Effectiveness Assessment of an Early Testing Technique using
Model-Level Mutants”®

M. F. Granda'
Computer Science Department,
University of Cuenca
Ecuador
fernanda.granda@ucuenca.edu.ec

ABSTRACT While
technologies enhance the capabilities of model-based/driven
development, they introduce challenges for testers such as how to
perform early testing at model level to ensure the quality of the
model. In this context, we have developed an early testing
technique supported by the CoSTest tool to validate requirements
at model level. In this paper we describe an empirical evaluation
of CoSTest with respect to its effectiveness in terms of its fault
detection and test suite adequacy. This evaluation is carried out
by model-level mutation testing using first order mutants (created
by injection of a single fault) and high order mutants (containing
more than one fault) with seven conceptual schemas (of different
sizes) that represent the functionality of different software
systems in different domains. Our findings show that the tests
generated by CoSTest are effective at killing a large number of
mutants. However, there are also some fault types (e.g. delete the
references to a class attribute or an operation call in a constraint)
that our test suites were not able to detect. CoSTest was more
effective in terms of detecting fault types using high order
mutants that first order mutants. Thus, CoSTest’s effectiveness is
affected by the mutant type tested.

modern software development

CCS CONCEPTS

+ Software and its engineering — Software testing and
debugging « Software and its engineering — Empirical
software validation

KEYWORDS

Test Suite Effectiveness, Effectiveness Assessment, Mutation
Testing, Conceptual Schemas Testing, Class Diagram Mutation

*Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

EASE'17, June 15-16, 2017, Karlskrona, Sweden

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4804-1/17/06..$15.00

http://dx.doi.org/10.1145/3084226.3084257

N. Condori-Fernandez
University of A Coruna, Spain
Vrije Universitie Amsterdam, The
Netherlands
n.condori.fernandez@udc.es,
n.condori-fernandez@vu.nl

98

T.E.). Vos, O.Pastor
TPROS, Universitat Politécnica de
Valéncia
Spain
{fgranda, tvos,
opastor}@pros.upv.es

ACM Reference format:

M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor. 2017. SIG
Proceedings Paper in word Format. In Proceedings of ACM Woodstock
conference, Karlskrona, Sweden, June 2017 (EASE’2017), 10 pages.
http://dx.doi.org/10.1145/3084226.3084257

1 INTRODUCTION

Constructing software automatically from models or Conceptual
Schemas (CS) is one of the current challenges in software
engineering, especially in a Model-driven Engineering context
[26]. A well-formed model, being an accurate representation of all
the requirements for a system under construction, is a key factor
in the successful development and production of the system. The
development of a CS is an iterative process involving evaluation
of the model, its accuracy and its improvement from the
evaluation results.

Testing is a well-established technique that helps to accomplish
this task and provides a level of confidence in the end product
based on the coverage of the requirements achieved by the tests.
In this context, we defined an early testing technique for
validating Conceptual Schemas in a Model-driven environment
[14][13]. This technique covers: 1) test suite generation, 2) CS
under test generation, 3) test execution and report generation
with the faults detected and the coverage analysis. Therefore, the
technique’s effectiveness and adequacy of the test suite require to
be evaluated.

Effectiveness in detecting faults can be evaluated by the types and
number of faults that can be detected by the technique [28]. For
assessing the adequacy of a test suite, mutation testing is a method
that injects artificial faults or changes into a software product
(mutant) and checks whether a test suite is “good enough” to
detect these artificial faults. The adequacy level of the test suite
can be measured by a mutation score that is computed in terms of
the number of mutants killed (detected) by the test suite [18].
Killing a mutant means that the execution is stopped because a
fault was detected or because it reaches an inconsistent state and
cannot continue execution. Mutants are produced by using
mutation operators that describe syntactic changes to the original
software product. Mutants can be classified into two types: First
Order Mutants (FOM) and Higher Order Mutants (HOM) [19].
Traditional mutation testing considers FOM created by injection
of a single fault. HOM contain more than one fault. Jia and

EASE’2017, June 2017, Karlskrona, Sweden

Harman claim that some HOMs are harder to kill than the FOMs
[18], and so we were interested in evaluating the effectiveness of
CoSTest test cases in both mutant types.

Mutation testing was originally introduced by DeMillo et al. [5]
and Hamlet [17], as a support technique for developing tests for
software systems represented at the code level. However, it has
also been applied to models at the design level, for example to
Finite State Machines [9], State Charts [11], Activity Diagrams
[10], and Network protocols [20]. However, there is no empirical
evidence on the effectiveness of mutation testing in improving
test suites for Conceptual Schemas.

This paper uses a mutation-testing based approach to evaluate the
fault detection effectiveness of an automatically generated test
suite to test a given CS. This means the CS is mutated and not the
code! The goal of our study is, therefore, to analyse the test suite
generated by CoSTest tool for the purpose of carrying out a
comparative evaluation with respect to its effectiveness in detecting
faults, fault types and the adequacy of the test suite in the context of
mutants (i.e. FOM and HOM) generated for seven CS.

In a previous paper [12], we proposed a set of 50 mutation
operators specifically designed to generate mutants for UML Class
Diagram-based CS and we evaluated the usefulness of an effective
subset of mutant types of 18 mutation operators to inject defects
into a CS. For this, we developed 1) the MutUML tool (Mutation
for UML) [16] for the generation and parsing (i.e. syntax analysis)
of first order mutants by using the set of 18 mutation operators
previously defined for Conceptual Schema based on UML Class
Diagram (CD); and, 2) the CoSTest tool (Conceptual Schema
Testing) [12] to support the semi-automatic generation of test
cases from a requirements model, the execution of CS/CS mutants
against generated tests, and reporting the results.

The main contribution of this paper is to empirically evaluate
CoSTest’s effectiveness in detecting faults and the adequacy of the
test suite, using seven CSs and mutation testing.

The paper is organized as follows. Section 2 describes the CoSTest
technique. Section 3 presents the experimental design. Section 4
analyses and interprets the results. Section 5 discusses the results.

M. F. Granda et al.

Section 6 summarizes the threats to validity. The conclusions and
future work are given in Section 7.

2 AN EARLY TESTING TECHNIQUE: CoSTest

As mentioned in Section 1, the main goal of CoSTest is to
automate a testing approach for Conceptual Schemas. For this,
CoSTest generates test cases (i.e. assertions with the expected
value), transforms the conceptual schema under test into an
executable CS and executes the test process for reporting the
results. In this section we describe the testing environment, the
steps of the CoSTest technique and test cases properties.

2.1 The testing environment

The environment for testing conceptual schemas provided by
CoSTest is based on the Action Language for Foundational UML,
or ALF [23], adopted as standard by the OMG [25]. ALF is basically
a textual notation for UML behaviours that can be attached to a
UML model at any point that may contain a UML behaviour, e.g.
the method of an operation or the classifier behaviour of a class.
Semantically, ALF maps the Foundational UML (fUML [24])
subset, then fUML provides the virtual machine for the execution
of the ALF language, so that the test suite and executable model
are generated and transformed into ALF language, respectively.

2.2 The CoSTest Process

Fig. 1 provides the reader with a description of how CoSTest
operates, its phases and activities. The Figure contains four main
parts: CoSTest artefacts, CoSTest activities, software artefacts and
modeller/tester activities. As the names suggest, CoSTest
activities are done automatically whereas the modeller/tester
activities are done manually. CoSTest encapsulates all the
CoSTest artefacts. The numbered ovals represent activities and
the boxes represent artefacts. Arrows to/from activities represent
the consumption and production of artefacts, respectively.

TEST SUITE GENERATION

TEST EXECUTION AND

CSUT GENERATION | ResyLTs GENERATION

Generate Concretize
Abstract Test

-Scenarios

Generate Test

- Vmw Cases and Oracles /

Variable
Values

/" Generate \
Test Model |

ATS
representation l

representation

Test
type

RM
Identifier

& @
with L Execute Test
Oracles ECS —— Cases
representation ‘

oSTest’s Artefacts 4

Testing
type

/|

[CoSTest’s Activities _cs

Generate
Executable

Requirements/Model
% ‘
p
0., 0o ©
7 CO’\CTE‘\ZE

Requirements Choose
\Jest Cases /

. Variables

Software Artefactq

Testing Results D

Coverage Report
Detected Faults List

Chooseo

_Testing

Conceptual schema

Conceptual
Schema

model

Modeller/tester Activities

Figure 1. The CoSTest process

99

Effectiveness Assessment of an Early Testing Technique using...

A brief description of each CoSTest activity is as follows:

2.2.1 Test suite Generation

1. Identify the input requirements: The tester needs to select the
requirements model (RM), which is based on
Communication Analysis [6]. We assume that the model is
syntactically well-formed.

2. Generate the test model (TM): CoSTest analyses the RM
structure by automatically traversing all the RM nodes
(event sequences) and extracting all the Test Model (TM)
elements and their properties.

3. Generate the abstract test scenarios (TS): CoSTest computes
the total number of possible test scenarios (based on event
sequence) and generates the test scenarios with abstract test
cases. These three steps are explained with more detailed in
[14].

4. Concretize Variables: The next step is to concretize the
variables of the test cases. The tester can (i) recover a variable
list from the test model and generate values automatically
from the example values specified in the requirements
model, or (ii) concretize manually by introducing values for
each variable.

5. Choose the test suite types: The tester can select between two
types of test cases, such as (i) partial (only positive test cases)
ii) complete, which adds test cases with some negative
conditions, such as values out of range, constraint violations,
and unique value violation for class variables.

6. Generate concretized test cases (CTC): In this phase, CoSTest

automatically transforms the abstract test cases into
parameterized scripts. The output is a non-executable script
for each test scenario. Scripts are not executable in the sense
that they do not contain concretized variables.
CoSTest then computes and generates the total number of
possible executable and concrete test cases that may be
executed on the CS, including concretized variables, the test
objective and an expected output (oracle) that is used to
validate the CS requirements. The output of this step is a test
suite formed by an executable script (ALF script) for each test
scenario. The test suite for the subsequent testing process is
now ready.

7. Identify the Conceptual Schema: The tester, which is a UML
Class Diagram (CD), identifies the Conceptual Schema. We
assume that the CS is syntactically well-formed.

2.2.2 CSUT Generation

8. Generate an Executable Conceptual Schema (CSUT): CoSTest
transforms the CS into an executable format (ALF) for its
execution.

2.2.3 Test Execution and Reports Generation

9. Choose testing type. The testing type is based on the

following stop criteria: Testing should be stopped when (1)

one fault is detected; or (2) all available test cases have been

run.

Execute Test suites: Test cases are executed on the executable

CS and the output is compared to the stored expected output

(from Step 6). CoSTest generates an execution report in

which the executed test cases are classified as passed, failed

100

EASE’2017, June 2017, Karlskrona, Sweden

or inconclusive. A coverage analysis is performed and a fault
report is generated.

2.3 CoSTest Test Cases

A test suite for CS is a set of one or more test scenarios. Each test
scenario is a story that consists of one or more test cases. The
CoSTest test cases exhibit the following properties:

e A test case consists of a fixture and one or more statements
that execute one of the tests applicable to CS, such as testing
assertions about the occurrence or the non-occurrence of an
event. The fixture is a set of statements (e.g. create an object
or link, execute a method) that create a CS state and define
the values of the CS variables.

. Each execution of a test case starts with the execution of the
fixture. For example, if we want to test the creation of an
object of the RegisterUser class in the Sudoku Game CS, a test
case that corresponds to a one test scenario generated by
CoSTest would be as shown in Fig. 2.

e [tisassumed that the execution of each test case starts with
an empty state. With this assumption, test cases of a CS are
independent of each other, and the order of their execution
is therefore irrelevant.

private import Sudoku::¥*;

public import Alf::Library::BasicTypea::*;
public import RAlf::Library::Asserts::¥;
activity AbsTScenaric 1 Sudeku () {

registered user REGISTERED USER(p atrusername=
rd " B_atrname:

", p atrmail:
4", registered user inst;

Fixture

p_ar.rsurnamez Om ;
REGISTEREL_USER) ;|

RssertTrue

——
test

Figure 2: A partial view of a test case

e Atest case always returns a verdict which may be Pass, Fail

or Inconsistent. The execution of the test cases leads to one

of the following three outputs:

o No defects and a status of passed execution. This

is considered the output expected.
A defect list and a status of failed execution. For
example the execution of the test cases may
produce an output with several defects (e.g.
missing class, incorrect operation and missing
operation), which is different from the expected
output.
A defect list (optional) and “status=inconclusive” if
the execution is not conclusive. For example, if the
fixture has caused a fault, this leads to an
inconclusive status.

In the next section, we describe the design of a controlled
experiment for evaluating CoSTest by means of its effectiveness
for detecting faults and test suite quality.

3 EXPERIMENTAL PLAN

Since the experiment was motivated by the need to investigate the
effectiveness of CoSTest, we intended to compare the
effectiveness and adequacy of the test cases when they were

EASE’2017, June 2017, Karlskrona, Sweden

applied in both first order mutants and high order mutants to
detect faults in seven CS. The experiment was carried out in 2016
(from January to March) and was designed according to Wohlin
et al. [29], and reported according to Juristo and Moreno [21].
This section describes the goal of the study, research questions,
metrics used, the subject CS, and the experimental settings.

3.1 Goal

In the line with the Goal/Question/Metric Paradigm [27], the goal
of our empirical study was the following:

Analyse the test suite generated by the CoSTest tool for the
purpose of carrying out a comparative evaluation with respect to
its effectiveness in detecting faults, fault types and the adequacy of
the test suite from the point view of the testers in the context of
mutants (i.e. FOM and HOM) generated for seven CS.

3.2 Research Questions

As we were interested in determining if the effectiveness was the

same for both types of mutants (ie. FOM and HOM), we posed

and studied the following research questions:

e RQI: How the mutation type influence on the CoSTest’s
effectiveness in detecting faults?

e RQ2: How adequate are CoSTest test suites for killing both
the First Order Mutants and High Order Mutants of
Conceptual Schemas?

3.3 Hypotheses

We defined three hypotheses. The null hypotheses (represented
by a 0 in the subscript), which corresponds to the absence of an
impact of the independent variables on the dependent variables.
The alternative hypotheses involve the existence of such an
impact and are the expected result.

Hio Mutant type does not influence the effectiveness of the
CoSTest test cases in detecting faults in Conceptual Schemas
(RQ1).

Hzo Mutant type does not influence the effectiveness of the
CoSTest test cases in detecting fault types in Conceptual Schemas
(RQ1).

H3o0 Mutant type does not influence the adequacy of the CoSTest
test cases (RQ2).

3.4 Variables and Metrics

3.4.1 Independent Variables

We consider one independent variables (a.k.a. factor [21]):
1. Mutation type. Since this study uses mutation for injecting
the artificial faults into a CS, mutants can be classified into
two types according to the number of mutated elements:
o First Order Mutants (FOM), which are generated
by applying mutation operators only once [18].
o Higher Order Mutants (HOM), which are
generated by applying mutation operators more
than once [18].

M. F. Granda et al.

3.4.2 Dependent Variables and Metrics

We consider the following two dependent variables (ak.a.
response variables [21]), which are expected to be influenced to
some extent by the independent variable.

1. Fault Detection Effectiveness. To investigate our RQ1 we need
to measure the effectiveness of the CoSTest tool in terms of
both the number of faults found and the type (or cause) of
the faults that were found [22] using the following metrics:
e The metric Rate of Fault Detection (FDR) is the value

calculated by dividing the number of faults detected by

the tool Fp(T) by the total number of faults that are

expected to be identified from the CS mutants (FE).
FDR(T) = Fp(T)/Fg (1)

e The metric Rate of Fault Type Detection (FTDR) is the
value calculated by dividing the number of fault types
detected by the tool FTp(T) by the total number of fault
types that are expected to be identified from the CS
mutants (FTE).

FTDR(T) = FTp(T)/FTs (2)

2. Adequacy Test Suite. For a test suite T the adequacy score is
a variable that can be used to measure the effectiveness of a
test suite in terms of its ability to kill mutants because it is
one outcome of the Mutation Testing process, which
indicates the quality of the input test set [18]. During
execution each CS mutant Mi will be run against a test case
suite T. If the result of running Mi s different from the result
of running CS for any test case in T, then the mutant Mi is
said to be “killed”, otherwise it is said to have “survived”. A
CS mutant may survive either because it is equivalent to the
original model (i.e. it is semantically identical to the original
model although syntactically different) or the test set is
inadequate to kill the mutant. Thus, the mutation score (MS)
for a test suite T is the ratio of the number of killed mutants
Mk (T) over the total number of the non-equivalent mutants
Mt generated for a CS, as follows:

MS(T) = Mp(T)/Mr (3)

3.5 Experimental Context

3.5.1 SubjectCS

We used seven subject CS in our study which contained a variety
of characteristics that can be present in UML CD-based CS,
including classes, relations (i.e. association, composite
aggregation, and generalization) and different types of
constraints. Table 1 summarizes the characteristics of these CS.
Table 1: Elements of the Subject Conceptual Schemas

Element VC MT SG ER OCR SS ™M
Classes 5 6 1 7 10 9 6
Attributes 19 26 32 42 62 45 29
Operations 6 13 19 24 16 32 13
Parameters 22 43 48 75 77 91 51
Associations 4 5 11 8 10 9 4
Constraints 17 9 19 21 14 12 8

Generalizations 0 0 4 0 3 0 0

Effectiveness Assessment of an Early Testing Technique using...

A brief description of each CS is as follows:

1. Video Club (VC) CS represents the functionality of a chain
of video stores to manage movies, partners and movie
rentals.

2. Medical Treatment (MT) CS defines part of a Medical
Treatment business process for a fictional hospital named
University Hospital Santiago Grisolia, developed by Espana
et al. [8].

3. Sudoku Game (SG) CS was developed by Tort and Olivé [2]
as an object-oriented CS of the Sudoku Game system. This
CS defines the functionality for managing different users,
playing with their sudokus and generating new ones.

4. Expense Report (ER) CS defines the functionality of an
information system to manage the expense-report life cycle
of a business. This CS deals with several entities such as
departments, employees, projects and expense types.

5. Online Conference Review (OCR) CS, which is based on the
description of the CyberChair System [4], defines the
functionality of an information system to deal with members
(committee chair and program committee) of a conference,
as well as authors that submit papers to be evaluated for
inclusion in the conference proceedings.

6. Super Stationery (SS) CS defines the information system of
a company that provides stationery and office material to its
clients. This CS was developed by Espana et al. [7].

7. Incident Management (IM) CS defines the functionality of
an information system to solve the incoming incidents
(reception, process, allocation process and resolution
process). This CS is a real case taken from Everis Company,
a multinational firm offering business consulting, as well as
development, maintenance and improvement IT.

3.5.2 Mutation operators

In a CS, missing, unnecessary and incorrectly modelled
requirements are the main causes of a CS inaccuracy that can be
detected by the requirements. In a previous work [12], 50
mutation operators were defined for CS, and 18 were selected for
generating only first order mutants.

In this work, in order to mutate the CSs and evaluate CoSTest’s
effectiveness and the adequacy of the test suite, we used 27
mutation operators defined in [12]. 18 for FOM (see Table 2) and
9 for HOM (see Table 3) . In these tables each of the 27 mutant
operators is represented by a three-letter acronym and a number.
The acronym consists of 3 parts: (i) one letter that corresponds to
the defect type injected by the mutation operator (U=unnecessary,
W=wrong and M=missing; (ii) two letters that represent the
modelling element (i.e. CO=constraint, GE=generalization,
AS=association, CL=class, AT=attribute, OP=operation, and
PA=parameter) affected by the mutation; and (iii) a sequential
number within its category, for example, the “Missing
Association” (MAS).

Fig. 3 shows a partial view of a CS in which five mutation
operators have been applied. Four operators generate valid FOM

lwww.everis.com

102

EASE’2017, June 2017, Karlskrona, Sweden

(i.e. b) MPA, c) MCO, d) WCO8, e) WAS3). However, applying the
MAS operator to the WhiteCells association generates a non-valid
FOM because there is a constraint (i.e. WhiteCells derivation) that
is related with the association. Simply deleting the association
would result in a Dangling constraint, which evidently is not
desirable.

Table 2: Mutation operators for CS FOM taken from [12]

Code Mutation Operator rule

1 UPA2 Adds an extraneous Parameter to an Operation

2 WCO1 Changes the constraint by deleting the references to
a class Attribute

3 WCO3 Change the constraint by deleting the calls to specific
operation.

4 WCO4 Changes an arithmetic operator for another and
supports binary operators: +, -,*,/

5 WCO5 Changes the constraint by adding the conditional
operator “not”

6 WCO6 Changes a conditional operator for another and
supports operators: or, and

7 WCO7 Changes the constraint by deleting the conditional
operator “not”

8 WCO8 Changes a relational operator for another and
supports operators: <, <=, >, >=, ==, =

9 WCO9 Changes a constraint by deleting a unary arithmetic
operator (-).

10 WAS1 Interchanges the members of an Association.

11 WAS2 Changes the association type (ie. normal,
composite).

12 'WAS3 Changes the multiplicity of an Association member
(i.e. ** 0.1-0..1, *-0..1)

13 WCL1 Changes visibility kind of the Class (i.e. private)

14 WOP2 Changes the visibility kind of an operation.

15 WPA Changes the Parameter data type (i.e. String, Integer,
Boolean, Date, Real).

16 MCO Deletes a constraint (ie. pre-condition, post-
condition constraint, body constraint)

17 MAS Deletes an Association.

18 MPA Deletes a Parameter from an Operation.

Table 3: Mutation operators for CS HOM taken from [12]

Code Mutation Operator rule
1 WCO2 Changes the property (attribute) data type in the
constraint
2 WGE Changes the Generalization member ends
3 WAT1 Changes the Attribute feature “Is Derived” to true
4 WAT2 Changes the Attribute property “Is Derived” to false
5 WAT3 Changes the Attribute data type
6 MGE Deletes a Generalization relation
7 MCL Deletes the class (i.e. normal or association class)
8 MAT Deletes an Attribute
9 MOP Deletes an Operation

Therefore, we need to add more steps to the operator (going from
FOM to HOM). The HOM should delete the association together
with the respective constraint. This way, the mutant will not be
detected by the parser and can generate a valid mutant for testing.
Our experiment was carried out under a within-subject design, all
our subjects were exposed to the two treatments of our
independent variable (mutation type) [3].

EASE’2017, June 2017, Karlskrona, Sweden

3.6 Experimental Procedure

This section describes the details of the experimental setup
including the subject CS used, instrumentation, data collection,
and analysis. Fig. 4 summarizes the experimental process, which
involved performing the following seven steps:

3.6.1 Choose CS Subjects

The selected subjects are described in Section 3.5.1. These CS were
of different sizes and domains (e.g. information systems, games).
The subjects included an industrial case (i.e. IM), some others
were found in the literature (i.e. [7], [8] and [2]) and others (i.e.
ER, OCR and VC) were selected because they contained the CS
elements required to inject the faults.

3.6.2 Generate Test Suites

A test suite T was generated to kill CS mutants for each CS subject
by following Steps 1-6 of Section 2.2, we then analysed and
recorded the information on the generated test cases in order to
eliminate repeated or invalid test cases. The CoSTest report was
then used for this task.

M. F. Granda et al.

3.6.3 Execute Test Suites on CS

Each test suite is executed on the respective CS subject using our
freely available CoSTest validation tool?. We assessed whether an
invalid test case required a manual setting (e.g. concretize
variables that require several values because they should be
unique values or adjust a negative test case so that it can create a
valid sequence of events to validate constraints).

We adjusted the test cases in order to get a successful testing
process with the original CS and registered the invalid test cases.

3.6.4 Generate CS Mutants

As this step is quite computationally expensive and cumbersome,
we used our MutUML tool [16] for generating first order mutants,
in contrast to the high order mutants, which were generated
manually. Both mutant types were generated by using the
mutation operators introduced in Section 3.5.2. A syntax analysis
was then performed by using the Alf parser to ensure that the
mutants were valid and could be used in a testing process.

| REGISTERED_USER

=l supoku

=l username : String

£ id_sudoku : Integer

i ffinished ; String

1 ferrors ; Integer

£ current_sudoku ; Integer

S passwurd : String
= name : String

= surname : String
= mail : String

player_sudoku

cudoty | 8 new_sudoku(p_atrid_sudaku ; Integer, p_atreurrent_sudoku : Intsge sudckus flarers f] R
79 1 48 SUDOKU_OPTIONS(p_thisSUDOKU : SUDOKU) ! Il
4 ins_sudoku(p_thisSUDOKL : SUDOKLU, p_svcPLAYER : PLAYER) =]
S] ot e PLAYER ADMINISTRATOR
[0:1) & el sudokul b thisSUDOKU : SUDOKU, b 2vePLAYER : PLAYER) sudoku playen = E
sudoku to.17f sudely 1018 sudoku [0..1] [0..1] | &2 /errors : Integer
0.1] sudoku_player = status ; String
sudalu_row| sudolu_column sudolu_region & current_sudoku : Tntager
[0.4] rows 10.*]] columns [0.41] regions
Erow E coLumn &I REGION context WHITE-€ELL iV propefty-wong_derivation
0. if (isEmpt scurrent_valus))
& row_num @ Intager & col_num ! Integer ' {
region this
[0..1] region }
a) MAS [0,.1]Jrow [0..1] $calumn) MCO operator ils
e [t
BRIl column_call t0.,13~" region_cel
[0..*] [eells [0.*] Jeells 7o else
{ this.wran
JWhitecells Ece
B correct_value : Integer 0.1 fContainer) b G E
i HIEARREE context SUDOKU inv property_errors_derivation: : d) WCO8 operator
T s this.errors=this.whitecells moves->salect e (2.wrong=='true")->size();
/d ‘9 [0..%]4—* [0..1] Elmove
hite_cell mo
2 § Leyend:
£ PREDEFINED_CELL EWHITE_CeLL =i time ; String s T
- [0..1] [0.*]] 1 value : Integer
E ;CU‘TE”Léi‘UE i Integer| white_csll_move| = /wrona : String oD pekete Element
=l fwrong rin.
- 5 i <> Change Element
white_cells [0..*]

Figure 3. Excerpt of a UML CD-based CS and the application of five mutation operators

REQUIREMENTS] [TESTING
MODEL CRITERIA

2. SELECT C5 NO
AND

GENERATE JEST CASES;
TEST SUITES
REPCATED
GENERATION TEST CASES
RESULTS (EXCLUDE FOR
TESTING

NO,

1. CHOOSE
cs

3. EXECUTE
TEST SUITES ON
cs
MUTANT
TESTING RESULTS

MUTANT
OPERATORS
4. GENERATE

MUTANTS

5. SELECT MUTANT) (6.EXECUTE TEST
AND GENERATE CASES AND
e EXECUTABLE GENERATE
MUTANTS MUTANT RESULTS

Legend

(D Manual process () Automated process (CosTest) <> Tester decision <> Automated decision [Input/Output artefact —- Flow control |

Figure 4. Steps taken in experimental process

2 https://staq.dsic.upv.es/webstaq/costest.html

103

Effectiveness Assessment of an Early Testing Technique using...

In this study, we used all the FOMs generated by the tool for all
CS subjects (see Table 8 in Appendix). In actual testing scenarios,
CS do not typically contain as many faults as these numbers of
mutants. The numbers of selected mutants derived by this process
for our subject CSs can be found at an external source?.

In the other case, since there is no tool to automatically generate
HOMs, to simulate more realistic scenarios, we randomly selected
3 mutants from the pools of mutants created for each mutation
operator. Our goal was 27 mutants per CS, 3 mutants by each
mutation operator from Table 4, but some versions of our CSs did
not have enough mutants to allow formation of so many groups.

So, our random selection algorithm stopped generating mutants
for each mutation operator when it could not generate any more
unique mutants, resulting in several cases in which mutants
numbered less than 27, i.e. for WAT2, WGE and MGE operators
(see Table 9 in Appendix)

3.6.5 Select and generate an executable CS
mutant

Each CS mutant is transformed into an executable CS (CSUT) by
using the respective CoSTest module (see Step 8 in Section 2.2).

3.6.6 Execute Test Suites on CS Mutants and
Collect Data

We ran each test suite using CoSTest for each generated mutant.
CoSTest generates automatically a report (i.e. data collection)
with the status of the test suite (i.e. passing/failing/inconclusive).
We then manually examined the FOM with zero kills (i.e.
status=passing) and eliminated any that were semantically
equivalent to the original CS. The analysis of survivor mutants in
order to identify equivalent mutants is a prerequisite for
calculating a mutation score. An example of an equivalent mutant
is shown in Fig. 5.

Original Constraint with relational operator “=—"

this employees_munber=this emplovees-»select e(e fired==false)-»size()==07 -
this employees->select e(e fired=—=false}->size(};

Mutated Constraint change the relation operator to “<="

this.employees mumber=this. emplovees->select e{e.fired=—false}->size(}=07 0:
this_emplovees->select e(e fired—false}->size():

Figure 5. Excerpt of a Constraint mutated by WCO8

EASE’2017, June 2017, Karlskrona, Sweden

We used the CoSTest option to export the results (faults and
coverage analysis) of the testing process of the CS subject. If there
are further CS to be studied, Steps 2 to 5 are repeated with the
next subject.

3.6.7 Analysis of Testing Results

The CoSTest effectiveness and adequacy of the test suite is
calculated from the information recorded in this process (see
Section 3.6.6). These results are given in the next Section.

4 ANALYSIS AND INTERPRETATION OF
RESULTS

This section describes the analysis and interpretation of the
results related to our response variables for RQ1 and RQ2. The
Statistical analysis was carried out on the Statistical Package for
Social Sciences (SPSS) V23.0.

Since the first research question (RQ1) was aimed at evaluating
CoSTest’s effectiveness at detecting faults, we compared the
number and types of faults detected for mutant type (i.e. FOM and
HOM) in the different CS subjects. Table 4 shows both the number
of the faults and the number of fault types detected in each CS
subject by mutant type (i.e. FOM and HOM).

Shapiro-Wilk tests were performed to evaluate the samples
normality. We used this test as our numerical means of assessing
normality because it is more appropriate for small sample sizes
(<50 samples).

4.1 Effectiveness based on Rate of Fault
Detection

Since all Sig. values for Shapiro-Wilk tests were 0.165 for FOM
and 0.001 for HOM, these variables do not follow a normal
distribution (<0.05 for HOM).

So, we considered both mutant types as independent groups.
Then, the Mann-Whitney U Test was used to test our first null
hypothesis (Hio). Fig. 6 shows the box-plot containing data on the
number of faults per mutant type and Table 5 shows the results of
the Mann-Whitney U Test.

Table 4: Faults and Fault Types detected by Mutant Type

CS vC MT SG ER OCR SS M

Fault Types FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM
Extraneous Derived

Attribute 3 5 3 3
Extraneous Constraint 3 1 2 3 3
Missing Class 5 1 6 3 11 2 7 2 10 2 9 3 6 3
Missing Constraint 52 15 50 10 36 2 37 1 19 21

Missing Operation 13 7 2 14 4 17 6 6 3 23 4 7 2
Missing Association 4 8 13 12 8
Incorrect Operation 1 6 9 9 12 13 8 2 9
Incorrect Parameter 3 27 1 29 58 2 16 1 82 1 20 1
FDR 0.71 1.00 0.74 1.00 0.63 0.93 0.71 1.00 0.61 0.90 0.74 1.00 0.58 1.00
FTDR 0.83 1.00 0.80 1.00 0.86 1.00 0.80 1.00 1.00 0.88 0.75 1.00 0.86 1.00

3 https://staq.dsic.upv.es/webstaq/mutuml/experiment_data.htm

104

EASE’2017, June 2017, Karlskrona, Sweden

1.00 EI

90 o

.80+

1

RATE OF FAULT DETECTION

5071

HOM
MUTANT TYPE
Figure 6. Box-plot for Number of Faults by Mutant Type
Table 5: Values of Mann-Whitney U Test
Rate of Fault Detection

T
FOM

Mann-Whitney U .000
Wilcoxon W 28.000
Z -3.209
Asymp. Sig. (2-

tailed) 001

From these results, we can see that effectiveness of the CoSTest
test suites was affected by the mutant type and better results were
obtained in detecting faults in HOM. Therefore, we rejected
hypotheses Hio. In other words, the rate of fault detection is
different for each mutant type; U =0, p=0.001<0.05.

4.2 Effectiveness based on Rate of Fault Type

Detection
As in the previous analysis, all Sig. values for Shapiro-Wilk tests
were 0.234 for FOM and 0 for HOM, which meant these variables
did not have a normal distribution (ie. <0.05 for HOM).
Considering both mutant types as independent groups, we
selected the Mann-Whitney U Test (non-parametric test) to
evaluate the second null hypothesis (Hzo). Since the fault type
detection rate is different between FOM and HOM (see Fig. 7), we
rejected hypothesis Hzo. In other words, the number of fault types
detected is different for each mutant type; (U = 4, p=0.005< 0.05).
g

1.00 o

9571

RATE FAULT TYPE
DETECTION

HOM
MUTANT TYPE
Figure 7. Box-plot for FTDR by Mutant Type

105

M. F. Granda et al.

4.3 Test Suite Adequacy
In RQ2, we aimed to verify whether the mutation score of CoSTest
test suites was the same for killing the different mutant types. To
do this, we compared the mutation score for HOMs and FOMs in
the seven different CS subjects.
Table 6 shows the mutation score summarized for each CS subject
and by each mutant type. Tables 7-8 (see Appendix) show the
detailed mutation scores for each CS Subject and mutant type
(FOM and HOM) respectively.

Table 6: Mutation Score by Mutant type

Mutant Type VC MT SG ER OCR SS M
FOM 087 080 0.75 090 0.75 0.82 0.74
HOM 1.00 1.00 0.89 1.00 0.96 1.00 1.00

Fig. 8 depicts the box-plot of our collected data for mutation score
per mutant type. As the results show, the values of mutation score
gave a better value for HOM than for FOM.

-
W oos
(o]
% 85
=
L 80
-
=2
= 75 —
70
1 1
FOM HOM

MUTANT TYPE
Figure 8. Box-plot-of data for Test Suite Adequacy

As in the analysis (RQ1), Shapiro-Wilks tests were performed for
each mutant type related to the adequacy of the test suites. Since
the value of Sig. for FOM was >0.05 (0.307), this variable had a
normal distribution. For HOM the Sig. value was 0, which meant
this variable did not have a normal distribution. Considering both
mutant types as independent groups, we selected the Mann-
Whitney U Test (non-parametric test) to evaluate the hypothesis.
From this data, it can be concluded that the mutation score in the
HOM group was statistically significantly higher than the FOM
group, which meant that we rejected the null hypothesis H3o and
concluded that the test suite adequacy (mutation score) is
different for different mutant types; (U = 1, p=0.002< 0.05).

5 DISCUSSION

Our main results regarding CoSTest’s effectiveness (RQ1) and the
adequacy of the test suites (RQ2) are the following: mutant type
can influence these two variables, with better effectiveness and
test suite adequacy in high order mutants than in first order
mutants. So, test suites generated by CoSTest are effective at
killing a large number of mutants. However, there are fault types
that our test suites cannot detect, as explained below.

Thus, the mutants generated by the WAS2 mutation operator
(changes the association type, i.e. normal, composite) and WAS3
mutation operator (changes the member end multiplicity of an

Effectiveness Assessment of an Early Testing Technique using...

Association, i.e. *-*, 0..1-0..1, *-0..1) cannot be killed (mutation
score=0) by a traditional mutation adequate test set.

Also, the fault types Incorrect Constraint and Incorrect
Generalization injected by the mutation operators WCO1, WCO3,
WCO4, WCO5, WCO8 and WGE were hard to detect (mutation
score <0.7). This showed the weakness of test cases in testing
some constraints, such as derivation rules, which needed to be
executed in reverse order when there was a relation between
classes that affected the computed result. For example, they first
calculated the total of the expense report and then the total of the
expense report details. This means these test cases will have to be
improved.

Additionally, we found that a lower mutation score for some
mutants related with constraints (WCOx) was because the test
suites only consider coverage at element level and not at
constraint level (i.e. condition branch).

We therefore plan to include test cases with values to make sure
that different conditions (e.g. > vs >=) will be tested. However, the
coverage analysis is important to detect defects when the
assertions assert only return values and not side effects (see Fig.
9) in which the coverage analysis is reduced, but all tests still pass.

1f (pumber>d) |

Figure 9. Example of an assertion conditional

In addition, we found that CoSTest test suites do not test whether
the cardinalities of the association ends meet a certain limit (only
creating links according to the test scenario) thereby leading to
missed faults, such as an Incorrect Association injected by the
WAS3 mutation operator. As well as changing a navigable
association to a shared aggregation or vice versa (WAS2)
generates an equivalent mutant because “aggregation=shared”
has no semantic effect in an executable model using Alf. Thus,
another validation technique is required to validate these
elements’ properties (i.e. inspection of the CS).

Finally, one of the strengths of CoSTest test cases is that it can
detect types of defect about misunderstanding requirements (i.e.
"Missing” and “Unnecessary” types) that are not normally
detected at the CS level, by generating test cases based on user
requirements. In a previous work [15] we found a tendency to
report only defects related to verification, such as “Wrong” type
(e.g. incorrect) rather than defects related to validation.

6 THREATS TO VALIDITY

There are several threats that potentially affect the validity of our
study including threats to internal validity, threats to external
validity, and threats to construct validity.

Threats to internal validity are conditions that can affect the
dependent variables of the experiment without the researcher’s
knowledge. In our study, the selection of mutation operators is the
main threat to internal validity. According to Andrews et al. [1],
when using carefully selected mutation operators and after
removing equivalent mutants, the mutants can provide a good
indication of the fault detection ability of a test suite. Therefore,

106

EASE’2017, June 2017, Karlskrona, Sweden

in order to minimize this threat we used the MutUML tool [16] to
inject faults systematically, by avoiding non-valid and equivalent
mutants and optimizing the testing coverage. This tool
implements the mutation operators defined in a previous work
[12].

Threats to external validity are conditions that limit the ability to
generalize the results of our experiments to industrial practice.
This threat is reduced by using seven CS of different sizes (see
Section 3.5.1) and domain (e.g. information systems, games).
Moreover, a CS was taken from industry, some well-documented
CS were found in the literature (i.e. [8], [2] and [7]), and others
(i.e. ER, OCR, and VC) were selected because they contained the
relevant CS elements required to inject the faults.

Threats to construct validity refer to the suitability of our
evaluation metrics. We used well-known metrics to measure the
effectiveness (rate of number of faults and number of detected
fault types) [28] and the adequacy of the test suites (mutation
score) [20]. We therefore believe there is little threat to the
construct validity.

7 CONCLUSIONS AND FUTURE WORK

Test cases are important artefacts in any software product as a
support to users (e.g. modeller/tester/developer) for checking the
reliability of their software product.

In this paper, we evaluated empirically the test cases generated by
the CoSTest tool with respect to its effectiveness in terms of its
fault detection in Conceptual Schemas and the adequacy of the
test suite.

Fault detection effectiveness was measured in terms of rate of
faults detection and their causes (fault type) by the test suites. Test
suite adequacy was measured in terms of the mutation score
value. Our evaluation included the analysis of the variables for
mutant types (FOM and HOM).

The Effectiveness and adequacy of the test suites was affected by
the mutant type and better results were obtained in detecting
faults in HOM. These results suggest that the CoSTest technique
is robust in detecting types of defects that are not normally
detected at the CS level.

However, some mutation operators achieved a value lower than
0.7 in the mutation score. These results suggest that the test suite
should include a test for certain characteristics of CS elements,
such as associations, and improve the coverage at the constraint
level in order to enhance the effectiveness of the test suites.

In future work we plan to identify features of test cases that would
lead to improved effectiveness. We also intend to replicate this
experiment on a wide variety of subjects to verify the results,
including at least two CS (subjects) per domain.

ACKNOWLEDGMENTS

This work has been developed with the financial support by
SENESCYT of the Republic of Ecuador, SHIP (SMEs and HEIs in
Innovation Partnerships, ref: EACEA/A2/UHB/CL 554187),
PERTEST (TIN2013-46928-C3-1-R), European Commission (CaaS
project) and Generalitat Valenciana (PROMETEOII/2014/039).

EASE’2017, June 2017, Karlskrona, Sweden

M. F. Granda et al.

A APPENDIX
Table 7. Mutation Score of CoSTest Test Suites for First Order Mutants
[VvC MT SG ER OCR SS M
MO K S MS K S MS K S MS K S MS K S MS K S MS K N MS
UPA 6 0 1.00 13 0 1.00 19 0 1.00 24 0 1.00 16 0 1.00 32 0 1.00 13 0 1.00
WCO1 0 2 0.00 6 1 0.86 6 3 0.67 1 0 1.00 0 3 0.00
WCO3 1 0 1.00 4 1 0.80 1 1 0.50
WCO4 2 0 1.00 7 8 0.54 6 2 0.75 2 0 1.00
WCO5 1 0 1.00 6 5 0.55 8 3 0.73 6 0 1.00 2 0 1.00 23 0 1.00
WCO6 3 0 1.00 4 7 0.36 2 0 1.00 5 0 1.00 2 0 1.00 20 0 1.00
WCO7 1 0 1.00
WCO8 40 0 1.00 6 0 1.00 28 13 0.68 20 0 1.00 21 2 0.91 9 4 0.69
WCO9 1 0 1.00
WAS1 2 0 1.00 4 0 1.00 7 0 1.00 6 1.00 4 0 1.00
WAS2 0 4 0.00 0 5 0.00 0 11 0.00 0 8 0.00 0 10 0.00 0 9 0.00 0 4 0.00
WAS3 0 6 0.00 0 12 0.00 0 21 0.00 0 18 0.00 0 12 0.00
WCL1 5 0 1.00 6 0 1.00 11 0 1.00 7 0 1.00 10 0 1.00 9 0 1.00 6 0 1.00
WOP2 1 0 1.00 7 0 1.00 8 0 1.00 17 0 1.00 6 0 1.00 23 0 1.00 7 0 1.00
WPA 1 0 1.00 9 0 1.00 9 0 1.00 17 0 1.00 3 0 1.00 26 0 1.00
MCO 15 0 1.00 9 0 1.00 11 0 1.00 15 0 1.00 13 0 1.00 11 0 1.00 0 8 0.00
MAS 2 0 1.00 4 0 1.00 7 0 1.00 6 0 1.00 0 4 0.00
MPA 1 0 1.00 10 0 1.00 11 0 1.00 23 0 1.00 6 0 1.00 32 0 1.00 7 0 1.00
All 80 12 0.87 68 17 0.80 122 45 0.74 149 17 0.90 101 33 0.75 161 35 0.82 80 29 0.74
Table 8. Mutation Score of CoSTest Test Suites for High Order Mutants
Ccs VvC MT SG ER OCR SS M
MO K S MS K S MS K S MS K S MS K S MS K S MS K S MS
WCO2 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
WGE 1 2 0.33 2 1 0.67
WAT1 3 0 1.00 3 0 1.00 3 0 0.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
WAT2 2 0 1.00 3 0 1.00 3 0 1.00 1 0 1.00 1 0 1.00
WAT3 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
MGE 3 0 1.00 3 0 1.00
MCL 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
MAT 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 0 1.00
MOP 3 0 1.00 3 0 1.00 2 1 0.67 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
All 20 0 1.00 18 0 1.00 24 3 0.89 21 0 1.00 24 1 0.96 19 0 1.00 18 0 1.00
from requirements models. Ist International Workshop on Requirements
REFERENCES Engineering and Testing (Karlskrona, Sweden, Aug. 2014), 39-46.

[1] Andrews, J.H. et al. 2005. Is mutation an appropriate tool for testing
experiments? Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005. (2005), 402-411.

Case Study: Conceptual Modeling

http://guifre.lsi.upc.edu/Sudoku.pdf.

Charness, G. et al. 2012. Experimental methods: Between-subject and within-

subject design. Journal of Econ. Behavior and Organization. 81, 1 (2012), 1-8.

CyberChair: http://www.borbala.com/cyberchair;.

DeMillo, R. et al. 1978. Hints on Test Data Selection: Help for the Practicing

Programmer. Computer. 11, (1978), 34-41.

Espaiia, S. et al. 2009. Communication Analysis: A Requirements Engineering

Method for Information Systems. 21Ist International Conference on Advanced

Information Systems Engineering (2009), 530-545.

Espana, S. et al. 2011. Integration of Communication Analysis and the OO-Method:

Rules for the manual derivation of the Conceptual Model.

Espana, S. et al. 2011. Technical Report Communication Analysis and the OO-

Method : Manual Derivation of the Conceptual Model the SuperStationery Co. Lab

Demo.

[9] Fabbri, S.C.P.F. et al. 1994. Mutation Analysis Testing for Finite State Machines.
5th International Symposium on Software Reliability Engineering (1994), 220-229.

[10] Farooq, U. and Lam, C.P. 2008. Mutation Analysis for the Evaluation of AD
Models. International Conference on Computational Intelligence for Modelling
Control and Automation, CIMCA. (2008), 296-301.

[11] Ferraz, S. et al. 1999. Mutation Testing Applied to Validate Specifications Based
on Statecharts. Software Reliability Engineering, Proceedings. 10th International
Symposium on (Boca Raton, FL, 1999), 210-219.

[12] Granda, M.F. et al. 2016. Mutation Operators for UML Class Diagrams. CAiSE
2016 (2016).

[13] Granda, M.F. 2013. Testing-Based Conceptual Schema Validation in a Model-
Driven Environment. CAiSE 2013 Doctoral Consortium (Valencia, 2013).

[14] Granda, M.F. et al. 2014. Towards the automated generation of abstract test cases

[2] of Basic Sudoku: 2006.
(3]

[4]
[5]

[6]

[7]
[8]

[15] Granda, M.F. et al. 2015. What do we know about the Defect Types detected in
Conceptual Models? IEEE 9th Int. Conference on Research Challenges in
Information Science (RCIS) (Athens, Greece, 2015), 96-107.

[16] Granda, M.F. and Condori-fernandez, N. 2016. A Model-level Mutation Tool to
Support the Assessment of the Test Case Quality. 25TH International Conference
on Information Systems Development (ISD2016 POLAND) (2016).

[17] Hamlet, R.G. 1977. Testing Programs with the Aid of a Compiler. IEEE
Transactions on Software Engineering. SE-3, 4 (1977), 279-290.

[18] Jia, Y. and Harman, M. 2011. An Analysis and Survey of the Development of
Mutation Testing. Software Engineering, IEEE Transactions on. 37,5 (2011), 1-31.

[19] Jia, Y. and Harman, M. 2009. Higher Order Mutation Testing. Information and
Software Technology. 51, 10 (2009), 1379-1393.

[20] Jing, C. et al. 2008. Mutation Testing of Protocol Messages Based on Extended
TTCN-3. 22nd International Conference on Advanced Information Networking and
Applications (Okinava, Japan, 2008), 667-674.

[21] Juristo, N. and Moreno, AM. 2010. Basics of Software Engineering
Experimentation. Springer Publishing Company.

[22] Morgan, J.A. et al. 1997. Predicting fault detection effectiveness. Proceedings
Fourth International Software Metrics Symposium (1997), 82-89.

[23] Object Management Group 2013. Action Language for Foundational UML (ALF).

[24] Object Management Group 2012. Semantics of a Foundational Subset for
Executable UML Models (fUML).

[25] Object Management Group: www.omg.org.

[26] Pastor, O. and Molina, J.C. 2007. M

odel-Driven Architecture in Practice. Springer Berlin Heidelberg.

[27] van Solingen, R. and Berghout, E. 1999. The Goal/Question/Metric Method — A
Practical Guide for Quality Improvement of Software Development. McGraw-Hill
Publishing Company.

[28] Vos, T.EJ. et al. 2012. A Methodological Framework for Evaluating Software
Testing Techniques and Tools. 2012 12th International Conference on Quality
Software. (2012), 230-239.

[29] Wholin, C. et al. 2012. Experimentation in Software Engineering.

107

