

UNIVERSIDAD DE CUENCA FACULTAD DE CIENCIAS QUÍMICAS ESCUELA DE BIOQUÍMICA Y FARMACIA

"Evaluación de la actividad antioxidante de extractos metanólicos y de diclorometano de *Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa* usando la técnica DPPH y el poder reductor férrico"

Tesis previa a la obtención del título de Bioquímica Farmacéutica.

AUTORAS:

Karen Jhovana Aguilar González

María Caridad Tenorio Arévalo

DIRECTORA:

Dra. Isabel María Wilches Arizábala Ms.C.

CUENCA-ECUADOR

2015

RESUMEN

En la presente investigación se evaluó la capacidad antioxidantes de las hojas de *Jungia rugosa*, *Jungia coarctata*, *Jungia paniculata* y *Jungia fistulosa*, mediante las técnicas de DPPH (2,2-difenil-1-picrilhidrazilo) y poder reductor férrico (reducción de ferricianuro).

La técnica de DPPH evalúa la decoloración del radical (DPPH) por acción de un antioxidante y el poder reductor férrico la capacidad de un agente reductor de reaccionar con el ferricianuro de potasio y formar ferrocianuro de potasio. Se utilizó el ácido ascórbico como estándar cuyo IC50 fue de 3,07 en la técnica de DPPH.

En el ensayo de DPPH, la evaluación de la actividad antioxidante de los extractos metanólicos y de diclorometano, se expresó por medio del IC50 (concentración a la cual se inhibe el 50% de los radicales libres), obteniendo valores entre 71,09-352,86 μg/ml para metanol y entre 7,55-182,29 μg/ml para diclorometano.

Para el ensayo del poder reductor, la evaluación de la actividad antioxidante de los extractos metanólicos y de diclorometano, se realizó por medio del cálculo del AAEAC (miligramos de ácido ascórbico equivalente a 100 gramos de droga seca), obteniéndose valores entre 6, 58-271,09 mg/g para metanol y entre 2,05-72,29 mg/g para diclorometano.

Mediante un test de ANOVA y test de Tukey se comprobó que existen diferencias en la capacidad antioxidante entre especies en las dos técnicas aplicadas.

A través de cromatografía de capa fina se realizó la identificación de los metabolitos de las diferentes especies de *Jungia*, encontrándose a los compuestos fenólicos como las principales sustancias en otorgar las propiedades antioxidantes a estas plantas. Los hallazgos sugieren que los extractos analizados de *Jungia* tienen actividad antioxidante, atribuidos a la presencia de compuestos fenólicos y terpenos.

Palabras claves: Jungia rugosa, Jungia coarctata, Jungia paniculata, Jungia fistulosa, DPPH, poder reductor.

ABSTRACT

In this research the antioxidant capacity from *Jungia rugosa*, *Jungia coarctata*, *Jungia paniculata* and *Jungia fistulosa* leaves was evaluated using DPPH (2, 2 - diphenyl-1-pycrylhidrazyl) and reducing power (reduction of ferricyanide) techniques.

DPPH assay evaluates bleaching radical (DPPH) by action of an antioxidant and technique ferric reducing power the capacity of a reducing agent to react with potassium ferricyanide and produce potassium ferrocyanide. Ascorbic acid was used as standard wich IC50 was 3.07 µg/ml in the art of DPPH.

In the DPPH test, the evaluation of the antioxidant activity from the extracts and the DCMs, was carried out using the IC50 (concentration to which 50% of free radicals are inhibited), obtaining values between 71,09-352,86 μ g/ml μ g/ml for methanol and between 7,55-182,29 μ g/ml for DCM.

For the reducing power test, the evaluation of the antioxidant activity from the extracts and the DCMs, was carried out by the AAEAC (milligrams of ascorbic acid equivalent to 1 gram of dry drug), obtaining values between 6, 58-271,09 mg/g for methanol and between 2,05-72,29 mg/g for DCM.

Through an ANOVA test and a Tukey test it was proved that there are differences in the antioxidant capacity between species in both antioxidant techniques.

Using a thin layer chromatography, the identification of metabolites of different species of Jungia was performed, finding the phenolic compounds as the main substances in granting the antioxidant properties of these plants. The findings suggest that the extracts analyzed from species *Jungia* have antioxidant activity, attributed to the presence of phenolic compounds and terpenes.

Key words: Jungia rugosa, Jungia coarctata, Jungia paniculata, Jungia fistulosa, DPPH, reducing power.

ÍNDICE

CAPÍTULO I	23
1. MARCO TEÓRICO	24
1.1. Jungia paniculata	24
1.1.1. Taxonomía	24
1.1.2. Características botánicas	24
1.1.3. Distribución	25
1.2. Jungia coarctata	25
1.2.1. Taxonomía	25
1.2.2. Características Botánicas	26
1.2.3. Distribución	26
1.3. Jungia rugosa	27
1.3.1. Taxonomía	27
1.3.2. Características botánicas:	27
1.3.3. Distribución:	27
1.4. Jungia fistulosa	28
1.4.1. Taxonomía	28
1.4.2. Características botánicas:	29
1.4.3. Distribución	29
1.5. METABOLISMO VEGETAL	30
1.5.1. GENERALIDADES	30
1.5.2. RUTAS BIOSINTÉTICAS	31
1.5.3. CLASIFICACIÓN DE LOS METABOLITOS SECUNDARIOS	32
1.5.3.1. Terpenos	33
1.5.3.1.1. Aceites esenciales	33
1.5.3.2. Compuestos Fenólicos	35
1.5.3.2.1. Cumarinas	35
1.5.3.2.2. Flavonoides	36
1.5.3.2.3. Lignina	38
1.5.3.2.4. Taninos	38
1.5.3.3. Glicósidos	38
1.5.3.3.1. Saponinas	
1.5.3.3.2. Glicósidos cardíacos	
1.5.3.3.3. Glicósidos cianogénicos	40

1.5.3.4. Alcaloides	40
1.6. CROMATOGRAFÍA EN CAPA FINA	41
1.6.1. Adsorbentes y disolventes	42
1.6.2. Cromatografía de capa fina	43
1.6.3. Factor de retención (Rf)	43
1.7. OXIDACIÓN	44
1.7.1. Definición	44
1.7.2. Radicales libres	44
1.7.3. Fuentes de radicales libres	45
1.7.4. Estrés oxidativo	46
1.7.5. Patologías relacionados con los radicales libres	46
1.7.6. Antioxidantes	46
1.7.6.1. Clasificación de los Antioxidantes	47
1.7.6.1.1. Sistema enzimático.	47
1.7.6.1.2. Sistema no enzimático.	47
□ Flavonoides	47
□ Carotenoides	48
□ Vitamina C	48
□ Vitamina E	49
1.8. MÉTODOS UTILIZADOS EN LA DETERMINACIÓN DE LA ACTIVID ANTIOXIDANTE	
1.8.1. Fundamento de la técnica de DPPH	51
1.8.2. Fundamento de la técnica del poder reductor férrico	52
CAPÍTULO II	
2. MATERIALES	54
2.1. MATERIALES EMPLEADOS PARA EL DESARROLLO DE CROMATOGRAFÍA EN CAPA FINA (THIN LAYER CHROMATOGRAPHY-	TLC) . 54
2.2. MATERIALES Y EQUIPOS USADOS PARA LA EVALUACIÓN DE L ACTIVIDAD ANTIOXIDANTE	
2.2.1. Evaluación de la actividad antioxidante por el método del DP DIPHENYL-1-PICRYLHYDRAZIL)	• •
2.2.1.1. Preparación de la solución de DPPH 0,06 mM	56
2.2.1.2. Preparación de la solución madre de ácido ascórbico de ml 57	100 µg/
2.2.2. Evaluación de la actividad antioxidante por el método del po	
reductor.	
2.2.2.1. Preparación de reactivos.	59

2.2.2.1.1. Preparación de buffer de fosfato 0.2 M pH 6.6	_
2.2.2.1.2. Preparación de la solución de ferricianuro de potasio 1% (%w/v) 60	
2.2.2.1.3. Preparación de la solución de ácido tricloroacético 10% (%w/v) 60	
2.2.2.1.4. Preparación de la solución de cloruro férrico 0.1%6	0
CAPÍTULO III6	2
3. MÉTODOS6	3
3.1. ANÁLISIS MEDIANTE CROMATOGRAFÍA EN CAPA FINA (THIN LAYER CHROMATOGRAPHY-TLC)6	3
3.1.1. Preparación de las placas para TLC6	3
3.1.2. Aplicación de la muestra6	3
3.1.3. Elución sobre la placa6	3
3.1.4. Revelado postcromatográfico6	4
3.2. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE6	5
3.2.1. Evaluación de la actividad antioxidante según la técnica de DPPH 6	5
3.2.1.1. Preparación de los patrones de ácido ascórbico6	6
3.2.1.2. Preparación de la solución madre y patrones del extracto 6	7
3.2.2. Evaluación de la actividad antioxidante según la técnica de poder	
reductor férrico.	
3.2.2.1. Preparación de los patrones de ácido ascórbico	
3.2.2.2. Preparación del patrón del extracto de concentración 100 μg/ml	
CAPÍTULO IV	
4. ANÁLISIS DE RESULTADOS Y DISCUSIÓN7	
4.1. RESULTADOS DE TLC	3
4.2. VALIDACIÓN DE CURVAS DE CALIBRACIÓN DE ÁCIDO ASCÓRBICO EMPLEADAS PARA LA DETERMINACIÓN DE LA ACTIVIDAD ANTIOXIDANTE USANDO TANTO LA TÉCNICA DE DPPH COMO LA DEL PODER REDUCTOR	
FÉRRICO	
4.3. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE	0
4.3.1. Evaluación de la actividad antioxidante mediante la técnica del DPPH (2,2-diphenyl-1-picrylhydrazyl)80	0
4.3.2. Evaluación de la actividad antioxidante mediante la técnica del poder reductor.	6
CAPÍTULO V9	
5. CONCLUSIONES	
CAPÍTULO VI9	

6.	RECOMENDACIONES	. 97
BIB	BLIOGRAFÍA	. 98
ANI	EXOS	106

ÍNDICE DE FIGURAS

Figura 1. 1 Hojas de Jungia paniculata	25
Figura 1.2: Hojas de Jungia coarctata.	26
Figura 1. 3:Hojas de Jungia rugosa	28
Figura 1.4: Hojas de Jungia fistulosa	29
Figura 1.5: Metabolismo vegetal primario y secundario. (Santana, 2010)	31
Figura 1.6: Metabolismo secundario (Ávalos García & Pérez, 2009)	32
Figura 1.7: Isopreno. (Ramírez, 2005)	33
Figura 1.8: Estructura de los aceites esenciales (Arcila, Loarca-Piña, Lecona, &	
González, 2004)	34
Figura 1.9: Estructura Química del Fenol (Arcila-Lozano et al., 2004)	35
Figura 1.10: Estructura química de cumarina (Sepúlveda, 2004)	36
Figura 1.11: Estructura química de la Quercetina (Flavonol). (Díaz & Heinzen, 200	6) 36
Figura 1.12: Estructura de diferentes tipos de Flavonoides (Díaz & Heinzen, 2006)	37
Figura 1.13: Estructura química de una saponina (Apablaza, Díaz, Martín, & Moya	,
2002)	39
Figura 1.14: Estructura química de la Amigdalina. (Ávalos García & Pérez, 2009)	40
Figura 1.15: Estructura de los Alcaloide. (Sepúlveda, 2004)	41
Figura 1.16: Estructura de β-caroteno (Carranco, Calvo, & Pérez, 2011)	48
Figura 1.17: Reacción de la actividad antioxidante del DPPH (MARTÍNEZ VÁSQU	EZ,
2007)	51
Figura 4. 1: Cromatograma bajo UV 366 nm usando como revelador productos	
naturales para flavonoides y cumarinas	
Figura 4. 2: Cromatograma en espectro visible usando revelador para terpenos en	
distintas especies de Jungia	
Figura 4. 3: Cromatograma en espectro visible usando revelador para terpenos en	
distintas especies de Jungia	
Figura 4. 4: Cromatograma de bajo UV 366nm usando revelador para saponinas e	
distintas especies de Jungia.	
Figura 4. 5: Box plot: Solvente- método DPPH. (0= metanol, 1= diclorometano)	83
Figura 4. 6: Box plot: Especies- método DPPH (1=Jungia rugosa, 2=Jungia	
coarctata, 3=J.paniculata, 4= J.fistulosa)	85

Figura 4. 7: Box plot. Solvente- método poder reductor. (0= metanol, 1=	diclorometano)
	89
Figura 4. 8: Box plot. Especie- método de poder reductor. (1=Jungia rug	osa, 2=Jungia
coarctata, 3=J.paniculata, 4= J.fistulosa	91

ÍNDICE DE TABLAS

Tabla 1: Adsorbentes y disolventes mas comunes en cromatografia (Milano, D Arn	nas,
& Salazar, 2005)	43
Tabla 2: Clasificación de los antioxidantes, según su origen. (Díaz, 2002)	49
Tabla 3. Clasificación de los ensayos según su modo de reacción. (Pérez, Vargas,	
Martínez, García, & Hernández, 2003)	50
Tabla 4: Especificaciones del DPPH (Sigma- Aldrich, 2015)	57
Tabla 5. Especificaciones del Ácido ascórbico (Sigma- Aldrich, 2015)	57
Tabla 6: Detección de metabolitos en el revelado postcromatográfico. (Wagner & E	3ladt,
2009)	65
Tabla 7:Preparación de los patrones de ácido ascórbico- método DPPH	67
Tabla 8. Preparación de los patrones del extracto- método DPPH	68
Tabla 9. Preparación de los patrones de ácido ascórbico- método poder reductor	70
Tabla 10: Preparación del patrón del extracto-método poder reductor	71
Tabla 11: ANOVA Inter-día e Intra-día. Curvas de calibración- método DPPH	78
Tabla 12: ANOVA Inter-día e Intra-día. Curvas de calibración- método poder reduc	tor.
	79
Tabla 13: Valores de IC50 de los extractos por el método del DPPH	82
Tabla 14: Análisis de Varianza del solvente (ANOVA)- método DPPH	83
Tabla 15: Análisis de Varianza: Especie * solvente- método DPPH	84
Tabla 16. Múltiples comparaciones. Especie- método DPPH. (1=Jungia rugosa,	
2=Jungia coarctata, 3=J.paniculata, 4= J.fistulosa)	85
Tabla 17: Valores de AAEAC de los extractos por el método del poder reductor	88
Tabla 18: Análisis de varianza. Solvente-método poder reductor	89
Tabla 19: Análisis de Varianza: Especie * solvente- método poder reductor	89
Tabla 20: Múltiples comparaciones. Especie- método poder reductor. (1=Jungia	
rugosa, 2=Jungia coarctata, 3=J.paniculata, 4= J.fistulosa	90

ABREVIATURAS

DPPH 2, 2-difenil-1-picrilhidrazilo

AAEAC Miligramos de ácido ascórbico equivalentes a

100

miligramos de droga seca

TLC Thin Layer Chromatography

g Gramos

μg Microgramos

ml Mililitros

μl Microlitros

cm Centímetros

nm Nanómetros

%w/v Porcentaje peso/volumen

M Molar

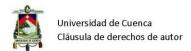
mM Milimolar

UV Ultravioleta

A Absorbancia

DCM Diclorometano

MET Metanol


Universidad de Cuenca Cláusula de derechos de autor

Yo, Karen Jhovana Aguilar González, autora de la tesis "Evaluación de la actividad antioxidante de extractos metanólicos y de diclorometano de Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa usando la técnica DPPH y el poder reductor férrico", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Bioquímica Farmacéutica. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autora.

Cuenca, Octubre de 2015

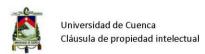
Karen Jhovana Aguilar González

Yo, María Caridad Tenorio Arévalo, autora de la tesis "Evaluación de la actividad antioxidante de extractos metanólicos y diclorometano de Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa usando la técnica DPPH y el poder reductor férrico", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Bioquímica Farmacéutica. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autora.

Cuenca, Octubre de 2015

María Caridad Tenorio Arévalo

Courted Cowo A


Universidad de Cuenca Cláusula de propiedad intelectual

Yo, Karen Jhovana Aguilar González, autora de la tesis "Evaluación de la actividad antioxidante de extractos metanólicos y de diclorometano de *Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa* usando la técnica DPPH y el poder reductor férrico", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, Octubre de 2015

Karen Jhovana Aguilar González

Yo, María Caridad Tenorio Arévalo, autora de la tesis "Evaluación de la actividad antioxidante de extractos metanólicos y de diclorometano de Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa usando la técnica DPPH y el poder reductor férrico", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, Octubre de 2015

María Caridad Tenorio Arévalo

Courted Como A

AGRADECIMIENTOS

Al culminar el presente trabajo con el cual finalizamos una etapa muy crucial de nuestras vidas, no podemos dejar de agradecer primeramente a Dios quien nos ha dado la vida, la salud y los recursos para lograrlo de una manera satisfactoria.

A nuestros padres que gracias a su cariño, apoyo y confianza hemos llegado a realizar dos de nuestras más grandes metas en la vida. La culminación de nuestra carrera profesional y el hacerlos sentirse orgullosos de nosotras que tanto los amamos. A nuestros profesores que durante años de permanencia en la Universidad nos han llenado de conocimientos y además nos han ayudado a crecer como seres humanos.

De manera especial un agradecimiento a la Dra. Isabel Wilches, nuestra directora de tesis, quien a pesar de nuestras debilidades siempre estuvo presente con una palabra de aliento para continuar, nos compartió sus conocimientos, nos brindó su amistad y sobre todo por su compromiso y dedicación en el transcurso de la presente investigación, lo cual nos ayudó a finalizar con éxito.

Al Dr. Fabián León, Dra. Nancy Cuzco, Dra. Mariana Saá, Ing. Vladimiro Tobar, Bqf. Jessica Calle y al Bqf. Fernando Huairacocha excelentes docentes y grandes personas quienes nos colaboraron durante el desarrollo de este trabajo y además nos compartieron sus conocimientos.

Muchísimas Gracias.

Karen y Caridad.

DEDICATORIA

Al culminar con este trabajo, el cual ha sido un proceso largo y difícil, reconozco que he estado rodeada de personas que nunca me dejaron desmayar, que siempre estuvieron apoyándome y confiaron en mí, por lo que quiero dedicar esta investigación en primer lugar a mis padres, Mónica González, quien a más de ser mi madre es una gran amiga, siempre estuvo a lado mío, enseñándome a tener paciencia, a ser valiente y perseverante, por su ternura y sabiduría con la que me hablaba y apoyaba día a día para no dejarme desmayar; a mi padre, Milton Aguilar quien con sus ocurrencias estaba sacándome sonrisas en los momentos duros y difíciles durante este proceso, y además me impulsaba a ser mejor, y gracias a quien hoy estoy culminando mi vida universitaria. A mis hermanas, Tamy que siempre estuvo presionando a que culmine esta etapa y para la cual espero ser un ejemplo, a mi Danielita, persona que noche a noche me llenaba de paz con su ternura y que con un beso de buenas noches me permitía descansar de tan largas jornadas de estudio, ellas son mi motivo de inspiración y motivación.

A David Ochoa quien siempre estuvo pendiente de mi avance y nunca me dejo decaer, por su paciencia en mis días de estrés y por siempre tener una palabra que me ayudaba a ser mejor. A mi gran amiga Caridad, con la que he compartido largas noches de desvelo, por ser tan incondicional y a más de una compañera de trabajo por ser mi mejor amiga.

Por ultimo a Dios por darme la vida y la sabiduría que me permitieron llegar a donde estoy ahora, y por ponerme personas que me amen y me ayuden a ser mejor como ser humano.

Con mucho amor

Karen

UNIVERSIDAD DE CUENCA

DEDICATORIA

Quiero destinar este espacio para hacer una mención muy especial. Dedico mi trabajo de graduación a las personas más importantes en mi vida, empezando por mis padres quienes han sido mi pilar a lo largo de toda mi trayectoria universitaria, quienes impulsaron mis objetivos hasta alcanzarlos y por quienes tengo el orgullo de hoy estar cumpliendo uno de ellos. También quiero dedicar todo este esfuerzo a mis hermanos, a mi ñaña Chabelita quien aguantó mis largas jornadas de estudio y a mi ñaño Pedrito que entre rabieta y rabieta me preparó muchas veces un café. No quiero dejar de lado a mi Abu Agustín, Abu Noemí y Abu Chabe quienes son para mí un ejemplo de lucha y de vida, a través de ellos aprecio la experiencia de vivir y la sabiduría que da el tiempo. Quiero, no solo dedicar sino agradecer y mi gran amiga Karen, sin ella nada de esto hubiera sido posible, pues este proyecto es nuestro esfuerzo reflejado de meses de trabajo para culminar una de las mejores etapas de nuestra vida. Finalmente, dedico y agradezco a Dios por mantenerme sana y equilibrada por darme luz en mi camino y guiarme bajo su cuidado hacia mis objetivos.

Caridad

INTRODUCCIÓN

Desde tiempos remotos hasta la actualidad las plantas han sido de gran importancia en la sociedad; ya que se han empleado en muchos procesos de curación, y dando resultados satisfactorios en el alivio de enfermedades. Según la Organización Mundial de la Salud (OMS) alrededor del 80% de la población mundial emplea la medicina tradicional para tratar afecciones que están interfiriendo con su calidad de vida, dentro de esta medicina se ve implicado el uso de extractos de plantas y sus principios activos, siendo de preferencia para un gran porcentaje de la población.

Sin embargo el estudio de las plantas y sus principios activos no solo tiene aplicación en la medicina ancestral, también es útil en la medicina moderna, ya que en el descubrimiento de nuevos principios activos puede utilizarse como precursores de fármacos semisintéticos y sintéticos, además que su estructura química puede servir como modelo para la elaboración de una nueva molécula.

El género *Jungia* habita en regiones Andinas y es de gran interés su estudio ya que tiene una elevada cantidad de polifenoles, compuestos a los cuales se les confiere el poder antioxidante de las especies de *Jungia* (*J. paniculata, J. coarctata, J. fistulosa, J. rugosa*). El uso de antioxidantes en la actualidad es de suma importancia debido a la elevada incidencia de enfermedades consecuentes de la presencia de radicales libres; como cáncer, enfermedades cardiovasculares, cerebrovasculares y degenerativas.

En el presente estudio se investigará el poder antioxidante que poseen las diferentes especies del género *Jungia*, para el cual se emplearán dos métodos, el DPPH (2,2-difenil-1-picrilhidrazil) y el poder reductor férrico.

La hipótesis planteada para iniciar la presente investigación fue:

• Existen diferencias en la capacidad antioxidante de las diferentes especies de *Jungia*.

Se propusieron los siguientes objetivos:

Objetivo general

 Evaluar la actividad antioxidante de extractos metanólicos y de diclorometano de Jungia paniculata, Jungia coarctata, Jungia fistulosa y Jungia rugosa usando la técnica DPPH y el poder reductor férrico.

Objetivos específicos

- Validar las curvas de calibración para cada una de las técnicas.
- Determinar la actividad antioxidante mediante la técnica de DPPH en extractos metanólicos y de diclorometano en estudio.
- Determinar la actividad antioxidante mediante la técnica del poder reductor férrico en extractos metanólicos y de diclorometano en estudio.
- Determinar la composición fitoquímica mediante cromatografía en capa fina (TLC) de las distintas especies de *Jungia* y relacionar con la posible actividad antioxidante.
- Comparar la capacidad antioxidante de las distintas especies de Jungia en estudio.

Al culminar con la investigación se pudo observar el cumplimiento de cada uno de los objetivos planteados, además de que se aceptó la hipótesis planteada, puesto que si existe diferencia de la capacidad antioxidante en las diferentes especies de *Jungia*, esto se logró al aplicar un test de múltiples comparaciones, Tukey, por el cual se demostró que existe diferencia significativa entre la especie de *J. rugosa y J. paniculata; J. coarctata y J. fistulosa* muestran una capacidad antioxidante similar.

Mediante el análisis de varianza ANOVA se pudo conocer que la capacidad antioxidante que presente una especie va depender del solvente de extracción empleado, así los de metanol presentan una mejor actividad antioxidante frente a los extractos obtenidos en diclorometano los cuales presentaron un IC50 mucho mayor a los del metanol.

La actividad antioxidante que las diferentes especies mostraron podría atribuirse a la presencia de compuestos fenólicos (cumarinas y flavonoides) así como compuestos terpenoides, los cuales fueron identificados mediante cromatografía en capa fina (TLC).

CAPÍTULO I

1. MARCO TEÓRICO

A continuación se detallan las características botánicas y la distribución de las distintas especies del género *Jungia*, objeto de este estudio.

1.1. Jungia paniculata

1.1.1. Taxonomía

Reino: Plantae

Filo: Magnoliophyta

Clase: Magnoliopsida

Orden: Asterales

Familia: Asteraceae

Género: Jungia

Especie: *Jungia paniculata* (Instituto de Ciencias Naturales, 2007)

1.1.2. Características botánicas

Es un arbusto de la familia asteráceas, arroja los tallos leñosos, con tomento amarillo-ferrugineo: las hojas alternas, con peciolo, remotas, planas, redondeadas, de figura de corazón por su base, con pelo áspero, hendidas en cinco lóbulos redondeados y obtusos: la panoja terminal, grande y descompuesta; con las cabezuelas de las flores pequeñas y amontonadas, corola compuesta uniforme e igual; con las corolillas hermafroditas, de un pétalo, en forma de embudo: el tubo gradualmente ensanchado; el borde de dos labios; con la lacinia exterior revuelta, más larga, linear y dentada por su ápice; la interior dividida en otras dos lacinias derechas agudas.(Linné & Verdéra, 1787)

UNIVERSIDAD DE CUENCA

1.1.3. Distribución

Jungia paniculata es una planta herbácea distribuida en la parte central de la cordillera de los Andes, entre 2000 y 3500 msnm. (R. Casado, A. Landa, & M.I. Calvo, 2007)

Figura 1. 1 Hojas de Jungia paniculata.

Fotos: Proyecto VIir de Plantas Medicinales, camino a la laguna de Llaviuco

1.2. Jungia coarctata

1.2.1. Taxonomía

Reino: Plantae

Filo: Magnoliophyta

Clase: Magnoliopsida

Orden: Asterales

Familia: Asteraceae

Género: Jungia

Especie: Jungia coarctata (SIB, 2013)

Figura 1.2: Hojas de Jungia coarctata.

Fotos: Proyecto VIII de Plantas Medicinales, camino a la laguna de Llaviuco

1.2.2. Características Botánicas

Planta rastrera y trepadora, de hasta 8 m, tallo y ramas estrigosas. Hojas estipuladas, lámina principalmente membranosa, 7-9 lobadas (ocasionalmente enteras), lóbulos redondeados u obtusos, densamente tomentosa, 9 x 12 cm, pubescente con indumento grisáceo en el envés, peciolo de hasta de 7 cm de largo. Capítulos en panículas compuestas, bracteadas, ocasionalmente con pedúnculos a 1 cm de largo. Flores liguladas de 8 a 12, corola blanca a lila, de hasta 7 mm de largo. El fruto un aquenio, fusiforme (cuando inmaduro), glabro; pappus plumoso, amarillento, de las 7 mm de largo. (Fundación Botánica de los Andes, 2015)

1.2.3. Distribución

Esta especie se encuentra en Colombia y Ecuador. En nuestro país está ampliamente distribuida entre los 1500 y los 4500 msnm. (Fundación Botánica de los Andes, 2015)

1.3. Jungia rugosa

1.3.1. Taxonomía

Reino: Plantae

Filo: Magnoliophyta

Clase: Magnoliopsida

Orden: Asterales

Familia: Asteraceae

Género: Jungia

Especie: Jungia rugosa

1.3.2. Características botánicas:

Es un arbusto que crece en los bordes de caminos del bosque de neblina y mide hasta 1.5 m. Sus hojas son oblongas con lóbulos en el borde, el haz tiene textura rugosa, el peciolo es de 4-5 cm, la lámina coriácea, orbicular, marginalmente lobulada, algo escabrosa, palmatinervias, la base cordada, el ápice con óvulo agudo. Presenta inflorescencias agrupadas, las flores son homógamas, numerosas, bilabiadas, de color blanco con la base marrón oscuro y con pilosidad. Se distingue fácilmente por su superficie bulada características de parte superior de las hojas y filarios glandulares. El ápice de los filarios es variable de agudo a atenuado, pero la densidad glandular pelosa y ciliolada de los márgenes es invariable (Mena & Medina, 2010; Santa Cruz Cervera, 2011)

1.3.3. Distribución:

La *Jungia rugosa* se distribuye a lo largo de Los Andes ubicados en Ecuador, Perú y Bolivia.

En el caso de nuestro país, se la puede localizar en los siguientes lugares cuyas altitudes varían entre 2900- 3800 metros sobre el nivel del mar:

- Chimborazo: parroquia Pungala, Parque Nacional Sangay, quebrada Supaycahuan, Reserva Faunística del Chimborazo.
- Napo: Laguna de Papallacta.
- Cañar: sector Mosquera, Ingapirca.
- Azuay: Parque Nacional El Cajas, Vía Cuenca- Machala Km 22, Vía Cuenca- Soldados Km 23.
- Loja: Saraguro.
- Cotopaxi: Latacunga. (Fundación Botánica de los Andes, 2015)

Figura 1. 3:Hojas de Jungia rugosa.

Fotos: Proyecto VIir de Plantas Medicinales, camino a la laguna de Llaviuco

1.4. Jungia fistulosa

1.4.1. Taxonomía

Reino: Plantae

Filo: Magnoliophyta

Clase: Magnoliopsida

Orden: Asterales

Familia: Asteraceae

Género: Jungia

Especie: Jungia fistulosa

1.4.2. Características botánicas:

Un arbusto, hierba o liana del bosque andino de alto y bajo (1.500-3.000 m).

1.4.3. Distribución

 Conocido desde siete subpoblaciones en los Andes centrales y occidentales, dentro de las provincias de Azuay, Bolívar, Cañar, Chimborazo y Cotopaxi. (Fundación Botánica de los Andes, 2015)

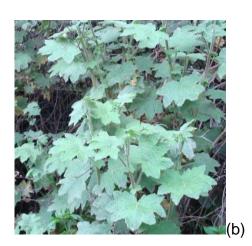


Figura 1.4: Hojas de Jungia fistulosa.

Fotos: Proyecto VIir de Plantas Medicinales, camino a la laguna de Llaviuco.

1.5. METABOLISMO VEGETAL

1.5.1. GENERALIDADES

El metabolismo es el conjunto de reacciones químicas que se lleva a cabo dentro de las células vegetales con el fin de sintetizar sustancias complejas a partir de unas más simples, y viceversa. El metabolismo vegetal podemos clasificarlo en: metabolismo primario y metabolismo secundario. (Ávalos García & Pérez, 2009)

Se llama metabolismo primario de las plantas a los procesos químicos que intervienen en forma directa en la supervivencia, crecimiento y reproducción de las plantas. Son procesos químicos pertenecientes al metabolismo primario de las plantas: la fotosíntesis, la respiración, el transporte de solutos, la translocación, la síntesis de proteínas, la asimilación de nutrientes, la diferenciación de tejidos, y en general la formación de carbohidratos, lípidos y proteínas que intervienen en estos procesos o son parte estructural de las plantas. Comprenden los glúcidos o hidratos de Carbono, los lípidos, las proteínas y los ácidos nucleicos. (Santana, 2010)

Los compuestos secundarios cumplen funciones que no resultan estrictamente vitales en los tejidos y representan en ocasiones compuestos de desecho del metabolismo. No están, en general, directamente involucrados con el crecimiento y desarrollo, ni participan en procesos tales como la obtención de energía. Muchos de ellos son aprovechados por la planta que los sintetiza para interactuar con el medio, ya sea para atraer insectos y otros polinizadores, repeler predadores o seres dañinos, impedir la competencia con otras plantas, adaptarse a condiciones adversas de suelo o clima, etc. Es decir que cumplen preferentemente funciones ecológicas. (Ringuelet & Viata, 2013)

Es importante destacar que también reciben la denominación de productos naturales y tienen un importante y significativo valor medicinal y económico, derivado éste último de su uso en la industria cosmética, alimentaria, farmacéutica. Un gran número de estos productos naturales, que ya se usaban

SIDAN DE DIENEA

en la medicina antigua como remedios para combatir enfermedades, se utilizan en la actualidad como medicamentos, resinas, gomas, potenciadores de sabor, aromas, colorantes, etc. (Ávalos García & Pérez, 2009)

UNIVERSIDAD DE CUENCA

1.5.2. RUTAS BIOSINTÉTICAS

Como ya se ha comentado anteriormente, existen dos tipos fundamentales de metabolismo:

- 1. El metabolismo primario se considera esencial para la vida y es común a todos los seres vivos del mundo.
- 2. El metabolismo secundario no se considera esencial para la vida y únicamente se produce en ciertos grupos vegetales.

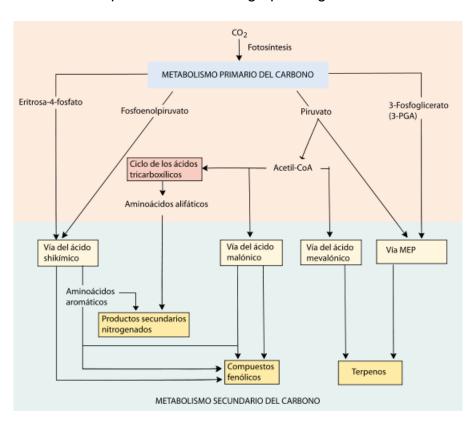


Figura 1.5: Metabolismo vegetal primario y secundario. (Santana, 2010)

En el conjunto de los vegetales se puede diferenciar 3 rutas biosintéticas que dan lugar a los metabolitos secundarios:

- Ruta del ácido shikímico.
- Ruta del acetato-malonato (ruta de los policétidos).
- Ruta del acetato-mevalonato (ruta del ácido mevalónico).(Kuklinski, 2000)

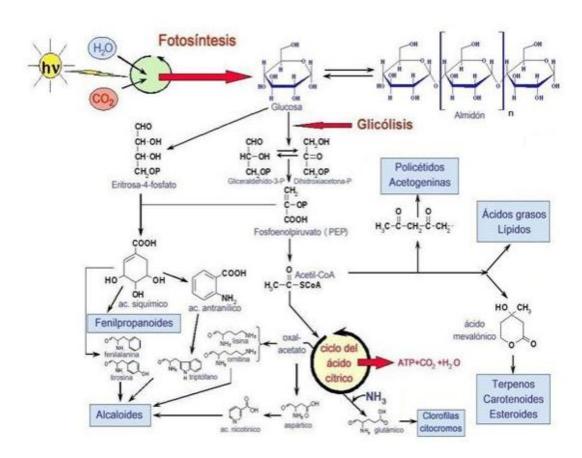


Figura 1.6: Metabolismo secundario (Ávalos García & Pérez, 2009)

1.5.3. CLASIFICACIÓN DE LOS METABOLITOS SECUNDARIOS

Se agrupan en cuatro clases principales.

- Terpenos. Entre los que se encuentran hormonas, pigmentos o aceites esenciales.
- Compuestos fenólicos: cumarinas, flavonoides, lignina y taninos.

- Glicósidos: saponinas, glicósidos cardiacos, glicósidos cianogénicos y glucosinolatos.
- Alcaloides. (Ávalos García & Pérez, 2009)

1.5.3.1. **Terpenos**

Los terpenos, o terpenoides, constituyen el grupo más numeroso de metabolitos secundarios (más de 40.000 moléculas diferentes). La ruta biosintética de estos compuestos da lugar tanto a metabolitos primarios como secundarios de gran importancia para el crecimiento y supervivencia de las plantas. Suelen ser insolubles en agua y derivan todos ellos de la unión de unidades de isopreno (Figura 1.7)

Muchos terpenoides son comercialmente interesantes por su uso como aromas y fragancias en alimentación y cosmética, o por su importancia en la calidad de productos agrícolas. Otros compuestos terpenoides tienen importancia medicinal por sus propiedades anticarcinogénicas, antiulcerosas, antimalariales, antimicrobianas, etc. (Ávalos García & Pérez, 2009)

Figura 1.7: Isopreno. (Ramírez, 2005)

1.5.3.1.1. Aceites esenciales

Los aceites esenciales son productos volátiles de naturaleza compleja, elaborados por ciertos vegetales a los que confieren un aroma agradable. Oficialmente, se denominan aceites esenciales los productos que se pueden obtener por arrastre con corriente de vapor de agua o por expresión del pericarpio de ciertos frutos.

Los aceites esenciales son generalmente líquidos a temperatura ambiente aunque algunos solidifican a baja temperatura (esencia de anís).

Las aplicaciones de los aceites esenciales son múltiples y variadas. Se utilizan tanto por sus propiedades aromáticas, en la industria alimentaria, en perfumería y en la industria de productos de limpieza, como por sus propiedades farmacológicas, en la industria farmacéutica.

Las acciones farmacológicas son muy variadas tanto en su utilización por vía tópica como en su uso por vía interna. Las principales acciones farmacológicas son: antisépticos, desodorantes, analgésicos, antiinflamatorios, expectorantes, antiespasmódicos, sedantes, diuréticos, etc. (Kuklinski, 2000)

Figura 1.8: Estructura de los aceites esenciales (Arcila, Loarca-Piña, Lecona, & González, 2004)

1.5.3.2. Compuestos Fenólicos

En el contexto del metabolismo, los aminoácidos aromáticos se pueden dirigir tanto al metabolismo primario como al metabolismo secundario. Las plantas sintetizan una gran variedad de productos secundarios que contienen un grupo fenol. Estas sustancias reciben el nombre de compuestos fenólicos, polifenoles o fenilpropanoides y derivan todas ellas del fenol, un anillo aromático con un grupo hidroxilo. (Ávalos García & Pérez, 2009)

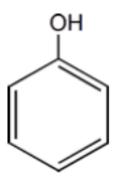


Figura 1.9: Estructura Química del Fenol (Arcila-Lozano et al., 2004)

1.5.3.2.1. Cumarinas

Las cumarinas son metabolitos secundarios que proceden de la ruta del ácido shikímico. Son derivados de benzo-α- pirona con más o menos sustituyentes en las posiciones 5, 6, 7 y 8. Los radicales son generalmente H, OH o CH3. Casi todas poseen función hidroxilo o metoxilo en la posición 7.

Los compuestos que se engloban bajo la denominación de cumarinas tienen estructuras muy variadas y, debido a esto, se observa una gran variabilidad en sus acciones farmacológicas. Las principales acciones que se han apreciado para las diferentes cumarinas son:

- Acción vitamínica P: disminuye la permeabilidad capilar y refuerzan capilares
- Fotosensibilizadoras

- Antinflamatorios.
- Antiespasmódicos.
- Vasodilatadores coronarios.
- Sedantes.
- Anticoagulantes. (Sepúlveda, 2004)

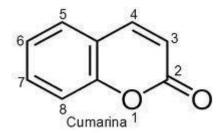


Figura 1.10: Estructura química de cumarina (Sepúlveda, 2004)

1.5.3.2.2. Flavonoides

Son moléculas que tienen dos anillos bencénicos unidos a través de una cadena de tres átomos de carbono, puesto que cada anillo bencénico tiene 6 átomos de carbono, los autores los denominan simplemente como compuestos C6C3C6. (Martínez, 2005)

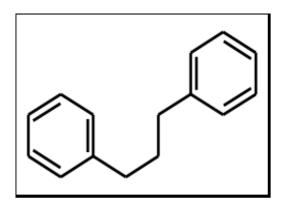


Figura 1.11: Estructura química de la Quercetina (Flavonol). (Díaz & Heinzen, 2006)

Para su estudio sistemático los más de 4000 flavonoides naturales se han clasificado en varias clases de acuerdo con las variantes estructurales que

presenta la cadena central C₃. De acuerdo con esto los flavonoides se clasifican en varios grupos:

- Flavanos, como la catequina, con un grupo -OH en posición 3 del anillo
 C.
- Flavonoles, representados por la quercetina, que posee un grupo carbonilo en posición 4 y un grupo -OH en posición 3 del anillo C.
- Flavonas, como la diosmetina, que poseen un grupo carbonilo en posición 4 del anillo C y carecen del grupo hidroxilo en posición C₃.
- Antocianidinas, que tienen unido el grupo -OH en posición 3 pero además poseen un doble enlace entre los carbonos 3 y 4 del anillo C.

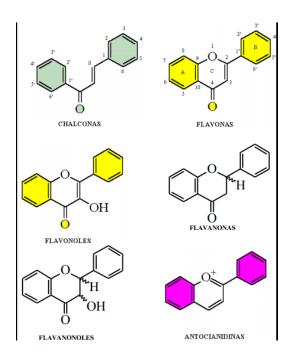


Figura 1.12: Estructura de diferentes tipos de Flavonoides (Díaz & Heinzen, 2006)

Las diferentes especies que contienen flavonoides poseen acciones farmacológicas muy variadas: antihemorrágicos, antiarrítmicos, protectores de la pared vascular o capilar, antiinflamatorios, antirradicales libres, antihepatotóxicas, antibacterianos, antifúngicos, antivíricos, antiespasmódicos, entre otras.(Kuklinski, 2000)

1.5.3.2.3. Lignina

La lignina es un polímero altamente ramificado de fenilpropanoides. Después de la celulosa, es la sustancia orgánica más abundante en las plantas. Se encuentra covalentemente unida a la celulosa y a otros polisacáridos de la pared celular. Es insoluble en agua y en la mayoría de los solventes orgánicos lo que hace muy difícil su extracción sin degradarla. Desempeña un papel estructural fundamentalmente, su naturaleza química es la base de su dureza mecánica y de su rigidez que se manifiesta en los tallos lignificados, los troncos de los árboles, imprimiendo su "carácter" a la madera. (Ávalos García & Pérez, 2009)

Estos compuestos se destacan por su actividad antimitótica (inhiben el crecimiento de cierto tumores) y por su efecto antihepatotóxico. (Kuklinski, 2000)

1.5.3.2.4. Taninos

Los taninos están constituidos por un amplio grupo de compuestos hidrosolubles con estructura polifenólica, capaces de precipitar macromoléculas. Esta capacidad para precipitarlas es la base de sus dos propiedades principales: su capacidad de curtir la piel y su poder astringente. (Kuklinski, 2000)

Sus principales acciones y usos son:

- Antídotos en intoxicaciones por metales pesados y alcaloides: debido a su capacidad para formar estructuras complejas con estas sustancias.
- Astringentes: debido a su capacidad para precipitar proteínas de la piel.
- Antisépticos: bactericidas, bacteriostáticos, antifúngicos.
- Antioxidantes (Kuklinski, 2000)

1.5.3.3. Glicósidos

Los glicósidos son metabolitos vegetales de gran importancia. Su nombre hace referencia al enlace glicosídico que se forma cuando una molécula de azúcar se condensa con otra que contiene un grupo hidroxilo. Existen tres grupos de

Glicósidos de particular interés: saponinas, glicósidos cardiacos y glicósidos cianogénicos. (Ávalos García & Pérez, 2009)

1.5.3.3.1. Saponinas

Las saponinas se encuentran como glicósidos esteroideos, glicósidos esteroideos alcaloides o bien glicósidos triterpenos. Son por tanto triterpenoides o esteroides que contienen una o más moléculas de azúcar en su estructura. Se pueden presentar como agliconas, es decir, sin el azúcar, en cuyo caso se denominan sapogeninas. La adición de un grupo hidrofílico (azúcar) a un terpenoide hidrofóbico da lugar a las propiedades surfactantes o detergentes similares al jabón que presentan las saponinas. (Santaluce, 2010)

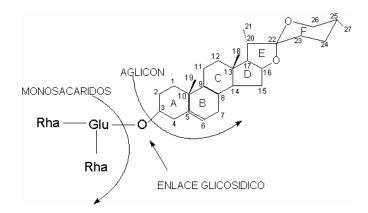


Figura 1.13: Estructura química de una saponina (Apablaza, Díaz, Martín, & Moya, 2002)

Dentro de las principales aplicaciones farmacológicas de las saponinas se encuentran: expectorante, antitusivo, diurético, antiinflamatorio. (Kuklinski, 2000)

1.5.3.3.2. Glicósidos cardíacos

Son compuestos heterósidos (azúcar + aglicón), la parte glucídica está constituida por una o varias unidades de azúcar y la parte aglicón de C27

esteroídico, capaces de modular el funcionamiento del corazón, actuando directamente sobre la contractibilidad del músculo.(Kuklinski, 2000)

1.5.3.3.3. Glicósidos cianogénicos

Los glicósidos cianogénicos son compuestos nitrogenados, que no son tóxicos por sí mismos pero se degradan cuando la planta es aplastada liberando sustancias volátiles tóxicas como cianuro de hidrógeno (HCN). Un ejemplo es la amigdalina que se encuentra en las semillas de almendra, albaricoque, cereza o melocotón. (Ávalos García & Pérez, 2009)

Figura 1.14: Estructura química de la Amigdalina. (Ávalos García & Pérez, 2009)

Estos son irritantes de la piel y de las mucosas. Por ello se utilizan como rubefacientes (aplicados sobre la piel producen irritación y enrojecimiento) y revulsivos (aplicados sobre la piel producen irritación local y mayor riesgo sanguíneo). (Kuklinski, 2000)

1.5.3.4. Alcaloides

Los alcaloides son una gran familia de más de 15.000 metabolitos secundarios que tienen en común tres características: son solubles en agua, contienen al menos un átomo de nitrógeno en la molécula, y exhiben actividad biológica. La

mayoría son heterocíclicos aunque algunos son compuestos nitrogenados alifáticos (no cíclicos) como la mescalina o la colchicina.

En humanos, los alcaloides generan respuestas fisiológicas y psicológicas la mayoría de ellas consecuencia de su interacción con neurotransmisores. A dosis altas, casi todos los alcaloides son muy tóxicos. Sin embargo, a dosis bajas tienen un alto valor terapéutico como relajante muscular, tranquilizante, antitusivos o analgésicos. (Ávalos García & Pérez, 2009)

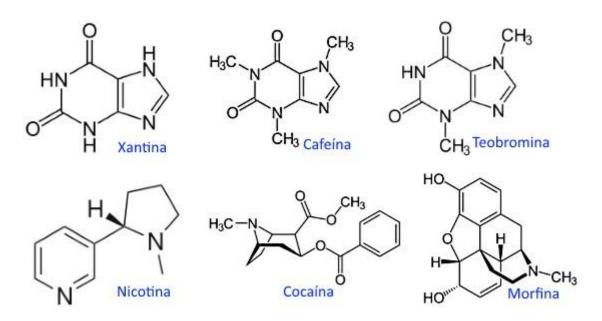


Figura 1.15: Estructura de los Alcaloide. (Sepúlveda, 2004)

1.6. CROMATOGRAFÍA EN CAPA FINA

Las técnicas de cromatografía consisten en separar mezclas de compuestos mediante la exposición de dicha mezcla a un sistema bifásico equilibrado. Todas las técnicas cromatográficas dependen de la distribución de los componentes de la mezcla entre dos fases inmiscibles: una fase móvil, llamada también activa, que transporta las sustancias que se separan y que progresan en relación con la otra, denominada fase estacionaria. (Couso, 2010)

1.6.1. Adsorbentes y disolventes

Los dos adsorbentes (fase estacionaria) más ampliamente utilizados son la gel de sílice (SiO2) y la alúmina (Al2O3), ambas de carácter polar. La alúmina anhidra es el más activo de los dos, es decir, es el que retiene con más fuerza a los compuestos; por ello se utiliza para separar compuestos relativamente apolares (hidrocarburos, haluros de alquilo, éteres, aldehídos y cetonas). El gel de sílice, por el contrario, se utiliza para separar sustancias más polares (alcoholes, aminas, ácidos carboxílicos). El adsorbente debe ser inerte con las sustancias a analizar y no actuar como catalizador en reacciones de descomposición. El adsorbente interacciona con las sustancias mediante interacción dipolo-dipolo o mediante enlace de hidrógeno si lo presentan. (UAM, 2006)

Secuencia	Orden de elución	Actividad	de	Fuerza	de
	de compuestos	adsorbentes		elución	de
				disolvente	es
	Hidrocarburos	Celulosa		Éter	de
	saturados			petróleo	
-	Hidrocarburos			Ciclohexa	no
^	aromático			Benceno	
	Derivados				
	halogenados			Tetracloru	ro
	Éteres			de carbon	0
		Sulfato cálcico		Diclorome	tano
	Cetonas	Sílice		Cloroformo	o
	Aldehídos	Florisil		Éter dietíli	СО
	Esteres	Óxido	de	Acetato	de
↓	Alcoholes	magnesio		etilo	
	Aminas	Alúmina			
	Ácidos				

	Carbón activo	Acetona
+		n-propanol
		Etanol
		Metanol
		Agua
		Ácido acético.

Tabla 1: Adsorbentes y disolventes más comunes en cromatografía (Milano, D´Armas, & Salazar, 2005)

1.6.2. Cromatografía de capa fina

La cromatografía de capa fina es una técnica que emplea como fase estacionaria una capa delgada de gel de sílica o alúmina adherida a un soporte de vidrio o aluminio. Para llevar a cabo esta técnica se disuelve una pequeña cantidad de la mezcla a separar y, con la ayuda de un capilar, se deposita sobre la parte inferior de la placa. La cromatoplaca se introduce en un recipiente cerrado que contiene unos mililitros de disolvente dejando que el disolvente ascienda por capilaridad, de modo que los componentes de la mezcla experimentan un proceso de adsorción-desorción, lo que provoca que unos avancen más rápidamente que otros. (Hellen, 2013)

1.6.3. Factor de retención (Rf)

Se denomina factor de retardo (Rf) a la relación existente entre la distancia recorrida por un compuesto y la recorrida por el disolvente en el mismo tiempo:

$$Rf = \frac{distancia\ recorrida\ por\ el\ compuesto}{distancia\ recorrida\ por\ el\ disolvente}$$

Este factor depende tanto de las condiciones experimentales (temperatura,

grado de saturación de la cámara de desarrollo, cantidad de muestra, etc.) como de la composición de la fase móvil y de la fase estacionaria, pero es una constante de cada especie química. Por este motivo, para un sistema cromatográfico dado (condiciones experimentales/fase estacionaria/fase móvil), el valor de Rf de un compuesto determinado es constante, permitiendo la identificación de especies.(UPO, s. f.).

1.7. OXIDACIÓN

1.7.1. Definición

La oxidación es un proceso químico en el que ocurre pérdida de electrones, captación de oxígeno o una cesión de hidrógeno (deshidrogenación) y reducción a aquel otro en el cual se captan electrones o se pierden oxígenos. Todo proceso de oxidación va siempre acompañado de otro de reducción. Son reacción de óxido-reducción o reacciones redox entre pares conjugados. (Guerra, 2001)

1.7.2. Radicales libres

Los radicales libres son átomos o grupos de átomos que tienen un electrón desapareado o libre por lo que son muy reactivos ya que tienden a captar un electrón de moléculas estables con el fin de alcanzar su estabilidad electroquímica. Una vez que el radical libre ha conseguido sustraer el electrón que necesita, la molécula estable que lo cede se convierte a su vez en un radical libre por quedar con un electrón desapareado, iniciándose así una verdadera reacción en cadena que destruye las células. La vida media biológica del radical libre es de microsegundos, pero tiene la capacidad de reaccionar con todo lo que esté a su alrededor provocando un gran daño a moléculas, membranas celulares y tejidos. Los radicales libres no son intrínsecamente deletéreos; de hecho, nuestro propio cuerpo los produce en cantidades moderadas para luchar contra bacterias y virus. (Avello & Suwalsky, 2006)

Las principales especies reactivas del oxígeno o sustancias prooxidantes son:

- Radical hidroxilo (HO)+
- Peróxido de hidrógeno (H2O2)
- Anión superóxido (O2)
- Oxígeno singlete (102)
- Oxígeno nítrico (NO)
- Peróxido (ROO)
- Semiquinona (Q)
- Ozono. (Avello & Suwalsky, 2006)

1.7.3. Fuentes de radicales libres

Las especies reactivas de oxígeno (EROS), tienen un origen tanto endógeno, como exógeno. Entre las fuentes endógenas destacan:

- a. La cadena respiratoria, donde la reducción monovalente de la molécula de oxígeno da lugar a la formación de la mayoría de las EROS.
- b. Las células fagocitarias (neutrófilos, monocitos o macrófagos), utilizan el sistema de la NADPH oxidasa generando directamente al ión superóxido (O2). Por otra parte, como mecanismo de defensa, dichas células también generan óxido de nitrógeno (NO), por acción de la óxido-nítricosintasa sobre la arginina intracelular. La combinación del O2 con el NO da lugar a la formación del ONOO capaz de inducir peroxidación lipídica en las lipoproteínas.
- c. La autooxidación de compuestos de carbono tales como aminoácidos, proteínas, lípidos, glicósidos y ácidos nucleicos dan lugar también a la formación de estos radicales.
- d. La activación catalítica de diversas enzimas del metabolismo intermediario como la hipoxantina, xantina oxidasa, aldehído oxidasa, monoamino oxidasa y ciclooxigenasa, lipoxigenasa, son fuentes representativas de esta producción.

Las fuentes exógenas de radicales libres pueden ser:

- Ambientales. Radiación electromagnética, luz solar, ozono, tabaco, etc.
- Farmacológicas. Xenobióticos, drogas, etc.

1.7.4. Estrés oxidativo

El estrés oxidativo ocurre cuando hay un desequilibrio en nuestras células debido a un aumento en los radicales libres y/o una disminución en los antioxidantes. Con el tiempo, este desajuste en el equilibrio entre los radicales libres y los antioxidantes puede dañar los tejidos. (COEC, 2012)

Se producen durante las reacciones metabólicas, mientras las células del organismo transforman los alimentos en energía especialmente en situaciones de hiperoxia, ejercicio intenso e isquemia y también por exposición a determinados agentes externos como las radiaciones ionizantes o luz ultravioleta, polución ambiental, humo del tabaco, etc. (Guerra, 2001)

1.7.5. Patologías relacionados con los radicales libres

Ante el estrés oxidativo el organismo responde con la defensa antioxidante, pero en determinadas ocasiones puede ser insuficiente, desencadenando diferentes procesos fisiológicos y fisiopatológicos. En la actualidad son muchos los procesos relacionados con la producción de radicales libres como son: mutagénesis, transformación celular, cáncer, arteriosclerosis, infarto de miocardio, diabetes, enfermedades inflamatorias, trastornos del sistema nervioso central, envejecimiento celular, etc. (Guerra, 2001; MARTÍNEZ VÁSQUEZ, 2007)

1.7.6. Antioxidantes

Un antioxidante es una sustancia capaz de neutralizar la acción oxidante de los radicales libres mediante la liberación de electrones en nuestra sangre, los que son captados por los radicales libres. (Avello & Suwalsky, 2006)

1.7.6.1. Clasificación de los Antioxidantes

La defensa antioxidante puede ser enzimática o no enzimática, así como ser un sistema reparador de moléculas.

1.7.6.1.1. Sistema enzimático.

Los organismos aerobios han desarrollado enzimas antioxidantes tales como: superóxido dismutasa (SOD), catalasa (CAT), glutatión peroxidasa (GPx) y DT-diaforasa. (MARTÍNEZ VÁSQUEZ, 2007)

1.7.6.1.2. Sistema no enzimático.

Las células utilizan una serie de compuestos antioxidantes o captadores de radicales libres como son: vitamina E, vitamina C, β-caroteno, ferritina, ceruloplasmina, selenio, glutatión reducido (GSH), manganeso, ubiquinona, zinc, ácido úrico, flavonoides, coenzima Q, melatonina, bilirrubina, taurina, cisteína, entre otros. (Guerra, 2001)

Flavonoides

Los flavonoides son compuestos de bajo peso molecular que comparten un esqueleto común de difenilpiranos (C6-C3-C6), compuesto por dos anillos de fenilos (A y B) ligados a través de un anillo C de pirano (heterocíclico). Los átomos de carbono en los anillos C y A se numeran del 2 al 8, y los del anillo B desde el 2' al 6'.

La actividad de los flavonoides como antioxidantes depende de las propiedades redox de sus grupos hidroxifenólicos y de la relación estructural entre las diferentes partes de la estructura química. Esta estructura básica permite una multitud de patrones de sustitución y variaciones en el anillo C.

Tres características estructurales son importantes para su función:

VIVA COURTE HOUSENESS UNIVERSIDAD DE CUENCA

UNIVERSIDAD DE CUENCA

- a) La presencia en el anillo B de la estructura catecol u O-dihidroxi.
- b) La presencia de un doble enlace en posición 2,3.
- c) La presencia de grupos hidroxilo en posición 3 y 5.
- d) La quercetina presenta las tres características, mientras que la catequina solo presenta la segunda y la diosmetina la primera (González, Sánchez, & Tuñón, 2007)

Carotenoides

Los carotenoides son tetraterpenos constituidos por unidades múltiples de isopreno con un anillo de ciclohexano sustituido e insaturado en cada uno de los extremos.

Son antioxidantes exógenos, provenientes de la dieta que anulan la reactividad y/o inhibe la generación de radicales libres. (Avello & Suwalsky, 2006; Carranco Jáuregui, Calvo Carrillo, & Pérez-Gil Romo, 2011)

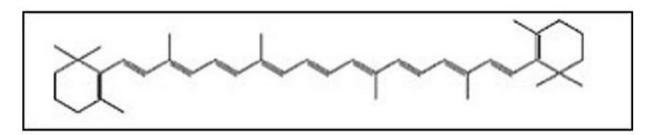


Figura 1.16: Estructura de β-caroteno (Carranco, Calvo, & Pérez, 2011)

Vitamina C

Es hidrosoluble, elimina los radicales libres y regenera la capacidad antioxidante de la vitamina E y activa ciertas enzimas. Además destruye eficazmente las nitrosaminas a través de procesos radicalarios y se le atribuye un efecto anticarcinógeno frente al humo del tabaco por concentrarse en los alvéolos pulmonares y de inhibición de la invasión tumoral.(Guerra, 2001)

Vitamina E

La vitamina E aumenta la resistencia de las lipoproteínas de baja densidad (LDL) a la oxidación y a la incorporación por macrófagos que las haría más aterogénicas que las LDL nativas.(Guerra, 2001)

Origen	Acción
1. Exógenos	
Vitamina E	 Neutraliza el oxígeno singlete Captura radicales libres hidroxilo Captura O₂
	 Neutraliza peróxidos
Vitamina C	 Neutraliza el oxígeno singlete
	 Captura radicales libres de hidroxilo
	- Captura O-,
	Regenera la forma oxidada de la vitamina E
Betacarotenos	Neutraliza el oxígeno singlete
Flavonoides, Licopenos	
2. Endógenos	
Enzimáticos	Cofactor
Superóxido dismutasa (SOD)	Cobre, sodio, manganeso
Catalasa (CAT)	Hierro
Glutatión peroxidasa (GPx)	Selenio
3. No enzimáticos	
Glutatión	Barreras fisiológicas que enfrenta
	el oxígeno a su paso desde el
Coenzima Q	aire hasta las células
Ácido Tioctico	Transportadores de metales (transferrina y ceruloplasmina)

Tabla 2: Clasificación de los antioxidantes, según su origen. (Díaz, 2002)

1.8. MÉTODOS UTILIZADOS EN LA DETERMINACIÓN DE LA ACTIVIDAD ANTIOXIDANTE

Debido a las consecuencias producidas por los radicales libres, se han realizado distintos métodos para evaluar la actividad antioxidante de diferentes componentes, a través de fuentes generadoras de radicales libres, debido a que un gran porcentaje de la oxidación es inhibida a través de la captura de los radicales. Según los estudios de Huang y colaboradores (2005), existen diversos métodos para monitorear la actividad antioxidante de diferentes compuestos, algunos basados en la transferencia del átomo de hidrógeno (HAT) y otros basados en la transferencia de electrones (ET), donde se

PROF NATA CONTROL PROSPECTOR UNIVERSIDAD DE CUENDA

UNIVERSIDAD DE CUENCA

establece la capacidad del antioxidante, en la reducción del oxidante, el cual, cambia su color al ser reducido. (URIBE, 2010)

Entre los métodos de la transferencia de electrones existe el 2,2-difenil-1-picril-hidrazilo (DPPH), el ácido 2,2'azinobis-(3-etilbenzotiazolina)-6 sulfónico (ABTS) y la reacción con el óxido nitroso (test NO), entre otros. Entre los métodos más empleados se utilizan el ABTS y el DPPH, debido a que ambos métodos presentan una gran estabilidad, son simples y de rápido análisis debido a que presentan una reacción simple, que sólo involucra una reacción redox con el oxidante como un indicador del punto final de reacción; además ambos métodos tienen la ventaja de que pueden ser utilizados en solventes orgánicos acuosos y no polares, como es el caso del benceno. (URIBE, 2010)(Fernández et al., 2006)

La mayoría de los ensayos basados en HAT monitorean una reacción cinética competitiva, generalmente están compuestos de un generador de radical libre sintético, una prueba molecular oxidable y un antioxidante. (Fernández et al., 2006)

A continuación se enumeran los métodos más utilizados para la determinación de la actividad antioxidante:

ENSAYO	CATEGORIA	
Acido 2,2'-azino-bis-3-etilbenzotiazolin-6-sulfonico (ABTS**)		
1,1-difenil-2-picril-hidrazilo (DPPH*)	Ensayos basados en	
Poder de reducción antioxidante del hierro (FRAP)	la transferencia de	
N,N- dimetil-p-fenilendiamina (DMPD)	electrones (ET)	
Capacidad de reducción antioxidante del cobre (CUPRAC)		
Capacidad de absorción del radical oxígeno (ORAC)	Ensayos basados en	
Parámetro antioxidante de captura de radicales (TRAP)	la transferencia de átomos de	
Inhibicón de la oxidación del ácido linoleico		
Inhibición de la oxidación de los lipido de baja densidad (LDL)	hidrógeno (HAT)	

Tabla 3. Clasificación de los ensayos según su modo de reacción. (Pérez, Vargas, Martínez, García, & Hernández, 2003)

1.8.1. Fundamento de la técnica de DPPH

Brand-Williams et al., (1995) evaluaron la actividad de compuestos específicos o extractos usando el radical libre estable 2,2-difenil-1-picrilhidracilo (DPPH•) en una solución metanólica, este radical presenta una coloración púrpura con absorbancia a 520 nm. Las sustancias atrapadoras de radicales libres (donadoras de H) reaccionan con este compuesto y producen la desaparición del color. (MARTÍNEZ VÁSQUEZ, 2007; Ruiz, Venegas, Ruidías, Horna, & López, 2013)

En consecuencia, la desaparición del DPPH• proporciona un índice para estimar la capacidad del compuesto de prueba para atrapar radicales. El modelo que explica la actividad de un compuesto como antirradical se ejemplifica con la siguiente ecuación:

$$DPPH \bullet + (AH)_n \rightarrow DPPH - H + (A \bullet)_n$$

Donde AH es un antioxidante que actúa como antirradical donando átomos de hidrógeno, dando como resultado radicales con estructuras moleculares estables que detendrán la reacción en cadena, tal es el caso de los fenoles. El nuevo radical formado (A) puede interactuar con otro radical para formar moléculas estables (DPPH-A, A-A).

Los resultados se pueden expresar como IC50, % de inhibición, % de actividad antirradicalaria o equivalentes a trolox o vitamina C. (MARTÍNEZ VÁSQUEZ, 2007)

Figura 1.17: Reacción de la actividad antioxidante del DPPH (MARTÍNEZ VÁSQUEZ, 2007)

1.8.2. Fundamento de la técnica del poder reductor férrico

Los métodos para medir el poder reductor son de los pocos que utilizan compuestos inorgánicos para la medida de la capacidad reductora de sustancias, en concreto de su habilidad para reducir Fe3+ a Fe2+. El ensayo de uso más extendido, desarrollado por Oyaizu, M; se basa en la formación de ferrocianuro de potasio, este compuesto reacciona con el FeCl3 produciéndose una intensa coloración verde esmeralda que absorbe a 700 nm, cuya intensidad es dependiente de la concentración de los antioxidantes que se encuentran en la muestra. Cuanto mayor sea la absorbancia en el medio de reacción, mayor será el poder reductor de las sustancias antioxidantes que se evalúan. (Martínez, 2006)

El valor del poder de reducción está ligado a la cantidad de radicales libres que un agente antioxidante está en capacidad de captar para anular su alta reactividad, y esta capacidad a su vez tiene relación directa con la concentración del agente antioxidante, al aumentar la concentración aumenta el poder de reducción. El incremento de la absorbancia da a entender un aumento en el poder reductor de los extractos. (Cardona & Mejía, 2009)

CAPÍTULO II

2. MATERIALES

2.1. MATERIALES EMPLEADOS PARA EL DESARROLLO DE CROMATOGRAFÍA EN CAPA FINA (THIN LAYER CHROMATOGRAPHY-TLC)

Para la identificación de metabolitos presentes en los extractos obtenidos se emplearon los siguientes materiales:

- Fase estacionaria: placas de sílica gel 60 F₂₅₄
- Fases móviles:
 - o Tolueno- éter. (1:1)
 - Acetato de etilo- ácido fórmico- ácido acético glacial- agua.
 (100:11:11:26)
 - o Cloroformo- ácido acético glacial-metanol-agua. (65:25:9:1)
 - o Tolueno- dioxano- ácido acético glacial. (90:25:4)
 - o Tolueno- acetato de etilo. (85:15)
 - o Cloroformo- metanol- agua. (65:25:4)

Reveladores

- Productos naturales.
- Vainillina- ácido fosfórico.
- o Anizhaldehído- ácido sulfúrico.
- Vainillina- ácido sulfúrico.

Patrones de concentración 0,25 mg/ml

- o Escopoletina.
- Umbeliferona.
- o Quercetina.
- o Isorhamnetin.
- Apigenina.
- Querecetin 3- glucorónido.
- o Escina.
- o Eugenol.
- Esclareol.

- o Geraniol.
- Extractos metanólicos y de diclorometano de las distintas especies de Jungia
- Jeringas de vidrio 100 μl
- Cámara de vidrio para fases móviles
- Pinza metálica
- Probetas
- Vasos de precipitación de 250 ml
- Varillas de vidrio
- Frascos ámbar
- Estufa
- Secadora
- Atomizadores
- Equipo de lectura de placas TLC (Camag TLC visualizer)
- Nitrógeno gaseoso Indura

2.2. MATERIALES Y EQUIPOS USADOS PARA LA EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE

2.2.1. Evaluación de la actividad antioxidante por el método del DPPH (2,2- DIPHENYL-1-PICRYLHYDRAZIL)

Para la evaluación de la actividad antioxidante por el método de DPPH se emplearon los siguientes materiales:

- Balanza analítica modelo BBK-31, marca Boeco.
- Vasos de precipitación de 50 ml.
- Espátula metálica pequeña.
- Balones de aforo de 100 ml.
- Papel aluminio.

UNIVERSIDAD DE CUENCA

- Varillas de vidrio.
- Etanol calidad analítica Merck.
- Extractos metanólicos y diclorometanólicos de las especies de Jungia de concentración 20 mg/ml.
- Tubos Falcon de 10 ml.
- Gradilla.
- Tubos de vidrio pequeños.
- Puntas para pipetas.
- Pipetas automáticas:
 - 10-100 μl marca Boeco (serie Nro. 8076667)
 - 100-1000 μl marca Thermo (serie Nro.HJO8254)
- Vórtex modelo VX 22, marca Labnet.
- Agua destilada ultrapura calidad HPLC:
- Cubetas plásticas
- Espectrofotómetro marca Thermo, modelo Genesys 10-s

2.2.1.1. Preparación de la solución de DPPH 0,06 mM

- En un vaso de precipitación de 50 ml protegido de la luz con papel aluminio se pesó 0,0024 g de reactivo de DPPH en la balanza analítica.
- Se disolvió con la ayuda de una varilla de vidrio y la adición de una alícuota de etanol analítico.
- Se transfirió la solución a un balón de 100 ml y se aforó.
- La solución se homogenizó con movimientos de inversión (20-30),
- DPPH (2,2- DIPHENYL-1-PICRYLHYDRAZIL).

DPPH (2,2- DIPHENYL-1-PICRYLHYDRAZIL) MARCA SIGMA-ALDRICH Especificaciones físicas y químicas									
Fórmula química	Estado físico	Masa molar	Densidad	Solubilidad (20 °C)					
$C_{18}H_{12}N_5O_6$	Sólido cristalino	394,32 g/mol	1,4 kg/m ³	Insoluble en agua					

Tabla 4: Especificaciones del DPPH (Sigma- Aldrich, 2015).

2.2.1.2. Preparación de la solución madre de ácido ascórbico de 100 μg/ ml

- En un vaso de precipitación de 50 ml protegido de la luz con papel aluminio se pesó 0,010 g de reactivo de ácido ascórbico en la balanza analítica.
- Se disolvió con la ayuda de una varilla de vidrio y la adición de una alícuota de agua destilada ultra pura.
- Se transfirió a un balón de 100 ml la solución, se aforó y se homogenizó.
- Ácido ascórbico.

ÁCIDO L- ASCÓRBICO MARCA SIGMA-ALDRICH Especificaciones físicas y químicas												
Fórmula	Fórmula Masa Punto de Solubilidad Actividad Pureza											
química	molar	fusión	(20 °C)	óptica								
$C_6H_8O_6$	176,12	190-194 °C	176,12	[α]25/D 19,0	99%							
	g/mol		g/mol	a 23,0,								
				c=10% en								
				H2O								

Tabla 5. Especificaciones del Ácido ascórbico (Sigma- Aldrich, 2015).

2.2.2. Evaluación de la actividad antioxidante por el método del poder reductor.

Para la evaluación de la actividad antioxidante por el método de poder reductor se emplearon los siguientes materiales:

- Balanza analítica BBK-31, marca Boeco.
- Vasos de precipitación de 50 ml y 100 ml.
- Espátulas.
- Varillas de vidrio.
- Balones de aforo de 100 y 500 ml.
- Probetas de 100 ml.
- Potenciómetro modelo Orion Star A221, marca Thermo Scientific.
- Frascos ámbar.
- Papel aluminio.
- Agua destilada calidad HPLC.
- Ácido ascórbico.
- Etanol analítico.
- Tubos Falcon de 10 ml.
- Gradillas.
- Tubos de vidrio pequeños.
- Puntas para pipetas.
- Pipetas automáticas:
 - 10-100 μl marca Boeco (serie Nro. 8076667).
 - 100-1000 μl marca Thermo (serie Nro.HJO8254).
- Cubetas plásticas.
- Solución buffer de fosfatos 0,2 M pH 6.6.
- Solución de ferricianuro de potasio al 1% (w/v).
- Solución de ácido tricloroacético 10% (w/v).
- Solución de cloruro férrico 0,1%.
- Vórtex modelo VX 22, marca Labnet.

- Extractos metanólicos y de diclorometano las diferentes especies de Jungia.
- Baño maría
- Centrífuga
- Espectrofotómetro marca Thermo, modelo Genesys 10-s

2.2.2.1. Preparación de reactivos.

2.2.2.1.1. Preparación de buffer de fosfato 0.2 M pH 6.6

- Preparación de solución de fosfato de sodio monobásico dihidratado 0.2
 M (Solución A)
 - En vaso de precipitación de 100 ml, se pesó en la balanza analítico 15.6 g del reactivo.
 - Se disolvió con la ayuda de una varilla y la adición de pequeñas alícuotas de agua destilada.
 - Se aforó en un balón de 500 ml homogenizando la solución con 20-30 movimientos de inversión.
 - Se etiquetó correctamente y se cubrió con papel aluminio para protegerlo de la luz.
- Preparación de solución de fosfato de sodio dibásico heptahidratado 0.2
 M (Solución B)
 - En vaso de precipitación de 100 ml, se pesó en la balanza analítico 26.8 g del reactivo.
 - Se disolvió con la ayuda de una varilla y la adición de pequeñas alícuotas de agua destilada.
 - Se aforó en un balón de 500 ml homogenizando la solución con 30 movimientos de inversión.
 - Se etiquetó correctamente y se cubrió con papel aluminio para protegerlo de la luz.

- Con la ayuda de una probeta se tomó 62.5 ml de la solución A y se mezcló con 37.5 ml de la solución B para obtener un pH de 6.6. No fue necesario ajustar el pH de la solución.
- Se transfirió la solución final a un frasco ámbar perfectamente etiquetado y protegido de la luz.

2.2.2.1.2. Preparación de la solución de ferricianuro de potasio 1% (%w/v)

- En vaso de precipitación de 100 ml, se pesaron 5 g del reactivo.
- Se disolvió con la ayuda de una varilla y la adición de pequeñas alícuotas de agua destilada.
- Se aforó en un balón de 500 ml homogenizando la solución con 20- 30 movimientos de inversión.
- Se transfirió a un frasco ámbar, se etiquetó correctamente y se cubrió con papel aluminio para protegerlo de la luz.

2.2.2.1.3. Preparación de la solución de ácido tricloroacético 10% (%w/v)

- En vaso de precipitación de 100 ml, se pesaron 10 g del reactivo.
- Se disolvió con la ayuda de una varilla y la adición de pequeñas alícuotas de agua destilada.
- Se aforó en un balón de 100 ml homogenizando la solución con 20-30 movimientos de inversión.
- Se transfirió a un frasco ámbar, se etiquetó correctamente y se cubrió con papel aluminio para protegerlo de la luz.

2.2.2.1.4. Preparación de la solución de cloruro férrico 0.1%.

 En vaso de precipitación de 100 ml, se pesó en la balanza analítico 0.1665 g del reactivo.

- Se disolvió con la ayuda de una varilla y la adición de pequeñas alícuotas de agua destilada.
- Se aforó en un balón de 100 ml homogenizando la solución con 20-30 movimientos de inversión.
- Se transfirió a un frasco ámbar, se etiquetó correctamente y se cubrió con papel aluminio para protegerlo de la luz.

CAPÍTULO III

3. MÉTODOS

3.1. ANÁLISIS MEDIANTE CROMATOGRAFÍA EN CAPA FINA (THIN LAYER CHROMATOGRAPHY-TLC)

Para el análisis de mediante TLC se utilizaron los materiales mencionados en el apartado 2.1.

3.1.1. Preparación de las placas para TLC

Las placas para TLC se colocaron en la estufa durante 15 horas para lograr su desecación, luego se trazó una línea de siembra a 1 cm del borde inferior y a 8 cm de ésta se trazó la línea de frente del solvente.

3.1.2. Aplicación de la muestra

- En el borde superior de la placa se identificó el metabolito a investigar, la fase móvil y el revelador empleado; en la parte inferior se identificaron los códigos de los extractos a analizar y patrones.
- Cada extracto se colocó a 1 cm de distancia entre sí, y a una distancia de 1 cm del borde inferior de la placa.
- La cantidad de muestra utilizada en la siembra fue de 4 μl.

3.1.3. Elución sobre la placa

- La fase móvil según el metabolito a identificar se preparó el día de trabajo y fue colocada en la cámara de vidrio durante 30 minutos, logrando su saturación.
- Utilizando la pinza se colocó la placa en la cámara de vidrio provista de la fase móvil.
- El corrimiento se detiene cuando la fase móvil ha llegado a la línea de frente del solvente.
- Se retiró la placa de la cámara de vidrio con la pinza y se secó a temperatura ambiente o con la ayuda de una secadora

dependiendo del solvente, bajo la campana de extracción de vapores.

3.1.4. Revelado postcromatográfico

La identificación de los compuestos incoloros exige que estos sean revelados, para facilitar su visualización se usan distintos tipos de reveladores según los metabolitos a ser identificados. (Anexo A)

Una vez que se han revelado las placas se dejan secar a temperatura ambiente o en la estufa durante 10 minutos y se procede a visualizarlas en el equipo de lecturas de placas de TLC (Camag TLC visualizer).

El equipo permite realizar visualizaciones de las placas a 254 nm y 366 nm y luz visible permitiendo revelar las fluorescencias que presentan las bandas de los compuestos a analizar. Si se obtienen resultados al revelar las placas como los indicados en la siguiente tabla, se puede tratar de:

Metabolito	Revelador	Detec	ción
		Visible	UV-365 nm
Cumarinas	Productos naturales	-	Fluorescencia: azul/azul-verde
Flavonoides	Productos naturales	Flavonoles: naranja- amarilo/amarillo- verde Flavonas: naranja/amarillo- verde	Fluorescencia intensa
Saponinas	Vainillina 1% en ácido sulfúrico Anizaldehido- ácido sulfúrico	Azul/azul- violeta/rojo/amarillo- café	- Fluorescencia: azul/verde/violeta

	Vainillina-ácido	Rojo-violeta	Fluorescencia:
	fosfórico		roja-azul
Triterpenos	Vainillina 1% en	Azul/verde/rojo/café	-
glucósidos	ácido sulfúrico		
	Anizaldehido-		-
	ácido sulfúrico		
Terpenos	Vainillina 1% en	Morado-negruzco	-
	ácido sulfúrico		

Tabla 6: Detección de metabolitos en el revelado postcromatográfico. (Wagner & Bladt, 2009)

3.2. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE

En la presente investigación se probaron dos técnicas:

- Evaluación de la actividad antioxidante según la técnica del DPPH en extractos de metanol y de diclorometano.
- Evaluación de la actividad antioxidante según la técnica de poder reductor en extractos de metanol y de diclorometano

3.2.1. Evaluación de la actividad antioxidante según la técnica de DPPH

Método

La actividad antioxidante de los extractos fue medida en términos de donación de hidrógeno, empleando la técnica del DPPH propuesta por Brand Williams et al, con ligeras modificaciones. Se preparó una solución de DPPH 0,06 mM y 0,7 ml de esta solución fueron añadidos a 0,7 ml de diferentes extractos en etanol a concentraciones de 5, 10, 25, 50 y 100 µg/ml. Después de 30 minutos necesarios para que se produzca la reacción, se leyó la absorbancia a 520 nm frente a un blanco de etanol. El estándar de referencia usado fue el ácido ascórbico. Todas las determinaciones se realizaron por triplicado.(Kuskoski, Asuero, Troncoso, Mancini-Filho, & Fett, 2005)

La actividad de barrido de DPPH fue calculada utilizando la siguiente ecuación:

UNVERSIDAD BE LUENCA

UNIVERSIDAD DE CUENCA

$$%Inhibiciòn = \left[\frac{AB - AA}{AB}\right] x 100$$

Dónde:

AB= absorbancia del control

AA= absorbancia del estándar o test. (Ruiz et al., 2013)

Los resultados se reportaron en términos de IC50 que se calcula mediante la siguiente fórmula:

$$IC_{50} = \frac{50 - b}{m}$$

Dónde:

- 50= 50% de inhibición (eje de las ordenadas).
- b= punto de intercepción de en eje d las ordenadas.
- m= pendiente de la recta.

3.2.1.1. Preparación de los patrones de ácido ascórbico

- Se cubrió la gradilla de tubos con papel aluminio para protegerlos de la luz.
- Se midieron las cantidades indicadas de solución madre, agua destilada
 y DPPH en cada patrón como se señala en la tabla 7.
- Se homogenizaron los tubos de los patrones después de cada adición en el vórtex.

Patrón	1	2	3	4	5	6	7	Blanc o	Contr ol
Concentració	1	2	3	4	5	6	7	-	-
n (µg/ml)									

Sol. madre	20	40	60	80	100	120	140	-	-
de ácido									
ascórbico (µI)									
Agua	198	196	194	1920	190	188	186	-	-
destilada (µl)	0	0	0		0	0	0		
			Homog	jenizar e	en el vá	rtex	ı	'	
Patrones (ml)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	-	-
Solución	0.7	0.7	0.7	0.7	0.7	0.7	0.7	-	0.7
DPPH (ml)									
Etanol (ml)	-	-	-	-	-	-	-	1.4	0.7

Tabla 7:Preparación de los patrones de ácido ascórbico- método DPPH

3.2.1.2. Preparación de la solución madre y patrones del extracto.

3.2.1.2.1. Preparación de la solución madre del extracto de concentración 200 µg/ml

- Se midió 50 µl del extracto y se colocó en un tubo Falcon cubierto con papel aluminio para proteger de la luz.
- Se completó un volumen de 5 ml con de etanol analítico.
- Se homogenizó en el vórtex.

3.2.1.2.2. Preparación de los patrones del extracto

- Se cubrió la gradilla de tubos con papel aluminio para protegerlos de la luz.
- Se midieron las cantidades de solución madre, etanol analítico y DPPH en cada patrón como se indican en la tabla 8.
- Se homogenizó en el vórtex después de cada adición.

Patrón	1	2	3	4	5	6	Blanco	Control
Concentración	5	10	25	50	100	150	-	-
(µg/ml)								
Vol. Extracto	75	150	375	750	1500	2250	-	-
(µL)								
Etanol (µI)	2925	2850	2625	2250	1500	750	-	-
		Hon	nogeniz	ar en e	vórtex			
	Lee	er abso	rbancia	de clor	ofila a 5	20nm		
Patrones (ml)	0.7	0.7	0.7	0.7	0.7	0.7	-	-
Solución de	0.7	0.7	0.7	0.7	0.7	0.7	-	0.7
DPPH (ml)								
Etanol (ml)	-	-	-	-	-	-	1.4	0.7

Tabla 8. Preparación de los patrones del extracto- método DPPH

3.2.2. Evaluación de la actividad antioxidante según la técnica de poder reductor férrico.

Método

El poder reductor de los extractos se determinó según el método descrito por Oyaizu (1986) con pequeñas variaciones. A 0.5 ml de extracto de concentración de 100 μg/ml, se le añadió 1.25 ml de tampón fosfato 0.2 M, pH 6.6, y 1.25 ml de ferricianuro potásico al 1%. Esta mezcla se incubó a 50°C durante 20 minutos, añadiéndole posteriormente 1.25 ml de ácido tricloroacético al 10 %. A continuación, esta mezcla se centrifugó a 3000 rpm durante 10 minutos y, posteriormente, a 1.25 ml de sobrenadante obtenido se la añadieron 1.25 ml de agua destilada y 0.25 ml de cloruro férrico al 0.1 %, registrándose la absorbancia de la mezcla a 700 nm. El poder reductor se expresó en miligramos de ácido ascórbico equivalentes a 100 gramo de droga seca, para lo cual se construyó la correspondiente recta patrón. Todas las determinaciones se realizaron por triplicado.(Pérez, 2008)

PROC NITA COURTE PROFESSION OF CHEMICA

UNIVERSIDAD DE CUENCA

Se utiliza la siguiente fórmula para calcular la capacidad antioxidante:

$$AAEAC = \frac{(As - Ac)(Fd)(Vo)}{K.m}$$

Dónde:

As=absorbancia de cada muestra

Ac= absorbancia del control

m= peso del extracto (miligramos)

Vo= volumen

Fd= factor de dilución

K= pendiente de la curva de calibración de ácido ascórbico

AAEAC= miligramos de ácido ascórbico equivalentes a 100 g de droga seca (mg/g)

3.2.2.1. Preparación de los patrones de ácido ascórbico

- Se cubrió la gradilla de tubos con papel aluminio para protegerlos de la luz.
- Se midieron las cantidades indicadas de solución madre, etanol analítico y demás reactivos, en cada patrón como se señala en la tabla 9.
- Se homogenizaron los tubos de los patrones después de cada adición en el vórtex.

Patrón	1	2	3	4	5	6	7	Blanc	Contr
								0	ol
Concentració	1	5	10	30	45	50	100	-	-
n (µg/ml)									
Sol. madre de	10	50	100	300	450	500	100	-	-
ácido							0		
ascórbico (µl)									
Etanol (µI)	99	950	900	700	550	500	0	2.5	0,5
	0								

Homogenizar en el vórtex										
Patrones (ml)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	-	-	
Buffer de	1.2	1.25	1.25	1.25	1.25	1.25	1.25	-	1.25	
fosfatos	5									
0.2M, pH 6.6										
(ml)										
Ferricianuro	1.2	1.25	1.25	1.25	1.25	1.25	1.25		1.25	
de potasio	5									
1% (ml)										
Homogenizar y llevar la mezcla reaccionante al Baño María a 50 °C por 20										
minutos. Dejar atemperar antes de continuar.										
Ácido	1.2	1.2	1.25	1.25	1.25	1.25	1.25		1.25	
tricloroacético	5	5								
10% (ml)										
Centrifugar a 3000rpm por 10 minutos										
Sobrenadante	1.2	1.2	1.25	1.25	1.25	1.25	1.25		1.25	
(ml)	5	5								
Agua	1.2	1.2	1.25	1.25	1.25	1.25	1.25		1.25	
destilada (ml)	5	5								
Cloruro	0.2	0.2	0.25	0.25	0.25	0.25	0.25		0.25	
férrico 0,1%	5	5								
(ml)										
Dejar reposar 10 minutos y leer la absorbancia a 700 nm frente al blanco										

Tabla 9. Preparación de los patrones de ácido ascórbico- método poder

reductor

3.2.2.2. Preparación del patrón del extracto de concentración 100 µg/ml.

- Se cubrió la gradilla de tubos con papel aluminio para protegerlos de la luz
- Se midieron las cantidades de extracto y de etanol en el patrón como se indican en la tabla 10.

• Se homogenizó en el vórtex después de cada adición.

1	Blanc	Contr						
	o	ol						
100	-	-						
15	-	-						
2985	2.5	0.5						
Homogenizar en el vórtex								
0.5	-	-						
1.25	-	1.25						
1.25	-	1.25						
Homogenizar y llevar la mezcla reaccionante al								
Baño María a 50 °C por 20 minutos. Dejar								
atemperar antes de continuar.								
1.25	-	1.25						
Centrifugar a 3000rpm por 10 minutos								
1.25	-	1.25						
1.25	-	1.25						
0.25	-	0.25						
Dejar reposar 10 minutos y leer la absorbancia								
a 700 nm frente al blanco								
	100 15 2985 ar en el 0.5 1.25 1.25 a mezcla por 20 tes de co 1.25 por 10 r 1.25 1.25 0.25 tos y le	100 -						

Tabla 10: Preparación del patrón del extracto-método poder reductor

CAPÍTULO IV

4. ANÁLISIS DE RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS DE TLC

Para la identificación de los metabolitos secundarios presentes en las plantas estudiadas, se efectuaron corrimientos de cromatografía en capa fina (TLC) siguiendo la metodología descrita en el apartado 3.1, para lo cual se emplearon tres extractos en metanol y tres extractos en diclorometano para cada especie (*J. rugosa*, *J. coarctata*, *J. paniculata*, *J. fistulosa*).

Los metabolitos investigados fueron: cumarinas, flavonoides, saponinas, terpenos y triterpenos, se emplearon fases móviles y reveladores específicos para cada metabolito (Anexo A). Las placas cromatográficas obtenidas se observaron bajo UV 250 nm, 366 nm y espectro visible, con el fin de observar coloraciones características que ayudan en la identificación.

Los cromatogramas para las cuatro especies de *Jungia* presentan corrimientos muy similares que no revelan gran diferencia en su composición, presentando todas los mismos metabolitos secundarios, tal vez podría sospecharse que presentan variaciones en cuanto a la concentración y que se refleja en la mayor intensidad en la fluorescencia observada y lo cual podría deberse a factores como época de colección, condiciones del suelo, época del año, etc.

De los metabolitos investigados los flavonoides son los que tienen mayor relevancia en todas las especies de *Jungia* estudiadas debido a la función antioxidante que cumplen. La cromatografía nos permitió observar intensas fluorescencias amarillas a 366 nm con RF entre 0,70-0,72 (Figura 4.1) lo que nos indica la presencia de flavonas y flavonoles; por la coloración semejante a la del patrón podríamos decir que se trata de flavonoles del tipo de la quercetina.

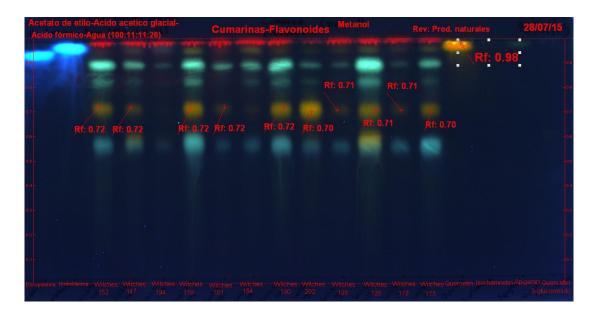


Figura 4. 1: Cromatograma bajo UV 366 nm usando como revelador productos naturales para flavonoides y cumarinas

Según Enciso y Arroyo (2011) en un estudio realizado de la actividad antioxidante en las hojas de *Jungia rugosa* nos afirma la presencia de: 3,5-dihidroxi4,7-di metoxiflavona, 4,5,6,8-tetra metoxi-7-O-azúcar flavona y 3-hidroxi-5,6,7-tri metoxiflavona encontrados en la fracción flavónica extraído de las hojas de *Jungia rugosa*.(Enciso & Arroyo, 2011). Otra investigación realizado por Casado, Landa y Calvo (2007) titulado "Actividad Antioxidante de *Jungia paniculata* y sus flavonoides" nos indica que ha sido identificado los siguientes flavonoides: luteolina, apigenina, 7-glucosil-luteolina y 7-glucosil-apigenina (Casado et al., 2007). Estos estudios demuestran la existencia de diferentes tipos de flavonoides en la especie *Jungia*, compuestos a los cuales se les podría atribuir el poder antioxidante. Es importante mencionar que los flavonoides presentes en las plantas estudiadas son de tipo polar, lo cual se argumenta por su falta de elución en un fase móvil de tipo apolar (tolueno – dioxano- ácido acético glacial).

En un estudio realizado por Cazar y Valdés (2013) se menciona la presencia de lactonas sesquiterpénicas y furanosesquiterpenos en las hojas de *Jungia*, lo cual sustenta lo encontrado en la presente investigación, al observar bajo espectro visible coloraciones verdosas que podrían indicar la presencia de

PROF (MAX. CONTROL PERSONNE) UNIVERSIDAD DE CUENDA

UNIVERSIDAD DE CUENCA

terpenos, además en dos extractos se observó coloraciones violáceas semejantes al esclareol con RF:0,18 (figura: 4.2) (Cazar, 2013)

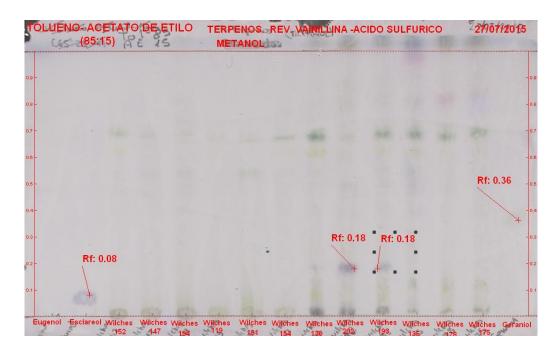


Figura 4. 2: Cromatograma en espectro visible usando revelador para terpenos en las distintas especies de *Jungia*

La observación de la figura 4.3 nos indica que los terpenos con Rf: 0,67 presentan una coloración verde oscura resultan especialmente interesantes como marcadores del género *Jungia* al estar presente en todas las especies, independientemente de variables como condiciones ambientales (época de colección, altura, tipo de suelo, etc.), a diferencia del resto de metabolitos que sí presentan variaciones incluso dentro de la misma especie.

Figura 4. 3: Cromatograma en espectro visible usando revelador para terpenos en las distintas especies de *Jungia*

Es posible que en los extractos analizados exista la presencia de cumarinas, ya que se observó fluorescencia azul a 366nm por lo que podría tratarse de cumarinas simples (Figura 4.1), otros extractos presentaron fluorescencia más pálida que podría tratarse de cromonas. Las cumarinas presentes en las plantas estudiadas son polares ya que no hubo elución en la fase móvil apolar (tolueno-éter).

Por otra parte se presume de la presencia saponinas debido a que se apreció fluorescencias de color azul y verde en UV 366nm. (Figura 4.4)

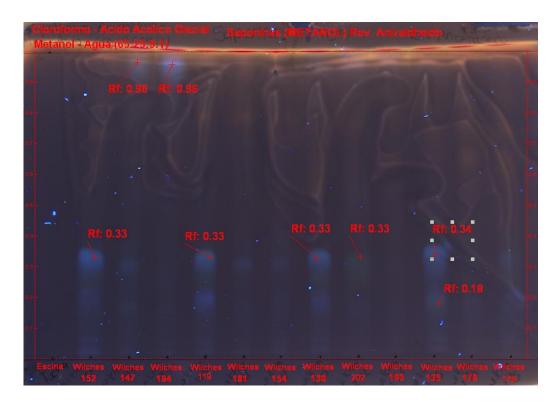


Figura 4. 4: Cromatograma de bajo UV 366nm usando revelador para saponinas en las distintas especies de *Jungia*.

4.2. VALIDACIÓN DE CURVAS DE CALIBRACIÓN DE ÁCIDO ASCÓRBICO EMPLEADAS PARA LA DETERMINACIÓN DE LA ACTIVIDAD ANTIOXIDANTE USANDO TANTO LA TÉCNICA DE DPPH COMO LA DEL PODER REDUCTOR FÉRRICO.

Dentro del estudio de validación se evaluó la precisión intra-día, inter-día y linealidad de los dos métodos aplicados.

La evaluación de la precisión se llevó a cabo mediante un análisis de ANOVA, expresando los resultados en porcentaje de coeficiente de variación.

Las curvas de calibración para la técnica de DPPH y poder reductor fueron realizadas por dos analistas.

Mediante la aplicación de la metodología descrita en al apartado 3.2.1 y 3.2.2, se construyeron 6 curvas de calibración (Anexo B) con 7 niveles de concentración: 1, 2, 3, 4, 5, 6 y 7 µg/ml para el método de DPPH y 4 curvas de

TIME VILL CONSTRUCTOR PROPERTY.

UNIVERSIDAD DE CUENCA

calibración (Anexo C) con 7 niveles de concentración: 1, 5, 10, 30, 45, 50 y 100 µg/ml para el método de poder reductor.

La tendencia lineal de las curvas de calibración se observa a través del coeficiente de determinación, R^2 , con valores superiores a 0,99 en la técnica del DPPH y mayores a 0,93 en la técnica del poder reductor.

Las curvas de calibración se trabajaron con 7 patrones de concentración, sin embargo para la construcción de la curva se eliminaron los últimos patrones, ya que a estas concentraciones, el radical libre se neutraliza con el ácido ascórbico, dando lugar a una meseta. Este suceso se observó en ambos métodos de actividad antioxidante.

Para la validación estadística se llevó a cabo un test de ANOVA en un mismo día (intra-día) y en días consecutivos (inter-día), obteniendo los resultados siguientes:

Técnica de DPPH:

Análisis de varianza								
		Anali	sta 1	Analista 2				
Patrones	Concentración (µg/ml)	Inter CV (%)	Intra CV (%)	Inter CV (%)	Intra CV (%)			
P1	1	3,22	0,73	2,37	3,9			
P2	2	3,65	1,09	5,50	4,74			
P3	3	7,66	3,7	2,22	3,33			
P4	4	5,11	1,69	5,89	6,88			
P5	5	12,32	3,68	4,87	9,37			

Tabla 11: ANOVA Inter-día e Intra-día. Curvas de calibración- método DPPH

En el ANOVA realizado para el analista 1, se puede observar en el inter-día que los coeficientes de variación de los 4 primeros patrones (1-4 μg/ml) son menores de 10%, lo que indica precisión, mientras que el quinto patrón (5 μg/ml) muestra un coeficiente de variación de 12,32%, que según el Instituto Nacional de Estadística y Censos(Instituto Nacional de Estadística y Censos, 2013), es una precisión aceptable; en el intra-día todos los coeficientes de variación son menores al 10%, por lo tanto muestra precisión en el trabajo. De manera similar ocurre para el analista 2, tanto en el inter-día como en el intra-día se obtienen coeficientes de variación menores al 10% indicando precisión.

Técnica del poder reductor:

Análisis de varianza								
		Anali	sta 1	Analista 2				
Patrones	Concentración (µg/ml)	Inter CV (%)	Intra CV (%)	Inter CV (%)	Intra CV (%)			
P1	1	9,26	6,41	7,51	9,60			
P2	5	8,11	6,58	11,93	4,02			
P3	10	2,95	2,37	1,47	2,66			
P4	30	7,17	2,15	1,02	1,10			
P5	45	1,67	0,57	3,47	2,84			

Tabla 12: ANOVA Inter-día e Intra-día. Curvas de calibración- método poder reductor.

En el ANOVA realizado para el analista 1, se puede apreciar, tanto en el interdía como en el intra-día, que todos los coeficientes de variación están por debajo del 10%, por lo tanto el trabajo se realizó con precisión. En el caso del analista 2, se puede observar en el inter-día, que el coeficiente de variación del

patrón 2 (2 µg/ml) muestra un coeficiente de variación de 12,93%, indicando una precisión aceptable, mientras que los demás patrones presentan un coeficiente de variación del 10%, mostrando precisión en el trabajo.

4.3. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE

4.3.1. Evaluación de la actividad antioxidante mediante la técnica del DPPH (2,2-diphenyl-1-picrylhydrazyl)

La actividad antioxidante se evaluó utilizando el método de captación del radical 2,2-difenil-1-picrilhidrazilo (DPPH) como fue mencionado en el apartado 3.2.1, se observó que todos los extractos de las diferentes especies estudiadas presentaron actividad antioxidante, esto se evidenció por la capacidad de inhibir el radical DPPH a las diferentes concentraciones realizadas. Es importante mencionar que al iniciar la investigación se trabajó con concentraciones de 5, 10, 25, 50, 100, 150 y 200ug/ml, sin embargo se observó que a concentraciones superiores a 50ug/ml daba a lugar a la formación de una meseta por la neutralización del radical DPPH. Los valores de absorbancia de los triplicados, IC50 y el porcentaje de inhibición para cada extracto evaluado se detallan en los Anexos D y E.

Para establecer las posibles diferencias entre las especies de *Jungia* con respecto a su capacidad antioxidante, el parámetro de estudio fue el IC50, que nos indica la concentración necesaria para inhibir el 50% de los radicales libres (Tabla 13).

Jungia rugosa						
Código del	IC 50 (ug/ml)	IC 50 (ug/ml)				
Extracto	Metanol	DCM				
Wilches 194	99,41	97,18				
Wilches 183	125,88	245,40				
Wilches 152	26,09	122,23				
Wilches 147	107,79	47,15				
Wilches 146	75,77	297,35				
Wilches 144	129,82	369,62				
Wilches 123	48,41	415,43				
Wilches 100	90,46	323,00				
Wilches 99	56,55	-				
Wilches 98	78,88	-				
Wilches 97	46,54	-				
	Jungia coarctata					
Código del	IC 50 (ug/ml)	IC 50 (ug/ml)				
Extracto	Metanol	DCM				
Wilches 181	45,00	117,56				
wilches 180	-	198,01				
Wilches 169	22,46	407,70				
Wilches 168	37,03					
	0.,00	316,64				
Wilches 155	153,55	316,64 156,08				
Wilches 155 Wilches 154	·					
	153,55	156,08				
Wilches 154	153,55 93,55	156,08 144,99				
Wilches 154 Wilches 119	153,55 93,55 22,98	156,08 144,99 241,97				
Wilches 154 Wilches 119 Wilches 118	153,55 93,55 22,98 55,97	156,08 144,99 241,97 250,65				
Wilches 154 Wilches 119 Wilches 118 Wilches 112	153,55 93,55 22,98 55,97 64,09	156,08 144,99 241,97 250,65				
Wilches 154 Wilches 119 Wilches 118 Wilches 112 Wilches 95	153,55 93,55 22,98 55,97 64,09 58,71	156,08 144,99 241,97 250,65 290,13				
Wilches 154 Wilches 119 Wilches 118 Wilches 112 Wilches 95	153,55 93,55 22,98 55,97 64,09 58,71 30,62	156,08 144,99 241,97 250,65 290,13				
Wilches 154 Wilches 119 Wilches 118 Wilches 112 Wilches 95 Wilches 7	153,55 93,55 22,98 55,97 64,09 58,71 30,62 Jungia paniculata	156,08 144,99 241,97 250,65 290,13 - 92,67				
Wilches 154 Wilches 119 Wilches 118 Wilches 112 Wilches 95 Wilches 7 Código del	153,55 93,55 22,98 55,97 64,09 58,71 30,62 <i>Jungia paniculata</i> IC 50 (ug/ml)	156,08 144,99 241,97 250,65 290,13 - 92,67				

Wilches 193	136,38	459,07					
Wilches 133	36,18	216,48					
Wilches 132	28,04	714,55					
Wilches 131	33,84	-					
Wilches 130	37,16	206,52					
Wilches 129	24,11	278,47					
Wilches 13	27,54	889,63					
Wilches 11	25,36	670,15					
Wilches 10	37,35	407,59					
Jungia fistulosa							
Código del	IC 50 (ug/ml)	IC 50 (ug/ml)					
Extracto	Metanol	DCM					
Wilches 178	103,96	293,63					
Wilches 175	34,55	317,95					
Wilches 173	24,95	280,53					
Wilches 149	15,65	166,66					
Wilches 140	22,46	129,53					
Wilches 139	28,42	542,17					
Wilches 138	29,39	160,95					
Wilches 137	22,38	221,09					
Wilches 135	23,81	164,82					
Wilches 140	22,46	129,53					

Tabla 13: Valores de IC50 de los extractos por el método del DPPH

Los valores encontrados del IC50 son muy variables comprende un rango entre $22,38~\mu g/ml - 153,55~\mu g/ml$ para los extractos metanólicos y un rango entre $47,15~\mu g/ml - 714,55~\mu g/ml$ para los extractos en diclorometano, mostrando su poder antioxidante inferior al ácido ascórbico (estándar) el cual posee un IC50 de $3,07~\mu g/ml$, sin embargo es lógico estos resultados puesto que el ácido ascórbico es un compuesto puro a diferencia de los extractos analizados los cuales tienen una mezcla de compuestos ya que no se procedió a aislar ninguno en particular.

Se puede observar que existe una diferencia amplia entre los valores del IC50 de los extractos en metanol y diclorometano, razón por la cual se realizó un análisis de ANOVA y el mismo nos afirmó que existe diferencia de la actividad antioxidante dependiente del solvente de extracción empleado, al presentar una probabilidad menor a 0,05 (Tabla 14)

Análisis de Varianza: solvente								
Df Sum Sq Mean Sq F value Pr(>F)								
Solvente	1		1271521	1271521	64,63	9.25e-12	***	
Residuals	76	76 1495133		19673				

Tabla 14: Análisis de Varianza del solvente (ANOVA)- método DPPH

A continuación en la Figura 4.5 se muestra una representación gráfica de la diferencia de la actividad antioxidante en los diferentes solventes de extracción

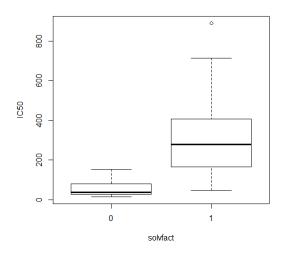


Figura 4. 5: Box plot: Solvente- método DPPH. (0= metanol, 1= diclorometano)

Además, se realizó un análisis de varianza especie-solvente para identificar si hay diferencia en la capacidad antioxidante entre las especies de *Jungia* y si el solvente de extracción ejerce influencia en la misma. La tabla 15 nos muestra los resultados obtenidos.

Análisis de Varianza: especie*solvente							
Df Sum Sq Mean Sq F value Pr(>F)							
Solvfact	1	1271521	1271521	98.448	5.53e-15	***	
Espfact	3	270200	90067	6.973	0.000358	***	
solvfact:espfact	3	320838	106946	8.280	8.67e-05	***	
Residuals	70	904095	12916				

Tabla 15: Análisis de Varianza: Especie * solvente- método DPPH

Como podemos observar el análisis nos muestra que existe diferencia significativa de la capacidad antioxidante entre las especies de *Jungia* analizadas (P<0,05). De igual manera, se aprecia que existe interacción entre el solvente y la especie, lo que indica que la actividad antioxidante no será la misma para una especie y otra utilizando el mismo solvente de extracción, y viceversa.

Al comprobar mediante ANOVA que existían diferencia en las especies evaluadas, se procedió a realizar un test de Tukey o múltiples comparaciones, el cual nos mostrará la especie que posee diferencia significativa. En la tabla 16 se puede observar que la especie de *Jungia paniculata* es la que difiere de las demás especies, presentando una actividad antioxidante inferior en comparación a las demás.

La diferencia existente de la capacidad antioxidante entre las especias de *Jungia* determinada en este estudio puede deberse a las diferentes condiciones del microambiente y de los compuestos fenólicos presentes en las mismas, como menciona Kuskoski, Asuero et al (2005) en su investigación "APLICACIÓN DE DIVERSOS MÉTODOS QUÍMICOS PARA DETERMINAR ACTIVIDAD ANTIOXIDANTE EN PULPA DE FRUTOS" (Kuskoski et al., 2005)

	HSD.test: especie						
	IC50	Std	r	Min	Max		
1	147.5242	119.7231	19	26.09	415.43		
2	140.0180	111.2871	20	22.46	407.70		
3	274.7890	287.8196	21	24.11	889.63		
4	143.4944	143.8835	18	15.65	542.17		
\$9	roups			•			
Tr	t means	М					
3	274.789	90 a					
1	147.524	147.5242 b					
4	143.494	44 b					
2	140.018	30 b					

Tabla 16. Múltiples comparaciones. Especie- método DPPH. (1=*Jungia rugosa*, 2=*Jungia coarctata*, 3=*J.paniculata*, 4= *J.fistulosa*)

En la figura 4.6 se muestra una representación gráfica de la diferente capacidad antioxidante de las especies de *Jungia*

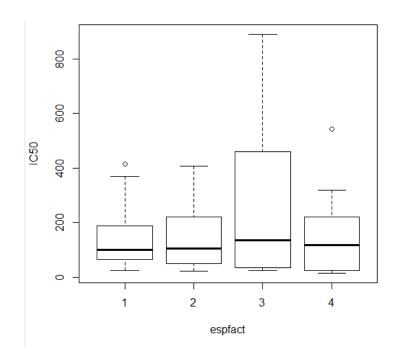


Figura 4. 6: Box plot: Especies- método DPPH. . (1=*Jungia rugosa*, 2=*Jungia coarctata*, 3=*J.paniculata*, 4= *J.fistulosa*)

Según la figura 4.6 se puede apreciar que la *J. paniculta* presenta un IC50 mayor al del resto de las especies estudiadas, siendo la media de 274,7890 μg/ml; lo que nos permite observar que esta especie de *Jungia* posee la menor capacidad antioxidante en comparación con las otras especies analizadas, las cuales poseen un promedio de IC50 muy similares, *J. rugosa* 147,5242 μg/ml, *J. coarctata* 140,0180 μg/ml y *J. fistulosa* 143,4944 μg/ml.

4.3.2. Evaluación de la actividad antioxidante mediante la técnica del poder reductor.

La actividad antioxidante se evaluó utilizando la técnica del poder reductor como fue mencionado en la metodología del apartado 3.2.2. Se trabajó a una sola concentración (100 µg/ml), presentando actividad antioxidante en todos los extractos metanólicos y de diclorometano.

Los valores de las absorbancias y AAEAC, de cada especie y solvente de extracción se detallan en los anexos F y G.

El parámetro de medición utilizado para identificar las posibles diferencias de capacidad antioxidante entre las especies de *Jungia*, fue el AAEAC, que significan los miligramos de ácido ascórbico equivalentes a 100 gramos de droga seca.

J.rugosa					
	Metanol	DCM			
	\overline{X}	\overline{X}			
	AAEAC	AAEAC			
Código	(mg/g)	(mg/g)			
wilches 183	71,0938	110,9375			
wilches 152	157,0313	63,9269			
wilches194	84,3750	146,3542			
wilches 123	102,0833	68,9498			
wilches 97	138,1279				

wilches 98	165,2968					
wilches 144	133,3333	62,1354				
wilches 99	129,2237					
wilches 100	111,4155	72,2917				
wilches 146	147,6563					
wilches 147	114,5833					
J.coarctata						
	Metanol	DCM				
	\bar{X}	\bar{X}				
	AAEAC	AAEAC				
Código	(mg/g)	(mg/g)				
wilches 95	207,29					
wilches180	146,88	80,82				
wilches 118	166,41	173,70				
wilches 168	207,31	101,04				
wilches 181	101,82	80,82				
wlches 96	183,33					
wilches 169	162,76	97,66				
wilches 119	230,37	95,31				
wilches 7	214,58	182,29				
wilches 112	155,71	177,86				
wilches 154	190,10	174,74				
wilches 155	188,54	178,65				
J.pa	aniculata					
	Metanol	DCM				
	\bar{X}	\overline{X}				
	AAEAC	AAEAC				
Código	(mg/g)	(mg/g)				
wilches 10	206,25	178,65				
wilches 130	193,75	103,13				
wilches 133	183,85	107,55				
wilches 196	132,29	93,61				
wilches 193	134,11	83,11				

wilches 132	246,58	19,86
wilches 202	157,81	78,77
wiclhes 129	278,13	100,52
wilches 13	223,44	7,55
wilches 131	223,29	19,01
wilches 11	219,27	180,99
J.f	istulosa	
	Metanol	DCM
	\overline{X}	\overline{X}
	AAEAC	AAEAC
Código	(mg/g)	(mg/g)
Código wilches 173	(mg/g) 204,11	(mg/g) 83,56
wilches 173	204,11	83,56
wilches 173 wilches 135	204,11 254,57	83,56 55,71
wilches 173 wilches 135 wilches 137	204,11 254,57 192,71	83,56 55,71 53,88
wilches 173 wilches 135 wilches 137 wilches 175	204,11 254,57 192,71 131,28	83,56 55,71 53,88 76,26
wilches 173 wilches 135 wilches 137 wilches 175 wilches 140	204,11 254,57 192,71 131,28	83,56 55,71 53,88 76,26 108,59
wilches 173 wilches 135 wilches 137 wilches 175 wilches 140 wilches 178	204,11 254,57 192,71 131,28 285,16	83,56 55,71 53,88 76,26 108,59 58,45

Tabla 17: Valores de AAEAC de los extractos por el método del poder reductor

Los valores encontrados del AAEAC son muy variables, comprende un rango de 71,09-352,86 mg/g para metanol y entre 7,55-182,29 mg/g para diclorometano, indicando mayor poder antioxidante en los extractos metanólicos.

Se realizó un test de ANOVA debido a que los valores del AAEAC de los extractos en metanol y diclorometano, presentan un rango de diferencia marcado. Este test confirmó que sí existe una diferencia significativa en la actividad antioxidante respecto al solvente empleado, al presentar una probabilidad menor a 0,05. (Tabla 18)

Análisis de Varianza: solvente						
	DF	Sum Sq	mean Sq	F value	Pr(>F)	
Solvfact	1	399877	399877	135.3	<2e-16	***
Residuals	232	685605	2955			

Tabla 18: Análisis de varianza. Solvente-método poder reductor

En la Figura 4.7 se muestra una representación gráfica de la diferencia de la actividad antioxidante en los diferentes solventes de extracción:

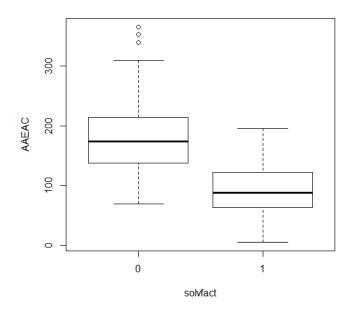


Figura 4. 7: Box plot. Solvente- método poder reductor. (0= metanol, 1= diclorometano)

Al igual que en el técnica del DPPH, se realizó un ANOVA especie-solvente para identificar si hay diferencia en la actividad antioxidante entre las especies de *Jungia* y si el solvente de extracción influye en la misma.

Análisis de Varianza: especie*solvente							
DF Sum Sq mean Sq F value Pr(>F)							
Espfact	3	70503	23501	11,98	2.62e-07	***	
Solvfact	1	4388144	438144	223	< 2e-16	***	
espfact:solvfact	3	133529	44510	23	7.04e-13	***	
Residuals	226	443307	1962				

Tabla 19: Análisis de Varianza: Especie * solvente- método poder reductor

Con este análisis podemos apreciar que si existe una diferencia significativa en la actividad antioxidante entre las especies de *Jungia* estudiadas, al presentar una P<0,05; además se puede observar que hay una influencia en cuanto al solvente y la especie, es decir que la actividad antioxidante va a variar de una especie a otra con un mismo solvente.

Al comprobar mediante ANOVA que existía diferencia en las especies evaluadas, se procedió a realizar un test de Tukey o múltiples comparaciones, el cual nos indicará la especie que posee diferencia significativa. (Tabla 20)

HSD.test:especie								
			AAEAC	std	R	Min	Max	
1			1.441.594	3.463.032	51	59.531.250	1.712.329	
2			1.589.996	4.678.847	66	73.287.671	2.493.151	
3			1.441.594	7.641.611	66	5.208.333	2.867.188	
4			1.456.491	9.307.620	51	37.671.233	3.656.250	
\$groups								
trt	means	М						
2	158.9996	Α						
4	145.6491	Α						
3	144.1594	Α						
1	110.5186	В						

Tabla 20: Múltiples comparaciones. Especie- método poder reductor. (1=Jungia rugosa, 2=Jungia coarctata, 3=J.paniculata, 4= J.fistulosa

En la figura 4.8 se muestra una representación gráfica de la diferente capacidad antioxidante de las especies de *Jungia*

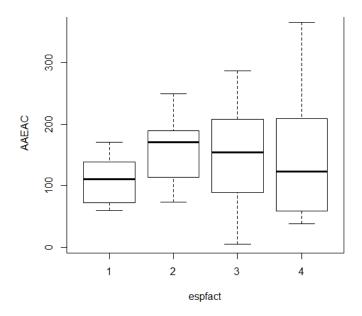


Figura 4. 8: Box plot. Especie- método de poder reductor. (1=Jungia rugosa, 2=Jungia coarctata, 3=J.paniculata, 4= J.fistulosa

A través del test de Tukey se puede apreciar que la especie de *Jungia rugosa* es diferente en su capacidad antioxidante con las demás especie de *Jungia* analizadas, al presentar un valor promedio de AAEAC de 110,5186 mg/g, mientras que *Jungia coarctata, Jungia paniculata y Jungia fistulosa* presentan valores de 158,9996 mg/g, 144,1594 mg/g y 145,6491 mg/g, respectivamente, señalando que la *Jungia rugosa* presenta la menor capacidad antioxidante entre estas especies.

Confrontando los resultados de la capacidad antioxidante de las distintas especies de *Jungia* utilizando las dos técnicas podemos darnos cuenta que no hay una concordancia entre los mismos, por lo que esto podría atribuirse a que cada una de la técnicas evalúan parámetros diferentes como menciona Mercado et al, 2013 "El método del poder reductor férrico es, por tanto, un método que no evalúa la capacidad neutralizadora de radicales libres de la muestra estudiada, sino su capacidad reductora por transferencia de electrones. Por el contrario, los métodos ABTS y DPPH evalúan la capacidad de la muestra para neutralizar radicales libres modelo" (Mercado, Carrillo, Wall-Medrano, López, & Álvarez, 2013), lo que justifica la diferencia existente entre los dos métodos; por otro lado la diferencia entre los tiempos en que se

procesaron las muestras pudo generar deterioro en los extractos procesados y alterar la concentración de los metabolitos evaluados.(Zapata et al., 2006)

CAPÍTULO V

5. CONCLUSIONES

- Se concluye que la hipótesis planteada para la presente investigación fue aceptada debido a que se determinó que existe diferencia de la capacidad antioxidante en las especies de Jungia estudiadas. La diferencia de su actividad se pudo apreciar tanto al aplicar el método del DPPH como del poder reductor. Jungia coarctata y Jungia fistulosa no presentaron diferencia en ambos métodos empleados al aplicar el test de múltiples comparaciones, Tukey, sin embargo; Jungia rugosa y Jungia paniculata presenta diferencias en su capacidad antioxidante.
- Se evaluó la actividad antioxidante de los extractos metanólicos y diclorometanólicos de las cuatro especies de Jungia en estudio por el método del DPPH. Tanto los extractos metanólicos como los de diclorometano presentaron actividad antioxidante, la cual fue evaluada por el IC50. Los valores de IC50 para los extractos en diclorometano fueron significativamente más elevados que para los metanólicos, orientándonos a concluir que la actividad antioxidante de los extractos están en función del solvente empleado en la extracción. Los extractos de diclorometano presentan una actividad antioxidante sumamente baja con respecto a los metanólicos, esto se puede atribuir a que el solvente al ser de tipo apolar no logra la extracción de los compuestos fenólicos (flavonas y flavonoles) que mediante la cromatografía en capa fina demostraron ser de tipo polar. Concluyendo que los extractos en metanol presentan una mejor actividad antioxidante que los de diclorometano.
- Se evaluó la actividad antioxidante también mediante la técnica del poder reductor, empleando extractos metanólicos y de diclorometano de las especies de *Jungia* objeto de estudio. Al igual que la técnica del DPPH, tanto los extractos metanólicos como los de diclorometano presentaron actividad antioxidante, la cual fue evaluada por el AAEAC. Los valores de AAEAC se encuentran entre 71,09-352,86 mg/g para extractos metanólicos

UNVESTIDA DE CLERCA

UNIVERSIDAD DE CUENCA

y entre 7,55-182,29 mg/g para para extractos en diclorometano, señalando mayor actividad antioxidante en los extractos metanólicos.

Mediante el análisis por cromatografía de capa fina (TLC) en todos los extractos de J. rugosa, J. coarctata, J. paniculata y J. fistulosa se evidenció la presencia de flavonoides del tipo de la quercetina con RF: 0,70-0,72, los flavonoides presentes en estos extractos son de tipo polar ya que no hubo elución en la fase móvil de tipo apolar presentando RF correspondientes a la línea de siembra. Por otra parte se evidenció la presencia de compuestos terpenoides al presentar coloraciones verdosas al espectro visible. Las especies de Jungia también contienen saponinas y cumarinas simples por las coloraciones presentadas a 366nm. Podemos concluir que las especies de Jungia presentan una actividad antioxidante, por el contenido de compuestos fenólicos, antioxidantes naturales de alto poder, los cuales fueron evidenciados en el TLC.

Se concluye que las especies de *Jungia* estudiadas presentan una composición bastante similar, pudiéndose considerar a los terpenoides presentes como metabolito secundario marcador del género *Jungia*, sin embargo existen variables que no han sido consideradas para el análisis como lugar de recolección, estación, tipo de suelo, entre otras que influyen en la presencia y concentración de ciertos metabolitos secundarios, por lo que se sugiere para llegar a resultados más concluyentes se realicen estudios en los que se puedan estandarizar condiciones como las ambientales al momento de realizar la colección de las plantas.

Además la investigación debería ampliarse con nuevos estudios que permitan obtener mayores datos adicionales, como por ejemplo análisis usando HPLC o fingerprinting que nos permitan establecer mediante la sensibilidad de los métodos mayor diferencia de composición.

CAPÍTULO VI

UNIVERSIDAD DE CUENCA

6. RECOMENDACIONES

- Debido a que esta investigación se obtuvieron resultados diferentes en la capacidad antioxidante para cada técnica, se sugiere que los ensayos deban realizarse en periodos de tiempo similares, para poder comprobar de mejor manera las técnicas aplicadas.
- En el presente estudio se realizó la cromatografía en capa fina de 3 extractos de cada especie, los cuales fueron escogidos sin considerar variables importantes como: época del año, tipo de suelo, hora del día, etc., razón por la cual se recomienda hacer un nuevo estudio igualando condiciones, para obtener datos más concretos. Además se sugiere realizar HPLC o fingerprinting para poder obtener datos más concretos de su composición química ya que se trata de métodos más sensibles.

BIBLIOGRAFÍA

- Apablaza, G., Díaz, M. J., Martín, R. S., & Moya, E. (2002). Control de Oidío de las Cucurbitáceas con Saponinas Presentes en Extractos de Quillay (Quillaja Saponaria). Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura, 29(2), 83-90.
- Arcila-Lozano, C. C., Loarca-Piña, G., Lecona-Uribe, S., & González de Mejía,
 E. (2004). El orégano: propiedades, composición y actividad biológica de sus componentes. *Archivos Latinoamericanos de Nutrición*, *54*(1), 100-111.
- Ávalos García, A., & Perez, E. (2009). METABOLISMO SECUNDARIO EN PLANTAS 814. Recuperado 9 de septiembre de 2015, a partir de http://revistareduca.es/index.php/biologia/article/viewFile/798/814
- Avello, M., & Suwalsky, M. (2006). Radicales libres, antioxidantes naturales y mecanismos de protección. *Atenea (Concepción)*, (494), 161-172. http://doi.org/10.4067/S0718-04622006000200010
- Cardona, L. E., & Mejía, L. F. (2009). EVALUACIÓN DEL EFECTO

 ANTIOXIDANTE DE ACEITES ESENCIALES Y EXTRACTOS DE

 Eugenia caryophyllata, Origanum vulgare Y Thymus vulgaris. *Biosalud*,

 8, 58 70.
- Carranco Jáuregui, M. E., Calvo Carrillo, M. de la C., & Pérez-Gil Romo, F. (2011). Carotenoides y su función antioxidante: Revisión. *Archivos Latinoamericanos de Nutrición*, *61*(3), 233-241.

- Cazar, M. E. (2013). Bioactividad de Plantas y Microorganismos de

 Ecosistemas de los Andes Ecuatorianos.docx 09735.pdf. Recuperado

 18 de septiembre de 2015, a partir de

 http://dspace.uazuay.edu.ec/bitstream/datos/2547/1/09735.pdf
- COEC. (2012). ¿Qué es el Estrés Oxidativo? Recuperado 9 de septiembre de 2015, a partir de http://ehscc.umich.edu/wp-content/uploads/OxidativeStressSPN.pdf
- Couso, S. (2010). Análisis Químico USC. Recuperado 17 de septiembre de 2015, a partir de http://analisisquimicousc.blogspot.com/2010/05/procedimientos-deseparacion-de-etanol.html
- Díaz, C., & Heinzen, H. (2006). Variaciones en el perfil de flavonoides y en la cantidad de quercetina libre en diferentes extractos de Achyrocline satureoides. *Acta Farmacéutica Bonaerense*, *vol. 25, no. 4*. Recuperado a partir de http://hdl.handle.net/10915/6882
- Diaz, L. (2002). DAÑO OXIDATIVO, RADICALES LIBRES Y ANTIOXIDANTES.

 La Revue De Médecine Interne / Fondée ... Par La Société Nationale

 Française De Médecine Interne, 31(2), 126-134.
- Elejalde, J. I. (2001). Estrés oxidativo, enfermedades y tratamientos antioxidantes. *Anales de Medicina Interna*, *18*(6), 50-59.
- Enciso, E., & Arroyo, J. (2011). Efecto antiinflamatorio y antioxidante de los flavonoides de las hojas de Jungia rugosa Less (matico de puna) en un modelo experimental en ratas. *Anales de la Facultad de Medicina*, 72(4), 231-237.

POSE (VITA, COURTE) PROSERVES UNIVERSIDAD DE EUENCA

- Fernández-Pachón, M. S., Villaño, D., Troncoso, A. M., & García-Parrilla, M. C. (2006). Revisión de los métodos de evaluación de la actividad antioxidante in vitro del vino y valoración de sus efectos in vivo. *Archivos Latinoamericanos de Nutrición*, *56*(2), 110-122.
- Fundación Botánica de los Andes. (2015a). Jungia coarctata. Recuperado 17

 de septiembre de 2015, a partir de

 http://plantasnativas.visitavirtualjbq.com/index.php?option=com_content

 &view=article&id=43:jungia-coarctata&catid=17&Itemid=111
- Fundación Botánica de los Andes. (2015b). Jungia coarctata. Recuperado 9 de septiembre de 2015, a partir de http://plantasnativas.visitavirtualjbq.com/index.php?option=com_content &view=article&id=43:jungia-coarctata&catid=17&Itemid=111
- González-Gallego, J., Sánchez-Campos, S., & Tuñón, M. J. (2007).

 Propiedades antiinflamatorias de los flavonoides de la dieta. *Nutrición Hospitalaria*, 22(3), 287-293.
- Hellen, A. (2013). Técnicas cromatográficas. Recuperado 17 de septiembre de 2015, a partir de http://www.academia.edu/5137905/P113_Treament_with_lenalidomide_f or_patients_with_myelodysplastic_syndromes_MDS_report_of_the_Hell enic_experience_on_73_patients._A_retrospective_analysis_of_the_Hell enic_MDS_Study_Group
- Instituto de Ciencias Naturales. (2007). Jungia paniculata subsp. stipulifera (Cuatrec.) Harling. Recuperado 9 de septiembre de 2015, a partir de

- http://www.biovirtual.unal.edu.co/ICN/?controlador=ShowObject&accion=show&id=265336.
- Instituto Nacional de Estadística y Censos. (2013). DETERMINACIÓN DE LOS

 COEFICIENTES DE VARIACIÓN ESTIMADO ENCUESTA DE

 ACTIVIDADES DE CIENCIA Y TECNOLOGÍA E INNOVACIÓN.

 Recuperado a partir de

 https://www.google.com.ec/url?sa=t&rct=j&q&esrc=s&source=web&cd=2

 &cad=rja&uact=8&ved=0CCEQFjABahUKEwjR6uWixv_HAhWHbR4KHY

 cABqc&url=http%3A%2F%2Fanda.inec.gob.ec%2Fanda%2Findex.php%

 2Fcatalog%2F348%2Fdownload%2F5792&usg=AFQjCNENkz5q2ytOY
 42q8h2OQDvLhYF5Q
- Kuklinski, C. (2000). Farmacognosia: estudio de las drogas y sustancias medicamentosas de origen natural. Barcelona: Omega.
- Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology (Campinas), 25(4), 726-732. http://doi.org/10.1590/S0101-20612005000400016
- Linné, C. von, & Verdéra, A. P. y. (1787). Parte práctica de botánica del caballero Cárlos Linneo: que comprehende las clases, órdenes, géneros, especies y variedades de las plantas, con sus caracteres genéricos y especificos, sinónimos mas selectos, nombres triviales, lugares donde nacen y propiedades. en la Imprenta Real.

TIME AND COURT PROPERTY. UNIVERSIDAD DE CIENCA

- Martínez, A. (2005, septiembre). flavonoides2001.pdf. Recuperado 9 de septiembre de 2015, a partir de http://farmacia.udea.edu.co/~ff/flavonoides2001.pdf
- MARTÍNEZ, J. (2007). EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE DE EXTRACTOS ORGÁNICOS DE SEMILLAS DE HELIOCARPUS

 TEREBINTHINACEUS. Recuperado 9 de septiembre de 2015, a partir de http://jupiter.utm.mx/~tesis_dig/10150.pdf
- Mena, P., & Medina, G. (2010). La Biodiversidad de los Páramos en el Ecuador. Recuperado 9 de septiembre de 2015, a partir de https://utplbiodiversity.wikispaces.com/file/view/biodiversidad.pdf
- Mercado, G., Carrillo, L., Wall-Medrano, A., Lopez, J., & Alvarez, E. (2013).
 Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Recuperado 22 de septiembre de 2015, a partir de http://scielo.isciii.es/pdf/nh/v28n1/05revision05.pdf
- Milano, J., D´Armas, H., & Salazar, G. (2005). Estudio de la composición de lípidos de Crassostrea rhizophorae (Ostra de Mangle) empleando cromatografía de capa fina (TLC-FID) y cromatografía gas-líquido.
 Ciencia, 13(2). Recuperado a partir de http://www.produccioncientificaluz.org/index.php/ciencia/article/view/924
- Pérez, R. M., Vargas, R., Martínez, F. J., García, E. V., & Hernández, B. (2003).

 Actividad antioxidante de los alcaloides de Bocconia arborea. Estudio sobre seis métodos de análisis. Recuperado a partir de http://digibug.ugr.es/handle/10481/28225

- Perez Tortosa. (2008). Proyecto de investigación de los antioxidantes del tomillo. Recuperado 10 de septiembre de 2015, a partir de http://repositorio.bib.upct.es:8080/dspace/bitstream/10317/159/2/proyect o%20del%20tomillo-def.pdf
- Ramírez, V. (2005). ESTUDIO TEÓRICO DE MECANISMOS DE OXIDACIÓN

 DE INTERÉS EN QUÍMICA ATMOSFÉRICA: REACCIONES DE

 TERPENOS, ISOPRENO Y PRODUCTOS DERIVADOS. Recuperado

 17 de septiembre de 2015, a partir de

 http://www.tesisenxarxa.net/bitstream/handle/10803/10268/ramirez.pdf?s

 equence=1
- R. Casado, A. Landa, & M.I. Calvo. (2007). Actividad antioxidante de Jungia paniculata (Asterácea) y sus flavonoides. Recuperado 17 de septiembre de 2015, a partir de http://www.sefit.es/wp-content/uploads/2014/04/4-congreso-libro-resumenes-pdf.pdf
- Ringuelet, J., & Viata, S. (2013). Productos Naturales Vegetales. Recuperado

 17 de septiembre de 2015, a partir de

 http://sedici.unlp.edu.ar/bitstream/handle/10915/27885/RINGUELET.pdf.t

 xt;jsessionid=4702CD39FB5CA3D0F99B58FE19AAD027?sequence=2
- Ruiz, G., Venegas, E., Ruidías, D., Horna, L., & López, C. (2013). CAPACIDAD
 ANTIOXIDANTE in vitro DE LOS FLAVONOIDES TOTALES
 OBTENIDOS DE LAS HOJAS DE Sambucus peruviana H.B.K.
 (SAUCO) PROVENIENTE DE LA CIUDAD DE HUAMACHUCO. Revista pharmaciencia, 1(2), 57-64.

- Santa Cruz Cervera, L. (2011). Flora de espermatofitas del distrito de Pulán,

 Santa Cruz- Cajamarca. Recuperado 9 de septiembre de 2015, a partir

 de http://cybertesis.unmsm.edu.pe/xmlui/handle/cybertesis/1583
- Santaluce, A. (2010). METABOLITOS SECUNDARIOS EN ANGIOSPERMAS.

 Recuperado 17 de septiembre de 2015, a partir de

 http://www.academia.edu/9358644/METABOLITOS_SECUNDARIOS_E

 N ANGIOSPERMAS
- Sepulveda, G. (2004). Redalyc.La Participación de los Metabolitos Secundarios en la Defensa de las Plantas 61221317.pdf. Recuperado 9 de septiembre de 2015, a partir de http://www.redalyc.org/pdf/612/61221317.pdf
- SIB. (2013). Clasificación de Especie: Jungia coarctata. Recuperado 17 de septiembre de 2015, a partir de http://data.sibcolombia.net/occurrences/411521
- UAM. (2006). Cromatografia en capa fina. Recuperado 9 de septiembre de

 2015, a partir de

 https://www.uam.es/docencia/jppid/documentos/practicas/actuales/guion
 -p6.pdf
- UPO. (s. f.). Cromatografía líquida de adsorción en columna (CC) y capa fina (TLC). Recuperado 9 de septiembre de 2015, a partir de http://www.upo.es/depa/webdex/quimfis/docencia/quimbiotec/FQpractica 9.pdf
- URIBE, C. (2010). EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE DE LAS HOJAS DE Pentacalia corymbosa y Pentacalia nitida (ASTERALES:

- ASTERÁCEAE). Recuperado 16 de septiembre de 2015, a partir de http://repository.javeriana.edu.co/bitstream/10554/8670/1/tesis621.pdf
- Wagner, H., & Bladt, S. (2009). *Plant drug analysis: a thin layer* chromatography atlas (2nd ed). Dordrecht; New York: Springer.
- Zapata, P., Valverde, J. ., Guillén, F., Bailén, G., Castillo, S., Martinez, D., ...

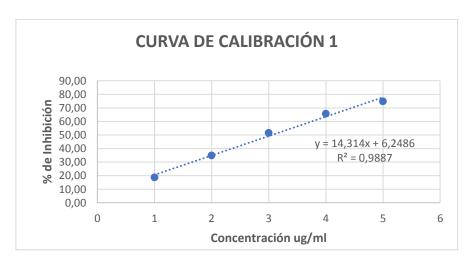
 Serrano, M. (2006). Actividad antioxidante en diferentes frutos habituales
 en la dieta mediterránea. Recuperado 22 de septiembre de 2015, a
 partir de
 https://www.frutamediterranea.es/es/beneficios/antioxidantes.pdf

ANEXOS

		Marcha Fitoqu	uímica por TLC			
Fase móvil	Metabolito a	Patrones (0,25mg/ml)	Extractos (5mg/ml)	Reveladores	Placas	Dimensione
	investigar					S
Tolueno- éter (1:1)	Cumarinas	Escopoletina,	J. rugosa	Productos naturales	2 soporte de	15 x 10cm
		Umbeliferona	Wilches 152		plástico	
			Wilches 147			
			Wilches 194			
			J. coarctata			
			Wilches 119			
			Wilches181			
			Wilches 154			
			J. paniculata			
			wilches 130			
			Wilches 202			
			Wilches 193			
			J. fistulosa			
			Wilches 135			
			Wilches 178			
			Wilches 175			

Acetato de etilo-ácido	Cumarinas	Escopoletina,	Productos naturales	2 soporte de	19 x 10cm
		Umbeliferona	r roductos riaturaies	·	19 X TOCITI
fórmico- ácido acético glacial-	Flavonoides			plástico	
agua (100:11:11:26)		Quercetin			
		Isorhamnetin			
		Apigenin			
		Quercetin 3 glucorónido			
Cloroformo-ácido acético	Saponinas	Escina	Vainillina-ácido fosfórico	4 soporte de	14 x 10cm
glacial-metanol-agua			Vainillina- ácido sulfúrico	vidrio	
(65:25:9:1)					
Tolueno- dioxano-ácido	Flavonoides	Quercetin	Productos naturales	2 soportes de	17 x 10 cm
acético glacial (90:25:4)		Isorhamnetin		plástico	
		Apigenin			
		Quercetin 3 glucorónido			
Tolueno- acetato de etilo	Terpenos	Eugenol, Esclareol,	Vainillina- ácido sulfúrico	2 placas de	16 x 10 cm
(85:15)		geraniol		vidrio	
Cloroformo-metanol-agua	Triterpenos	Eugenol, Esclareol,	Vainillina- ácido sulfúrico	2 placas de	16 x 10 cm
(65:25:4)	glucosidos	geraniol		vidrio	

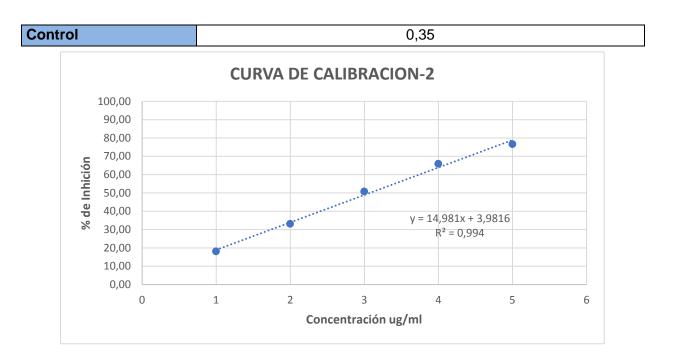
Anexo A: Marcha Fitoquímica para Cromatografía de Capa Fina


CURVAS DE CALIBRACIÓN PARA EL MÉTODO DEL DPPH

1. Curvas de calibración del analista 1

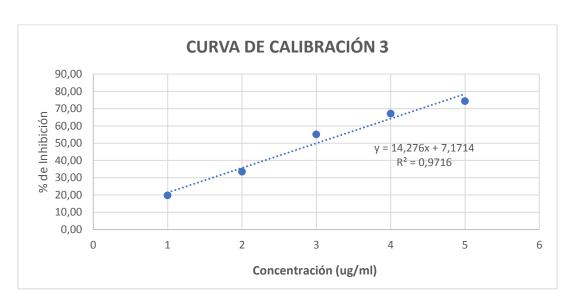
Día 1

Curva 1

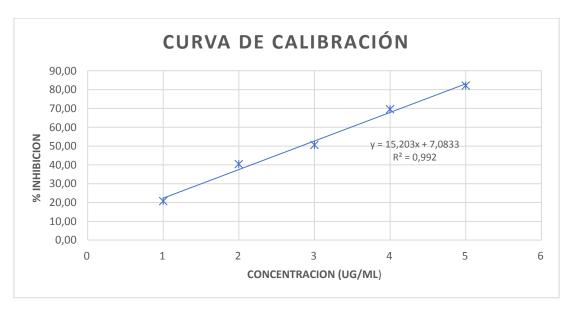

Patrones ug/ml	1	2	3	4	5	6	7	
Absorbancia 1	0,284	0,225	0,163	0,12	0,09	0,068	0,047	
Absorbancia 2	0,288	0,223	0,178	0,124	0,088	0,085	0,055	
Absorbancia 3	0,281	0,235	0,167	0,115	0,086	0,077	0,048	
Promedio Abs	0,284	0,228	0,169	0,120	0,088	0,077	0,050	
Desviación estándar	0,003	0,005	0,006	0,004	0,002	0,007	0,004	
coeficiente de								
variación	1,01	2,31	3,75	3,08	1,86	9,06	7,12	
% INHIBICION	18,72	34,95	51,62	65,81	74,86	78,10	85,71	
IC 50 (ug/ml)		3,01						
Control				0,35				

Curva 2

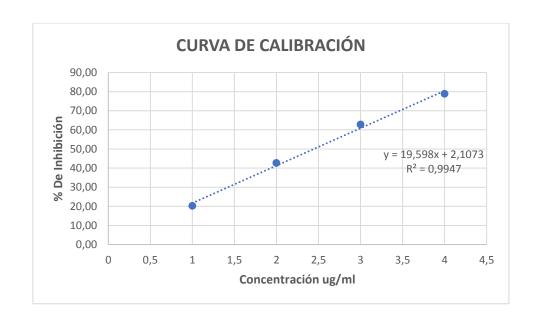
Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,278	0,231	0,168	0,127	0,091	0,069	0,041
Absorbancia 2	0,276	0,236	0,179	0,12	0,08	0,07	0,045
Absorbancia 3	0,305	0,235	0,17	0,111	0,074	0,071	0,05
Promedio Abs	0,286	0,234	0,172	0,119	0,082	0,070	0,045
Desviación estándar	0,013	0,002	0,005	0,007	0,007	0,001	0,004
Coeficiente de							
variación	4,62	0,92	2,78	5,49	8,62	1,17	8,12
% INHIBICION	18,14	33,14	50,76	65,90	76,67	80,00	87,05
IC 50 (ug/ml)				3,07			



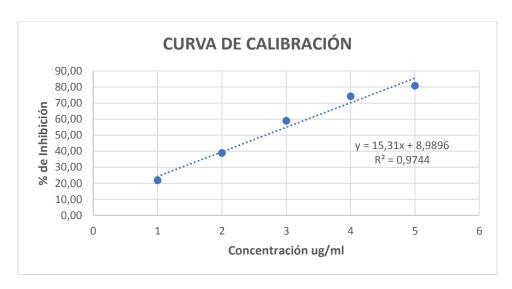
Curva 3


Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,281	0,237	0,152	0,112	0,091	0,063	0,043
Absorbancia 2	0,286	0,223	0,165	0,128	0,085	0,069	0,034
Absorbancia 3	0,275	0,238	0,154	0,105	0,093	0,062	0,038
Promedio Abs	0,281	0,233	0,157	0,115	0,090	0,065	0,038
desviacion estandar	0,004	0,007	0,006	0,010	0,003	0,003	0,004
coeficiente de							
variacion	1,60	2,94	3,64	8,37	3,79	4,78	9,60
% INHIBICION	19,81	33,52	55,14	67,14	74,38	81,52	89,05
IC 50 (ug/ml)		3,00					
Control				0,35			

Día 2


Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,24	0,195	0,163	0,09	0,057	0,047	0,051
Absorbancia 2	0,241	0,182	0,155	0,1	0,06	0,045	0,052
Absorbancia 3	0,261	0,181	0,144	0,095	0,05	0,051	0,05
Promedio Abs	0,247	0,186	0,154	0,095	0,056	0,048	0,051
Desviación estándar	0,010	0,006	0,008	0,004	0,004	0,002	0,001
Coeficiente de							
variación	3,91	3,43	5,06	4,30	7,53	5,23	1,60
% INHIBICIÓN	20,73	40,38	50,64	69,55	82,16	84,72	83,65
IC 50 (ug/ml)				2,83			
Control				0,31			

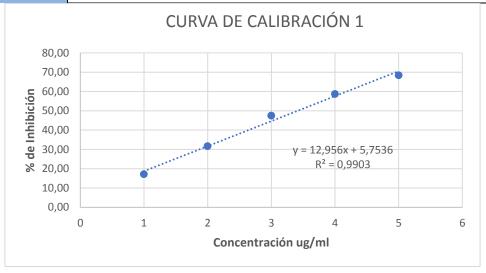
Día 3



Patrones ug/ml	1	2	3	4	5	6	7	
Absorbancia 1	0,268	0,201	0,148	0,071	0,07	0,068	0,054	
Absorbancia 2	0,284	0,191	0,122	0,072	0,06	0,056	0,05	
Absorbancia 3	0,281	0,207	0,119	0,078	0,06	0,073	0,062	
Promedio Abs	0,278	0,200	0,130	0,074	0,063	0,066	0,055	
Desviación estándar	0,007	0,007	0,013	0,003	0,005	0,007	0,005	
Coeficiente de								
variación	2,50	3,31	10,04	4,20	7,44	10,86	9,02	
% INHIBICION	20,21	42,62	62,74	78,83	81,80	81,13	84,10	
IC 50 (ug/ml)		2,44						
Control				0,348				

Día 4

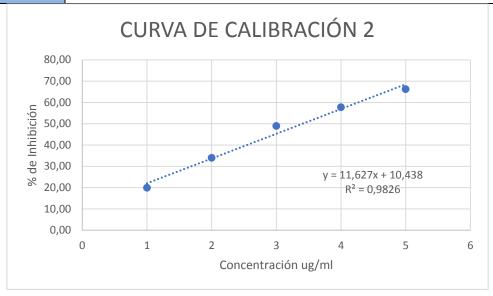
Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,262	0,21	0,138	0,085	0,075	0,044	0,061
Absorbancia 2	0,262	0,2	0,136	0,091	0,064	0,045	0,045
Absorbancia 3	0,26	0,202	0,137	0,083	0,054	0,037	0,048
Promedio Abs	0,261	0,204	0,137	0,086	0,064	0,042	0,051
Desviación estándar	0,001	0,004	0,001	0,003	0,009	0,004	0,007
Coeficiente de							
variación	0,36	2,12	0,60	3,94	13,33	8,47	13,53
% INHIBICION	21,80	38,92	58,98	74,15	80,74	87,43	84,63
IC 50 (ug/ml)	2,68						
Control				0,334			



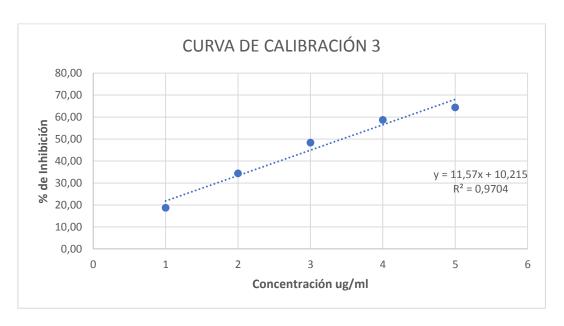
1. Curvas de calibración del analista 2.

Día 1

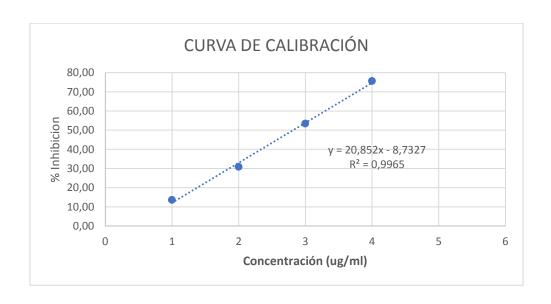
Curva 1


Patrones ug/ml	1	2	3	4	5	6	7	
Absorbancia 1	0,266	0,237	0,18	0,144	0,11	0,052	0,051	
Absorbancia 2	0,283	0,238	0,178	0,127	0,109	0,068	0,051	
Absorbancia 3	0,288	0,214	0,172	0,146	0,1	0,058	0,056	
Promedio Abs	0,279	0,230	0,177	0,139	0,106	0,059	0,053	
Desviación estándar	0,009	0,011	0,003	0,009	0,004	0,007	0,002	
% Coeficiente de								
variación	3,38	4,83	1,92	6,13	4,23	11,12	4,48	
% INHIBICION	17,06	31,65	47,42	58,63	68,35	82,34	84,33	
IC 50 (ug/ml)		3,42						
Control				0,336				

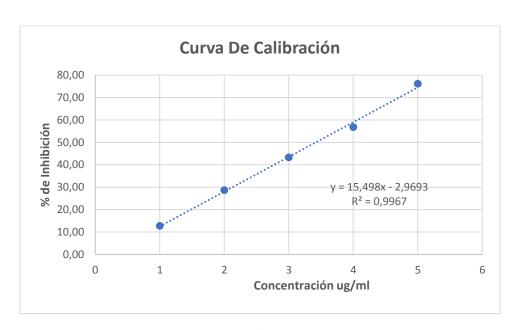
Curva 2


Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,232	0,229	0,167	0,137	0,123	0,062	0,054
Absorbancia 2	0,291	0,216	0,162	0,147	0,112	0,05	0,046
Absorbancia 3	0,28	0,217	0,183	0,14	0,104	0,062	0,057
Promedio Abs	0,268	0,221	0,171	0,141	0,113	0,058	0,052
Desviación estándar	0,026	0,006	0,009	0,004	0,008	0,006	0,005
% Coeficiente de							
variación	9,57	2,68	5,25	2,96	6,89	9,75	8,87
% INHIBICION	19,91	33,93	48,90	57,68	66,17	82,63	84,33
IC 50 (ug/ml)		3,40					
Control				0,334			

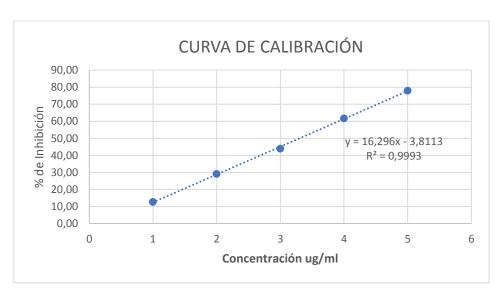
Curva 3


Patrones ug/ml	1	2	3	4	5	6	7	
Absorbancia 1	0,248	0,195	0,169	0,12	0,105	0,06	0,015	
Absorbancia 2	0,256	0,215	0,159	0,128	0,118	0,08	0,011	
Absorbancia 3	0,252	0,2	0,152	0,136	0,108	0,078	0,013	
PROMEDIO	0,252	0,203	0,160	0,128	0,110	0,073	0,013	
Desviación estándar	0,003	0,008	0,007	0,007	0,006	0,009	0,002	
% Coeficiente de								
variación	1,30	4,18	4,36	5,10	5,04	12,38	12,56	
% INHIBICION	18,71	34,41	48,39	58,71	64,41	76,56	95,81	
IC 50 (ug/ml)		3,44						
Control				0,31				

Día 2


Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,269	0,219	0,147	0,065	0,047	0,05	0,033
Absorbancia 2	0,272	0,216	0,143	0,088	0,04	0,048	0,033
Absorbancia 3	0,27	0,214	0,147	0,076	0,039	0,041	0,05
PROMEDIO	0,270	0,216	0,146	0,076	0,042	0,046	0,039
Desviación estándar	0,001	0,002	0,002	0,009	0,004	0,004	0,008
% Coeficiente de							
variación	0,46	0,95	1,29	12,30	8,47	8,33	20,73
% INHIBICION	13,63	30,88	53,46	75,61	86,58	85,20	87,65
IC 50 (ug/ml)				2,82			
Control				0,31			

Día 3

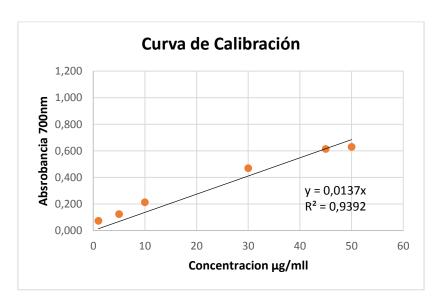

Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,297	0,266	0,203	0,153	0,083	0,086	0,09
Absorbancia 2	0,31	0,231	0,191	0,15	0,08	0,062	0,079
Absorbancia 3	0,304	0,248	0,198	0,148	0,086	0,086	0,071
Promedio Abs	0,304	0,248	0,197	0,150	0,083	0,078	0,080
Desviación estándar	0,005	0,014	0,005	0,002	0,002	0,011	0,008
% Coeficiente de							
variación	1,75	5,75	2,49	1,37	2,95	14,50	9,74
% INHIBICION	12,74	28,64	43,30	56,80	76,15	77,59	77,01
IC 50 (ug/ml)	3,42						
Control				0,348			

Día 4

Patrones ug/ml	1	2	3	4	5	6	7
Absorbancia 1	0,295	0,235	0,194	0,13	0,079	0,097	0,103
Absorbancia 2	0,315	0,263	0,196	0,136	0,075	0,11	0,12
Absorbancia 3	0,306	0,246	0,199	0,136	0,078	0,069	0,105
Promedio Abs	0,305	0,248	0,196	0,134	0,077	0,092	0,109
Desviación estándar	0,008	0,012	0,002	0,003	0,002	0,017	0,008
% Coeficiente de							
variación	2,68	4,64	1,05	2,11	2,20	18,60	6,94
% INHIBICION	12,71	29,14	43,90	61,71	77,90	73,71	68,76
IC 50 (ug/ml)				3,30			
Control				0,35			

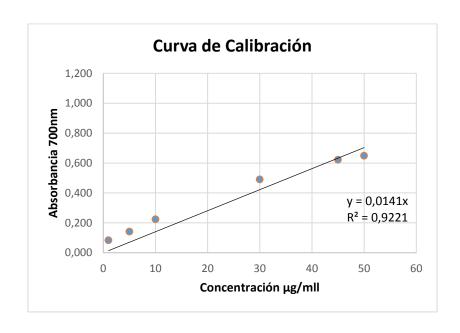
Anexo B: Curvas de Calibración del Ácido Ascórbico por el método del DPPH.

CURVAS DE CALIBRACIÓN PARA EL MÉTODO DEL PODER REDUCTOR

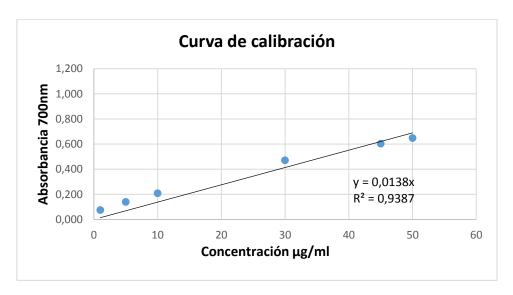

1. Curvas de calibración del analista 1

Día 1

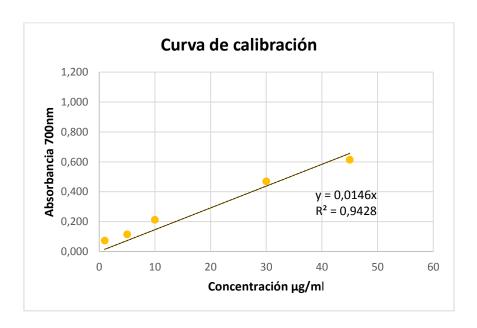
Curva 1


Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración (µg/ml)	1	5	10	30	45	50	100
Abs 1	0,076	0,119	0,207	0,49	0,62	0,622	0,925
Abs 2	0,063	0,121	0,215	0,415	0,6	0,63	0,9
Abs 3	0,08	0,129	0,217	0,503	0,622	0,636	0,917
Promedio	0,073	0,123	0,213	0,469	0,614	0,629	0,914
Desviación estándar	0,0073	0,0043	0,0043	0,0388	0,0099	0,0057	0,0104
%CV	9,94	3,51	2,03	8,26	1,62	0,91	1,14

Curva 2

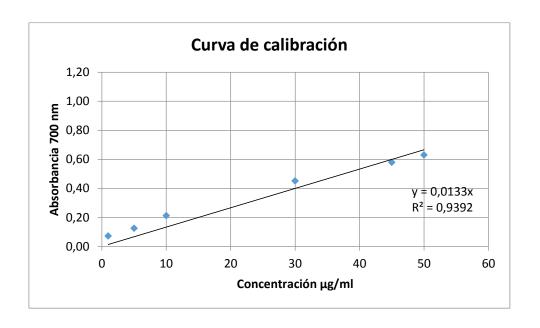

Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(µg/ml)	1	5	10	30	45	50	100
Abs 1	0,085	0,135	0,217	0,473	0,627	0,618	1,033
Abs 2	0,076	0,139	0,229	0,518	0,611	0,668	0,858
Abs 3	0,088	0,147	0,224	0,479	0,625	0,659	1,077
Promedio	0,083	0,140	0,223	0,490	0,621	0,648	0,989
Desviación estándar	0,0051	0,0050	0,0049	0,0199	0,0071	0,0218	0,0946
%CV	6,14	3,56	2,20	4,07	1,15	3,36	9,56

Día 2


Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(μg/ml)	1	5	10	30	45	50	100
Abs 1	0,075	0,146	0,215	0,468	0,607	0,649	0,899
Abs 2	0,074	0,133	0,2	0,474	0,6	0,646	0,878
Abs 3	0,073	0,14	0,211	0,469	0,601	0,65	0,887
Promedio Abs	0,074	0,140	0,209	0,470	0,603	0,648	0,888
Desviación estándar	0,0008	0,0053	0,0063	0,0026	0,0031	0,0017	0,0086
%CV	1,10	3,80	3,04	0,56	0,51	0,26	0,97

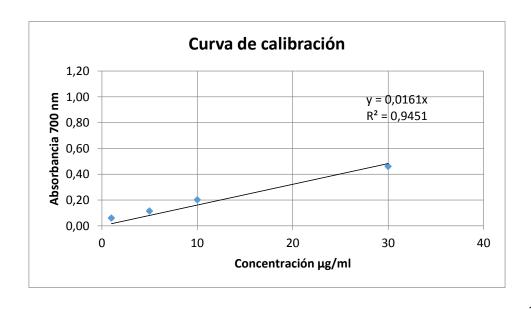
Día 3

Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(μg/ml)	1	5	10	30	45	50	100
Abs 1	0,076	0,119	0,207	0,49	0,62	0,622	0,887
Abs 2	0,065	0,098	0,215	0,415	0,6	0,63	0,84
Abs 3	0,08	0,129	0,217	0,503	0,622	0,636	1,05
Promedio	0,074	0,115	0,213	0,469	0,614	0,629	0,926
Desviación estándar	0,0063	0,0129	0,0043	0,0388	0,0099	0,0057	0,0900
%CV	8,61	11,20	2,03	8,26	1,62	0,91	9,72

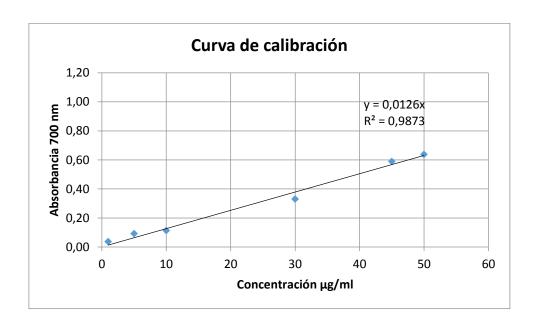

2. Curvas de calibración del analista 2

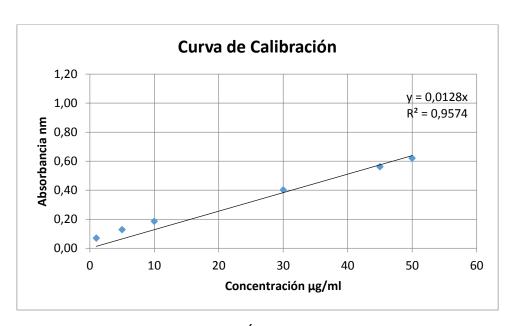
Día 1

Curva 1


Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(ug/ml)	1	5	10	30	45	50	100
Abs 1	0,079	0,115	0,209	0,465	0,564	0,687	0,955
Abs 2	0,063	0,139	0,207	0,471	0,595	0,622	0,911
Abs 3	0,075	0,121	0,221	0,418	0,579	0,582	0,882
Promedio Abs	0,07	0,13	0,21	0,45	0,58	0,63	0,92
Desviación estándar	0,0068	0,0102	0,0062	0,0237	0,0127	0,0433	0,0300
%CV	9,40	8,16	2,91	5,25	2,18	6,86	3,28

Curva 2


Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(µg/ml)	1	5	10	30	45	50	100
Abs 1	0,059	0,102	0,202	0,485	0,545	0,633	0,883
Abs 2	0,064	0,131	0,203	0,481	0,555	0,639	0,864
Abs 3	0,056	0,113	0,199	0,418	0,542	0,618	0,909
Promedio Abs	0,06	0,12	0,20	0,46	0,55	0,63	0,89
Desviación estándar	0,0033	0,0120	0,0017	0,0307	0,0056	0,0088	0,0184
%CV	5,53	10,36	0,84	6,65	1,02	1,40	2,08


Día 2

Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración							
(µg/ml)	1	5	10	30	45	50	100
Abs1	0,037	0,098	0,106	0,369	0,616	0,664	1,204
Abs2	0,043	0,087	0,111	0,314	0,558	0,647	0,884
Abs3	0,03	0,091	0,121	0,309	0,595	0,603	1,031
Promedio Abs	0,04	0,09	0,11	0,33	0,59	0,64	1,04
Desviación estándar	0,0053	0,0045	0,0062	0,0272	0,0240	0,0257	0,1308
%CV	14,49	4,94	5,53	8,22	4,07	4,03	12,58

Día 3

Patrones	P1	P2	P3	P4	P5	P6	P7
Concentración (µg/ml							
1)	1	5	10	30	45	50	100
Absorbancia	0,07	0,13	0,205	0,402	0,581	0,583	0,911
	0,07	0,132	0,198	0,394	0,545	0,648	0,934
	0,07	0,123	0,153	0,409	0,559	0,63	0,917
Promedio Abs	0,07	0,13	0,19	0,40	0,56	0,62	0,92
Desviación estándar	0,0000	0,0039	0,0230	0,0061	0,0148	0,0274	0,0097
%CV	0,00	3,01	12,43	1,53	2,64	4,42	1,06

Anexo C: Curvas de Calibración del Ácido Ascórbico por el método del poder reductor

CONTRACTOR PROMETERS

UNIVERSIDAD DE CUENCA

Resultados de la actividad antioxidante de extractos metanólicos por el método del DPPH

1. Jungia rugosa

	Wilches					
Código	194					
Parte de la planta: Hojas						
CONCENTRACION (µg/ml)	5	10	25	50		
Abs. De la Clorofila	0,005	0,003	0,006	0,011		
Absorbancia 1	0,342	0,329	0,301	0,252		
Absorbancia 2	0,315	0,308	0,298	0,263		
Absorbancia 3	0,319	0,294	0,234	0,241		
Media	0,325	0,310	0,278	0,252		
Desviación estándar	0,012	0,014	0,031	0,009		
% de coeficiente de Variación	3,66	4,63	11,13	3,56		
%inhibición	3,75	8,19	17,85	25,44		
IC 50 (µg/ml)	99,41					
Control		0,3	38			

	Wilches						
Código	183						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0,004	0,005	0,013	0,016			
Absorbancia 1	0,35	0,287	0,303	0,267			
Absorbancia 2	0,318	0,293	0,283	0,262			
Absorbancia 3	0,324	0,298	0,259	0,265			
Media	0,331	0,293	0,282	0,265			
Desviación estándar	0,014	0,004	0,018	0,002			
% de coeficiente de Variación	4,20	1,54	6,39	0,78			
%inhibición	2,17	13,41	16,67	21,70			
IC 50 (ug/ml)	125,88						
Control		0,3	38				

Código	Wilches 152						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0,001	0,002	0,005	0,009			
Absorbancia 1	0,294	0,241	0,127	0,073			
Absorbancia 2	0,293	0,243	0,134	0,07			
Absorbancia 3	0,292	0,244	0,144	0,077			
Media	0,293	0,243	0,135	0,073			
Desviación estándar	0,001	0,001	0,007	0,003			
% de coeficiente de Variación	0,28	0,51	5,17	3,91			
%inhibición	13,31	28,21	60,06	78,30			
IC 50 (ug/ml)	26,09						
Control		0,3	38				

CODIGO: WILCHES 147								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150	200,00	
Abs. De la Clorofila	-0,005	0,001	0,004	0,009	0,02	0,031	0,04	
Absorbancia 1	0,48	0,313	0,294	0,233	0,178	0,125	0,01	
Absorbancia 2	0,49	0,302	0,283	0,245	0,19	0,11	0,01	
Absorbancia 3	0,344	0,318	0,23	0,22	0,169	0,128	0,01	
Media	0,438	0,311	0,269	0,233	0,179	0,121	0,01	
Desviación Estándar	0,067	0,007	0,028	0,010	0,009	0,008	0,000	
% Coeficiente de Variación	15,20	2,15	10,39	4,39	4,81	6,51	8,84	
%inhibición	-29,59	7,99	20,41	31,16	47,04	64,20	98,42	
IC 50 (ug/ml)	107,79							
Control				0,338				

CODIGO: WILCHES 146										
PARTE DE LA PLANTA: HOJAS										
CONCENTRACION (UG/ML)	ENTRACION (UG/ML) 5 10 25 50 100 150 200,00									
Abs. De la Clorofila	-0,004	-0,003	0,001	0,002	0,009	0,021	0,03			
Absorbancia 1	0,367	0,345	0,297	0,158	0,127	0,278	0,33			
Absorbancia 2	0,394	0,326	0,293	0,19	0,141	0,121	0,17			
Absorbancia 3	0,377	0,33	0,306	0,204	0,126	0,104	0,14			
Promedio	0,379	0,334	0,299	0,184	0,131	0,168	0,21			
Desviación Estándar	0,011	0,008	0,005	0,019	0,007	0,078	0,085			
% Coeficiente de Variacion	2,94	2,45	1,82	10,46	5,21	46,72	39,90			
%inhibicion	-12,23 1,28 11,64 45,56 61,14 50,39 37,28									
IC 50 (ug/ml)	75,77									
Control				0,34						

Código Parte de la planta: Hojas	Wilches144								
CONCENTRACION (UG/ML)	5	10	25	50	100	150	200,000		
Abs. De la Clorofila	0	0,001	0,003	0,004	0,008	0,027	0,017		
Absorbancia 1	0,829	0,454	0,295	0,243	0,188	0,075	0,089		
Absorbancia 2	0,829	0,387	0,281	0,25	0,185	0,075	0,102		
Absorbancia 3	0,829	0,409	0,28	0,251	0,185	0,071	0,097		
Media	0,829	0,417	0,285	0,248	0,186	0,074	0,096		
Desviación estándar	0,000	0,028	0,007	0,004	0,001	0,002	0,005		
% de coeficiente de Variación	0,00	6,69	2,40	1,44	0,76	2,56	5,58		
%inhibición	-145,27	-23,27	15,58	26,63	44,97	78,21	71,598		
IC 50 (ug/ml)	_	129,82							
Control	_			0,338					

Código	Wilches 123						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0,004	0,005	0,010	0,018			
Absorbancia 1	0,315	0,3	0,26	0,163			
Absorbancia 2	0,303	0,277	0,248	0,167			
Absorbancia 3	0,302	0,278	0,237	0,156			
Media	0,307	0,285	0,248	0,162			
Desviación estandar	0,006	0,011	0,009	0,005			
% de coeficiente de Variación	1,93	3,72	3,78	2,81			
%inhibición	9,27	15,68	26,53	52,07			
IC 50	48,41						
Control		0,3	38	·			

CODIGO: WILCHES 100											
PARTE DE LA PLANTA: HOJAS											
CONCENTRACION (UG/ML)	TRACION (UG/ML) 5 10 25 50 100 150 200,00										
Abs. De la Clorofila	0,006	0,008	0,01	0,013	0,016	0,024	0,03				
Absorbancia 1	0,666	0,491	0,566	0,454	0,297	0,438	0,48				
Absorbancia 2	0,42	0,419	0,291	0,238	0,277	0,249	0,19				
Absorbancia 3	0,37	0,329	0,354	0,229	0,173	0,104	0,13				
Promedio	0,485	0,413	0,404	0,307	0,249	0,264	0,27				
Desviación estándar	0,129	0,066	0,118	0,104	0,054	0,137	0,154				
% Coeficiente de variación	26,66	16,05	29,14	33,88	21,83	51,86	57,60				
%inhibición	-43,59 -22,19 -19,43 9,17 26,33 21,99 21,10										
IC 50 (ug/ml)	90,46										
Control		·	·	0,338		·					

CODIGO: WILCHES 99										
PARTE DE LA PLANTA: HOJAS										
CONCENTRACION (UG/ML)	NCENTRACION (UG/ML) 5 10 25 50 100 150 200,00									
Abs. De la Clorofila	0,001	0,002	0,004	0,008	0,014	0,016	0,02			
Absorbancia 1	0,582	0,547	0,403	0,294	0,269	0,197	0,23			
Absorbancia 2	0,454	0,381	0,298	0,181	0,154	0,142	0,14			
Absorbancia 3	0,42	0,39	0,343	0,162	0,07	0,056	0,12			
Promedio	0,485	0,439	0,348	0,212	0,164	0,132	0,16			
Desviación estándar	0,070	0,076	0,043	0,058	0,082	0,058	0,049			
% coeficiente de variación	14,37	17,35	12,36	27,44	49,64	44,07	30,61			
% inhibición	-43,59	-29,98	-2,96	37,18	51,38	61,05	52,37			
IC 50 (ug/ml)	56,55									
Control				0,338						

Código	Wilches98						
Parte de la planta: Hojas							
CONCENTRACION	_						
(UG/ML)	5	10	25	50	100	150	200,000
Abs. De la Clorofila	-0,001	0,001	0,002	0,005	0,013	0,021	0,030
Absorbancia 1	0,352	0,348	0,352	0,208	0,162	0,088	0,065
Absorbancia 2	0,363	0,325	0,275	0,181	0,15	0,1	0,094
Absorbancia 3	0,346	0,313	0,288	0,135	0,127	0,093	0,060
Media	0,354	0,329	0,305	0,175	0,146	0,094	0,073
Desviación estándar	0,007	0,015	0,034	0,030	0,015	0,005	0,015
% de coeficiente de							
Variación	1,99	4,42	11,03	17,25	9,92	5,25	20,53
%inhibición	-4,64	2,76	9,76	48,32	56,71	72,29	78,402
IC 50 (ug/ml)				78,88			
Control				0,338			

Código	Wilches97						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	200,000
Abs. De la Clorofila	0,001	0,004	0,003	0,011	0,015	0,02	0,028
Absorbancia 1	0,337	0,294	0,236	0,145	0,099	0,058	0,038
Absorbancia 2	0,341	0,299	0,24	0,184	0,102	0,051	0,035
Absorbancia 3	0,334	0,28	0,236	0,158	0,097	0,044	0,034
Media	0,337	0,291	0,237	0,162	0,099	0,051	0,036
Desviación estándar	0,003	0,008	0,002	0,016	0,002	0,006	0,002
% de coeficiente de							
Variación	0,85	2,76	0,79	9,99	2,07	11,21	4,77
%inhibición	0,20	13,91	29,78	51,97	70,61	84,91	89,45
IC 50 (ug/ml)	_			46,54			
Control				0,338			

2. Jungia coarctata

CODIGO: WILCHES 181									
PARTE DE LA PLANTA: HOJAS									
CONCENTRACION (UG/ML) 5 10 25 5									
Abs. De la Clorofila	0,002	0,004	0,006	0,012					
Absorbancia 1	0,303	0,296	0,228	0,161					
Absorbancia 2	0,324	0,303	0,212	0,145					
Absorbancia 3	0,313	0,278	0,253	0,159					
Promedio	0,313	0,292	0,231	0,155					
Desviación Estándar	0,009	0,011	0,017	0,007					
% Coeficiente de Variación	2,74	3,60	7,30	4,59					
%inhibición	7,30	13,51	31,66	54,14					
IC 50		45,00							
Control		0,3	38						

CODIGO: WILCHES 169									
PARTE DE LA PLANTA: HOJAS									
CONCENTRACION (UG/ML) 5 10 25 5									
Abs. De la Clorofila	-0,002	0	0	0,002					
Absorbancia 1	0,262	0,234	0,166	0,048					
Absorbancia 2	0,263	0,217	0,148	0,052					
Absorbancia 3	0,250	0,217	0,131	0,038					
Promedio	0,258	0,223	0,148	0,046					
Desviación Estándar	0,006	0,008	0,014	0,006					
% Coeficiente de Variación	2,29	3,60	9,63	12,80					
%inhibición	23,57	34,12	56,11	86,39					
IC 50 (ug/ml)	22,46								
Control		0,33	38						

Código	Wilches 168						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	-0,001	0,000	0,001	0,002			
Absorbancia 1	0,452	0,344	0,155	0,121			
Absorbancia 2	0,47	0,355	0,154	0,125			
Absorbancia 3	0,468	0,357	0,151	0,122			
Media	0,463	0,352	0,153	0,123			
Desviación estándar	0,008	0,006	0,002	0,002			
% de coeficiente de Variación	1,74	1,62	1,11	1,39			
%inhibición	-37,08	-4,14	54,64	63,71			
IC 50 (ug/ml)	37,03						
Control		0,3	38				

CODIGO: WILCHES 155								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	-0,008	-0,009	-0,008	-0,006	-0,004	-0,001		
Absorbancia 1	0,404	0,419	0,389	0,351	0,28	0,219		
Absorbancia 2	0,404	0,409	0,377	0,339	0,283	0,201		
Absorbancia 3	0,400	0,405	0,369	0,344	0,288	0,202		
Promedio	0,403	0,411	0,378	0,345	0,284	0,207		
Desviación Estándar	0,002	0,006	0,008	0,005	0,003	0,008		
% Coeficiente de Variación	0,47	1,43	2,17	1,43	1,16	3,98		
%inhibición	1,79	-0,24	7,72	15,93	30,81	49,43		
IC 50 (ug/ml)	153,55							
Control				0,41				

CODIGO: WILCHES 154										
PARTE DE LA PLANTA: HOJAS										
CONCENTRACION (UG/ML) 5 10 25 50 100 150										
Abs. De la Clorofila	-0,01	-0,004	-0,001	0,005	0,017	0,03				
Absorbancia 1	0,410	0,406	0,370	0,313	0,192	0,089				
Absorbancia 2	0,406	0,395	0,356	0,298	0,175	0,08				
Absorbancia 3	0,410	0,394	0,358	0,298	0,173	0,081				
Promedio	0,409	0,398	0,361	0,303	0,180	0,083				
Desviación Estándar	0,002	0,005	0,006	0,007	0,009	0,004				
% Coeficiente de Variación	0,46	1,36	1,71	2,33	4,74	4,83				
%inhibición	0,33	2,85	11,87	26,10	56,10	79,67				
IC 50 (ug/ml)	93,55									
Control			0,41							

CODIGO: WILCHES 119									
PARTE DE LA PLANTA: HOJAS									
CONCENTRACION (UG/ML)	5	10	25	50					
Abs. De la Clorofila	-0,002	-0,001	0	0,001					
Absorbancia 1	0,309	0,264	0,192	0,038					
Absorbancia 2	0,254	0,212	0,177	0,032					
Absorbancia 3	0,235	0,208	0,106	0,030					
Promedio	0,266	0,228	0,158	0,033					
Desviación Estandar	0,031	0,026	0,038	0,003					
% Coeficiente de Variacion	11,80	11,19	23,69	10,20					
%inhibicion	21,30	32,54	53,16	90,14					
IC 50 (ug/ml)		22,9	8						
Control		0,34	1						

Código	Wilches118						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0,004	0,011	0,002	0,008			
Absorbancia 1	0,413	0,389	0,365	0,242			
Absorbancia 2	0,406	0,29	0,278	0,181			
Absorbancia 3	0,338	0,26	0,259	0,146			
Media	0,386	0,313	0,301	0,190			
Desviación estándar	0,034	0,055	0,046	0,040			
% de coeficiente de Variación	8,77	17,61	15,35	20,91			
%inhibición	-14,10	7,40	11,05	43,89			
IC 50 (ug/ml)	55,97						
Control		0,3	38				

Código	Wilches112
Parte de la planta: Hojas	

CONCENTRACION (UG/ML)	5	10	25	50	100	150			
Abs. De la Clorofila	-0,004	-0,003	0,000	0,007	0,021	0,034			
Absorbancia 1	0,384	0,403	0,339	0,246	0,094	0,027			
Absorbancia 2	0,389	0,400	0,350	0,243	0,078	0,021			
Absorbancia 3	0,415	0,402	0,362	0,237	0,08	0,023			
Media	0,396	0,402	0,350	0,242	0,084	0,024			
Desviación estándar	0,014	0,001	0,009	0,004	0,007	0,002			
% de coeficiente de									
Variación	3,43	0,31	2,68	1,55	8,47	10,54			
%inhibición	3,41	2,03	14,55	40,98	79,51	94,23			
IC 50	64,09								
Control		0,41							

Código	Wilches 95						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0,008	0,002	0,004	0,007			
Absorbancia 1	0,406	0,397	0,294	0,226			
Absorbancia 2	0,405	0,367	0,278	0,196			
Absorbancia 3	0,366	0,401	0,304	0,215			
Media	0,392	0,388	0,292	0,212			
Desviación estándar	0,019	0,015	0,011	0,012			
% de coeficiente de Variación	4,75	3,91	3,67	5,84			
%inhibición	-16,07	-14,89	13,61	37,18			
IC 50 (ug/ml)	58,71						
Control		0,3	38				

Código	Wilches 7						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	
Abs. De la Clorofila	-0,003	-0,002	0,001	0,007	0,018	0,031	
Absorbancia 1	0,37	0,332	0,262	0,080	0,038	0,027	
Absorbancia 2	0,38	0,331	0,239	0,078	0,032	0,02	
Absorbancia 3	0,369	0,322	0,240	0,080	0,035	0,028	
Media	0,373	0,328	0,247	0,079	0,035	0,025	
Desviación estándar	0,005	0,004	0,011	0,001	0,002	0,004	
% de coeficiente de Variación	1,33	1,37	4,30	1,19	7,00	14,24	
%inhibición	9,02	19,92	39,76	80,65	91,46	93,90	
IC 50 (ug/ml)	30,62						
Control			0,4	41			

3. Jungia paniculata

CODIGO: WILCHES 202								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	0,001	0	0,001	0,002	0,005	0,007		
Absorbancia 1	0,419	0,412	0,353	0,274	0,122	0,058		
Absorbancia 2	0,400	0,399	0,343	0,277	0,122	0,068		
Absorbancia 3	0,407	0,401	0,331	0,266	0,126	0,091		
Promedio	0,409	0,404	0,342	0,272	0,123	0,072		
Desviación Estándar	0,008	0,006	0,009	0,005	0,002	0,014		
% Coeficiente de Variación	1,92	1,41	2,63	1,70	1,53	19,10		
%inhibición	3,16	4,27	18,88	35,47	70,77	82,86		
IC 50	80,87							
Control			0,4	22				

CODIGO: WILCHES 196								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50				
Abs. De la Clorofila	-0,004	0,001	0,006	0,003				
Absorbancia 1	0,375	0,38	0,349	0,288				
Absorbancia 2	0,354	0,345	0,32	0,29				
Absorbancia 3	0,348	0,342	0,311	0,283				
Promedio	0,359	0,356	0,327	0,287				
Desviación Estándar	0,012	0,017	0,016	0,003				
% Coeficiente de Variación	3,22	4,85	4,96	1,03				
%inhibición	-6,21	-5,23	3,35	15,09				
IC 50	121,43							
Control		0,33	38					

CODIGO: WILCHES 193								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	-0,005	-0,004	-0,002	0,002	0,009	0,017		
Absorbancia 1	0,393	0,413	0,393	0,350	0,275	0,19		
Absorbancia 2	0,406	0,408	0,381	0,338	0,26	0,17		
Absorbancia 3	0,405	0,405	0,376	0,336	0,269	0,177		
Promedio	0,401	0,409	0,383	0,341	0,268	0,179		
Desviación Estándar	0,006	0,003	0,007	0,006	0,006	0,008		
% Coeficiente de Variación	1,47	0,81	1,86	1,81	2,30	4,63		
%inhibición	2,11	0,33	6,50	16,75	34,63	56,34		
IC 50 (ug/ml)	136,38							
Control			0,41					

CODIGO: WILCHES 133								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50				
Abs. De la Clorofila	-0,003	0,002	0,001	0				
Absorbancia 1	0,331	0,307	0,252	0,062				
Absorbancia 2	0,326	0,396	0,200	0,115				
Absorbancia 3	0,321	0,296	0,176	0,126				
Promedio	0,326	0,333	0,209	0,101				
Desviación Estándar	0,004	0,045	0,032	0,028				
% Coeficiente de Variación	1,25	13,45	15,15	27,66				
%inhibicion	3,55	1,48	38,07	70,12				
IC 50	36,18							
Control		0,33	38					

Código	Wilches132							
Parte de la planta: Hojas								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	-0,007	-0,006	-0,004	0,001	0,011	0,021		
Absorbancia 1	0,345	0,343	0,216	0,064	0,054	0,022		
Absorbancia 2	0,362	0,332	0,206	0,073	0,048	0,019		
Absorbancia 3	0,371	0,320	0,205	0,062	0,05	0,027		
Media	0,359	0,332	0,209	0,066	0,051	0,023		
Desviación estándar	0,011	0,009	0,005	0,005	0,002	0,003		
% de coeficiente de								
Variación	3,00	2,83	2,38	7,21	4,92	14,56		
%inhibición	12,36	19,11	49,02	83,82	87,64	94,47		
IC 50 (ug/ml)	_	28,04						
Control			0,4	1				

Código	Wilches131						
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	
Abs. De la Clorofila	0,006	0,007	0,009	0,014	0,024	0,034	
Absorbancia 1	0,391	0,364	0,284	0,115	0,046	0,054	
Absorbancia 2	0,389	0,358	0,276	0,104	0,054	0,056	
Absorbancia 3	0,388	0,355	0,277	0,098	0,051	0,059	
Media	0,389	0,359	0,279	0,106	0,050	0,056	
Desviación estándar	0,001	0,004	0,004	0,007	0,003	0,002	
% de coeficiente de							
Variación	0,32	1,04	1,28	6,66	6,56	3,65	
%inhibición	8,18	15,33	34,20	75,08	88,13	86,71	
IC 50 (ug/ml)	33,84						
Control			0,42	24			

Código	Wilches 130			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	-0,004	-0,003	0,000	0,005
Absorbancia 1	0,249	0,211	0,133	0,031
Absorbancia 2	0,255	0,218	0,116	0,033
Absorbancia 3	0,228	0,218	0,118	0,03
Media	0,244	0,216	0,122	0,031
Desviación estándar	0,012	0,003	0,008	0,001
% de coeficiente de Variación	4,74	1,53	6,20	3,98
%inhibición	27,81	36,19	63,81	90,73
IC 50 (ug/ml)	19,19			
Control	0,338			

Código	Wilches129					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50	100	150
Abs. De la Clorofila	0,001	0,002	0,005	0,01	0,02	0,031
Absorbancia 1	0,375	0,319	0,147	0,062	0,041	0,041
Absorbancia 2	0,362	0,308	0,141	0,066	0,044	0,04
Absorbancia 3	0,368	0,315	0,135	0,075	0,04	0,034
Media	0,368	0,314	0,141	0,068	0,042	0,038
Desviación estándar	0,005	0,005	0,005	0,005	0,002	0,003
% de coeficiente de						
Variación	1,44	1,45	3,47	8,03	4,08	8,06
%inhibición	13,13	25,94	66,75	84,04	90,17	90,96
IC 50 (ug/ml)	24,11					
Control			0,42	24		

	Wilches					
Código	13					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50	100	150
Abs. De la Clorofila	0,024	0,025	0,027	0,031	0,039	0,048
Absorbancia 1	0,353	0,335	0,222	0,075	0,041	0,01
Absorbancia 2	0,368	0,329	0,212	0,063	0,036	0,004
Absorbancia 3	0,37	0,324	0,218	0,071	0,027	0,014
Media	0,364	0,329	0,217	0,070	0,035	0,009
Desviación estándar	0,008	0,004	0,004	0,005	0,006	0,004
% de coeficiente de						
Variación	2,09	1,37	1,89	7,16	16,71	44,03
%inhibición	14,23	22,33	48,74	83,57	91,82	97,80
IC 50 (ug/ml)		·	27,	54	·	·

Control	0,424
	· · · · · · · · · · · · · · · · · · ·

	Wilches					
Código	11					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50	100	150
Abs. De la Clorofila	0,004	0,004	0,006	0,009	0,015	0,022
Absorbancia 1	0,338	0,335	0,218	0,059	0,049	0,046
Absorbancia 2	0,334	0,312	0,208	0,056	0,059	0,048
Absorbancia 3	0,336	0,307	0,200	0,058	0,056	0,043
Media	0,336	0,318	0,209	0,058	0,055	0,046
Desviación estándar	0,002	0,012	0,007	0,001	0,004	0,002
% de coeficiente de						
Variación	0,49	3,83	3,53	2,16	7,66	4,50
%inhibición	20,75	25,00	50,79	86,40	87,11	89,23
IC 50 (ug/ml)	25,36					
Control			0,4	42		

CODIGO: WILCHES 10				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,001	0,001	0,002	0,002
Absorbancia 1	0,358	0,364	0,256	0,095
Absorbancia 2	0,332	0,300	0,210	0,115
Absorbancia 3	0,349	0,295	0,212	0,104
Promedio	0,346	0,320	0,226	0,105
Desviación Estándar	0,011	0,031	0,021	0,008
% Coeficiente de Variación	3,11	9,83	9,39	7,81
%inhibición	-2,47	5,42	33,14	69,03
IC 50 (ug/ml)	37,35			
Control		0,3	38	

4. Jungia fistulosa

CODIGO: WILCHES 178				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0	0,001	0,002	0,005
Absorbancia 1	0,318	0,304	0,328	0,247
Absorbancia 2	0,326	0,314	0,276	0,250
Absorbancia 3	0,313	0,305	0,293	0,246
Promedio	0,319	0,308	0,299	0,248
Desviación Estándar	0,005	0,004	0,022	0,002
% Coeficiente de Variación	1,68	1,46	7,24	0,69

%inhibición	5,62	8,97	11,54	26,73	
IC 50 (ug/ml)	103,96				
Control	0,338				

Código	Wilches175			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,001	0,001	0,003	0,004
Absorbancia 1	0,294	0,269	0,209	0,086
Absorbancia 2	0,288	0,25	0,21	0,113
Absorbancia 3	0,288	0,262	0,194	0,131
Media	0,290	0,260	0,204	0,110
Desviación estándar	0,003	0,008	0,007	0,018
% de coeficiente de Variación	0,98	3,01	3,58	16,81
%inhibición	14,20	22,98	39,55	67,46
IC 50 (ug/ml)	34,55			
Control		0,3	38	

CODIGO: WILCHES 173				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,001	0,001	0,002	0,004
Absorbancia 1	0,284	0,240	0,112	0,085
Absorbancia 2	0,292	0,255	0,114	0,067
Absorbancia 3	0,291	0,233	0,115	0,077
Promedio	0,289	0,243	0,114	0,076
Desviación Estándar	0,004	0,009	0,001	0,007
% Coeficiente de Variación	1,23	3,78	1,10	9,65
%inhibición	14,50	28,21	66,37	77,42
IC 50 (ug/ml)	24,95			
Control		0,3	38	

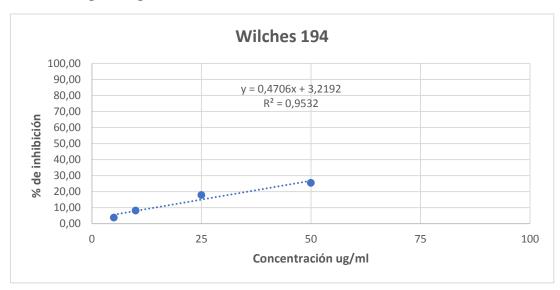
CODIGO: WILCHES 149						
PARTE DE LA PLANTA: HOJAS						
CONCENTRACION (UG/ML)	5	10	25	50	100	150
Abs. De la Clorofila	0,005	0,006	0,01	0,017	0,03	0,046
Absorbancia 1	0,365	0,291	0,097	0,057	0,031	0,031
Absorbancia 2	0,351	0,255	0,082	0,051	0,038	0,027
Absorbancia 3	0,356	0,291	0,087	0,050	0,034	0,024
Promedio	0,357	0,279	0,089	0,053	0,034	0,027
Desviación Estándar	0,006	0,017	0,006	0,003	0,003	0,003
% Coeficiente de Variación	1,62	6,08	7,03	5,87	8,35	10,49
%inhibición	15,32	33,89	78,99	87,52	91,86	93,52

IC 50(ug/ml)	15,65
Control	0,422

CODIGO: WILCHES 140							
PARTE DE LA PLANTA: HOJAS							
CONCENTRACION (UG/ML)	5	10	25	50			
Abs. De la Clorofila	0	0,002	0,004	0,009			
Absorbancia 1	0,258	0,240	0,108	0,066			
Absorbancia 2	0,280	0,213	0,076	0,076			
Absorbancia 3	0,277	0,251	0,116	0,065			
Promedio	0,272	0,235	0,100	0,069			
Desviación Estándar	0,010	0,016	0,017	0,005			
% Coeficiente de Variación	3,59	6,80	17,28	7,20			
%inhibición	19,63	30,57	70,41	79,59			
IC 50	22,46						
Control	0,338						

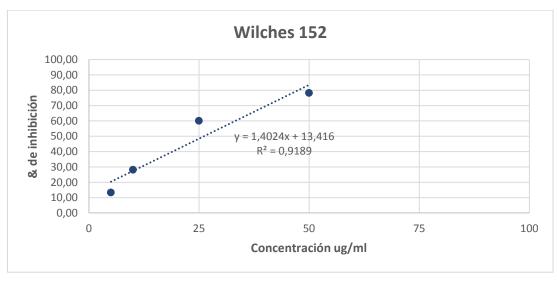
CODIGO: WILCHES 139							
PARTE DE LA PLANTA: HOJAS							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	
Abs. De la Clorofila	0,007	0,008	0,01	0,014	0,026	0,036	
Absorbancia 1	0,376	0,372	0,236	0,060	0,029	0,027	
Absorbancia 2	0,381	0,346	0,220	0,055	0,032	0,028	
Absorbancia 3	0,389	0,344	0,218	0,056	0,036	0,024	
Promedio	0,382	0,354	0,225	0,057	0,032	0,026	
Desviación Estándar	0,005	0,013	0,008	0,002	0,003	0,002	
% Coeficiente de Variación	1,40	3,60	3,59	3,79	8,87	6,45	
%inhibición	9,48	16,11	46,76	86,49	92,34	93,76	
IC 50	28,42						
Control	0,422						

CODIGO: WILCHES 138							
PARTE DE LA PLANTA: HOJAS							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	
Abs. De la Clorofila	0,001	0,002	0,005	0,011	0,021	0,031	
Absorbancia 1	0,384	0,382	0,230	0,071	0,048	0,041	
Absorbancia 2	0,377	0,365	0,217	0,069	0,044	0,032	
Absorbancia 3	0,375	0,364	0,226	0,066	0,041	0,02	
Promedio	0,379	0,370	0,224	0,069	0,044	0,031	
Desviación Estándar	0,004	0,008	0,005	0,002	0,003	0,009	
% Coeficiente de Variación	1,02	2,23	2,42	2,99	6,47	27,75	

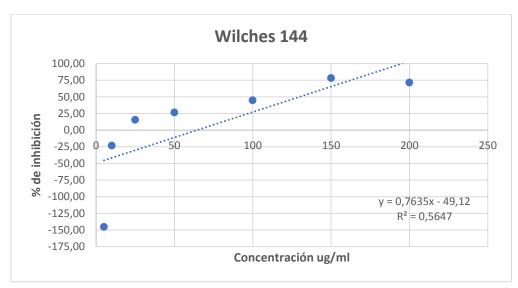

%inhibición	10,27	12,24	46,84	83,73	89,49	92,65	
IC 50	29,39						
Control	0,422						

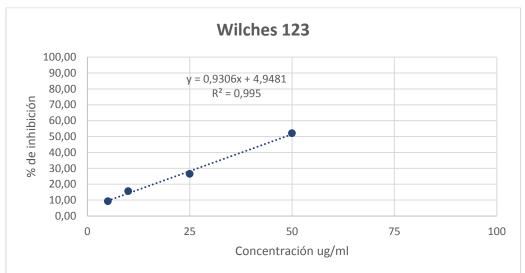
Código	Wilches 137					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50		
Abs. De la Clorofila	0,001	0,002	0,005	0,01		
Absorbancia 1	0,287	0,26	0,12	0,061		
Absorbancia 2	0,247	0,237	0,106	0,058		
Absorbancia 3	0,263	0,23	0,104	0,048		
Media	0,266	0,242	0,110	0,056		
Desviación estándar	0,016	0,013	0,007	0,006		
% de coeficiente de Variación	6,19	5,29	6,47	9,98		
%inhibición	21,40	28,30	67,46	83,53		
IC 50 (ug/ml)	22,38					
Control	0,338					

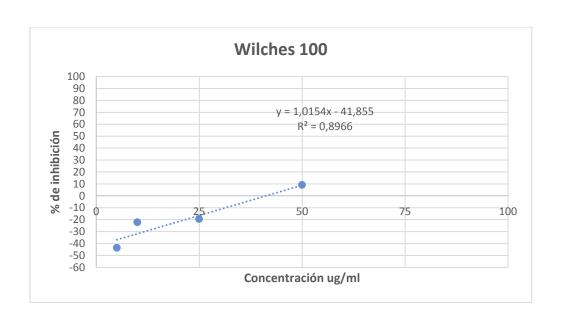
Código	Wilches 135					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50		
Abs. De la Clorofila	0	0,001	0,003	0,006		
Absorbancia 1	0,321	0,27	0,075	0,023		
Absorbancia 2	0,262	0,221	0,069	0,022		
Absorbancia 3	0,281	0,213	0,057	0,019		
Media	0,288	0,235	0,067	0,021		
Desviación estándar	0,025	0,025	0,007	0,002		
% de coeficiente de Variación	8,54	10,74	11,17	7,97		
%inhibición	14,79	30,57	80,18	93,69		
IC 50 (ug/ml)	15,82					
Control	0,388					

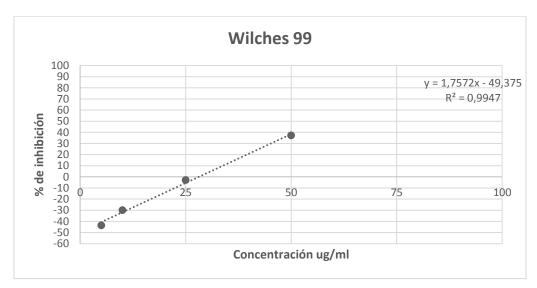


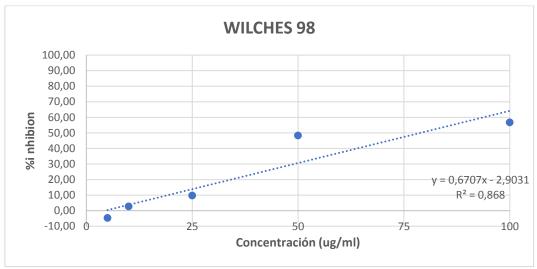
1. Jungia Rugosa

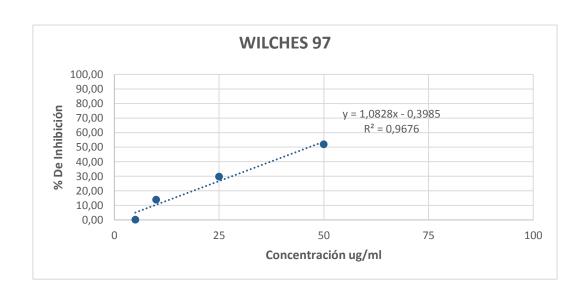


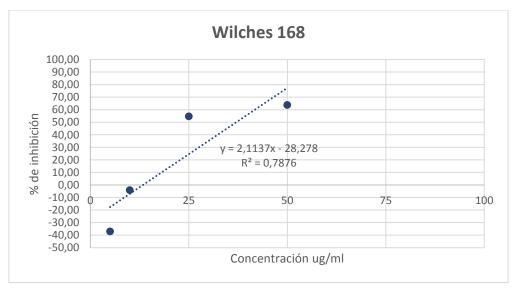


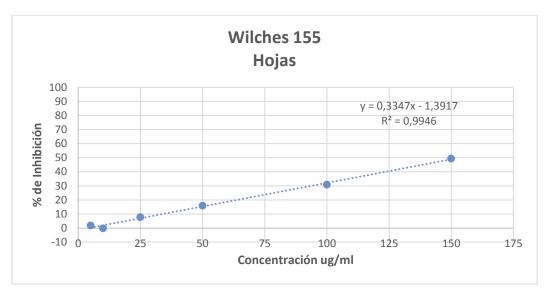




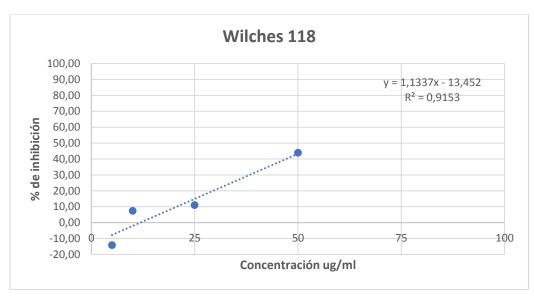


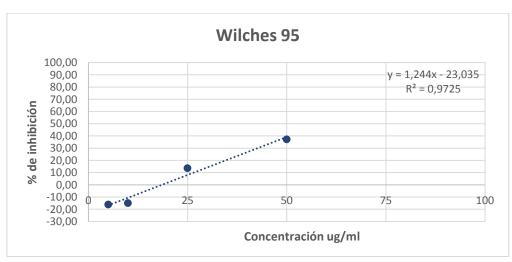


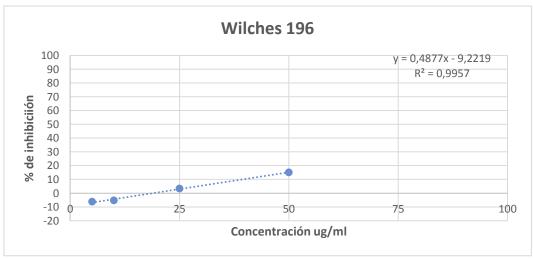



2. Jungia coarctata

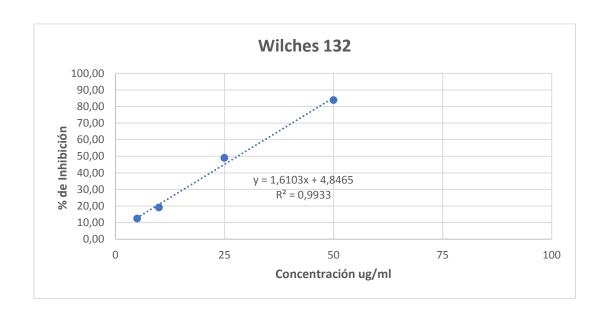


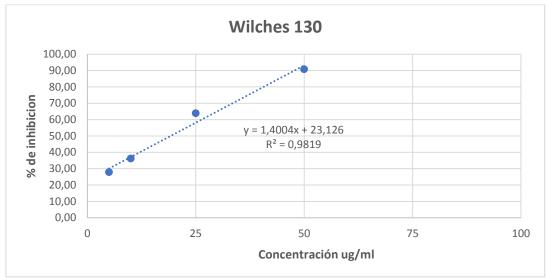


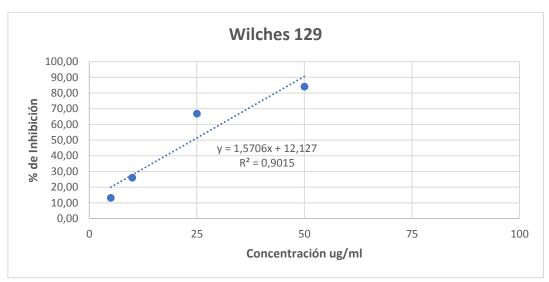


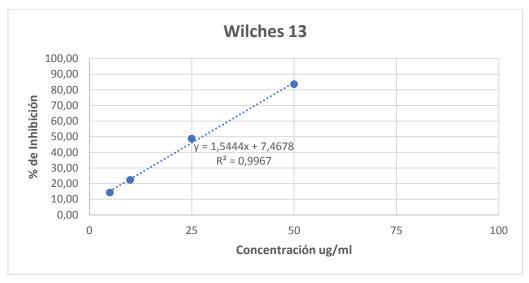


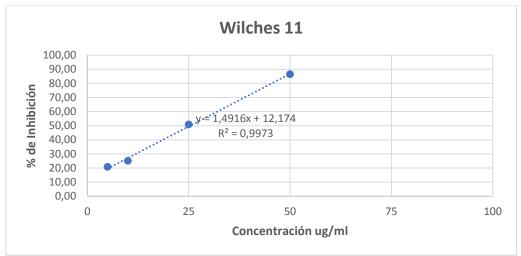
3. Jungia paniculata

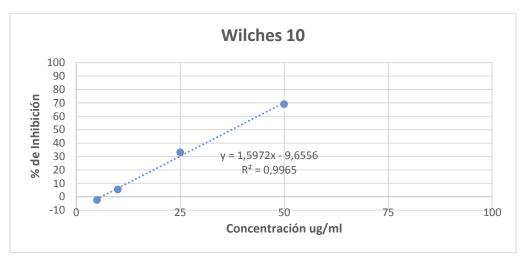


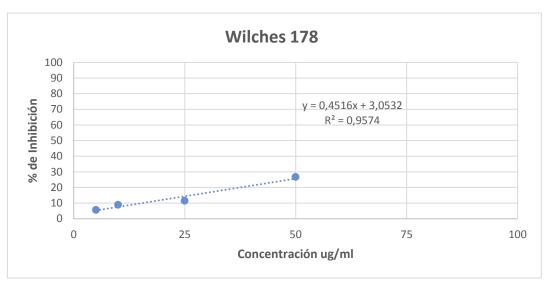




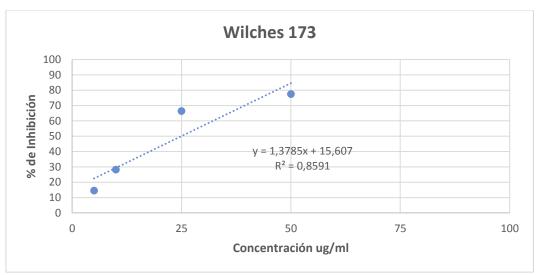




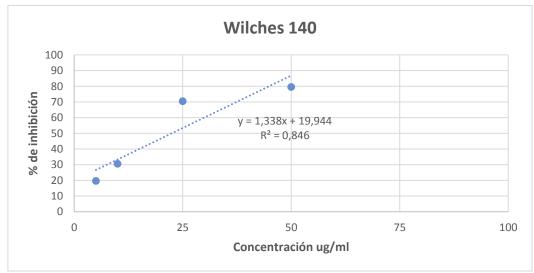


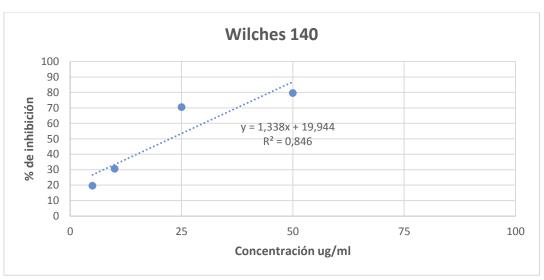


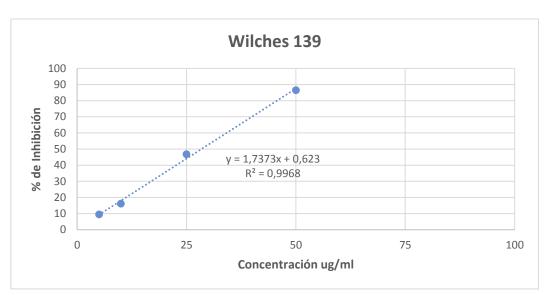


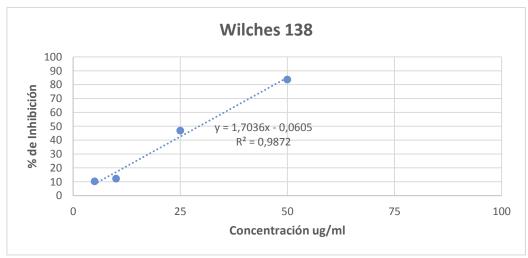


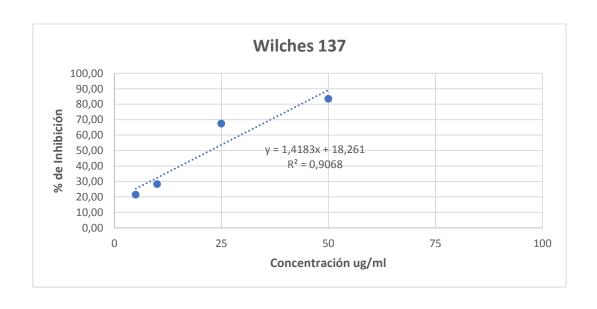
4. Jungia fistulosa











Anexo D: Resultados de la actividad antioxidante de extractos metanólicos por el método del DPPH

Resultados de la actividad antioxidante de extractos en DCM por el método del DPPH

1. Jungia rugosa

Código	Wilches 194				
Parte de la planta: Hojas					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,012	0,014	0,024	0,037	
Absorbancia 1	0,311	0,305	0,261	0,242	
Absorbancia 2	0,297	0,282	0,262	0,24	
Absorbancia 3	0,29	0,285	0,256	0,231	
Media	0,299	0,291	0,260	0,238	
Desviación estándar	0,009	0,010	0,003	0,005	
% de coeficiente de Variación	2,92	3,51	1,01	2,01	
%inhibición	11,44	14,00	23,18	29,68	
IC 50 (ug/ml)	97,18				
Control		0,3	38		

Código	Wilches 183				
Parte de la planta: Hojas					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,002	0,004	0,010	0,026	
Absorbancia 1	0,348	0,352	0,347	0,314	
Absorbancia 2	0,358	0,358	0,349	0,329	
Absorbancia 3	0,357	0,350	0,336	0,307	
Media	0,354	0,353	0,344	0,317	
Desviación estándar	0,004	0,003	0,006	0,009	
% de coeficiente de Variación	1,27	0,96	1,66	2,90	
%inhibición	1,85	2,12	4,71	12,28	
IC 50 (ug/ml)	245,40				
Control		0,3	61		

Código	Wilches 152				
Parte de la planta: Hojas					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,004	0,006	0,020	0,048	
Absorbancia 1	0,363	0,351	0,333	0,297	
Absorbancia 2	0,359	0,345	0,323	0,277	
Absorbancia 3	0,35	0,341	0,333	0,275	
Media	0,357	0,346	0,330	0,283	
Desviación estándar	0,005	0,004	0,005	0,010	
% de coeficiente de Variación	1,52	1,19	1,43	3,51	
%inhibición	1,02	4,25	8,68	21,61	
IC 50 (ug/ml)	122,23				
Control		0,3	61	`	

Código	Wilches147				
Parte de la planta: Hojas					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,005	0,002	0,009	0,024	
Absorbancia 1	0,342	0,334	0,335	0,295	
Absorbancia 2	0,342	0,336	0,32	0,292	
Absorbancia 3	0,342	0,331	0,318	0,286	
Media	0,342	0,334	0,324	0,291	
Desviación estándar	0,000	0,002	0,008	0,004	
% de coeficiente de Variación	0,00	0,62	2,34	1,29	
%inhibición	5,26	7,57	10,16	19,39	
IC 50 (ug/ml)	47,15				
Control		0,3	61	·	

CODIGO: WILCHES 146	CODIGO: WILCHES 146				
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	-0,002	-0,001	0,001	0,002	
Absorbancia 1	0,382	0,377	0,375	0,357	
Absorbancia 2	0,372	0,363	0,350	0,335	
Absorbancia 3	0,375	0,365	0,359	0,347	
Promedio	0,376	0,368	0,361	0,346	
Desviación Estándar	0,004	0,006	0,010	0,009	
% Coeficiente de Variación	1,11	1,68	2,86	2,60	
%inhibición	2,00	4,08	5,90	9,81	
IC 50 (ug/ml)	297,35				
Control	_	0,3	84	·	

CODIGO: WILCHES 144					
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	-0,003	0,001	0,002	0,004	
Absorbancia 1	0,379	0,376	0,367	0,366	
Absorbancia 2	0,377	0,365	0,363	0,341	
Absorbancia 3	0,376	0,367	0,362	0,351	
Desviación Estándar	0,001	0,005	0,002	0,010	
% Coeficiente de Variación	0,33	1,30	0,59	2,91	
%inhibición	1,99	4,07	5,45	8,40	
IC 50 (ug/ml)	369,62				
Control		0,3	85		

Código	Wilches 123				
Parte de la planta: Hojas					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,008	0,009	0,012	0,015	
Absorbancia 1	0,334	0,318	0,315	0,308	
Absorbancia 2	0,302	0,305	0,299	0,292	
Absorbancia 3	0,297	0,296	0,295	0,283	
Media	0,311	0,306	0,303	0,294	
Desviación estándar	0,016	0,009	0,009	0,010	
% de coeficiente de Variación	5,27	2,95	2,85	3,51	
%inhibición	7,99	9,37	10,36	12,92	
IC 50 (ug/ml)	415,43				
Control		0,3	38		

CODIGO: WILCHES 100					
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	-0,004	-0,002	0	0,002	
Absorbancia 1	0,382	0,367	0,360	0,358	
Absorbancia 2	0,380	0,364	0,357	0,347	
Absorbancia 3	0,381	0,363	0,360	0,346	
Promedio	0,381	0,365	0,359	0,350	
Desviación Estándar	0,001	0,002	0,001	0,005	
% Coeficiente de Variación	0,21	0,47	0,39	1,55	
%inhibición	1,55	5,77	7,24	9,47	
IC 50 (ug/ml)	323,00				
Control	_	0,38	87	_	

2. Jungia coarctata

CODIGO: WILCHES 181					
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML)	5	10	25	50	
Abs. De la Clorofila	0,01	0,014	0,027	0,053	
Absorbancia 1	0,344	0,357	0,308	0,304	
Absorbancia 2	0,347	0,350	0,311	0,283	
Absorbancia 3	0,341	0,341	0,317	0,272	
Promedio	0,344	0,349	0,312	0,286	
Desviación Estándar	0,002	0,007	0,004	0,013	
% Coeficiente de Variación	0,71	1,87	1,20	4,64	
%inhibición	8,75	7,34	17,24	24,05	
IC 50 (ug/ml)	117,56				
Control		0,3	77		

CODIGO: WILCHES 180				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,01	0,013	0,022	0,031
Absorbancia 1	0,368	0,354	0,347	0,327
Absorbancia 2	0,355	0,349	0,335	0,312
Absorbancia 3	0,361	0,350	0,339	0,319
Promedio	0,361	0,351	0,340	0,319
Desviación Estándar	0,005	0,002	0,005	0,006
% Coeficiente de Variación	1,47	0,62	1,47	1,92
%inhibición	4,16	6,90	9,73	15,30
IC 50 (ug/ml)	198,01			
Control		0,3	77	

CODIGO: WILCHES 169							
PARTE DE LA PLANTA: HOJAS							
CONCENTRACION (UG/ML)	CONCENTRACION (UG/ML) 5 10 25 50						
Abs. De la Clorofila	0,009	0,01	0,007	0,016			
Absorbancia 1	0,357	0,358	0,345	0,344			
Absorbancia 2	0,354	0,345	0,341	0,331			
Absorbancia 3	0,356	0,348	0,338	0,334			
Promedio	0,356	0,350	0,341	0,336			
Desviación Estándar	0,001	0,006	0,003	0,006			
% Coeficiente de Variación	0,35	1,59	0,84	1,65			
%inhibición	5,66	7,07	9,46	10,79			
IC 50 (ug/ml)	407,70						
Control		0,3	77				

CODIGO: WILCHES 168				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,001	0,005	0,008	0,016
Absorbancia 1	0,356	0,349	0,333	0,332
Absorbancia 2	0,349	0,346	0,333	0,319
Absorbancia 3	0,344	0,345	0,326	0,331
Promedio	0,350	0,347	0,331	0,327
Desviación Estándar	0,005	0,002	0,003	0,006
% Coeficiente de Variación	1,41	0,49	1,00	1,80
%inhibición	7,25	8,05	12,29	13,17
IC 50 (ug/ml)	316,94			
Control		0,3	77	

CODIGO: WILCHES 155					
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML) 5 10 25 5					
Abs. De la Clorofila	0,012	0,011	0,021	0,038	
Absorbancia 1	0,342	0,360	0,326	0,304	
Absorbancia 2	0,338	0,351	0,315	0,300	
Absorbancia 3	0,342	0,354	0,320	0,302	
Promedio	0,341	0,355	0,320	0,302	
Desviación Estándar	0,002	0,004	0,004	0,002	
% Coeficiente de Variación	0,55	1,05	1,40	0,54	
%inhibición	9,64	5,84	15,03	19,89	
IC 50 (ug/ml)	156,08				
Control	_	0,37	77	·	

Código	Wilches 154			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0	0,002	0,005	0,012
Absorbancia 1	0,375	0,351	0,342	0,31
Absorbancia 2	0,372	0,351	0,34	0,31
Absorbancia 3	0,371	0,35	0,339	0,308
Media	0,373	0,351	0,340	0,309
Desviación estándar	0,002	0,000	0,001	0,001
% de coeficiente de Variación	0,46	0,13	0,37	0,30
%inhibición	1,15	6,98	9,73	17,95
IC 50 (ug/ml)	144,99			
Control		0,3	77	

Código	Wilches 119			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,014	0,016	0,019	0,027
Absorbancia 1	0,339	0,334	0,328	0,313
Absorbancia 2	0,34	0,34	0,326	0,312
Absorbancia 3	0,339	0,334	0,325	0,307
Media	0,339	0,336	0,326	0,311
Desviación estándar	0,000	0,003	0,001	0,003
% de coeficiente de Variación	0,14	0,84	0,38	0,84
%inhibición	9,99	10,88	13,44	17,60
IC 50 (ug/ml)	241,97			
Control		0,3	77	

Código	Wilches118			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,007	0,01	0,010	0,03
Absorbancia 1	0,344	0,336	0,323	0,317
Absorbancia 2	0,342	0,335	0,328	0,315
Absorbancia 3	0,347	0,338	0,327	0,312
Media	0,344	0,336	0,326	0,315
Desviación estándar	0,002	0,001	0,002	0,002
% de coeficiente de Variación	0,60	0,37	0,66	0,65
%inhibición	8,66	10,79	13,53	16,53
IC 50 (ug/ml)	250,65			
Control		0,3	77	

Código	Wilches112			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,002	0,004	0,014	0,028
Absorbancia 1	0,348	0,364	0,346	0,308
Absorbancia 2	0,349	0,357	0,342	0,301
Absorbancia 3	0,35	0,356	0,338	0,302
Media	0,349	0,359	0,342	0,304
Desviación estándar	0,001	0,004	0,003	0,003
% de coeficiente de Variación	0,23	0,99	0,95	1,02
%inhibición	7,43	4,77	9,28	19,45
IC 50 (ug/ml)	290,13			
Control		0,3	77	

Código	Wilches 7			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,007	0,014	0,040	0,034
Absorbancia 1	0,362	0,349	0,317	0,271
Absorbancia 2	0,352	0,348	0,316	0,271
Absorbancia 3	0,354	0,351	0,317	0,271
Media	0,356	0,349	0,317	0,271
Desviación estándar	0,004	0,001	0,000	0,000
% de coeficiente de Variación	1,21	0,36	0,15	0,00
%inhibición	5,57	7,34	16,00	28,12
IC 50	92,67			
Control		0,3	77	

3. Jungia paniculata

Código	Wilches202			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	-0,017	-0,019	-0,017	-0,014
Absorbancia 1	0,335	0,332	0,332	0,325
Absorbancia 2	0,334	0,331	0,325	0,319
Absorbancia 3	0,323	0,311	0,315	0,308
Media	0,331	0,325	0,324	0,317
Desviación estándar	0,005	0,010	0,007	0,007
% de coeficiente de Variación	1,64	2,98	2,15	2,22
%inhibición	2,17	3,94	4,14	6,11
IC 50 (ug/ml)	638,70			
Control		0,3	38	

CODIGO: WILCHES 196					
PARTE DE LA PLANTA: HOJAS					
CONCENTRACION (UG/ML) 5 10 25 50					
Abs. De la Clorofila	0,003	0,004	0,006	0,011	
Absorbancia 1	0,337	0,358	0,345	0,338	
Absorbancia 2	0,326	0,348	0,341	0,328	
Absorbancia 3	0,327	0,358	0,336	0,323	
Promedio	0,330	0,355	0,341	0,330	
Desviación Estándar	0,005	0,005	0,004	0,006	
% Coeficiente de Variación	1,51	1,33	1,08	1,89	
%inhibición	7,04	0,09	4,04	7,14	
IC 50 (ug/ml)	701,45				
Control		0,35	55		

Código	Wilches 193			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	-0,017	-0,016	-0,010	-0,004
Absorbancia 1	0,334	0,335	0,326	0,324
Absorbancia 2	0,327	0,33	0,319	0,312
Absorbancia 3	0,326	0,326	0,315	0,308
Media	0,329	0,330	0,320	0,315
Desviación estándar	0,004	0,004	0,005	0,007
% de coeficiente de Variación	1,08	1,11	1,42	2,16
%inhibición	2,66	2,27	5,33	6,90
IC 50 (ug/ml)	459,07			
Control		0,3	38	

CODIGO: WILCHES 133				
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,009	0,011	0,016	0,03
Absorbancia 1	0,342	0,352	0,334	0,315
Absorbancia 2	0,343	0,338	0,323	0,303
Absorbancia 3	0,340	0,334	0,323	0,306
Promedio	0,342	0,341	0,327	0,308
Desviación Estándar	0,001	0,008	0,005	0,005
% Coeficiente de Variación	0,37	2,26	1,59	1,66
%inhibición	3,76	3,85	7,98	13,24
IC 50 (ug/ml)	216,48			
Control		0,355	5	

Código	Wilches132			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	-0,015	-0,013	-0,005	-0,008
Absorbancia 1	0,322	0,316	0,317	0,317
Absorbancia 2	0,328	0,315	0,313	0,312
Absorbancia 3	0,328	0,316	0,308	0,31
Media	0,326	0,316	0,313	0,313
Desviación estándar	0,003	0,000	0,004	0,003
% de coeficiente de Variación	0,87	0,15	1,18	0,94
%inhibición	3,55	6,61	7,50	7,40
IC 50 (ug/ml)	714,55			
Control		0,3	38	

CODIGO: WILCHES 130	CODIGO: WILCHES 130			
PARTE DE LA PLANTA: HOJAS				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,002	0,005	0,013	0,032
Absorbancia 1	0,344	0,351	0,339	0,312
Absorbancia 2	0,344	0,339	0,331	0,305
Absorbancia 3	0,344	0,337	0,335	0,303
Promedio	0,344	0,342	0,335	0,307
Desviación Estándar	0,000	0,006	0,003	0,004
% Coeficiente de Variación	0,00	1,81	0,97	1,26
%inhibición	3,10	3,57	5,63	13,62
IC 50 (ug/ml)	206,52			
Control		0,35	55	

Código	Wilches 129					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50		
Abs. De la Clorofila	-0,016	-0,014	-0,008	-0,003		
Absorbancia 1	0,341	0,335	0,323	0,31		
Absorbancia 2	0,334	0,323	0,316	0,305		
Absorbancia 3	0,322	0,317	0,306	0,2983		
Media	0,332	0,325	0,315	0,304		
Desviación estándar	0,008	0,007	0,007	0,005		
% de coeficiente de Variación	2,36	2,30	2,21	1,57		
%inhibición	1,68	3,85	6,80	9,93		
IC 50 (ug/ml)	278,47					
Control		0,3	38	·		

CODIGO: WILCHES 13										
PARTE DE LA PLANTA: HOJAS										
CONCENTRACION (UG/ML)	RACION (UG/ML) 5 10 25 50									
Abs. De la Clorofila	-0,008	-0,003	-0,001	0,006						
Absorbancia 1	0,34	0,338	0,348	0,333						
Absorbancia 2	0,337	0,337	0,343	0,333						
Absorbancia 3	0,342	0,355	0,346	0,33						
Promedio	0,340	0,343	0,346	0,332						
Desviación Estándar	0,002	0,008	0,002	0,001						
% Coeficiente de Variación	0,60	2,41	0,59	0,43						
%inhibición	-0,49 -1,58 -2,27 1,78									
IC 50 (ug/ml)	889,63									
Control		0,3	38							

CODIGO: WILCHES 11									
PARTE DE LA PLANTA: HOJAS									
CONCENTRACION (UG/ML)	5	10	25	50					
Abs. De la Clorofila	0	0,001	0,003	0,009					
Absorbancia 1	0,352	0,349	0,346	0,343					
Absorbancia 2	0,353	0,344	0,341	0,339					
Absorbancia 3	0,350	0,344	0,339	0,333					
Promedio	0,352	0,346	0,342	0,338					
Desviación Estándar	0,001	0,002	0,003	0,004					
% Coeficiente de Variación	0,35	0,68	0,86	1,21					
%inhibición	0,94	2,63	3,66	4,69					
IC 50 (ug/ml)	670,15								
Control		0,3	55						

CODIGO: WILCHES 10								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50				
Abs. De la Clorofila	0,005	0,008	0,01	0,015				
Absorbancia 1	0,343	0,345	0,340	0,331				
Absorbancia 2	0,344	0,345	0,325	0,323				
Absorbancia 3	0,340	0,332	0,322	0,320				
Promedio	0,342	0,341	0,329	0,325				
Desviación Estándar	0,002	0,006	0,008	0,005				
% Coeficiente de Variación	0,50	1,80	2,39	1,43				
%inhibición	3,57	4,04	7,32	8,54				
IC 50 (ug/ml)	50 (ug/ml) 407,59							
Control		0,3	555					

4. Jungia fistulosa

n Garigia notarea								
CODIGO: WILCHES 178								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	0,007	0,008	0,014	0,023	0,041	0,062		
Absorbancia 1	0,348	0,374	0,357	0,340	0,309	0,281		
Absorbancia 2	0,347	0,362	0,344	0,335	0,298	0,267		
Absorbancia 3	0,343	0,357	0,345	0,330	0,285	0,266		
Promedio	0,346	0,364	0,349	0,335	0,297	0,271		
Desviación Estándar	0,002	0,007	0,006	0,004	0,010	0,007		
% Coeficiente de Variación	0,62	1,96	1,69	1,22	3,30	2,52		
%inhibición	3,62	-1,49	2,88	6,69	17,18	24,42		
IC 50 (ug/ml)	293,63							
Control			0,3	59				

Código	Wilches 175					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50		
Abs. De la Clorofila	0,001	0,002	0,005	0,01		
Absorbancia 1	0,314	0,305	0,304	0,289		
Absorbancia 2	0,306	0,306	0,3	0,288		
Absorbancia 3	0,306	0,298	0,292	0,285		
Media	0,309	0,303	0,299	0,287		
Desviación estándar	0,004	0,004	0,005	0,002		
% de coeficiente de Variación	1,22	1,17	1,67	0,59		
%inhibición	8,68	10,36	11,64	14,99		
IC 50 (ug/ml)	317,95					
Control		0,3	38			

CODIGO: WILCHES 173

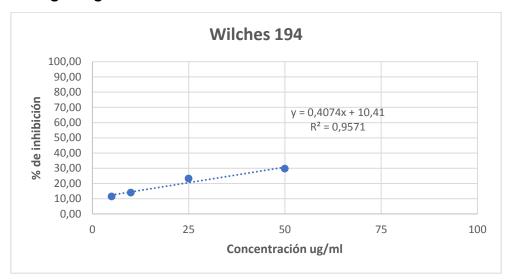
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	0,002	0,003	0,006	0,014	0,025	0,037		
Absorbancia 1	0,316	0,304	0,298	0,282	0,282	0,229		
Absorbancia 2	0,310	0,300	0,296	0,284	0,269	0,213		
Absorbancia 3	0,308	0,297	0,294	0,281	0,27	0,211		
Promedio	0,311	0,300	0,296	0,282	0,274	0,218		
Desviación Estándar	0,003	0,003	0,002	0,001	0,006	0,008		
% Coeficiente de Variación	1,09	0,95	0,55	0,44	2,16	3,70		
%inhibición	-0,11	3,43	4,82	9,22	12,00	30,01		
IC 50 (ug/ml)	280,59							
Control			0,3	11				

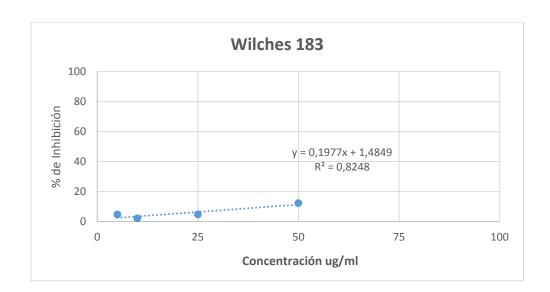
CODIGO: WILCHES 149								
PARTE DE LA PLANTA: HOJAS								
CONCENTRACION (UG/ML)	5	10	25	50	100	150		
Abs. De la Clorofila	0,008	0,012	0,018	0,031	0,059	0,085		
Absorbancia 1	0,335	0,294	0,288	0,265	0,217	0,175		
Absorbancia 2	0,318	0,284	0,280	0,252	0,206	0,165		
Absorbancia 3	0,319	0,287	0,282	0,284	0,202	0,192		
Promedio	0,324	0,288	0,283	0,267	0,208	0,177		
Desviación Estándar	0,008	0,004	0,003	0,013	0,006	0,011		
% Coeficiente de Variación	2,40	1,45	1,20	4,92	3,04	6,29		
%inhibición	-4,18	7,29	8,90	14,15	33,01	42,98		
IC 50 (ug/ml)	166,66							
Control		·	0,3	11				

CODIGO: WILCHES 140									
PARTE DE LA PLANTA: HOJAS									
CONCENTRACION (UG/ML)	5	10	25	50	100	150			
Abs. De la Clorofila	0,011	0,016	0,024	0,041	0,082	0,116			
Absorbancia 1	0,293	0,290	0,276	0,265	0,183	0,137			
Absorbancia 2	0,300	0,294	0,288	0,274	0,166	0,128			
Absorbancia 3	0,299	0,293	0,288	0,277	0,173	0,14			
Promedio	0,297	0,292	0,284	0,272	0,174	0,135			
Desviación Estándar	0,003	0,002	0,006	0,005	0,007	0,005			
% Coeficiente de Variación	1,04	0,58	1,99	1,87	4,01	3,78			
%inhibición	4,39	6,00	8,68	12,54	44,05	56,59			
IC 50 (ug/ml)	129,53								
Control	0,311								
Código Wilches139									

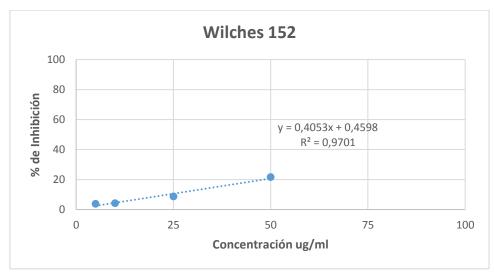
Parte de la planta: Hojas							
CONCENTRACION (UG/ML)	5	10	25	50	100	150	
Abs. De la Clorofila	0,006	0,007	0,009	0,014	0,025	0,035	
Absorbancia 1	0,309	0,302	0,291	0,296	0,276	0,267	
Absorbancia 2	0,306	0,298	0,294	0,292	0,274	0,267	
Absorbancia 3	0,304	0,299	0,300	0,288	0,27	0,26	
Media	0,306	0,300	0,295	0,292	0,273	0,265	
Desviación estándar	0,002	0,002	0,004	0,003	0,002	0,003	
% de coeficiente de							
Variación	0,67	0,57	1,27	1,12	0,91	1,25	
%inhibición	1,50	3,64	5,14	6,11	12,11	14,90	
IC 50	543,17						
Control			0,3	11			

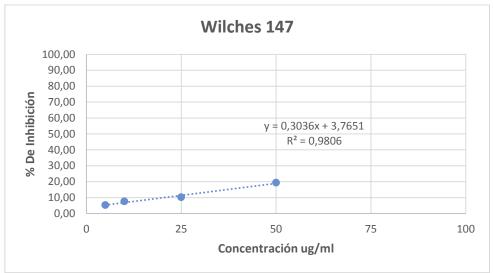
Código	Wilches138					
Parte de la planta: Hojas						
CONCENTRACION (UG/ML)	5	10	25	50	100	150
Abs. De la Clorofila	0,006	0,008	0,020	0,039	0,03	0,123
Absorbancia 1	0,309	0,297	0,299	0,263	0,256	0,157
Absorbancia 2	0,304	0,285	0,290	0,255	0,246	0,14
Absorbancia 3	0,303	0,297	0,289	0,254	0,244	0,14
Media	0,305	0,293	0,293	0,257	0,249	0,146
Desviación estándar	0,003	0,006	0,004	0,004	0,005	0,008
% de coeficiente de						
Variación	0,86	1,93	1,54	1,57	2,11	5,50
%inhibición	1,82	5,79	5,89	17,26	20,04	53,16
IC 50 (ug/ml)	160,95					
Control			0,3	11		

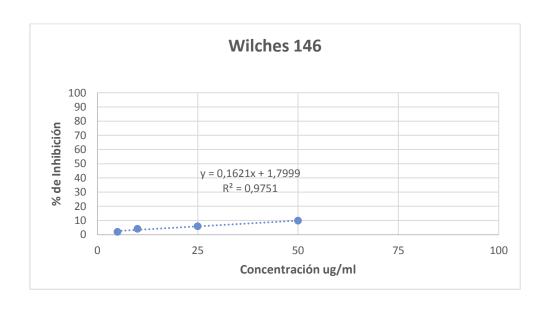

Código	Wilches137			
Parte de la planta: Hojas				
CONCENTRACION (UG/ML)	5	10	25	50
Abs. De la Clorofila	0,003	0,004	0,010	0,018
Absorbancia 1	0,307	0,314	0,294	0,282
Absorbancia 2	0,302	0,309	0,296	0,274
Absorbancia 3	0,301	0,304	0,29	0,279
Media	0,303	0,309	0,293	0,278
Desviación estándar	0,003	0,004	0,002	0,003
% de coeficiente de Variación	0,87	1,32	0,85	1,19
%inhibición	10,26	8,58	13,21	17,65
IC 50 (ug/ml)		221	,09	

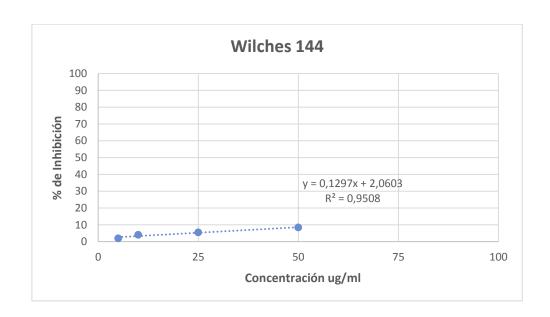


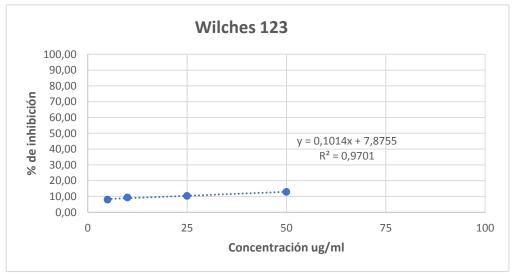
Control				10 25 50 100 150 0,013 0,019 0,028 0,047 0,063 0,306 0,282 0,264 0,241 0,159 0,303 0,275 0,271 0,237 0,145 0,303 0,275 0,262 0,238 0,15 0,304 0,377 0,366 0,330 0,454							
Código	Wilches1	35									
Parte de la planta: Hojas											
CONCENTRACION (UG/ML)		5	10	25	50	100	150				
Abs. De la Clorofila	0,0	11	0,013	0,019	0,028	0,047	0,063				
Absorbancia 1	0,2	84	0,306	0,282	0,264	0,241	0,159				
Absorbancia 2	0,2	83	0,303	0,275	0,271	0,237	0,145				
Absorbancia 3	0,2	84	0,303	0,275	0,262	0,238	0,15				
Media	0,2	84	0,304	0,277	0,266	0,239	0,151				
Desviación estándar	0,0	00	0,001	0,003	0,004	0,002	0,006				
% de coeficiente de Variación	0,	17	0,47	1,19	1,45	0,71	3,83				
%inhibición	8,	79	2,25	10,83	14,58	23,26	51,34				
IC 50 (ug/ml)				164,	82						
Control			·	0,3	11	·					



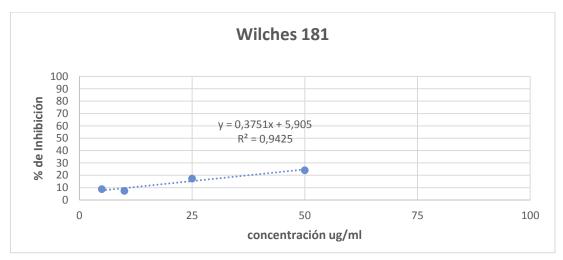

1. Jungia rugosa

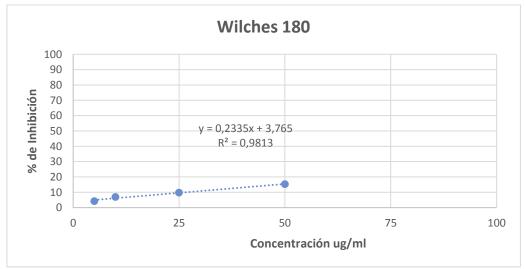


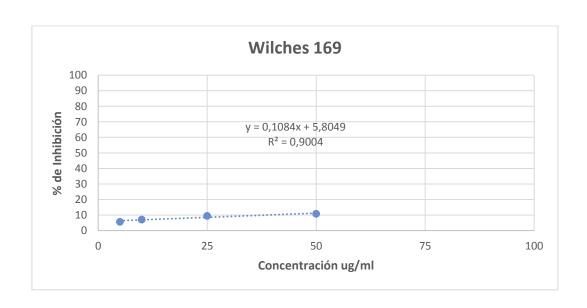




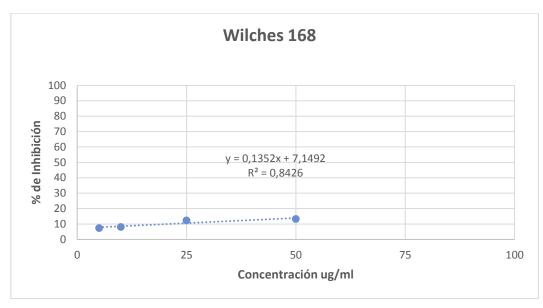


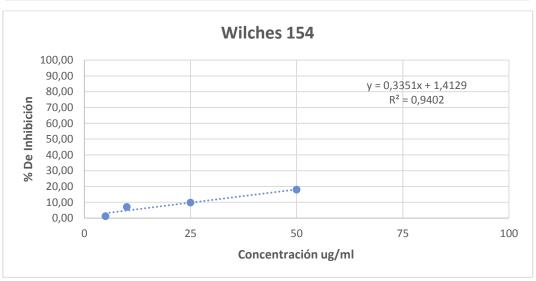


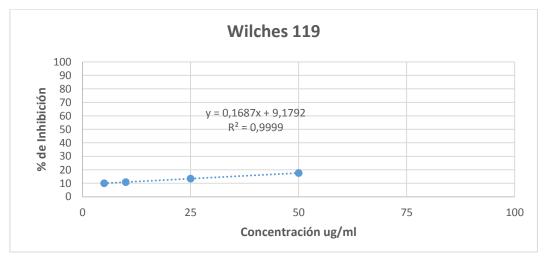


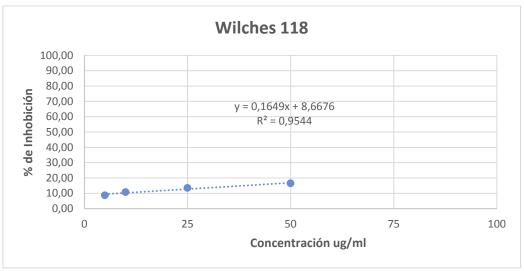


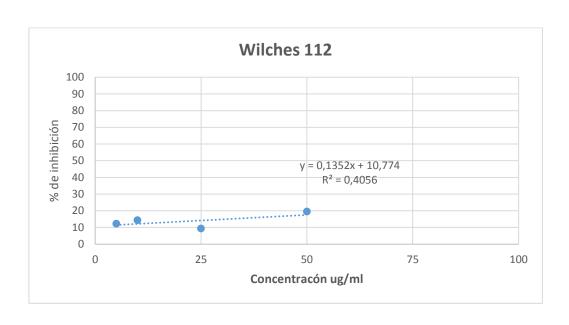
2. Jungia coarctata

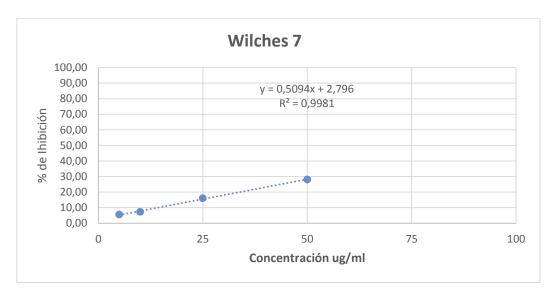


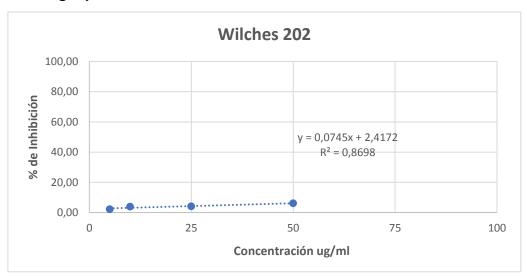




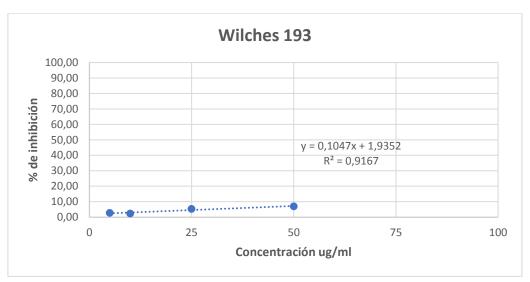


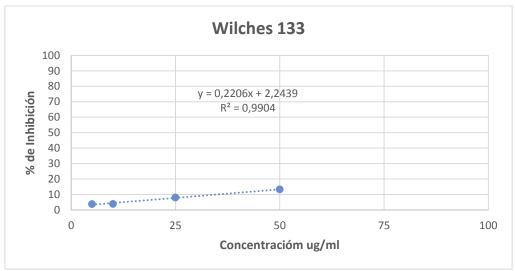


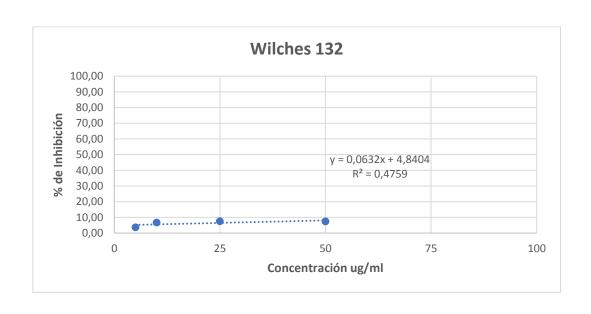




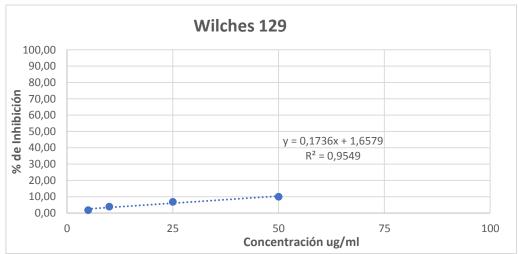


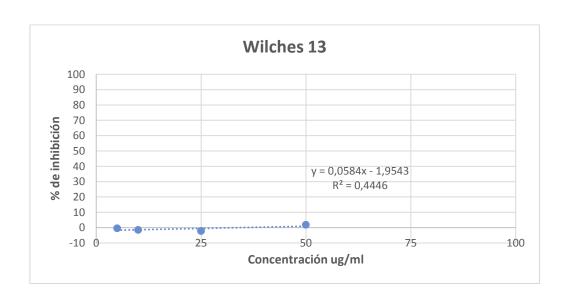


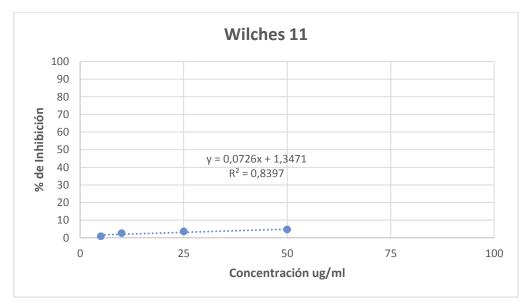

3. Jungia paniculata

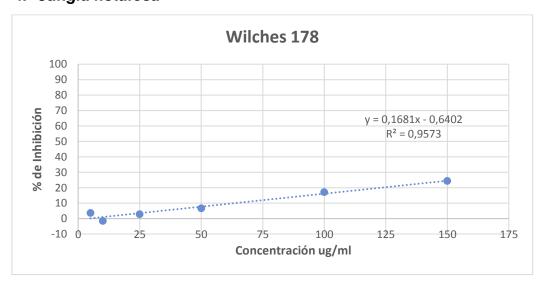


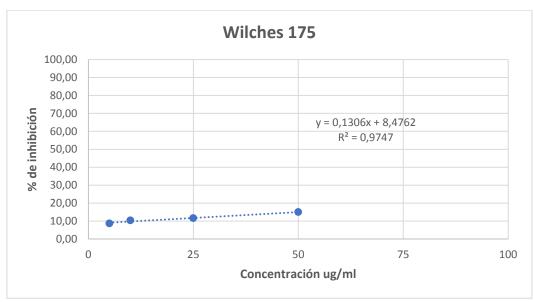




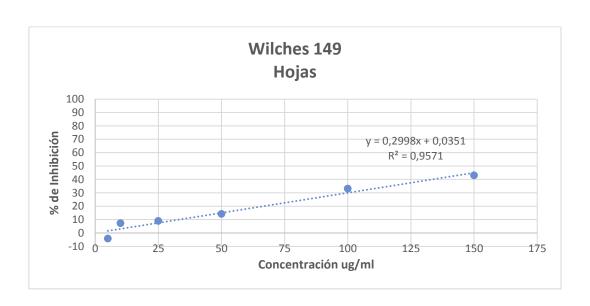


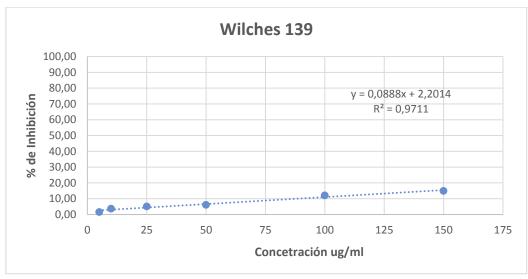


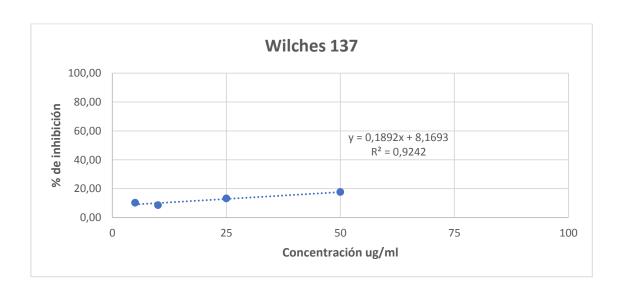


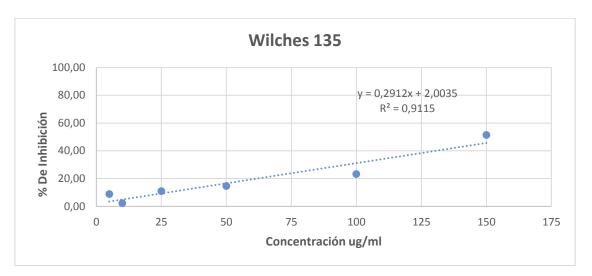





4. Jungia fistulosa







Anexo E: Resultados de la actividad antioxidante de extractos en diclorometano por el método del DPPH

Resultados de la actividad antioxidante de extractos metanólicos por el método del poder reductor

1. Jungia rugosa

								$ar{X}$		
	Concentració				AAEAC	AAEAC	AAEAC	AAEAC(mg/	Des.	Coef.variació
Código	n (µg/ml)	Abs 1	Abs 2	Abs 3	1(mg/g	2(mg/g	3(mg/g	g	Estandar	n
Wilches										
183	100	0,089	0,09	0,094	69,53	70,31	73,44	71,09	1,69	2,37
Wilches										
152	100	0,185	0,204	0,214	144,53	159,38	167,19	157,03	9,40	5,98
Wilches19										
4	100	0,1	0,109	0,115	78,13	85,16	89,84	84,38	4,82	5,71
Wilches										
123	100	0,125	0,13	0,137	97,66	101,56	107,03	102,08	3,85	3,77
Wilches 97	100	0,196	0,201	0,208	134,25	137,67	142,47	138,13	3,37	2,44
Wilches 98	100	0,238	0,236	0,25	163,01	161,64	171,23	165,30	4,23	2,56
Wilches										
144	100	0,153	0,165	0,194	119,53	128,91	151,56	133,33	13,45	10,08
Wilches 99	100	0,184	0,187	0,195	126,03	128,08	133,56	129,22	3,18	2,46
Wilches										
100	100	0,16	0,16	0,168	109,59	109,59	115,07	111,42	2,58	2,32
Wilches										
146	100	0,191	0,176	0,2	149,22	137,50	156,25	147,66	7,73	5,24
Wilches										
147	100	0,139	0,146	0,155	108,59	114,06	121,09	114,58	5,12	4,47

2. Jungia coarctata

								\overline{X}		
	Concentració				AAEAC	AAEAC 2	AAEAC 3	AAEAC	Des.	Coef.variació
Código	n (µg/ml)	Abs 1	Abs 2	Abs 3	1(mg/g)	(mg/g)	(mg/g)	(mg/g)	Estandar	n
Wilches 95	100	0,241	0,254	0,301	188,28	198,44	235,16	207,29	20,13	9,71
Wilches18										
0	100	0,19	0,195	0,179	148,44	152,34	139,84	146,88	5,22	3,55
Wilches										
118	100	0,188	0,247	0,204	146,88	192,97	159,38	166,41	19,46	11,70
Wilches										
168	100	0,287	0,334	0,398	196,58	196,58	228,77	207,31	15,18	7,32
Wilches										
181	100	0,129	0,133	0,188	100,78	100,78	103,91	101,82	1,47	1,45
Wiches 96	100	0,205	0,235	0,264	160,16	183,59	206,25	183,33	18,82	10,26
Wilches										
169	100	0,192	0,214	0,219	150,00	167,19	171,09	162,76	9,16	5,63
Wilches										
119	100	0,301	0,364	0,344	206,16	249,32	235,62	230,37	18,00	7,82
Wilches 7	100	0,252	0,284	0,288	196,88	221,88	225,00	214,58	12,59	5,87
Wilches										
112	100	0,211	0,221	0,25	144,52	151,37	171,23	155,71	11,33	7,28
Wilches										
154	100	0,22	0,235	0,275	171,88	183,59	214,84	190,10	18,14	9,54
Wilches										
155	100	0,224	0,23	0,27	175,00	179,69	210,94	188,54	15,95	8,46

3. Jungia paniculata

24.11	Concentración				AAEAC 1	AAEAC 2	AAEAC 3	\overline{X}	Des.	
Código	(μg/ml)	Abs 1	Abs 2	Abs 3	(mg/g)	(mg/g)	(mg/g)	(mg/g)	Estandar	Coef.variación
Wilches										
10	100	0,266	0,257	0,269	207,81	200,78	210,16	206,25	3,98	1,93
Wilches										
130	100	0,224	0,241	0,279	175,00	188,28	217,97	193,75	17,96	9,27
Wilches										
133	100	0,213	0,222	0,271	166,41	173,44	211,72	183,85	19,91	10,83
Wilches										
196	100	0,152	0,145	0,211	118,75	113,28	164,84	132,29	23,13	17,48
Wilches										
193	100	0,167	0,173	0,175	130,47	135,16	136,72	134,11	2,66	1,98
Wilches										
132	100	0,315	0,387	0,378	215,75	265,07	258,90	246,58	21,94	8,90
Wilches										
202	100	0,193	0,212	0,201	150,78	165,63	157,03	157,81	6,09	3,86
Wiclhes										
129	100	0,353	0,348	0,367	275,78	271,88	286,72	278,13	6,28	2,26
Wilches										
13	100	0,291	0,275	0,292	227,34	214,84	228,13	223,44	6,09	2,72
Wilches										
131	100	0,281	0,327	0,37	192,47	223,97	253,42	223,29	24,89	11,15

Wilches										
11	100	0,265	0,278	0,299	207,03	217,19	233,59	219,27	10,94	4,99

4. Jungia fistulosa

	Concentración (μg/ml)	Abs 1	Abs 2				AAEAC 3 (mg/g)		Des. Estandar	Coef.variación
Wilches 173	100	0,286	0,29	0,318	195,89	198,63	217,81	204,11	9,75	4,78
Wilches 135	100	0,347	0,345	0,423	237,67	236,30	289,73	254,57	24,87	9,77
Wilches 137	100	0,249	0,242	0,249	194,53	189,06	194,53	192,71	2,58	1,34
Wilches 175	100	0,18	0,18	0,215	123,29	123,29	147,26	131,28	11,30	8,61
Wilches 140	100	0,341	0,358	0,396	266,41	279,69	309,38	285,16	17,96	6,30
Wilches 138	100	0,267	0,274	0,279	208,59	214,06	217,97	213,54	3,85	1,80
Wilches 139	100	0,246	0,268	0,259	192,19	209,38	202,34	201,30	7,06	3,50
Wilches 149	100	0,452	0,435	0,468	353,13	339,84	365,63	352,86	10,53	2,98

Anexo F: Resultados de la actividad antioxidante de extractos metanólicos por el método del poder reductor

Resultados de la actividad antioxidante de extractos en diclorometano por el método del poder reductor

1. Jungia rugosa

Código	Concentració n (µg/ml)	Abs 1	Abs 2	Abs 3	AAEAC 1 (mg/g)	AAEAC 2 (mg/g)	AAEAC 3 (mg/g)	\overline{X} AAEAC (mg/g)	Des. Estandar	Coef.variació
Wilches										
183	100	0,144	0,141	0,141	112,50	110,16	110,16	110,94	1,10	1,00
Wilches										
152	100	0,096	0,092	0,092	65,75	63,01	63,01	63,93	1,29	2,02
Wilches										
194	100	0,196	0,18	0,186	153,13	140,63	145,31	146,35	5,16	3,52
Wilches										
123	100	0,105	0,101	0,096	71,92	69,18	65,75	68,95	2,52	3,66
Wilches										
144	100	0,089	0,094	0,094	59,53	63,44	63,44	62,14	1,84	2,96
Wilches										
100	100	0,1	0,103	0,113	68,13	70,47	78,28	72,29	4,34	6,01

2. Jungia coarctata

Código	Concentració n (µg/ml)	Abs 1	Abs 2	Abs 3	AAEAC 1 (mg/g)	AAEAC 2 (mg/g)	AAEAC 3 (mg/g)	\overline{X} AAEAC (mg/g)	Des. Estandar	Coef.variació
Wilches										
180	100	0,108	0,116	0,13	73,97	79,45	89,04	80,82	6,23	7,71
Wilches										
118	100	0,211	0,22	0,236	164,84	171,88	184,38	173,70	8,08	4,65
Wilches										
168	100	0,131	0,13	0,127	102,34	101,56	99,22	101,04	1,33	1,31
Wilches										
181	100	0,107	0,117	0,13	73,29	80,14	89,04	80,82	6,45	7,98
Wilches										
169	100	0,103	0,12	0,152	80,47	93,75	118,75	97,66	15,87	16,25
Wilches										
119	100	0,098	0,123	0,145	76,56	96,09	113,28	95,31	15,00	15,74
Wilches 7	100	0,222	0,234	0,244	173,44	182,81	190,63	182,29	7,03	3,85
Wilches										
112	100	0,219	0,223	0,241	171,09	174,22	188,28	177,86	7,48	4,20
Wilches										
154	100	0,213	0,228	0,23	166,41	178,13	179,69	174,74	5,93	3,39
Wilches										
155	100	0,217	0,227	0,242	169,53	177,34	189,06	178,65	8,03	4,49

3. Jungia paniculata

	Concentración				AAEAC 1	AAEAC 2	AAEAC 3	$ar{X}$	Des.	
Código	(µg/ml)	Abs 1	Abs 2	Abs 3	(mg/g)	(mg/g)	(mg/g)	(mg/g)	Estandar	Coef.variación
Wilches										
10	100	0,214	0,225	0,247	167,19	175,78	192,97	178,65	10,72	6,00
Wilches										
130	100	0,108	0,128	0,16	84,38	100,00	125,00	103,13	16,73	16,22
Wilches										
133	100	0,12	0,137	0,156	93,75	107,03	121,88	107,55	11,49	10,68
Wilches										
196	100	0,117	0,13	0,163	80,14	89,04	111,64	93,61	13,26	14,17
Wilches										
193	100	0,109	0,131	0,124	74,66	89,73	84,93	83,11	6,29	7,56
Wilches										
132	100	0,088	0,108	0,096	13,47	27,17	18,95	19,86	5,63	28,34
Wilches										
202	100	0,101	0,114	0,13	69,18	78,08	89,04	78,77	8,12	10,31
Wilches										
129	100	0,104	0,134	0,148	81,25	104,69	115,63	100,52	14,34	14,27
Wilches										
13	100	0,075	0,08	0,079	5,21	9,11	8,33	7,55	1,69	22,35
Wilches										
131	100	0,092	0,091	0,095	18,49	17,71	20,83	19,01	1,33	6,98
Wilches					4=0.5.		40= 6.	400.55		
11	100	0,218	0,227	0,25	170,31	177,34	195,31	180,99	10,53	5,82

4. Jungia fistulosa

Código	Concentración (µg/ml)	Abs 1	Abs 2				AAEAC 3 (mg/g)		Des. Estandar	Coef.variación
Wilches 173	100	0,116	0,116	0,134	79,45	79,45	91,78	83,56	5,81	6,96
Wilches 135	100	0,084	0,084	0,076	57,53	57,53	52,05	55,71	2,58	4,64
Wilches137	100	0,078	0,079	0,079	53,42	54,11	54,11	53,88	0,32	0,60
Wilches 175	100	0,103	0,104	0,127	70,55	71,23	86,99	76,26	7,59	9,96
Wilches 140	100	0,125	0,135	0,157	97,66	105,47	122,66	108,59	10,44	9,62
Wilches 178	100	0,091	0,081	0,084	62,33	55,48	57,53	58,45	2,87	4,91
Wilches 138	100	0,087	0,078	0,076	59,59	53,42	52,05	55,02	3,28	5,96
Wilches 139	100	0,065	0,055	0,056	44,52	37,67	38,36	40,18	3,08	7,67
Wilches 149	100	0,121	0,138	0,159	94,53	107,81	124,22	108,85	12,14	11,15

Anexo G: Resultados de la actividad antioxidante de extractos en diclorometano por el método del poder reductor