2018 ACM/IEEE 5th International Workshop on Requirements Engineering and Testing

Towards a Functional Requirements Prioritization
with early Mutation Testing

Nelly Condori-Fernandez
Department of Computer Science
Universidade da Corufia, Spain
Vrije Universiteit Amsterdam,
The Netherlands
n.condori.fernandez@udc.es
n.condori-fernandez@vu.nl

ABSTRACT

Researchers have proposed a number of prioritization techniques to
help decision makers select an optimal combination of (non-)
functional requirements to implement. However, most of them are
defined based on an ordinal or nominal scale, which are not reliable
because they are limited to simple operations of ranked or ordered
requirements. We argue that the importance of certain requirements
could be determined by their criticality level, which can be assessed
using a ratio scale.

The main contribution of the paper is the new strategy proposed for
prioritizing functional requirements, using early mutation testing and
dependency analysis.

Categories and Subject Descriptors
D.2.1 [Requirements]:Methodologies, tools

Keywords
Requirements prioritization; Mutation score; UML; dependency.

1. INTRODUCTION

In software industry, decision-makers often face the challenge of
having more requirements than are possible to implement given
different constraints, such as time, cost, and other scarce resources.
Since it is crucial to distinguish the important requirements from the
less important ones to maximize the overall business value [1],
researchers have proposed a number of prioritization techniques to
help managers, architects, designers select an optimal combination of
(non-) functional requirements to implement. However, according to
previous systematic reviews ([1], [3-7]), most of the existing
requirements prioritization techniques are not scalable and reliable.

One of the reasons is that most of the criteria that must be taken
into consideration when prioritizing requirements are very subjective.
And most of these techniques used nominal or ordinal scale. A
nominal-based prioritization technique (e.g. Top ten) has the capacity
of showing the ranks of various requirements but cannot further
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

RET'18, June 2, 2018, Gothenburg, Sweden
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-5749-4/18/06...$15.00
httos://doi.ora/10.1145/3195538.3195539

21

Maria Fernanda Granda
Department of Computer Science
University of Cuenca, Ecuador
fernanda.granda@ucuenca.edu.ec

Tanja E. J. Vos
PROS Research Center
Universidad Politécnica de Valencia, Spain
Open University, The Netherlands
tvos@pros.upv.es
tanja.vos@ou.nl

indicate the extent at which, one requirement is considered to be more
important than the other. Whereas ordinal-based prioritization
techniques (e.g. Game planning, Cumulative voting, Ranking) are not
able to quantify the relative priority difference among the ordered set
of requirements.

As traceability between requirements and system test cases is
highly required, in the last years several approaches have been
successfully proposed for generating automatic or semi-automatic test
scenarios from requirements specifications (e.g. [11], [14]). In this
paper we introduce the idea of applying mutation testing in functional
requirements prioritization. Mutation testing is a well-known
technique of assessing the quality of test suites.

In the context of requirements prioritization, we determine the
importance of each functional requirement based on its criticality
level. Such criticality is determined by test scenarios that contain
more faulted test cases and dependencies with other test cases.

We consider that using an early mutation testing approach [2] (i.e.
at model level) within our prioritization process will contribute to
enhance the reliability of prioritization results.

The structure of the paper is organised as follows: Section 2
discusses the related work on requirements prioritization. Section 3
introduces the terminology on mutation testing and list the tools that
we developed in the context of model-driven testing. In Section 4, we
present the new functional requirements prioritization strategy, which
is illustrated with an example (Sudoku game). Section 5 concludes the
paper and suggests future work.

2. RELATED WORK

Several secondary studies have been reported (e.g. [1], [3-7]) with
the purposes of getting a better understanding on certain aspects of
requirements prioritization techniques. For instance, Achimugu et al.
[3] analysed 49 requirements prioritization techniques with respect to
scalability, computational complexity, rank updates, requirements
dependencies, communication among stakeholders, reliability, and
validation. Sher et al. conducted another systematic review [4], who
extended the analysis carried out by Achimigu et al. by considering
not only technical aspects but also business/client aspects (i.e. sales,
marketing, customer satisfaction, strategic) as analysis criteria of 59
prioritization techniques. From these two secondary studies, authors
conclude that most of the existing techniques are not scalable. This
was also corroborated by Khan [5], who found that most of the
selected requirements prioritization techniques (i.e. Analytic
Hierarchy Process (AHP), Cumulative voting, Hierarchy AHP,
Spanning Tree, Bubble Sort, Binary Search Tree, Priority Groups) are
evaluated with a low number of requirements (an average of 18

mailto:n.condori.fernandez@udc.es
mailto:n.condori-fernandez@vu.nl
mailto:fernanda.granda@ucuenca.edu.ec
mailto:fernanda.granda@ucuenca.edu.ec

requirements). This scalability problem of referenced rank techniques
like AHP, Pairwise comparisons and Bubble Sort is because of the
requirements are compared based on possible pairs.

Another issue is with respect to the reliability of the prioritization
techniques. According to [3], the analytical hierarchy process (AHP)
is one of the few techniques that provides reliable prioritization results
because of its ability of determining ratios between requirements.
Such ratios can be utilized in algorithms that can support the
prioritization process. Most of the existing techniques are not reliable
enough since they use ordinal or nominal scale.

Herrmann and Daneva [6] conducted also a comparative review of
15 prioritization techniques with particular focus on cost-value
techniques. In another mapping study [7], Pergher and Rossi found a
limited research on the evaluation of tools and frameworks for
requirements prioritization.

In this paper, we aim to address some of the issues detected in
these secondary studies like reliability and scalability.

3. BACKGROUND

This section introduces testing and mutation concepts used along
the paper.

A. Testing Concepts

A System Under Test is a Conceptual Schema (CS) under test
(CSUT) based on Unified Modelling Language (UML) Class
Diagrams (CD) [8].

A test suite is a set of one or more test scenarios. Each test
scenario is a story that consists of one or more test cases that execute
in an incremental way the test scenario. A test case starts with the
execution of the fixture. The fixture for a test case, at model level, is a
set of statements that create a model state defining the values of the
model variables. Then, the test case ends with an assertion that
validates a functional requirement in the artefact under test (e.g.
CSUT). A Faulted test case is obtained when the output of its
execution is different than expected.

B. Mutation Concepts

Mutation involves modifying a software artefact (e.g. CS) by
injecting artificial faults. Each mutated version is called a mutant. The
artificial faults can be created automatically, using a set of mutation
operators (MO). Mutants can be classified into two types: First Order
Mutants (FOM) and Higher Order Mutants (HOM). FOMs are
generated by applying mutation operators only once. HOMs are
generated by applying mutation operators more than once [9].

In a previous paper [10], we proposed a set of 50 mutation
operators specifically designed to generate mutants for UML Class
Diagram. A subset of mutant types were evaluated with respect to its
effectiveness to inject defects into a CS [12].

With the purpose of determining the ability of a test suite to expose
errors in the system under test (i.e. CS), Test suite adequacy for each
mutant type can be measured by a mutation score (MS). It is
computed in terms of the ratio of the number of killed mutants (M,)
over the total number of the non-equivalent mutants.

Where, non-equivalent mutants (M) = killed mutants (M) + the
surviving mutants. The mutation score is given between zero and one
values.

In the context of model-driven testing, we developed two tools:

22

1) The MutUML tool (Mutation for UML) [2] for the
generation and parsing (i.e. syntax analysis) of first order
mutants by using the set of 18 mutation operators (see Table
1) previously defined for Conceptual Schema based on
UML Class Diagram (CD).

The CoSTest tool [11] developed for testing conceptual
schemas. CoSTest allows the semi-automatic generation of
test scenarios with test cases from a requirements model
[15], the execution of CS/CS mutants against generated
tests, and reporting the test results. MutUML has been
integrated into CoSTest tool for supporting the test cases
selection. Moreover, with CoSTest traceability between test
cases and requirements is addressed.

2)

4. NEW REQUIREMENTS PRIORITIZATION

In this section, we explain our functional requirements
prioritization strategy which consists of seven steps, such is shown in
Figure 1.

) [Mappingto

Dependencies
Analysis

Evaluation of the: Test Scenarios

=

(Generation using| =l
MutuUmL

%> Ranking of the requirements

Test Suites

Test Suite
Adequacy

Identification

Adequacy
Score
Selection
Z i Test Scenarios with Dependency

\dentified
Tester faulted test cases requirements relations
A
o Prioritization |
S of
(e=izds = Requirements
—

)
Requirements
Engineer Prioritized

Adequacy Score in
ascending order

Adequacy Score

Mutants of a
Conceptual
Schema under
test (csUT)

Legend

y (‘Manual™ e

Fig. 1. Functional Requirements Prioritization Strategy

This prioritization strategy is illustrated with an example of the
Sudoku game. Figure 2 shows the sequence of functions of Sudoku,
which was taken from Tort and Olivé work [13]. Sudoku system gives
the capability of: managing different users (i.e. REGISTER
PLAYER), generating new Sudokus (i.e. SUDOKU GENERATION),
configuring number of cells for sudokus (i.e. SUDOKU CELLS).
Then, the user puts value in a cell of the current Sudoku, the system
checks whether the game ends to notify the user. The user should
decide whether to continue playing by placing values in the sudoku
cells (i.e. CONTINUE PLAYING and PUT A VALUE IN A CELL),
ending the game or indicates to the system that he/she wants to
continue solving an unfinished Sudoku previously started (i.e.
CHANGE TO UNFINISHED GAME and SUDOKU SELECTION).

1
REGISTER PLAYER

2
SUDOKU GENERATION
SUDOKU CELLS

i 6
PUT AVALUE
|N A CELL SELECTION
T
5
SUDOKU OPTIONS

51 52 53
CONTINUE END CHANGE TO
PLAYING GAME | [UNFINISHED GAME

Fig. 2. Sequence of Events for Sudoku system

Next each step of our prioritization strategy is explained using the
Sudoku game.

1

Evaluation of the test suite adequacy. As it is shown in
Figure 1 the output of the MutUML tool [2] is the input of
our prioritization strategy. Test suite adequacy evaluation is
performed, where we compared automatically the output of
each mutant against the output of the original version of the
CS with no faults. When the output of the mutant was
different to the original CS output, the test case was labelled
as failing and when the outputs were exactly the same, the test
case was tagged as passing. A mutant may survive (S) either
because it is equivalent (Mg) to the original model (i.e. it is
semantically identical to the original model although
syntactically different) or the test set is inadequate to Kill the
mutant. The obtained mutations scores are the outcome of this
step.

Table 1. Mutation Operators for First Order Mutants [10]

| Code Mutation Operator Description

1 UPA2 Adds an extraneous Parameter to an Operation

2 WCO1 Changes the constraint by deleting the references to a

class Attribute

3 WCO3 Change the constraint by deleting the calls to

specific operation.

4 WCO4 Changes an arithmetic operator for another and

supports binary operators: +, -,*,/

5 WCO5 Changes the constraint by adding the conditional

operator “not”

6 WCO6 Changes a conditional operator for another and

supports operators: or, and

7 WCO7 Changes the constraint by deleting the conditional

operator “not”

8 WCO08 Changes a relational operator for another operators:

<, <=, >, >z =z, 1=

9 WCO09 Changes a constraint by deleting a unary arithmetic

operator (-).

10 | WAS1 Interchange the members (memberEnd) of an

Association.

11 | WAS2 Changes the association type (i.e. normal,

composite).

12 | WAS3 Changes the memberEnd multiplicity of an

Association (i.e. *-*,0..1-0..1, *-0..1)

13 | WCL1 Changes visibility kind of the Class (i.e. private)

14 | WOP2 Changes the visibility kind of an operation.

15 | WPA Changes the Parameter data type (i.e. String, Integer,

Boolean, Date, Real).

16 | MCO Deletes a constraint (i.e. pre-condition, post-

condition constraint, body constraint)

17 | MAS Deletes an Association.

18 | MPA Deletes a Parameter from an Operation.

2) Ranking of the test suites. As our purpose is identifying the
critical test scenarios, in this second step, the values of the test
suite adequacy (obtained in the previous step) are ranked in
ascending order. Table 2 shows the mutants of our example
with a mutation score lower than 1.0.

3) Adequacy score selection. In the context of requirements

prioritization, a low adequacy score should be selected
because it will allow us to identify mutants type that are hard
to kill and consequently also the requirements used to
generate the corresponding test cases, which should be
considered for a deeper review. In our example, we decided to
select the first four mutants with MS lower than 0.6 (see
Table 2). The remaining 8 mutants had a score of 1.0, which
were excluded. This step is carried out manually since

23

4)

5)

6)

7

required the selection of adequacy score to be used as a
threshold for the next step.

Scenarios identification. The (test) scenarios are identified by
recognizing the faulted test case (i.e. expected verdict is fail
and actual verdict is pass). The identified test scenarios
correspond to sequence of events of the functional
requirements model. In our example (see Figure 2), there is
only one decision node, hence the cyclomatic complexity will
be 2, which gives the number of independent paths or test
scenarios (TS): TS1=Register Player, Sudoku Generation,
Sudoku Cells, Put a Value in a Cell, Change to Unfinished
Game, Sudoku Selection, Continue Playing; and
TS2=Register Player, Sudoku Generation, Sudoku Cells, Put
a Value in a Cell, Change to Unfinished Game, Sudoku
Selection and End Game. Table 3 shows the test cases
corresponding to the test scenario 1.

Mapping test cases to requirements. For each faulted test
case, the related functional requirement is identified as it can
be seen in Table 3. To do this, the CoSTest’s testing report is
manually analysed. Figure 3 shows some of the testing results
obtained for one mutant of the type “Changes the association
type” (WAS2), where the test cases 32-34 were failed.
Dependencies analysis. Each test case has a dependency
relation with the requirement that it validates. Then, the
requirements are ordered according to the number of
dependencies of failed test cases by mutant type (See last
column of Table 3).

Prioritization of Requirements. The requirement with the
greatest number of dependencies and lower adequacy score
represent the most critical requirement. The results in Table 3
show that the highest level of criticality is for configuring
number of cells for Sudoku (SUDOKU_CELLS requirement)
with 13 dependencies. The lowest level of criticality is for the
requirements:

REGISTER_PLAYER, SUDOKU_SELECTION
PUT_A_VALUE_IN_A_CELL.

The SUDOKU_CELLS requirement is according to our
example the most critical requirement because there are
several defects injected in the mutants (i.e. WAS2, WCOS6,
WCO5 and WCOA4) that affect this requirement and that they
are not detected by test cases. From these results, we can see
that requirements related to associations (WAS) and
constraints (WCO) are critical and require more attention in
their specification. These results were confirmed in the others
six CSs reported in [12].

and

Final Veredict : [E]ED] Testing Time: 241 hh:mm:ss Coverage Report Til

| Results | Testing Log

TestCase ID

TestCase Name | Scenario ID| Verdict Purpose to betested) | TestDuratic

SUDOKU_CELLS Sudoku_0... [Validate the derived Attribute ‘context wl -

SUDOKU_CELLS Validate the link row_cell createLink(ra

SUDOKU_CELLS Validate the link ‘column_cell.createLin

SUDOKU_CELLS Validate the link region_cell.createLink =

SUDOKU_CELLS Sudoku_0 Validate the link row_predefined_cell.c

SUDOKU_CELLS Sudoku_0,

Validate the link ‘row_white_cell.create

SUDOKU_CELLS Sudoku_0. Validate the link ‘column_predefined_c.

8

SUDOKU_CELLS Validate the link ‘column_white_cell.cre =

<

i [D]]

Fig. 3. View of a testing results for a mutant of the type WAS2

Table 2. Mutation Score of test suites for each mutant type

CS Mutant Mutant Description M S Mg MS
type
WAS2 Changes the association type 0 11 0 0.00
Changes a conditional operator for another 4 8 1 0.33
WCO6 and supports operators: or, and
Changes an arithmetic operator for another 7 8 2 047
WCO4 and supports binary operators: +, -,*,/
Changes the constraint by adding the 6 5 0 055
WCO5 conditional operator “not”
Changes a relational operator for another 28 13 6 0.68
WCO8 operators: <=, >=, == I=
Changes the constraint by deleting the 6 1 0 086
WCO1 references to a class attribute

Table 3. Mapping test cases to functional requirements and
number of dependencies

Functional Requirement CS Mutant (Id Test cases) Count
WAS?2 (32, 33, 34, 41, 42), 13
SUDOKU_CELLS WCO6 (31, 41, 47), WCOS (30,
31, 41, 47), WCO4 (41),

WAS2 (19, 20, 21), WCOS (8, 7

SUDOKU_GENERATION 11, 14), WCO5 (8),
REGISTER_ PLAYER WCO4 (4) 1
SUDOKU_SELECTION WAS2 (55) 1
PUT_A_VALUE_IN_A_CELL WAS2 (46) 1

Finally, the derived information allows requirements engineers to
judge and weigh the requirements in a more objective way, by
computing the test suite adequacy and identifying the dependency
values between the faulted test cases and the related requirements.
This enables requirements engineers to make decisions based on the
criticality level of the requirements. This way decision makers (e.g.
requirements engineer, project manager) can focus more on
requirements that are more fault-prone, and consequently require a
major attention.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new prioritization strategy that enables
to select the most important functional requirements based on their
criticality level. Our approach is promising because priorities are
defined in a ratio scale (i.e. mutation score, number of dependencies),
which has demonstrated to be more reliable than nominal/ordinal
scale-based prioritization techniques [3]. However, it is important to
remark that the criticality level (criteria used for prioritizing
requirements) could be influenced by the type of mutants that are
generated with the mutation tool. Currently, we have used only first-
order mutants. We think that adding high-order mutants would
enhance the reliability of the prioritization results (i.e. more
dependencies could be detected).

As future work, we plan conduct experiments for investigating the
influence of this type of mutation operators on requirements
prioritization. Moreover, we are going to automate the proposal (i.e.
mapping and dependency analysis), and use software projects with a
high number of requirements to assess the scalability of our approach .

ACKNOWLEDGMENT

This work has received partial funding by the Spanish Ministry of
Economy, Industry and Competitiveness with the Project: TIN2016-

24

78011-C4-1-R, Galician Government with the project: ED431C
2017/5, and TESTOMAT (ITEA 3)

REFERENCES

[1] G. Ruhe, A. Eberlein, and D. Pfahl, “Quantitative WinWin — A
new method for decision support in requirements negotiation,” in
Proc. 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE 02), 2002, pp. 159-166.

M. F. Granda, N. Condori-Fernéndez, T. E. J. Vos, and O. Pastor,

“A Model-level Mutation Tool to Support the Assessment of the

Test Case Quality,” in 25TH International Conference on

Information Systems Development (1ISD2016 POLAND), 2016.

P. Achimugu, A. Selamat, R. Ibrahim, M.N. Mahrin, “A

systematic literature review of software requirements

prioritization research,” Inf. Software. Technol., pp. 568-585,

2014.

F. Sher, D. N. A. Jawawi, R. Mohamad, and M. |. Babar,

“Requirements prioritization techniques and different aspects for

prioritization a systematic literature review protocol,” in 8th.

Malaysian Software Engineering Conference (MySEC), 2014, pp.

31-36.

[5] K. A. Khan, “A Systematic Review of Software Requirements
Prioritization,” Blekinge Institute of Technology (BTH), Sweden,
2006.

[6] A. Herrmann and M. Daneva, “Requirements Prioritization Based
on Benefit and Cost Prediction: An Agenda for Future Research,”
in IEEE International Requirements Engineering, 2008, pp. 125-
134.

[7] M. Pergher, E. Massimiliano, and B. Rossi, “Requirements
prioritization in software engineering: A systematic mapping
study,” in Empirical Requirements Engineering (EmpiRE), 2013,
pp. 40-44.

[8] Object Management Group, “Unified Modeling Language
(UML),” 2015.

[9] Y. Jia and M. Harman, “Higher Order Mutation Testing” Inf.
Softw. Technol., vol. 51, no. 10, pp. 1379-1393, 2009.

[10] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“Mutation Operators for UML Class Diagrams,” in CAiSE 2016,
2016.

[11] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“CoSTest: A tool for Validation of Requirements at Model
Level,” in RE conference proceedings. Poster and Demo,
Portugal. 2017, pp. 4-7.

[12] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“Effectiveness Assessment of an Early Testing Technique using
Model-Level Mutants” In 21st International Conference on
Evaluation and Assessment in Software Engineering, 2017, vol.
2017, no. June.

[13] A. Tort and A. Olivé, “Case Study: Conceptual Modeling of
Basic Sudoku,” 2006. [Online]. Available:
http://guifre.Isi.upc.edu/Sudoku.pdf.

[14] C. Wang, F. Pastore and L. Briand, "System Testing of Timing
Requirements Based on Use Cases and Timed Automata,” 2017
IEEE International Conference on Software Testing, Verification
and Validation (ICST), Tokyo, 2017, pp. 299-309. doi:
10.1109/ICST.2017.34

[15] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos and O. Pastor,
"Towards the automated generation of abstract test cases from
requirements models". 1st International IEEE Workshop on
Requirements Engineering and Testing (RET), Karlskrona-
Sweden, 2014, pp. 39-46. doi: 10.1109/RET.2014.690867

(2]

(3]

(4]

