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RESUMEN 

 

En este trabajo se estudian nuevas tecnologías para la remoción del paracetamol de 

soluciones acuosas y la toxicidad sobre las semillas de Lactuca Sativa. Se empleó 

bagazo de caña de azúcar para la biosorción en columna, encontrado remoción del 

93.05%, se realizó la modelación en columnas encontrando que el modelo de Dosis 

respuesta fue el que obtuvo mejor ajuste con R2 de 0.98, se empleó la tecnología de 

membrana de osmosis inversa y nanofiltración, encontrando una remoción de 92.71 y 

35.13 % respectivamente. Para la evaluación de la toxicidad se utilizó semillas de 

Lactuca Sativa, se ensayó con agua destilada, resultando el porcentaje de 

germinación del 100%. Las semillas fueron expuestas a soluciones sintéticas de 

paracetamol en concentraciones de: 500, 250, 125, 62.5, 39, 19.5, 9.75, 6 y 1 mg/L; y 

a concentraciones de: 100, 10, 1, 0.1, 0.01 μg/L, y blanco de agua destilada. El 

porcentaje de germinación, para el blanco fue de 100%, para 500 mg/L, de 90%, y 

para el resto de concentraciones no hubo inhibición en la germinación. El porcentaje 

de inhibición del hipocotilo y radícula, en el rango de mg/L, fue de 90.95% para el 

hipocotilo y de 87.59% para la radícula. También se obtuvo el porcentaje de inhibición 

del hipocotilo y radícula, en el rango de μg/L, encontrándose 19.28% para el hipocotilo 

y 32.32% para la radícula. La CI50 radicular encontrada es de 41,68 mg/L, y CI50 del 

hipocotilo es 62,17mg/L; estos resultados indican que el paracetamol produce 

inhibición del hipocotilo y de la radícula.  
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ABSTRACT 

 

This work studies new technologies for the removal of paracetamol from aqueous 

solutions and the toxicity on the seeds of Lactuca Sativa. Sugar cane bagasse was 

used for column biosorption, and a 93.05% removal was found. A column modeling 

was performed, finding that the dose response model was the one that obtained the 

best adjustment with a 0.98 R2. Membrane technology of reverse osmosis and 

nanofiltration was used, finding a removal of 92.71% and 35.13% respectively. For the 

evaluation of toxicity, distilled water was used for testing, resulting on a 100% 

germination percentage. The seeds were exposed to synthetic solutions of 

paracetamol in concentrations of: 500, 250, 125, 62.5, 39, 19.5, 9.75, 6 and 1 mg/L; 

and at concentrations of: 100, 10, 1, 0.1, 0.01 μg/L, and a distilled water blank. The 

germination percentage for the blank was 100%, for 500 mg/L, 90%, and for the 

remaining concentrations there was no inhibition in germination. The inhibition 

percentage of hypocotyl and radicle in the mg/L range was 90.95% for hypocotyl and 

87.59% for the radicle. The percentage of inhibition in the range of μg/L was also 

obtained for hypocotyl and radicle, with 19.28% for hypocotyl and 32.32% for radicle. 

The IC50 found for the radicle is 41.68 mg/L, and the IC50 of the hypocotyl is 62.17 

mg/L. These results indicate that paracetamol causes hypocotyl and radicle inhibition. 

 

Key words: Paracetamol, toxicity, biosorption, membranes 
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ABREVIATURAS Y SIMBOLOGIA 

 

CE: Contaminantes emergentes. 

OMS: Organización Mundial de la Salud. 

EPA: Agencia para la Protección del Medio Ambiente. 

CE50: Concentración que produce el efecto en el 50% de la población. 

CL50: Concentración que produce mortalidad en el 50% de la población. 

CI50: Concentración que produce inhibición en el 50% de la población. 

LOEC: Concentración más baja a la cual se observa efecto.  

NOEC: Concentración a la cual no se observa efecto. 

Q: Flujo que circula por la columna (mL/min). 

t total: Tiempo total o tiempo de saturación (min). 

Vef :Volumen de efluente (mL). 

q total : Capacidad de adsorción de la columna (mg). 

CR: Concentración de paracetamol retenido (mg/L). 

Co = Ci : Concentración inicial de paracetamol (mg/L). 

m total: Cantidad total de paracetamol que pasa por la columna (mg). 

qo: Capacidad de biosorción (mg/g). 

mb: Masa del biosorbente en la columna (g). 

t10% : Tiempo cuando la concentración del efluente alcance el 10% de la concentración 

inicial (min). 

µg/L: microgramos /Litro. 

ng/L: nanogramos/Litro. 
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CAPITULO I: INTRODUCCIÓN 

 

Se denominan contaminantes emergentes aquellas sustancias cuya presencia en el 

ambiente no es necesariamente nueva pero sí la preocupación por las posibles 

consecuencias de la misma, dado el factor de riesgo que presentan para los seres 

vivos (Barceló D. , 2003), considerando que las plantas actuales de aguas residuales 

no han sido diseñadas para depurarlos (García-Goméz, Gortáres-Moroyoqui, & 

Drogui, 2011), por lo tanto se está encontrando fármacos en diferentes cuerpos de 

agua a nivel mundial, en concentraciones de μg/L y ng/L, aunque estas sustancias 

están presentes en las aguas en bajas concentraciones, pueden llegar a tener un 

importante impacto en los ecosistemas. 

 

El paracetamol, es persistente a la fotólisis, hidrólisis y biodegradación (Cuñat & Ruiz, 

2016), por lo que se ha encontrado en cuerpos de agua superficial, y subterráneo, en 

concentración de 186,5 μg/L en aguas residuales hospitalarias; 15.7 μg/L en aguas 

superficiales de los ríos; 417,5 μg/L en efluentes de plantas de producción de 

fármacos (Yu-Chen Lin & Yu-Ting, 2009). 

 

Por ello, es necesario evaluar tratamientos que en lo posible sean económicamente 

viables, fáciles de emplear, y principalmente eficientes en la remoción de estos 

contaminantes. La adsorción es un éxito de las técnicas empleadas para la remoción 

de varios contaminantes, sin embargo, debido al alto costo de algunos adsorbentes 

convencionales, los estudios están siendo dirigidos a la utilización de materiales 

alternativos como los residuos agroindustriales, razón por la cual este trabajo está 

orientado al estudio de la remoción del paracetamol empleando biosorción con bagazo 

de caña en columna, y aplicar esta tecnología de biosorción como tratamiento terciario 

en plantas de tratamiento de agua. 

 

Actualmente se está investigando el uso de la tecnología de membrana para la 

eliminación de fármacos de los cuerpos de agua, considerando que la tecnología de 

membrana es limpia, lleva una mayor inversión inicial, sin embargo debemos tener en 

cuenta que la duración de las membranas es de entre 10 y 12 años, por lo que se 
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estudia la remoción de paracetamol de soluciones acuosas mediante el uso de las 

membranas de nanofiltración y osmosis inversa.  

 

La mayoría de los contaminantes emergentes aún no están incluidos en la legislación 

de ningún país a nivel mundial, no existe una regulación legal que determine las 

concentraciones máximas admisibles de los mismos en el ambiente, reconociéndose 

como contaminantes potencialmente peligrosos que pueden producir daños a la 

población humana y a los ecosistemas (Barceló, 2003; Kitamura et al., 2005), así lo 

evidencian los estudios acerca del paracetamol que produce mortalidad en Danio 

rerio, con CI50 378 mg/L (48 h); inmovilización de Daphnia magna con CE50: 30,1 mg/L 

(48 h); mortalidad  en O. latipes con CL50 >160 mg/L (48 h) (Santos et al; 2010), por 

ese motivo el propósito de este estudio es evaluar la toxicidad del paracetamol 

empleando Lactuca Sativa como bioindicador, para conocer la concentración a la cual 

produce inhibición en la germinación, elongación del hipocotilo y de la radícula, en 

base a estos datos se puede a futro regular el vertimiento en la aguas residuales.  
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HIPÓTESIS GENERAL Y ESPECÍFICAS 

 

Hipótesis general 1 

 Las soluciones acuosas de diferentes concentraciones de paracetamol 

producirían daños sobre el desarrollo de las especies vegetales. 

 

Hipótesis específicas 1 

 El porcentaje de geminación de semillas de Lactuca sativa tratadas con 

soluciones acuosas de paracetamol sería menor que, el porcentaje de 

germinación de las semillas del control negativo. 

 El porcentaje de longitud del hipocotilo de semillas de Lactuca sativa tratadas 

con soluciones acuosas de paracetamol sería menor que, el porcentaje de 

longitud del hipocotilo de las semillas del control negativo. 

 El porcentaje de longitud de la radícula de semillas de Lactuca sativa tratadas 

con soluciones acuosas de paracetamol sería menor que, el porcentaje de 

longitud de la radícula del control negativo. 

 El porcentaje de inhibición de la germinación de las semillas de Lactuca sativa 

tratadas con soluciones acuosas de paracetamol sería mayor que, el porcentaje 

de inhibición de las semillas del control negativo.  

 

Hipótesis general 2  

 Las técnicas de membrana de nanofiltración, osmosis inversa y de biosorción 

con bagazo de caña permitirían remover paracetamol de soluciones acuosas.  

 

Hipótesis especificas 2  

 Las soluciones acuosas tratadas con biosorbente bagazo de caña tendrían 

menor concentración de paracetamol que, las soluciones no tratadas.  

 Las soluciones acuosas tratadas con membranas de nanofiltración y osmosis 

inversa tendrían menor concentración de paracetamol que, las soluciones no 

tratadas.  
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OBJETIVOS GENERAL Y ESPECÍFICOS 

 

Objetivo general 1 

 Determinar el efecto fitotóxico del paracetamol en soluciones acuosas sobre el 

desarrollo de semillas de Lactuca sativa.  

 

Objetivos específicos 1 

 Determinar el porcentaje de germinación de semillas de Lactuca sativa tratadas 

y no tratadas con diluciones de paracetamol. 

 Determinar la longitud de hipocotilo de semillas de Lactuca sativa tratadas y no 

tratadas con diluciones de paracetamol. 

 Determinar la longitud de la radícula de semillas de Lactuca sativa tratadas y 

no tratadas con diluciones de paracetamol. 

 Determinar el porcentaje de inhibición de crecimiento de semillas de Lactuca 

sativa tratadas y no tratadas con diluciones de paracetamol. 

  

Objetivo general 2 

 Determinar cuál es la técnica de remoción más eficiente para eliminar 

paracetamol de soluciones acuosas entre biosorción con bagazo de caña de 

azúcar y membrana de nanofiltración y osmosis inversa. 

 

Objetivos específicos 2 

 Determinar la adsorción de paracetamol de aguas sintéticas utilizando como 

biosorbente bagazo de caña.  

 Determinar la remoción de paracetamol utilizando membranas de nanofiltración 

y osmosis inversa de aguas sintéticas. 
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CAPITULO II: REVISIÓN BIBLIOGRÁFICA 

 

2. Los contaminantes emergentes 

 

El agua es un recurso natural escaso, indispensable para la vida y el sostenimiento 

del medio ambiente, que, como consecuencia del rápido desarrollo humano y 

económico y del uso inadecuado que se ha hecho de ella como medio de eliminación, 

ha sufrido un alarmante deterioro. Durante décadas, toneladas de sustancias 

biológicamente activas, destinadas para su uso en la agricultura, la industria, la 

medicina, etc., han sido vertidas al medio ambiente sin considerar las posibles 

consecuencias. Al problema de la contaminación, se debe añadir el problema de la 

escasez que está adquiriendo proporciones alarmantes a causa del cambio climático 

y la creciente desertización que está sufriendo el planeta (Barceló & López de Alda, 

2006). 

 

2.1 Definición de contaminantes emergentes 

 

Los contaminantes emergentes se definen como contaminantes previamente 

desconocidos o no reconocidos como tales, cuya presencia en el medio ambiente no 

es necesariamente nueva, pero si la preocupación por las posibles consecuencias de 

estos contaminantes en el medio ambiente. Acerca de los contaminantes emergentes, 

se sabe relativamente poco o nada acerca de su presencia e impacto en los distintos 

compartimentos ambientales, razón por la cual no han sido regulados, adicional la 

disponibilidad de métodos para su análisis es limitada.  

 

Actualmente el estudio de los contaminantes emergentes, se encuentra entre las 

líneas de investigación prioritarias de los principales organismos dedicados a la 

protección de la salud pública y medio ambiente, tales como la Organización Mundial 

de la Salud (OMS), la Agencia para la Protección del Medio Ambiente (EPA), y la 

Comisión Europea (Petrovic, Hernando, Díaz -Cruz, & Barceló, 2005). 
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2.2 Clasificación de los contaminantes emergentes 

 

Los contaminantes emergentes (CE) conforman un grupo de sustancias muy 

heterogéneas (Arias & Escudero, 2011), que todavía no tiene una clasificación 

definida, pero de forma general se han clasificado por muchos investigadores como:  

• Retardantes de llama bromados 

• Cloroalcanos 

• Pesticidas polares 

• Compuestos perfluorados 

• Fármacos 

• Drogas de abuso. 

• Los metabolitos y/o productos de degradación de las clases de sustancias anteriores 

(Sole et al., 2000). 

 

2.3 Aparición de los contaminantes emergentes. El ciclo del agua 

 

La aparición de los contaminantes emergentes y la variación en las concentraciones, 

tiene su origen en el denominado ciclo del agua. De acuerdo con este ciclo, las 

principales vías de entrada de contaminantes en el medio ambiente acuático son las 

aguas residuales, entre las que se incluyen las urbanas, industriales, y las de origen 

agrícola o ganadero. La prevalencia de una u otra depende en gran medida del tipo 

de contaminación de que se trate y del nivel de depuración o atenuación natural que 

experimentan. En alguna parte de este ciclo, en el cual confluyen distintos 

compartimentos ambientales y actividades humanas, es donde se produce la 

alteración de la calidad del agua (Barceló & López de Alda, 2006). 
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Figura 1 Ciclo del agua 

Fuente: (Barceló & López de Alda, 2006) 

2.4 Peligrosidad de los contaminantes emergentes 

 

El estudio de contaminantes emergentes (CE), se ha convertido en una de las 

mayores preocupaciones mundiales por múltiples razones, entre las cuales podemos 

mencionar las siguientes: 

 

Existen diferentes clases de CE, tales como productos farmacéuticos tanto de uso 

humano como animal, drogas de abuso, sustancias de diagnóstico, tensioactivos, 

productos de cuidado personal, etc. Los CE son considerados disruptores endocrinos, 

entre ellos se encuentra una amplia gama de productos, y se han demostrado sus 

efectos negativos sobre aspectos reproductivos tanto en seres humanos como en la 

vida silvestre (Agueda & Castaño, 2017). 

 

Los CE pueden ser tóxicos y persistentes, a pesar de ser emitidos en muy bajas 

concentraciones µg/L a ng/L, su emisión se realiza de manera continua lo que está 

permitiendo que sean detectados en bajas concentraciones en los ecosistemas 

acuáticos, concentraciones a las cuales está demostrando que pueden producir 

efectos potencialmente nocivos sobre los ecosistemas y la salud humana, sin 

mencionar que algunos de los productos de degradación de ciertos compuestos tales 

como alquilfenoles son aún más tóxicos que los productos de origen (Agueda & 

Castaño, 2017).  
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Los CE, demandan una mayor y más urgente atención, debido a la escasez de datos 

ambientales, ecotoxicológicos, métodos para su análisis, e identificación de las 

posibles consecuencias de su presencia en el medio ambiente, y con estos datos 

relevantes poder mitigar sus efectos negativos en el medio ambiente (Sole et al., 

2000). En la tabla 1, se resumen algunos efectos que producen los CE sobre los seres 

vivos. 

Tabla 1 Efectos sobre los seres vivos de los principales grupos de CE 

 

Fuente: (Bolong et al., 2009; Farré et al., 2008) 

 

2.5 Estudios realizados sobre los problemas que causan los contaminantes 

emergentes 

 

Las primeras evidencias de la presencia de fármacos en el medio acuático, se dieron 

en los años 70, con la identificación en aguas residuales en EEUU del ácido clofíbrico, 

que es el metabolito activo de varios reguladores de lípidos en sangre. Sin embargo, 

no ha sido hasta principios de la década de los 90 que el tema de los fármacos en el 

medio ambiente ha tomado fuerza, como lo demuestran los numerosos artículos 

publicados desde entonces, los cuales han despertado un gran interés científico y 

social (Barceló & López de Alda, 2006). 
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Desde los años 90, se detectaron productos farmacéuticos (Jiménez, 2011), en el 

medio ambiente acuático, ya sea directamente o sus metabolitos, entre los cuales 

podemos mencionar los analgésicos/antiinflamatorios, antibióticos, antiepilépticos, β-

bloqueantes, reguladores de lípidos, medios de contraste en rayos X, anticonceptivos 

orales, esteroides, broncodilatadores, tranquilizantes, etc. (Hernando, Heath, Petrovic, 

& Barcelo, 2006). 

 

Las concentraciones de fármacos que se han encontrado en aguas, se sitúan 

normalmente en el rango de ng/L y μg/L, mientras que en suelos y sedimentos, en 

donde pueden persistir durante largos periodos de tiempo, alcanzan concentraciones 

de hasta g/Kg ( (Díaz-Cruz, López de Alda, & Barceló, 2003). Ha despertado mayor 

preocupación, el hallazgo de fármacos como el ibuprofeno, diclofenaco, la 

carbamazepina, y ácido clofíbrico en aguas potables (Bedner & Maccrehan, 2006). 

 

A continuación se detallan algunos estudios realizados, que evidencia la presencia de 

fármacos en diferentes cuerpos de agua, haciendo hincapié a los grupos 

farmacológicos de consumo mundial. 

 

Analgésicos: son considerados los de mayor automedicación (ASHP, 1999); entre los 

cuales incluyen: paracetamol, diclofenaco, ácido acetil salicílico, naproxeno e 

ibuprofeno.  

 

El paracetamol es persistente a la fotólisis, hidrólisis y biodegradación (Cuñat & Ruiz, 

2016), por lo que se ha encontrado en cuerpos de agua superficial, subterráneo; 186,5 

μg/L en aguas residuales hospitalarias; 15.7 μg/L en aguas superficiales de los ríos; 

417,5 μg/L en efluentes de plantas de producción de fármacos (Yu-Chen Lin & Yu-

Ting, 2009). 

 

Diclofenaco sódico: es un medicamento antirreumático y antiinflamatorio (Landsdrop, 

1990), se ha encontrado en las aguas superficiales en concentraciones máximas de 

2g/L; se ha determinado en la trucha arcoíris durante cuatro semanas de exposición 

que desarrollan diferentes alteraciones tanto en los riñones como en las agallas a 

partir de concentración umbral de 5g/L (Triebskorn, 2004). El diclofenaco afecta los 
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riñones de los mamíferos, se ha asociado con la desaparición de los buitres blancos 

en la India y Pakistán, lo que supone un desastre ecológico comparable al acontecido 

en el pasado con el DDT (Farré et al., 2001). 

 

El ácido acetil salicílico, está presente en aguas residuales (Richardson, 2009); de 

igual forma, se ha reportado la presencia de metabolitos del ibuprofeno (Buser, Poiger, 

& Muller, 1999). 

 

Antihipertensivos: son fármacos usados frecuentemente, ya que la hipertensión 

arterial es la enfermedad cardiovascular más común en el mundo, constituyen un 

grupo muy amplio y dentro de ellos se destacan el calcio-antagonista, los inhibidores 

de la enzima convertidora de angiotensina y los betabloqueadores, entre otros. 

Algunos β-bloqueadores como el atenolol, el metoprolol y el propranolol han 

alcanzado niveles superiores a los 0.017μg/L en efluentes de aguas municipales 

(Ternes, 1998). El propanolol, que se ha visto tiene efectos sobre el zooplancton, así 

como sobre los organismos bentónicos (Hernando et al., 2006). 

 

Estrógenos: se ha estudiado la elevada presencia de estrógenos y otras hormonas en 

las aguas residuales, y se ha relacionado con el aumento en la feminización de peces, 

hermafroditismo, inducción de la vitelogénesis en el macho y disminución de la 

fertilidad. Un claro ejemplo es la feminización de los peces carpas en España 

(Kümmerer, 2001; Petrovic et al., 2002; Sole et al., 2000).  

 

Algunos autores sugieren que concentraciones 17α-etinilestradiol (EE2), que es una 

hormona sintética, derivado de la hormona natural estradiol (E2), puede causar 

disrupción endocrina en la vida acuática y anfibios a concentraciones tan bajas como 

1 ng/L. Han sido reportadas especies acuáticas sexualmente inhibidos o revertidos 

por la presencia de estrógenos a niveles ambientales, ente ellos constan: carpa de 

crucian, trucha, minnow, y la tortuga (Daughton, 2008).  

 

Antibióticos: son fármacos que han incrementado su producción y consumo, 

permitiendo grandes descargas sobre los cuerpos de agua, con manifestaciones de 

resistencia microbiana e implicaciones en los mecanismos de defensa propia de los 



UNIVERSIDAD DE CUENCA   

 

Sandra Maribel Banegas Ávila – MAESTRIA EN TOXICOLOGIA INDUSTRIAL Y AMBIENTAL   26 

organismos vivos (Jiménez, 2011). Entre los antibióticos con mayor reporte en los 

cuerpos de agua están las tetraciclinas (Dang, 2007), aminoglicósidos (Shakil, 2008), 

macrólidos, betalactámicos y vancomicina (Roberts, 1999). 

2.5.1 Presencia de productos farmacéuticos en los ambientes acuáticos a nivel 

mundial 

 

Actualmente casi todos los países han comenzado a realizar investigaciones sobre la 

problemática de los contaminantes emergentes, considerando que las plantas 

actuales de aguas residuales no han sido diseñadas para depurarlos (García-Goméz, 

Gortáres-Moroyoqui, & Drogui, 2011), por lo tanto se está encontrando fármacos en 

diferentes cuerpos de agua a nivel mundial, lo cual se evidencia en la figura 2.  

 

 

Figura 2 Número de fármacos detectados en aguas residuales 

Fuente: (Agueda & Castaño, 2017) 

España: Hay trabajos de investigación que demuestran que no se elimina totalmente 

el paracetamol en las plantas depuradoras de España, así lo demuestra Petrovic en 

el 2005, que encontró paracetamol en aguas de depuradoras con concentración a la 

entrada de 10.194 µg/L, y a la salida 2.102 µg/L (Petrovic et al; 2005). 

 

En la cuenca del rio LLobregat fue la primera cuenca española, en la que se puso de 

manifiesto la existencia de fenómenos de feminización en peces ocasionados por la 

presencia de compuestos disruptores endocrinos, con actividad estrogénica; efectos 
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que quedaron evidenciados por la presencia de concentraciones anormalmente 

elevadas de vitelogenina plasmática en carpas (la vitelogenina es una proteína 

precursora de la yema de los huevos utilizada como indicador de exposición a 

compuestos estrogénicos) y la existencia de peces intersex (Sole et al., 2000; Petrovic 

et al., 2002). 

 

En Salamanca, se ha detectado paracetamol a la entrada y salida de las plantas de 

tratamiento de agua residual, encontrándose valor promedio de entrada de 6,1 µg/L, 

y a la salida de la planta, concentración de 0,1 µg/L, lo que indica que el paracetamol 

es un fármaco que se absorbe o bien se mineraliza durante las diferentes fases del 

tratamiento de la planta (Tekniker, 2010). 

 

En Málaga se realizó un estudio de la concentración de fármacos a la entrada y salida 

de una depuradora de agua residual, que se detalla en la figura 3, y se evidencia que 

los contaminantes a la salida de la planta permanece muy alta (Tekniker, 2010). 

 

Figura 3 Contaminantes emergentes a la salida de una E.D.A.R. 

Fuente: (Tekniker, 2010) 

 

En Valencia, determinaron la presencia de 17 fármacos en las aguas del Parque 

Natural del Pantano Pego-Oliva. El ibuprofeno y la codeína fueron los fármacos más 

frecuentemente detectados, en concentraciones máximas de 59 ng/L y 63 ng/L, 

respectivamente (Hidrogeólogos, 2016). 
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Portugal: Vanessa de Jesús Gaffney y colaboradores en el año 2016, presentan un 

estudio experimental, en el cual han utilizado varios métodos para la cuantificación de 

fármacos en diferentes puntos de los ríos Tejo y Zêzere de Lisboa y detectaron la 

presencia de varios fármacos en aguas subterráneas, aguas superficiales y agua de 

consumo, entre ellos se encontraron carbamazepina, atenolol, sulfadiazina, 

sulfametazina, sulfapiridina, sulfametoxazol, acetaminofén y eritromicina. 

 

Escocia: Se ha encontrado paracetamol a la entrada de la planta de tratamiento del 

agua residual en concentración de 492-6924 ng/L, y al final de la planta de tratamiento 

se tiene una concentración de 11,733 ng/L, lo cual indica que el paracetamol presenta 

un porcentaje de remoción alto, pero no se elimina totalmente También se ha 

encontrado paracetamol en agua superficial en concentración de 1.388-2.382 ng/L. 

(Petrovic et al; 2005). 

 

China: se identificaron 12 fármacos en el lago Dongting, el compuesto más abundante 

fue la cafeína, ácido mefenámico, fluoxetina, ibuprofeno y carbamazepina en 

concentraciones medias de 2.0- 80.8 ng/L. (Ruixue, 2016). 

 

Estados Unidos: En California, se ha analizado los ríos Alamo y Nuevo que están 

afectados por los desechos urbanos y agrícolas, y el resultado del análisis sugirieren 

un posible riesgo ecológico en el agua y los peces de estos dos ríos (Genbo Xua et 

al., 2016). 

 

En el estado de Filadelfia, en el agua para consumo humano se encontraron 56 

fármacos y subproductos. Entre los fármacos encontrados constan: antiinflamatorios, 

antibióticos, antilipemiantes y anticonvulsivos. También fueron 63 fármacos o 

subproductos en las fuentes primarias de aguas de la ciudad como embalse naturales, 

sin mayor intervención antrópica (Henríquez, 2012). 

 

En el Sur de California, en la fuente de abastecimiento de agua para consumo humano 

para una población de 18.5 millones de personas, fueron detectados antiepilépticos y 

ansiolíticos (Henríquez, 2012). 
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En el agua para consumo humano de Passaic Valley, New Jersey, investigadores 

encontraron fármacos y productos metabolizados (Henríquez, 2012) En las aguas 

para consumo humano de San Francisco se detectaron hormonas sexuales, de 

Washington, D.C., y zonas aledañas, se encontró la presencia de 6 fármacos y 

Tucson, Arizona, fueron detectados 3 fármacos, incluyendo un antibiótico, en aguas 

para consumo humano (Henríquez, 2012). 

 

Chile: En Chile en el año 2012, Deyanira Henríquez Villa, realizó una evaluación de 

las aguas del Rio Biobío, determinándose la presencia de fármacos en los sistemas 

de tratamiento de aguas servidas, tanto en la entrada como a la salida, los fármacos 

analizados corresponden a antidepresivos, antibióticos de uso humano y veterinario, 

betabloquedores, reguladores de lípidos, estimulantes y un herbicida. 

 

Argentina: La información acerca de las concentraciones de fármacos en los 

ambientes acuáticos del país, es fragmentaria o inexistente, con respecto a otros 

países como Canadá y China o de Europa, en donde un alto número de fármacos han 

sido detectados en las últimas décadas (Agueda & Castaño, 2017). 

 

Elorriaga y colaboradores reportaron concentraciones de productos farmacéuticos en 

el orden del μg/L, en las descargas de aguas residuales de varios sitios urbanos de 

Argentina (Buenos Aires, Córdoba y Santa Fe), así el ibuprofeno con 13.0 μg/L, 

carbamazepina, atenolol y diclofenaco (hasta 2.3, 1.7 y 1.2 μg / L, respectivamente). 

Además determinaron la magnitud de la dilución en la concentración de los fármacos 

aguas abajo de los sitios de vertido, por lo que detectó que el ibuprofeno prevalecía 

con altas concentraciones a más de 1 km del punto de descarga de las aguas 

residuales. 

 

Valdés et al (2015), reportaron la presencia de estrona (E1), 17β-estradiol (E2) y 17β-

etinilestradiol (EE2) (en el orden del ng/L) en efluentes de aguas residuales y 

receptoras del Rio de la Plata, pero no así en el agua de abastecimiento humano. 

Además existen algunos estudios que reportan cambios en la proporción sexual y 

acumulación de fármacos en tejido de peces. La bioacumulación de atenolol y 

carbamazepina en el pez Gambusia affinis fue estudiado por Valdés, encontrándose 
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un bajo potencial en las concentraciones ensayadas (10-1000 μg/L), el autor 

recomienda profundizar los estudios para comprender mejor el riesgo que producen 

estos fármacos a la biota acuática. 

 

En otros estudios realizados se comprobó que bajas concentraciones de 17β-estradiol 

(E2) sobre el ciclido Cichlasoma dimerus a largo plazo perjudica el desarrollo sexual, 

lo que representaría un riesgo para las poblaciones de esta especie (Meijide et al., 

2016). 

 

En otro estudio se demuestra que el paracetamol tiene una alta frecuencia de 

detección superior al 90 %, y que la concentración en la entrada a la planta de 

tratamiento es en promedio 25 µg/L y de la salida de la planta es de 5 µg/L, lo que 

indica que el proceso que se da en la planta disminuye la concentración de 

paracetamol pero no le elimina totalmente (Pérez-Paradaa et al, 2012).  

 

Uruguay: Se determinaron a la entrada y salida de la planta de tratamiento de Punta 

Carretas los fármacos Ibuprofeno y paracetamol (Pérez-Paradaa et al, 2012).  

 

Colombia: Un estudio realizado en un hospital en Barranquilla-Colombia, en el que se 

analizó el acetaminofén mostró que la sustancia está presente en el agua después de 

los tratamientos realizados, indicativo de que el paracetamol no es eliminado por 

tratamientos convencionales (Arias & Escudero, 2011). 

 

Ecuador: Las características de la calidad del agua y los contaminantes orgánicos 

emergentes fueron muestreados a lo largo del río San Pedro Guayllabamba-

Esmeraldas y sus principales corrientes de contaminación del agua en el verano de 

2013. Los contaminantes emergentes detectados fueron la carbamazepina y el 

acesulfame, que se encontraron a lo largo del San Pedro-Guayllabamba-Esmeraldas 

(Voloshenko-Rossin, et al., 2015). 

 

La concentración de cafeína, sulfametoxazol, venlafaxina, O-desmetilvenlafaxina y 

esteroides se degradó en gran medida a lo largo de 300 km. El flujo másico de cocaína 
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y benzoylecgonina, su metabolito, se incrementó a lo largo de la corriente, lo que 

puede atribuirse a plantaciones de coca (Voloshenko-Rossin, et al., 2015). 

 

En muchos países se han encontrado contaminantes emergentes, en agua potable, 

en la tabla 2 se muestran los resultados. 

 

Tabla 2 Concentración de fármacos encontrados en agua para consumo humano en 

distintos países del mundo 

 

Fuente: (Jones, Lester, & Voulvoulis, 2005) 

 

En la tabla 3, se muestran los resultados de estudios realizados sobre la ocurrencia 

de fármacos y productos de higiene personal 

 

Como se evidencia se están realizado estudios en muchos países que demuestran 

las concentraciones de fármacos en ríos, aguas potable y peces, por lo que podemos 

concluir que las plantas depuradoras actuales no poseen las operaciones indicadas 

para la remoción de los contaminantes emergentes. 
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Tabla 3 Estudios realizados sobre la detección de fármacos 

Localización CE Concentración Fuente Referencia 

Dongijang River Antibiotics 0.9-67.04 ng L-1 Drinking water 

source 

Zhang et al.(2012 a) 

Pearl River Antibiotics <35-510 ng L-1 River water Peng et al. (2008 a) 

Pearl River Antifungal 

drugs 

<1-6.6 ng L-1 River water Huang et al (2010) 

Pearl River Antibiotics *ND-636 ng L-1 River water Xu et al (2007b) 

Victoria Harbor Antibiotics Below the limit  

of 

Seawater Xu et al (2007b) 

Sea near Hong 

Kong  

Antibiotics <2-486 ng L-1 Seawatwe Gulkowska et al. 

(2007) 

Beibu Gulf Antibiotics  ND*-50.9 ng L-1 Seawater Zheng et al.(2012) 

Jiulongjiang Antibiotics 0-05-775.5 ng L-

1 

River water Zhang et al(2012c) 

Huangju River Antibiotics ND-313.4ng L-1 River water Jiant et al(2011) 

Quiantang River Antibiotics 7.o-51.6ng L-1 River water Tong et al, (2011) 

Spain (Llobregat 

River 

Hormones 2-5 ng/L River water Brix et al.(2009) 

Netherlands Hormones 0.4-10 ng/L River water Noppe et al; (2007) 

U.S.(Choptank 

River) 

Hormones ND. 20 ng/L River water Arikan et al. (2008) 

U.S.(139 streams) Hormones 0.03-18.9 ng/L River water Ferguson et al; 

(2013) 

Vietnam ( Mekong 

Delat) 

Antibotics 7-360 ng/L River water Managaki et al. 

820079 

France (Seine 

River) 

Antibotics ND- 544 ng}7}l River water Tamtam et al. 

(2008) 

UK (Taff and Ely 

River) 

Antibotics <0.5-183 ng/L River water Kasprzy-Horderm 

et al. (2009) 

Finland (Vantaa 

River) 

Antibotics <1.6-36 bg/L Drinking water 

source 

Vieno et al (2007a) 

 

Fuente: Autor 
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2.6 Tecnologías usadas en la remoción de contaminantes emergentes 

 

A continuación, se resumen las tecnologías habitualmente propuestas para la 

eliminación de contaminantes emergentes. En los últimos años, se ha estudiado el 

empleo tanto de procesos de oxidación avanzada (POAs o AOPs en sus siglas en 

español e inglés, respectivamente), filtración por membranas, así como la utilización 

de tecnologías más baratas como los humedales de flujo subsuperficial y la biosorción. 

Cualquiera que sea el camino elegido, siempre se tenderá a disminuir los costes y 

maximizar la eficiencia. En este sentido, la adsorción aparece como una excelente 

opción frente al resto, sobre todo si es posible obtener adsorbentes a partir de materias 

primas abundantes o residuos de diversas industrias mediante procesos no 

excesivamente costosos (García-Goméz, Gortáres-Moroyoqui, & Drogui, 2011). 

 

2.6.1 Tratamientos Fisicoquímicos 

 

Dentro de los tratamientos físico-químicos para eliminar contaminantes emergentes, 

se encuentran procesos tradicionales de tratamientos de aguas tales como la 

coagulación y floculación. Sin embargo, en general, estas técnicas son incapaces de 

eliminar totalmente compuestos como fármacos, productos para el cuidado personal, 

nonilfenol, estrona, estradiol y muchos otros (Godfrey, 2007). Así lo evidencia los 

estudios que mencionamos a continuación, que realizan comparaciones de otros 

métodos con los fisicoquímicos.  

 

2.6. 2 Procesos Biológicos 

 

Lodos activados: dentro de los procesos biológicos consta los sistemas de lodos 

activados o filtros biológicos percoladores que pueden rápidamente convertir 

compuestos orgánicos en biomasa, que posteriormente por medio de clarificadores 

pueden ser separados. Sin embargo no sucede lo mismo con moléculas como los 

emergentes (García-Goméz, Gortáres-Moroyoqui, & Drogui, 2011). Así lo evidencia el 

estudio realizado en agua residual de una planta tratadora en Suiza, en la cual se 
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encontraron compuestos como diclofenaco, naproxeno y carbamazepina, con una 

eficiencia de remoción de un 69, 45 y 7% respectivamente (Roig, 2013). 

 

Humedales: los humedales artificiales proporcionan un conjunto de tratamientos 

gracias a la vegetación, la lámina libre del agua y el tipo de flujo, entre otros aspectos, 

que permite la degradación de dichos contaminantes por efecto de la radiación solar, 

la formación de la biopelícula que se forma en el lecho y en las rocas y que contribuye 

significativamente a la destrucción de los compuestos orgánicos además del elevado 

tiempo de retención hidráulico característico, los hace idóneos cuando se dispone de 

extensiones de terreno apropiadas (Roig, 2013), así lo demuestran los siguientes 

artículos revisados a continuación:  

 

Se realizó un estudio a escala de laboratorio con un humedal de flujo subsuperficial 

formados por las plantas de las especies Typha spp. (Espadaña) y Phagmites australis 

(Carrizo), los resultados obtenidos fueron de eliminación entre el 11 y el 50% para 

antiinflamatorios y analgésicos, se hizo la comparación entre invierno y verano de la 

remoción, para el naproxeno, 27-66% en invierno y 27-83% en verano; para el 

Ibuprofeno entre el 27-74% en invierno y el 6-96% en verano; para el ácido salicílico 

(que fue la sustancia más fácil de degradar) entre el 35 al 85% en invierno y entre 84 

al 89% en verano; en la degradación de cafeína entre el 23 al 58% en invierno y entre 

el 82 al 99% en verano (Roig, 2013). 

 

En otro estudio, emplea la planta acuática Typha angustifolia para eliminar 

compuestos farmacéuticos: carbamazepina (de 26.7 a 28.4 %; resulta ser más 

recalcitrante de los fármacos), ibuprofeno (80%), naproxeno (91%), fenopreno (25%) 

y ciclofosfamida (82.2%), con un tiempo de residencia de 2 a 4 días. (Qing, Keat tan, 

Gersberg, Sadreddini, & Zhu Junfei, 2011). 

 

2.6.3  Procesos de Oxidación Avanzada (POAS) 

 

Los POAs se definen como aquellos procesos químicos en los que se generan 

radicales hidroxilo (OH), los cuales actúan como fuertes oxidantes, capaces de 

degradar una gran cantidad de contaminantes orgánicos. En rasgos generales, los 
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POAs consisten en la aplicación de un agente oxidante (O3, H2O2, etc.) combinado 

con un agente catalítico (TiO2, Fe2+, Fe3+, etc.) y la posibilidad de utilizar una fuente 

de energía (radiación UV, energía eléctrica y/o ultrasonidos), siendo los procesos más 

comunes: fotocatálisis heterogénea con TiO2, Ozonización, Fenton y Foto-Fenton 

(Chong, Jin, Chow, & Saint, 2010). 

 

2.6.3.1 Fotocatálisis con TiO2 

 

Entre los métodos de oxidación avanzada, la fotocatálisis heterogénea es la más 

estudiada. Este proceso utiliza fotocatálisis nanoestructurada para maximizar la 

absorción de fotones y reactivos. Este proceso tiene ventajas tales como el bajo precio 

y la estabilidad química de la mayoría de los fotocatalizadores utilizados (TiO2). Entre 

los estudios que aplica la fotocatálisis, consta el de Ohko et al. (2002), investigaron la 

degradación del 17β-estradiol (E2) en agua mediante fotocatálisis con TiO2, 

obteniéndose que el E2 fue totalmente mineralizado a CO2. De esta forma se 

demuestra que la fotocatálisis con TiO2 podría ser aplicada en el tratamiento de aguas 

servidas para remover efectivamente estrógenos naturales y sintéticos sin producir 

sustancias intermedias activas biológicamente. Sin embargo, su aplicación al 

tratamiento de grandes volúmenes de agua es difícil, debido al costo de la radiación 

artificial a través de lámparas UV eléctricas (Rodríguez-Prieto, Miralles-Cuevas, Oller, 

Agüera, & Puma, 2012). 

 

2.6.3.2 Sistemas de Foto-Fenon y Sono-Fenton 

 

Los sistemas Foto-Fenton y Sono-Fenton heterogéneos son técnicas que consisten 

en la aplicación combinada de radiación UV-visible o ultrasonidos con H2O2 y un 

catalizador heterogéneo de hierro soportado sobre una sílice mesoporosa tipo SBA-

15. Estas técnicas se han utilizado para la eliminación de ocho fármacos presentes en 

los efluentes de una depuradora y se ha observado que ambas técnicas de oxidación 

avanzada presentan una elevada eficacia para degradar los contaminantes 

estudiados. Sin embargo el proceso Foto-fenton, parece ser más efectivo en la 

degradación de los fármacos (Manzano, 2008). 
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En lo que se refiere al tratamiento de antibióticos, se ha investigado la aplicabilidad 

del proceso Fenton y Foto-Fenton, para la remoción de sulfonamidas, tetraciclinas, 

metronidazol y β-lactamasas (Arslan, Dogruel, Baykal, & Gerone, 2004).  

 

2.6.3.3 Ozono 

 

Los procesos de oxidación por ozono, se caracterizan por el ataque directo de ozono 

sobre los compuestos e/o indirectamente por la generación de radicales hidroxilo 

(OH•), los cuales se caracterizan por un gran potencial de oxidación, lo que representa 

una buena alternativa para el tratamiento de contaminantes (Trujillo, García, Hinojosa, 

& Castillón, 2010). La tecnología de Ozono (O3) considerado un fuerte oxidante, 

presenta la ventaja de no introducir iones extraños al medio, es muy eficaz para la 

eliminación del color, desinfección, eliminación de compuestos orgánicos, eliminación 

de olores y sabores (Huber et al., 2005). 

 

En comparación con procesos convencionales de tratamiento de contaminantes 

orgánicos en aguas, los procesos de oxidación avanzada que emplean ozono, bien 

sólo o en combinación con otros agentes físico-químicos, han mostrado ser un 

tratamiento altamente efectivo frente a un gran espectro de contaminantes orgánicos 

emergentes en agua, como es el caso de los pesticidas, productos farmacéuticos, 

surfactantes, entre otros (Huber et al., 2005). 

 

La ozonización ha sido utilizada en la eliminación de compuestos citostáticos , 

eliminan los compuestos en 10 min en función de la concentración utilizada de O3 en 

fase gaseosa, de tal forma que la aplicación de tecnologías de ozonización 

directamente en los efluentes hospitalarios se presenta como una solución viable para 

la eliminación de compuestos citostáticos (Huber et al., 2005). También se ha 

estudiado otros fármacos como los estrógenos, diclofenaco, naproxeno, antibióticos 

de la familia de las sulfonamidas, y como resultado fueron oxidados en razones de 90 

a 99% por la aplicación de ozono en concentraciones mayores a 2 mg/L, 

considerándose que los sólidos suspendidos tienen una influencia mínima en la 

eficiencia de la oxidación de microcontaminantes no sorbidos (Huber et al, 2005). 
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2.6.4 Tecnologías combinadas  

 

En la actualidad se está realizando combinación de proceso a fin de garantizar la 

remoción de los contaminantes emergentes, resultando una excelente alternativa para 

el problema del tratamiento de aguas con contaminantes emergentes; difíciles de 

eliminar por procesos convencionales, con la ventaja de reutilizar esa agua y contribuir 

con el cuidado medioambiental (Gogate y Pandit, 2004; Mantzavinos y Psillaskis, 

2004). 

 

Entre los ejemplos de los estudios que reflejan la combinación de tecnologías, consta 

la remoción de penicilina, en el cual se ha implementado la ozonación y perozonación 

(O3+H2O2) a diferentes concentraciones, antes de someter un efluente a un 

tratamiento biológico de lodos activados (Arslan et al., 2004).  

 

Para la eliminación de sustancias estrógenas, se realizó un proceso combinado de 

ozonación y reactor de lecho móvil de membranas, después de haberse sometido a 

un tratamiento convencional de lodos activados (Gunnarsson et al; 2009). 

 

Para la remoción de un precursor farmacéutico como es el α-metilfenilglicina, se ha 

utilizado un proceso de Foto-Fenton adicionado con H2O2, como pre-tratamiento a un 

reactor de biomasa inmovilizada (IBR), lográndose eliminar hasta 95% del carbono 

orgánico total (COT) del cual 33% corresponde al sistema de oxidación avanzada y 

62% al tratamiento biológico. En este mismo sistema combinado también se estudió 

la remoción de ácido nalidíxico, logrando remover en sólo 190 minutos (Sirtori et al., 

2009). 

 

Ternes, (1998) usó una planta piloto para la ozonización y la desinfección UV de 

efluentes de una planta de tratamiento de aguas residuales que contenía antibióticos, 

beta bloqueadores, antiflogísticos, metabolitos reguladores de lípidos, fragancias de 

musk y medios de contraste de rayos X yodados; después de emplear entre 10-15 

mg/L de ozono con tiempos de contacto de 18 min, no se detectaron compuestos 

farmacéuticos. Sin embargo, los compuestos de contraste de rayos X yodados 

exhibieron eficiencias de remoción no más altas del 14%. 
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Nakada et al. (2007), estudiaron 24 fármacos de un sistema de tratamiento de aguas 

servidas; emplearon la combinación de ozonización, filtración con arena y con lodos 

activados, se encontró eficiencias de remoción superiores al 80%, excepto para la 

carbamazepina.  

 

Se han utilizado ozono con peróxido de hidrogeno (O3/H2O2) para tratar ibuprofeno y 

diclofenaco, donde se logró la eliminación del 90% de estos compuestos (Zwiener & 

Frimmel, 2000). 

 

Otras investigaciones han probado la combinación de procesos de adsorción por 

carbón activado y tratamientos de oxidación resultando efectivos para remover 

contaminantes emergentes (Westerhoff, Yoon, Snyder, & Wert, 2005).  

 

En un estudio realizado a nivel laboratorio utilizando diversos tratamientos 

(coagulación/flotación, suavización con cal, ozonación, cloración y adsorción con 

carbón activado granular (CAG)), se analizó la eliminación de 30 diferentes 

compuestos farmacéuticos y no se obtuvo una remoción significante (<20%) con los 

procesos de coagulación/flotación ni suavización con cal, pero si un buen resultado 

con carbón activado granular y oxidación por ozono y cloración (>90%) (Westerhoff et 

al., 2005). 

 

Otro estudio comparó la coagulación y adsorción por carbón activado para eliminar 

estrógenos, donde se afirma que la adsorción con carbón activado resulto el más 

eficiente, logrando una remoción mayor al 90%, incluso mejor que un sistema de 

nanofiltración por membranas (Bodzek. & Dudziak, 2006). 

 

Sara Miralles Cuevas y colaboradores estudiaron la eliminación de contaminantes 

emergentes mediante la combinación de sistemas de membranas (nanofiltración) y 

procesos avanzados de oxidación mediante radiación solar. El concentrado del 

proceso de membrana se trató mediante diferentes procesos de oxidación: foto-fenton 

y ozonización (Miralles-Cuevas, Audino, Oller, & Malato, 2014). 
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Actualmente se está empelando combinación de tecnologías a fin de remover los 

contaminantes emergentes, se ha combinado sistemas de membranas y procesos 

avanzados de oxidación. Hasta el 2015, se han empleado más procesos de 

membranas que los proceso avanzados de oxidación, por lo que se puede considerar 

que los procesos de membranas están siendo efectivos para la remoción de los 

contaminantes, así lo demuestra la figura 4, que indica la comparación de estas dos 

tecnologías en los trabajos publicados (Miralles-Cuevas, Audino, Oller, & Malato, 

2014). 

 

Figura 4 Comparación de trabajos publicados con procesos de membranas y 

procesos avanzados de oxidación. 

Fuente: (Miralles-Cuevas et al; 2014) 

2.6.5 Procesos de Adsorción 

 

La adsorción es un proceso de separación mediante el cual, ciertos componentes de 

una fase fluida (líquida o gaseosa), son transferidos hacia un sustrato, en la cual queda 

física o químicamente enlazados en la superficie del adsorbente. El adsorbente se 

caracteriza por su alta porosidad, con poros de tamaño extremadamente pequeño que 

dan lugar a que la superficie interna del adsorbente sea mucho mayor que la externa 

(Treybal, 1980).  

 

El comportamiento como adsorbente de un determinado material frente a un 

contaminante dado depende de una serie de características que le son propias de 

cada material. Entre esas características cabe citar la superficie específica del 

adsorbente, su distribución de tamaño de poro, la naturaleza de sus grupos activos 
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superficiales y la dosis empleada. La naturaleza y concentración del contaminante 

también juega un papel importante en el proceso de adsorción. Por último, el medio 

líquido en el que se produce esa adsorción también puede condicionar en buena 

medida el proceso (por ejemplo, el pH, la temperatura de trabajo, la presencia de otras 

sustancias en disolución, etc.) (Cuerda-Correa, 2016). 

 

Son muchos y muy variados los adsorbentes que se pueden emplear en la 

descontaminación de aguas, entre los cuales se destaca el carbón activado, siendo el 

adsorbente más usado en la eliminación de contaminantes, se ha venido empleando 

desde hace más de 4000 años. El carbón activado, por su superficie no polar y su bajo 

coste, es el adsorbente elegido para eliminar una amplia gama de contaminantes, sin 

embargo como no es selectivo, puede adsorber también componentes inocuos que se 

encuentran en proporciones más elevadas que otros contaminantes más peligrosos 

(Cuerda-Correa, 2016). 

 

En la bibliografía científica, existen innumerables trabajos que versan sobre la 

aplicación de procesos de adsorción para la descontaminación ambiental, como por 

ejemplo en la remoción de pesticidas (herbicidas, insecticidas, fungicidas), disolventes 

orgánicos e hidrocarburos (benceno y derivados, disolventes clorados), compuestos 

orgánicos volátiles, hidrocarburos aromáticos policíclicos, pigmentos, colorantes, 

pinturas, surfactantes, productos farmacéuticos y de cuidado personal, residuos 

alimenticios y procedentes de animales, formaldehido, acrilamida, isocianatos, cloruro 

de vinilo, entre otros (Cuerda-Correa, 2016). 

 

Se dispone también de una amplia variedad de adsorbentes que pueden ser 

empleados para la remoción de los contaminantes farmacéuticos, así lo demuestran 

los estudios detallados a continuación:  

 

Se ha estudiado la adsorción de dos fármacos antiinflamatorios no esteroideos: 

naproxeno y ketoprofeno, empleando como adsorbentes materiales carbonosos de 

bajo coste tales como negros de carbono. Los resultados experimentales demostraron 

que bajo condiciones óptimas de operación se pueden adsorber hasta 517mg/g de 

naproxeno y 400 mg/g de ketoprofeno (Cuerda-Correa, 2016). 
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Para la eliminación de paracetamol, se utilizó residuos de sisal como precursor para 

preparar carbono activado con K2CO3, dando como resultado la misma eficacia de 

eliminación que un carbono comercial (> 65%) (Mestre et al; 2011). 

 

Silvia Álvarez Torrellas estudio la adsorción de seis contaminantes emergentes: un 

estimulante: cafeína, cuatro fármacos: atenolol, diclofenaco, carbamazepina y 

flumequina y un pesticida: isoproturon, sobre diferentes adsorbentes, 

fundamentalmente, materiales carbonosos (comerciales y sintetizados); y arcillosos 

(sepiolita), como resultado indican que el carbón activado granular F-400 se muestra 

como un adsorbente adecuado en la eliminación de los seis contaminantes 

emergentes estudiados, proporcionando elevadas capacidades de adsorción, debido 

a la naturaleza microporosa y al carácter anfótero del material (Álvarez, 2014). 

  

En el estudio realizado en el 2016, investigaron el uso de carbón vegetal activado 

obtenido de cáscara de frijol mung (SA-MBHB) como un potencial sorbente para la 

eliminación del fármaco, en tanque agitado, cuyo resultado fue más de 99% de 

remoción de ibuprofeno (Sandip, Kaustav, & Gopinath, 2016). 

 

En un estudio evaluaron la eficiencia de eliminación de dos carbones activados, uno 

comercial (PAC) y otro preparado en el laboratorio a partir de cáscara de coco (CC-

AC), frente a 25 contaminantes que se encuentran frecuentemente en aguas 

superficiales. Los resultados se expresan mejor en la figura 8, a efectos comparativos 

se incluyen en la figura otros dos adsorbentes zeolíticos (Z1 y Z2). Se puede apreciar 

que, en la mayoría de los casos, los carbones activados compiten de manera más que 

aceptable con otros adsorbentes sintéticos de mucho mayor coste. Este estudio pone 

también de manifiesto la enorme versatilidad de los carbones activados en procesos 

de eliminación de contaminantes en el medio acuoso (Rossener, Snyder, & Knappe, 

2009). 
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Figura 5 Eliminación de diversos contaminantes en aguas de lago mediante 

carbones activados y otros adsorbentes. 

Fuente: (Rossner et al; 2009) 

 

Se han realizado numerosos estudios de adsorción sobre carbón activado relativos a 

la eliminación de contaminantes emergentes en disolución acuosa (en aguas 

residuales industriales y urbanas), algunos de los cuales se muestran en la tabla 4. 
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Tabla 4 Referencias bibliográficas sobre estudios de adsorción de contaminantes 

emergentes empleando carbón activado 

 

Fuente: (Álvarez, 2014) 

 

2.6.5.1 Tecnología de Biosorción  

 

Debido al incremento de la contaminación ambiental a nivel mundial, y considerando 

que los contaminantes emergente farmacéuticos no están siendo removidos por las 

plantas de tratamiento de aguas residuales tipo convencional, se ha visto la necesidad 

de desarrollar nuevos métodos económicos, efectivos y sustentables, para lograr la 

eliminación de los contaminantes emergentes, razón por la cual se está investigando 

nuevas tecnologías de remoción de productos farmacéuticos de los residuos líquidos, 

destacando entre ellos, la biosorción que está basada en el principio de la adsorción 

y el uso de los biomateriales, derivados de desechos agrícolas y forestales (Tenorio, 

2016; Vera et al., 2015).  
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2.6.5.1.1 Definición de biosorción 

 

Biosorción es la capacidad de la biomasa inerte de captar pasivamente 

contaminantes, mediante diversos mecanismos físico (adsorción) y químicos 

(intercambio iónico), en el cual se involucra una fase sólida (biosorbente) y una fase 

líquida (solvente) que contiene las sustancias disueltas que van hacer adsorbidas 

(sorbato), debido a la gran afinidad del biosorbente por las especies del sorbato (Mori 

et al., 2013; Tenorio, 2006). El proceso de biosorción puede ocurrir en un sistema 

bifásico, líquido-solido, líquido-líquido, gas-sólido, siendo de suma importancia el 

líquido–sólido en la purificación de aguas residuales (Leiva et al., 2012). 

 

Actualmente se están estudiando una gran cantidad de biomateriales de bajo costo y 

con potencial de ser utilizados como biosorbente, entre los cuales podemos 

mencionar: restos de vegetales, algas, hongos, caparazón de artrópodos, bacterias, 

etc., los cuales se encuentran en gran abundancia y son fácilmente transformables a 

biosorbente (Ilina, Martínez, Segura, Villarreal, & Gregorio, 2009). 

 

La biosorción se está convirtiendo en una alternativa de enorme potencial, tanto por 

su capacidad de depuración, por el moderado coste de operación y los materiales 

empleados como biosorbente no presentan valor económico (Tenorio, 2006). 

 

2.6.5.1.2 Factores que afectan el proceso de biosorción  

 

Entre los factores que afectan el proceso de biosorción se detalla a continuación los 

más condicionantes:  

 

Sitios activos: las paredes celulares de los biosorbentes contienen polisacáridos, 

proteínas, lípidos, que conforman los numerosos grupos funcionales capaces de 

enlazar los sorbatos en la superficie de estos. Entre los grupos funcionales presentes 

se pueden mencionar los grupos amino, carboxílico, hidroxílico, fosfato y tiol, que 

difieren en su afinidad y especificidad respecto a la susceptibilidad para unirse a los 

diferentes sorbatos (Pinzón-Bedoya & Cardona, 2008), razón por la cual la 

composición y reactividad química de la superficie del biosorbente determina los 
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mecanismos de retención de los sorbatos y condiciona, en gran medida, su capacidad 

de remoción.  

 

La importancia de cada grupo funcional en el proceso de biosorción depende tanto de 

la cantidad de centros activos con dicho grupo presentes en el material como de su 

accesibilidad, así como de su estado químico y de la afinidad con el sorbato. Para 

efectuar la biosorción previamente debe realizarse una caracterización de los centros 

activos del biosorbente, identificando los grupos funcionales presentes y por lo tanto 

los posibles mecanismos de interacción, lo cual facilita la optimización de las 

condiciones de operación y la mejora del rendimiento de la misma (Ríos, 2014).  

 

La técnica FT-IR, es una herramienta importante para identificar algunos grupos 

funcionales característicos de distintos tipos de materiales, para lo cual se emplea el 

espectrofotómetro Infrarrojo, el cual nos da bandas características de cada grupo 

funcional. 

 

Generalmente las bandas características IR para materiales lignocelulósicos como el 

bagazo de caña puede dividirse en tres regiones: el ancho de la banda del grupo 

hidroxilo (3200-3600 cm-1), las bandas de alargamiento de CH, CH2 Y CH3 (2800-3000 

cm-1) y las bandas de extensión del grupo carbonilo (1550-1750 cm-1) (Fernández, 

Rico, Prida, & Vanlangenhove, 2011). 
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Tabla 5 Frecuencias asignadas a los distintos modos de vibración en el IR de los 

grupos funcionales oxigenados. 

 

 

 

Punto de carga cero: El punto de carga cero (PZC), se define como el valor del pH 

en el cual la carga neta total de las partículas sobre la superficie del material 

adsorbente es neutra, es decir, el número de sitios positivos y negativos es igual, cabe 

mencionar que el pH en el que se encuentre la disolución puede afectar la 

concentración de los grupos funcionales disociados con carga positiva y carga 

negativa (Amaringo & Hormaza,, 2013). 

 

Valores de pH mayores que PZC generan una superficie cargada negativamente, en 

tanto que un pH menor que PZC dará una superficie cargada positivamente, de allí 

que la determinación de este parámetro es de gran ayuda para establecer las 

condiciones propicias en cuanto al valor de pH que permite alcanzar una remoción 

eficiente del tóxico (Amaringo & Hormaza,, 2013). 

 

Granulometría: la granulometría de la biomasa seca puede dar lugar a partículas 

estables y obtener las propiedades mecánicas requeridas (Sala et al., 2010). 

Generalmente un tamaño de partícula mayor da lugar a una menor capacidad de 

remoción en comparación con la registrada para el menor tamaño de partícula 

(Villada, Hormaza, & Casis, 2014). 
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Para un material biosorbente esta característica es importante, mientras mayor sea la 

superficie específica hay mayor posibilidad de que el sorbato tenga contacto con 

mayor número de centros activos disponibles y lograr la adsorción (Boada, 2015). 

 

Porosidad: es una propiedad física que relaciona el volumen no ocupado por las 

partículas (huecos) para el volumen total del lecho (incluyendo los huecos); toma 

valores entre 0-1, considerando que alcanza un valor de cero si el volumen de hueco 

es cero y un valor de 1 si el volumen de hueco es igual al volumen total (Boada, 2015). 

Esta propiedad afecta a la biosorción porque determina accesibilidad del adsorbato a 

la superficie interna del biosorbente (Galán del Álamo, 2013). 

 

pH: el valor del pH de la fase acuosa, es el factor más condicionante para la 

biosorción, y depende del pka del sorbato para mantener determinado pH de la 

solución (Izquierdo, 2010). 

 

Tiempo de contacto: si el tiempo de contacto entre el adsorbato y el biosorbente es 

mayor, la cantidad de sorbente retenido será mayor, por lo que permite un mejor 

aprovechamiento en la zona de transferencia de masa, retardando el tiempo de 

saturación de la columna y posibilitando el tratamiento de grandes volúmenes de 

efluentes contaminados (Villada, Hormaza, & Casis, 2014). 

 

Temperatura: la temperatura influye según si la clase de reacción: endotérmico o 

exotérmico, favoreciendo o no el proceso de adsorción (Galán del Álamo, 2013). 

Cuando la adsorción es de tipo físico, la reacción es exotérmica por lo que se ve 

favorecido la biosorción con bajas temperaturas; y cuando el proceso es endotérmico, 

se ve favorecido a altas temperaturas (Hernández, 2008). 

 

2.6.5.1.3 Biosorción en columnas de lecho fijo  

 

El sistema de lecho fijo consiste en una columna donde el biosorbente granulado se 

deposita en su interior como un lecho, que normalmente no se mueve; el líquido 

atraviesa la columna en sentido ascendente o descendente. El granulado del 

biosorbente ha de tener un tamaño adecuado para evitar una presión excesiva a lo 
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largo de la columna, si bien hay que tener en cuenta, que partículas demasiado 

grandes provocan un descenso en la superficie útil del biosorbente, haciendo que la 

difusión intraparticular se vea limitada. El tipo de biosorción más utilizada en el 

tratamiento de aguas residuales industriales es el sistema de columna de lecho fijo. 

La columna puede operar en serie para llevar un mejor control sobre el rendimiento 

del biosorbente o en paralelo para incrementar la capacidad del sistema, pudiendo ser 

usadas tantas columnas como sea necesario para optimizar el diseño del proceso 

completo (Kumar N. , 2013).  

 

El funcionamiento de las columnas de lecho fijo se describe mediante el concepto de 

la curva de ruptura. El tiempo de operación y la forma de la curva son características 

muy importantes para determinar la respuesta de una columna de biosorción (Kumar 

N. , 2013). 

 

2.6.5.1.3.1 Curva de ruptura  

 

La curva de ruptura representa la relación entre las concentraciones de contaminante 

a la salida y a la entrada de la columna frente al tiempo o al volumen circulado. El 

fluido entra en la columna y circula a través de un lecho que no contiene soluto de 

forma que, cuando entra en contacto con el sorbente, el soluto es rápidamente 

retenido durante el primer contacto. Este fluido abandona la columna prácticamente 

libre de sorbato. Cuando el volumen de fluido comienza a atravesar la columna, 

empieza a definirse una zona de transferencia de masa (es la superficie del lecho en 

la que ocurre la sorción), que varía desde el 0 % de la concentración inicial 

(correspondiente al sorbente sin soluto) hasta el 100 % de la concentración inicial 

(correspondiente a la saturación total). De esta forma, cuando el sorbato ya no puede 

ser retenido completamente, comienza a aparecer en el fluido que abandona la 

columna (Kumar N. , 2013). 

 

En el momento en que la concentración del sorbato en el efluente alcanza un 

determinado valor, generalmente relacionado con el límite de vertido permitido para 

ese contaminante, se llega al llamado punto de ruptura y se corresponde con un 

tiempo llamado tiempo de servicio o de ruptura, ts, que permite determinar el volumen 
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de efluente tratado (Castellar, Cardozo, Suarez, & Vega, 2013). En este punto se hace 

necesario remplazar la columna (Martínez, Rodríguez, Pérez, & Leiva, 2014). 

 

Desde un punto de vista práctico, el tiempo al que ocurre la saturación, ts, se establece 

cuando la concentración en el efluente es superior a un valor comprendido entre el 90 

% y el 95 % de la concentración inicial (Kumar, 2013; Taty, Fauduet, Porte, & Ho, 

2005). 

Zona de transferencia de masa (MTZ): la zona de transferencia de masa es la 

superficie del lecho en la que ocurre la sorción. Al inicio de la operación de una 

columna, la mayor parte de la transferencia de materia tiene lugar a la entrada, donde 

el fluido se pone en contacto con el adsorbente fresco. A medida que transcurre el 

tiempo, el sólido próximo a la entrada se encuentra prácticamente saturado y la mayor 

parte de la transferencia de materia tiene lugar lejos de la entrada. La región donde 

ocurre la mayor parte del cambio de concentración es la llamada zona de transferencia 

de materia, esta zona separa la zona virgen del adsorbente de la zona de saturación. 

A medida que transcurre el tiempo de operación de la columna, la zona de 

transferencia de materia se traslada en el lecho hasta alcanzar su extremo inferior, en 

el caso de una columna de lecho fijo de flujo descendente (Agouborde Manosalva, 

2008). 

 

Figura 6 Movimiento de la zona de transferencia a lo largo del lecho de la columna 

Fuente: (Kumar N. , 2013) 
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2.6.5.1.3.2 Modelado matemático de la biosorción en columnas  

 

Los procesos de biosorción a gran escala se llevan a cabo de un modo continuo 

(Vijayaraghavan & Prabu, 2006) bajo diferentes condiciones operativas, donde la 

concentración en la fase líquida y en la fase sólida varía tanto en el espacio como en 

el tiempo, por lo que el diseño y optimización de columnas de lecho fijo tiene especial 

dificultad, si no se cuenta con un modelo de aproximación cuantitativo; para ello 

existen varios modelos matemáticos, los cuales son útiles, porque suministran las 

predicciones para la ejecución del proceso de biosorción e interpretación de datos 

experimentales (Kratochvil, 1997; Ordoñez & Moreno., 2013). 

 

Para poder realizar la modelación se requiere conocer ciertos datos que se calculan 

con los siguientes formulas:  

 Volumen de efluente en mL (Vef ) 

 

Q: caudal que circula por la columna, mL/min 

t total representa el tiempo total, min  

 Capacidad de adsorción de la columna: el área bajo la curva de ruptura, entre 

los límites apropiados, representa la cantidad total de sorbato retenido (o 

capacidad máxima de la columna), qtotal, en mg, para una determinada 

concentración de la alimentación y puede determinarse por integración. 

 

qtotal: capacidad máxima de la columna (mg) 

CR: concentración de sorbato retenido (mg/L)  

Q: caudal que circula por la columna, mL/min 

 mtotal: cantidad total de sorbato que pasa por la columna (mg) 

 

 Porcentaje total de paracetamol retenido durante la operación de la columna:  
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 Capacidad del biosorbente (q0), según Kumar, (2013), representa el valor de la 

concentración de solutos que pueden ser retenidos por unidad de masa de 

biosorbente (mg/g).  

 

t10% es el tiempo de servicio obtenido cuando la concentración del efluente 

alcance el 10% de la concentración inicial (min).  

Co: concentración de paracetamol en el influente (mg/L).  

Q: flujo volumétrico del efluente (L/min).  

mb: masa de biosorbente en la columna (g) (Kumar N. , 2013). 

 

A continuación se describen los modelos matemáticos que se han seleccionado para 

este trabajo, atendiendo, fundamentalmente, las condiciones de aplicación de cada 

uno de ellos y a su utilización para el estudio de los procesos de biosorción en columna 

(Kumar N. , 2013). 

 

2.6.5.1.3.2.1 Modelo de Dosis-Respuesta 

 

Este modelo ha sido comúnmente utilizado en la farmacología para describir 

diferentes tipos de procesos, actualmente está siendo empleado para referir los 

procesos de biosorción en columna, el cual tiene una importancia relativa ya que 

describe, la curva completa de ruptura con gran exactitud (Yan & Chem, 2001). En 

este modelo, se toma en consideración tanto el volumen del efluente y el tiempo.  

Según Kumar Nabín (2013), en función del volumen del efluente 

 

Co: concentración inicial del sorbato (mg/L) 

C: concentración del efluente a la salida de la columna (mg/L)  

qo: capacidad de adsorción en el modelo de Dosis-respuesta (mg/g)  

α, β: constantes del modelo dosis-respuesta (L/min)  

(Vef ): Volumen de efluente (mL)  
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mB : masa del biosorbente (g) 

Según Andrade (2013), en función del tiempo  

 

2.6.5.1.3.2.2 Modelo de Yoon-Nelson  

 

El modelo de Yoon-Nelson, es relativamente simple, para un sistema unicomponente, 

no requiere datos relativos a las características del adsorbato, el tipo de adsorbente o 

las propiedades físicas del lecho (Calero et al., 2012). La ecuación, a continuación, 

describe el modelo: 

 

C: concentración del sorbato en el efluente de la columna (mg/L)  

Co: concentración inicial del sorbato (mg/L)  

t: tiempo de toma de la muestra (min)  

KYN es la constante de proporcionalidad de Yoon-Nelson (min-1) 

 es el tiempo requerido para retener el 50% del sorbato inicial (min)ז

 

2.6.5.1.3.2.3 Modelo de Thomas  

 

El modelo de Thomas es uno de los más generales y utilizados para describir el 

comportamiento del proceso en columnas (Calero et al., 2012; Villada et al., 2014), el 

modelo se describe mediante la siguiente ecuación: 

 

Kth: constante de velocidad del modelo de Thomas (mL/min mg)  

qo: capacidad de adsorción en el modelo de Thomas (mg/g)  

mB: masa del biosorbente (g)  

Q: flujo de alimentación (mL/min) 
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t: tiempo en el cual ocurre la biosorción 

2.5.1.3.3 Remoción de productos farmacéuticos empleando biosorbentes 

 

Según la bibliografía encontrada, hay más investigación en la biosorción de fármacos 

empleando carbón activado obtenido a partir de restos agroindustriales, y muy pocos 

trabajos que emplean el biosorbente en su forma natural. 

 

Se estudió la remoción del paracetamol, empleando mesocarpo del coco en tanque 

agitado, obteniendo resultados satisfactorios con una capacidad máxima de adsorción 

de (382,18 μg/g) (Dalfior, Licinio, Goncalves, & Ribeiro, 2013). 

 

En el estudio realizado por Flores et al (2011), se evaluó la eficiencia de remoción de 

paracetamol empelando bagazo de caña de azúcar, esponja vegetal frente al carbón 

activado, en columna, los resultados mostraron que el bagazo de caña fue más 

atractivo que el carbón activado en términos de precio y eficiencia, con 60% de 

adsorción frente al 45% de adsorción del carbón activado, mientras que la esponja 

vegetal fue responsable de eliminar el 40% de paracetamol disuelto en las muestras 

de agua enriquecida. Se obtuvo la concentración máxima absorbible para el bagazo 

de caña de 120.5 µg/g, para la esponja vegetal de 37.5 µg/g. 

 

Ribeiro et al (2011), concuerda con el estudio de Flores et al, (2011), que demuestran 

que el bagazo de caña de azúcar y la esponja vegetal fueron capaces de eliminar el 

paracetamol en el medio acuoso. 

 

Para la remoción del diclofenaco sódico, evaluaron las características morfológicas y 

químicas de la uva Isabel (Vitis labrusca Vitis vinífera), obteniéndose porcentajes de 

22.8 % (Antunes et al., 2012). 

 

Para el caso del ibuprofeno, estudiaron en tanque agitado, empleando un sorbente 

obtenido de Parthenium hysterophorus activado con NaOH, encontrándose como 

resultado el porcentaje del 99% de remoción, por lo que consideran un adsorbente 
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rentable y eficiente para la eliminación de ibuprofeno de una solución acuosa (Sandip, 

Kaustav, & H, 2016).  

 

En el caso de la tetraciclina, hay estudios que emplean sedimentos marinos y bagazo 

de caña, cuyos resultados están expuestos en la tabla 6  

Tabla 6 Resultados de remoción de la Tetraciclina 

Fármaco Adsorbente Equipo Capacidad 
máxima 
absorbible 
(mg/g) 

Porcentaje 
de 
remoción 

Referencia 

Tetraciclina  Sedimentos 
marinos 
 

Tanque 
agitado  

22.3 
 

 
------- 

(Xu & Li, 2010) 
 

Bagazo de 
caña 

Columna 0,31 98% Flores et al; 2014 

 

Fuente: Autor 

 

En el estudio realizado por Silva (2016), analizan la remoción de Penicilina G, 

mediante diferentes absorbentes naturales como por ejemplo la menta, y sus 

posteriores activaciones químicas, en tanque agitado, obteniendo los siguientes 

resultados expuestos en la tabla 7. 

 

Tabla 7 Adsorbentes empelados para la eliminación de Penicilina G. 

Fármaco Adsorbente Capacidad máxima 
de adsorción (mg 
/g)  

Referencia 

Penicilina 
G 

*Menta (PM) 
*Menta sulfonada (SPM) 
*Menta carboxilada 
(CPM) 
*Menta tiolada (TPM) 
*Manzanilla (CM) 
*Manzanilla sulfonada 
(SCM) 
*Manzanilla carboxilada 
(CCM) 
*Manzanilla tiolada 
(TCM) 

PM: 17.85 
SPM: 32.3 
CPM:10.3 
TPM:23.8 
CM: 13.88 
SCM: 35,7 
CCM: 11.12 
TCM: 20.83 

(Silva J. , 
2016) 

 

Fuente: Autor 
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2.6.6 Tecnología de membrana 

 

La tecnología de membrana puede emplear la ósmosis inversa, ultrafiltración, 

nanofiltración; son considerados como los más apropiados para remover 

concentraciones traza de contaminantes fármacos (Miceli, Nájera, Rojas, Quintero, & 

Orantes, 2014). 

 

Una membrana puede ser considerada como un medio material que, colocada entre 

dos fases, permite el paso selectivo de determinadas sustancias a través de ella (que 

pasarían a formar parte del permeado) frente a otras que son rechazadas (que 

conformarían el rechazo o concentrado). El grado de selectividad dependerá de las 

características de la membrana y de las propiedades de las fases implicadas (Morales, 

2010). 

 

La fuerza impulsora responsable del transporte a través de la membrana puede ser 

un gradiente de presión, concentración, temperatura, eléctrico, etc. Los procesos de 

membranas típicamente empleados en los tratamientos de aguas residuales son 

principalmente aquellos en los que la fuerza impulsora es la presión (Morales, 2010)  

Los elementos comunes en dichos procesos son los que se muestran en la Figura 7 

 

Figura 7 Elementos comunes en los mecanismos de separación con membranas 

Fuente: (Morales, 2010) 

 

Los procesos de separación con membranas, se han clasificado en función del tamaño 

relativo de poro de la misma, o bien en función del tamaño molecular de las especies 

que la atraviesan. Así, las operaciones con membranas más utilizadas son: la 
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microfiltración, ultrafiltración, nanofiltración y ósmosis inversa, de acuerdo a su rango 

de separación y la presión aplicada (Mallevialle, Odendall, & Wierner, 1996). 

 

 

Figura 8 Clasificación de las membranas y sustancias presentes en las aguas 

Fuente: (Malleviale et al., 1996) 

2.6.6.1 Remoción de contaminantes emergentes utilizando membranas 

 

A nivel investigativo, se han utilizado las membranas de micro y ultrafiltración en la 

eliminación de contaminantes emergentes en biorreactor de membrana. Algunos 

investigadores han probado la eficiencia de estos sistemas en la remoción de 

ciclofosfamida y ciprofloxacina, mediante biorrecatores de membranas de micro y 

ultrafiltración (Zaviska et al., 2013); de antibióticos del grupo de las quinolonas, 

utilizando un BRM aerobio, consiguiendo remociones del orden del 99% (Dorival, 

Zafra, Navalón, González, & Vilchez, 2013).  

 

En otras investigaciones, se logró remover más del 90% de nonifenol y bisfenol 

utilizando tres unidades de MBRs y una unidad externa de ultrafiltración seguida de 

una absorción por medio de carbón activado granular (CAG), este sistema fue 

implementado para un agua residual proveniente de una planta de lixiviados de 

residuos vegetales, en este mismo trabajo también se sugirió como alternativa, un 

módulo de membrana de nanofiltración seguido del tratamiento de MBRs donde se 

logró la retención del 70% de estos compuestos emergentes (Zaviska et al, 2013). 
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Sánchez, (2014) comparó la eficiencia del tratamiento de aguas residuales mediante 

la tecnología de Nanofiltración (NF) dispuesta en dos sistemas a escala de laboratorio: 

biorreactor con membrana externa (sMBR) y la nanofiltración dispuesta como un 

tratamiento terciario (NF-ST), con base en la remoción de seis contaminantes 

orgánicos: Gemfibrozil, Naproxeno, Estradiol; y tres plastificantes: Bisfenol-A, Butil-

Bencil Ftalato, Dietil-Hexil Ftalato; como resultado se obtuvo que los dos sistemas 

fueron significativamente eficientes en la eliminación de los contaminantes estudiados. 

Empleando la tecnología de biorreactor de membrana (MBR), se evaluó la eliminación 

de varios fármacos, abarcando un amplio espectro de compuestos farmacéuticos, 

medicamentos psiquiátricos, antibióticos, macrólidos, antiinflamatorios, etc. 

 

La tecnología MBR combina la degradación biológica de los contaminantes con una 

separación física del agua tratada mediante filtración por membranas incorporada en 

el mismo biorreactor. Si se acopla el sistema MBR a un sistema de filtración por 

ósmosis inversa (RO) posterior, se consigue una filtración del efluente, más 

exhaustiva por el tamaño más pequeño de poro en la RO. La combinación de 

tratamiento MBR y RO ha permitido eliminar más del 99% de fármacos, esta elevada 

eliminación de los contaminantes contrasta con las tecnologías de depuración 

convencionales utilizadas de una manera más extendida para el tratamiento de aguas 

residuales urbanas, como es el caso del tratamiento secundario o biológico mediante 

el sistema de fangos activos, en el que la eliminación de fármacos es incompleta 

(Liberti & Notarnicola, 1999). 

 

Se estudió la aplicación de nanofiltración para la separación de carbamazepina, 

diclofenaco e ibuprofeno, obteniendo como resultados: 33 % para la carbamazepina, 

76% para el diclofenaco, y 34 % para el ibuprofeno (Vergili, 2013). 

 

2.7 Toxicología  

 

Según la revisión bibliográfica realizada, se puede evidenciar que el problema de los 

contaminantes emergentes es a nivel mundial, y está causando un sin número de 

alteraciones en el ecosistema, por lo tanto es necesario buscar soluciones, entre las 

cuales podemos mencionar: el desarrollo de métodos analíticos para la determinación 
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de estos contaminantes en matrices ambientales, sea en aguas subterráneas, 

superficiales, potables, sedimentos, suelos, etc., es indispensable tratar de conseguir 

una visión completa y realista de la problemática ambiental con enfoque integral que 

abarque estudios ambientales, de disponibilidad, de degradación y de toxicidad 

(Barceló & López de Alda, 2006). 

 

Estudios de biodisponibilidad: existen muchos factores que afectan a la 

biodisponibilidad de los contaminantes, no existe ningún consenso en cómo deben 

realizarse los estudios de evaluación de dicha biodisponibilidad. 

 

Estudios de degradación. Es necesario investigar la presencia de los contaminantes 

emergentes y sus productos de degradación. La formación de productos de 

degradación tiene lugar básicamente en dos escenarios: en los procesos de 

depuración de aguas residuales y en el propio medioambiente acuático. Para la 

identificación de los productos formados requiere del uso de tecnologías analíticas 

sofisticadas, se emplea fundamentalmente la técnica de cromatografía de líquidos o 

cromatografía de líquidos de ultra eficiencia (UPLC) acoplada a espectrometría de 

masas con analizadores de tiempo de vuelo (ToF) (Barceló & López de Alda, 2006). 

 

Estudios de toxicidad. Es indispensable conocer los posibles efectos indeseables que 

pueden ocasionar los contaminantes emergentes en el medio ambiente y a la salud 

pública, para ello disponemos de los ensayos biológicos, que su aplicación está 

dirigida al seguimiento de la calidad de aguas residuales de procedencia industrial. 

 

Una adecuada valoración de la problemática ambiental que acarrea la presencia de 

contaminantes emergentes en cuerpos de agua, está basada en el desarrollo de 

métodos de análisis sensibles y fiables para su determinación en matrices 

ambientales, aplicar dichos métodos en áreas consideradas de interés con el fin de 

determinar los niveles de los contaminantes investigados, el destino que sufren en el 

medio ambiente, su biodisponibilidad, el tipo de transformaciones que experimentan, 

los metabolitos y productos de degradación que se forman, y su toxicidad y, 

finalmente, identificar los compuestos y las zonas geográficas que merecen especial 

atención, y sobre los cuales es posible actuar tomando medidas que permitan mejorar 
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la calidad de las aguas, proteger la salud del hombre y el medio ambiente (Barceló & 

López de Alda, 2006). 

 

2.7.1 Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L) 

 

La semilla de lechuga (Lactuca sativa), no es una especie representativa de 

ecosistemas acuáticos, la información generada a partir de esta prueba de toxicidad 

proporciona datos acerca del posible efecto de los contaminantes en las comunidades 

vegetales cercanas a las márgenes de cuerpos de agua contaminados, siendo 

también una especie interesante de considerar por su importancia desde el punto de 

vista hortícola (Sobrero & Ronco, 2008). 

 

El bioensayo de toxicidad con semillas de lechuga (Lactuca sativa L), es una prueba 

estática de toxicidad aguda (120 horas de exposición), mediante la cual se puede 

evaluar los efectos fitotóxicos de compuestos puros o de mezclas complejas en el 

proceso de germinación de las semillas y en el desarrollo de las plántulas durante los 

primeros días de crecimiento.  

 

Durante el periodo de germinación y los primeros días de desarrollo de la plántula 

ocurren numerosos procesos fisiológicos, en los que la presencia de una sustancia 

tóxica, puede interferir alterando la supervivencia y el desarrollo normal de la planta, 

siendo por lo tanto una etapa de gran sensibilidad frente a factores externos adversos 

(Sobrero & Ronco, 2008). 

 

La evaluación del efecto en la elongación de la radícula y del hipocotilo de las 

plántulas, permite ponderar el efecto tóxico de compuestos solubles, presentes en 

niveles de concentración tan bajos que no son suficientes para inhibir la germinación, 

pero que sin embargo pueden retardar o inhibir completamente los procesos de 

elongación de la radícula o del hipocotilo. Por lo tanto, la inhibición en la elongación 

de la radícula e hipocotilo constituyen indicadores subletales muy sensibles para la 

evaluación de efectos biológicos de los tóxicos en vegetales (Sobrero & Ronco, 2008). 
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2.7.2 Estudio de toxicidad de los productos farmacéuticos 

 

A nivel mundial, se está realizando estudios de los efectos perjudiciales de los 

fármacos sobre los ecosistemas, tanto en el compartimento acuático como terrestre, 

y se están utilizando una diversidad de bioindicadores como Daphnia magna, Danio 

rerio, Lemna minor, O. mykiss, Hydra attenuata, que son organismo acuáticos; entre 

los organismos terrestres constan Eisenia foetida, Lactuca sativa, R. sativus, entre 

otros. 

 

A continuación se realiza una breve revisión de la toxicidad de los fármacos más 

ampliamente consumidos. 

 

Analgésicos no opiáceos: la toxicidad aguda de los analgésicos no opiáceos, se ha 

demostrado en los diferentes niveles tróficos, causando mayor toxicidad en el 

ecosistema acuático que terrestre (Fent, Wetson, & Caminada, 2006; Ruiz &Font, 

2011). Entre los efectos a largo plazo de los analgésicos no opiáceos, consta la 

bioacumulación, principalmente a nivel del hígado, riñón, músculo y branquias, 

principalmente en crustáceos y peces. El rango de concentración máxima sin efecto 

observable (NOEC) varía entre 10 μg/L (Pseudokirckneriella subcapitata) para el 

diclofenaco y 20 mg/L para el ibuprofeno (Daphnia magna) (Santos et al, 2010; Pino 

et al, 2015). 

 

El ibuprofeno, altera la reproducción del pez Oryzias latipes por inhibición de la 

vitelogenina (Santos et al, 2010; Ruiz & Font, 2011).  

 

En el caso del paracetamol, existen estudios de ecotoxicidad del paracetamol sobre 

diferentes organismos acuáticos, pero hay pocas investigaciones sobre el 

compartimento terrestre, por esta razón esta investigación utiliza como bioindicador 

las semillas de Lactuca Sativa, para contribuir con el conocimiento de la toxicidad del 

paracetamol en el compartimento terrestre. 
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Tabla 8 Ensayos de ecotoxicidad y efectos adversos del paracetamol 

Compartimento 
ambiental 

Organismo Parámetro 
(exposición) 

Reacción 
adversa 

Referencia 

Acuático Danio rerio CL50: 378 mg/L (48 h) Mortalidad Santos et al 
(2010) Daphnia 

magna 
CE50: 30,1 mg/L (48 

h). 
Inmovilizació

n 

CE50: 26,6 mg/L (96 
h) 

Inmovilizació
n 

O. latipes CL50 >160 mg/L (48 
h) 

Mortalidad 

Tetrahymena 
pyriformis 

 Inhibición del 
crecimiento 

Terrestre E. foetida CL50: 693,50 mg/kg (-
) 

Mortalidad Pino et al 
(2015) 

 

Fuente: (Cuñat & Ruiz, 2016) 

 

Antidepresivos: Fluoxetina y la sertralina, tienen un elevada persistencia, y causa 

toxicidad aguda y crónica a especies de diferentes niveles tróficos de ecosistemas 

acuáticos y terrestres, debido a la capacidad de bioacumularse (Oakes et al, 2010; 

Ruiz & Font, 2011; Silva, Lino, Meisel, & Pena, 2012). El rango de toxicidad aguda 

varía entre 12.10 μg/L (CI50 en Pseudokirckneriella subcapitata) para la sertralina y 

191.5 mg/L (CI50 en Crassostrea gigas) para la fluoxetina. El rango de la NOEC varía 

entre 0.47 μg/L para la fluoxetina (Potamorpygus antipodarum) y 2.25 mg/L para la 

sertralina (Vibrio fischeri). Los efectos que producen la fluoxetina y la sertralina en 

diferentes especies, son la inhibición del crecimiento en algas, crustáceos o peces, 

aunque también puede producir inmovilización en crustáceos (Santos et al, 2010; Ruiz 

& Font, 2011; Minguez et al, 2014).  

 

Estudios realizados sobre el pez cebra (Danio rerio), demuestran que la fluoxetina 

puede alterar el comportamiento de las especies acuáticas, por que actúa sobre la 

respuesta al estrés, al reducir los niveles de cortisol, de esta forma, aumenta el riesgo 

de depredación y disminuye la socialización (Abreu et al, 2014). 

 

También se han demostrado efectos en la reproducción de moluscos, bivalvos y 

crustáceos por malformaciones en el manto o en la cáscara y reducción de la 

frecuencia de la metamorfosis (Minguez et al, 2014). 
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Estrógenos: el estradiol (E2) y su derivado sintético 17 β-etinilestradiol (EE2), son los 

estrógenos más relevantes en el medio ambiente; mientras que la estrona y el estriol 

requieren mayores concentraciones para producir efectos adversos en los 

ecosistemas. El E2 puede degradarse fácilmente en el tratamiento secundario de las 

EDAR, pero el EE2, debido a su naturaleza sintética y características no polares, tiene 

mayor resistencia. Los principales efectos producidos por los estrógenos son la 

feminización e inducción de la vitelogenina en machos (causando cambios de sexo o 

especies intersexuales); cambios en el comportamiento sexual y en los caracteres 

sexuales secundarios como por ejemplo alteración de la coloración o aparición de 

rayas laterales en machos afectando el apareamiento con las hembras. Entre los 

cambios de comportamiento causados por el EE2 en el pez aguja (Syngnathus 

abaster), además de cambios en la atracción (en los machos) o la maduración sexual, 

se observan cambios en la distribución bentónica con aproximación a la superficie del 

bentos en función de la dosis (Aris, Shamsuddin, & Praveena, 2014). 

 

También se ha observado aumento de la vitelogenina mediante la exposición continua 

al EE2 en el mejillón (Mytilus edulis). Sin embargo, la exposición a EE2, en el caso de 

las ostras y dependiendo de la especie, causa aumento de la vitelogenina (Saccostrea 

glomerata) (Aris, Shamsuddin, & Praveena, 2014).  

 

En los anfibios, la exposición al E2 y EE2 causa efectos adversos en la metamorfosis 

y maduración, en el caso de la rana africana de uñas (Xenopus laevis), la alteración 

de la metamorfosis varia la proporción de sexos; en los machos de rana rugosa causa 

aparición parcial o completa de ovarios y en la rana leopardo (Lithobates pipiens) 

produce aumento de vitelogenina (con feminización por reducción de los túbulos 

seminíferos y aparición de ovocitos) (Orlando & Guillete, 2007; Aris et al, 2014).  

 

En reptiles, provoca cambio de sexo en tortugas (Trachemys scripta) y reducción de 

los caracteres sexuales en cocodrilos (Alligator mississippiensis) (Orlando & Guillete, 

2007). 
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Por otra parte, la exposición a E2 y EE2 no causa efectos adversos en macrófitos 

acuáticos como la lenteja de agua (Lemna sp.) incluso a concentraciones de 1.000 

ng/L durante 6 días (Caldwell, 2012) 

 

Antibióticos: por su elevada solubilidad, los antibióticos se excretan hasta un 90% 

por orina en su forma original (Kemper, 2008; Ruiz & Font, 2011; Van der Grinter et 

al, 2010;). En el medio acuático presentan elevada persistencia, con excepción de las 

tetraciclinas o las penicilinas. Uno de los mayores problemas de la presencia de los 

antibióticos en el medio ambiente es el desarrollo de resistencias bacterianas 

(Kemper, 2008). Cualquier población bacteriana expuesta a los antibióticos puede 

desarrollar genes de resistencia, tal y como se ha observado en bacterias de los 

géneros Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, 

Enterobacter y Escherichia (Finley et al, 2013). 

 

En los ecosistemas acuáticos, las especies están expuestas a mezclas de antibióticos 

que pueden aumentar la toxicidad producida por los mismos de forma individual 

(González et al, 2013). Las especies que son especialmente sensibles a los 

antibióticos, son las cianobacterias o algas verdes, causando alteración de los 

procesos del ecosistema (Bialk et al, 2011; Santos et al, 2010; Van der Grinten et al, 

2010;).por el contrario, los rotíferos, crustáceos y peces son más resistentes a los 

antibióticos (Santos et al, 2010). 

 

Fluorquinolonas: son los antibióticos más difíciles de biodegradar ya que se unen a 

las partículas de los sedimentos y del suelo; sin embargo, pueden degradarse por 

fotólisis (Kumar, Gupta, Chander, & Singh, 2005; Sarmah, Meyer, & Boxall, 2006). 

Los efectos generados por las fluorquinolonas, son clorosis en L. minor a 

concentraciones de 125 μg/L y baja actividad promotora del crecimiento en peces de 

la especie P. promelas con exposiciones de 10 mg/L de ciprofloxacino, levofloxacino 

y oxoflocacino (Robinson, Belden, & Lydy, 2005).  

 

Sulfamidas: constituyen otro grupo de antibióticos muy tóxico para las especies 

acuáticas, las sulfamidas pueden afectar al crecimiento de las algas verdes, su 

contenido y producción de clorofila (Bialk et al, 2011; Santos et al, 2010,). Se ha 



UNIVERSIDAD DE CUENCA   

 

Sandra Maribel Banegas Ávila – MAESTRIA EN TOXICOLOGIA INDUSTRIAL Y AMBIENTAL   64 

encontrado que concentraciones bajas de sulfamidas inhiben la reproducción de 

Scenedesmus vacuolatus (CE50 1.54 μg/L, y 32.25 μg/L. dependiendo de la 

sulfamida); y en las lentejas de agua (L. gibba y L.minor) inhiben la producción de 

clorofila b y del crecimiento (Bialk et al, 2011; Ruiz & Font, 2011).  

 

En el caso del trimetoprim, se ha evidenciado que inhibe la fotosíntesis (P. subcapitata, 

M. aeruginosa), produce inhibición del crecimiento (L. minor), causa inmovilización y 

efectos sobre la reproducción (D. magna). Además, en especies de crustáceos (M. 

macrocopa) produce mortalidad a concentraciones inferiores a 1 mg/L (Santos et al, 

2010).  

 

Macrólidos: afectan al crecimiento en diferentes niveles tróficos, afecta a lentejas de 

agua, algas, rotíferos y crustáceos entre otros, produce inmovilización y muerte en 

crustáceos y rotíferos. La eritromicina causa efecto tóxico sobre individuos de 

diferentes niveles tróficos del ecosistema acuático, por ejemplo produce inhibición del 

crecimiento en P. subcapitata, mortalidad en B. calyciflorus (González et al, 2013; 

Santos et al, 2010). 

 

Tetraciclinas: también se encuentran en el medio acuático y sus efectos sobre las 

diversas especies puede deberse al producto original, productos derivados o la 

combinación de ambos (Ferreira, Nunes,, Henriques, & Guilhermino, 2007). Por otra 

parte, en el medio terrestre, las especies más afectadas son los microorganismos, 

produciendo principalmente alteraciones de su biomasa y actividad (Liu et al, 2009). 

La tetraciclina y clortetraciclina, pueden causar genotoxicidad en especies terrestres 

como los gusanos de tierra (E. foetida), afectando severamente su ADN a 

concentraciones de 30 mg/Kg (Dong, Gao, Xie, & Zhou, 2012). 

 

Según la revisión bibliográfica, los antibióticos afectan a todos los niveles tróficos, no 

quedando libres las especies vegetales, ya que también son sensibles a los 

antibióticos, de forma que se ha observado que producen inhibición de la germinación 

y/o del crecimiento, aunque algunas especies, como el pepino (Cucumis Sativus) 

presenta mayor resistencia a antibióticos como las sulfamidas y las tetraciclinas (Liu 

et al, 2009). 
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Por otra parte, también se han observado efectos positivos de los antibióticos ya que 

producen en determinados casos crecimiento de algunas especies agrícolas al reducir 

los patógenos presentes en el suelo, como en el caso del rábano (R. sativus), el maíz 

(Zea mays) y el trigo (Triticum aestivum) (Kumar et al, 2005).  

 

Los estudios sobre los efectos de los antibióticos son limitados y en ocasiones 

contradictorios, pues en algunos casos los antibióticos, eliminan a los 

microorganismos, mientras que en otros aumentan su crecimiento y actividad (Thiele-

Bruhn & Beck, 2005). 

 

En sistemas terrestres, únicamente se dispone de datos de toxicidad aguda, 

observándose alteración del crecimiento y de la germinación en plantas por su 

absorción radicular y muerte en gusanos de tierra (Pino et al, 2015). 

 

Según la revisión de los estudios de ecotoxicidad de algunos de los medicamentes 

ampliamente consumidos a nivel mundial, podemos destacar que hay más estudios 

en el compartimento acuático, pero en el compartimento terrestres todavía no está 

bien estudiado, para analizar este compartimento se puede emplear como organismos 

de prueba, semilla de lechuga, cebolla, rábano, escarola, achicoria, entre otros 

(Navarro, Arrueta, & Maldonado, 2006). Los estudios más relevantes de los 

analgésicos no opiáceos lo resumimos en el anexo 1.  

 

Dado la importancia de la presencia de los productos farmacéuticos en los diversos 

cuerpos de agua, la toxicidad que presentan al medio ambiente acuático y terrestre, 

es de suma importancia buscar tecnologías que sean eficientes y económicas para 

poder remover y disminuir los posible efectos en los organismos vivos, se debe 

también conocer a profundidad los efectos perjudiciales y regular las descargas a los 

cuerpos de agua, por estas razones este trabajo está enfocado en la remoción del 

paracetamol empelando biosorbente bagazo de caña, y tecnología de membrana de 

nanofiltración y osmosis inversa; completando el estudio se realiza el ensayo de 

toxicidad para revelar en el grado que afecta el paracetamol al ecosistema. 
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CAPITULO III: MATERIALES Y MÉTODOS 

 

En este capítulo se detallan los materiales, reactivos y procedimientos aplicados 

para la realización de la parte experimental de este trabajo dividida en tres fases 

denominadas: Biosorción, membranas y toxicidad que a continuación se detalla: 

Reactivos  

 Paracetamol: origen China, de la Droguería PREST S.A., lote: 1150307. 

 Agua desionizada  

 Ácido clorhídrico de MERCK. 

 Hidróxido de sodio de MERCK. 

 Etanol 99% de pureza de MERCK. 

Equipos 

 Sepa* CF II Membrane: es la unidad de filtración por membrana, de flujo 

cruzado, escala laboratorio, soporta hasta 1.000 PSIG (69 bar). Se puede 

emplear membranas de ósmosis inversa, nanofiltración, ultrafiltración y 

microfiltración (Sterlitech Corporation, 2017). 

 

 Espectrofotómetro UV-Vis GENESYS 10S de Thermo Scientific ™: posee 

doble haz , detector interno de referencia, lámpara flash de xenón, rango de 

190-1.100 nm, rango de linealidad hasta 3.5 A 260 nm (ThermoFisher Scientifc, 

2017). 
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Figura 9 Sistema de Membranas SEPA CF II 

Fuente: Autor 

 

Figura 10 Espectrofotómetro UV-Vis GENESYS 10S de Thermo Scientific. 

Fuente: Autor 
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3.1 Biosorción del paracetamol con bagazo de caña 

 

3.1.1 Preparación del biosorbente 

 

El bagazo de la caña de azúcar fue adquirido en las moliendas de Yunguilla, se 

eligieron los bagazos de caña en buenas condiciones de conservación y se separó la 

corteza de la pulpa; la parte empleada fue la pulpa, la cual se lavó varias veces con 

agua potable para eliminar todo tipo de impurezas; luego se secó al aire libre, para 

disminuir la cantidad de agua presente, y posterior se completó el secado en la estufa 

a 60°C, por 8 horas. Luego se procedió a triturar con un molino manual y se tamizó a 

través de un tamiz N° 20, del cual se obtuvo partículas de diámetro 0.59 mm.  

 

 

Figura 11 Trapiche: Obtención del Bagazo de Caña 

Fuente: Autor 
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Figura 12 Lavado del Bagazo de Caña 

Fuente: Autor 

 

 

Figura 13 Bagazo de caña molido 

Fuente: Autor 

 

3.1.2 Caracterización del bagazo de caña 

 

Se determinó algunos parámetros físicos y químicos, que son parte de la 

caracterización del bagazo de caña, los cuales detallamos a continuación:  

 



UNIVERSIDAD DE CUENCA   

 

Sandra Maribel Banegas Ávila – MAESTRIA EN TOXICOLOGIA INDUSTRIAL Y AMBIENTAL   70 

3.1.2.1 Propiedades físicas 

 

Densidad Real: por el método picnométrico, para lo cual se pesó 1 gramo del 

biosorbente, se colocó el biosorbente en el picnómetro de 25 ml de volumen, se pesó 

el picnómetro con la muestra; se adicionó agua destilada hasta el nivel de enrase del 

picnómetro y se pesó nuevamente el picnómetro + muestra + agua destilada. Para el 

cálculo de la densidad real, aplicamos la siguiente ecuación:  

 

mpart: masa del biosorbente (g)  

Vp: volumen del picnómetro a 20ºC con el solvente y el sólido (mL) 

msolv: masa del solvente que se añade al picnómetro hasta el enrase (g)  

solv: densidad del solvente (g/mL).  

 

Densidad Aparente: se aplicó el método de la probeta, para lo cual se pesó la probeta 

vacía, a la probeta vacía se colocó la masa del biosorbente hasta un determinado 

volumen, se pesó la probeta con el material del biosorbente y por diferencia se obtiene 

la masa del biosorbente. Para el cálculo se dividió la masa de biosorbente para el 

volumen ocupado por el biosorbente en la probeta y se calculó la densidad aparente. 

 

Porosidad: la porosidad de la partícula de un sólido, es una medida de la rugosidad y 

la capacidad de la superficie y es una estimación partir de su relación con la densidad, 

según la siguiente ecuación: 

 

ρap: densidad aparente (g/mL)  

ρreal: densidad real (g/mL)  
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3.1.2.2 Propiedades químicas 

 

Grupos funcionales: mediante el análisis de Infrarrojo se realizó la determinación de 

grupos funcionales en el biosorbente bagazo de caña, se realizó mediante el 

espectrofotómetro Infrarrojo La muestra fue de 2 mg de bagazo de caña, la cual fue 

sometida a un proceso de secado a 50-60ºC por 24 horas, luego se preparó pastillas 

de KBr, con fragmentos de cada una de las muestras trituradas en un mortero y se 

obtuvo el espectro por transmitancia realizando 25 barridos en el rango de 4000 a 450 

cm-1 con una resolución de 4 cm-1 (Vera et al., 2016). 

 

Punto de carga cero: mediante el método de la derivada del pH, para lo cual se 

dispone de seis erlenmeyers de 250 ml, a cada uno se colocó 50 ml de agua destilada. 

Se reguló los valores de pH de cada erlenmeyer con HCl 0,1M o NaOH 0,1M para 

obtener pH de 3, 4, 5, 6, 8 y 10, realizando las lecturas del pH, consideradas como pH 

inicial. A cada Erlenmeyer, se colocó 0.5 gramos de bagazo., se colocaron los 6 

erlenmeyer en el equipo de shaker, se agitó durante 48 horas continuas a 150 rpm a 

temperatura ambiente (20,5ºC), se procedió a filtrar, recolectando el filtrado en un vaso 

de precipitación, a este filtrado se realizó la medición del pH, considerado p H final. 

Se graficó el pH inicial vs. pH final, luego se trazó una recta para determinar el pH en 

el cual se corta la curva. El valor de pH de corte determina el pH en el punto de carga 

cero. (Vera et al., 2016). 

Sitios ácidos y básicos: mediante el método de Boehm, para esta prueba se siguió 

el procedimiento indicado a continuación. Se pesó 1 gramo de bagazo por duplicado 

y se colocó cada gramo en un Erlenmeyer de 125ml.  Al primer  Erlenmeyer, se 

adicionó 50 ml de HCl 0,1N y al segundo Erlenmeyer se adicionó 50ml de NaOH 0,1N. 

Los dos Erlenmeyer se conservaron a temperatura ambiente durante 5 días con 

agitación manualmente dos veces al día, se filtró las muestras y se efectuó la titulación 

con el agente titulante, a cada volumen adicionado se midió el pH. Para el cálculo de 

la concentración de grupos ácido-base se aplicó la siguiente ecuación: 

                                                    C ag. titulante (Vag titulante – Vpto. equivalencia) 

                          C grupos ácido-base=-------------------------------------------------- x 10 -3 

                                                                     m sólido 
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C ag. titulante: concentración del agente titulante (mg/L) 

V ag. Titulante: volumen total de agente titulante añadido (mL)  

Vpto. equivalencia: volumen en el punto de equivalencia (mL) 

 m sólido: peso del biosorbente (g) 

Para determinar el volumen en el punto de equivalencia tanto para los sitios ácidos 

como básicos, se graficó las curvas de titulación, en las abscisas se colocó el volumen 

del agente titulante y en las ordenas se colocó el pH; el punto donde hay cambio de 

sentido de la gráfica, corresponde al volumen en el punto de equivalencia.  

3.1.3 Biosorción en columna con bagazo de caña 

 

Se empleó una bureta de 1,5 cm de diámetro interno, con altura de 23 cm, y se colocó 

gravilla 2 cm de altura en la parte baja de la bureta, luego se colocó 6 gramos de 

biomasa bagazo de caña dentro de la bureta, tratando que no queden espacios vacíos 

o canalizaciones, en la parte superior se colocó gravilla 2 cm de altura, para evitar 

perdida del biosorbente. Se procedió a realizar la humectación de la biomasa, 

haciendo pasar agua destilada a través de la columna, la alimentación del agua se 

realizó de forma manual en flujo descendente, manteniendo una altura constante de 

alimentación del líquido para evitar fluctuaciones.  
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Figura 14 Columna con bagazo de caña 

Foto: Autor 

 

3.1.3.1 Estudio Hidrodinámico 

 

Se realizó el estudio hidrodinámico variando la altura del lecho del biosorbente en la 

columna y la masa del biosorbente y se hizo pasar agua desionizada a fin de conocer 

las mejores condiciones de operación de la columna.  

  

Tabla 9 Condiciones para el estudio hidrodinámico 

Parámetro Caso 1 Caso 2 

Diámetro de la columna (cm) 1,5 1,5 

(H) altura de la columna (cm) 26 23 

Masa del biosorbente (g) 7,16 6 

Tamaño de la partícula (mm) 59 59 

Volumen (mL) 10 10 

 

Fuente: Autor 
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Se considera en bibliografía que el flujo ideal es entre 2 a 5 mL/min. (Bermejo, 2016; 

Kumar, 2015; Taty, 2005). Para la selección de la altura del lecho se consideró los 

criterios de diseño de Treybal, (1980), que sugiere que puede ser de seis veces o más 

el diámetro interno de la columna.  

 

3.1.3.2 Remoción del paracetamol por biosorción bagazo de caña 

 

3.1.3.2.1 Preparación de la solución de paracetamol 

 

Se preparó una solución sintética de paracetamol de 56.7 mg/L, en agua destilada, y 

para favorecer la solubilidad del paracetamol se empleó el 10 % de metanol al 99% 

de pureza, resultando el pH de 6. En el artículo denominado Sorption and transport of 

acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer 

sand, utilizan el metanol como cosolvente del paracetamol (Lorphensria, Sabatinib, 

Kibbeyb, Osathaphanc, & Saiwand, 2007). 

 

3.1.3.2.2 Biosorción 

 

Se hizo pasar la solución de paracetamol por la columna de bagazo de caña, en flujo 

descendente, manteniendo una altura constante de alimentación, luego se tomaron 

muestras a la salida de la columna con diferentes intervalos de tiempo, hasta llegar a 

177 minutos de ensayo. A las muestras recolectadas se determinó la concentración 

de paracetamol, para lo cual se utilizó la técnica de Espectrofotometría Ultravioleta-

visible. 

 

3.1.3.2.3 Cuantificación del paracetamol 

 

Antes de realizar la cuantificación del paracetamol, se procedió a encontrar la longitud 

de onda en el cual, el paracetamol presente la máxima absorbancia; para ello se 

preparó una solución de paracetamol, y se realizó el barrido de longitud de onda en el 

equipo de espectrofotometría UV-Visible, encontrándose 244nm, valor que coincide 
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con el encontrado en el estudio de Lorphensria (2007), que encuentra un valor de 242 

nm para el paracetamol. 

 

Para la elaboración de la curva de calibración, se preparó cinco diluciones de 

paracetamol de: 50, 25, 12.5, 6.25, 3.125 mg /L; de cada dilución se hace la lectura 

de la absorbancia en el equipo de espectrofotometría UV-Visible, el equipo gráfica la 

curva de calibración; en la abscisa están las concentraciones conocidas de las 

diluciones y en las ordenadas están las absorbancias encontradas con el equipo. 

 

Para analizar las muestras de concentración desconocida de paracetamol, se colocó 

5 ml de la solución en la celda del espectrofotómetro, dando la lectura de absorbancia, 

este valor se interpoló en la curva de calibración, y se obtuvo la concentración de 

paracetamol de la muestra. 

 

3.1.3.2.4 Porcentaje de Remoción 

 

Para obtener el porcentaje de remoción del paracetamol se aplicó la siguiente fórmula:  

                                                                      C.inicial – C.final 

 Porcentaje de remoción = ---------------------- x 100  

                                                                            C.inicial 

C.inicial: concentración inicial de paracetamol 

C.final: concentración inicial de paracetamol (Vera et al., 2015).  

3.1.3.2.5 Desmontaje de la columna 

 

Una vez terminado el experimento de biosorción se retiró el bagazo de caña de la 

columna, y el bagazo residual se colocó en funda de color rojo que es retirado por la 

empresa Emac EP, para disposición final.  

3.2 Remoción del paracetamol con membranas nanofiltración y osmosis inversa 

 

En este trabajo se emplearon las membranas de osmosis inversa (YMSESP 1905), 

de la familia GE Osmonics SE- Series, de película delgada y superficie lisa, resistente 

al ensuciamiento y la membrana de nanofiltración (YMDKSP1905), de la familia GE 
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Osmonics polimérica de película delgada. Se utilizó la celda de membranas SEPA CF 

II a escala laboratorio que permite realizar operaciones de filtración en flujo cruzado 

con las membranas de osmosis inversa y nanofiltración.  

 

Figura 15 Membrana de osmosis inversa utilizada 

Foto: Autor 

 

Figura 16 Membrana de nanofiltración utilizada 

Foto: Autor 

3.2.1 Caracterización de las membranas de nanofiltración y osmosis inversa 

 

3.2.1.1 Lavado de las membranas 

 

Antes de realizar la caracterización de las membranas, se debe acondicionar las 

membranas a utilizar, para lo cual, se realizó el lavado de las membranas para eliminar 

el polvo protector que las recubre, haciendo circular por el sistema de membranas 

agua desionizada durante dos horas a una presión de 8 bares.  
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Figura 17 Armado del sistema de membranas 

Foto: Autor 

.2.1.2 Caracterización de las membranas 

 

Para ello se filtró agua desionizada a través de las membranas a diferentes presiones 

durante un tiempo preestablecido de 10 minutos, se procedió a calcular el flujo, 

mediante a siguiente ecuación:  

 J=kw (ΔP−Δπ) 

J: es el flujo de permeado (L/ h m2). 

Kw: es el coeficiente de permeabilidad del disolvente (m3/m2hbar).  

ΔP: es la presión transmembrana (bar). 

Δπ: es la diferencia de presión osmótica (bar). 

La presión osmótica del agua desionizada es nula. 

La permeabilidad de la membrana de nanofiltración es 5,35 m³/m² hbar. 

La permeabilidad de la membrana de osmosis inversa es 1,6929 m³/m² hbar.  

Con los datos obtenidos se graficó el flujo del permeado vs la presión transmembrana, 

en el rango de estudio.  
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3.2.2 Remoción del paracetamol  

 

3.2.2.1 Preparación de la solución de paracetamol 

 

Se preparo soluciones sintéticas de paracetamol para nanofiltración de 52mg/L, y para 

osmosis inversa de 55mg/L; utilizando como solvente 10 % de metanol de 99% de 

pureza, en agua destilada. 

3.2.2.2 Separación 

  

Las condiciones dadas por el fabricante indican que para membranas de osmosis 

inversa se debe trabajar a 15 rpm y 14 bares de presión transmembrana; y para la 

nanofiltración 15 rpm y 8 bares de presión transmembrana. Durante el experimento se 

tomaron muestras del permeado, y del rechazo de la membrana, y se cuantificó el 

paracetamol, mediante la técnica de Espectrofotometría Ultravioleta-visible  

 

3.2.2.3 Porcentaje de remoción 

 

Para obtener el porcentaje de remoción del paracetamol se aplicó la siguiente fórmula:  

C.inicial – C.final 

Porcentaje de remoción = ---------------------- x 100 

C.inicial 

C.inicial: concentración inicial de paracetamol 

C.final: concentración inicial de paracetamol  

También se calculó el coeficiente de rechazo de la membrana, mediante la siguiente 

ecuación (Vera et al; 2015). 

                           Concentración de paracetamol en el permeado  

Rechazo = 1 - ------------------------------------------------------------------ x 100 

                           Concentración de paracetamol en el rechazo 

 



UNIVERSIDAD DE CUENCA   

 

Sandra Maribel Banegas Ávila – MAESTRIA EN TOXICOLOGIA INDUSTRIAL Y AMBIENTAL   79 

3.3 Evaluación del efecto tóxico del paracetamol sobre el desarrollo de semillas de 

Lactuca sativa L.  

 

Para este ensayo se trabajó con semillas de lechuga (Lactuca sativa), disponibles en 

Agrosad, se procuró que las semillas utilizadas sean del mismo tamaño. Las semillas 

se almacenaron en ambiente seco y temperatura ambiente.  

 

Figura 18 Semillas de Agrosad 

Fuente: Autor 

 

Figura 19. Semillas empleadas para el ensayo 

Fuente: Autor 
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3.3.1 Preparación de la soluciones de paracetamol 

 

Para el ensayo propiamente dicho, se prepararon diluciones de paracetamol en el 

rango de los mg/L (500, 250, 125, 62.5, 39, 19.5, 9.75, 6, 1mg /L), y 5 diluciones en el 

rango de µg/L (100, 10, 1, 0.1, 0.001). Se preparó un blanco o control negativo con 

agua destilada. Se empleó concentraciones en el rango de mg/L, debido a que la 

Comisión de la Comunidad Europea de 1996, clasifica a las sustancia por su 

concentración efectiva 50 (CE50) cuya expresión está en mg/L. Considerando que las 

concentraciones de paracetamol encontrados en los artículos revisados está en µg/L 

(Yu-Chen Lin &Tsai, 2009); se vio necesario ampliar el estudio fitotóxico, empelando 

concentraciones µg/L, y poder conocer el efecto del paracetamol en las 

concentraciones reales en las que se encuentra en el ecosistema.  

 

Tabla 10. Condiciones del ensayo de toxicidad con Lactuca sativa L. 

Descripción Condición 

Tipo de ensayo Estático 

Temperatura 22± 2 °C 

Calidad de la luz Obscuridad 

Volumen de la solución de prueba 4 ml 

Número de semillas por réplica 20 

Número de réplicas Tres 

Duración de la prueba 120 horas 

Efecto medido Inhibición en la elongación de la 

radícula e hipocotilo 

Inhibición en la germinación. 

Resultado final CI50% 

 

Fuente:(Sobrero & Ronco., 2004). 
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3.3.2 Protocolo del ensayo 

 

Para cada dilución de paracetamol, se realizó por triplicado, incluyendo el blanco 

llamado también control negativo. Se etiquetó, cada una de las caja Petri, con la 

concentración del paracetamol, fecha de inicio y fin de la prueba, se colocó en cada 

caja Petri, un disco de papel de filtro, se saturó el papel de filtro con 4 mL de la dilución 

de paracetamol, evitando que se formen bolsas de aire, con la ayuda de una pinza, se 

colocó cuidadosamente 20 semillas, dejando espacio suficiente para que puedan 

lograr la elongación, se tapó las capsulas y se colocó en bolsas plásticas para evitar 

la pérdida de humedad, se cubrió de la luz, e incubó por 120 horas (5 días), a una 

temperatura de 22 ± 2 °C.  

 

Al término de los cinco días de incubación se midió con una regla la radícula y el 

hipocotilo en milímetros de cada una de las semillas germinadas, y se realizó la 

comparación con las semillas del grupo control negativo (Sobrero & Ronco, 2008).  

 

La medida de elongación de la radícula se consideró desde el nudo (región más 

engrosada de transición entre la radícula y el hipocotilo) hasta el ápice radicular. La 

medida de elongación del hipocotilo se consideró desde el nudo hasta el sitio de 

inserción de los dos cotiledones (Sobrero & Ronco, 2008). 

 

Figura 20 Estados de desarrollo de la semilla de Lactuca sativa L. durante la 

germinación. 

Fuente: (Sobrero & Ronco, 2008). 
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Figura 21 Hipocotilo y radícula 

Fuente: (Sobrero & Ronco, 2008). 

 

3.3.3 Verificación de la viabilidad de las semillas 

 

Antes de iniciar el ensayo propiamente dicho, se verificó que las semillas tenga un 

porcentaje de germinación superior al 90%, que tenga baja variabilidad de la 

elongación, comprobando que el coeficiente de variación sea menor al 30%, para lo 

cual se empleó las mediciones del control negativo y calculó el porcentaje de variación 

con el programa de Excel y este valor no supero el 30%, por lo que se acepta la 

variabilidad de las semillas  

 

 

Figura 22. Concentración de 19.5 mg/L, colocación de las semillas. 

Fuente: Autor 
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Figura 23. Concentración 100 µg/L, al final de la incubación. 

Fuente: Autor 

 

 

Figura 24. Semillas de lechuga germinadas. 

Fuente: Autor 

 

Con la medida del hipocotilo y de la radícula de cada una de las concentraciones 

ensayadas se calculó el porcentaje de inhibición del crecimiento de la radícula y del 

hipocotilo, respecto al promedio de la elongación del control negativo o blanco 

(Hoeskstra, Bosker, & Lantinga, 2002; Walter, Martínez, & Cala, 2006). 

                                                                            

                                       Porcentaje                 Germinación de la muestra 

                                       de germinación   = --------------------------------------------- x 100 

                                                                        Germinación del control negativo 
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                                     Promedio elongación            -        Promedio elongación 

                 Porcentaje   radícula control negativo                 radícula muestra 

                 Inhibición  = --------------------------------------------------------------------------x100 

                 Radícula                 Promedio elongación radícula control negativo 

 

 

                                          Promedio elongación            -        Promedio elongación 

                   Porcentaje      hipocotilo control negativo           hipocotilo muestra 

                    Inhibición  = ------------------------------------------------------------------------ x 100 

                    Hipocotilo         Promedio elongación hipocotilo control negativo 

 

Se graficó el porcentaje de inhibición vs log concentración, mediante el método gráfico 

se encontró la concentración que produce el 50% de inhibición (CI50) (Pérez & 

Martínez, 1994; Sobrero &Ronco; 2008). 
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CAPITULO IV: RESULTADOS Y DISCUSIÓN 

4.1 Biosorción del paracetamol con bagazo de caña 

 

4.1.1 Caracterización del bagazo de caña 

 

4.1.1.1 Propiedades físicas 

 

Se determinó la densidad real, aparente y porosidad 

 

4.1.1.1.1 Densidad real 

Tabla 11. Datos para calcular la densidad real 

Parámetro Valor 

Masa del biosorbente (g) 0,500 

Peso del picnómetro + biosorbente (g) 21,132 

Peso del picnómetro + biosorbente +agua 45,657 

Masa de agua(g) 24,52 

Volumen del picnómetro (mL) 25 

Densidad real (g/mL) 1,041 

 

Fuente: Autor 

El valor de densidad real encontrado fue de 1.041g/mL, este valor es similar con los 

encontrados por Vera et al.(2015) de 1.0781g/mL , y Bermejo (2016) de 1.043 g/mL. 
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4.1.1.1.2 Densidad aparente 

 

Tabla 12 Datos para calcular la densidad aparente. 

Parámetro Valor 

Masa del bagazo (g) 2,145 

Volumen (mL) 15 

Densidad aparente (g/mL) 0,143 

 

Fuente: Autor 

El valor de la densidad aparente es de 0.143 g/mL, es similar a los encontrados por 

Bermejo (2016) y Vera et al.; (2015), 0.141 y 0.1502 g/mL respectivamente.  

 

4.1.1.1.3 Porosidad 

Tabla 13 Datos para calcular la porosidad 

Parámetro  Valor 

Densidad real (g/mL) 1.041 

Densidad aparente (g/mL) 0.143 

Porosidad 0.862 

 

Fuente: Autor 

Con los parámetros de densidad aparente y real calculados previamente, se puede 

calcular la porosidad del bagazo de caña. El resultado de porosidad obtenido es similar 

al valor reportado por (Bermejo., 2016, Martínez, Rodríguez, Pérez, & Leiva, 2014; 

Vera et al., 2015) de 0.8607 g/mL para el bagazo de caña.  
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Tabla 14 Propiedades físicas del bagazo de caña 

Propiedad física Valor 

Densidad real (g/mL) 1.041 

Densidad aparente (g/mL) 0.143 

Porosidad 0.862 

 

Fuente: Autor 

4.1.1.2 Propiedades químicas 

 

En este ítem constan los grupos funcionales, punto de carga cero y sitios ácidos y 

básicos.  

4.1.1.2.1 Grupos funcionales 

 

El espectro infrarrojo de realizó con el objetivo de conocer con que grupos funcionales 

podría intercambiar el paracetamol aunque luego no se efectuó un nuevo espectro 

después de la biosorción. 

El análisis por espectrofotometría infrarroja ofreció información cualitativa de la 

presencia de los grupos funcionales que pueden interactuar en la biosorción. Los 

datos revelan la presencia de distintos grupos funcionales, entre los cuales se 

evidencia la celulosa que tiene valores entre 1050 y 1032 cm-1. Los valores de 3540 a 

3200 cm-1 se deben normalmente a varias variaciones por extensión de los grupos –

OH. Los valores de 3338 cm-1 son típica y corresponde al enlace O-H. 

Por lo general, las bandas características del análisis Infrarrojo para materiales 

lignocelulósicos como el bagazo de caña puede dividirse en tres regiones: el ancho 

de la banda del grupo hidroxilo (3200-3600 cm-1), las bandas de alargamiento de CH, 

CH2 Y CH3 (2800-3000 cm-1) y las bandas de extensión del grupo carbonilo (1550-

1750 cm-1) (Fernández, Rico, Prida, & Vanlangenhove, 2011).  
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Figura 25 Espectro infrarrojo del bagazo de caña 

Fuente: Autor 

 

Tabla 15 Datos obtenidos del análisis Infrarrojo 

Grupo funcional Número de onda cm-1 

Alquilo 
3030-2855 

1485-1415 

-OH o –NH 
3540-3200 

1205-885 

Alcohol 

3500-3100 

2985-2900 

1480-1405 

1075-1000 

Éter 
1470-1430 

1120-1085 

Celulosa 

1170-1150 

1052 

1033 

Lignina 
1588 

1514 

 

Fuente: Autor 
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4.1.1.2.2 Punto de carga cero (PCZ) 

 

Para todas las muestras se pesó 0.5 gramos de bagazo de caña, con los valores de 

pH inicial y final se graficó, luego se trazó una diagonal y en donde corte con la gráfica 

es el correspondiente punto de carga cero.  

 

Tabla 16 Valores de pH inicial y final para obtención del PCZ 

N° muestra pH inicial pH final 

1 3.5 4.3 

2 4.22 5.75 

3 5.35 6.12 

4 6.55 6.18 

5 8.5 6.48 

6 9.97 6.65 

 

Fuente: Autor 

 

Figura 26 Punto de carga cero 

Fuente: Autor 
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El valor del PZC del bagazo de caña de 6.16, es similar al obtenido por Bermejo, 

(2016), que encontró PCZ de 6.08. 

 

El punto de carga cero es un parámetro fundamental en el proceso de biosorción ya 

que ese punto las cargas positivas y negativas se igualan no ocurriendo la adsorción 

del paracetamol, por lo que se escogió un pH de la solución de 6 para los 

experimentos.  

 

4.1.1.2.3 Sitios ácidos y básicos 

 

Tabla 17 Valores necesarios para la determinación de sitios ácidos y básicos 

Muestra Solución titulante Volumen total Volumen equiv 

A1 NaoH (0.1N) 25 mL 1.5 mL 

A2 HCl (0.1N) 90 mL  40 mL 

 

Fuente: Autor 

 

Figura 27 Obtención del volumen equivalente 

Fuente: Autor 
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Figura 28 Curvas de titulación para encontrar el volumen equivalente 

Fuente: Autor 

Tabla 18 Cuantificación de grupos ácidos y básicos 

 

Fuente: Autor 

 

Tabla 19 Propiedades químicas del bagazo de caña 

Propiedad química Valor 

Grupos funcionales Celulosa: 1050 y 1032 cm-1 

Punto de carga cero (PCZ) 6.16 

Grupos ácidos y básicos Carácter ácido 

 

Fuente: Autor 

Según los resultados obtenidos en la caracterización del bagazo de caña (tabla 14 y 

19), concuerdan con los valores encontrados por otros investigadores (Bermejo, 2016; 

Martínez, Rodríguez, Pérez, & Leiva, 2014; Vera et al., 2015), concluyendo que el 

bagazo de caña tiene carácter ácido, y que presenta un punto de carga cero de 6.16.  
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Este estudio se hizo con la finalidad de comparar el punto de carga cero del bagazo 

de caña, el pka del fármaco y el pH de la solucion. El pKa del paracetamol es de 9.4, 

encontrándose la molécula no ionizada a pH 6 de la solución, el punto de carga cero 

es de 6.16, encontrándose la superficie del biosorbente cargado positivamente, se 

plantea por muchos autores que la adsorción puede ocurrir por puentes de hidrógeno, 

fuerzas de Van der Waals o interacciones π- π (Balthazar, et al 2015). 

 

Es de suma importancia conocer los mecanismos que intervien en el proceso de 

adsorción, entre los cuales podemos mencionar las interacciones π-π entre la nube 

electrónica de la superficie carbonosa y las moléculas que poseen dobles enlaces 

C=C o anillos aromáticos, interacciones de carácter electrostático debidas a cargas 

superficiales y de tipo no electrostático como puentes de hidrógeno que están 

condicionadas por los grupos funcionales superficiales (Jain, et al 1973). 

 

Cabe resaltar, que la influencia entre el punto de carga cero, el pKa del medicamento 

y el pH de la solución influyen sobre el proceso de adsorción del medicamento, así lo 

demuestran los siguientes investigadores mencionados a continuación:  

 

Sauciera (2015), realiza un estudio de remoción de diclofenaco utilizando carbón 

activado de cáscara de cacao, en la que plantea la relación entre pH, pHpzc del 

adsorbente, y el pKa del medicamento en el mecanismo de adsorción. En este caso 

el pKa del diclofenaco es 4, el pHpzc del carbon activado del cacao 6.7 y el pH de la 

solución de 7, por lo que el mecanismo no debe ser una atracción electrostática, la 

interacción con el carbono debe ser mediante enlace de hidrógeno y Fuerzas de Van 

der Waals. 

 

Sandip (2016), realiza la adsorción del ibuprofeno con cáscara de frijol y estudia la 

relación que existe entre el pKa del medicamento, el pH de la solución y el pHpzc del 

adsorbente en el posible mecanismo de adsorción. En solución pH 2 la estructura, 

principal de ibuprofeno es una molécula neutra (99 mol). A un pH superior a 4, el 

ibuprofeno es convertido a su forma aniónica. Por otro lado, el cambio de pH afecta la 

química superficial del adsorbente, el pHpzc de la superficie es de 7.4, por lo tanto, la 

superficie se carga negativamente a un pH mayor que el pHpzc mientras la superficie 
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se carga positiva a un pH por debajo de pHpzc. A un pH inferior a 4.91, la superficie 

de carbono es positiva (pHpzc> solución pH) y el ibuprofeno está presente en su forma 

neutra. Cuando el pH esta por encima de 4.91, esta cargado menos positivamente, 

mientras que el ibuprofeno se hizo más aniónico; por lo tanto, las interacciones 

electrostáticas se reducen, dando lugar a menos adsorción. Este fenómeno indica que 

el ibuprofeno en su forma molecular es adsorbido bien sobre carbón activado . 

Mestre (2011), plantea en su artículo la importancia de tener en cuenta en el 

mecanismo de adsorción, el pH de la solución, el pKa del medicamento y el punto de 

carga cero del adsorbente. Realiza un estudio de la remoción de ibuprofeno con 

diferentes carbonos activados llegando a la conclusión de que el ibuprofeno es 

adsorbido preferentemente en forma neutra y en carbones activados de carácter 

básico. 

 

Álvarez (2014), estudia la adsorción de la cafeína sobre carbón activado granular F-

400, en el cual realizo diferentes experimentos de adsorción a valores de pH en el 

intervalo de 3 a 9, llegando a la conclusión que el pH de la disolución no tiene un 

efecto significativo sobre la capacidad de adsorción; tan solo se observa un descenso 

apreciable de la misma a pH 9. El diagrama de especiación de la cafeína indica que 

se encuentra no disociada en prácticamente todo el intervalo de valores de pH 

estudiado, excepto a valores de pH superiores a 10, a los que se encuentra en forma 

aniónica en disolución. Por tanto, la adsorción está favorecida a valores de pH 

inferiores al pKa de la cafeína, en los que la molécula se encuentra en estado neutro. 

A medida que aumenta el valor de pH, y superado el valor del punto isoeléctrico del 

carbón, la superficie carbonosa se encuentra cargada en forma negativa. A valores de 

pH 9, valor de entre los ensayados más próximo al punto de disociación aniónica de 

la molécula, se originarán fuerzas de repulsión entre los aniones en disolución y la 

superficie carbonosa que gradualmente se va cargando negativamente, haciendo que 

la adsorción se vea desfavorecida. 
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4.1.2 Estudio Hidrodinámico 

 

Es importante realizar el estudio hidrodinámico de la columna, para conocer el mejor 

flujo a través de la misma, evitando así la formación de canalizaciones e inundamiento 

de la columna. Los parámetros que más inciden en el proceso de biosorción en 

columna son: la altura del lecho, la masa del biosorbente, la velocidad del fluido y el 

tamaño de partícula.  

Se realizó el estudio hidrodinámico de la columna rellena con bagazo de caña, para 

conocer los parámetros que más influyen en el proceso de biosorción, los cuales se 

muestran la tabla 9, y en la tabla 20 y 21 revelan los resultados obtenidos en el estudio 

hidrodinámico.  

Tabla 20 Estudio hidrodinámico caso 1 

Característica Valor Tiempo (min) (Q )Flujo (ml/min) 

Diámetro de la columna (cm) 1.5 2,28 4.39 

(H) altura del lecho en la 

columna (cm) 26 2.13 4.69 

Masa del biosorbente (g) 7.16 2.35 4.26 

Tamaño de la partícula (mm) 59 2.69 3.72 

Volumen de solución (mL) 10 Flujo promedio 4.26 

 

Fuente: Autor 

Tabla 21 Estudio hidrodinámico caso 2 

Característica Valor Tiempo (min) (Q )Flujo (ml/min) 

Diámetro de la columna (cm) 1.5 4.45 2.25 

(H) altura del lecho en la 

columna (cm) 23 3.64 2.75 

Masa del biosorbente (g) 6 3.54 2.82 

Tamaño de la partícula (mm) 59 3.61 2.77 

Volumen de solución (mL) 10 Flujo promedio 2.65 

 

Fuente: Autor 
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Con los resultados del estudio hidrodinámico, se considero un flujo de 2.65 ml/min 

(Bermejo, 2016; Kumar, 2015; Taty, 2005), con lo cual no se inunda la columna, no se 

fragmenta y el sistema tiene estabilidad hidráulica, el cual se obtuvo en las condiciones 

de altura del lecho 23 cm, masa de biosorbente 6 y diámetro de partícula 59 mm. 

4.1.3 Cuantificación del paracetamol 

 

 

Figura 29 Curva de calibración del paracetamol 

Fuente: Autor 

La curva de calibración del paracetamol tiene un factor de correlación de 1, y mantiene 

la linealidad para poder calcular la concentración de la muestra problema, mediante 

interpolación en la gráfica. 

4.1.4 Remoción del paracetamol por biosorción bagazo de caña 

 

En la tabla 22, se muestra los datos obtenidos del proceso de biosorción del 

paracetamol con bagazo de caña. Siendo la concentración inicial de 56,7mg/L. (Co).  
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Tabla 22 Resultados de la biosorción del paracetamol con bagazo de caña. 

N° 

Muestra 

Tiempo 

(min) 

Concentración 

(mg/L) 
Remoción (%) 

1 7 3.940 93.05 

2 12 9.320 83.56 

3 17 16.940 70.12 

4 22 33.240 41.38 

5 32 47.720 15.84 

6 42 53.790 5.13 

7 57 55.420 2.26 

8 72 56.170 0.93 

9 87 56.270 0.76 

10 107 56.280 0.74 

11 127 56.500 0.35 

12 147 56.550 0.26 

13 177 56.550 0.26 

 

Fuente: Autor 

Se ha obtenido el porcentaje de remoción que se detalla en la tabla 22. El porcentaje 

de remoción del paracetamol mediante biosorción con bagazo de caña en columna de 

flujo descendente tiene como máxima remoción de 93.05%, a los 7 minutos.  

 

4.1.5 Curva de ruptura 

 

Se graficó la curva de ruptura del paracetamol, para lo cual necesitamos obtener el 

valor de C/C0, frente al tiempo. 
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Figura 30. Curva de ruptura del paracetamol. 

Fuente: Autor 

La curva de ruptura obtenida para el paracetamol es similar a la curva de ruptura 

reportada en Lorphensri et al; (2007). De la curva de ruptura se obtiene varios datos 

que son necesarios para la modelación matemática, como se puede observar la 

saturación de la columna ocurre a los 42 minutos.  

 

4.1.5.1 Modelación matemática 

 

Para el ajuste de la curva de ruptura, hemos utilizado los modelos de Dosis-

Respuesta, Yoon-Nelson y Thomas, los cuales están en función del tiempo. Para 

efectuar la modelación matemática se requiere de cierto parámetros que deben ser 

calculados previamente, los cuales se detallan a continuación.  
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Tabla 23 Parámetros necesarios para la modelación matemática 

Símbolo Significado  Valor 

Q Flujo que circula por la columna (mL/min) 2.65 

t total Tiempo total (min) 177 

Vef Volumen de efluente (mL) 469.05 

q total Capacidad de adsorción de la columna (mg) 24.74 

CR Concentración de paracetamol retenido (mg/L) 52.76 

Co = Ci Concentración inicial de paracetamol (mg/L) 56.7 

m total Cantidad total de paracetamol que pasa por la 

columna (mg) 

26.59 

qo Capacidad de biosorción (mg/g). 175.29 

mb Masa del biosorbente en la columna (g) 6 

t10% Tiempo cuando la concentración del efluente 

alcance el 10% de la concentración inicial (min). 

7 

H Altura de cama (cm) 23 

 

Fuente: Autor 

4.1.5.1.1 Modelo de Dosis-Respuesta 

 

Para el modelo de dosis respuesta se graficó In((C/Co-C)) en el eje de la ordenada y 

en eje de la abscisa In(t), obteniéndose la ecuación de la recta y el R2, el cual se ajusta 

al modelo.  
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Figura 31. Modelo de Dosis respuesta 

Fuente: Autor 

Tabla 24. Parámetros de Dosis Respuesta 

Parámetro Valor 

α 2.9284 

β 48.8345242 

R2 0.98 

qo (mg/g) 0.46148625 

 

Fuente: Autor 

Se encontraron los parámetros mostrados en la tabla 24 a partir de la ecuación de la 

recta del modelo de dosis respuesta, siendo α y β las constantes del modelo y qo los 

mg de paracetamol adsorbidos por gramo de adsorbente, el cual fue de 0.46. 

A través de los parámetros encontrados en este modelo, es posible obtener una 

expresión que reproduzca el comportamiento de la columna en otras condiciones 

experimentales sin necesidad de realizar otros experimentos.  
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Figura 32. Curva comparativa: Experimental-Teórico de Dosis Respuesta 

Fuente: Autor 

En la figura 30, podemos indicar que el modelo dosis respuesta se ajusta a la curva 

de ruptura de adsorción del paracetamol en columna rellena con bagazo de caña, 

presentando un factor de correlación R2 de 0,98.  

4.1.5.1.2 Modelo de Yoon-Nelson 

 

Se elaboró la gráfica, para lo cual colocamos en la ordenada In ((Co/C)-1) y en la 

abscisa el tiempo (min), y obtuvimos la ecuación de la recta y el factor de correlación, 

siendo este R² = 0,7835, lo cual nos indica que no tiene buena correlación, por lo que 

podemos indicar que no se ajusta al modelo de Yonn Nelson.  
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Figura 33. Modelo de Yoon Nelson 

Fuente: Autor 

 

Figura 34 Curva comparativa: Experimental-Teórico de Yoon Nelson 

Fuente: Autor 

Según la figura 32, podemos observar gráficamente, que la curva teórica no se ajusta 

a la experimental, por lo cual no se puede emplear este modelo para predecir el 

comportamiento de la biosorción del paracetamol con bagazo de caña modificando 

las condiciones. 
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4.1.5.1.3 Modelo de Thomas 

 

Se elaboró la gráfica, de In ((Co/C)-1) vs tiempo (min), y obtuvimos la ecuación de la 

recta y el factor de correlación, siendo este R² = 0,7835, lo cual nos indica que no tiene 

buena correlación, por lo que no se ajusta al modelo de Thomas  

 

Figura 35. Modelo de Thomas 

Fuente: Autor 

 

 

Figura 36. Curva comparativa: Experimental-Teórico de Thomas 

Fuente: Autor 
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La figura 34, nos revela que la curva de ruptura obtenida para el paracetamol no se 

ajusta al modelo de Thomas, por lo cual no sería de utilidad para realizar predicción 

de la biosorción.  

De forma general podemos indicar que el modelo que más se ajusta a la curva de 

ruptura del paracetamol en columna rellena con bagazo de caña es el de dosis 

respuesta. 

Biosorción en columna con bagazo de caña: para la realización de la remoción del 

paracetamol en bagazo de caña se empleó las condiciones del estudio hidrodinámico 

(tabla 21), obteniendo la curva de ruptura (figura 28), la cual se ajustó al modelo de 

dosis respuesta, con lo que podemos predecir las condiciones de biosorción sin 

necesidad de realizar la experimentación.  

 

En lo referente al porcentaje de remoción del paracetamol en la columna bagazo de 

caña, se obtuvo una remoción de 93.05 %, a los 7 minutos (tabla 22), con capacidad 

de biosorción (Qo: 175,29mg/g), (tabla 23), por lo que se puede concluir que el bagazo 

de caña es útil para la remoción del paracetamol de las soluciones acuosas.  

 

El porcentaje de remoción encontrado en nuestra investigación es de 93.05%, siendo 

más alto al encontrado por Flores et al; 2011, con una remoción del 60% empelando 

bagazo de caña.  

 

En el estudio denominado Determinación de la máxima capacidad de adsorción del 

bagazo de la caña de azúcar en la eliminación de paracetamol en virtud de la agitación 

y de los sistemas de lecho fijo, se obtiene como resultado la máxima capacidad de 

adsorción (MCA), de 100 mg/g para el sistema de tanque agitado y 191 mg/g en lecho 

fijo, lo que indica que en un gramo de bagazo de la caña de azúcar retiene 100 mg de 

paracetamol y 191 mg en flujo continuo, el autor indica que el bagazo de la caña de 

azúcar es más eficiente en la eliminación de paracetamol en el sistema de lecho fijo, 

adsorbiendo aproximadamente dos veces más que en tanque agitado (Balthazar et al; 

2015). 
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Realizando una comparación de los datos obtenidos en nuestra investigación con la 

de otros investigadores, se puede indicar que la capcidad de adsorción del bagazo de 

caña es alta para el paracetamol, sobre todo el sitema de lecho fijo o llamado también 

en columna, concluyendo que la biosorción es una tecnologíá eficiente y económica, 

por lo que se puede aplicar en las plantas de tratamiento de aguas residuales como 

tratamiento terciario para eliminar este fármaco. 

  

Al término de esta fase del trabajo investigativo, se verifica que existe una amplia 

variedad de estudios que empelan carbón activo derivado de productos 

agroindustriales, pero hay pocos estudios que emplean biosorbente en forma natural, 

por lo que es de suma importancia ampliar esta área de conocimiento a fin de 

encontrar el biosorbente y las condiciones óptimas para la remoción de los diferentes 

fármacos encontrados en los cuerpos de agua, considerando que la biosorción es una 

tecnología económica y eficiente para la remoción de los contaminantes emergentes.  

4.2 Remoción del paracetamol con membranas nanofiltración y osmosis inversa. 

 

Antes de realizar la remoción del paracetamol es necesario caracterizar las 

membranas que se van a emplear.  

4.2.1 Caracterización de las membranas de nanofiltración y osmosis inversa 

 

Según las figuras 35 y 36, nos dan el rango de la presión transmembrana y el flujo al 

cual podemos trabajar sin presentar inconvenientes como la ruptura de la membrana.  
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Figura 37. Caracterización de la membrana YMDKSP1905 utilizada en el proceso de 

nanofiltración 

Fuente: Autor 

 

Figura 38. Caracterización de la membrana YMSESP 1905 GE utilizada en el 

proceso de osmosis inversa. 

Fuente: Autor 
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4.2.2 Remoción del paracetamol mediante las membranas 

 

Se efectuó la remoción del paracetamol empleando dos tipos de membranas, una de 

osmosis inversa y la otra de nanofiltración, cuyos resultados se expresan en las tablas 

25 y 26 respectivamente.  

 

Tabla 25 Resultados obtenidos con la membrana YMSESP 1905 de osmosis inversa 

Parámetro Valor 

Alimentación 55 mg/L 

Permeado 4,01 mg/L 

Rechazo 40,07 mg/L 

Coeficiente de rechazo 90 

Remoción (%) 92,71 

 

Fuente: Autor 

Tabla 26. Resultados obtenidos con la membrana YMDKSP1905 de nanofiltración. 

Parámetro Valor 

Alimentación 52 mg/L 

Permeado 33.73 mg/L 

Rechazo 44.36 mg/L 

Coeficiente de rechazo 76 

Remoción (%) 35.13 

   

Fuente: Autor 
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Como se muestra en las tablas 25 y 26, se evidencia que la membrana de osmosis 

inversa tiene mejor capacidad de retención para el paracetamol que la membrana de 

nanofiltración, demostrando una remoción del 92.71%, frente al 35.13 %. 

 

Estos valores concuerdan con los encontrados por otros investigadores que 

empelando membranas de nanofiltración obtuvieron la remoción de: 33 % para la 

carbamazepina, 76% para el diclofenaco, y 34 % para el ibuprofeno (Vergili, 2013).   

Se debe considerar que al empelar un sistema de membranas, es una tecnología 

limpia ya que no genera residuos y las condiciones de trabajo no son muy variables, 

se debe mantener constante la presión dependiendo de la membrana que se esté 

empleando. 

4.3   Efecto tóxico del paracetamol sobre el desarrollo de semillas de Lactuca Sativa  

 

Para este ensayo se emplearon semillas de Lactuca Sativa, provenientes de Agrosad, 

una tienda de distribución de semillas en la ciudad de Cuenca. Se efectuó un ensayo 

inicial para verificar la viabilidad de las semillas, de ese ensayo se obtuvierón los 

resultados del porcentaje de germinación.  

Según la revisión bibliográfica de (Sobrero & Ronco, 2008) de los ensayos 

toxicológicos con semillas, se sugiere hacer un control negativo que en este caso es 

con el agua destilada, y un control positivo que no se realizó, debido a que todos los 

cálculos posteriores no se necesitaba de los datos del control positivo.  

Se realizó el ensayo del blanco, para lo cual se trabajó por triplicado empleando agua 

destilada, con 20 semillas por cada placa, y se determinó mediante SPSS versión 20, 

si hay variación entre réplica del blanco, obteniendo resultados satisfactorios.  

Se realizó el estudio de la toxicidad del paracetamol en rango de concentraciones de 

mg/L, debido que en las referencias bibliográficas revelan los índices en estas 

unidades.  
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A modo de investigación preliminar se analizaron concentraciones de µg/L, para 

obtener un conocimiento más amplio, sin ser parte propia de esta investigación 

oficialmente aprobada.  

4.3.1 Porcentaje de Germinación 

 

El porcentaje de germinación de las semillas de Lactuca Sativa expuestas con agua 

destila, se obtuvo 100% de germinación, siendo aceptable el lote para el ensayo de 

toxicidad.  

Tabla 27. Porcentaje de Germinación mg/L 

Paracetamol 

concentración (mg/L) 

Porcentaje de 

germinación (%) 

500 90 

250 100 

125 100 

62.5 100 

39 100 

19.5 100 

9.75 100 

6 100 

1 100 

 

Fuente: Autor 

 

La germinación de las semillas fue inhibida con la concentración de 500 mg/L, 

obteniendo el 90% de la germinación, el resto de concentraciones no han sido 

influenciadas por las concentraciones de paracetamol, como se evidencia en la Tablas 

27 y 28. 
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Tabla 28. Porcentaje de Germinación μg/L 

Paracetamol 

concentración (µg/L) 

Porcentaje de 

germinación (%) 

100 100 

10 100 

1 100 

0.1 100 

0.01 100 

 

Fuente: Autor 

Cabe recalcar que en este estudio se trabajó con 500 mg/L como concentración más 

alta ensayada. En el porcentaje de germinación se puede indicar que la concentración 

de 500 mg/Lde paracetamol si produce disminución en el porcentaje de germinación 

de las semillas de Lactuca Sativa, y en concentraciones igual y menores de 250 mg/L 

de paracetamol no producen inhibición en la germinación.  

4.3.2 Promedio de hipocotilo y radícula 

 

Al finalizar el tiempo de incubación de 120 horas, se realizó la medición en milímetros 

de la longitud del hipocotilo y radícula de cada una de las plántulas de Lactuca sativa 

germinadas durante el ensayo, observando con detalle la presencia de necrosis, 

ensortijamiento de la raíz y cualquier otro aspecto negativo en la plántula.  

En la tabla 29, se evidencia el porcentaje de necrosis observadas en cada una de las 

concentraciones ensayadas, revelando la toxicidad del paracetamol en las plantas. Se 

encontró la presencia de necrosis (manchas pardas/marrones) en las dos 

concentraciones más altas ensayadas 500-250 mg/L. El resto de concentraciones no 

se evidenció ninguna alteración. 
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Tabla 29. Presencia de necrosis 

Concentración paracetamol (mg/L) % de Necrosis 

500 20 

250 10 

125 10 

 

Fuente: Autor 

 

Figura 39. Presencia de necrosis 

Fuente: Autor 

Los resultados obtenidos en el ensayo de toxicidad se revelan en las tablas 30 y 31, 

en las que se puede evidenciar el promedio del hipocotilo y de la radícula según la 

concentración de paracetamol ensayada.  
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Tabla 30. Resultados obtenidos de la evaluación del efecto tóxico del paracetamol 

sobre las semillas de Lactuca Sativa L.(mg/L) 

Concentración 

paracetamol 

(mg/L) 

Promedio del 

Hipocotilo 

(mm) 

Promedio de 

la Radícula 

(mm) 

Porcentaje 

Inhibición 

Hipocotilo (%) 

Porcentaje 

Inhibición 

Radícula (%) 

500 1.71 1.71 90.95 87.59 

250 4.42 2.70 76.67 80.39 

125 5.10 3.30 73.06 76.03 

62.5 9.40 5.42 50.35 60.65 

39 11.58 7,13 38.82 48.18 

19.5 15.07 7,17 20.42 47.94 

9.75 16.37 7,65 13.56 44.43 

6 17.18 8.83 9.24 35.84 

1 18.35 9.20 3.08 33.17 

Blanco 18.93 13.77 - - 

 

Fuente: Autor 

Analizando los promedios del hipocotilo y de la radícula encontrados en el rango de 

mg/L de exposición de paracetamol, se puede indicar que el promedio tanto del 

hipocotilo y de la radícula desciende al incrementar la concentración de paracetamol 

con referencia al blanco de agua destilada.  
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Figura 40. Comparación de promedios: Hipocotilo-Radícula (mg/L) 

Fuente: Autor 

 

En la figura 40, se puede evidenciar que al bajar la concentración de paracetamol 

ensayada, sube el promedio del hipocotilo y de la radícula respectivamente, y es 

evidente que la radícula es la más afectada.  
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Tabla 31. Resultados obtenidos de la evaluación del efecto tóxico del paracetamol 

sobre las semillas de Lactuca Sativa L. (µg/L) 

Concentración 

(µg/L) 

Promedio del 

Hipocotilo 

(mm) 

Promedio  

de la Radícula 

(mm) 

Porcentaje 

Inhibición 

Hipocotilo (%) 

Porcentaje 

Inhibición 

Radícula (%) 

100 15.28 9.73 19.28 29.30 

10 16.72 11.27 11.71 18.16 

1 15.38 10.45 18.75 24.09 

0.1 16.38 9.55 13.47 30.63 

0.01 15.63 9.32 17.43 32.32 

blanco 18.93 13.77 - - 

 

Fuente: Autor 

En el caso del rango de µg/L, el promedio del hipocotilo y de la radícula con respecto 

a la concentración de paracetamol presento variaciones pequeñas en la medición 

tanto del hipocotilo y de la radícula con respecto al blanco de agua destilada, pudiendo 

atribuirse a que son mediciones muy pequeñas (milímetros) por ende sube el posible 

margen de error, lo cual se evidencia en la figura 41.  
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Figura 41. Comparación de promedios: Hipocotilo-Radícula (μg/L) 

Fuente: Autor 

4.3.3 Porcentaje de inhibición de hipocotilo y radícula 

 

 

Figura 42. Porcentaje de inhibición mg/L 

Fuente: Autor 
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Como se observa en la figura 42, la inhibición de la radícula y del hipocotilo en el rango 

de los mg/L, es proporcional al incremento de la concentración de paracetamol, 

llegando a un porcentaje de inhibición radicular de 87.59 y del hipocotilo de 90.95%.  

Según estos resultados en el rango de los mg/L, se evidencia que el paracetamol es 

una sustancia que interfiere con el desarrollo normal de las plantas, afectando a la 

cadena trófica.  

 

Figura 43. Porcentaje de Inhibición µg/L del hipocoitlo y radícula 

Fuente: Autor 

En la figura 43, se observa que en el rango de µg/L, presentan inhibición tanto del 

hipocotilo como radicular de las plántulas de Lactuca Sativa, cuya inhibición no supera 

el 50%, razón por la cual no se puede calcular la concentración inhibitoria 50.  

Cabe resaltar que el análisis de la inhibición del hipocotilo y de la radícula en 

concentraciones tan bajas como µg//L es complementario al estudio propuesto y 

aprobado en el diseño de tesis, por lo que recomienda ampliar el estudio de toxicidad 

del paracetamol en dosis  bajas como de µg//L.  

Al terminar el estudio de fitotoxicidad se puede indicar que el paracetamol es una 

sustancia que impide el desarrollo normal de las plantulas de Lactuca Sativa, 

inhibiendo la elongación tanto del hipocotilo como de la radícula. En concentraciones 
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de 500, 250 y 125 mg/L presenta necrosis, por ende la planta no puede crecer y esto 

representa afectación al ecosistema. Por estas razones es urgente regular los valores 

máximos permitidos de descarga en las plantas de aguas residuales. 

4.3.4 Análisis inferencial 

 

Al efectuar el análisis estadístico mediante el programa SPSS versión 20, empleando 

el estadígrafo de Kruskal Wallis, se analizó las tres réplicas del blanco y se evidenció 

que no hay diferencia significativa entre las tres réplicas, indicando que son del mismo 

grupo y que no presenta variabilidad alta. (Ver anexo 2). 

 

De igual forma, se analizó las tres réplicas de cada concentración de paracetamol 

ensayados, resultando que no hay diferencia significativa entre las réplicas. (Ver 

anexo 2) 

 

Empleando el estadígrafo de Mann Whitney se realizó la comparación de cada 

concentración de paracetamol vs el blanco, y dio como resultado que si hay diferencia 

significativa, lo que representa que hay presencia de inhibición en la elongación del 

hipocotilo y de la radícula con respecto al blanco.  

 

En el análisis inferencial del rango de µg/L, se evidencia que si hay diferencia 

significativa, lo que indica que presenta inhibición del hipocotilo y de la radícula. (Ver 

anexo 4). 

 

4.3.5 Concentración Inhibitoria 50 (CI50) 

 

La CI50 es la concentración a la cual produce el 50% de la inhibición y se graficó la 

curva dosis respuesta, porcentaje de inhibición vs log de la concentración de 

paracetamol. En este trabajo se obtuvo la CI50 para el hipocotilo y para la radícula, 

basándonos en el artículo denominado Respuestas de toxicidad de bioensayos 

empleados en la evaluación de aguas residuales de la industria, toman en referencia 

la gráfica de dosis respuesta para la obtención de la CI50 radicular (García, et al 2012).  
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Para el cálculo de la CI50, no consideramos los datos del rango de los µg/L, debido a 

que produce porcentaje de inhibición menor al 50%, por lo cual no procede el cálculo. 

 

 

Figura 44. Hipocotilo mg/L 

Fuente: Autor 
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Figura 45. Radícula mg/L 

Fuente: Autor 

 

Para obtener los valores de la CI50 , por el método gráfico, se elaboró la curva dosis 

respuesta, y obtenemos la CI50 del hipocotilo y de la radícula, que se muestran en la 

tabla 32. 

Tabla 32. Concentración Inhibitoria 50 

CI50  Valor (mg/L) 

Hipocotilo 62.17 

Radicular 41.68 

 

Fuente: Autor 

 

En la bibliografía se puede evidenciar, que hay estudios de toxicidad de varios 

medicamentos (tabla 33), en especial del paracetamol, sobre distintos bioindicadores, 
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por ejemplo, se ha encontrado que a CI50 de 378 mg/L (48 h), produce mortalidad a 

Danio rerio; CE50 de 30,1 mg/L (48 h), provoca inmovilización de Daphnia magna; CL50 

>160 mg/L (48 h) en O. latipes, produce la mortalidad (Santos et al; 2010). (tabla 33). 

 

En el ambiente terrestre, hay reporte de CL50 de 693,50 mg/kg, produce mortalidad en 

E. foetida, pero es muy poca información sobre el compartimento terrestre, razón por 

la cual es innovador este trabajo debido a que se empleó como bioindicador Lactuca 

Sativa para el ensayo de toxicidad del paracetamol en soluciones acuosas, de esta 

forma contribuimos a la construcción del conocimiento científico.  
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Tabla 33 Ensayos de ecotoxicidad y efectos adversos de los analgésicos no opiáceos. 
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Continuación de la tabla 33 

 

 

Fuente: (Cuñat & Ruiz, 2016) 

 

Al finalizar este trabajo de investigación se puede indicar que es un aporte al 

conocimiento científico, debido a que se experimentó con dos tecnologías de remoción 

de paracetamol y el estudio de toxicidad sobre las semillas Lactuca Sativa; resultando 

eficiente y económica las tecnologías de biosorción y membranas. Las dos 

tecnologías se pueden aplicar como tratamientos terciarios en las plantas de aguas 

residuales. Además se ha comprobado la toxicidad del paracetamol sobre las semillas 

de Lactuca Sativa, verificando que produce inhibición en la elongación del hipocotilo 

y de la radícula hasta concentraciones tan bajas de 0.01µg/L, lo cual se considera un 

impacto negativo sobre el ecosistema. 
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CAPITULO V: CONCLUSIONES Y RECOMENDACIONES 

 

CONCLUSIONES 

 

1. Utilizando el biosorbente bagazo de caña de azúcar, en columna se obtuvo una 

remoción de 93,05% del paracetamol de solución acuosa.  

2. En el estudio de la biosorción en columna con bagazo de caña, se obtuvo la 

curva de ruptura del paracetamol, ajustándose al modelo de dosis respuesta, 

con un coeficiente R² de 0.98.  

3. Con el modelo de dosis respuesta, se puede predecir con 95 % de confiabilidad, 

la biosorción con bagazo de caña en columna variando las condiciones de 

operación, sin necesidad de realizar nuevos experimentos.  

4. Empleando la tecnología de membrana de osmosis inversa se obtuvo un 

porcentaje de remoción de 92.71% de paracetamol de soluciones acuosas. 

5. Utilizando las membranas de nanofiltración se obtuvo un porcentaje de 

remoción de 35.13 de paracetamol de soluciones acuosas. 

6. Las tecnologías de biosorción y membrana de osmosis inversa se puede aplicar 

como tratamiento terciario de las plantas de aguas residuales. 

7. El porcentaje de germinación obtenido es del 100 % para el ensayo con agua 

destilada, que corresponde al blanco o control negativo. 

8. El porcentaje de germinación, para la concentración de 500 mg/L, es del 90%, 

y del resto de concentraciones no presentaron inhibición en la germinación. 

9. El porcentaje de inhibición de la elongación del hipocotilo y radícula, en el rango 

de mg/L, es 90.95% y 87.59%. respectivamente. 

10. El porcentaje de inhibición del hipocotilo y radícula, en el rango de μg/L, es 

19.28% y 32.32% respectivamente.  

11. La concentración inhibitoria 50 del hipocotilo es 62,17mg/L. 

12. La concentración inhibitoria radicular es 41,68 mg/L.  

13. El paracetamol produce inhibición de la elongación tanto del hipocotilo como 

de la radícula. 
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RECOMENDACIONES 

 

1. Ampliar el estudio de remoción del paracetamol empleando otros biosorbentes, 

para conocer su eficiencia y condiciones óptimas de remoción.  

2. Efectuar el ensayo de toxicidad utilizando otros bioindicadores para ampliar el 

conocimiento, sobre todo en el compartimente terrestre, en el cual hay 

insuficiente información del efecto perjudicial del paracetamol.  

3. Aplicar la tecnología de biosorción y membranas de osmosis inversa como 

tratamiento terciario en las plantas de aguas residuales a fin de reducir el 

impacto que provoca el paracetamol en el medio ambiente.  
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ANEXOS 

Anexo 1 Ensayos de ecotoxicidad y efectos adversos de los analgésicos no opiáceos 

 

Fármaco Compartime

nto 

Ambiental 

Organismo Parámetro 

(exposición) 

Reacción adversa Referencia 

Diclofenaco Acuático Daphnia 

magna 

EC50: 22,4 mg/L (48 h) Inmovilización Santos et al (2010) 

Lemna minor EC50: 7,5 mg/L (7 d)              Inhibición del crecimiento 

O. mykiss LOEC: 5 μg/L (-) Alteraciones histológicas de riñón y 

branquias 

Corcoran et al, 2010 

Terrestre Eisenia 

foetida 

LC50: 90,49 mg/kg (-) Mortalidad Pino et al (2015) 

Lactuca 

sativa 

Sin datos Efectos en germinación Schmidt y Redshaw 

(2015) 

Ibuprofeno Terrestre L. sativa Sin datos Sobre la germinación Schmidt y Redshaw 

(2015) 

E. foetida  LC50:64,80 mg/kg (-) Mortalidad Pino et al (2015) 

Acuático D. rerio LOEC > 10 μg/L (-) Anomalías cardiovasculares Corcoran et al, 2010 
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D. magna EC50: 10-100 mg/L (48 

h) 

Inmovilización Santos et al (2010) 

EC50: 13,4 mg/L (14 d) Sobre la reproducción 

NOEC: 20 mg/L (14 d) Sobre la supervivencia 

LOEC: 80 mg/L (14 d) Sobre la supervivencia 

LOEC: 20 mg/L (14 d) Sobre el crecimiento de la población 

L. minor EC50: 22 mg/L (7 d) Inhibición del crecimiento 

Naproxeno Acuático Hydra 

attenuata 

LC50: 22,36 mg/L (96 h) Sobre la morfología 

 

Santos et al (2010) 

EC50: 2,62 mg/L (96 h) 

NOEC: 1 mg/L (96 h) 

LOEC: 5 mg/L (96 h) 

EC50: 2,68 mg/L  (96 h) Sobre la alimentación 

Terrestre R. sativus  Sin datos Sobre la germinación Santos et al (2010) 

L. sativa  Sin datos Sobre la germinación Schmidt y Redshaw 

(2015) 

 

Fuente: (Cuñat & Ruiz, 2016) 
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Anexo 2. Análisis inferencial SPSS: Comparación de réplicas. 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas del Blanco 

Rangos 

 Réplicas N Rango promedio 

hipocotilo blanco 

Réplica 1 20 27,00 

Réplica 2 20 32,03 

Réplica 3 20 32,48 

Total 60  

radícula blanco 

Réplica 1 20 26,43 

Réplica 2 20 37,38 

Réplica 3 20 27,70 

Total 60  

Estadísticos de contrastea,b 

 

 hipocotilo blanco radícula blanco 

Chi-cuadrado 1,231 4,740 

gl 2 2 

Sig. asintót. ,540 ,093 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 500 mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 500mg/L 

Réplica 1 20 31,85 

Réplica 2 20 29,98 

Réplica 3 20 29,68 

Total 60  

 

Réplica 1 20 31,08 

Réplica 2 20 31,43 

Réplica 3 20 29,00 

Total 60  
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Estadísticos de contrastea,b 

 hipocotilo 

500mg/L 

radícula 

500mg/L 

Chi-cuadrado ,257 ,296 

gl 2 2 

Sig. asintót. ,879 ,862 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 250 mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 250mg/L 

Réplica 1 20 30,45 

Réplica 2 20 31,95 

Réplica 3 20 29,10 

Total 60  

radícula 250mg/L 

Réplica 1 20 33,55 

Réplica 2 20 31,45 

Réplica 3 20 26,50 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

250mg/L 

radícula 

250mg/L 

Chi-cuadrado ,298 1,950 

gl 2 2 

Sig. asintót. ,862 ,377 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 125 mg/L 
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Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 125mg/L 

Réplica 1 20 33,33 

Réplica 2 20 30,48 

Réplica 3 20 27,70 

Total 60  

radícula 125mg/L 

Réplica 1 20 36,38 

Réplica 2 20 25,73 

Réplica 3 20 29,40 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

125mg/L 

radícula 

125mg/L 

Chi-cuadrado 1,099 4,381 

gl 2 2 

Sig. asintót. ,577 ,112 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 62.5 mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 62.5mg/L 

Réplica 1 20 33,08 

Réplica 2 20 27,93 

Réplica 3 20 30,50 

Total 60  

radícula 62.5mg/L 

Réplica 1 20 37,30 

Réplica 2 20 29,28 

Réplica 3 20 24,93 

Total 60  
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Estadísticos de contrastea,b 

 hipocotilo 

62.5mg/L 

radícula 

62.5mg/L 

Chi-cuadrado 1,017 5,959 

gl 2 2 

Sig. asintót. ,601 ,051 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 39 mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 39mg/L 

Réplica 1 20 30,78 

Réplica 2 20 25,73 

Réplica 3 20 35,00 

Total 60  

radícula 39mg/L 

Réplica 1 20 29,58 

Réplica 2 20 29,68 

Réplica 3 20 32,25 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

39mg/L 

radícula 

39mg/L 

Chi-cuadrado 3,532 ,336 

gl 2 2 

Sig. asintót. ,171 ,845 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 19.5 mg/L 



UNIVERSIDAD DE CUENCA   

 

Sandra Maribel Banegas Ávila – MAESTRIA EN TOXICOLOGIA INDUSTRIAL Y AMBIENTAL   145 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 19.5mg/L 

Réplica 1 20 29,00 

Réplica 2 20 31,98 

Réplica 3 20 30,53 

Total 60  

radícula 19.5mg/L 

Réplica 1 20 27,25 

Réplica 2 20 32,18 

Réplica 3 20 32,08 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

19.5mg/L 

radícula 

19.5mg/L 

Chi-cuadrado ,318 1,232 

gl 2 2 

Sig. asintót. ,853 ,540 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 9.75 mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 9.75mg/L 

Réplica 1 20 35,20 

Réplica 2 20 30,00 

Réplica 3 20 26,30 

Total 60  

radícula 9.75mg/L 

Réplica 1 20 33,05 

Réplica 2 20 28,98 

Réplica 3 20 29,48 

Total 60  
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Estadísticos de contrastea,b 

 hipocotilo 

9.75mg/L 

radícula 

9.75mg/L 

Chi-cuadrado 2,974 ,728 

gl 2 2 

Sig. asintót. ,226 ,695 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 6mg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 6mg/L 

Réplica 1 20 27,05 

Réplica 2 20 28,73 

Réplica 3 20 35,73 

Total 60  

radícula 6mg/L 

Réplica 1 20 26,73 

Réplica 2 20 37,80 

Réplica 3 20 26,98 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

6mg/L 

radícula 6mg/L 

Chi-cuadrado 2,902 5,695 

gl 2 2 

Sig. asintót. ,234 ,058 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 1mg/L 
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Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 1mg/L 

Réplica 1 20 31,40 

Réplica 2 20 31,60 

Réplica 3 20 28,50 

Total 60  

radícula 1mg/L 

Réplica 1 20 29,83 

Réplica 2 20 30,30 

Réplica 3 20 31,38 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

1mg/L 

radícula 1mg/L 

Chi-cuadrado ,403 ,087 

gl 2 2 

Sig. asintót. ,817 ,958 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 100μg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 100μg/L 

Réplica 1 20 33,15 

Réplica 2 20 29,73 

Réplica 3 20 28,63 

Total 60  

radícula 100μg/L 

Réplica 1 20 30,83 

Réplica 2 20 32,08 

Réplica 3 20 28,60 

Total 60  
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Estadísticos de contrastea,b 

 hipocotilo 

100μg/L 

radícula 

100μg/L 

Chi-cuadrado ,755 ,413 

gl 2 2 

Sig. asintót. ,686 ,813 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 10μg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 10μg/L 

Réplica 1 20 32,25 

Réplica 2 20 30,80 

Réplica 3 20 28,45 

Total 60  

radicula10μg/L 

Réplica 1 20 30,85 

Réplica 2 20 29,30 

Réplica 3 20 31,35 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

10μg/L 

radicula10μg/L 

Chi-cuadrado ,493 ,153 

gl 2 2 

Sig. asintót. ,782 ,926 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 1μg/L 
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Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 1 μg/L 

Réplica 1 20 28,50 

Réplica 2 20 28,95 

Réplica 3 20 34,05 

Total 60  

radícula 1 μg/L 

Réplica 1 20 34,50 

Réplica 2 20 28,93 

Réplica 3 20 28,08 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 1 

μg/L 

radícula 1 μg/L 

Chi-cuadrado 1,271 1,650 

gl 2 2 

Sig. asintót. ,530 ,438 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 0.1μg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 0.1 μg/L 

Réplica 1 20 27,10 

Réplica 2 20 32,58 

Réplica 3 20 31,83 

Total 60  

radícula 0.1 μg/L 

Réplica 1 20 30,68 

Réplica 2 20 32,10 

Réplica 3 20 28,73 

Total 60  
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Estadísticos de contrastea,b 

 hipocotilo 0.1 

μg/L 

radícula 0.1 

μg/L 

Chi-cuadrado 1,179 ,386 

gl 2 2 

Sig. asintót. ,555 ,825 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 

 

Prueba de Kruskal-Wallis 

Análisis de las réplicas de 0.01μg/L 

Rangos 

 Réplicas N Rango 

promedio 

hipocotilo 0.01μg/L 

Réplica 1 20 32,88 

Réplica 2 20 30,45 

Réplica 3 20 28,18 

Total 60  

radícula 0.01 μg/L 

Réplica 1 20 33,40 

Réplica 2 20 29,38 

Réplica 3 20 28,73 

Total 60  

 

Estadísticos de contrastea,b 

 hipocotilo 

0.01μg/L 

radícula 0.01 

μg/L 

Chi-cuadrado ,738 ,870 

gl 2 2 

Sig. asintót. ,691 ,647 

 

a. Prueba de Kruskal-Wallis 

b. Variable de agrupación: replicas 
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Anexo 3. Análisis inferencial: Comparación de concentraciones mg/L con el blanco 

 

Prueba de Mann-Whitney: Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 90,50 5430,00 

500 mg/L 60 30,50 1830,00 

Total 120   

total radícula mg/L 

blanco 60 90,50 5430,00 

500 mg/L 60 30,50 1830,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney ,000 ,000 

W de Wilcoxon 1830,000 1830,000 

Z -9,634 -9,597 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

Prueba de Mann-Whitney 

Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 90,50 5430,00 

250 mg/L 60 30,50 1830,00 

Total 120   

total radícula mg/L 

blanco 60 90,50 5430,00 

250 mg/L 60 30,50 1830,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 
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U de Mann-Whitney ,000 ,000 

W de Wilcoxon 1830,000 1830,000 

Z -9,520 -9,523 

Sig. asintót. (bilateral) ,000 ,000 

 

Prueba de Mann-Whitney 

Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 90,50 5430,00 

125 mg/L 60 30,50 1830,00 

Total 120   

total radícula mg/L 

blanco 60 90,43 5425,50 

125 mg/L 60 30,58 1834,50 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney ,000 4,500 

W de Wilcoxon 1830,000 1834,500 

Z -9,490 -9,503 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

Prueba de Mann-Whitney 

Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 88,73 5324,00 

62,5 mg/L 60 32,27 1936,00 

Total 120   

total radícula mg/L 

blanco 60 89,39 5363,50 

62,5 mg/L 60 31,61 1896,50 

Total 120   
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Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney 106,000 66,500 

W de Wilcoxon 1936,000 1896,500 

Z -9,003 -9,198 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

Prueba de Mann-Whitney 

Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 83,53 5011,50 

39 mg/L 60 37,48 2248,50 

Total 120   

total radícula mg/L 

blanco 60 86,03 5162,00 

39 mg/L 60 34,97 2098,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney 418,500 268,000 

W de Wilcoxon 2248,500 2098,000 

Z -7,363 -8,114 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

 

 

 

 

 

 

Prueba de Mann-Whitney 
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Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 75,13 4508,00 

19,5 mg/L 60 45,87 2752,00 

Total 120   

total radícula mg/L 

blanco 60 85,93 5155,50 

19,5 mg/L 60 35,08 2104,50 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney 922,000 274,500 

W de Wilcoxon 2752,000 2104,500 

Z -4,660 -8,105 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

Prueba de Mann-Whitney 

Rangos 

 replica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 68,61 4116,50 

6 mg/L 60 52,39 3143,50 

Total 120   

total radícula mg/L 

blanco 60 81,34 4880,50 

6 mg/L 60 39,66 2379,50 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney 1313,500 549,500 

W de Wilcoxon 3143,500 2379,500 

Z -2,568 -6,628 
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Sig. asintót. (bilateral) ,010 ,000 

 

a. Variable de agrupación: replica total mg/L 

 

Prueba de Mann-Whitney 

Rangos 

 réplica total mg/L N Rango 

promedio 

Suma de 

rangos 

total hipocotilo mg/L 

blanco 60 63,82 3829,00 

1 mg/L 60 57,18 3431,00 

Total 120   

total radícula mg/L 

blanco 60 80,73 4844,00 

1 mg/L 60 40,27 2416,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

mg/L 

total radícula 

mg/L 

U de Mann-Whitney 1601,000 586,000 

W de Wilcoxon 3431,000 2416,000 

Z -1,052 -6,410 

Sig. asintót. (bilateral) ,003 ,000 

 

a. Variable de agrupación: replica total mg/L 
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Anexo 4. Análisis Inferencial: Comparación de concentraciones μg/L con el blanco. 

 

Prueba de Mann-Whitney 

Rangos 

 Réplica total 

μg/L 

N Rango 

promedio 

Suma de 

rangos 

total hipocotilo μg/L 

blanco 60 74,75 4485,00 

100 μg/L 60 46,25 2775,00 

Total 120   

total radícula μg/L 

blanco 60 77,47 4648,00 

100 μg/L 60 43,53 2612,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

μg/L 

total radícula 

μg/L 

U de Mann-Whitney 945,000 782,000 

W de Wilcoxon 2775,000 2612,000 

Z -4,517 -5,362 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total μg/L 

 

Prueba de Mann-Whitney 

Rangos 

 Réplica total 

μg/L 

N Rango 

promedio 

Suma de 

rangos 

total hipocotilo μg/L 

blanco 60 69,59 4175,50 

10 μg/L 61 52,55 3205,50 

Total 121   

total radícula μg/L 

blanco 60 73,10 4386,00 

10 μg/L 61 49,10 2995,00 

Total 121   
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Estadísticos de contrastea 

 total hipocotilo 

μg/L 

total radícula 

μg/L 

U de Mann-Whitney 1314,500 1104,000 

W de Wilcoxon 3205,500 2995,000 

Z -2,690 -3,781 

Sig. asintót. (bilateral) ,007 ,000 

 

a. Variable de agrupación: replica total μg/L 

 

Prueba de Mann-Whitney 

Rangos 

 Réplica total 

μg/L 

N Rango 

promedio 

Suma de 

rangos 

total hipocotilo μg/L 

blanco 60 73,62 4417,00 

1 μg/L 60 47,38 2843,00 

Total 120   

total radícula μg/L 

blanco 60 75,62 4537,00 

1 μg/L 60 45,38 2723,00 

Total 120   

 

Estadísticos de contrastea 

 total hipocotilo 

μg/L 

total radícula 

μg/L 

U de Mann-Whitney 1013,000 893,000 

W de Wilcoxon 2843,000 2723,000 

Z -4,152 -4,789 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total μg/L 

 

Prueba de Mann-Whitney 
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Rangos 

 Réplica total 

μg/L 

N Rango 

promedio 

Suma de 

rangos 

total hipocotilo μg/L 

blanco 60 68,52 4111,00 

0,1 μg/L 59 51,34 3029,00 

Total 119   

total radícula μg/L 

blanco 60 76,24 4574,50 

0,1 μg/L 59 43,48 2565,50 

Total 119   

 

Estadísticos de contrastea 

 total hipocotilo 

μg/L 

total radícula 

μg/L 

U de Mann-Whitney 1259,000 795,500 

W de Wilcoxon 3029,000 2565,500 

Z -2,734 -5,204 

Sig. asintót. (bilateral) ,006 ,000 

 

a. Variable de agrupación: réplica total μg/L 

 

Prueba de Mann-Whitney 

Rangos 

 Replica total 

μg/L 

N Rango 

promedio 

Suma de 

rangos 

total hipocotilo μg/L 

blanco 60 71,66 4299,50 

0,01 μg/L 60 49,34 2960,50 

Total 120   

total radícula μg/L 

blanco 60 79,22 4753,00 

0,01 μg/L 60 41,78 2507,00 

Total 120   

 

 

 

 

 

 

Estadísticos de contrastea 
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 total hipocotilo 

μg/L 

total radícula 

μg/L 

U de Mann-Whitney 1130,500 677,000 

W de Wilcoxon 2960,500 2507,000 

Z -3,535 -5,927 

Sig. asintót. (bilateral) ,000 ,000 

 

a. Variable de agrupación: replica total μg/L 

 

 


