con ello grandes desplazamientos. Eso también se 

puede ver demostrado en la gran deformación que se produce en el elemento 

tipo columna debido a los constantes ciclos de fluencia que desgastan el 

elemento. 

A partir de ahí, el comportamiento de la estructura es una aproximación 

de la realidad puesto que el modelo solo predice la capacidad de fluencia de 

los elementos y no se conoce momentos de rotura ni pérdida total de 

capacidad. Considerándose aquello como una limitación del modelo empleado. 

 Incluso se considera que tales deformaciones producidas pueden 

provocar el colapso de la estructura con lo cual las aproximaciones siguientes 

no se producirían y quedarían tan solo como una solución matemática a la 

ecuación de movimiento.  

 

 

Figura 49. Secuencia de Fluencia Análisis Dinámico, Deformaciones residuales. 

Finalmente, los desplazamientos mayores a 12 pulgadas que sufre la 

estructura en el primer piso, como se observa en la segunda gráfica de la 

Figura 49, producen deformaciones residuales en el sistema y sus diferentes 

elementos. Esto provocaría que la estructura no pueda volver a su 

configuración inicial con daños irreparables en elementos estructurales y no 
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estructurales. La estructura quedaría completamente obsoleta y sería necesaria 

su demolición. 

Vale mencionar que esta es la respuesta a solo un sismo de nivel MCE. 

Las respuestas ante los demás sismos analizados son similares en los 

primeros instantes, pero después varían en función de su magnitud. Además, 

debido a lo sensible que es un análisis dinámico a los registros de movimiento 

no se puede asegurar que este sea el comportamiento verdadero de la 

estructura y por ello los criterios de aceptabilidad se basan en el promedio de 

los 11 sismos. 

4.7. Influencia efecto P-Delta 

Para poder analizar el efecto P-Delta sobre la respuesta de la estructura, 

se realiza un análisis dinámico con el sismo de Northridge (MUL279) sin incluir 

este tipo de efecto y se compara las respuestas tanto de desplazamiento como 

de derivas máximas (Figura 50). 

 

Figura 50. Análisis Dinámico, Influencia P-Delta. 

En la respuesta de desplazamiento se puede observar que, en los 

primeros instantes del movimiento, ante desplazamientos pequeños, la 

respuesta de los sistemas es bastante similar. No obstante, al sufrir un 

desplazamiento mayor a 9 pulgadas como el producido en el segundo 8 
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aproximadamente, la inclusión del efecto P-Delta empieza a influenciar la 

respuesta del sistema tal cual se observó en el análisis Pushover. 

Este efecto reduce la carga que produce fluencia a la vez que reduce la 

rigidez elástica de la estructura proporcionándole menor capacidad como se 

observa en los segundos posteriores del movimiento. Además, produce el 

colapso de la estructura mediante una rigidez post-fluencia negativa que 

provoca grandes deformaciones. 

Si no se incluye este efecto, la estructura presenta una respuesta 

completamente diferente a partir de sufrir un desplazamiento considerable. No 

se generaría el colapso y por tanto las deformaciones a lo largo de todo el 

movimiento son mucho menores. En cuanto a las derivas, podemos observar 

que las derivas máximas en todos los pisos disminuyen sobretodo en el 

primero que es en donde se produce el mecanismo de piso débil y la mayor 

pérdida de capacidad del sistema.       

 Mediante esta comparación se comprueba nuevamente que el efecto P-

Delta controla la respuesta del sistema y por tanto es indispensable incluirlo en 

el análisis.  
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4.8. Influencia Reducción Axial 

 

Figura 51. Análisis Dinámico, Influencia Reducción Axial. 

La diferencia de reducciones axiales en las columnas en un análisis 

dinámico, al igual que en el Pushover, controlan la respuesta de la 

estructura cuando los desplazamientos son considerables y provocan la 

fluencia de los elementos. Para analizar su influencia, se compara la 

respuesta ante el sismo de Northridge (MUL279) con tres reducciones 

diferentes: la primera sin ningún tipo de reducción axial, la segunda con la 

reducción propuesta por Suzuki & Lignos [24] en función únicamente de las 

cargas de gravedad, y la tercera con la reducción utilizada en el modelo 

propuesto de la estructura [16] con la cual se obtuvo nuestro modelo final. 

Esta comparación se presenta en la Figura 51. 

Las tres respuestas presentan un comportamiento similar en los 

primeros instantes del sismo. La influencia de la reducción se empieza a 

notar después de sufrir desplazamientos significativos. Mientras menor 

reducción axial se tenga mayores movimientos soportan las columnas y la 

formación del mecanismo de piso débil se aplaza en el tiempo debido a que 

se necesita mayores aceleraciones a que este se produzca.  
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Esta afirmación se puede comprobar en la Figura 52 donde se 

observa la estructura con la reducción por cargas de gravedad en el 

instante antes de que el mecanismo se produzca. Este fenómeno se forma 

mucho después a comparación de la secuencia de fluencia de la sección 

4.6 en donde se trabaja con la reducción del modelo Ibarra-Medina-

Krawinkler que incluye el efecto de fuerzas laterales.   

 

Figura 52. Formación de mecanismo, reducción por gravedad. 

Además, la capacidad de la columna mostrada en la curva 

histerética es mucho mayor, aproximadamente 18000 kip∙in, provocando 

menos ciclos de fluencia y con ello menor desgaste del elemento. La 

respuesta por tanto es muy diferente. 
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Figura 53. Derivas con Reducción por Gravedad, nivel de servicio. 

Debido a la incertidumbre sobre la reducción axial adecuada para 

modelar la interacción fuerza axial-momento en pórticos especiales de 

acero sismorresistente y a las diferentes metodologías tomadas en cuenta 

en este proyecto, se realizó el análisis por desempeño completo para la 

reducción axial por cargas de gravedad propuesta por Suzuki & Lignos [24]. 

Vale mencionar que esta forma de reducción es la más actual que se ha 

propuesto para este tipo de análisis, sin embargo, no se la utilizó para la 

modelación final de la estructura puesto que en el modelo más detallado 

con el que se compara los distintos resultados se utiliza la reducción 

incluyendo el efecto de las fuerzas laterales [16]. Para su comparación se 

muestran los resultados en los tres niveles de desempeño.  
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En el nivel de servicio, la respuesta de la estructura y con ello las 

derivas máximas de piso son similares como se presenta en la Figura 53. 

Esto debido a que los desplazamientos generados no son mayores, 

además no se generan mecanismos ni una falla total del sistema que es en 

donde se aprecia la influencia de las reducciones axiales. La estructura 

sigue sin cumplir el análisis para este nivel de desempeño puesto que no 

satisface el límite de 0.7% para derivas transitorias.  

 

Figura 54. Derivas con Reducción por Gravedad, nivel de diseño. 

En el nivel de diseño se pueden apreciar mayores diferencias 

(Figura 54), las derivas máximas transitorias están por debajo del límite de 

2% en todos los pisos y por un margen importante. A su vez, las derivas 

permanentes también cumplen el límite de 1% con lo cual el diseño de la 

(%) (%) 
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estructura se podría considerar como aceptable para el funcionamiento 

ante este nivel de desempeño.  

 

Figura 55. Derivas con Reducción por Gravedad, nivel MCE. 

Finalmente, en el nivel de prevención de colapso MCE también se 

cumplen los criterios de aceptabilidad de derivas en todos los pisos. No 

obstante, muchos de los sismos que provocaban un colapso de la 

estructura en el análisis anterior no generan tal efecto puesto que las deriva 

máximas y desplazamientos son mucho menores. Incluso los sismos que 

generan los valores máximos son diferentes para cada modelo. En este 

caso se obtiene una deriva máxima de 4.5% con el sismo Cape Mendocino 

(RIO270) que es mucho menor a la de 8% generada en el análisis del 

modelo principal por el sismo Northridge (MUL279).  
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El análisis por desempeño, utilizando esta nueva reducción, se 

cumple para los niveles de diseño y MCE, y debido a su margen con los 

límites no se requiere un rediseño de la estructura. Para el nivel de servicio 

no se cumple debido a que no se trata de una estructura especial. 

Todos estos resultados indican que la reducción axial es un factor 

importante a la hora de simular la respuesta de una estructura ante un 

evento sísmico, por lo cual es necesario incluirlo y definir una metodología 

definitiva para realizarla, evitando diferencias claras en el desempeño de 

uno u otro modelo.   
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5. CONCLUSIONES Y RECOMENDACIONES 

En este capítulo se presentan las conclusiones y recomendaciones 

obtenidas a lo largo del desarrollo del proyecto, respondiendo principalmente a 

los objetivos planteados y a lo que se podría realizar a partir de su finalización. 

 Modelación de la Estructura 

La modelación de la estructura de análisis, realizada mediante un 

modelo de plasticidad concentrada con capacidad de formación de rótulas 

elasto-plásticas, mostró algunas ventajas y algunas limitaciones frente a 

modelos más detallados con los que se ha realizado estudios similares. 

Una de las ventajas más importantes es la facilidad en la definición de 

los elementos tipo rótula, puesto que solo se necesita de tres parámetros de 

definición a comparación de los veinticinco o más parámetros que necesitan 

otro tipo de modelos. La calibración del factor b que define la relación entre la 

rigidez pos-fluencia y la rigidez rotacional inicial de endurecimiento, 

ayudándonos de las fórmulas desarrolladas por Ibarra et al. [10], permite que 

este modelo brinde resultados similares a los obtenidos en laboratorio al menos 

en las dos primeras etapas del material (rigidez elástica y rigidez pos-fluencia). 

Esto se comprueba mediante la comparación de resultados de los Análisis 

Modal y Pushover con los obtenidos por Zareian et al. [16] en donde se trabajó 

con un modelo constitutivo Bilin.  Los valores de periodo, sobreresistencia y 

ductilidad son similares y varían principalmente por consideraciones externas al 

modelo como la distribución de cargas o masas que no fueron definidas en el 

modelo base. 

Otra ventaja importante es el poco tiempo y trabajo computacional que 

emplea este modelo para realizar los análisis estáticos y dinámicos.  Los 

tiempos comparados con modelos de plasticidad distribuida en donde se 

analiza cada sección del material constituyen una diferencia considerable. 

En cuanto a las limitaciones del modelo, se encuentra la falta de 

capacidad para predecir la fuerza última o la deformación última de los 

elementos, puesto que el modelo constitutivo solo considera la fluencia del 

material. En algunos análisis que sobrepasan los límites de fluencia no se 

conoce si el material sigue trabajando adecuadamente o si se llega a una carga 
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última en la cual se perdería su capacidad y por tanto se daría la falla del 

elemento. 

Por tanto, el modelo con rótulas elasto-plásticas se ajusta correctamente 

a modelos más detallados en los primeros instantes de los análisis, hasta que 

se produce la falla de los elementos en donde se deja de predecir su 

comportamiento y se considera una fluencia infinita. 

 Análisis Estáticos de Validación 

Los análisis Modal, Pushover y Vibración Libre nos permiten observar el 

comportamiento del sistema previo a los análisis dinámicos. Su realización es 

fundamental puesto que en sus resultados se manifiesta la correcta o mala 

inclusión de ciertos elementos dentro del modelo como son las rótulas 

plásticas, las conexiones viga-columna o el amortiguamiento, que al no 

realizarse adecuadamente cambian por completo la respuesta del sistema. Lo 

cual indica que, este tipo de análisis son esenciales para validar un modelo y 

poder utilizarlo en estudios siguientes.   

La inclusión de la no linealidad dentro de los análisis estructurales 

permite simular de mejor manera lo que sucede en la realidad, puesto que 

como fue mencionado, actualmente se permite que las estructuras trabajen en 

el rango inelástico disminuyendo el tamaño de las estructuras y el costo de las 

mismas. Por tanto, es indispensable que los modelos tengan la capacidad de 

simular la respuesta no lineal del sistema logrando así predecir con mayor 

detalle su comportamiento. 

 Análisis por Desempeño  

El análisis por desempeño, basado en el análisis dinámico de la 

estructura ante 11 sismos escalados a tres niveles diferentes de desempeño 

(servicio, diseño, MCE) muestra un déficit de la estructura en cuanto al nivel de 

servicio (periodo de retorno de 72 años) puesto que no cumple los valores 

límite de deriva que constituyen el criterio de aceptabilidad del análisis. Una de 

las razones por las que esto ocurre es que esta estructura no está clasificada 

como una de tipo esencial o de uso especial en los que se requiere mayor 

límite de derivas ante sismos de cualquier magnitud.  
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En el nivel de diseño (periodo de retorno de 475 años) los valores 

obtenidos como resultado son aceptables pero muy cercanos a los límites 

máximos, por lo que para mayor seguridad es recomendable una revisión de la 

estructura con criterios más conservadores que garanticen un mejor 

desempeño ante sismos de esta magnitud. 

Ante el nivel de prevención de colapso MCE (periodo de retorno de 2500 

años) la estructura cumple con los criterios de aceptabilidad puesto que el 

promedio de derivas está por debajo del límite de 4% y todos los análisis 

convergen en cada paso de tiempo del análisis. En 5 de las 11 respuestas 

dinámicas en este nivel de desempeño se evidencia derivas considerables 

(mayores a 4%). Estas respuestas se podrían considerar como un posible 

colapso de la estructura, generado principalmente por un mecanismo de piso 

débil en los pisos inferiores como se observa en las secuencias de fluencia 

desarrolladas.  Sin embargo, no se puede afirmar dicha suposición puesto que 

debido a la limitación del modelo no se conoce las capacidades últimas de los 

elementos y su comportamiento ante deformaciones tan grandes. Por tanto, se 

puede decir que este modelo no predice el colapso de las estructuras, pero nos 

permite tener una idea de la posible ocurrencia del mismo. 

    Influencia Efectos P-Delta y Reducción Axial 

Dentro de las investigaciones más importantes que se realizó durante 

este proyecto, están la influencia del efecto P-Delta y de la reducción axial en 

las columnas sobre la respuesta del sistema. El efecto P-Delta amplifica las 

deformaciones y los desplazamientos de los elementos de la estructura debido 

a una disminución de la rigidez elástica y una posible rigidez negativa pos-

fluencia. Mientras que la reducción axial no modifica el comportamiento inicial 

de la estructura, pero reduce considerablemente la capacidad de las columnas 

que tengan una gran carga axial sobre ellas, provocando que su fluencia se 

produzca antes de lo esperado y llevando a la estructura a la formación de 

mecanismos de piso débil y al colapso.  

Debido a la influencia de la reducción axial en los análisis dinámicos, 

como se demostró en la sección 4.8, es recomendable hacer un estudio más a 

detalles sobre este fenómeno y definir un solo procedimiento para la 

consideración de la interacción fuerza axial-momento en las columnas de los 
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modelos de plasticidad concentrada, con el objetivo de evitar las grandes 

diferencias que se producen en las respuestas del sistema como se pudo 

apreciar en los análisis realizados.       

 Softwares para Modelación, Análisis y Posprocesamiento 

El software OpenSees nos ha permitido realizar tanto la modelación 

estructural como también todos los análisis estáticos y dinámicos no lineales. 

Este programa es una herramienta muy utilizada en investigación a nivel 

mundial debido a su amplia biblioteca de materiales y análisis. Sin embargo, la 

falta de una interfaz gráfica para poder observar los análisis y los resultados, 

nos obligan a generar herramientas en programas auxiliares. En nuestro 

proyecto se utiliza el software Matlab para generar herramientas de 

posprocesamiento que nos ayudan a reunir la información generada en los 

análisis y así crear gráficas y tablas para la visualización de los resultados y el 

movimiento de la estructura.  

 Proyecto de Investigación 

Debido a las diferencias que genera en la respuesta de la estructura, la 

variación de características de un modelo con respecto a otro, es 

recomendable realizar una comparación a detalle de varios modelos que 

incluyan diferentes comportamientos tanto de plasticidad concentrada como 

distribuida. 

El proyecto de investigación, del cual forma parte esta tesis, tiene como 

objetivo lo antes mencionado, determinar la influencia y pertinencia de cada 

modelo para responder a acciones sísmicas de diferentes magnitudes y 

verificar el desempeño sísmico de los componentes estructurales y no 

estructurales. 
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ANEXOS 

 

Anexo 1:  

Herramienta desarrollada en Matlab para posprocesamiento de Análisis 

Dinámicos 
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Anexo 2: Nomenclatura de nodos y elementos utilizada en modelación 

 

Estructura Principal: Modelo de Primera Planta 

 

 

Detalle Modelo de Panel Zone     Simbología 

X: Columna, Y: Piso 
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Anexo 3: Sismos usados en Análisis Dinámico 

 Los acelerogramas de los 11 sismos usados en el análisis dinámico se 

presentan a continuación. La aceleración está dada en función de la gravedad. 

Manijil, Irán: ABBAR—L 

 

Duzce, Turquía: BOL000 
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Loma Prieta: CAP090 

 

 

Kocaeli, Turquía: DZC270 

 

Loma Prieta: G03000 
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Hector Mine: HEC090 

 

Northridge: LOS270 
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Northridge: MUL279 

 

Kobe, Japón: NIS000 
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Cape Mendocino: RIO270 

 

Kobe, Japón: SHI090 
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