
 

UNIVERSIDAD DE CUENCA 

FACULTAD DE INGENIERÍA 

 

MAESTRÍA EN INGENIERÍA EN VIALIDAD Y TRANSPORTES II 

COHORTE 

 

" Estimación de factores para la conversión de vehículos pesados a vehículos de pasajeros 

equivalentes, basado en los espaciamientos en una corriente de tráfico continuo, en la carretera 

bidireccional de dos carriles estatal E59 del Ecuador, Sudamérica." 

 

 

TRABAJO DE TITULACIÓN PREVIO 

A LA OBTENCIÓN DEL TÍTULO DE 

MAGÍSTER EN INGENIERÍA  

EN VIALIDAD Y TRANSPORTES 
 

 

AUTOR 

 

ING. WILMER XAVIER ESCANDÓN CALLE 

 

0102941937 

 

DIRECTOR 

 

ING. JUAN MARCELO AVILÉS ORDÓÑEZ MGT. 

0103872503 
 

 

Cuenca - Ecuador 

Mayo - 2018 



Universidad de Cuenca      
 

Ing. Wilmer Xavier Escandón Calle                                       1 

RESUMEN 

 

Este artículo presenta los resultados del estudio realizado en la vía E59 de la red estatal del Ecuador, 

para determinar los factores de conversión a vehículos de pasajeros equivalentes (PCE, por sus siglas 

en inglés) de tres clases de vehículos pesados: buses, camiones no articulados y camiones 

articulados. El método empleado se basa en el espaciamiento entre vehículos. Los datos utilizados en 

este estudio, fueron registrados mediante observaciones de campo por medio de cámara video 

grabadora en tres sitios de la carretera. Estos videos se procesaron a través de herramientas de 

computación para obtener variables dependientes de espaciamientos por clase de vehículo y variables 

independientes de velocidad, flujo y porcentaje de vehículos pesados. Debido al carácter endógeno 

de las variables dependientes, se ha establecido un modelo de ecuaciones simultáneo, resuelto por el 

método estadístico de mínimos cuadrados en tres etapas. A partir de este modelo se ha determinado 

los espaciamientos promedio por clase de vehículo, los resultados se presentan estadísticamente 

significativos para las ecuaciones del modelo, con coeficientes de determinación ajustados mayores a 

0.84 y niveles de significancia p-value inferiores a 0.05 para los coeficientes de las variables 

explicativas. A partir de los resultados del modelo de predicción se ha calculado los factores PCE, 

obteniéndose 1.10, 1.12 y 1.21 para los vehículos de clase: buses, camión no articulado y camión 

articulado, respectivamente. 

 

Palabras clave: PCE,  factores de equivalencia, espaciamientos. 
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ABSTRACT 

The present paper exposes the results of the study carried out on the E59 road, located on the State 

Network in Ecuador in order to determine the passenger car equivalent (PCE) of three types of 

vehicles such us buses, single-unit trucks and combination trucks. The methodology used is based on 

lagging headways. This study makes use of video-recorded traffic data from three sites along the 

road. The recorded video clips were processed through software tools in order to get lagging 

headway dependent variable by type of vehicles and independent variables of speed, flow by type of 

vehicles and percentage of heavy trucks. Due to the endogenous nature of dependent variables a 

model of simultaneous equations solved by three-stages-least-squares statistical method was 

established. Founded on this model, the lagging headways per vehicle type was determined. The 

results are statistically significant for the equations of the model with adjusted coefficients of 

determination of 0.84 and p-value significance levels less than 0.05 for each coefficient of the 

explanatory variables. After these results, PCE factors were calculated obtaining 1.10, 1.12 and 1.21 

for buses, single-unit trucks and combination trucks, respectively. 

 

Keywords: PCE, passenger car equivalent, lagging headways. 
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1 INTRODUCCIÓN 

Dentro de la planificación del tráfico vehicular se ha planteado como parámetro de evaluación de una 

carretera el concepto de niveles de servicio, el cual fue introducido por la edición del Manual de 

Capacidad de Carreteras (HCM, por sus siglas en inglés) de 1965 (Highway capacity manual, 1965), 

siendo un mejor nivel de servicio aquel que permite un mejor aprovechamiento del tiempo dentro de 

las infraestructuras viales, lo cual conlleva un gasto eficiente de combustibles, mejor rendimiento de 

vehículos, menor contaminación y una mejor calidad de vida de las personas que están vinculadas de 

alguna manera, tanto a la oferta como a la demanda vial. Por ende un mejor nivel de servicio 

representa un impacto positivo económico, ambiental y de salud pública (Gehl & Décima, 2014). 

Los niveles de servicio en las carreteras se ven afectados principalmente por la densidad de tráfico, la 

cual representa la cantidad de vehículos que circulan por un carril en una unidad de longitud de vía. 

Sin embargo, el flujo de tránsito está compuesto por varias clases de vehículos: livianos y pesados, 

cada uno de estos con sus propias características físicas y de operación. Debido a esta composición 

variable de las corrientes vehiculares, el concepto de equivalencia de vehículos de pasajeros 

introducido en la edición de 1965 del HCM permitió a los investigadores en el mundo tratar con el 

flujo de tráfico mixto. Un flujo de tráfico mixto que incluye vehículos livianos y pesados, se puede 

convertir a un flujo de vehículos equivalentes de pasajeros, mediante el uso de factores de 

equivalencia a vehículos de pasajeros conocidos como PCE, por sus siglas en inglés passenger-car 

equivalents (Anwaar et al., 2011). 

Los criterios predominantes para establecer los PCE, se han basado en: densidad y tasas de flujo, 

intervalos de espacio o de tiempo, en flujo de descarga de colas, velocidad, demoras, relación 

volumen capacidad, vehículos-hora y tiempos de viaje (Shalini & Kumar, 2014) (Craus, Polus, & 

Grinberg, 1980). Tradicionalmente las variables que permiten obtener los PCE mediante estas 

metodologías han sido estimadas por simulación microscópica, debido a la diversidad de condiciones 

de la infraestructura vial, del tráfico y de control. Las tablas de PCE que presenta el HCM 2000 son 

derivadas de los trabajos de Elefteriadou (Elefteriadou, Torbic, & Webster, 1997) (Anwaar et al., 

2011) en donde se utilizan modelos para simular microscópicamente las operaciones de tráfico en 

varios tipos de carreteras. Existen también estudios realizados para el cálculo de los PCE basados en 

observaciones en campo, como es el desarrollado por Anwaar (Anwaar et al., 2011) para determinar 

los PCE en una autopista o el estudio de Dazhi (Dazhi Sun, Jinpeng Lv, & Laura Paul, 2008) para 

determinar los PCE en zonas de trabajos en una carretera, estudios que han sido desarrollados a partir 

de observaciones realizadas en campo mediante filmaciones con cámara de video. 

El problema que se presenta en nuestro país, es que en la actualidad los PCE asumidos por las 

agencias de control y planificación en la mayoría de los casos, son aquellos que recomienda la 

Transportation Research Board (TRB, Junta de Investigación del transporte de los Estados Unidos) a 

través de las ediciones del HCM 2000 ó 2010 (Highway capacity manual, 2000) (Highway capacity 

manual, 2010), los cuales han sido determinados para las condiciones del tráfico de los Estados 

Unidos de América. Tanto las versiones 2000 y 2010 del HCM, proporcionan diferentes valores de 

PCE en función del porcentaje de vehículos pesados, diferentes pendientes y la longitud de los 

segmentos de pendientes para autopistas y carreteras de varios carriles, la clasificación establecida es 
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para camiones y vehículos recreativos (Anwaar et al., 2011), estos factores no necesariamente se 

ajustan a nuestra realidad. 

Se ha planteado la hipótesis de que los valores de PCE en este caso de estudio son diferentes a los 

valores del HCM, debido a que las características de viaje, las redes de carreteras y las limitaciones 

locales son muy diferentes en las ciudades de los países en desarrollo, que en los países 

desarrollados. Por lo tanto es necesario determinar los diferentes parámetros de los movimientos de 

tráfico que son adecuados para las características del sistema de transporte local (Shalini & Kumar, 

2014).  

Los objetivos de esta investigación son: 

 Establecer un modelo estadístico que permita obtener los intervalos de espacio o 

espaciamientos promedio de las diferentes clases de vehículos a partir de variables obtenidas 

en campo. 

 Calcular los PCE por clase de vehículo pesado a partir de los resultados del modelo. 

 Realizar una comparación con los factores presentados por el HCM. 

El presente estudio utiliza una metodología analítica observacional de corte transversal basada en los 

intervalos de espacio o espaciamientos entre el vehículo de adelante y el vehículo siguiente (Werner, 

A., & Morrall, J. F.,1976) (Craus et al., 1980) (Krammes & Crowley Rowley, s. f.) (Nokandeh, 

Ghosh, & Chandra, 2016), para cuya aplicación se utilizan datos de variables obtenidas a través de 

filmaciones en campo mediante una cámara de video en la carretera de dos carriles bidireccional 

estatal E59 ubicada al Sur del Ecuador, que une las ciudades de Cuenca y Pasaje. 

2 METODOLOGÍA 

2.1 Criterio para establecer los PCE 

Asumiendo que los intervalos de espacio dependen del tamaño del vehículo siguiente los PCE han 

sido formulados con la siguiente ecuación (Elefteriadou et al., 1997) (Anwaar et al., 2011). 

      
   

    
   Ecuación (1) 

Donde    , es el espaciamiento promedio del vehículo siguiente clase i en condiciones j. 

    , es el espaciamiento promedio del vehículo de pasajeros o vehículo liviano en condiciones j. 

     , representa el valor PCE del vehículo clase i en condiciones de carretera j.  Las condiciones j 

están definidas por las características geométricas y de control de los segmentos propuestos para la 

carretera bidireccional de dos carriles.  

2.2 Modelo para determinación de los espaciamientos 

El presente estudio utiliza un enfoque estadístico para determinar los espaciamientos     de cuatro 

tipos i de vehículos, Vehículo de pasajeros (PC), Bus (B), Camión no articulado (CNA) y Camión 

articulado o tráiler (CA), representados por    ,   ,      y     respectivamente, para condiciones j 

que son analizadas más adelante. 
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Los valores de los espaciamientos por clase o tipo de vehículo son las variables dependientes y 

debido a que se influencian entre sí, son consideradas endógenas (Anwaar et al., 2011). Debido a 

esto las cuatro ecuaciones propuestas se resuelven simultáneamente utilizando el método de mínimos 

cuadrados en tres etapas MC3E (Washington, Karlaftis, & Mannering, 2003) (Zellner & Theil, 

1962). 

Las variables independientes del modelo son los flujos por clase de vehículo FPC, FB, FCNA, FCA, 

velocidad por clase de vehículo VPC, VB, VCNA, VCA, flujo total en la dirección opuesta FDO, 

porcentaje de vehículos pesados %VP. Se ha realizado el siguiente arreglo de variables de acuerdo a 

las cuatro clases de vehículos analizados y a las variables explicativas predeterminadas: 

Tabla No. 1 VARIABLES DEL MODELO 

 

 

El modelo de predicción propuesto es un sistema de ecuaciones simultáneo para los espaciamientos 

promedio por clase de vehículo, como vemos a continuación: 

                                                     Ecuación (2) 

                                                       Ecuación (3) 

                                                            Ecuación (4) 

                                                            Ecuación (5) 

En donde: 

Las variables   ,   ,   ,    representan el logaritmo natural de los espaciamientos promedio          

entre el guardachoque trasero del vehículo de adelante y el guardachoque trasero del vehículo 

siguiente clase   en condiciones j, podemos utilizar el logaritmo natural debido a que los valores de 

espaciamiento siempre serán positivos. 

Las variables   ,   ,…,    , son los las variables independientes del modelo como son el flujo por 

clase de vehículo, velocidad por clase de vehículo, flujo en la dirección opuesta, porcentaje de 

vehículos pesados.  

  ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   , son los coeficientes estimables de las variables endógenas 

del modelo. 

  ,   ,   ,   , son las constantes del modelo. 

y1 y2 y3 y4

ln(HPC) ln(HB) ln(HCNA) ln(HCA)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

FPC FB FCNA FCA FDO %VP VPC VB VCNA VCA

VARIABLES ENDOGENAS (DEPENDIENTES)

VARIABLES INSTRUMENTALES (INDEPENDIENTES)
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  ,   ,   ,   ,   ,   ,   ,   ,    ,   ,   ,   ,    ,   ,   ,   , son los coeficientes estimables de las 

variables independientes predeterminadas del modelo. 

  ,   ,   ,   , son los errores del modelo de regresión para cada ecuación. 

2.3 Recolección de datos y preparación 

Para recolectar las observaciones en la carretera estatal E59, se seleccionaron tres segmentos sin 

curvas horizontales de sección uniforme de longitud mínima 300 m con condiciones muy semejantes 

a las condiciones básicas del HCM para carreteras de dos carriles con flujo ininterrumpido (Tabla 

No. 2), sin intersecciones ni dispositivos de control y de gradiente igual o inferior al 2% (terreno 

plano), las mismas que representan las condiciones j en cuales se ha elaborado este estudio, cuyas 

coordenadas en sistema WGS84 zona 17S son E: 717824 N: 9666323, E: 716497 N: 9661362 y E: 

717057 N: 9662700, para los segmentos de observación S1, S2 y S3 respectivamente. 

Tabla No. 2 CONDICIONES BASICAS HCM PARA CARRETERAS  

DE DOS CARRILES VS CONDICIONES CARRETERA E59 

 
 

Las condiciones básicas del HCM asumen buenas condiciones climáticas, buenas condiciones del 

pavimento, usuarios familiarizados con la carretera y sin impedimentos para el flujo del tráfico 

(Highway capacity manual, 2000), por lo tanto las mediciones se realizaron en condiciones de clima 

óptimos y de buena visibilidad, no se consideró las grabaciones en días de lluvia y neblina. Para cada 

segmento se estableció dos puntos de referencia o control con una separación de al menos 12 m entre 

sí. Estos puntos de referencia se encuentran dentro del enfoque de grabación de la cámara, y 

permitieron determinar el parámetro tiempo en la recolección de datos de los videos. La cámara de 

vídeo que se utilizó tiene una velocidad de grabación de 30 fotogramas por segundo (precisión de 

0.033 segundos) y fue montada en un soporte en un lugar alto y perpendicular al eje de la vía. Las 

grabaciones se llevaron a cabo durante las horas de mayor flujo vehicular en 16 días de observación. 

Se realizó un conteo de tráfico en el punto S2 y se determinó las horas de mayor flujo vehicular 

durante las cuales se realizó las grabaciones, esto es en las horas pico 07:30:00 a 08:30:00 y 17:30:00 

a 18:30:00. Los videos obtenidos fueron divididos en clips de 15 minutos para su análisis. Los clips 

se reprodujeron en el software libre de edición de video Kinovea (Kinovea, 2006) que mediante el 

análisis fotograma a fotograma, nos permitió extraer la información de intervalos de tiempos entre 

puntos de referencia al paso de los guardachoques posterior y delantero de cada vehículo en 

circulación por carril, con estos intervalos de tiempo se determinó la velocidad y espaciamientos, 

además se recolectaron por conteo los flujos tanto de vehículos livianos como de vehículos pesados 

así como el flujo total en dirección opuesta por carril analizado.  

Para la modelación, los valores promedio de cada variable extraída dentro de los 15 minutos de 

videograbación por carril representan una observación. Se elaboró una clasificación de vehículos de 

CONDICIONES HCM SEGMENTOS E59

Ancho de carril 3.6m 3.6m

Ancho de bermas >= 1.8m >1.7m

Ausencia de zonas de no rebase SI SI

Terreno plano SI SI

Ausencia de impedimentos al tráfico SI SI
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acuerdo a los más comunes en nuestras carreteras estos son Vehículo de pasajeros (PC), Bus (B), 

Camión no articulado (CNA) y Camión articulado o tráiler (CA), en esta clasificación se pretende 

analizar el efecto de los vehículos pesados camiones (camiones sin remolque y volquetas de hasta 4 

ejes), tráileres (tracto camiones con remolque o articulados de hasta 6 ejes en total) y de los buses de 

pasajeros por separado, ya que el HCM recomienda valores solamente para Vehículos pesados en 

general (Trucks) y Vehículos recreativos (RVs). Las observaciones que no contenían la clase de 

vehículos pesados estudiados fueron descartadas ya que no influyen en los resultados (Anwaar et al., 

2011).  

El cálculo de las variables necesarias para establecer el modelo propuesto, se lo realizó como se 

indica a continuación.  

2.4 Velocidad de cada vehículo 

La velocidad de cada vehículo incluido en el recuento se refiere a la velocidad de punto y se estimó 

midiendo el tiempo empleado por el vehículo para cubrir la longitud total recorrida entre los puntos 

de control a través del análisis fotograma a fotograma del vídeo, cuyas ecuaciones son:   

     
     ̅̅ ̅̅ ̅̅ ̅ 

             
   Ecuación (6) 

    
 

   
 

     ̅̅ ̅̅ ̅̅ ̅ 

             
   Ecuación (7) 

En donde, 

    y    , son la velocidad en m/s y la velocidad en km/h respectivamente, del vehículo clase i en 

condiciones j. 

      y      , es el tiempo en segundos en que el guardachoque trasero del vehículo clase i en 

condiciones j pasa por la referencia r1 y r2 respectivamente. 

     ̅̅ ̅̅ ̅̅ ̅ , es la distancia en metros entre la referencia r1 y r2. 

2.5 Espaciamientos 

La variable de espaciamientos del vehículo siguiente     fue obtenida mediante la siguiente 

ecuación: 

        (               ) Ecuación (8) 

En donde,  

   , es la velocidad del vehículo siguiente tipo i en las condiciones j. 

     , es el tiempo en el cual el guardachoque trasero del vehículo de adelante clase i paso por el 

punto de referencia r2 en las condiciones j. 

         , es el tiempo en el cual el guardachoque trasero del vehículo siguiente clase i-1 pasó por el 

punto de referencia r2 en las condiciones j. 
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Los espaciamientos     están delimitados por un valor mínimo     que es la longitud del vehículo 

(congestión total) y un valor máximo (          ) que es la suma de la longitud del vehículo con la 

distancia de detención. Los vehículos con espaciamiento que exceden la distancia de detención no se 

consideraron, pues en se asume que tienen el camino despejado en frente (Anwaar et al., 2011).  

   , es la longitud del vehículo siguiente clase i en condiciones j y se estimó con la siguiente 

ecuación. 

     
    

              
   Ecuación (9) 

En donde, 

   , es la longitud en metros del vehículo clase i en condiciones j. 

   , es la velocidad en m/s del vehículo clase i en condiciones j. 

     , es el tiempo en segundos en que el guardachoque trasero del vehículo clase i en condiciones j 

pasa por la referencia r1.  

      , es el tiempo en segundos en que el guardachoque delantero del vehículo clase i en 

condiciones j pasa por la referencia r1. 

La distancia de detención o de parada       es la recorrida durante los tiempos de percepción, 

reacción y frenado, se ha calculado con la siguiente ecuación (Layton & Dixon, 2012):  

                   
   

 

   (
 

    
  )

   Ecuación (10) 

En donde,  

   , es la velocidad en km/h del vehículo tipo i en las condiciones j. 

 , es el tiempo de percepción y reacción, 2.5 segundos. 

 , la rata de desaceleración 3.4 m/s
2
.  

 , es la gradiente longitudinal de la carretera en decimal.  

La teoría fundamental del flujo vehicular y la consideración del límite inferior de los espaciamientos 

promedio por clase de vehículo han sido incluidas en la determinación del modelo de predicción, ya 

que de acuerdo al modelo lineal de flujo vehicular establecido por Greenshields en congestión total la 

velocidad y el flujo son nulos (Kühne, 2011), a partir de esta condición se obtuvo observaciones de 

espaciamientos promedio en congestión total cuyo valor es igual al promedio de las longitudes del 

vehículo siguiente de clase i en condiciones j de cada video clip, para los cuales las variables de 

velocidad y el flujo son iguales a cero. 



Universidad de Cuenca      
 

Ing. Wilmer Xavier Escandón Calle                                       12 

2.6 Flujos de vehículos por clase y dirección 

Los flujos de vehículos por clase     fueron obtenidos por conteo directo en el análisis de cada video 

clip. Para cada observación, se ha considerado los flujos por clase de vehículo en la dirección del 

carril en análisis, así como el flujo total de los vehículos en dirección opuesta. 

Una vez elaborada una base de datos a partir del análisis de 2748 vehículos se obtuvieron 64 

observaciones con todas las variables requeridas, cuyo resumen se presenta en la tabla No. 3.  En la 

misma podemos ver que la desviación estándar de las variables de espaciamiento y flujo es alta, esto 

se debe a que el número de observaciones validas es limitado. Además, la desviación estándar de los 

espaciamientos son valores esperados ya que el límite inferior de los espaciamientos promedio es la 

longitud de la clase del vehículo examinado en caso de congestión total y el límite superior es la 

distancia de parada del vehículo estudiado. 

Con las observaciones obtenidas se calculó el modelo de predicción con ayuda del software libre 

para cálculo estadístico y econométrico Gretl (Gretl, 2016) mediante el método de mínimos 

cuadrados en tres etapas (MC3E). 

  Tabla No. 3 RESUMEN DE VARIABLES OBTENIDAS EN LAS OBSERVACIONES 

 
 

 

2.7 Evaluación del modelo 

Para determinar si el modelo propuesto es robusto, se realizó el análisis estadístico del indicador 

coeficiente de determinación ajustado para cada ecuación del sistema, además se analizó la prueba 

estadística del nivel de significancia p-value de cada uno de los coeficientes de las ecuaciones, si sus 

valores son menores a 0.05 las variables son estadísticamente significativas, por lo tanto, las 

variables cuyo valor p-value fue mayor a 0.05 fueron desestimadas en el análisis. 

Descripción Variable Unidad Promedio
Desviación 

estandar

Espaciamiento promedio del vehículo tipo Vehículo de pasajeros (HPC) e lny1
m 50.971 20.531

Espaciamiento promedio del vehículo tipo Buses (HB) e lny2
m 57.715 24.545

Espaciamiento promedio del vehículo tipo Camiones no articulados ( HC) e lny3
m 56.634 16.238

Espaciamiento promedio del vehículo tipo Camiones articulados o trailer (HT) e lny4
m 61.333 19.876

Flujo Vehiculos de pasajeros (FPC) x1 PC/15min 66.188 25.451

Flujo Buses (FB) x2 B/15min 5.125 2.297

Flujo Camiones no articulados (FCNA) x3 CNA/15min 12.406 5.130

Flujo Camiones articulados o trailer (FCA) x4 CA/15min 2.063 0.914

Flujo total en carril de direccion opuesta (FDO) x5 veh/15min 74.688 32.273

Porcentaje de vehiculos pesados (%VP) x6 % 0.235 0.054

Promedio de velocidad de Vehiculos de pasajeros (VPC) x7 km/h 73.481 10.282

Promedio de velocidad de Buses (VB) x8 km/h 69.012 9.617

Promedio de velocidad de Camiones no articulados (VCNA) x9 km/h 65.843 6.315

Promedio de velocidad de Camiones articulados o trailer (VCA) x10 km/h 64.732 9.545

Espaciamiento promedio mínimo del vehículo tipo Vehículo de pasajeros (HPCmin) e lny1min
m 4.310 0.170

Espaciamiento promedio mínimo del vehículo tipo Buses (HBmin) e 
lny2min

m 11.188 0.992

Espaciamiento promedio mínimo del vehículo tipo Camiones no articulados ( HCmin) e lny3min
m 6.856 0.519

Espaciamiento promedio mínimo del vehículo tipo Camiones articulados (HTmin) e 
lny4min

m 15.082 2.046
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Además, para analizar el poder predictivo del modelo, se realizó un análisis del error del modelo 

mediante el error porcentual medio absoluto (MAPE, por sus siglas en inglés) (Washington et al., 

2011), cuya fórmula se presenta a continuación: 

      
 

 
∑ |   |

 
      Ecuación (11) 

En donde                      , en esta expresión es el porcentaje de error de la observación 

   ) y la predicción (   . El resultado MAPE varía entre 0 y 1, los valores cercanos al 0 representan 

una alta precisión en la predicción. 

3 RESULTADOS Y DISCUSIÓN 

3.1 Modelo de predicción para espaciamientos 

A partir de los datos de las variables obtenidas en campo y mediante el análisis de regresión por 

mínimos cuadrados en tres etapas (MC3E) al sistema de ecuaciones simultáneas (2), (3), (4) y (5), 

con la ayuda del software libre Gretl, llegamos a la determinación del modelo de espaciamientos 

promedios para cada clase de vehículo, obteniendo los resultados de la tabla No. 4. 

Tabla No. 4 MODELO MC3E 

 
 

3.1.1 Análisis de la ecuación para espaciamientos de vehículos de pasajeros 

Si analizamos la primera ecuación para los espaciamientos promedio del vehículo de pasajeros, se 

puede apreciar que la ecuación tiene un ajuste estadístico muy significativo con un valor del 

coeficiente de determinación R
2 

ajustado de 0.98, siendo el mejor de las cuatro ecuaciones.  

El valor del coeficiente de los espaciamientos promedio de los camiones no articulados es más alto 

que el valor del coeficiente de los espaciamientos promedio de los buses, lo que indica que los 

Ecuación Variable Coeficiente p-value

const -0.4497 4.16E-02

y2 0.2895 1.50E-03

y3 0.6269 6.09E-21

x7 0.0092 3.45E-05

R
2
 corregido 0.9774

const 1.9222 1.76E-18

y1 1.1865 1.38E-06

y3 -0.6407 2.60E-02

R2 corregido 0.8436

const 1.2496 2.38E-06

y1 1.0913 4.98E-22

y2 -0.3766 2.89E-02

R2 corregido 0.9388

const 2.9191 3.47E-157

x6 -0.8759 4.64E-02

x10 0.0209 7.34E-162

R
2
 corregido 0.9172

y4

y1

y3

y2



Universidad de Cuenca      
 

Ing. Wilmer Xavier Escandón Calle                                       14 

espaciamientos de los vehículos de pasajeros están más influenciados por los camiones no 

articulados. 

El signo positivo para los coeficientes del espaciamiento promedio de buses y camiones no 

articulados nos indica que a un menor espaciamiento de estas clases de vehículo pesados el 

espaciamiento promedio de vehículos de pasajeros también disminuye.  

El coeficiente de la velocidad de vehículos de pasajeros tiene un valor muy por debajo de los 

coeficientes de las otras variables, esto indica que la velocidad de los vehículos de pasajeros tiene 

menor influencia que la presencia de los vehículos pesados tipo bus y camión no articulado. El signo 

positivo de este coeficiente nos indica que a un aumento en la velocidad también se incrementan los 

espaciamientos promedio de los vehículos de pasajeros, esto es lógico ya que a una mayor velocidad 

la distancia de detención o parada es mayor y los vehículos deben guardar una mayor distancia con 

respecto al vehículo de adelante.  

3.1.2 Análisis de la ecuación para espaciamientos de buses 

La segunda ecuación para los espaciamientos promedio del vehículos pesados tipo bus tiene un valor 

del coeficiente de determinación R
2 

ajustado de 0.84, que aunque es el menor entre las cuatro 

ecuaciones del modelo, aún demuestra un ajuste estadístico significativo.  

El valor absoluto del coeficiente de espaciamientos promedio de la clase vehículos de pasajeros es 

más alto que el valor absoluto del coeficiente de la clase camión no articulado, lo que indica que los 

espaciamientos promedio de los buses son más influenciados por los vehículos de pasajeros.  

El signo positivo del coeficiente de espaciamientos promedio de la clase vehículos de pasajeros 

indica que a un menor espaciamiento promedio de esta clase de vehículos el espaciamiento promedio 

de los buses también disminuye. En cambio, el coeficiente del espaciamiento de los vehículos clase 

camión no articulado es negativo indicando que un incremento del espaciamiento promedio de la 

clase camión no articulado provoca una disminución de los espaciamientos de los vehículos clase 

buses. Esto se explica debido a que aumenta la facilidad de rebasamiento para los buses al 

incrementarse los espaciamientos de los camiones no articulados que van a la delantera, por lo tanto 

los buses disminuyen el espaciamiento con respecto al vehículo de adelante con la intención de 

rebasar. 

3.1.3 Análisis de la ecuación para espaciamientos de camiones no articulados 

La tercera ecuación para los espaciamientos promedio del vehículos pesados tipo camión no 

articulado tiene un valor del coeficiente de determinación R
2 

ajustado de 0.94, que demuestra un 

ajuste estadístico muy significativo.  

El coeficiente del espaciamiento promedio de los vehículos de pasajeros tiene el valor absoluto más 

alto en comparación al valor absoluto del coeficiente de la clase buses, lo que indica que los 

espaciamientos promedio de los camiones no articulados son más influenciados por los vehículos de 

pasajeros.  
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El signo positivo del coeficiente del espaciamiento promedio de los vehículos de pasajeros indica 

que a un decrecimiento del espaciamiento promedio de esta clase de vehículos el espaciamiento 

promedio de los camiones no articulados también disminuye.  

El coeficiente del espaciamiento promedio de los vehículos de clase buses es negativo indicando que 

un incremento del espaciamiento promedio de esta clase provoca una disminución de los 

espaciamientos de los vehículos clase camión no articulado. Esto se explica debido a que aumenta la 

facilidad de rebasamiento para los camiones no articulados al incrementarse los espaciamientos de 

los buses que van a la delantera y por lo tanto los camiones no articulados disminuyen el 

espaciamiento con respecto al vehículo de adelante con la intención de rebasar. 

En la segunda y tercera ecuación, se puede observar una relación inversa entre los espaciamientos de 

los vehículos clase buses y clase camiones no articulados. 

3.1.4 Análisis de la ecuación para espaciamientos de camiones articulados 

La cuarta ecuación para los espaciamientos promedio del vehículo clase camión articulado o tráiler 

del modelo tiene un valor del coeficiente de determinación R
2  

ajustado de 0.92, lo cual indica un 

ajuste estadístico significativo. La evidencia estadística indica que los espaciamientos promedio de la 

clase de camión articulado no dependen de los espaciamientos de las otras clases de vehículos, sino 

más bien dependen de su velocidad y del porcentaje de vehículos pesados. 

En esta ecuación podemos observar que la mayor influencia en los espaciamientos promedio de los 

camiones articulados se debe a la presencia de los vehículos pesados, pues el valor absoluto de su 

coeficiente es más alto respecto a la otra variable de la ecuación. El signo negativo en el coeficiente 

para el porcentaje de vehículos pesados nos indica que a una mayor presencia de vehículos pesados 

en el flujo vehicular sus espaciamientos promedio disminuyen. 

El signo positivo en el coeficiente de la velocidad promedio de los camiones articulados, nos indica 

que el aumento de su velocidad incrementa sus espaciamientos, esto es lógico ya que a una mayor 

velocidad la distancia de detención es mayor y los vehículos deben guardar una mayor distancia con 

respecto al vehículo de adelante. 

3.2 Evaluación de la precisión predictiva del modelo 

El modelo se valoró mediante el error porcentual medio absoluto (ecuación 11), en la tabla siguiente 

se muestran los resultados de esta evaluación: 

Tabla No. 5 RESULTADOS MAPE 

   
 

Un resultado MAPE de cero significa una alta precisión en la predicción, por ejemplo podemos 

interpretar que los resultados del promedio de espaciamiento del vehículo clase tráiler esta 

sobreestimado o subestimado en un porcentaje del 16%.  Como vemos el mayor error se presenta en 

la predicción de los espaciamientos de los vehículos clase buses y la mejor predicción la presenta el 

espaciamiento de los vehículos de pasajeros.  

 

y1 y2 y3 y4

0.12 0.23 0.18 0.16
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Finalmente, en la figura No. 1 se presenta gráficamente las observaciones vs los resultados de las 

predicciones por clase de vehículo, en donde la línea recta indica la equivalencia de los valores 

predichos y reales. En esta figura, se puede apreciar una precisión predictiva superior de los 

espaciamientos para las clases vehículos de pasajeros, camiones no articulados y camiones 

articulados respecto a la clase buses. 

 

 a      

 

      
Figura No. 1 

Con las consideraciones estadísticas analizadas anteriormente, el modelo obtenido se puede escribir 

de la siguiente manera: 

                                          Ecuación (12) 

                                 Ecuación (13) 

                                     Ecuación (14) 

                                       Ecuación (15) 

3.3 Cálculo de los factores PCE  

Con el modelo obtenido se calculan los valores de espaciamiento promedio de las cuatro clases de 

vehículos, a partir de las valores promedio observados de las variables de velocidad    ,     y la 

variable de % de vehículos pesados   , obteniéndose HPC =         , HB =          ,  HCNA = 
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        , y HCA =         , cuyos valores se presentan en la tabla No. 6. En esta tabla se puede 

apreciar que los valores de espaciamientos del modelo tienen una desviación por debajo de los 

valores promedio observados que varían entre el 6% y el 10%. Con estos resultados se determinan 

los factores de equivalencia PCE (tabla No. 6), basados en la relación entre los espaciamientos por 

clase de vehículo con los espaciamientos de los vehículos de pasajeros, aplicando la ecuación 1. 

Tabla No. 6 ESPACIAMIENTOS Y PCE POR CLASE DE VEHíCULOS CARRETERA E 59 

 
 

3.4 Comparación de los factores PCE con los propuestos por el HCM 

Una vez obtenidos los valores de PCE podemos hacer una comparación entre los factores obtenidos y 

los propuestos por el HCM (Tabla No. 7). Los valores de PCE para vehículos pesados del HCM 

presentados, corresponden al cuadro 20-9 del HCM 2000 para camiones en carreteras de doble vía 

con flujos en una dirección de 300 a 600 pc/h (vehículos por hora) en terrenos a nivel (Highway 

capacity manual, 2000), y al cuadro 15-11 del HCM 2010 para camiones en carreteras de doble vía, 

para flujos de 300 pc/h (vehículos por hora) en terrenos a nivel (Highway capacity manual, 2010), 

condiciones que cumple la carretera en estudio, cuyo flujo promedio es 343 veh/h/carril. En el caso 

de los valores propuestos por el HCM 2010 para flujos de 300 y 400 veh/h/carril el factor esta entre 

1.4 y 1.3 respectivamente, sin embargo el HCM recomienda en caso de interpolación aproximación 

al decimal, por lo tanto el factor PCE es 1.4. 

Los factores de equivalencia calculados a partir del modelo tienen una desviación hacia abajo entre el 

8% y el 9% con respecto a los sugeridos por el HCM 2000 para buses y camiones no articulados, y 

una desviación positiva del 1% para camiones articulados. Con respecto a los sugeridos por el HCM 

2010 podemos ver que existe una mayor desviación negativa que se presenta entre el 15% y el 27%.   

Los factores PCE obtenidos son más cercanos a los valores propuestos por el HCM 2000. El factor 

PCE obtenido para los vehículos de la clase camión articulado es prácticamente igual al valor 

propuesto por el HCM 2000.  
 

 

 

 

Variable O bservaciones
Modelo MC3E                           

(% desviación)

50.971 47.895

(-0.064)*

57.715 52.653

(-0.096)*

56.634 53.465

(-0.059)*

61.333 58.147

(-0.055)*

PCE BUS 1.099

PCE CAMIÓN NO ARTICULADO 1.116

PCE CAMIÓN ARTICULADO O TRAILER 1.214

* Porcentaje de desviación respecto al promedio de las observaciones

3.869

3.964

3.979

ln (Hi)

4.063

Espaciamiento promedio del vehículo tipo Vehículo de 

pasajeros (HPC)

Espaciamiento promedio del vehículo tipo Buses (HB)

Espaciamiento promedio del vehículo tipo Camiones no 

articulados ( HC)

Espaciamiento promedio del vehículo tipo Camiones 

articulados o tráileres (HT) 
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Tabla No. 7 COMPARACIÓN DE RESULTADOS 

  

4 CONCLUSIONES Y RECOMENDACIONES 

El primer objetivo de este estudio fue obtener un modelo que permita calcular los valores de los 

espaciamientos promedio por clase de vehículos para la carretera bidireccional E59 en condiciones 

semejantes a las condiciones básicas del HCM. Pese al limitado número de observaciones obtenidas 

por la dificultad para obtener observaciones que presenten espaciamientos con las cuatro clases de 

vehículos en estudio, se ha obtenido un modelo estadístico de cuatro ecuaciones simultáneas, en el 

que cada una de estas explica el espaciamiento promedio por clase de vehículo, este modelo se 

presenta estadísticamente significativo con valores de coeficientes de determinación ajustados para 

cada ecuación por encima de 0.84. Los resultados MAPE muestran una sensibilidad de las 

predicciones de las cuatro clases de vehículos con subestimaciones y sobreestimaciones entre el 12% 

y 23%. Podemos concluir entonces que los resultados de este modelo son estadísticamente válidos. 

Con este modelo se obtuvo los valores de espaciamientos promedio de 50.971, 57.715, 56.634 y 

61.333 metros para las clases de vehículos de pasajeros, buses, camiones no articulados y camiones 

articulados respectivamente. Estos valores tienen una desviación negativa entre el 6 y 10% con 

respecto a los espaciamientos promedios observados. 

El segundo objetivo fue obtener los valores de PCE a partir de los resultados del modelo de 

predicción de los espaciamientos promedio por clase de vehículos, los factores de conversión PCE 

calculados son de 1.099, 1.116, 1.214 para buses, camiones no articulados y camiones articulados 

respectivamente.  

El tercer objetivo fue realizar una comparación entre los valores de PCE obtenidos en este caso de 

investigación vs los valores recomendados por el HCM, los mismos que para camiones articulados 

presentan una desviación insignificante del 1% por arriba del propuesto por el HCM 2000 y en el 

caso de camiones no articulados y buses presentan una desviación hacia abajo del 8% y 9% 

respectivamente. Con respecto al HCM 2010 los valores de PCE de camiones no articulados y buses 

tienen una desviación negativa significativa con un mínimo del 25%, además en el caso del camión 

articulado la desviación es negativa en un 15%. Los valores en este estudio implican que el hecho de 

asumir los PCE propuestos por el HCM 2010 incrementa innecesariamente el cálculo del flujo mixto 

de la carretera analizada. Los PCE logrados en la presente investigación son más cercanos a los 

valores propuestos por el HCM 2000 que al HCM 2010.  

Variable

Modelo MC3E                           

(% desviación)                     

Carretera E59

HCM 2000 HCM 2010

1.099

(-0.092)* y (-0.273)**

1.116 1.2 1.4

(-0.075)* y (-0.254)**

1.214 1.2 1.4

(0.012)* y (-0.153)**

* Porcentaje de desviación respecto a los valores del HCM 2000

** Porcentaje de desviación respecto a los valores del HCM 2010

PCE BUS 1.41.2

PCE CAMIÓN NO ARTICULADO

PCE CAMIÓN ARTICULADO O TRAILER
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Para este caso de estudio, el considerar al camión tipo tráiler como una clase independiente 

disminuyó substancialmente la cantidad de observaciones validas (en un 74%), sin embargo, la 

evidencia no respalda su análisis como una clase independiente, se pudiera estudiar a los camiones 

en general como una única tipología y así aumentar la cantidad de observaciones validas mejorando 

el nivel de confianza del modelo. La limitación en el número de observaciones ha sido determinante 

al momento de desestimar las variables con coeficientes cuyo nivel de significancia fue inferior a 

0.05 pues un mayor número de observaciones nos permitiría conocer cuál es la influencia de todas 

las variables consideradas inicialmente en el modelo. 

El espaciamiento promedio de vehículos de pasajeros en este estudio resulto ser de 51 metros para 

una velocidad promedio de 74 km/h, al comparar dicho valor con la distancia de detención de 114 

metros calculada para esta velocidad, podemos decir que los conductores de vehículos de pasajeros 

conducen con agresividad irrespetando las debidas distancias de seguridad, el 62% de los vehículos 

analizados recorre con una separación menor a la distancia de detención. La misma tendencia existe 

en el caso de los vehículos pesados. 

El valor de PCE igual a 1.116 obtenido en el presente estudio para camiones no articulados, está 

cercano al valor propuesto por Elefteriadou para camiones no articulados con relación peso/potencia 

de 50 lb/hp (Elefteriadou et al., 1997). En dicho estudio se obtienen mediante simulación 

microscópica los factores PCE por clases de camiones, para vías bidireccionales de dos carriles con 

condiciones de gradiente a nivel, los valores calculados de PCE para camiones no articulados con 

relación peso/potencia de 50 y 300 lb/hp son de 1 y 2 respectivamente. 

La presente metodología nos permite obtener factores PCE más ajustados a la realidad de nuestras 

carreteras y puede ser utilizada por los planificadores viales para obtener los factores de PCE de 

acuerdo a las características de cada carretera. En el futuro, se debe realizar estudios en otras vías de 

nuestro país, utilizando ésta u otras metodologías, considerando además otras de variables como son 

la pendiente, la longitud de tramos, las motocicletas, rendimiento de los vehículos, relación 

peso/potencia, prácticas de rebasamiento, etc., con la finalidad de obtener factores PCE más reales. 

Además, en este modelo no se ha considerado el efecto que tiene la clase de vehículo líder con la 

clase de vehículo siguiente, dicho efecto ya ha sido examinado en estudios realizados en carreteras 

de los Estados Unidos de América (Anwaar et al., 2011) y también debería ser tema de análisis en 

nuestras carreteras. 

Con respecto a los dispositivos de grabación de video en futuros estudios sería importante utilizar 

equipos con capacidad de grabación mayor a 30 fotogramas por segundo, pues a velocidades 

mayores de 62 km/h la distancia entre fotograma y fotograma es de a 57 centímetros lo que provoca 

un error de   2 km/h. 

Es imprescindible el desarrollo de un software que permita obtener las variables a partir de las 

grabaciones de video, como es el caso del software privativo Traffic Tracker (Anwaar et al., 2011), 

con el desarrollo o la adquisición de este tipo de software, se podrá ahorrar tiempo y obtener más 

observaciones para lograr modelos de predicción más robustos. 
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