

UNIVERSIDAD DE CUENCA FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA DE MEDICINA VETERINARIA Y ZOOTECNIA

"Calidad Bacteriológica de la leche cruda en ganaderías de la provincia del Azuay"

Tesis previa a la obtención del Título de Médico Veterinario Zootecnista.

Autores:

Cesar Leonardo Cárdenas Padrón. C.I. 0302850177 Marco Geovanny Murillo Morales. C.I. 0105546279

Director:

Dr. Yury Agapito Murillo Apolo. C.I. 0702650136

CUENCA-ECUADOR 2018

RESUMEN

El objetivo de esta investigación fue analizar la calidad bacteriológica de la leche cruda producida en ganaderías ubicadas en la provincia del Azuay. Para lo cual se muestreó 45 ganaderías de acuerdo al tamaño del hato y se las dividió en tres grupos: grandes, medianas y pequeñas. Los indicadores microbiológicos que se examinaron fueron recuentos de Aerobios mesófilos, Coliformes totales, Escherichia coli y Staphylococcus aureus, esto se realizó en base a la quía de interpretación para las placas 3M Petrifilm, las cuales son avaladas por la AOAC, NMK y AFNOR con sus respectivos métodos oficiales indicados para leche y productos lácteos. Se realizó pruebas de sensibilidad antibacteriana para todos los microorganismos estudiados. Las medias de los recuentos bacterianos en la provincia del Azuay dieron los siguientes resultados: Aerobios Mesófilos 3882599,97 UFC/mL, Staphylococcus aureus 4229,55 UFC/mL, Coliformes totales 5129,55 UFC/mL y Escherichia coli 24,48 UFC/mL. En las pruebas de sensibilidad antibacteriana se observó que Coliformes totales, Escherichia coli y Aerobios Mesófilos son resistentes a Ampicilina, Amoxicilina y Eritromicina, y presentan sensibilidad frente a Ceftriaxona y Gentamicina. El Staphylococcus aureus es resistente a la Ampicilina, y resulta sensible a Ceftriaxona, Gentamicina, Amoxicilina y Eritromicina.

Palabras claves: CALIDAD BACTERIOLOGICA, LECHE CRUDA, PETRIFILM, PRUEBAS DE SENSIBILIDAD ANTIBACTERIANA, AZUAY.

ABSTRACT

The objective of this research was to analyze the bacteriological quality of raw milk produced in farms located in the province of Azuay. For which 45 farms were sampled according to the size of the herd and were divided into three groups: large, medium and small. The microbiological indicators that were examined were Mesophilic Aerobic counts, Total Coliforms, *Escherichia coli* and *Staphylococcus aureus*, this was done based on the interpretation guide for 3M Petrifilm plates, which are endorsed by the AOAC, NMK and AFNOR with their respective official methods indicated for milk and dairy products. Antibacterial sensitivity tests were performed for all the microorganisms studied. The means of bacterial counts in the province of Azuay gave the following results: Mesophilic Aerobios 3882599.97 CFU/mL, *Staphylococcus aureus* 4229.55 CFU/mL, Total Coliforms 5129.55 CFU/mL and *Escherichia coli* 24.48 CFU/mL. In the antibacterial sensitivity tests, it was observed that Total Coliforms, *Escherichia coli* and Mesophilic Aerobios are resistant to Ampicillin, Amoxicillin and Erythromycin, and have sensitivity to Ceftriaxone and Gentamicin. *Staphylococcus aureus* is resistant to Ampicillin, and is sensitive to Ceftriaxone, Gentamicin, Amoxicillin and Erythromycin.

Keywords: BACTERIOLOGICAL QUALITY, RAW MILK, PETRIFILM, ANTIBACTERIAL SENSITIVITY TESTS, AZUAY.

ÍNDICE DE CONTENIDO

1.	INTRODUCCIÓN	15
2.	OBJETIVOS	16
2.1	. Objetivo General	16
2.2	. Objetivos Específicos	16
3.	HIPÓTESIS	16
4.	REVISIÓN BIBLIOGRÁFICA	17
4.1	. Definición de la leche	17
4.2	. Composición de la leche cruda	18
4.3	. Calidad de la leche cruda	18
4.4	. Calidad microbiológica de la leche	20
4.5	. Requisitos Microbiológicos de la leche cruda según el INEN	21
4.6	. Calidad higiénica de la leche	22
4.7	.La leche como sustrato bacteriano	22
4.8	. Riesgos de modificación de las características de la leche	23
4.9	. Fuentes de contaminación de la leche cruda	24
4.1	0. Contenido de bacterias de la leche antes de la secreción	26
4.1	Factores relacionados con la higiene de la ordeña	26
4.1	2. Control de la contaminación de la leche	27
4.1	3. Peligros de la leche cruda	28
4.1	4. Impacto sobre la salud pública	28
4.1	5. Indicadores microbiológicos	29
4.1	6. Grupos de microorganismos indicadores:	29
4.1	7. Tipo de Ordeño	33
4.1	8. Rutina de Ordeño	34
4.1	9. Almacenamiento de la leche cruda	37
4.2	0. Placas Petrifilm	37

4.2	1. Empleo de antibióticos en la ganadería lechera	. 38
4.2	2. Riesgos de las leches con residuos de antibióticos	. 38
4.2	3. Sensibilidad bacteriana a los antibióticos	. 39
4.2	4. Resistencia bacteriana	. 39
4.2	5. Tipos de resistencia	. 40
4.20	6. Factores que han originado resistencia bacteriana	. 40
4.2	7. Antibiograma	. 41
4.2	3. Agar Mueller Hinton	. 41
4.29	9. Los discos de antibióticos	. 42
5.	MATERIALES Y MÉTODOS	. 44
5.1.	Materiales	. 44
5.2	Métodos	. 46
5.2	1. Área de estudio	. 46
5.2	2. Unidades de análisis	. 47
5.2	3. Toma de muestras	. 47
5.2	4. Procedimiento de cultivo bacteriológico	. 48
5.2	5. Procedimiento para las pruebas de sensibilidad bacteriana	. 50
5.2	6. Procedimiento en la recopilación de información en campo	. 47
5.2	7. Variables en estudio y su Operacionalización	. 93
5.2	8. ANÁLISIS ESTADÍSTICO	. 53
6.	RESULTADOS	. 54
7.	DISCUSIÓN	. 61
8.	CONCLUSIONES	. 68
9.	RECOMENDACIONES	. 69
10.	REFERENCIAS BIBLIOGRÁFICAS	. 70
11	ANEVOC	70

ÍNDICE DE TABLAS

Tabla 1. Requisitos microbiológicos para la leche cruda según INEN quinta revisión	17
Tabla 2. Requisitos microbiológicos para la leche cruda según INEN sexta revisión	17
Tabla 3. Tamaño de la upa con sus recuentos de bacterias	51
Tabla 4. Frecuencia de ordeño por día relacionado al recuento de bacterias	52
Tabla 5. Rutina de ordeño relacionado al recuento bacteriano	52
Tabla 6. Tipo de ordeño relacionado al recuento bacteriano	53
Tabla 7. Tamaño del hato *tipo de ordeño tabulación cruzada	53
Tabla 8. Tamaño del hato *rutina de ordeño tabulación cruzada	54
Tabla 9. Tamaño del hato *frecuencia de ordeño/por día tabulación cruzada	54
Tabla 10. Tipo de ordeno*rutina de ordeño tabulación cruzada	55
Tabla 11. Resultados de antibiograma para Coliformes	55
Tabla 12. Resultados de antibiograma para S. aureus.	56
Tabla 13. Resultados de antibiograma para Aerobios Mesófilos.	56
Tabla 14. Resultados de antibiograma para E. coli.	57
Tabla 15. Tanque de frio v otros frente al crecimiento de microorganismos	57

ÍNDICE DE GRAFICOS

Grafico 1	. Mapa del	Azuay	43
------------------	------------	-------	----

ÍNDICE DE ANEXOS

Anexo 1. Encuesta aplicada	75
Anexo 2. Laminas Petrifilm con colonias de Staphylococcus Aureus	.78
Anexo 3. Laminas Petrifilm con colonias de Escherichia coli	.79
Anexo 4. Laminas Petrifilm con colonias de Coliformes Totales	.80
Anexo 5. Laminas Petrifilm con colonias de Aerobios Mesófilos	.81
Anexo 6. Pruebas de sensibilidad antibacteriana	.82
Anexo 7. Pruebas de normalidad	83
Anexo 8. Estadística descriptiva	83
Anexo 9. Variables en estudio y su Operacionalización	89
Anexo 10. Base de datos	90

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Cesar Leonardo Cárdenas Padrón, en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "Calidad Bacteriológica de la leche cruda en ganaderías de la provincia del Azuay", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 22, Octubre 2018

Cesar Leonardo Cárdenas Padrón

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Marco Geovanny Murillo Morales, en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "Calidad Bacteriológica de la leche cruda en ganaderías de la provincia del Azuay", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 22, Octubre 2018

Marco Geovanny Murillo Morales

Cláusula de Propiedad Intelectual

Cesar Leonardo Cárdenas Padrón, autor del trabajo de titulación "Calidad Bacteriológica de la leche cruda en ganaderías de la provincia del Azuay", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 22 de Octubre 2018

Cesar Leonardo Cárdenas Padrón

Cláusula de Propiedad Intelectual

Marco Geovanny Murillo Morales, autor del trabajo de titulación "Calidad Bacteriológica de la leche cruda en ganaderías de la provincia del Azuay", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 22, Octubre 2018

Marco Geovanny Murillo Morales

AGRADECIMIENTOS

Queremos agradecer ante todo a Dios por darnos la oportunidad de cumplir nuestras metas a lo largo de nuestras vidas, siempre guiándonos por el camino del bien.

A la Universidad de Cuenca y su Escuela de Medicina Veterinaria y Zootecnia, y a todos sus docentes por brindarnos sus conocimientos aportando para nuestras futuras vidas profesionales.

A todos nuestros amigos que hemos compartido momentos inolvidables en el proceso de nuestra formación.

Cesar Cárdenas; Marco Murillo

DEDICATORIA

Este trabajo va dedicado primeramente a mis padres quienes han sido un pilar fundamental en mi formación académica, apoyándome siempre y en todo momento, así mismo a mis hermanos y mi sobrino que han sido un gran apoyo a lo largo de toda mi vida, del mismo modo esta tesis va dedicada a mis abuelos tanto a los que están en el cielo junto al creador como a los que todavía les tengo a mi lado ya que todos ellos fueron pieza clave de ayuda en mi formación profesional. También quisiera de una manera especial dedicar este trabajo a todas las personas y familiares que pusieron su granito de arena para apoyar mi carrera universitaria y para poder culminar este trabajo de tesis.

Cesar

DEDICATORIA

Quiero dedicar a mi padre Gonzalo Murillo Carpió por el ejemplo de perseverancia y valores inculcados en mi vida, aunque se adelantó al llamado de Dios siempre estarás en nuestros corazones. A mi madre María Morales Gómez por el apoyo constante, la paciencia y el esfuerzo que me a permitió sobresalir durante mi formación profesional, a mis hermanos, tíos/as y a toda mi familia por su apoyo incondicional.

Marco

1. INTRODUCCIÓN

La leche en un alimento completo y más consumido debido a su rica composición en proteínas, ácidos grasos, inmunoglobulinas y micronutrientes, por lo que también se convierte en un producto susceptible para la transmisión de enfermedades y un medio ideal para la proliferación de microorganismos. Es importante aplicar medidas higiénicas y sanitarias en todas las fases de producción, desde la obtención a nivel de finca hasta su procesamiento, para ofrecer un producto inocuo y apto para el consumo.

La aplicación de métodos higiénicos correctos debe ser tomada en cuenta por todos los productores, con la finalidad de garantizar la salubridad de la leche, ya que la ausencia de buenas prácticas de ordeño, manipulación, almacenamiento, transporte, distribución y fabricación de derivados, son las principales limitantes para obtener productos de calidad.

El análisis microbiológico de la leche cruda nos permite evidenciar cómo estamos produciendo la leche a nivel de finca, ya que las malas prácticas se evidencian en altos recuentos microbiológicos. Los microorganismos contaminantes tales como los Coliformes, Aerobios Mesófilos, *Staphylococcus Aureus* y *E. Coli*, son los principales indicadores de calidad en la leche, por lo que debemos intentar que su presencia sea mínima o nula en la misma. Al mejorar las actividades relacionadas con la rutina de ordeño, control de enfermedades y un manejo adecuado de fármacos se garantiza una calidad superior de la leche, para lo cual todos los productores deben ser conscientes de lo que hacen y buscar alternativas para mejorar su producto.

Una gran problemática a la que nos enfrentamos en nuestro país es el uso indiscriminado de antibióticos en las ganaderías, lo que genera grandes problemas de resistencia de los microorganismos frente a los antimicrobianos, por lo tanto realizar pruebas de sensibilidad a antibióticos es una excelente herramienta para orientar el tratamiento, a la vez que se obtiene mayor éxito terapéutico y evitamos la generación de resistencia a los antibióticos por parte de los microorganismos patógenos.

2. OBJETIVOS

2.1. Objetivo General

Analizar la calidad bacteriológica de la leche cruda producida en ganaderías (grandes, medianas y pequeñas) ubicadas en la provincia del Azuay

2.2. Objetivos Específicos

- ✓ Determinar los Coliformes totales, Staphylococcus aureus, Escherichia coli, y Aerobios, mediante placas Petrifilm, en muestras de leche procedentes de fincas del Azuay.
- ✓ Realizar pruebas de sensibilidad antibacteriana para estos agentes patógenos.
- ✓ Analizar la relación entre: tamaño del hato, rutina de ordeño, tipo y frecuencia de ordeño frente a la presencia de Coliformes totales, Staphylococcus aureus, Escherichia coli, y Aerobios.

3. HIPÓTESIS

Las variables: tamaño del hato, rutina de ordeño, tipo y frecuencia de ordeño influyen en la presencia de los microorganismos patógenos.

4. REVISIÓN BIBLIOGRÁFICA

4.1. Definición de la leche

Leche: "Producto de la secreción normal de la glándula mamaria de animales bovinos lecheros sanos, obtenida mediante uno o más ordeños diarios, higiénicos, completos e ininterrumpidos, sin ningún tipo de adición o extracción" (7). La leche se puede considerar como un alimento excelente ya que contiene varios componentes que son muy buenos para nutrir a los lactantes, porque como ya se sabe ésta se consume en una de las etapas más importantes en el desarrollo (1).

La leche es definida como la secreción láctea libre de calostro, obtenida por un ordeño completo de una o más vacas. Sin embargo se considera un medio de cultivo nutritivo para microorganismos benéficos como también para numerosas bacterias destructoras y patógenas, cuya multiplicación depende principalmente de la temperatura y de la presencia de otros microorganismos competitivos o de sus metabolitos. Evitar la contaminación y posterior proliferación de los microorganismos es un constante problema para quienes tienen a su cargo la producción de leche (3).

"El Instituto Ecuatoriano de Normalización (INEN) define como leche cruda aquella que no ha sido sometida a ningún tipo de calentamiento (es decir que la temperatura no haya superado la de la leche inmediatamente después de ser extraída de la ubre es decir no más de 40°C) o no haya sufrido tratamiento térmico, salvo el de enfriamiento para su conservación, ni ha tenido modificación alguna en su composición" (7).

La leche cruda se considera no apta para consumo humano cuando: Contiene gérmenes patógenos o un contaje microbiano superior al máximo permitido por la presente norma NTE INEN 9:2012 Quinta revisión, toxinas microbianas o residuos de pesticidas, y metales pesados en cantidades superiores al máximo permitido (42).

4.2. Composición de la leche cruda

La leche es una compleja mezcla de distintas sustancias, presentes en suspensión y otras en forma de solución verdadera, esta presenta sustancias definidas como: agua grasa, proteína, lactosa, vitaminas, minerales; a los cuales se les denomina sólidos totales. Los sólidos totales varían por múltiples factores como lo son: la raza, el tipo de alimentación, el medio ambiente y el estado sanitario de la vaca entre otros (2).

La composición química de la leche cruda presenta variación en dependencia de la raza, edad, época del año, alimentación, sistema de ordeño, período de lactación y otros factores (27). La leche tiene un alto valor nutricional y también un alto grado de digestibilidad por lo que se ha convertido en alimento muy importante en la alimentación humana, está compuesta por Agua en un 87%, caseína 2,9 %, Albumina 4.9 %, Alfa lactoalbumina 0.5 %, Beta lactoalbumina 0.2 %, Fosfolípidos 0.1%, Grasa neutra en un 3.7 %, Ácido cítrico 0.2 %. Los minerales presentes en la leche son: Calcio, Magnesio, Potasio, Cloro, Fosforo, Azufre, Hierro Y Azufre (29).

4.3. Calidad de la leche cruda

La leche de buena calidad es aquella que cumple sin excepción con todas las características higiénicas, microbiológicas y composicionales (3). La calidad de la leche comercial es uno de los pilares fundamentales en la industria láctea, que depende directamente de las características del producto original, por lo tanto, en un alto porcentaje la calidad del producto que llega al consumidor, se debe al control sobre la leche cruda en la finca (21).

Además, muchos de los productos lácteos, debido a su composición, constituyen un medio propicio para el desarrollo de microorganismos patógenos. La leche también puede estar contaminada por residuos de medicamentos veterinarios, de plaguicidas o de otros contaminantes químicos. Por consiguiente, la aplicación de medidas adecuadas

de control de la higiene de la leche y los productos lácteos a lo largo de toda la cadena alimentaria es esencial para garantizar la inocuidad de estos alimentos y su idoneidad para el uso al que se destinan (1).

Se entiende por leche de calidad a la proveniente del ordeño de vacas sanas, bien alimentadas, libre de olores, sedimentos, substancias extrañas y con características adecuadas en cantidad y calidad de componentes sólidos (grasa, proteína, lactosa y minerales); con mínima carga microbiana; libre de bacterias causantes de enfermedad (brucelosis, tuberculosis, patógenos de mastitis y toxinas); libre de residuos químicos y con un mínimo de células somáticas (21).

El mercado lácteo mundial muestra una marcada tendencia a la obtención de leche y productos de alta calidad con el objetivo principal de resguardar la salud de la población minimizando el riesgo de transmisión de enfermedades provenientes de los alimentos y a su vez, se obtienen productos finales diferenciados que pueden tener un alto valor agregado capaces de generar importantes ingresos que hacen sustentable al sector lácteo en su conjunto. En busca de alcanzar estándares de calidad, se hace indispensable establecer estrategias en las zonas de producción, el manejo sanitario de los animales, las condiciones de transporte, la conservación y la manipulación en general hasta la llegada a la planta (21).

Se puede lograr una buena calidad de la leche por medio de un análisis de dos factores: la calidad composicional (materia grasa y sólidos no grasos) y la calidad higiénica (microorganismos patógenos, toxinas, residuos químicos, microorganismos saprófitos, células somáticas, materias extrañas y condiciones organolépticas). Alcanzar estos niveles óptimos en el análisis de la calidad de la leche, depende directamente de las zonas de producción, del operador de la máquina de ordeño, de la rutina de ordeño, del ordeñador, las condiciones de transporte y de la manipulación en la finca (21).

La determinación del contenido de células somáticas de la leche, del tanque, de las vacas o de los cuartos de la ubre es el medio auxiliar de diagnóstico, para juzgar el estado de salud de los animales de un hato. Con los resultados de las células somáticas se corrobora la calidad de la leche; también, es necesario obtener los resultados del tanque cuatro veces por mes (5).

Se señala que el conteo de células somáticas puede tener una doble función ya que puede indicar la condición sanitaria de la ganadería y también como indicador de la calidad tecnológica de la leche que va destinada a otros procesos (6). La normalización nacional con la norma ISO 13366-1 nos da un valor de < 5 x 10⁵ células somáticas/mL como valor para que la leche sea aceptable para el consumo, pasado este valor la leche debería ser rechazada (7).

4.4. Calidad microbiológica de la leche

La calidad microbiológica de la leche cruda hace referencia a la concentración de diferentes microorganismos patógenos, principalmente las bacterias (27). La leche tiene varias fuentes de contaminación, en donde la ubre en condiciones normales puede aportar hasta 1000 microorganismos/mL; una ubre con mastitis y dependiendo del microorganismo que la cause, un solo cuarto afectado mezclado con la leche de 99 cuartos sanos, puede incrementar el recuento hasta de 100000 UFC/mL en la leche del hato. La contaminación inicial de la leche también debe sumarse la multiplicación que sufren las bacterias, esto debido a que la leche es un excelente medio de cultivo para la mayoría de los microorganismos. Por lo tanto el recuento de bacterias por mL de leche debe estar por debajo de 100000 UFC/mL a nivel de tanque (21).

La importancia del estudio microbiológico de la leche radica en estos dos aspectos: primero tenemos que la leche y los productos lácteos pueden contaminarse con microorganismos patógenos o sus toxinas y provocar enfermedad en el consumidor, y segundo los microorganismos pueden causar alteraciones de la leche y sus derivados

lácteos haciéndolos inadecuados para el consumo, entonces saber su calidad tiene gran importancia con la finalidad de preservar y garantizar la salud pública (23).

4.5. Requisitos Microbiológicos de la leche cruda según el INEN

Según la norma técnica Ecuatoriana NTE INEN 9:2012 Quinta revisión, leche cruda requisitos, los requisitos microbiológicos de la leche cruda tomada en hato establece lo siguiente (42).

Tabla 1. Requisitos microbiológicos para la leche cruda según INEN quinta revisión

Requisito	Límite máximo
Recuento de microorganismos aerobios	1,5 x 10 ⁶
mesófilos REP, UFC/cm³	

Adaptado de: INEN 2012

Según el proyecto de la norma técnica Ecuatoriana NTE INEN 9:2015 Sexta revisión, leche cruda requisitos, los requisitos microbiológicos para la leche cruda establece lo siguiente (7).

Tabla 2. Requisitos microbiológicos para la leche cruda según INEN sexta revisión

Microorganismo	Límite de aceptación	Límite superado el cual
	(UFC)	se rechaza (UFC)
Recuento de colonias	2x10 ⁴	5x10 ⁴
aerobias		
Enterobacteriaceae	10	10 ²
(UFC/g)		
S. aureus	10	10 ²
Recuento de células	< 5 x 10 ⁵	
somáticas /mL		

Adaptado de: INEN 2015

4.6. Calidad higiénica de la leche

La calidad higiénica hace referencia a las prácticas de manejo en finca que lleva consigo el control de la mastitis y se relaciona con dos aspectos fundamentales: la presencia mínima de microorganismos y por la ausencia de sustancias extrañas. Los que pueden dañar sus componentes o poner en peligro el consumo, ya que la calidad de la materia prima actúa como un condicionante fundamental de la calidad del producto final. Es por esto que resulta indispensable partir de una leche cruda de máxima calidad higiénico sanitaria, como también el control de todas y cada una de las etapas desde su origen hasta el momento en que se la utiliza como materia prima dentro de la planta de procesamiento (21).

La calidad higiénica y sanitaria de la leche cruda define los parámetros de inocuidad, salubridad y durabilidad de la leche pasteurizada y los derivados lácteos. La calidad higiénica se traduce en la calidad bacteriológica y se evalúa por el recuento de bacterias aerobias mesófilas (31). La presencia de mastitis puede afectar también la calidad microbiológica de la leche cruda, debido a los patógenos que la causan aumentan el conteo total bacteriano en la leche. Esto es importante en establos lecheros que presentan alta prevalencia de esta enfermedad causada principalmente por *Sthapylococcus aureus* y *Escherichia coli* que pueden generar toxinas termo resistentes que representan un riesgo considerable para la salud pública (22).

4.7. La leche como sustrato bacteriano

La leche debido a su compleja composición bioquímica, alto contenido en agua y pH cercano a la neutralidad es considerada un buen sustrato para la proliferación de microorganismos, principalmente de las bacterias que modifican sus propiedades y su tiempo de duración. El crecimiento bacteriano y su acción en la leche produce efectos que pueden ser positivos como es el caso de la elaboración de productos fermentados (queso, yogurt) o efectos negativos (alteración, desarrollo de patógenos, formación de

toxinas). La interacción entre las bacterias y el entorno determina su crecimiento, el medio ambiente incluye las propiedades del sustrato y las condiciones externas, en la cual la temperatura constituye la variable más importante (27).

La microbiota normal de la ubre está compuesta principalmente por bacterias como *Streptococcus, Staphylococcus* y *Micrococcus* (alrededor del 50%) seguido por *Corynebacterium spp, Escherichia coli* y otros. Las condiciones anormales debidas a infecciones, enfermedades o prácticas lecheras deficientes afectan la microflora de la leche que procede de la glándula mamaria. Las vacas enfermas de mastitis trasmiten un gran número de microorganismos siendo los asociados con mayor frecuencia *Staphylococcus aureus, Estreptococos, y E. coli* (36).

4.8. Riesgos de modificación de las características de la leche

Los anteriores al ordeño: son los que condicionan la calidad original o natural de la leche y están relacionados con las enfermedades de los animales que afectan el hato lechero y que de una manera directa o indirecta alteran la calidad de la leche, el estado fisiológico del animal y el uso de sustancias químicas (medicamentos, hormonas, etc.) que se pueden transferir a la leche. Los posteriores al ordeño: que hacen referencia a la manipulación de la leche durante el ordeño, el ambiente, la conservación de la leche en el tanque y el transporte hacia la planta de procesamiento, lo que ocasiona alteración de la calidad original (21).

La contaminación interna: posee un origen intrínseco en el estado del animal y su ubre, la cual puede adquirirse mediante dos tipos de vías: 1) La vía ascendente: debido a la anatomía de la ubre constituida por conductos gruesos y poco ramificados hace más fácil el ingreso post-ordeño de microorganismos a través del esfínter como *Staphylococcus aureus*, *Streptococcus* y Coliformes. 2) La vía descendente: conocida también como endógena ya que los microorganismos que infectan la ubre provienen de la sangre y poseen la capacidad de movilizarse a través de este fluido o por los

capilares mamarios provocando una enfermedad sistémica como es el caso de la *Mycobacterium tuberculosis, Brucella abortus* y *Brucellis melitensis* (29).

Las infecciones de la glándula mamaria aporta a la leche bacterias, células del tejido, glóbulos blancos y enzimas que modifican los índices higiénicos y sanitarios de la leche, las cuales determinan la duración de los productos elaborados a partir de esta. Según la FAO el principal problema de los pequeños productores, es la descomposición de la leche en el ordeño y su transporte por las deficientes condiciones higiénicas y sanitarias, que genera problemas de zoonosis e incrementa el desafío logístico en el control de la calidad de la leche dentro de los mercados (1).

4.9. Fuentes de contaminación de la leche cruda

La ubre sana.- la glándula mamaria debido a su comunicación con el exterior puede aportar con cierto número de bacterias, principalmente del genero *Lactobacillus, Streptococcus* y *Micrococcus*, estas en general no representan más de 1000 UFC/mL (8). Normalmente se localizan en la cisterna del pezón y se eliminan en los primeros chorros de leche, por lo que en una buena rutina de ordeño el descarte de los primeros chorros debe ser una práctica común, además que ayuda a la estimulación de la vaca y al diagnóstico de casos de mastitis clínica (31).

La ubre con mastitis.- esta debido al proceso infeccioso aumenta el número de bacterias en la leche, en un cuarto afectado por mastitis y que se mezcle con la de 99 cuartos sanos, puede alcanzar un recuento hasta de 1000000 UFC/mL. Contaminación ambiental.- es la fuente de contaminación más importante de la leche debido al número y la variedad de microorganismos que pueden ingresar durante el ordeño, provenientes de la piel de la ubre, de las manos de quien realiza el ordeño, pezoneras, tubos del equipo de ordeño o baldes en el caso de ordeño manual, agua usada y del suelo; estos factores son considerados como unas de las fuentes más importantes de contaminación (8).

Contaminación por recipientes.- los baldes, cantarillas y los equipos de ordeño mal lavados y desinfectados, aportan números variables de bacterias (31). El agua.- debe ser lo más limpia posible debido a que puede ser una fuente importante de microorganismos psicrófilos, que dan lugar a los coliformes (25). En lo posible debe ser potable o potabilizada, por el contacto de la misma con los animales en preordeño, con equipos y utensilios. Al no usar agua potable es un riesgo muy alto de contaminación de la leche (35).

Aire.- este representa un medio opuesto para la supervivencia de los microorganismos debido a la constante exposición al oxígeno, cambios de temperatura, humedad relativa, radiación solar, etc. Los microorganismos Gram positivos y los esporulados pueden persistir por largo periodo tiempo en el medio. **Suelo.-** es la principal fuente de contaminación por microorganismos termodúricos y termófilos. **Estiércol.-** es la principal fuente de microorganismos coliformes los cuales pueden alcanzar la leche a través del animal, del ordeñador o por medio de los utensilios mal higienizados (23).

Las fuentes de contaminación de la leche se pueden resumir en la siguiente escala:

Bacterias provenientes del aire...... 100 – 1.500 UFC/mL

Equipamiento....... desde miles hasta millones de UFC/mL (14,25).

4.10. Contenido de bacterias de la leche antes de la secreción

Infecciones de la ubre.- Cuando existen infecciones de tipo agudo en cada cuarto mamario puede haber el contenido de más de 1 millón de bacterias por mL de leche, como en casos de infecciones agudas por *Streptococcus agalactiae*. En cambio en el caso de infecciones subclínicas que pueden ser debidas a estreptococos o a estafilococos tienen un conteo alrededor de 25000 bacterias por mL de leche, en el caso de las infecciones latentes estas pueden contener un numero de 40000 bacterias por mL(14).

Canal del pezón.- En este canal pueden estar presentes *Staphylococcus aureus* cuagulasa positivos, micrococos, *Corinebacterium bovis*, y también pueden estar presentes estreptococos no patógenos. Inclusive tomando precauciones para realizar una toma correcta de la muestra y utilizando técnicas de desinfección del pezón con alcohol al 80% durante 20 segundos, no es posible eliminar completamente toda la flora que está presente (14).

Los microorganismos que pueden alcanzar la ubre, igualmente pueden llegar a contaminar la leche antes o después del ordeño. Estos microorganismos pueden alcanzar la leche por vía mamaria ascendente o mamaria descendente. Por vía ascendente lo hacen bacterias que se adhieren a la piel de la ubre y posterior al ordeño entran a través del esfínter del pezón (*Staphilococcus aureus, Streptococcus*, Coliformes) (15).

4.11. Factores relacionados con la higiene de la ordeña

La obtención de la leche constituye la etapa de mayor vulnerabilidad para que ocurra la contaminación por microorganismos, suciedad y substancias químicas, que están presentes en el propio local de ordeña y pueden ser incorporados al producto. El conteo total de bacterias determina directamente el número de microorganismos presentes en la leche, expresados en unidades formadoras de colonias (UFC) x mL. En condiciones

adecuadas de ordeña higiénica el conteo total de bacterias inicial de la leche cruda se encuentra en torno de 1000 a 9000 UFC x mL. Después del ordeño los principales factores responsables para el aumento de ese valor incluyen la temperatura de almacenamiento y el tiempo transcurrido hasta su proceso industrial (22).

La carga microbiana inicial de la leche, está directamente relacionada con la limpieza de los utensilios utilizados, su almacenamiento y transporte. Por lo tanto la higiene y sanitización deficiente de los ordeñadores, baldes y sistema de ordeño son mencionados como los principales factores responsables por el aumento de este parámetro. La calidad del agua empleada para lavar los utensilios equipo de ordeña y pezones de los animales, es fundamental para evitar la contaminación de la leche. Se estima que más del 95% de las causas de elevados conteos bacterianos son por deficiencias en el lavado, higiene y sanitización de equipos y utensilios de ordeño, o a la vez están asociados a un deficiente enfriamiento del producto posordeño (22).

4.12. Control de la contaminación de la leche

Con sistemas de ordeño mecánico se puede reducir la contaminación a partir del animal, ordeñadores, aire y suelo. Aplicando campañas de educación y evitando que personas enfermas intervengan en el proceso se puede reducir la contaminación por parte del personal. Mediante programas sanitarios sobre el rebaño se logra un producto de buena calidad e incluso podemos incrementar la producción. Se debe evitar el ordeño de animales enfermos o bajo tratamiento médico. Entre las principales medidas de manejo que debemos llevar a cabo están: sellado de pezones posterior al ordeño, terapia de secado, reducir la exposición de los pezones a los microorganismos patógenos, controlar casos de mastitis clínicas y subclínicas del establecimiento con tratamientos antibióticos adecuados, suministrar materiales de trabajo adecuados para el personal, revisar los utensilios antes del ordeño para verificar su adecuada condición higiénica, emplear soluciones desinfectantes de forma rutinaria (25).

4.13. Peligros de la leche cruda

La leche cruda y sus derivados resultan ser huéspedes de microorganismos peligrosos que se transmiten al hombre por su ingesta, representando un alto riesgo para la salud. Pueden resultar inseguros para los consumidores debido a que suelen contener uno o más tipos de bacterias. Estas bacterias perjudiciales incluyen Brucella, Campylobacter, *E coli*, Listeria, *Mycobacterium bovis*, *Salmonella* y *Yersinia*. Las infecciones a causa de consumir estos productos lácteos presentan síntomas como: vómito, diarrea, dolor abdominal, fiebre, calambres de estómago, dolor de cabeza y corporal. Al infectarse con *Listeria monocytogenes* puede presentarse muerte fetal o aborto involuntario en mujeres gestantes, en los niños o ancianos causa insuficiencia renal debido a *E. coli* O157: H7. El grupo poblacional que más se podría encontrar afectado está integrado por niños, mujeres embarazadas, adultos mayores, personas que toman antibióticos, antiácidos, corticoides o posean enfermedades crónicas e individuos con sistemas inmunitarios debilitados (27).

4.14. Impacto sobre la salud pública

La leche y sus derivados se considerada como el producto más adecuado de los alimentos esto debido su composición rica en proteína, grasa, carbohidratos, sales minerales y vitaminas; constituyéndose en alimento esencial para el hombre y para especies de mamíferos. Por esta razón existe un riesgo permanente de que la leche sirva como vehículo de múltiples microorganismos patógenos, ya sea en su producción o durante su procesamiento y pasa a ser un problema para el consumidor, y por ende un gran problema de salud pública. La leche contaminada pone en peligro la salud del hombre debido a la diseminación de bacterias causantes de enfermedades tales como: tuberculosis, brucelosis, faringitis estreptocócica, entre otras (22).

El control higiénico sanitario de las vacas de ordeña, es fundamental para garantizar la composición de la leche y reducir el riesgo de transmisión de agentes patógenos que causan enfermedades, por lo que se debe aplicar planes de control y/o erradicación de infecciones presentes en el hato. La refrigeración después de la ordeña y el transporte en frío permite aumentar la vida útil del producto. La evaluación de la calidad de la leche cruda mediante pruebas físico químicas complementadas por análisis microbiológicos posibilita la identificación de productores que realizan buenas prácticas de manejo (21).

4.15. Indicadores microbiológicos

Existen grupos de microorganismos que son considerados como indicadores en la industria láctea, debido a que su presencia permite comprobar el cumplimiento de buenas prácticas higiénicas que deben ser aplicadas a nivel de finca. Se relaciona con el contenido de microorganismos presentes en la leche cruda el cual se transfiere en una cantidad significativa a sus derivados. La carga microbiana incide representativamente en la vida útil de la materia prima y del producto terminado (27).

Actualmente en la industria alimentaria se determina a ciertos microorganismos como marcadores, siendo los principales: Aerobios Mesófilos, Coliformes Totales, *Escherichia coli, Staphylococcus aureus*, Mohos y Levaduras. Su presencia en alimentos procesados indica elaboración poco higiénica y/o contaminación posterior a su fabricación (4).

4.16. Grupos de microorganismos indicadores:

Bacterias Aerobios Mesófilos

Microorganismos que se desarrollan en presencia de oxígeno a una temperatura comprendida entre 20°C y 45°C, con una óptima entre 30°C y 40°C. Por medio del recuento de microorganismos aerobios mesófilos indica el grado de contaminación total

de la leche cruda, sin capacidad para diferenciar su origen. Es un indicador universal de la calidad bacteriológica de la leche, se utilizan criterios de aceptación, rechazo y bonificación, y lo que se debe buscar en general es que su recuento sea lo más bajo (31).

Entre los microorganismos mesófilos se encuentran las bacterias acidolácticas, la microbiota natural de la leche cruda y bacterias patógenas. El recuento de bacterias aerobias mesófilos se determinan con la finalidad de conocer el grado de contaminación de la leche cruda y comprobar los resultados con las normas sanitarias de acuerdo a los distintos países (38).

Las unidades formadoras de colonias (UFC) son el principal parámetro para clasificar la leche de acuerdo a su calidad. Ésta mide la calidad bacteriológica de la leche, es decir, el contenido de gérmenes responsables de su descomposición (29). Cuando tenemos altos recuentos de aerobios mesófilos significa que: la materia prima muy contaminada, alteración por malos procesos en la manipulación y elaboración, posibilidad de existir patógenos infecciosos y la inmediata degradación del producto (27,29).

El recuento de estos microorganismos, en condiciones establecidas, estima la microflora total sin especificar tipos de microorganismos (12). Estas bacterias sirven como indicador de una población general que puede estar presente en una muestra, esto nos puede dar una idea del nivel de higiene que se está manejando el producto. Al realizar el recuento de Aerobios mesófilos podremos verificar la efectividad de los procedimientos de limpieza y desinfección, determinar si las temperaturas empleadas fueron las adecuadas, verificar condiciones óptimas de almacenamiento y transporte, estimar la vida útil de los alimentos y determinar la alteración del alimento (13).

Bacterias entéricas

Enterobacterias: estos habitan normalmente en el intestino de los mamíferos por ello al estar presentes en la leche indican contaminación fecal. Las más comunes que se encuentran en los productos lácteos son las del grupo Coliformes. Su importancia radica desde el punto de vista higiénico puesto que algunas son dañinas como la Salmonella, Yersenia, E.coli, Shigella; son responsables de trastornos gastrointestinales y alteración de la leche (27).

Coliformes totales: pertenecen a la familia Enterobacteriaceae, son bacilos gram negativos, aerobios o anaerobios facultativos, no esporulados. Estos incluyen a los géneros: Escherichia, Enterobacter, Klebsiella y Citrobacter, entre otros (21). Su importancia radica en que tienen la capacidad para fermentar la lactosa produciendo ácido y gas, en una temperatura entre 20 y 45 °C, pero la temperatura óptima de crecimiento es de 37 °C (27). Estos causan cuadros de mastitis y la mayoría de ellos están presentes en la flora normal del tracto digestivo de los humanos y animales por esta razón son expulsados mayoritariamente por las heces, también pueden encontrarse en el suelo, agua, semillas y alimentos crudos. Estas bacterias son a menudo utilizadas como un buen indicador de las practicas higiénicas (9,25).

Es aplicado ampliamente en microbiología de alimentos como indicador de prácticas higiénicas inapropiadas durante el manejo y fabricación de los productos. Estos microorganismos tienen su origen en la contaminación directa o indirecta con materias fecales, en su conteo ideal debe ser menor a 100 UFC/mL; en los recuentos superiores a 700 UFC/mL, son indicativos de malas prácticas de higiene en la rutina de ordeño, malos sistemas de alojamiento, mal lavado y desinfectado de equipos, mala calidad del agua de lavado y la exposición de la leche a material fecal (8,31).

Una vaca con mastitis provocada por Coliformes, puede transmitir gran número de bacterias a la leche; aunque los Coliformes con frecuencia indican una contaminación fecal. Altos conteos pueden indicar una mínima higiene en el ordeño, equipo sucio, y en algunos casos leche de vacas con mastitis por Coliformes. Estos microorganismos viven en el estiércol, en agua contaminada, en la tierra y en los materiales usados. El 80% de las infecciones por Coliformes que se presentan durante la lactancia se convierten en mastitis clínica (21).

Escherichia coli: Es un bacilo Gram negativo, puede estar aislado o en parejas y tener flagelos, se desarrolla fácilmente sobre medios con nutrientes simples. Casi todas las cepas fermentan la lactosa y se puede multiplicar en una temperatura entre 6 y 50°C siendo la óptima de 37°C. E. Coli se utiliza como microorganismo indicador de la contaminación de origen fecal. Su hábitat natural es el hombre y los animales de sangre caliente, debido a esto se la utiliza como indicador dentro del grupo Coliformes, llegando a ser el microorganismo de mayor significado sanitario (4).

Principalmente los bovinos y otros rumiantes son considerados los principales reservorios de *Escherichia coli*, el serotipo 0157:H7 es muy común que sea aislado a partir de materia fecal de bovinos. Las infecciones gastrointestinales por *E. coli* pueden ser debido al consumo de leche cruda que ha tenido contacto con heces fecales o que ha sido obtenida a través de ordeños poco higiénicos (11). Al encontrarse *E. coli* en los alimentos o en el agua es indicativo de contaminación directa o indirecta de origen fecal debido a un incorrecto manejo y almacenamiento insalubre del producto (27).

Staphylococcus aureus: Coco gram positivo, se agrupa en racimos, son inmóviles, aerobios y anaerobios facultativos, coagulasa positiva, crece en una temperatura de 7 a 48°C siendo la óptima de 37°C (10). Son microorganismos productores de exotoxinas las cuales pueden permanecer en el alimento aun cuando haya sido sometido a tratamiento

térmico, pues son toxinas resistentes al calor. Las fuentes de contaminación con *Staphylococcus aureus* son múltiples debido a que se encuentra en la piel, tracto nasofaríngeo, heridas, ojos, tracto intestinal del hombre, en el suelo, aire y productos lácteos (27).

Staphylococcus aureus tiene gran importancia ya que son los causantes de enfermedades como la mastitis o de intoxicaciones gastrointestinales en los humanos. La determinación de estos microorganismos indica una deficiente sanitización durante la manipulación del alimento o un inadecuado control de temperatura en el proceso de tratamiento (29).

En cultivos bacteriológicos de muestras de leche procedentes de cuartos mamarios positivos al CMT, *Staphylococcus aureus* es el principal agente etiológico encontrado en los análisis. Este tiene como reservorio principal la glándula mamaria, aunque se puede aislar en la piel de los trabajadores y de lesiones ocasionadas por virus, daños mecánicos de la piel, en la cavidad nasal de novillas, en pisos del establo, en el alimento, en las manos de los trabajadores, en animales diferentes a los bovinos, en los equipos de ordeño, en las camas de los establos, en los insectos y del agua; además, puede ser diseminado por las manos de los ordeñadores, por toallas no desechables y por las moscas. En general *Staphylococcus aureus* es el patógeno contagioso más aislado de casos de mastitis en vacas lecheras (32).

4.17. Tipo de Ordeño

Ordeño manual: Es la técnica realizada por el hombre en la cual se extrae la leche almacenada en la glándula mamaria utilizando las manos, entre sus principales métodos están el ordeño a mano o puño lleno, con dos dedos y a pulgar. En la rutina de ordeño manual primero debemos realizarlo a las vacas sanas, seguido de las sospechosas de patologías y por ultimo las enfermas; con los siguientes pasos: despunte, estímulo y limpieza de la ubre, ordeño completo y desinfección de pezones. Se debe evitar que las

vacas se pongan nerviosas durante el proceso de ordeño y no usar espuma de leche o saliva para lubricar los pezones (37).

Las manos del ordeñador actúan como vehículos transmisores de patógenos en el ordeño manual, y que por lo general se realizan ciertas prácticas defectuosas que favorecen la contaminación como: la lubricación de los pezones con leche, lubricación de las manos con leche o saliva y la falta de limpieza de las manos después de ordeñar. En el ordeño con ternero, este se encarga de estimular y hacer la limpieza de los pezones con su saliva, ya que esta tiene poder desinfectante gracias a las enzimas que contiene. Para finalizar el ordeño el ternero vuelve a ser amamantado haciendo un ordeño completo y gracias a la acción enzimática de la saliva se puede reemplazar el sellador. Si el ordeñador tiene las manos limpias y posteriormente a que el ternero se amamante, hace la limpieza de los pezones con un papel seco, se obtiene leche de buena calidad bacteriológica (21).

Ordeño mecánico: Es un sistema que utiliza una combinación de presión negativa y masaje del pezón para extraer la leche de forma eficiente e higiénica, en este debemos basarnos en el nivel de producción de leche y la salud de la ubre, ordeñando primero las vacas sanas y posterior las enfermas. Un correcto ordeño mecánico incluye: el despunte, desinfección preordeño, estímulo y limpieza, ordeño completo y desinfección posordeño (sellador). Con este tipo de ordeño existe mayor eficacia de mano de obra y se controla la higiene de la leche evitando su contacto con el medio ambiente (37).

4.18. Rutina de Ordeño

La rutina de ordeño se define como el conjunto de procedimientos recomendados para la obtención eficiente e higiénica de la leche y mantenimiento de ubres sanas, con una buena rutina de ordeño se busca explotar al máximo el efecto de la oxitocina para producir la bajada de la leche. El ordeño debe practicarse siempre primero a las vacas sanas, luego las vacas sospechosas y por último las vacas con problemas de mastitis. El uso de

presellado es muy positivo ya que es efectivo para la desinfección, utilizando yodo como presellador se ha demostrado reducir los conteos bacterianos y de Coliformes en la leche cruda. El secado de pezones es efectivo e importante en la preparación para el ordeño ya que reduce el conteo bacteriano en la punta de los pezones de 35000 a 40000 UFC/mL para pezones que fueron limpios pero no secados, y de 11000 a 14000 UFC/mL para pezones que fueron secados usando toallas de papel (21).

Se debe realizar las siguientes actividades rutinarias: el piso y las paredes del local de ordeño deben limpiarse todos los días con agua y detergente, retirando residuos de estiércol, tierra, alimentos o basura; el arreado de la vaca realizarlo con tranquilidad, seguridad y buen trato, cuando las vacas estén en el corral proporcionarles alimento y agua. Mantener un horario fijo de ordeño pudiendo ser uno o dos ordeños al día. El amarrado de patas y cola de la vaca durante el ordeño permite sujetarla, dando seguridad a la persona que va a ordeñar y previniendo algún accidente. El lavado de manos y brazos del ordeñador utilizando agua y jabón posterior a que está asegurada la vaca, de esta manera se elimina la suciedad de manos, dedos y uñas. La preparación y lavado de los utensilios de ordeño deben ser hacerlo con agua y jabón antes del ordeño, aunque sabemos que estos utensilios se lavan correctamente después del ordeño, lo mejor es revisarlos antes de usarlos para eliminar la presencia de residuos, suciedad acumulada o malos olores que puedan contaminar la leche (26).

Como prácticas y recomendaciones durante el ordeño debemos tomar en cuenta lo siguiente:

- 1) Ropa adecuada para ordeñar que incluya gabacha y gorra, de preferencia, debe usar prendas de color blanco para observar a simple vista su contaminación y deben ser utilizadas única y exclusivamente durante el ordeño.
- 2) Lavado de pezones siempre que se va a ordeñar, ya sea con o sin ternero y el agua que se utiliza debe ser potable y tibia.

- 3) Secado de pezones de la vaca con una toalla desechable, la toalla tiene que pasar por cada pezón unas dos veces, asegurando que se sequen en su totalidad.
- 4) El ordeño debe realizarse en forma suave y segura. El tiempo recomendado para ordeñar a la vaca es de 5 a 7 minutos, si se hace por más tiempo, se produce una retención natural de la leche y se corre el riesgo de que aparezca una mastitis.
- 5) El sellado de pezones al terminar el ordeño, introduciendo cada uno de los pezones en un pequeño recipiente con una solución desinfectante a base de tintura de yodo comercial. Cuando se ordeña con ternero no es necesario realizar el sellado de pezones, ya que el ternero sella los pezones con su saliva en forma automática al momento que lacta.
- 6) Desatado de las patas y la cola de la vaca, si el ordeño fue con ternero se le permite que mame el resto de leche contenida en la ubre (26).

El manejo de las vacas posordeño tiene gran importancia debido a que es el momento para la contaminación de la glándula mamaria por parte de los microorganismos que llegan allí por las manos del ordeñador, la máquina de ordeño, malas prácticas de lavado y secado o por el contacto con el suelo, para lo cual se hace indispensable sumergir los pezones en una solución desinfectante llamado sellador la cual forma una película en el esfínter del pezón evitando el contacto y entrada de microorganismos durante el cierre del esfínter. En los ordeños con ternero, éste se encarga de limpiar los pezones y sellar con su saliva por lo cual no es necesario aplicar el sellador, a menos que haya demasiado riesgo de contaminación tomando en cuenta que el canal del pezón queda abierto durante unos 30 minutos a 2 horas (21).

4.19. Almacenamiento de la leche cruda

La leche es una materia prima fácilmente perecedera, debido a las bacterias que la contaminan pueden multiplicarse rápidamente y alterarla completamente. La refrigeración puede evitar el desarrollo de las bacterias y reducir la velocidad del deterioro. La ventaja de la refrigeración es el aumento de la vida media de la leche ya que reduce la tasa de multiplicación de microorganismos mesófilos tales como bacterias ácido lácticas y coliformes. La refrigeración entre 4 y 6 °C es el método más usado para conservar la leche cruda y con ello se reduce los conteos de bacterias, logrando conteos máximos de bacterias de 500000 UFC/mL e incluso menores de 100000 UFC/mL (21).

4.20. Placas Petrifilm

Las placas Petrifilm es un método para realizar pruebas microbiológicas rápidas en agua y alimento, avalado por la Association of Official Agricultural Chemists (AOAC) International para el recuento de bacterias, además por la Association Francaise de Normalisation (AFNOR) y por el sistema nórdico para validación de métodos microbiológicos alternativos (21). Las placas Petrifilm consisten en láminas delgadas con un medio de cultivo y un agente solidificante soluble en agua. Estas llevan incorporada una película de polipropileno capaz de atrapar el gas producido por ciertas bacterias. Además contienen indicadores de pH que se encargan de colorear a las colonias para facilitar su identificación y una cuadrícula para poder realizar el contaje de las unidades formadoras de colonias (UFC/mL) (28). Se aplica 1 ml de la muestra diluida 1:10 con agua estéril en las placas Petrifilm y posterior se incuban de acuerdo a su método recomendado (34).

Las ventajas y beneficios de usar este método es que no requiere la preparación previa de medios de cultivo, por lo tanto reduce los costos, tiempo y no requiere de un completo laboratorio microbiológico para sus respectivos análisis. También ocupan poco espacio, se almacenan más tiempo, fáciles de manipular en el laboratorio y requieren menos

tiempo para obtener los resultados frente a los métodos tradicionales. Estas placas tienen alto grado de efectividad y confiabilidad, con resultados de las pruebas consistentes y confiables, además consta de tres sencillos pasos: Inoculación, Incubación e Interpretación de resultados cualitativos (21).

Los autores de varios estudios han demostrado que las placas Petrifilm son adecuadas para identificar microrganismos patógenos entre los que se encuentran los causantes de mastitis, clasificando los patógenos en Gram-positivas y Gram negativas, por lo tanto es adecuado para la toma de decisiones terapéuticas a nivel de granja o en la práctica veterinaria (24).

4.21. Empleo de antibióticos en la ganadería lechera

Entre los principales propósitos para administrar antibióticos en vacas productoras de leche están: para tratar y prevenir enfermedades infecciosas que afectan a las mamas, infecciones pódales, neumonía, entre otras. Para promover el crecimiento se emplea concentraciones subterapeúticasde antibiótico por largos períodos con el fin de mejorar la conversión del alimento. En las ganaderías lecheras los antibióticos más usados con frecuencia pertenecen a los grupos: betalactámicos, tetraciclinas, sulfas, aminoglucósidos y macrólidos (27).

4.22. Riesgos de las leches con residuos de antibióticos

Al consumir leche con antibióticos es un peligro para la salud humana ya que conlleva al aparecimiento de efectos tóxicos directos e indirectos resultado de la acumulación del medicamento en el organismo, además afecta los procesos de industrialización del alimento haciendo que disminuya el costo y su vida útil (27).

4.23. Sensibilidad bacteriana a los antibióticos

La sensibilidad de una bacteria se muestra frente a un antibiótico cuando el medicamento es eficaz frente a ella y la infección presentada desaparece por muerte o inactivación del microorganismo. La sensibilidad que tiene una bacteria a un cierto antibiótico está dada por la CIM que significa la determinación de la Concentración Inhibidora Mínima. Se define la CIM como la menor concentración de una gama de diluciones de antibiótico que provoca la inhibición de cualquier tipo de crecimiento bacteriano visible. Existen varios métodos manuales o automatizados que nos permiten medir o calcular la sensibilidad de una sepa bacteriana frente a un antibiótico, de esta forma podemos categorizar de la siguiente manera: la cepa se denomina Sensible (S) que representa una buena probabilidad de éxito terapéutico, Intermedia (I) el éxito terapéutico es impredecible y la cepa Resistente (R) la cual representa un escaso o nulo éxito terapéutico (29).

4.24. Resistencia bacteriana

Es considerado un agente resistente cuando su crecimiento únicamente se inhibe al existir concentraciones mayores a las que el fármaco puede alcanzar en el sitio infeccioso (27).

La resistencia bacteriana surge como una consecuencia del mal uso de los antimicrobianos, este es un fenómeno creciente debido a que cada vez es más complicado el control por parte de los antibióticos existentes frente al aparecimiento de nuevos mecanismos desarrollados por las bacterias. También se considera un problema ecológico ya que las cepas resistentes a los antimicrobianos pueden ser transferidas no solamente entre bacterias que habitan un determinado animal que se encontró en tratamiento antibiótico, sino que además afecta a poblaciones ubicadas en geografías diferentes, entre poblaciones de animales y el hombre y viceversa, lo que hace más complicado el tratamiento de las infecciones, teniendo repercusiones

sociales y económicas debido al aumento de los niveles de morbilidad y mortalidad, edemas que eleva los costos en el tratamiento (27).

4.25. Tipos de resistencia

Resistencia natural: los animales poseen en su flora intestinal y microflora numerosos tipos de bacterias, entre las cuales suele haber especies con resistencia natural para ciertos antibióticos. *E. coli* es intrínsecamente resistente a la vancomicina porque la vancomicina es demasiado grande para pasar a través de los canales de porinas en su membrana externa. Las bacterias gram-positivas, en cambio, no poseen una membrana externa y por lo tanto no son intrínsecamente resistentes a la vancomicina.

Resistencia adquirida: una bacteria sensible a un antibiótico después de un contacto prologado con él puede convertirse en resistente. Las bacterias también pueden adquirir resistencia a los agentes antimicrobianos por eventos genéticos como mutación, conjugación, transformación, transducción y transposición (33).

4.26. Factores que han originado resistencia bacteriana

La resistencia es adquirida realmente por dos procesos: 1) Por defecto: cuando se encuentra un medio en el que un microorganismo se ve rodeado de pocas cantidades de antibiótico o las insuficientes para matarlo, es entonces en donde se crea la resistencia por la adaptación por la cual ha pasado este. 2) Por exceso: cuando es todo lo contrario, pero el microorganismo también adquiere resistencia por el estrés del medio (30).

Entre los más comunes tenemos: la venta libre de medicamentos para uso terapéutico en animales, no consultar a un veterinario con licencia, empleo general de antimicrobianos en todo tipo de vacas lecheras, uso de dosis incorrectas o el tiempo de

duración inadecuado en la terapia antimicrobiana y falta de conocimiento de perfiles de sensibilidad de los diversos gérmenes (27). También se menciona por prescripción indebida o innecesaria de antibióticos para infecciones virales, contra las cuales no tienen ningún efecto sobre la infección, por prescribir demasiado recurrente de "antibióticos de amplio espectro" en lugar de antibióticos específicos para la terapéutica seleccionados mediante un diagnóstico más preciso como antibiogramas (30).

4.27. Antibiograma

Es considerado un método fenotípico que permite conocer la sensibilidad in vitro de las bacterias frente a los antimicrobianos. Se fundamenta en el enfrentamiento de un inóculo bacteriano estandarizado a una concentración o rango de concentraciones de un antibiótico determinado. Para ello se requiere de la preparación del medio de cultivo Mueller Hinton y de condiciones apropiadas de incubación. Los resultados obtenidos clasifican a las bacterias en sensibles (S), intermedio (I) y resistentes (R) a los antimicrobianos empleados. En general el antibiograma sirve como una herramienta para orientar a las decisiones terapéuticas correctas (27).

4.28. Agar Mueller Hinton

Se emplea en procedimientos de difusión en disco estandarizado para la determinación de la sensibilidad de cepas aisladas a partir de muestras clínicas, de organismos aerobios de rápido crecimiento ante agentes antimicrobianos, conforme a las normas del Clinical and Laboratory Standards Institute (CLSI). La composición del medio Mueller Hinton permite el crecimiento de las bacterias no exigentes (enterobacterias, bacilos Gramnegativos no fermentadores, estafilococos y enterococos) (29).

4.29. Los discos de antibióticos

Los discos empleados son de papel estéril absorbente y contienen concentraciones precisas de los agentes antimicrobianos. Presentan un tamaño de 6.5 mm y se encuentran identificados por medio de un código que comprende de 1 a 3 letras a ambas caras del disco (27).

Eritromicina

Antibiótico representante de los macrólidos usado en situaciones en las que existe alergia a penicilina (27). Es bacteriostático y en altas concentraciones puede ser bactericida. Posee actividad contra Gram positivos, estafilococos, estreptococos, y bacilos como Corynebacterium, Clostridium, Listeria y bacilos antracis. Además actúa frente a Bacilos Gram negativos susceptibles que incluyen Pasteurella y Brucella (29).

Gentamicina

Es un aminoglicósido muy empleado por su precio y eficacia, recomendado en caso de infecciones bacterianas de la glándula mamaria, útero, septicemias, afecciones articulares. Posee un amplio espectro de actividad frente a bacterias sensibles gram positivas, gram negativas, micoplasmas y espiroquetas (27).

Útil además en casos de mastitis septicémicas, metritis bacteriana, infecciones cutáneas, heridas infectadas y posoperatorias, septicemias, entre otras. Medicamento eficaz frente a Escherichia coli, Staphylococcus aureus, Pseudomonas spp., Klebsiella spp., Shigella spp., Salmonella spp., Serratia marcense., Proteus mirabilis (29).

Ampicilina

Es un derivado semisintético del núcleo de la penicilina con amplio espectro, gran capacidad antibacteriana y mayor actividad sobre las bacterias resistentes a los betalactámicos. Su espectro de acción comprende Gram positivos y Gram negativos

aerobios incluyendo cepas de E coli, Klebsiella y Haemophilus. También son susceptibles algunos anaerobios incluyendo algunas especies de Clostridium (29).

Amoxicilina

La amoxicilina es una aminopenicilina. Tienen gran espectro contra gérmenes grampositivos y gramnegativos, poseen baja toxicidad, eficaz para enterobacterias: *E.coli* y *Salmonella sp*, estafilococos, bacilos y clostridios. Las aplicaciones clínicas incluyen infecciones urinarias, gastrointestinales, para tratamientos de mastitis, neumonías, infecciones por *E. coli* y *Salmonella* (40).

Ceftriaxona

Pertenece a las cefalosporinas de tercera generación, siendo efectivas contra bacterias gramnegativas resistentes a otros antibióticos. Está indicada para el tratamiento de infecciones realmente muy graves, en particular en casos de infecciones por enterobacterias que no son susceptibles a otros agentes. Posee baja toxicidad en todas las especies; la dosis se puede elevar al doble sin que se observe ningún efecto indeseable (39).

5. MATERIALES Y MÉTODOS

5.1. Materiales

5.1.1. Físicos de campo

- Botas
- Overol
- Mandil
- Cámara fotográfica
- Guantes
- 50 Frascos plásticos para tomas de muestras
- Coolers
- Frio gel
- Jeringuillas de 10ml
- Jeringuillas de 20ml
- Cofias
- Mascarillas
- Cinta masking
- Marcador permanente
- Regla

5.1.2. Físicos de laboratorio

- Refrigerador
- Balanza
- Autoclave
- Pipetas automáticas
- Mechero
- Incubadora
- Gradilla plástica
- Tubos de ensayo estériles
- Dispersor para placas Petrifilm
- Algodón
- Cajas Petri

- Hisopos estériles
- Asa y aguja de inoculación
- Pinza para discos

5.1.3. Materiales Biológicos

Muestras de leche

5.1.4. Materiales Químicos

- Placas 3M Petrifilm para recuento de Aerobios
- Placas 3M Petrifilm para recuento de Coliformes
- Placas 3M Petrifilm para recuento de E. coli/Coliformes
- Placas 3M Petrifilm Staph Express para recuento de Staphylococcus aureus
- Agar Mueller Hinton
- Estándar McFarland
- Discos de antibióticos
- Alcohol
- Agua destilada

5.1.5. Materiales de Oficina

- Cuaderno de campo
- Esferos
- Medios Extraíbles (Memory USB)
- Computadora
- Programas informáticos (Word, Excel, power point, SPSS)
- Impresora

5.2. Métodos

5.2.1. Área de estudio

Esta investigación se realizó en las ganaderías de la Provincia del Azuay, que tiene una extensión aproximada de 8.639 km², en la provincia existen dos zonas diferenciadas: el este comprendido por los Andes orientales; y el oeste que pertenece a la región Costa. Los cursos fluviales más importantes son el río Jubones y el río Paute. Su punto más alto es el Nudo del Cajas a 4500 metros de altura. El clima es variable debido a la altura, desde el tropical hasta el glacial, debido a la presencia de la cordillera de los Andes y la vegetación subtropical al occidente, la provincia se encuentra climatológicamente fragmentada en diversos sectores. Además, a causa de su ubicación tropical, cada zona climática presenta sólo dos estaciones definidas: húmeda y seca. En el Occidente la temperatura oscila entre los 20 °C y 33 °C, mientras que en la zona andina, ésta suele estar entre los 10 °C y 28 °C. Actualmente ha variado el clima llegando a 29 °C.

Grafico1. Mapa del Azuay

Fuente: https://es.wikipedia.org/wiki/Provincia_de_Azuay

5.2.2. Unidades de análisis

Esta investigación incluyó un total de 45 ganaderías las cuales fueron divididas en tres grupos:

- Primer grupo: Pequeña: <5ha, correspondiendo a 15 ganaderías distribuidas en los diferentes cantones del Azuay
- Segundo grupo: Mediana: 5-50ha, correspondiendo a 15 ganaderías distribuidas en los diferentes cantones del Azuay
- Tercer grupo: Grande: >50ha, correspondiendo a 15 ganaderías distribuidas en los diferentes cantones del Azuay. Esta clasificación de las ganaderías es de acuerdo a lo establecido por el Instituto Ecuatoriano de Estadísticas y Censos (INEC) en el 2013.

5.2.3. Procedimiento en la recopilación de información en campo

La recopilación de información para obtener tamaño de la UPA, tipo de ordeño, frecuencia de ordeño, rutina de ordeño, higiene general, se realizó mediante una encuesta antes de tomar la muestra de leche (Anexo 1) y posterior se constató en el momento del ordeño lo encuestado.

5.2.4. Toma de muestras

Para la investigación se aplicó la Norma Técnica Ecuatoriana NTE INEN-ISO 707, Leche y productos lácteos, directrices para la toma de muestras del año 2008, para el muestreo y transporte de las muestras hacia el laboratorio. Cada muestra comprendió un mínimo de 100 mL de leche cruda que fueron tomadas directamente del tanque de almacenamiento o de las cantarillas post ordeño, luego se colocó en frascos estériles, identificados con nombre de la finca. Las muestras fueron conservadas en refrigeración (cooler) para su transportación al laboratorio de microbiología de la Escuela de Medicina Veterinaria de la Universidad de Cuenca, en donde se procedió con el análisis bacteriológico.

5.2.5. Procedimiento de cultivo bacteriológico

Para el método de análisis bacteriológico se realizó en las placas Petrifilm 3M, basándonos en sus respectivas guías de interpretación según los siguientes métodos: para el recuento de **Aerobios** fue en base de la guía de interpretación para las placas 3M Petrifilm, la cual es avalada por la AOAC método oficial 986.33 y 989.10, indicado para leche y productos lácteos (19).

Para el recuento de **coliformes** se recurrió a la guía de interpretación para las placas 3M Petrifilm, que son garantizadas por la AOAC método oficial 986.33 y 989.10, y que sirven para leche y productos lácteos, también por AOAC método oficial 991.14, asimismo por la NMK método 147.1993 y por AFNOR métodos validados 3M 01/2-09 89AyB (17).

Para el recuento de *Escherichia coli* se aplicó la guía de interpretación para las placas 3M Petrifilm que gozan del respaldo de AOAC método oficial 991.14 (18).

Para **Staphylococcus aureus** se empleó la guía de interpretación para las placas 3M Petrifilm Staph Express y tiene el respaldo de AOAC Método Oficial 2003.08 y de Nordval (Ref. No.: 2003-20-5408-00019), las cuales se utilizan para el recuento de *Staphylococcus aureus* en Productos Lácteos (20).

Para la preparación de las muestras se midió y se colocó 10mL de muestra sobre el frasco estéril con 90mL de diluyente (agua destilada). Se agitaron los frascos mediante movimientos circulares para obtener una muestra homogénea. En el presente caso se empleó diluciones de 10¹ para *Staphylococcus aureus, Escherichia coli* y coliformes. Para el recuento de Aerobios Mesófilos empleamos diluciones de 10³ hasta 10⁵ respectivamente.

Posteriormente colocamos la placa Petrifilm en una superficie plana y limpia, ésta previamente rotulada y levantamos el film superior. Luego pipetear 1 mL de la solución preparada en el centro del film inferior manteniendo la pipeta en posición vertical, no se debe tocar el film inferior mientras se pipetea, soltar el film superior y dejarlo caer

evitando formación de burbujas, colocar el aplicador en el film superior bien centrado sobre el inóculo.

Usar el aplicador con la cara rebajada hacia abajo (cara lisa hacia arriba), luego aplicar presión de manera suave sobre el aplicador para distribuir el inóculo por toda la zona circular. No mover ni girar el aplicador. Levantar el aplicador y esperar 1 minuto para que se solidifique el gel (17).

Para incubar las placas Petrifilm se realiza con la cara hacia arriba en la estufa, la cual debe estar previamente calibrada y limpia, dicha incubación se la realiza con las siguientes características en dependencia del microorganismo que se está analizando y en base a las especificaciones para productos lácteos de las placas Petrifilm: **Aerobios**: Incubar 48h ± 3h a 32°C ± 1°C según AOAC método oficial 986.33 & 989.10 AOAC 990.12 (19). **Coliformes totales:** incubar 24h ± 2h a 32°C ± 1°C según AOAC método oficial 986.33 y 989.10 (17). **Escherichia coli**: incubar 48h ± 2h a 35°C ± 1°C según AOAC método oficial 991.14 (18). **Staphylococcus aureus**: incubar 24h ± 2h a 35°C ± 1°C según AOAC método Oficial 2003.08 (20).

Transcurrido el tiempo de incubación de las placas fueron extraídas y llevadas a un área estéril para el recuento de las unidades formadoras colonias (UFC) por mL de las muestras mediante el contador de colonias tipo Quebec, las placas que resultaron menores a 50 UFC contamos de forma individual las colonias en toda la Placa Petrifilm; y si el número de colonias sobrepasa el valor de las 50 UFC se contó 3 cuadrículas de un cm2, obtener la media de la suma de los 3 y multiplicar por 20 siendo está el área total de la placa, así se obtendrá el recuento total de las UFC/mL (17).

Hay que recalcar que los medios de cultivo de las placas Petrifilm son muy específicos, razón por la cual crecerán solamente los microorganismos que se desean cultivar, los cuales tendrán características bien definidas, que se describen a continuación para facilitar su conteo: **Staphylococcus aureus**: microorganismo cultivado en la placa Petrifilm 3M Staph Express, cuyas colonias se presentan entre el color rojo – Violeta (17).

Para los **Coliformes totales**: familia de microorganismos cultivados en la placa Petrifilm 3M Coliformes, siendo todas las colonias rojas y azules con presencia de gas. **Escherichia coli**: bacteria cultivada en la placa Petrifilm 3M E. coli/Coliformes, que presentan un color azul y presencia de gas, siendo esta última su principal característica para identificación. **Aerobios mesófilos**: familia de microorganismos cultivados en la placa Petrifilm 3M para recuento de Aerobios, que presentan color rojo (17).

Es importante anotar que el proyecto de la Norma NTE INEN 9:2015, Sexta revisión, Leche cruda Requisitos, establece que la leche cruda debe cumplir con un recuento de colonias aerobias de 2x10⁴ como límite de aceptación y de 5x10⁴ el limite superado en el cual se rechaza, para *S. aureus* de 10 UFC como límite de aceptación y de 10² UFC el limite superado en el cual se rechaza, y Enterobacteriaceae (UFC/g) de 10 como límite de aceptación y de 10² el limite superado en el cual se rechaza (7).

En cambio la norma técnica ecuatoriana NTE INEN 9:2012 Quinta revisión, leche cruda requisitos, los requisitos microbiológicos de la leche cruda tomada en hato establece solo para el recuento de microorganismos aerobios mesófilos con un límite máximo de 1,5 x 10⁶ UFC/mL (42).

5.2.6. Procedimiento para las pruebas de sensibilidad bacteriana

Luego del análisis microbiológico de las placas que resultaron con colonias de bacterias analizadas, se efectuarán las pruebas de sensibilidad bacteriana, mediante el método de agar por difusión en disco, para el efecto se procedió de la siguiente manera:

Se utilizó el agar Mueller Hinton, porque contiene bajos inhibidores de sulfonamida, trimetoprim y tetraciclina. La preparación del agar Mueller Hinton, es de acuerdo a las instrucciones de Difco TM (casa comercial), e inmediatamente se llevó a autoclave el agar Mueller Hinton, se enfrió en baño maría con temperaturas entre 45 y 50°C.

Después, se colocó el medio Mueller Hinton en placas Petri de plástico, cuidando que la profundidad sea de aproximadamente 4 mm, lo cual corresponde 25 a 30 mL de medio para placas de Petri con 90 mm de diámetro. Luego el agar se enfría a temperatura

ambiente para conservarlo en refrigeración a temperaturas de 2 a 8 °C, excepto cuando las placas de Petri se las utiliza en el mismo día.

El inóculo bacteriano tiene factores críticos como: el método de preparación (a partir de colonias o de registro de las fases de crecimiento en un caldo), y la turbidez. El inóculo se prepara usando una colonia de la fase logarítmica de crecimiento (18 a 24 horas de crecimiento en la placa de cultivo original), luego se suspende en solución salina fisiológica estéril, como también puede ser en caldo Mueller-Hinton, caldo de soya tríptico o caldo lablemco.

El inóculo bacteriano se lo prepara a una densidad visualmente equivalente a la solución estándar McFarland 0.5, y ésta solución sirvió como control de turbidez para la preparación del inóculo bacteriano. La solución estándar McFarland 0.5 fue preparada añadiendo 0.5 mL de cloruro de bario al 1.175 % a 99.5 mL de ácido sulfúrico al 1 %.

Mediante un espectrofotómetro se verificó la densidad correcta de la solución estándar de turbidez de sulfato de Bario McFarland 0.5, para el efecto con un haz luminoso de 1 centímetro y su cubeta correspondiente, se determinó la absorbencia con una longitud de onda de 625 nm que equivale a 0.10 para la solución estándar McFarland 0.5.

Se coloca 4 mL de solución estándar McFarland en tubos con tapón de rosca, del mismo tamaño de los utilizados para cultivar o diluir el inóculo en caldo de cultivo. Luego se tapan bien los tubos con la cinta parafilm para prevenir la evaporación y se almacenan en cámara oscura a temperatura ambiente.

Inmediatamente antes de utilizar la solución estándar de turbidez McFarland 0.5, ésta se agitó vigorosamente en un vórtex; cada semana se reemplazó la solución McFarland con una preparación fresca. El inóculo bacteriano debe ser utilizado dentro de los 15 minutos de preparación y corresponderá a 1,5x10⁸ UFC/mL.

También se puede preparar un inóculo bacteriano, a partir de un caldo de cultivo que haya permanecido por el espacio de 2 a 8 horas de crecimiento en los tubos de cultivo original y éste método se utiliza para las bacterias de rápido crecimiento; luego la

suspensión bacteriana se ajustará a la turbidez correcta frente a la solución estándar McFarland 0.5 (16).

Se procede a sembrar el inóculo bacteriano en las placas de Petri correspondiente, luego se cuidará que la inoculación permanezca durante cinco a treinta minutos sobre la placa de Petri.

Los discos antimicrobianos se almacenaron en la refrigeradora y al momento de ser utilizados permanecieron al ambiente mínimo 15 minutos y máximo dos horas, para minimizar la condensación y reducir la posibilidad de dilución de la concentración del agente antimicrobiano en el disco. Los discos fueron utilizados a la concentración indicada por Clinical and Laboratory Standards Institute (CLSI).

A continuación, se colocaron los discos antimicrobianos con pinzas, a una distancia de 10 o 15 mm del borde de la placa y cada disco fue presionado con una pinza estéril. Se ubicaron cinco discos en una placa de 90 mm de diámetro, de acuerdo a las recomendaciones de CLSI. Después de quince minutos de la aplicación de los discos se procedió a voltear cada placa y se las colocó en una incubadora bacteriológica a 37 °C (16).

Después de 16 a 18 horas de incubación, se procedió a realizar la lectura de las placas de Petri e interpretación de los resultados. Si la placa fue satisfactoriamente sembrada y el inóculo correcto, los halos de inhibición serán circulares. Los halos fueron medidos en milímetros, para el efecto se utilizó un calibrador o una regla (Anexo 6), cualquier de los dos será apoyada en la base de la placa invertida y observada con luz reflejada. La interpretación de los resultados se realizó en base de los diámetros de las zonas de inhibición y de conformidad a las tablas de lecturas, como sensible (S), intermedio (I) o resistente (R) (15).

5.2.7. ANÁLISIS ESTADÍSTICO

Los datos fueron recopilados en Excel y para el diseño experimental fue completamente al azar, se empleó el programa estadístico SPSS para el análisis estadístico y se realizó las pruebas de frecuencias para determinar las muestras con presencia y ausencia de microrganismos, Tablas cruzadas con la finalidad de analizar la influencia de los factores: tamaño de la UPA, tipo de ordeño, frecuencia de ordeño, rutina de ordeño, estos sobre la calidad de leche, pruebas de U de Mann-Whitney para analizar las muestras independientes, prueba de Kruskal-Wallis para tres o más grupos, además se realizaron intervalos de confianza para recuento de Aerobios, Coliformes totales, *Staphylococcus aureus* y *Escherichia coli*.

6. RESULTADOS

Tabla 3. Tamaño del hato con sus medias de recuentos bacterianos

Tamaño	del	E. coli (x)	Aerobios mesófilos (\bar{x})	Coliformes totales (x̄)	S. aureus (x̄)
hato		UFC/mL	UFC/mL	UFC/mL	UFC/mL
Pequeña		38,0 ± 22,22	5437346,7 ± 1237001,38	7926,0 ± 1577,97	6966,67 ± 2274,74
Mediana		24,7 ± 12,26	4722306,7 ± 1279591,47	4450,7 ± 1103,44	3356,00 ± 1471,54
Grande		10,8 ± 4,81	1488146,7 ± 636570,26	3012,0 ± 1169,45	2166,00± 753,27
Significancia ,669		,669	,018	,025	,305

Fuente: autores

En la tabla 3, al comparar las medias de los resultados del recuento bacteriano UFC/mL con la prueba de Kruskal-Wallis se evidencio que el tamaño del hato no influyo sobre la cantidad de *Escherichia coli* aunque es posible observar que hay diferencias numéricas entre las categorías; en el recuento de Aerobios mesófilos si hay diferencias estadísticamente significativas en cuanto a la influencia del tamaño del hato sobre la cantidad de bacterias, siendo las ganaderías pequeñas las que muestran recuentos más altos y las ganaderías grandes con recuentos más bajos, esto se explica posiblemente debido a que las fincas grandes poseen tanque de refrigeración por lo que las temperaturas bajas son una limitante para el desarrollo de Aerobios mesófilos; en el recuento de Coliformes totales también se puede observar que existe diferencias estadísticamente significativas entre los valores, siendo las ganaderías pequeñas las que presentan recuentos más altos de Coliformes totales y las ganaderías grandes recuentos más bajos; en lo que se refiere a *Staphylococcus aureus* no muestra diferencias estadísticamente significativas en el recuento por la influencia del tamaño del hato.

Tabla 4. Frecuencia de ordeño relacionado a las medias del recuento bacteriano

Frecuencia de	E. coli (x)	Aerobios mesófilos (\bar{x})	Coliformes totales	S. aureus (x̄)
ordeño	UFC/mL	UFC/mL	(x) UFC/mL	UFC/mL
1 Vez al día	34,3 ± 16,93	5212580,9 ± 1020296,86	7170,5 ± 1253,42	6657,6 ± 1872,38
2 Veces al día	15,9 ± 6,24	2718866,7 ± 825590,05	3343,8 ± 886,09	1980,0 ± 486,27
Significancia	,625	,014	,021	,127

En la tabla 4, al comparar las medias de los resultados de la frecuencia de ordeño con la prueba de Mann-Whitney de los distintos tipos de bacterias UFC/mL se observó que la frecuencia de ordeño por día tiene influencia en el recuento de Aerobios mesófilos y Coliformes totales ya que hay diferencia estadísticamente significativa, siendo en ambos casos los recuentos más altos en las ganaderías que ordeñan una vez al día; en lo que respecta a *Escherichia coli* y *Staphylococcus aureus* no hay diferencias significativas.

Tabla 5. Rutina de ordeño relacionado a las medias del recuento bacteriano

Rutina de	E. coli (x̄)	Aerobios mesófilos (\bar{x})	Coliformes totales (x̄)	S. aureus (x̄)
ordeño	UFC/mL	UFC/mL	UFC/mL	UFC/mL
Si cumple	16,8 ± 6,52	2713983,3 ± 1010707,44	2903,3 ± 1386,91	1653,3 ± 843,70
No cumple	imple 27,3 ± 11,48 4307551,5 ± 829112,97		5939,1 ± 934,53	5075,5 ± 1250,38
Significancia	,552	,259	,017	,032

Fuente: autores

En la tabla 5, al comparar las medias de los resultados del recuento bacteriano UFC/mL con la prueba de Mann-Whitney se observó que en la rutina de ordeño existe diferencias estadísticamente significativas en el recuento de Coliformes totales y *Staphylococcus aureus* con recuentos más altos en las que no cumplen con la rutina de ordeño; en el caso de Aerobios mesófilos y *Escherichia coli* se observan recuentos elevados en las ganaderías que no cumplen la rutina de ordeño pero estos valores no son significativos en comparación de las que si cumplen con la rutina de ordeño.

Tabla 6. Tipo de ordeño relacionado a las medias del recuento bacteriano

Tipo	de	E. coli (x)	Aerobios mesófilos (\bar{x})	Coliformes totales (x̄)	S. aureus (x̄)
ordeño		UFC/mL	UFC/mL	UFC/mL	UFC/mL
Mecánico		13,4 ± 4,90	1882933,3 ± 724006,28	3582,2 ± 1146,74	1981,7 ± 633,75
Manual	anual 31,9 ± 13,85 5215711,1 ± 926618,71		5215711,1 ± 926618,71 6161,1 ± 1056,15		5617,0 ± 1501,37
Significanci	ia	,773	,006	,061	,084

En la tabla 6, al comparar las medias de los resultados del recuento de UFC/mL con la prueba de Mann-Whitney se observó que el tipo de ordeño tiene diferencia estadísticamente significante sobre el número de Aerobios mesófilos, siendo en el ordeño manual los recuento más altos de este; en el recuento de *Escherichia coli*, Coliformes totales y *Staphylococcus aureus* muestra recuentos numéricos mucho más altos en todos los casos de ordeño manual con relación al ordeño mecánico, pero no son significativos.

Tabla 7. Tamaño del hato frente al tipo de ordeño tabulación cruzada

		Tipo de		
		Manual	Mecánico	Total
Tamaño del hato	Grande	0	15	15
	Mediana	12	3	15
	Pequeña	15	0	15
Total		27	18	45

Fuente: autores

En la tabla 7, podemos observar que en las ganaderias grandes todas tienen sistemas de ordeño mecánico, en las ganaderias medianas 12 ordeñan manualmente, mientras que todas las ganaderias pequeñas realizan manualmente el ordeño.

Tabla 8. Tamaño del hato frente a la rutina de ordeño tabulación cruzada

		Rutina de ordeño		
		No aplica	Si aplica	Total
Tamaño del hato	Grande	6	9	15
	Mediana	12	3	15
	Pequeña	15	0	15
Total		33	12	45

En la tabla 8, podemos observar que 9 ganaderías grandes si cumplen con la rutina de ordeño; en las ganaderías medianas 12 de ellas no cumplen con la rutina de ordeño; en las ganaderías pequeñas ninguna cumple con la rutina de ordeño.

Tabla 9. Tamaño del hato frente a la frecuencia de ordeño/por día tabulación cruzada

		frecuencia de ordeño/por día		
		1	2	Total
tamaño de la upa	Grande	0	15	15
	Mediana	7	8	15
	Pequeña	14	1	15
Total		21	24	45

Fuente: autores

En la tabla 9, observamos que en las ganaderías grandes todas ordeñan 2 veces por día; en las ganaderías medianas 8 de ellas ordeñan 2 veces por día; y en las ganaderías pequeñas 14 ordeñan una sola vez por día.

Tabla 10. Tipo de ordeno frente a la rutina de ordeño tabulación cruzada

		rutina de		
		No aplica	Si aplica	Total
tipo de ordeno	Manual	27	0	27
	Mecánico	6	12	18
Total		33	12	45

En la tabla 10, podemos observar que en ordeños manuales ninguno cumple con la rutina de ordeño y en el ordeño mecánico 12 si cumplen rutinas de ordeño.

Tabla 11. Resultados del antibiograma para Coliformes (%)

Coliformes	Eritromicina	Gentamicina	Ceftriaxona	Ampicilina	Amoxicilina
I	22,22	0,00	0,00	11,11	24,44
R	57,78	2,22	0,00	73,33	60,00
S	20,00	97,78	100,00	15,56	15,56
TOTAL	100,00	100,00	100,00	100,00	100,00

Fuente: autores (I: intermedio, R: resistente, S: sensible)

En la tabla 11, de las pruebas de sensibilidad antibacteriana se obtuvo para Coliformes totales resistencias de Ampicilina, Amoxicilina y Eritromicina, resultaron ser sensibles a Ceftriaxona y Gentamicina.

Tabla 12. Resultados del antibiograma para S. aureus (%)

S. aureus	Eritromicina	Gentamicina	Ceftriaxona	Ampicilina	Amoxicilina
I	2,22	6,66	15,55	24,45	28,88
R	22,50	2,22	2,22	33,33	8,89
S	75,28	91,11	82,23	42,22	62,23
TOTAL	100	100	100	100	100

En la tabla 12, de las pruebas de sensibilidad antibacteriana se obtuvo para *S. aureus* resistencia frente a Ampicilina y resultaron ser sensibles a Ceftriaxona, Gentamicina, Amoxicilina y Eritromicina.

Tabla 13. Resultados del antibiograma para Aerobios Mesófilos (%)

Aerobios	Eritromicina	Gentamicina	Ceftriaxona	Ampicilina	Amoxicilina
I	24,44	0,00	13,33	11,13	22,22
R	39,99	2,22	0,00	59,99	53,33
S	35,57	97,78	86,67	28,88	24,45
TOTAL	100	100	100	100	100

Fuente: autores

En la tabla 13, de las pruebas de sensibilidad antibacteriana se obtuvo para Aerobios mesófilos resistencias de Ampicilina, Amoxicilina y Eritromicina, resultaron ser sensibles a Ceftriaxona y Gentamicina.

Tabla 14. Resultados del antibiograma para E. coli (%)

E. coli	Eritromicina	Gentamicina	Ceftriaxona	Ampicilina	Amoxicilina
I	38,89	0	0	16,68	22,22
R	55,55	16,66	0	77,77	66,67
S	5,56	83,34	100	5,55	11,11
TOTAL	100	100	100	100	100

En tabla 14, de las pruebas de sensibilidad antibacteriana se obtuvo para *E. coli* resistencias de Ampicilina, Amoxicilina y Eritromicina, resultaron ser sensibles a Ceftriaxona y Gentamicina.

Tabla 15. Comparación del efecto de la temperatura en tanque de frio y otros recipientes frente al crecimiento bacteriana

Recipiente	E. coli X	Aerobios \bar{x}	Coliformes \bar{x}	S. aureus X
Tanque frio	17,1 ± 6,41	1627523,1± 728987,66	1871,5 ± 884,97	1745,4 ± 775,21
Cantarilla / balde	27,5 ± 11,80	4798725,0±844362,53	6453,1 ±973,97	5145,0±1288,68
/ otros				
Significancia	,588	,030	,008	,112

Fuente: autores

En la tabla 15 al aplicar el estadístico de Mann-Whitney se puede observar que en el caso de *Escherichia coli* y los *Staphylococcus aureus* no tiene influencia el tanque de frio en la cantidad de microorganismos, pero si existe diferencias numéricas en ambos casos; en lo que respecta a los Aerobios mesófilos y Coliformes totales si existe diferencia estadísticamente significativa del tanque frio sobre el número de bacterias, pudiendo evidenciar un recuento mucho menor de Aerobios mesófilos y Coliformes totales en ganaderías que tienen el tanque de enfriamiento.

7. DISCUSIÓN

En el presente estudio se registraron los siguientes resultados: para los recuentos de Aerobios mesófilos se obtuvo medias en las fincas pequeñas de 5437346,67 UFC/mL, en fincas medianas recuentos de 4722306,67 UFC/mL y en las fincas grandes recuentos de 1488146,6 UFC/mL. Para el recuento de *E. coli* se encontró valores de medias de 38 UFC/mL en las fincas pequeñas, 24,66 UFC/mL en las fincas medianas y 10,80 UFC/mL en las fincas grandes. En el recuento de Coliformes totales se determinó valores de medias de 7926 UFC/mL en las fincas pequeñas, 4450,66 UFC/mL en las fincas medianas y 3012 UFC/mL en las fincas grandes. En el recuento de *Staphylococcus aureus* se obtuvo valores de medias de 6966,67 UFC/mL en las fincas pequeñas, 3356 UFC/mL en las fincas medianas y 2166 UFC/mL en las fincas grandes.

Las medias de los recuentos bacterianos en la provincia del Azuay fue para Aerobios mesófilos 3882599,97 UFC/mL, *Staphylococcus aureus* 4229,55 UFC/mL, Coliformes totales 5129,55 UFC/mL y de *Escherichia coli* 24,48 UFC/mL.

La Norma INEN 9:2012 Quinta revisión especifica valores solo para Aerobios Mesófilos y es en la cual se basa ésta investigación, pero no especifica valores para Coliformes totales, *S. aureus*, ni para *E. coli*, pero en el proyecto de la norma técnica Ecuatoriana NTE INEN 9:2015 Sexta revisión, leche cruda requisitos, sí los especifican con valores y es en ésta, en la cual nos fundamentaremos para su interpretación.

Según la norma técnica Ecuatoriana NTE INEN 9:2012 Quinta revisión, leche cruda requisitos, los requisitos microbiológicos de la leche cruda tomada en hato establece para Aerobios mesófilos de 1,5 x 10⁶ UFC/ml, este valor en el presente estudio es superado por las fincas pequeñas (5437346,66 UFC/mL) y fincas medianas (4722306,66 UFC/mL). En las fincas grandes el recuento es de 1488146,6 UFC/mL por lo que se encuentra por debajo de los 1500000 UFC/mL que establece dicha norma.

Para el recuento de *S. aureus* el límite de aceptación es 10 UFC/mL y 100 UFC/mL el límite superado el cual se rechaza la leche, esto según el NTE INEN 9:2015 Sexta

revisión; en nuestro estudio en las fincas grandes, medianas y pequeñas se encuentran superando los valores mencionados en esta norma, teniendo como media en la provincia del Azuay de *Staphylococcus aureus* 4229,55 UFC/mL.

Para el recuento de *E. coli* el límite de aceptación es 10 UFC/mL y 100 UFC/mL el límite superado el cual se rechaza la leche según el NTE INEN 9:2015 Sexta revisión; en nuestra investigación obtuvimos valores que no superan el límite de rechazo en la Provincia del Azuay para *Escherichia coli*, siendo el mismo de 24,48 UFC/mL.

Molineri et al. (2009) en su investigación realizada en Argentina sobre la calidad bacteriológica y relación entre grupos bacterianos en leche de tanque de frío con láminas Petrifilm, menciona que la media del recuento de Aerobios mesófilos Totales fue de 102.059 UFC/mL, de la cual el 35,6% de las muestras mostró valores inferiores a las 10.000 UFC/mL. La media del recuento de Coliformes totales fue de 424 UFC/mL y un 70,5% de las muestras estuvieron por debajo de 100 UFC/mL. En el recuento de *E. coli* la media fue de 44 UFC/mL. Este estudio con relación a nuestra investigación son valores completamente inferiores para Aerobios mesófilos y Coliformes totales, en el caso del recuento de *Escherichia coli* tenemos una media en la provincia del Azuay de 24,48 UFC/mL lo que demuestra que son valores inferiores al estudio de Molineri.

Calderón et al. (2012) en su trabajo calidad fisicoquímica y microbiológica de leches crudas en empresas ganaderas del sistema doble propósito en Montería (Córdoba-Colombia), menciona que el recuento en leche de tanque para Aerobios mesófilos con promedio de 160.346 UFC/mL; cuando la leche fue conservada en tanque de refrigeración el promedio fue de 74.514 ± 125.222 UFC/mL, y el promedio de leches de cantarilla de 235.450 ± 252.559 UFC/mL. El valor promedio es menor de los Aerobios mesófilos en la leche de tanque respecto al de cantarilla, se puede deber a que el enfriamiento de la leche a 4 °C tiene por objetivos inhibir el crecimiento bacteriano y ampliar el tiempo de almacenado en la finca. Estos recuentos son inferiores al de nuestro estudio pero en lo que respecta a los Aerobios mesófilos concordamos que en las fincas que poseen tanque de refrigeración sus recuentos son menores a los que usan cantarilla

para almacenar la leche cruda, en nuestro caso existió diferencia estadísticamente significativa del tanque frio sobre el número de bacterias.

Revelli et al. (2004) analiza muestras recolectadas entre los años 1993 y 2002 en Argentina, en el cual el Recuento de Microorganismos Aerobios mesófilos totales resulta en un valor medio de 1,2x10⁵ ± 2,4x10⁵ UFC/mL. Y concluye que el parámetro microbiológico estudiado durante los 10 años de experiencia, manifiesta un significativo mejoramiento, es decir el recuento de bacterias totales observó cambios de 3,2x10⁵ UFC/mL en 1993 a 3,2 x 10⁴ UFC/mL en 2002. En este estudio de Revelli Incluso muchos años atrás, manejan valores menores al de nuestra investigación.

Según Calderón et al. (2006) en leches de la sabana de Bogotá según la cadena de frío, el promedio de Aerobios mesófilos para leches en tanque de frío obtiene valores de 1083511 UFC/mL, mientras que para leches de cantarilla obtuvo valores de 2938991 UFC/mL. En su recuento de Coliformes totales en las leches de tanque de frío su recuento es de 4361 UFC/mL, mientras que de las cantarillas obtiene valores de 8725 UFC/mL. Este estudio de Calderón se asemeja al nuestro debido a que el recuento de Aerobios mesófilos en tanque de frío es de 1488146,67 UFC/mL y en leche de cantarilla, nuestros valores son más elevados 5437346,67 UFC/mL; mientras que en el recuento de Coliformes totales 3012 UFC/mL en tanque de frío y en leche de cantarilla 7926 UFC/mL.

Moreno et al.(2007), señala que en cuanto se refiere al recuento de Aerobios mesófilos existe una relación significativa entre la desinfección, el lavado y secado de los pezones; además menciona que la leche recogida en cantarillas a temperatura ambiente favorece la rápida multiplicación microbiana principalmente de microorganismos mesófilos, mientras que en hatos en que se utiliza tanque de refrigeración a una temperatura entre 4 a 6 °C conserva la leche fresca y reduce el desarrollo de bacterias. En la desinfección antes del ordeño obtiene recuentos de Aerobios mesófilos de 1010000 UFC/mL, mientras los que no desinfectan con valores más elevados de 1880000 UFC/mL. El secado de pezones y el recuento de Coliformes presentan una relación significativa por lo que en hatos que no secan obtiene recuentos de 134600 UFC/mL de Coliformes, mientras que

el secado de los pezones beneficia en el recuento de Coliformes obteniendo valores de 78026 UFC/mL. El recuento de Coliformes en sistemas productivos que utilizan cantarillas es superior con 93095 UFC/mL, mientras que los que utilizan tanque de refrigeración es 28100 UFC/mL, lo que concuerda con nuestra investigación ya que en fincas que poseen tanque de refrigeración sus recuentos son menores.

Lluguín (2016) en su trabajo análisis microbiológico la leche cruda con láminas Petrifilm en Riobamba, para el recuento de Coliformes totales se basa en el Reglamento Técnico RTCR: 401-2006 que estable como límite máximo permitido de bacterias Coliformes totales 2000 UFC/mL, en su caso obtuvo valores entre 4667 UFC/mL y 233667 UFC/mL, en el cual todas sus muestras de leche cruda analizadas sobrepasan dicho límite, al igual que nuestro estudio también todas las fincas sobrepasan los recuentos de Coliformes ya que son mayores a 2000 UFC/mL. *Escherichia coli* también basándose en el mismo reglamento la cantidad estándar máxima permisible para esta bacteria es de 100 UFC/mL, lo cual en su estudio el 42.9% de las muestras cumplen con el parámetro microbiológico, en nuestro caso tuvimos una media de 24,48 UFC/mL de *Escherichia coli* por lo que se encuentran dentro del límite de aceptación. El 14,28% excedió el valor estándar establecido por la norma NTE INEN 0009 (1.5x10⁶ UFC/mL) para Aerobios mesófilos en su caso, en nuestro estudio solo las fincas grandes no superan dicha norma, mientras que las fincas pequeñas y medianas también superan la norma INEN 0009.

Granizo (2016) en su trabajo en la ciudad de Riobamba obtiene en el recuento de *Escherichia coli* valores que van de 3000 UFC/mL a 102333,3 UFC/m, en comparación con nuestro estudio tenemos valores completamente bajos 24,48 UFC/mL. En el conteo de *Staphylococcus aureus* resultó estar entre 23333 UFC/mL y 58666 UFC/mL, mientras que en la presente investigación obtuvimos valores mucho más bajos de *Staphylococcus aureus* 4229,55 UFC/mL.

Trujillo (2016) menciona en su trabajo realizado en el mercado de Santa Rosa de Riobamba que el promedio encontrado para *Staphylococcus aureus* fue de 5,1x10⁴ UFC/mL, en el recuento de Coliformes totales de 26,6x10⁴ UFC/mL, para *Escherichia coli* menciona valores de 21,5x10⁴ UFC/mL, y para Aerobios mesófilos de 100,9x10⁴

UFC/mL. Todos estos valores presentados por Trujillo son datos más elevados a los presentados en nuestro estudio esto se explica porque nuestros datos son a nivel de finca mientras que Trujillo lo hace en el punto de distribución en el mercado, por lo que la leche sufre más contaminación.

Buñay y Peralta (2015) en su estudio en la Provincia de Cañar, encontraron que el recuento de Aerobios mesófilos tiene un promedio de 6800000 UFC/mL, lo que demuestra que el 51,2 % de las muestras que se analizaron tienen un valor superior al dictaminado por la Norma INEN 0009. En cambio en nuestro estudio encontramos valores más bajos de Aerobios mesófilos de 3882599,97 UFC/mL.

Rojas J (2013) en su estudio de Aerobios Mesófilos en la leche cruda en carros expendedores en la ciudad de Cuenca, determinó que de los 82 carros muestreados 46 presentan valores inferiores a 1.5x10⁶ UFC/mL de Aerobios mesofilos, es decir el 43.90% y que supera el limite de la norma INEN: 2012 leche cruda requisitos. Sus recuentos de Aerobios mesófilos se encuentran en rangos de 7x10⁴ UFC/mL y 2,96x10⁸ UFC/mL.

En las **pruebas de sensibilidad antibacteriana** efectuadas en esta investigación obtuvimos para **Coliformes totales** resistencias de Ampicilina (73,33%), Amoxicilina (60,00%) y Eritromicina (57,78%), y resultaron ser sensibles a Ceftriaxona 100,00% y Gentamicina (97,78%). Se evidenció para **S. aureus** resistencias de Ampicilina (33,33%) y resultaron ser sensibles a Ceftriaxona (82,23%), Gentamicina (91,11%), Amoxicilina (62,23%) y Eritromicina (75,28%). Se determinó en **Aerobios Mesófilos** resistencias de Ampicilina (59,99%), Amoxicilina (53,33%) y Eritromicina (39,99%), y resultaron ser sensibles a Ceftriaxona (86,67%) y Gentamicina (97,78%). Para **E. coli** se encontró resistencias de Ampicilina (77,77%), Amoxicilina (66,67%) y Eritromicina (55,55%), resultaron ser sensibles a Ceftriaxona (100%) y Gentamicina (83,34%).

Trujillo (2016) en Riobamba realizó pruebas de sensibilidad a antimicrobianos, en donde las cepas de *Escherichia coli* presentaron resistencia frente a Ampicilina en un 57%, mientras que un 100% fue sensible para Gentamicina y Amoxicilina, lo que coincide con nuestro estudio ya que se encontró resistencias de Ampicilina (77,77%) y sensibilidad a

Gentamicina en un 100% y a Amoxicilina en un 94%. Las cepas aisladas de *Staphylococcus aureus* presentaron resistencia a Ampicilina en un 47%, lo que se asemeja a nuestro estudio ya que se encontró resistencias de Ampicilina en 33,33%, Trujillo también menciona sobre la sensibilidad a Gentamicina en un 100% y a Amoxicilina en un 94%, lo que también concuerda con los resultados de este estudio al ser sensibles a Gentamicina 91,11% y Amoxicilina 62,23%.

Argudo (2017) en un estudio en la ciudad de Cuenca determino en las cepas de *Staphylococcus aureus* aisladas en casos de mastitis, la resistencia a Eritromicina fue de 36,07%, mientras que en nuestro estudio existe sensibilidad a Eritromicina 75,28%.

Lluguín (2016) en Riobamba menciona que en sus pruebas de sensibilidad antibacteriana el 40% de las muestras en las que detectó *Escherichia coli* demostró resistencia frente a Ampicilina y en nuestro estudio para *E. coli* se encontró resistencias de Ampicilina en 77,77%. En las que se detectó *Staphylococcus aureus* el 100% de ellas mostraron sensibilidad ante Eritromicina, y en el estudio se encontro sensibilidad para Eritromicina en 75,28% para *Staphylococcus aureus*.

Faría et al. (2005) en su trabajo sensibilidad a los agentes antimicrobianos de algunos patógenos aislados de leche de cuartos de bovinos mestizos doble propósito, menciona que la sensibilidad in vitro de cepas de *Staphylococcus aureus* para Gentamicina la susceptibilidad es del 100% y en nuestro caso para Gentamicina la sensibilidad es de 91,11%, para Ampicilina la resistencia de 13,63% y en nuestro caso resistencia a Ampicilina 33,33%, para Eritromicina la sensibilidad es del 90,90% y en el presente estudio sensibilidad a Eritromicina es de 75,28%.

Aponte, F. (2007) en su investigación sobre el perfil de resistencia in vitro a antimicrobianos de cepas aisladas de leche cruda bovina en establecimientos de pequeña y mediana producción, obtuvo para Staphylococcus un 64% de resistencia a Ampicilina y en este estudio hay resistencia a Ampicilina de 33,33%, para Gentamicina 19% de resistencia, en nuestro estudio resulta sensible a la Gentamicina 91,11%. En el caso de *E. Coli* determinó porcentajes de resistencia para Ampicilina en un 86% y en este

estudio hay resistencia de Ampicilina en 77,77%, para Gentamicina sensibilidad de 93% y en nuestro caso sensibilidad de Gentamicina 83,34%.

Barrionuevo (2016) determinó el perfil de resistencia/susceptibilidad antimicrobiana en cepas de bacterias del grupo de Enterobacterias en zonas rurales del cantón Riobamba, encontrando que cepas de *E. Coli* resultan sensibles a Ampicilina en un 45.5%, Amoxicilina en un 45.5% y Ceftriaxona un 100%. En nuestro caso hay resistencia a ampicilina en 77,77% y Amoxicilina 66,67%, para Ceftriaxona coincidimos en que existe una sensibilidad de100%.

Aguirre (2007) en su trabajo de aislamiento e identificación de *Staphylococcus Aureus* a partir de leche bovina Nicaragua, determino que para Eritromicina el 95,15% fue sensible y en el presente estudio presento sensibilidad a Eritromicina en 75,28%, para Gentamicina el 95,28% fue sensible y en el presente caso fue sensible a Gentamicina en 91,11%, para Ampicilina el 16,67% resistente y en el presente caso resistencias de Ampicilina en 33,33%, para Ceftriaxone el 94,12% fue sensible y en el presente estudio presento sensibilidad a Ceftriaxona en 82,23%.

Según Lluguín (2016) en sus pruebas de sensibilidad antibacteriana menciona que *Staphylococcus aureus* presentan sensibilidad a la Eritromicina en un 100% de las muestras y en el presente estudio resulta ser sensible a Eritromicina el 75,28%. .

Granizo (2016) menciona en su estudio que *Escherichia coli* demostró resistencia frente a Ampicilina en un 33,3% y en el presente caso hay resistencia en 77,77% para Ampicilina. El 100% de *Escherichia coli* fueron sensibles frente a Gentamicina y en el presente estudio existe sensibilidad de Gentamicina en 83,34%. Para *Staphylococcus aureus* el 100% de ellas mostraron sensibilidad ante la Eritromicina y para la presente investigación la sensibilidad de Eritromicina fue de 75,28%.

8. CONCLUSIONES

En la calidad bacteriológica de la leche cruda producida a nivel de finca en la Provincia del Azuay, se determinó mediante el estudio de sus indicadores de calidad que los recuentos bacterianos de Coliformes totales, Aerobios mesófilos y *Staphylococcus aureus* se encuentran excediendo los valores establecidos por la norma técnica Ecuatoriana INEN, en el caso de *Escherichia coli* se encuentra dentro del límite de aceptación establecida por dichas normas.

En las pruebas de sensibilidad antibacteriana se concluyó que para el caso de Aerobios mesófilos, Coliformes totales y *Escherichia coli* presentaron resistencia a Ampicilina, Amoxicilina y Eritromicina, y resultaron ser sensibles a Ceftriaxona y Gentamicina. Para *Staphylococcus aureus* presento resistencia a Ampicilina y resultaron ser sensibles a Ceftriaxona, Gentamicina, Amoxicilina y Eritromicina.

Se puede mencionar que la calidad higiénica de la leche cruda a nivel de finca es el efecto de varios factores y condiciones que rodean a la vaca, en general las malas prácticas higiénicas en la rutina de ordeño, malas condiciones higiénicas de los establos o sitios de ordeño, falta de higiene en las manos de los operarios, mala calidad del agua, falta tanques de refrigeración, y muchos factores más favorecen al aumento de los recuentos de microorganismos, lo que nos sugiere que la calidad sanitaria de la leche a nivel de finca es deficiente lo que constituye un riesgo para la salud pública.

9. RECOMENDACIONES

Ejecutar investigaciones en cuanto al análisis microbiológico de la leche cruda en todas sus etapas de su producción, es decir desde la finca hasta su comercialización con la finalidad de encontrar y corregir los mayores índices de contaminación; aplicando las normas INEN con la finalidad de producir leche de calidad.

Capacitar a los encargados en ejecutar los procesos de ordeño sobre prácticas correctas de higiene y manejo sanitario de la leche cruda, con la finalidad de disminuir las cargas bacterianas y por ende preservar la salud del consumidor.

Enseñar el uso correcto de antibióticos en las ganaderías lecheras con el propósito de evitar las resistencias que cada día son más comunes y peligrosas.

10. REFERENCIAS BIBLIOGRÁFICAS

- Organización mundial de la Salud, FAO. Codex Alimentarius Leche y productos Lácteos [Internet]. Leche y Productos Lacteos. Roma: Secretaria del programa conjunto FAO/OMS; 2011. 267 p. Available from: ftp://ftp.fao.org/codex/Publications/Booklets/Milk/Milk_2011_ES.pdf
- Agudelo D, Bedoya O. Composición nutricional de la leche de ganado vacuno. Rev Lasallista Investig [Internet]. 2008;2(1):38–42. Available from: http://www.redalyc.org/pdf/695/69520107.pdf
- Magari H. Producción higiénica de la leche cruda [Internet]. S.A P y SI, editor.
 Valdivia; 2000. 104 p. Available from:
 http://www.vet.unicen.edu.ar/ActividadesCurriculares/MateriaPrima/images/Documentos/2010/Produccion higiénica de la leche cruda-Magariños-2000-OEA-GTZ.pdf
- Augusto I, Figueroa G. Implementacion del metodo alternativo petrifilm para determinar coliformes y bacterias aerobias mesófilas en la industria de lácteos "Pairumani" y el laboratorio "Lidiveco" de Senasag. Journal Boliviano de Ciencias. 2016;11(35):58–65.
- Hernández J, Bedolla J. Importancia del conteo de células somáticas en la calidad de la leche. REDVET Revista electrónica de Veterinaria 1695-7504. 2008;IX(9):34.
- 6. Román S, Guerrero L, Pacheco L. Evaluación de la calidad físicoquímica, higiénica y sanitaria de la leche cruda almacenada en frío. Revista Cientifica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. 2003;13(2):146–52.
- 7. Norma Técnica Ecuatoriana INEN 0009. Leche Cruda. Requisitos. [Internet]. Quito; sexta revición, pagina web. 2014 [cited 2018 Feb 2]. p. 2–8. Available from: http://www.normalizacion.gob.ec/wp-content/uploads/downloads/2015/07/nte_inen_009_6r.pdf%0Awww.inen.gob.ec

- 8. Mancera VM, Moreno FC, Ávila LE, Vargas MR. Análisis microbiológico y su relación con la calidad higiénica y sanitaria de la leche producida en la región del Alto de Chicamocha (departamento de Boyacá). Revista de Medicina Veterinaria (Bogota). 2007;14:61–83.
- Camacho A, Giles M, Ortegón A, Palao M, Serrano B, Velázquez O. Determinación de coliformes totales por cuenta en placa. Versión para Administradores Manuales y Documentos de la Facultad de Química, UNAM [Internet]. 2009[cited 2018 Feb 2]. Available from: http://depa.fquim.unam.mx/amyd/archivero/Tecnic-Basicas-Coliformes-en-placa_6528.pdf
- Rodas K, Pazmiño B, Rodas E, Cagua L, Núñez P, Coello R. Presencia de Staphylococcus aureus en quesos comercializados en la ciudad de Milagro , octubre – noviembre 2013. Revista Cumbres. 2016;2(2):25–9.
- Roldán ML, Chinen I, Otero JL, Miliwebsky ES, Alfaro N, Burns P. Aislamiento, caracterización y subtipificación de cepas de Escherichia coli O157:H7 a partir de productos cárnicos y leche. Revista Argentina de Microbiologia. 2007;39(2):113–9.
- Zaragoza N, Derrickson B. Análisis microbiológico de los alimentos. In: Anmat.
 2011. p. 1–175.
- 13. Camacho A, Giles M, Ortegón A, Palao M, Serrano B, Velázquez O. Cuenta en placa de bacterias. Técnicas para el Análisis Microbiológico Aliment. 2009;1–10.
- 14. Heer G. Microbiologia de la Leche. J Chem Inf Model. 2013;53:1–18.
- 15. Universidad del Zulia. Microorganismos de la Leche Cruda. :26. Available from: http://www.fcv.luz.edu.ve/images/stories/catedras/leche/microbiologia.pdf
- 16. CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard; Informational Supplement. Clinical and Laboratory Standards Institute. 2004;24(17):1–99.
- 17. Petrifilm TM 3M TM. Guía de Interpretación 3M. Guía Interpret [Internet]. 2003; 1–80.

Available from: http://jornades.uab.cat/workshopmrama/sites/jornades.uab.cat.workshopmrama/fil es/Petrifilm_guias.pdf

- 18. 3M Food Safety. Placas Petrifilm TM para el Recuento de E. coli/Coliformes. Microbiol Prod [Internet]. 2008;3(1):1–6. Available from: http://multimedia.3m.com/mws/media/444950O/3m-petrifilm-e-coli-coliform-count-plate-interpretation-guide-spanish.pdf
- 19. 3M Center Bldg. 3M Placas Petrifilm TM para el Recuento de Aerobios. Microbiol Prod [Internet]. 2008;11(1):1–6. Available from: www.3M.com/microbiologia
- 3M. Placas Petrifilm Staph Express. Microbiol Prod [Internet]. 2007;1–7. Available from: https://multimedia.3m.com/mws/media/467012O/3m-petrifilm-staph-expressinterpretation-guide-spanish.pdf&fn=70-2009-4312-7-HR.pdf
- 21. Moreno FC, Mancera VM, Ávila LE, Vargas MR. Análisis microbiológico y su relación con la calidad higiénica y sanitaria de la leche producida en la región del Alto de Chicamocha (departamento de Boyacá). Revista Medicina Veteterinaria [Internet]. 2007;14:61–83. Available from: https://revistas.lasalle.edu.co/index.php/mv/article/view/1802
- 22. González G, Molina B, Coca R. Calidad De La Leche Cruda. Foro sobre Ganaderia Lechera de la Zona Alta de Veracruz [Internet]. 2010; Available from: https://www.uv.mx/apps/agronomia/foro_lechero/Bienvenida_files/CALIDADDELA LECHECRUDA.pdf
- 23. FCV Universidad del Zulia. Microorganismos de la Leche Cruda. 2002;26. Available from: http://www.fcv.luz.edu.ve/images/stories/catedras/leche/microbiologia.pdf
- 24.Knorr N, Paduch JH, Zinke C, Hoedemaker M, Krömker V. A field study evaluation of Petrifilm[™] plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev Vet Med [Internet]. 2014;113(4):620–4. Available from: http://dx.doi.org/10.1016/j.prevetmed.2013.11.019

- 25. Arteaga L. Implementación de un plan de mejoramiento de la calidad de la leche, de proveedores de lácteos San Antonio Cañar [Internet]. Escuela superior politécnica de Chimborazo extensión Morona Santiago; 2016. Available from: http://dspace.espoch.edu.ec/bitstream/123456789/6079/1/27T0315.pdf
- 26. FAO. Buenas prácticas de ordeño [Internet]. Guatemala. 2011. p. 20. Available from: http://www.fao.org/3/a-bo952s.pdf
- 27. Lluguín Lascano JJ. Análisis microbiológico y resistencia a antibióticos de la leche cruda de bovino comercializada en el mercado San Alfonso de la ciudad de Riobamba. [Internet]. Vol. Bachelor, Facultad de Ciencias. 2016. Available from: http://dspace.espoch.edu.ec/bitstream/123456789/4978/1/56T00628 UDCTFC.pdf
- 28. Rodríguez, E; Gamboa, M; Hernández, F; García J. Bacterioloía general principios y prácticas de laboratorio [Internet]. 2nd ed. Editorial Universidad de Costa Rica, editor. 2016. 458 p. Available from: https://books.google.com.ec/books?id=vwB0fgirgN0C&pg=PA141&dq=petrifilm&hl=es&sa=X&ved=0ahUKEwj0z7f7dbaAhWE24MKHVtHAT8Q6AEIKDAA#v=onepage&q=petrifilm&f=false
- 29. GRANIZO J. Presencia de bacterias de los géneros *Staphylococcus aureus*, Escherichia coli y Brucella abortus y su perfil de resistencia antimicrobiana en leche cruda bovina procedente de Tunshi y San Andrés [Internet]. Escuela Superior Politécnica de Chimborazo; 2016. Available from: http://dspace.espoch.edu.ec/bitstream/123456789/5724/1/56T00654.pdf
- 30.Trujillo C. Análisis microbiológico y resistencia a antimicrobianos de la leche cruda que se expende en el mercado de Santa Rosa, ciudad de Riobamba [Internet]. Escuela superior politécnica de Chimborazo; 2016. Available from: http://dspace.espoch.edu.ec/handle/123456789/6328
- 31. Gaviria B. Calidad higiénica y sanitaria de la leche cruda [Internet]. Buenas Prácticas de Producción Primaria de Leche. Antioquia; 2010. p. 115–122. Available from:

https://aprendeenlinea.udea.edu.co/revistas/index.php/biogenesis/article/view/328079/2 0785048

- 32. Calderón A, Rodríguez VC. Prevalência de mastitis bovina y su etiología infecciosa en sistemas especializados en producción de leche en el altiplano cundiboyacense (Colombia). Rev Colombiana Ciencias Pecuarias [Internet]. 2008;21(4):582–9. Available from: http://www.redalyc.org/articulo.oa?id=295023543006
- 33. Cavalieri SJ, Harberk RJ, McCarter YS, Ortez JH, Rankin ID, Sautter RL. Manual de pruebas de susceptibilidad antimicrobiano [Internet]. 1st ed. Coyle MB, editor. Washington; 2009. 1-248 p. Available from: https://www.google.com.ec/search?q=Manual+de+Pruebas+de+Susceptibilidad+Antimic robiana&oq=Manual+de+Pruebas+de+Susceptibilidad+Antimicrobiana&aqs=chrome..69 i57j0l3.2681j0j7&sourceid=chrome&ie=UTF-8
- 34. McCarron JL, Keefe GP, McKenna SLB, Dohoo IR, Poole DE. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J Dairy Sci [Internet]. 2009;92(5):2297–305. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022030209705454.
- 35. Chávez V. Manual de buenas prácticas en la calidad de la leche para la elaboración de productos lácteos [Internet]. Universidad Autónoma Agraria Antonio Narro; 2007. Available from: http://repositorio.uaaan.mx:8080/xmlui/handle/123456789/42365
- 36. Carrillo L, Audisio C. Manual de microbiología de alimentos [Internet]. Alimentación en España. San Salvador de Jujuy; 2007. p. 125–32. Available from: http://www.unsa.edu.ar/biblio/repositorio/malim2007/
- 37. Fernandez E. Producción de vacunos lecheros: Ordeños y Calidad de Leche. 1ª ed. Lima: Macro EIRL; 2015. 75-163 p.
- 38. Villegas, Abraham; Santos A. Calidad de Leche Cruda. 2da edición. México: Trillas; 2013. 104 p.

- 39. Sumano H, Ocampo L. Farmacología Veterinaria. 3ra edición. México: McGraw-Hill Interamericana; 2006. 1061 p.
- 40. Botana L, Landoni M, Jiménez T. Farmacología y Terapéutica Veterinaria. 1ra edición. Madrid: McGraw-Hill Interamericana de España; 2002. 734p.
- 41. INEN-ISO. Norma Técnica Ecuatoriana. Leche y productos lácteos. Directrices para la toma de muestras (ISO 707:2008, IDT). Quito: INEN-ISO; 2014. p.49.
- 42. Norma Técnica Ecuatoriana INEN 0009. NTE INEN 0009 (2012): Leche cruda. Requisitos [Internet]. Quinta revisión. Quito; 2012. p. 9. Available from: https://ia801905.us.archive.org/26/items/ec.nte.0009.2008/ec.nte.0009.2008.pdf
- 43. Molineri A, Signorini M, Cuatrin A, Canavesio V, Neder V, Russi N. Calidad bacteriológica y relación entre grupos bacterianos en leche de tanque de frío. Revista FAVE Ciencias Veterinarias [Internet]. 2009 Feb;75–86. Available from: https://www.researchgate.net/publication/256133198_Calidad_Bacteriologica_y_Relacio n_entre_Grupos_Bacterianos_en_Leche_de_Tanque_de_Frio
- 44. Buñay N, Peralta F. Determinación del recuento de aerobios mesófilos en leche cruda que ingresa a industrias Lacto Ochoa -Fernández CIA. LTDA [Internet]. Universidad de Cuenca; 2015. Available from: http://dspace.ucuenca.edu.ec/bitstream/123456789/21584/1/TESIS.pdf
- 45. Calderón, A., Rodríguez, V., Arrieta, G., Martínez, N., y Vergara O. Calidad fisicoquímica y microbiológica de leches crudas en empresas ganaderas del sistema doble propósito en Montería (Córdoba). Rev UDCA Act Div Cient [Internet]. 2012; 15(2):399–407. Available from: http://www.scielo.org.co/pdf/rudca/v15n2/v15n2a18.pdf
- 46. Revelli G, Sbodio O, Tercero E. Recuento de bacterias totales en leche cruda de tambos que caracterizan la zona noroeste de Santa Fe y sur de Santiago del Estero. Revista Argentina de Microbiología [Internet]. 2004; 145–149. Available from: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-75412004000300010&Ing=es.

- 47. Argudo D. Factores que afectan la susceptibilidad antibiótica de *Staphylococcus aureus* aislado de mastitis bovina [Internet]. Universidad de Cuenca; 2017. Available from: http://dspace.ucuenca.edu.ec/handle/123456789/28471
- 48. Calderón, A, García, F, Martínez, G. Indicadores de calidad de leches crudas en diferentes regiones de Colombia. Revista MVZ Córdoba [Internet]. 2006;11(1):725-737. Available from: http://www.redalyc.org/articulo.oa?id=69311106
- 49. Valle T. Evaluación de la calidad de la leche cruda e implementación de un manual de calidad en el centro de acopio: asociación el Panecillo, Tungurahua [Internet]. Escuela superior politécnica de Chimborazo; 2015. Available from: http://dspace.espoch.edu.ec/bitstream/123456789/4621/1/56T00600 UDCTFC.pdf
- 50. Rojas J. Estudio Preliminar de Aerobios Mesófilos en la leche cruda que se expende en carros repartidores en la ciudad de Cuenca [Internet]. Universidad del Azuay; 2013. Available from: http://dspace.uazuay.edu.ec/bitstream/datos/3206/1/09980.pdf
- 51. Faría Reyes JF, Valero-Leal K, D'Pool G, Urdaneta AG, Cagnasso MA. Sensibilidad a los agentes antimicrobianos de algunos patógenos mastitogénicos aislados de leche de cuartos de bovinos mestizos doble propósito. Revista Científica la Fac Ciencias Vet la Univ del Zulia [Internet]. 2005; 15(3):227–34. Available from: http://www.redalyc.org/html/959/95915306/
- 52. Aponte F. In vitro antimicrobial resistance profile of mastitis-causing strains isolated from raw bovine milk in dairy farms of small and medium production. Mem Inst Investig Cienc Salud [Internet]. 2007; 5(1):19–25. Available from: http://revistascientificas.una.py/index.php/RIIC/article/view/329/256
- 53. Barrionuevo A. Determinación del perfil de resistencia/susceptibilidad antimicrobiana en cepas de bacterias del grupo de enterobacterias aisladas en queso fresco artesanal elaborados en zonas rurales del cantón Riobamba. [Internet]. Escuela Superior Politécnica de Chimborazo; 2016. Available from: http://dspace.espoch.edu.ec/bitstream/123456789/4902/1/56T00620 UDCTFC.pdf

54. Aguirre J, Zeledón K. Aislamiento e identificación fenotípica de *Staphylococcus Aureus* mediante la técnica Fingerprinter a partir de leche bovina afectada con mastitis subclínica en seis fincas del municipio de león, durante el periodo Mayo 2005 Mayo 2006 [Internet]. Universidad nacional autónoma de Nicaragua; 2007. Available from: http://riul.unanleon.edu.ni:8080/jspui/bitstream/123456789/1042/1/203954.pdf

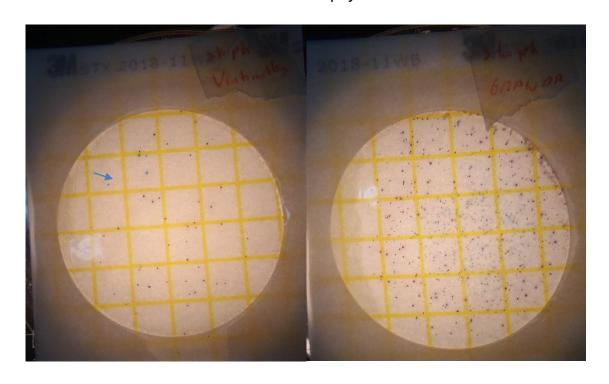
11. ANEXOS

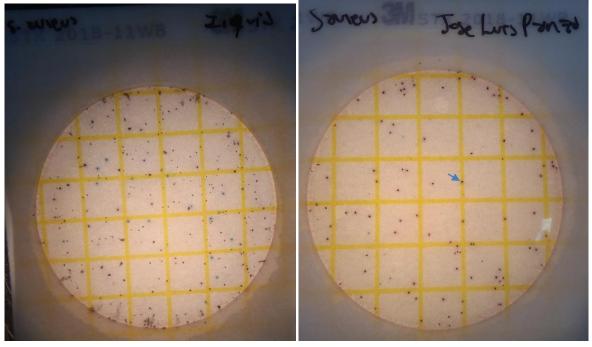
Anexo 1. Encuesta aplicada

UNIVERSIDAD DE CUENCA FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA DE MEDICINA VETERINARIA Y ZOOTECNIA

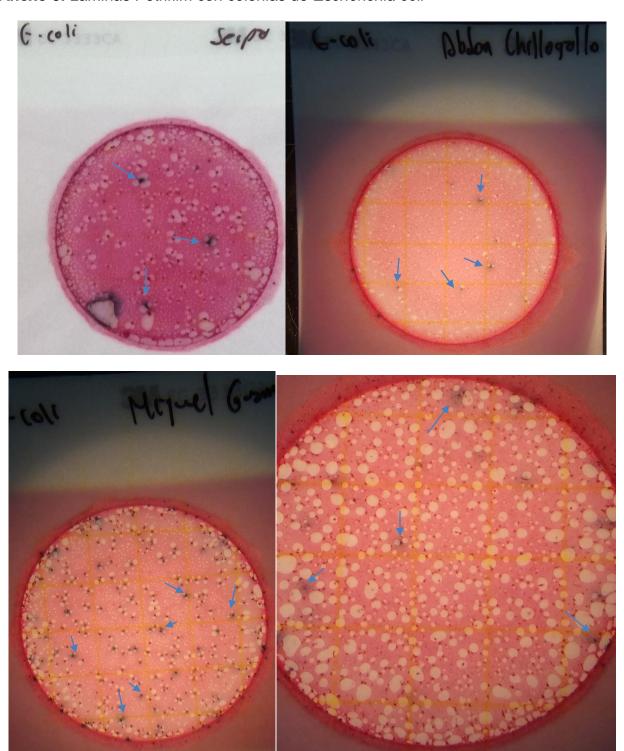
CALIDAD BACTERIOLÓGICA DE LA LECHE CRUDA EN GANADERÍAS DE LA PROVINCIA DEL AZUAY
Nombre de la ganadería
Propietariotelftelf
Ubicación
DATOS GENERALES
Usted realiza cultivos de la leche en su ganadería? (en el caso de respuesta negativa pasar directo a tamaño de la upa)
Cada que tiempo?
Que bacterias se identificaron?
Usted realizo pruebas de sensibilidad antibacteriana a partir de esos cultivos?(en el caso de respuesta negativa pasar directo a tamaño de la upa)
Encontró bacterias resistentes en esas pruebas? ?(en el caso de respuesta negativa pasar directo a tamaño de la upa)
A que antibióticos salieron resistentes?
1) Tamaño del hato
Número de hectáreas totales de la ganadería.
Número de animales totales de la ganadería.
Vacas en producción
Vacas secas
Vaconas
Toros

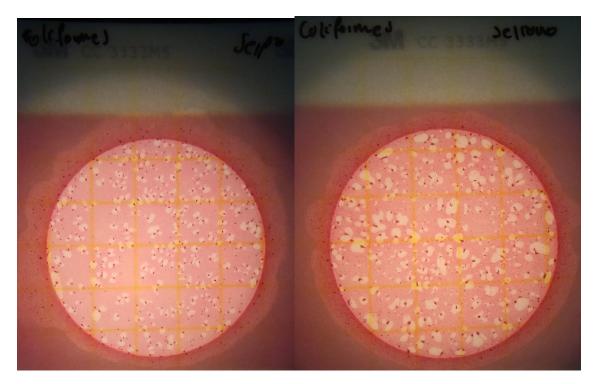
Toretes			
Becerro/as	_		
-Otro (especifique)			
2) prueba de sens	sibilidad antibacteri	ana	
Animales que s Fármaco/s su	reciben tratamiento?. ministrados?		
Persona encarga	ıda del tratamiento?		
Usted separa la leche de	vacas con tratamiento	para poner	en el tanque?
Qué tipo de sistema de e	enfriamiento para la lec	che utiliza us	ted?
3) Tipo de ordeño			
-Mecánico	>fre	ecuencia del	lavado?
	Q	ue utiliza pa	ra lavar?
-Manual]		
-Otro (especifique)		····	
5) Rutina de ordeño	(para cumplir tiene qu	ue tener todo	os las pasos).
PASOS	SI	NO	OBSERVACIONES
-Lavado y secado de la	ubres		Origen del agua:
-Despunte			
-Presellado			

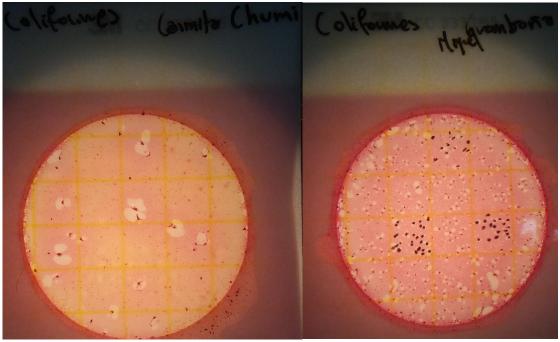


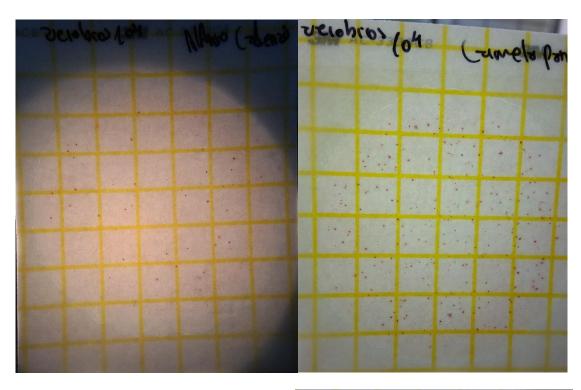

me	Contract of the	Carr	909
NCDCII	MD DE	CHENC	1
	WE W	ALE CHAIN	WAS CHARLOWN

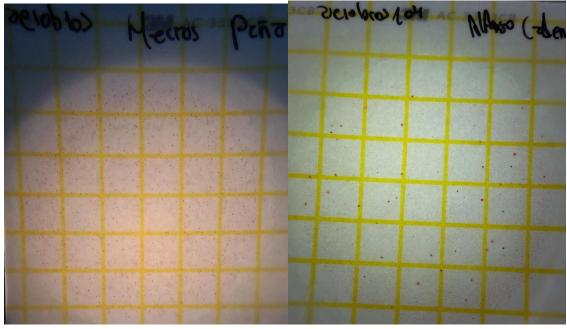
-Sellado final				
-Cumple				
-No cumple				
5) Frecuencia d	le ordeño			
-Una vez al día				
-Dos veces al día				
-Tres veces al día				
-Otro (especifique)				


Anexo 2. Laminas Petrifilm con colonias de Staphylococcus Aureus




Anexo 3. Laminas Petrifilm con colonias de Escherichia coli


Anexo 4. Laminas Petrifilm con colonias de Coliformes Totales



Anexo 5. Laminas Petrifilm con colonias de Aerobios Mesófilos

Anexo 6. Pruebas de sensibilidad antibacteriana

Anexo 7. Pruebas de normalidad (para usar pruebas no paramétricas)

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			S		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
ecoli	,335	45	,000	,485	45	,000
aerobios	,228	45	,000	,813	45	,000
coliformes	,210	45	,000	,831	45	,000
aureus	,308	45	,000	,611	45	,000

a. Corrección de significación de Lilliefors

Anexo 8. Estadística descriptiva

Descriptivos para tamaño de la upa = grande

Descriptivos^a

		Descriptivos	Estadístico	Error estándar
ecoli	Media		10,8000	4,80793
	95% de intervalo de confianza	Límite inferior	,4880	
	para la media	Límite superior	21,1120	
	Media recortada al 5%	<u> </u>	9,2222	
	Mediana		,0000	
	Varianza		346,743	
	Desviación estándar		18,62103	
	Mínimo		,00	
	Máximo		50,00	
	Rango		50,00	
	Rango intercuartil		30,00	
	Asimetría		1,325	,580
	Curtosis		-,028	1,121
aerobios	Media		1488146,6667	636570,26469
	95% de intervalo de confianza	Límite inferior	122839,2370	
	para la media	Límite superior	2853454,0963	
	Media recortada al 5%		1185718,5185	
	Mediana		100000,0000	

	Varianza	6078325528380,9	
		52	
	Desviación estándar	2465426,03385	
	Mínimo	20000,00	
	Máximo	8,40E+6	
	Rango	8380000,00	
	Rango intercuartil	2153400,00	
	Asimetría	1,975	,580
	Curtosis	3,624	1,121
coliformes	Media	3012,0000	1169,45335
	95% de intervalo de confianza Límite inferior	503,7720	
	para la media Límite superior	5520,2280	
	Media recortada al 5%	2566,1111	
	Mediana	1200,0000	
	Varianza	20514317,143	
	Desviación estándar	4529,27336	
	Mínimo	50,00	
	Máximo	14000,00	
	Rango	13950,00	
	Rango intercuartil	3300,00	
	Asimetría	1,735	,580
	Curtosis	1,883	1,121
aureus	Media	2166,0000	753,27400
	95% de intervalo de confianza Límite inferior	550,3880	
	para la media Límite superior	3781,6120	
	Media recortada al 5%	1791,1111	
	Mediana	760,0000	
		8511325,714	
	Varianza		
	Desviación estándar	2917,41764	
	Mínimo	280,00	
	Máximo	10800,00	
	Rango	10520,00	
	Rango intercuartil	1720,00	
	Asimetría	2,245	,580
	Curtosis	5,118	1,121

a. tamaño de la upa = grande

Descriptivos para tamaño de la upa = mediana

Descriptivos^a

		Descriptivosa		
			Estadístico	Error estándar
ecoli	Media		24,6667	12,26170
	95% de intervalo de confianza	Límite inferior	-1,6321	
	para la media	Límite superior	50,9654	
	Media recortada al 5%		19,6296	
	Mediana		,0000	
	Varianza		2255,238	
	Desviación estándar		47,48935	
	Mínimo		,00	
	Máximo		140,00	
	Rango		140,00	
	Rango intercuartil		20,00	
	Asimetría		2,005	,580
	Curtosis		2,821	1,121
aerobios	Media		4722306,6667	1279591,46857
	95% de intervalo de confianza	Límite inferior	1977855,9189	
	para la media	Límite superior	7466757,4144	
	Media recortada al 5%		4535585,1852	
	Mediana		2640000,0000	
	Varianza		24560314896380,	
			950	
	Desviación estándar		4955836,44770	
	Mínimo		5600,00	
	Máximo		1,28E+7	
	Rango		12794400,00	
	Rango intercuartil		9510000,00	
	Asimetría		,525	,580
	Curtosis		-1,500	1,121
coliformes	Media		4450,6667	1103,44114
	95% de intervalo de confianza	Límite inferior	2084,0208	
	para la media	Límite superior	6817,3125	
	Media recortada al 5%		4159,6296	
	Mediana		2800,0000	
	Varianza		18263735,238	

	Desviación estándar	4273,60916	
	Mínimo	140,00	
	Máximo	14000,00	
	Rango	13860,00	
	Rango intercuartil	5450,00	
	Asimetría	1,053	,580
	Curtosis	,229	1,121
aureus	Media	3356,0000	1471,53719
	95% de intervalo de confianza Límite inferior	199,8666	
	para la media Límite superior	6512,1334	
	Media recortada al 5%	2440,0000	
	Mediana	1730,0000	
	Varianza	32481325,714	
	Desviación estándar	5699,23905	
	Mínimo	200,00	
	Máximo	23000,00	
	Rango	22800,00	
	Rango intercuartil	2870,00	-
	Asimetría	3,328	,580
	Curtosis	11,796	1,121

a. tamaño de la upa = mediana

Descriptivos para tamaño de la upa = pequeña

Descriptivos^a

		Descriptivos ^a		
			Estadístico	Error estándar
ecoli	Media		38,0000	22,21540
	95% de intervalo de confianza	Límite inferior	-9,6473	
	para la media	Límite superior	85,6473	
	Media recortada al 5%	•	23,8889	
	Mediana		,0000	
	Varianza		7402,857	
	Desviación estándar		86,03986	
	Mínimo		,00	
	Máximo		330,00	
	Rango		330,00	
	Rango intercuartil		50,00	
	Asimetría		3,189	,580
	Curtosis		10,876	1,121
aerobios	Media		5437346,6667	1237001,38372
	95% de intervalo de confianza	Límite inferior	2784242,5659	
	para la media	Límite superior	8090450,7674	
	Media recortada al 5%		5249829,6296	
	Mediana		5200000,0000	
	Varianza		22952586349809,	
			527	
	Desviación estándar		4790885,75838	
	Mínimo		50000,00	
	Máximo		1,42E+7	
	Rango		14150000,00	
	Rango intercuartil		9402300,00	
	Asimetría		,269	,580
	Curtosis		-1,287	1,121
coliformes	Media		7926,0000	1577,97000
	95% de intervalo de confianza	Límite inferior	4541,5909	
	para la media	Límite superior	11310,4091	
	Media recortada al 5%		7912,2222	
	Mediana		10500,0000	
	Varianza		37349840,000	

	Desviación estándar	6111,45155	
	Mínimo	300,00	
	Máximo	15800,00	
	Rango	15500,00	
	Rango intercuartil	11840,00	
	Asimetría	-,072	,580
	Curtosis	-1,809	1,121
aureus	Media	6966,6667	2274,73780
	95% de intervalo de confianza Límite inferior	2087,8393	
	para la media Límite superior	11845,4940	
	Media recortada al 5%	6426,8519	
	Mediana	1910,0000	
	Varianza	77616480,952	
	Desviación estándar	8810,02162	
	Mínimo	150,00	
	Máximo	23500,00	
	Rango	23350,00	
	Rango intercuartil	15070,00	
	Asimetría	1,150	,580
	Curtosis	-,456	1,121

a. tamaño de la upa = pequeña

Anexo del tanque frio y cantarilla

Estadísticos de prueba

	E. coli	Aerobios	Coliformes	S. aureus
U de Mann-Whitney	194,000	97,000	86,000	134,000
W de Wilcoxon	722,000	188,000	177,000	225,000
Z	-,396	-2,780	-3,056	-1,853
Sig. asintótica (bilateral)	,692	,005	,002	,064

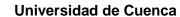
a. Variable de agrupación: tanque

Anexo 9. Variables en estudio y su Operacionalización

	Variables	Tipo de	Escala de	Definición operacional	Dimensiones	Indicadores	Valor final	Técnicas e	Fuente
		variables	medición de	de las variables				Instrumento	
			las variables					s	
Y ₁	Coliformes totales	Cuantitativa	Razón	Son Gram negativos y está conformado por: E coli. K pneumoniae. E aerogenes y Citrobacter freundii	Análisis de laboratorio	Número de UFC/mL	Crecimiento de colonias	Experimento y hoja de laboratorio	Cultivos de leche
Y ₂	Staphylococcus aureus	Cuantitativa	Razón	Gram positivo y en forma de racimo de uvas	Análisis de laboratorio	Número de UFC/mL	Crecimiento de colonias	Experimento y hoja de laboratorio	Cultivos de leche
Y ₃	Escherichia coli	Cuantitativa	Razón	Gram negativo y en forma de bacilo	Análisis de laboratorio	Número de UFC/mL	Crecimiento de colonias	Experimento y hoja de laboratorio	Cultivos de leche
Y ₄	Aerobios	Cuantitativa	Razón	Gram negativos y en forma de bacilos y cocos	Análisis de laboratorio	Número de UFC/mL	Crecimiento de colonias	Experimento y hoja de laboratorio	Cultivos de leche
X ₁	Tamaño de la UPA	Cualitativa	Ordinal	Número de hectáreas que componen la finca	Fincas del Azuay encuestadas	Pequeña: <5ha Mediana: 5-50ha Grande: >50ha	Dimensión de la finca	Observación y hoja de campo	Propieta- rio
X ₂	Tipo de ordeño	Cualitativa	Ordinal	Sistema mediante el cual se extrae la leche	Manual Mecánico	□Ordeño manual □Ordeño mecánico	Característica	Observación y hoja de campo	Propieta- rio
X ₃	Frecuencia de ordeño	Cualitativa	Ordinal	Número de ordeños que se realizan por día	Uno o mas	□Un ordeño/día. □Dos ordeños/día	Característica	Observación y hoja de campo	Propieta- rio
X4	Rutina de ordeño	Cualitativa	Nominal	Actividades realizadas al momento del proceso de ordeño	Completa Incompleta	•Si aplica (Lavado de ubre, Secado, Despunte, Pre- sellado, Sellado) •No aplica	Característica	Observación y hoja de campo	Propieta- rio
X ₅	Antibióticos	Cualitativa	Nominal	Genérico	Coliformes totales, Staphylococcus aureus, Escherichia coli, y Aerobios	Sensible, intermedio y resistente	Halo mm	Observación y hoja de laboratorio.	Cultivos

Anexo 10. Base de datos

nombr e de la ganade ría		teléfo no	ubicac ión	datos general es	realiz a cultiv os de la leche en su gana dería	tama ño de la upa	hec tár eas	Tot al ani mal es	vac as en pro duc ció n	vaca s seca s	vac ona s	toros	toret es	becer ros/a s	prue ba de sensi bilida d antib acteri ana	tip o de ord eno	usted separ a la leche de vaca s con trata mient o para pone r en el tanq ue	qué tipo de sistem a de enfria miento emplea	frecu encia del lavad o	orige n del agua	que utiliz a para lavar	rutin a de orde ño	cump le	no cump le	frecuenc ia de ordeño/p or día
S/N	abdon chillogall i	2790 75	cachi		no	pequ eña	2	9	3	3	2	1	0	0	no	ma nua I	si	no tiene		sequi a				X	1
S/N	adrian criollo	2279 112	quimap uto		no	medi ana	6	19	10	2	0	1	2	4	no	ma nua I	si	no tiene		sequi a				Х	1
S/N	alfonso cardenas	2279 447	iñerto		no	pequ eña	1	4	2	0	1	0	0	1	no	ma nua I	si	no tiene		vertie nte				Х	1
S/N	carlos pasato		la merced		no	pequ eña	1	7	4	1	0	0	0	2	no	ma nua I	si	no tiene		quebr ada				Х	1
S/N	carlos siguenci a	2279 871	pocaco cha		no	medi ana	25	40	16	8	6	1	5	4	no	ma nua I	si	no tiene		vertie nte				Х	1
S/N	carlos tintin		zhuno		no	pequ eña	3	10	5	0	0	0	1	4	no	ma nua I	si	no tiene		vertie nte				Х	1
S/N	carmela panza		rosas		no	pequ eña	2	6	4	0	0	0	0	2	no	ma nua I	si	no tiene		quebr ada				Х	1
S/N	carmita chumi	3013 565	cachi		no	medi ana	8	9	5	2	1	0	0	1	no	ma nua I	si	no tiene		sequi a				Х	2



FEMS	MIX. OHAI	Dergon
1		
		1
UN	VERSIDAD DE	CUENCA

S/N	fernando guanga	9896 1544 7	payca	no	pequ eña	2	8	3	2	1	0	1	1	no	ma nua I	si	no tiene	vertie nte		х	1
S/N	flavio monje		quimap uto	no	pequ eña	1	3	1	1	1	0	0	0	no	ma nua I	si	no tiene	vertie nte		Х	1
zhuno	hernan gavilane s		zhuno	no	medi ana	12	20	15	1	4	0	0	0	no	ma nua I	si	no tiene	vertie nte		Х	2
S/N	isabel morales	2851 220	quinjeo	no	pequ eña	2	4	2	1	1	0	0	0	no	ma nua I	si	no tiene	sequi a de riego		Х	1
S/N	jose inga		el derrum bo(fon dopam ba)	no	medi ana	6	16	5	6	2	1	0	2	no	ma nua I	si	no tiene	sequi a		Х	1
S/N	jose luis panza	9861 2028 3	ayalom a	no	medi ana	18	16	4	2	3	1	0	6	no	ma nua I	si	no tiene	reser vorio		Х	1
S/N	jose quituisac a	9591 7433 7	manay aco	no	medi ana	10	15	6	2	1	0	2	4	no	ma nua I	si	no tiene	rio		Х	1
S/N	luis criollo	2979 185	hierba buena	no	medi ana	12	30	14	5	4	1	2	4	no	ma nua I	si	no tiene	vertie nte		х	2
S/N	luis vicente jeton	2279 148	busa	no	pequ eña	4	11	5	0	4	0	0	2	no	ma nua I	si	no tiene	sequi a		X	2
S/N	maria maxi		cachi	no	pequ eña	4	6	5	1	0	0	0	0	no	ma nua I	si	no tiene	sequi a		Х	1
S/N	maria morales	2829 408	quinge o	no	medi ana	7	10	4	1	2	0	0	3	no	ma nua I	si	no tiene	sequi a de riego		X	1
S/N	mariana monje	2279 016	celeste	no	medi ana	12	25	10	3	2	1	2	7	no	ma nua I	si	no tiene	sequi a		Х	2
S/N	marlene duran		hierba buena	no	pequ eña	3	14	6	2	3	0	0	3	no	ma nua I	si	no tiene	vertie nte		Х	1
S/N	mesias peña		fondop amba	 no	medi ana	11	40	28	6	5	1	2	4	no	ma nua I	si	no tiene	sequi a		Х	2

S/N	miguel guamba		maria auxilia	no	pequ eña	3	8	4	2	0	1	0	1	no	ma nua	si	no tiene		sequi a			x	1
S/N	ña olmedo guerrero	2279 910	dora pilshin	no	medi ana	12	12	6	0	2	1	0	3	no	ma nua	si	no tiene		vertie nte			Х	1
S/N	rafael cardenas		fondop amba	no	pequ eña	5	10	4	2	1	0	2	2	no	ma nua	si	no tiene		vertie nte			х	1
S/N	rosario aucay		quimap uto	no	pequ eña	2	6	5	1	0	0	0	0	no	ma nua I	si	no tiene		vertie nte			Х	1
S/N	william perez	2279 670	san fernan do	no	pequ eña	2	5	3	2	0	0	0	0	no	ma nua I	si	no tiene		rio			Х	1
finca cachi	carlos inga	2279 409	cachi	no	medi ana	12	37	18	10	0	1	1	7	no	me can ico	si	no tiene	cada 8 dias	sequi a	deter gente	х		2
mia cayetan a	luis farez	9399 1797 9	Nero	no	grand e	60	106	45	9	27	1	1	20	no	me can ico	si	no tiene	cada 8 dias	sequi a	deter gente		Х	2
S/N	rolando alvarez	9997 7674 2	sharap an(tutu pali)	no	medi ana	18	27	15	2	6	0	0	0	no	me can ico	si	no tiene	cada 2 dias	reser vorio	deter gente	х		2
los ciprese s	sergio y alicia carpio	9953 7061 8	Nero	no	grand e	200	81	32	7	40	2	0	2	no	me can ico	si	no tiene	cada 8 dias	potab le	deter gente		Х	2
estanci a de tarqui	william granda		tarqui	no	grand e	94	95	37	10	28	5	2	10	no	me can ico	si	no tiene	cada 15 dias	potab le	deter gente		Х	2
Guand u	ana maria serrano	9940 6552 6	guandu (tutupal i alto)	no	grand e	70	56	20	14	17	1	1	3	no	me can ico	si	tanque de enfriam iento	cada 8 dias	pozo clora do	deter gente , acido alcali no, deter gente alcali no	х		2
lactovel	esteban velez		irquis	no	grand e			65	5					no	me can ico	si	tanque de enfriam iento	cada 15 dias	potab le	deter gente	х		2

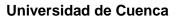
FEMS	we the	TO Sessions
1		
2		-
UN	VERSIONE DE	ASKENS

padilla	fernando padilla	9791 4029 0	tarqui	no	grand e	95	79	29	8	22	1	2	17	no	me can ico	si	tanque de enfriam iento	cada 8 dias	vertie nte	deter gente alcali no	x		2
santa ana	guido serrano		Y de cumbe	no	grand e	60	80	30	10	30	1	0	20	no	me can ico	si	tanque de enfriam iento	cada 8 dias	potab le	deter gente		х	2
el recuerd o	guillerm o serpa		nero	no	medi ana	25	46	30	6	8	1	1	0	no	me can ico	si	tanque de enfriam iento		sequi a	deter gente	Х		2
el establo	hembach lewitte		tutupali chico	no	grand e	500 0	180	80	20	40	0	1	1	no	me can ico	si	tanque de enfriam iento	veces por sema na	reser vorio	deter gente ,sal alcali na	Х		2
las rosas	hembach lewitte		tutupali chico	no	grand e	500 0	30	30	0	0	0	0	0	no	me can ico	si	tanque de enfriam iento		reser vorio	deter gente , sal alcali na	Х		2
S/N	manuel loja	4112 711	rodeo(t utupali alto)	no	grand e	50	30	12	6	6	3	2	1	no	me can ico	si	tanque de enfriam iento	cada 8 dias	potab le	deter gente	х		2
pecalpa	pecalpa	9841 6997 3	cumbe	no	grand e	160	160	76	30	30	0	4	26	no	me can ico	si	tanque de enfriam iento	cada 7 dias	potab le	deter gente		х	2
ruth maria	pedro vintimilla	9994 2132 8	tarqui	no	grand e	50	46	16	9	8	0	0	2	no	me can ico	si	tanque de enfriam iento	cada 8 dias	pozo clora do	deter gente , acido alcali no, deter gente alcali no		х	2
irquis	Universi dad de cuenca		irquis	no	grand e	507		39						no	me can ico	si	tanque de enfriam iento	cada 8 dias	potab le	deter gente	х		2
nero	Universi dad de cuenca		nero	no	grand e	297		42						no	me can ico	si	tanque de enfriam iento	cada 8 dias	reser vorio	deter gente	Х		2

el rocio	vinicio quinde		guandu (tutupal i alto)		no	grand e	54	31	14	5	10	1	0	1	no	me can ico	si	tanque de enfriam iento	cada 8 dias	vertie nte	deter gente		x		2	
----------	-------------------	--	-------------------------------	--	----	------------	----	----	----	---	----	---	---	---	----	------------------	----	----------------------------------	----------------	---------------	----------------	--	---	--	---	--

CONTEO DE UFC/ML

GANADERIA	E.COLI	AEROBIOS	COLIFORMES	S.AUREUS
	100	11000000	45000	4670
abdon chillogallo	100	11000000	15800	1670
adrian criollo	negativo	12800000	10800	23000
alfonso cardenas	negativo	480000	330	1910
ana maria serrano	2	4400000	50	480
carlos inga	negativo	1365000	pendiente	800
carlos pasato	50	8200000	pendiente	21000
carlos siguencia	140	7500000	6400	6800
carlos tintin	negativo	148000	1160	730
carmela panza	10	1600000	12400	3540
carmita chumi	negativo	34000	300	320
cayetana	negativo	980000	14000	730
Cipreses	negativo	90000	1350	5000
establo(heimbach)	50	4600000	1200	280
fernando guanga	negativo	10540000	1930	1600
fernando padilla	30	8400000	11800	10800
flavio monje	negativo	14200000	pendiente	23500
Granda	negativo	100000	8000	5800
hernan gavilanes	negativo	12500000	170	2400
Irquis	negativo	46600	2060	1800
isabel morales	negativo	470000	300	270
jose inga	10	130000	2670	3670


jose luis panza	10	3860000	6330	930
jose quituisaca	negativo	2640000	950	2330
luis criollo	negativo	9600000	3000	3670
luis jeton	10	136000	5600	2800
manuel loja	negativo	2200000	120	470
maria maxi	negativo	8400000	15600	22000
maria morales	negativo	90000	140	200
mariana monje	130	9000000	5000	930
marlene duran	negativo	9872300	11400	15800
mesias peña	negativo	90000	1700	1730
miguel guambaña	330	6700000	3730	1670
Nero	negativo	30600	50	1110
olmedo guerrero	negativo	1020000	10000	1180
Pecalpa	negativo	59000	3400	2200
Quinde	40	100000	100	360
rafael cardenas	10	50000	740	150
rolando alvarez	20	10200000	2800	650
rosario aucay	negativo	4563900	pendiente	7400
rosas(heimbach)	negativo	1180000	50	760
Serpa	60	5600	2500	1730
Serrano	40	76000	2060	1600
Velez	negativo	40000	110	600
vintimilla	negativo	20000	830	500
william perez	60	5200000	15400	460

Antibiogramas

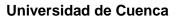
ganaderia	bacteria	eritromicina	gentamicina	ceftriaxona	ampicilina	amoxicilina
marlene duran	coliformes	resistente	15	25	resistente	resistente
jose quituisaca	coliformes	resistente	20	30	15	resistente
mariana monje	coliformes	resistente	18	33	10	17
carlos siguencia	coliformes	resistente	20	30	resistente	resistente
adrian criollo	coliformes	resistente	20	30	resistente	resistente
. ~	11.6					
mesias peña	coliformes	resistente	20	30	resistente	resistente
h	!!		22	25		
hernan gavilanes	coliformes	resistente	22	35	resistente	resistente
miguel guambaña	coliformes	resistente	17	30	resistente	12
luis criollo	coliformes	20	27	40	30	15
maria maxi	coliformes	resistente	18	25	15	resistente
rosario aucay	coliformes	resistente	22	34	resistente	resistente
carlos inga	coliformes	resistente	23	25	12	resistente
jose inga	coliformes	resistente	25	30	15	resistente
carmita chumi	coliformes	resistente	25	30	resistente	20
luis jeton	coliformes	resistente	20	33	15	15
rafael cardenas	coliformes	19	resistente	30	17	resistente

fernanda guanga	coliformes	26	26	30	resistente	resistente
abdon chillogallo	coliformes	15	20	22	15	10
carlos tintin	coliformes	resistente	25	34	resistente	resistente
flavio monje	coliformes	14	25	35	resistente	resistente
jose luis panza	coliformes	16	22	25	resistente	resistente
carlos pasato	coliformes	resistente	23	30	resistente	resistente
olmedo guerrero	coliformes	16	20	45	resistente	resistente
alfonso cardenas	coliformes	resistente	22	28	resistente	resistente
carmela panza	coliformes	20	22	33	resistente	resistente
william perez	coliformes	15	20	30	resistente	resistente
fernando padilla	coliformes	resistente	25	34	resistente	resistente
serrano	coliformes	16	25	33	7	14
cipreses	coliformes	12	24	34	12	19
pecalpa	coliformes	11	23	23	10	8
vintimilla	coliformes	15	26	32	11	20
serpa	coliformes	resistente	25	34	resistente	14
granda	coliformes	8	24	30	8	11
irquis	coliformes	12	22	24	11	15
cayetana	coliformes	10	20	30	12	16

nero	coliformes	12	20	24	11	24
rolando alvarez	coliformes	20	20	34	17	15
ana maria serrano	coliformes	18	26	28	25	27
maria morales	coliformes	32	30	30	resistente	20
isabel morales	coliformes	25	30	25	20	22
establo heibach	coliformes	14	28	35	resistente	resistente
establo lielbacii	comornes	14	20	33	resistente	resistente
rosas heimbach	coliformes	20	25	32	12	12
quinde	coliformes	resistente	19	35	19	resistente
manuel loja	coliformes	15	28	39	resistente	resistente

ganaderia	bacteria	eritromicina	gentamicina	ceftriaxona	ampicilina	amoxicilina
marlene duran	s.aureus	15	34	16	12	20
jose quituisaca	s.aureus	35	26	27	20	26
mariana monje	s.aureus	30	23	27	resistente	15
carlos siguencia	s.aureus	resistente	16	22	resistente	resistente
adrian criollo	s.aureus	20	30	27	25	25
mesias peña	s.aureus	24	17	28	resistente	15

hernan gavilanes	s.aureus	32	24	30	15	20
miguel guambaña	s.aureus	resistente	resistente	resistente	resistente	15
luis criollo	s.aureus	20	17	25	35	40
maria maxi	s.aureus	35	27	15	resistente	20
rosario aucay	s.aureus	27	20	29	20	24
carlos inga	s.aureus	29	22	30	resistente	17
jose inga	s.aureus	24	30	20	15	17
carmita chumi	s.aureus	resistente	18	29	20	24
luis jeton	s.aureus	28	25	29	12	20
rafael cardenas	s.aureus	37	30	29	14	15
fernanda guanga	s.aureus	26	20	26	33	30
abdon chillogallo	s.aureus	25	19	28	resistente	12
carlos tintin	s.aureus	22	20	25	15	15
flavio monje	s.aureus	39	28	22	15	16
jose luis panza	s.aureus	27	24	27	15	30
carlos pasato	s.aureus	26	22	20	33	30
olmedo guerrero	s.aureus	40	25	28	27	25

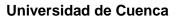


alfonso cardenas	s.aureus	resistente	23	25	15	17
carmela panza	s.aureus	25	19	24	21	20
william perez	s.aureus	34	26	27	30	35
fernando padilla	s.aureus	33	27	30		resistente
serrano	s.aureus	30	24	23	22	23
cipreses	s.aureus	19	24	18	17	23
pecalpa	s.aureus	21	23	18	10	25
vintimilla	s.aureus	12	24	21	15	17
serpa	s.aureus	19	28	23	14	25
granda	s.aureus	23	17	22	21	26
irquis	s.aureus	30	25	23	20	28
cayetana	s.aureus	13	14	17	12	20
nero	s.aureus	23	23	25	20	25
rolando alvarez	s.aureus	30	20	25	15	15
ana maria serrano	s.aureus	27	20	24	15	19
maria morales	s.aureus	28	27	26	24	25
isabel morales	s.aureus	30	25	27	20	25
establo heibach	s.aureus	30	25	25	resistente	resistente
rosas heimbach	s.aureus	25	20	24	12	12

quinde	s.aureus	30	25	24	19	20
manuel loja	s.aureus	30	30	27	19	18

ganaderia	bacteria	eritromicina	gentamicina	ceftriaxona	ampicilina	amoxicilina
marlene duran	aerobios	25	24	20	27	33
jose quituisaca	aerobios	15	26	26	20	20
mariana monje	aerobios	resistente	20	17	resistente	resistente
manana menje	46.00.03	resistence	20	27	resistente	resistence
carlos siguencia	aerobios	resistente	15	24	resistente	15
adrian criollo	aerobios	resistente	24	20	15	15
aurian criono	aerobios	resistente	24	20	15	15
mesias peña	aerobios	resistente	24	26	resistente	resistente
hernan gavilanes	aerobios	resistente	22	30	resistente	12
miguel guambaña	aerobios	15	25	30	20	14
luis criollo	aerobios	15	20	35	resistente	resistente
maria maxi	aerobios	resistente	22	33	resistente	resistente
rosario aucay	aerobios	resistente	22	25	resistente	resistente
carlos inga	aerobios	15	25	30	resistente	resistente
jose inga	aerobios	resistente	25	26	resistente	12
carmita chumi	aerobios	resistente	25	30	resistente	resistente

luis jeton	aerobios	resistente	25	32	resistente	resistente
rafael cardenas	aerobios	resistente	25	39	resistente	resistente
fernanda guanga	aerobios	26	25	25	35	26
abdon chillogallo	aerobios	20	20	24	15	15
carlos tintin	aerobios	15	27	30	22	20
flavio monje	aerobios	resistente	25	33	resistente	resistente
jose luis panza	aerobios	20	r	32	resistente	resistente
carlos pasato	aerobios	30	26	20	25	32
olmedo guerrero	aerobios	20	25	37	resistente	resistente
alfonso cardenas	aerobios	25	30	28	22	26
carmela panza	aerobios	resistente	20	30	resistente	resistente
william perez	aerobios	resistente	25	30	resistente	resistente
fernando padilla	aerobios	resistente	25	40	resistente	resistente
serrano	aerobios	16	22	40	resistente	15
cipreses	aerobios	30	24	17	22	27
pecalpa	aerobios	resistente	25	30	resistente	resistente
vintimilla	aerobios	15	22	33	20	25
serpa	aerobios	17	27	25	22	26


granda	aerobios	14	22	23	resistente	12
irquis	aerobios	19	24	25	15	14
cayetana	aerobios	resistente	22	20	15	15
nero	aerobios	15	resistente	24	14	21
rolando alvarez	aerobios	24	25	37	resistente	resistente
ana maria serrano	aerobios	25	20	30	resistente	resistente
maria morales	aerobios	resistente	20	27	25	23
isabel morales	aerobios	20	20	27	30	resistente
establo heibach	aerobios	30	25	30	resistente	resistente
rosas heimbach	aerobios	20	24	33	resistente	resistente
quinde	aerobios	20	25	33	resistente	resistente
manuel loja	aerobios	22	24	36	resistente	resistente

ganaderia	bacteria	eritromicina	gentamicina	ceftriaxona	ampicilina	amoxicilina
marlene duran	e.coli	ausente	ausente	ausente	ausente	ausente
jose quituisaca	e.coli	ausente	ausente	ausente	ausente	ausente
mariana monje	e.coli	resistente	20	27	resistente	resistente
carlos siguencia	e.coli	resistente	resistente	30	resistente	15

		ausente		ausente		ausente	ausente	ausente
adrian criollo	e.coli							
		ausente		ausente		ausente	ausente	ausente
mesias peña	e.coli							
		ausente		ausente		ausente	ausente	ausente
hernan gavilanes	e.coli							
miguel guambaña	e.coli		17		22	30	15	15
		ausente		ausente		ausente	ausente	ausente
luis criollo	e.coli							
maria maxi	e.coli	ausente		ausente		ausente	ausente	ausente
THATA HAX	C.COII	ausente		ausente		ausente	ausente	ausente
rosario aucay	e.coli							
Tosurio ducay	C.COII	ausente		ausente		ausente	ausente	ausente
carlos inga	e.coli							
jose inga	e.coli		15		25	40	15	20
		ausente		ausente		ausente	ausente	ausente
carmita chumi	e.coli							
luis jeton	e.coli		17		24	25	resistente	12
rafael cardenas	e.coli		14		25	34	resistente	resistente
		ausente		ausente		ausente	ausente	ausente
fernanda guanga	e.coli							
abdon chillogallo	e.coli		17		25	30	resistente	resistente
carlos tintin	e.coli							
		ausente		ausente		ausente	ausente	ausente
flavio monje	e.coli							

jose luis panza	e.coli	15	20	35	resistente	resistente
carlos pasato	e.coli	resistente	22	37	resistente	resistente
		ausente	ausente	ausente	ausente	ausente
olmedo guerrero	e.coli					
		ausente	ausente	ausente	ausente	ausente
alfonso cardenas	e.coli					
carmela panza	e.coli	resistente	resistente	32	25	resistente
william perez	e.coli	30	20	33	resistente	resistente
fernando padilla	e.coli	resistente	20	35	resistente	resistente
serrano	e.coli	14	19	33	resistente	15
ciprococ	e.coli	ausente	ausente	ausente	ausente	ausente
cipreses	e.con	ausente	ausente	ausente	ausente	ausente
pecalpa	e.coli	auscrite	auscrite	adscrite	auscrite	auscrite
		ausente	ausente	ausente	ausente	ausente
vintimilla	e.coli					
serpa	e.coli	resistente	20	32	15	20
	!:	ausente	ausente	ausente	ausente	ausente
granda	e.coli	ausonto	auconto	auconto	auconto	auconto
irquis	e.coli	ausente	ausente	ausente	ausente	ausente
, , ,		ausente	ausente	ausente	ausente	ausente
cayetana	e.coli					
		ausente	ausente	ausente	ausente	ausente
nero	e.coli					

rolando alvarez	e.coli	resistente	20	30	resistente	resistente
ana maria serrano	e.coli	resistente	resistente	35	resistente	resistente
		ausente	ausente	ausente	ausente	ausente
maria morales	e.coli					
		ausente	ausente	ausente	ausente	ausente
isabel morales	e.coli					
establo heibach	e.coli	resistente	25	38	resistente	resistente
		ausente	ausente	ausente	ausente	ausente
rosas heimbach	e.coli					
quinde	e.coli	resistente	24	28	resistente	resistente
		ausente	ausente	ausente	ausente	ausente
manuel loja	e.coli					