
Towards a Functional Requirements Prioritization

with early Mutation Testing
Nelly Condori-Fernandez

Department of Computer Science

Universidade da Coruña, Spain

Vrije Universiteit Amsterdam,

The Netherlands

n.condori.fernandez@udc.es

n.condori-fernandez@vu.nl

Maria Fernanda Granda

Department of Computer Science
University of Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec

Tanja E. J. Vos

PROS Research Center

Universidad Politécnica de Valencia, Spain

Open University, The Netherlands
tvos@pros.upv.es

tanja.vos@ou.nl

ABSTRACT

Researchers have proposed a number of prioritization techniques to

help decision makers select an optimal combination of (non-)

functional requirements to implement. However, most of them are

defined based on an ordinal or nominal scale, which are not reliable

because they are limited to simple operations of ranked or ordered

requirements. We argue that the importance of certain requirements

could be determined by their criticality level, which can be assessed

using a ratio scale.

The main contribution of the paper is the new strategy proposed for

prioritizing functional requirements, using early mutation testing and

dependency analysis.

Categories and Subject Descriptors
D.2.1 [Requirements]:Methodologies, tools

Keywords

Requirements prioritization; Mutation score; UML; dependency.

1. INTRODUCTION

In software industry, decision-makers often face the challenge of

having more requirements than are possible to implement given

different constraints, such as time, cost, and other scarce resources.

Since it is crucial to distinguish the important requirements from the

less important ones to maximize the overall business value [1],

researchers have proposed a number of prioritization techniques to

help managers, architects, designers select an optimal combination of

(non-) functional requirements to implement. However, according to

previous systematic reviews ([1], [3-7]), most of the existing

requirements prioritization techniques are not scalable and reliable.

One of the reasons is that most of the criteria that must be taken

into consideration when prioritizing requirements are very subjective.

And most of these techniques used nominal or ordinal scale. A

nominal-based prioritization technique (e.g. Top ten) has the capacity

of showing the ranks of various requirements but cannot further

indicate the extent at which, one requirement is considered to be more

important than the other. Whereas ordinal-based prioritization

techniques (e.g. Game planning, Cumulative voting, Ranking) are not

able to quantify the relative priority difference among the ordered set

of requirements.

As traceability between requirements and system test cases is

highly required, in the last years several approaches have been

successfully proposed for generating automatic or semi-automatic test

scenarios from requirements specifications (e.g. [11], [14]). In this

paper we introduce the idea of applying mutation testing in functional

requirements prioritization. Mutation testing is a well-known

technique of assessing the quality of test suites.

In the context of requirements prioritization, we determine the

importance of each functional requirement based on its criticality

level. Such criticality is determined by test scenarios that contain

more faulted test cases and dependencies with other test cases.

We consider that using an early mutation testing approach [2] (i.e.

at model level) within our prioritization process will contribute to

enhance the reliability of prioritization results.

The structure of the paper is organised as follows: Section 2

discusses the related work on requirements prioritization. Section 3

introduces the terminology on mutation testing and list the tools that

we developed in the context of model-driven testing. In Section 4, we

present the new functional requirements prioritization strategy, which

is illustrated with an example (Sudoku game). Section 5 concludes the

paper and suggests future work.

2. RELATED WORK

Several secondary studies have been reported (e.g. [1], [3-7]) with

the purposes of getting a better understanding on certain aspects of

requirements prioritization techniques. For instance, Achimugu et al.

[3] analysed 49 requirements prioritization techniques with respect to

scalability, computational complexity, rank updates, requirements

dependencies, communication among stakeholders, reliability, and

validation. Sher et al. conducted another systematic review [4], who

extended the analysis carried out by Achimigu et al. by considering

not only technical aspects but also business/client aspects (i.e. sales,

marketing, customer satisfaction, strategic) as analysis criteria of 59

prioritization techniques. From these two secondary studies, authors

conclude that most of the existing techniques are not scalable. This

was also corroborated by Khan [5], who found that most of the

selected requirements prioritization techniques (i.e. Analytic

Hierarchy Process (AHP), Cumulative voting, Hierarchy AHP,

Spanning Tree, Bubble Sort, Binary Search Tree, Priority Groups) are

evaluated with a low number of requirements (an average of 18

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on

the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

RET'18, June 2, 2018, Gothenburg, Sweden

© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-5749-4/18/06…$15.00

https://doi.org/10.1145/3195538.3195539

21

2018 ACM/IEEE 5th International Workshop on Requirements Engineering and Testing

mailto:n.condori.fernandez@udc.es
mailto:n.condori-fernandez@vu.nl
mailto:fernanda.granda@ucuenca.edu.ec
mailto:fernanda.granda@ucuenca.edu.ec

requirements). This scalability problem of referenced rank techniques

like AHP, Pairwise comparisons and Bubble Sort is because of the

requirements are compared based on possible pairs.

Another issue is with respect to the reliability of the prioritization

techniques. According to [3], the analytical hierarchy process (AHP)

is one of the few techniques that provides reliable prioritization results

because of its ability of determining ratios between requirements.

Such ratios can be utilized in algorithms that can support the

prioritization process. Most of the existing techniques are not reliable

enough since they use ordinal or nominal scale.

Herrmann and Daneva [6] conducted also a comparative review of

15 prioritization techniques with particular focus on cost-value

techniques. In another mapping study [7], Pergher and Rossi found a

limited research on the evaluation of tools and frameworks for

requirements prioritization.

In this paper, we aim to address some of the issues detected in

these secondary studies like reliability and scalability.

3. BACKGROUND

This section introduces testing and mutation concepts used along

the paper.

A. Testing Concepts

A System Under Test is a Conceptual Schema (CS) under test

(CSUT) based on Unified Modelling Language (UML) Class

Diagrams (CD) [8].

A test suite is a set of one or more test scenarios. Each test

scenario is a story that consists of one or more test cases that execute

in an incremental way the test scenario. A test case starts with the

execution of the fixture. The fixture for a test case, at model level, is a

set of statements that create a model state defining the values of the

model variables. Then, the test case ends with an assertion that

validates a functional requirement in the artefact under test (e.g.

CSUT). A Faulted test case is obtained when the output of its

execution is different than expected.

B. Mutation Concepts

Mutation involves modifying a software artefact (e.g. CS) by

injecting artificial faults. Each mutated version is called a mutant. The

artificial faults can be created automatically, using a set of mutation

operators (MO). Mutants can be classified into two types: First Order

Mutants (FOM) and Higher Order Mutants (HOM). FOMs are

generated by applying mutation operators only once. HOMs are

generated by applying mutation operators more than once [9].

In a previous paper [10], we proposed a set of 50 mutation

operators specifically designed to generate mutants for UML Class

Diagram. A subset of mutant types were evaluated with respect to its

effectiveness to inject defects into a CS [12].

With the purpose of determining the ability of a test suite to expose

errors in the system under test (i.e. CS), Test suite adequacy for each

mutant type can be measured by a mutation score (MS). It is

computed in terms of the ratio of the number of killed mutants (Mk)

over the total number of the non-equivalent mutants

Where, non-equivalent mutants (MT) = killed mutants (MK) + the

surviving mutants. The mutation score is given between zero and one

values.

In the context of model-driven testing, we developed two tools:

1) The MtUML tool (Mutation for UML) [2] for the

generation and parsing (i.e. syntax analysis) of first order

mutants by using the set of 18 mutation operators (see Table

1) previously defined for Conceptual Schema based on

UML Class Diagram (CD).

2) The CoSTest tool [11] developed for testing conceptual

schemas. CoSTest allows the semi-automatic generation of

test scenarios with test cases from a requirements model

[15], the execution of CS/CS mutants against generated

tests, and reporting the test results. MtUML has been

integrated into CoSTest tool for supporting the test cases

selection. Moreover, with CoSTest traceability between test

cases and requirements is addressed.

4. NEW REQUIREMENTS PRIORITIZATION

In this section, we explain our functional requirements

prioritization strategy which consists of seven steps, such is shown in

Figure 1.

Fig. 1. Functional Requirements Prioritization Strategy

This prioritization strategy is illustrated with an example of the

Sudoku game. Figure 2 shows the sequence of functions of Sudoku,

which was taken from Tort and Olivé work [13]. Sudoku system gives

the capability of: managing different users (i.e. REGISTER

PLAYER), generating new Sudokus (i.e. SUDOKU GENERATION),

configuring number of cells for sudokus (i.e. SUDOKU CELLS).

Then, the user puts value in a cell of the current Sudoku, the system

checks whether the game ends to notify the user. The user should

decide whether to continue playing by placing values in the sudoku

cells (i.e. CONTINUE PLAYING and PUT A VALUE IN A CELL),

ending the game or indicates to the system that he/she wants to

continue solving an unfinished Sudoku previously started (i.e.

CHANGE TO UNFINISHED GAME and SUDOKU SELECTION).

Fig. 2. Sequence of Events for Sudoku system

22

Next each step of our prioritization strategy is explained using the

Sudoku game.

1) Evaluation of the test suite adequacy. As it is shown in

Figure 1 the output of the MtUML tool [2] is the input of

our prioritization strategy. Test suite adequacy evaluation is

performed, where we compared automatically the output of

each mutant against the output of the original version of the

CS with no faults. When the output of the mutant was

different to the original CS output, the test case was labelled

as failing and when the outputs were exactly the same, the test

case was tagged as passing. A mutant may survive (S) either

because it is equivalent (ME) to the original model (i.e. it is

semantically identical to the original model although

syntactically different) or the test set is inadequate to kill the

mutant. The obtained mutations scores are the outcome of this

step.

Table 1. Mutation Operators for First Order Mutants [10]

2) Ranking of the test suites. As our purpose is identifying the

critical test scenarios, in this second step, the values of the test

suite adequacy (obtained in the previous step) are ranked in

ascending order. Table 2 shows the mutants of our example

with a mutation score lower than 1.0.

3) Adequacy score selection. In the context of requirements

prioritization, a low adequacy score should be selected

because it will allow us to identify mutants type that are hard

to kill and consequently also the requirements used to

generate the corresponding test cases, which should be

considered for a deeper review. In our example, we decided to

select the first four mutants with MS lower than 0.6 (see

Table 2). The remaining 8 mutants had a score of 1.0, which

were excluded. This step is carried out manually since

required the selection of adequacy score to be used as a

threshold for the next step.

4) Scenarios identification. The (test) scenarios are identified by

recognizing the faulted test case (i.e. expected verdict is fail

and actual verdict is pass). The identified test scenarios

correspond to sequence of events of the functional

requirements model. In our example (see Figure 2), there is

only one decision node, hence the cyclomatic complexity will

be 2, which gives the number of independent paths or test

scenarios (TS): TS1=Register Player, Sudoku Generation,

Sudoku Cells, Put a Value in a Cell, Change to Unfinished

Game, Sudoku Selection, Continue Playing; and

TS2=Register Player, Sudoku Generation, Sudoku Cells, Put

a Value in a Cell, Change to Unfinished Game, Sudoku

Selection and End Game. Table 3 shows the test cases

corresponding to the test scenario 1.

5) Mapping test cases to requirements. For each faulted test

case, the related functional requirement is identified as it can

be seen in Table 3. To do this, the CoSTest’s testing report is

manually analysed. Figure 3 shows some of the testing results

obtained for one mutant of the type “Changes the association

type” (WAS2), where the test cases 32-34 were failed.

6) Dependencies analysis. Each test case has a dependency

relation with the requirement that it validates. Then, the

requirements are ordered according to the number of

dependencies of failed test cases by mutant type (See last

column of Table 3).

7) Prioritization of Requirements. The requirement with the

greatest number of dependencies and lower adequacy score

represent the most critical requirement. The results in Table 3

show that the highest level of criticality is for configuring

number of cells for Sudoku (SUDOKU_CELLS requirement)

with 13 dependencies. The lowest level of criticality is for the

requirements:

REGISTER_PLAYER, SUDOKU_SELECTION and

PUT_A_VALUE_IN_A_CELL.

The SUDOKU_CELLS requirement is according to our

example the most critical requirement because there are

several defects injected in the mutants (i.e. WAS2, WCO6,

WCO5 and WCO4) that affect this requirement and that they

are not detected by test cases. From these results, we can see

that requirements related to associations (WAS) and

constraints (WCO) are critical and require more attention in

their specification. These results were confirmed in the others

six CSs reported in [12].

Fig. 3. View of a testing results for a mutant of the type WAS2

Code Mutation Operator Description

1 UPA2 Adds an extraneous Parameter to an Operation

2 WCO1 Changes the constraint by deleting the references to a

class Attribute

3 WCO3 Change the constraint by deleting the calls to
specific operation.

4 WCO4 Changes an arithmetic operator for another and

supports binary operators: +, -,*,/

5 WCO5 Changes the constraint by adding the conditional
operator “not”

6 WCO6 Changes a conditional operator for another and

supports operators: or, and

7 WCO7 Changes the constraint by deleting the conditional
operator “not”

8 WCO8 Changes a relational operator for another operators:

<, <=, >, >=, ==, !=

9 WCO9 Changes a constraint by deleting a unary arithmetic

operator (-).

10 WAS1 Interchange the members (memberEnd) of an

Association.

11 WAS2 Changes the association type (i.e. normal,

composite).

12 WAS3 Changes the memberEnd multiplicity of an

Association (i.e. *-*, 0..1-0..1, *-0..1)

13 WCL1 Changes visibility kind of the Class (i.e. private)

14 WOP2 Changes the visibility kind of an operation.

15 WPA Changes the Parameter data type (i.e. String, Integer,

Boolean, Date, Real).

16 MCO Deletes a constraint (i.e. pre-condition, post-
condition constraint, body constraint)

17 MAS Deletes an Association.

18 MPA Deletes a Parameter from an Operation.

23

Table 2. Mutation Score of test suites for each mutant type

CS Mutant

type

Mutant Description Mk S ME MS

WAS2 Changes the association type 0 11 0 0.00

WCO6

Changes a conditional operator for another

and supports operators: or, and

4 8 1 0.33

WCO4

Changes an arithmetic operator for another

and supports binary operators: +, -,*,/

7 8 2 0.47

WCO5

Changes the constraint by adding the

conditional operator “not”

6 5 0 0.55

WCO8

Changes a relational operator for another

operators: <=, >=, ==, !=

28 13 6 0.68

WCO1

Changes the constraint by deleting the

references to a class attribute

6 1 0 0.86

Table 3. Mapping test cases to functional requirements and

number of dependencies

Functional Requirement CS Mutant (Id Test cases) Count

SUDOKU_CELLS

WAS2 (32, 33, 34, 41, 42),

WCO6 (31, 41, 47), WCO5 (30,

31, 41, 47), WCO4 (41),

13

SUDOKU_GENERATION
WAS2 (19, 20, 21), WCO6 (8,

11, 14), WCO5 (8),

7

REGISTER_ PLAYER WCO4 (4) 1

SUDOKU_SELECTION WAS2 (55) 1

PUT_A_VALUE_IN_A_CELL WAS2 (46) 1

Finally, the derived information allows requirements engineers to

judge and weigh the requirements in a more objective way, by

computing the test suite adequacy and identifying the dependency

values between the faulted test cases and the related requirements.

This enables requirements engineers to make decisions based on the

criticality level of the requirements. This way decision makers (e.g.

requirements engineer, project manager) can focus more on

requirements that are more fault-prone, and consequently require a

major attention.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new prioritization strategy that enables

to select the most important functional requirements based on their

criticality level. Our approach is promising because priorities are

defined in a ratio scale (i.e. mutation score, number of dependencies),

which has demonstrated to be more reliable than nominal/ordinal

scale-based prioritization techniques [3]. However, it is important to

remark that the criticality level (criteria used for prioritizing

requirements) could be influenced by the type of mutants that are

generated with the mutation tool. Currently, we have used only first-

order mutants. We think that adding high-order mutants would

enhance the reliability of the prioritization results (i.e. more

dependencies could be detected).

As future work, we plan conduct experiments for investigating the

influence of this type of mutation operators on requirements

prioritization. Moreover, we are going to automate the proposal (i.e.

mapping and dependency analysis), and use software projects with a

high number of requirements to assess the scalability of our approach .

ACKNOWLEDGMENT

This work has received partial funding by the Spanish Ministry of

Economy, Industry and Competitiveness with the Project: TIN2016-

78011-C4-1-R, Galician Government with the project: ED431C

2017/5, and TESTOMAT (ITEA 3)

REFERENCES

[1] G. Ruhe, A. Eberlein, and D. Pfahl, “Quantitative WinWin — A

new method for decision support in requirements negotiation,” in

Proc. 14th International Conference on Software Engineering and

Knowledge Engineering (SEKE 02), 2002, pp. 159–166.

[2] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and Ó. Pastor,

“A Model-level Mutation Tool to Support the Assessment of the

Test Case Quality,” in 25TH International Conference on

Information Systems Development (ISD2016 POLAND), 2016.

[3] P. Achimugu, A. Selamat, R. Ibrahim, M.N. Mahrin, “A

systematic literature review of software requirements

prioritization research,” Inf. Software. Technol., pp. 568–585,

2014.

[4] F. Sher, D. N. A. Jawawi, R. Mohamad, and M. I. Babar,

“Requirements prioritization techniques and different aspects for

prioritization a systematic literature review protocol,” in 8th.

Malaysian Software Engineering Conference (MySEC), 2014, pp.

31–36.

[5] K. A. Khan, “A Systematic Review of Software Requirements

Prioritization,” Blekinge Institute of Technology (BTH), Sweden,

2006.

[6] A. Herrmann and M. Daneva, “Requirements Prioritization Based

on Benefit and Cost Prediction: An Agenda for Future Research,”

in IEEE International Requirements Engineering, 2008, pp. 125–

134.

[7] M. Pergher, E. Massimiliano, and B. Rossi, “Requirements

prioritization in software engineering: A systematic mapping

study,” in Empirical Requirements Engineering (EmpiRE), 2013,

pp. 40–44.

[8] Object Management Group, “Unified Modeling Language

(UML),” 2015.

[9] Y. Jia and M. Harman, “Higher Order Mutation Testing” Inf.

Softw. Technol., vol. 51, no. 10, pp. 1379–1393, 2009.

[10] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and Ó. Pastor,

“Mutation Operators for UML Class Diagrams,” in CAiSE 2016,

2016.

[11] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor,

“CoSTest : A tool for Validation of Requirements at Model

Level,” in RE conference proceedings. Poster and Demo,

Portugal. 2017, pp. 4–7.

[12] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and Ó. Pastor,

“Effectiveness Assessment of an Early Testing Technique using

Model-Level Mutants” In 21st International Conference on

Evaluation and Assessment in Software Engineering, 2017, vol.

2017, no. June.

[13] A. Tort and A. Olivé, “Case Study: Conceptual Modeling of

Basic Sudoku,” 2006. [Online]. Available:

http://guifre.lsi.upc.edu/Sudoku.pdf.

[14] C. Wang, F. Pastore and L. Briand, "System Testing of Timing

Requirements Based on Use Cases and Timed Automata," 2017

IEEE International Conference on Software Testing, Verification

and Validation (ICST), Tokyo, 2017, pp. 299-309. doi:

10.1109/ICST.2017.34

[15] M. F. Granda, N. Condori-Fernández, T. E. J. Vos and O. Pastor,

"Towards the automated generation of abstract test cases from

requirements models". 1st International IEEE Workshop on

Requirements Engineering and Testing (RET), Karlskrona-

Sweden, 2014, pp. 39-46. doi: 10.1109/RET.2014.690867

24

