

ANEXOS

CARACTERIZACIÓN FÍSICA Y MECÁNICA DEL ADOBE EN EL CANTÓN CUENCA

CÓDIGO

UNIVERSIDAD DE CUENC desde 1867	A 37 11 2 12 12 14 12 14 15 16 17 17 16			ADO = ADOBERA NÚMERO
	ENT	REVISTA A FABRICADORES DE	ADOBE	A D O
Dirección/Coordenadas:		UBICACIÓN:	,	
Encuestador:Fecha:				
1. DATOS GENERALES				
1.1. Experiencia elaborando adobes 1. Menos de 1 año	1.2. Procedencia de su conocimiento 1. Familiar			
2. De 1 a 5 años 3. De 5 a 10 años 4. Más de 10 años 5. Otro Especifique:	2. Conocidos 3. Academia 4. Otro Especifique:	-		
1.3. Predisposición para estudiar y fabricación de adobes 4. Si 5. No, Especifique:		-		
2. PROCESO FABRICACIÓN DE AD		T r		71
2.1. Herramientas y/o maquinaria		2.5. Zarandea la tierra?	2.8. Compacta la mezcla	2.11. Tiempo de secado
1 Uso: 2. Uso:		1. Si, herramienta: 2. No, por que?:	1. Si, por que?	días
3 Uso:		2. No, por que ?:	con que?	2.12. Observaciones
4 Uso:			2. No, por que?	2.12. 0.36. vaciones
		2.6. Deja reposar el barro?		
6 Uso: 7 Uso:		1. Si, porque?	2.9. Lugar de secado	┪ ───
			1. Bajo cubierta, porque?	
2.2. Dosificación	2.4. Procedencia de la tierra	cuanto tiempo?	— 1. Bajo cubierta, porque?	_
1. Tierra cantidad/unidad	1. Propia (fabrica)		con que?	
2. Arena	2. Proveedor Especifique lugar:	2. No, porque?	2. Al interperie, porque?	_
3. Grava	- Lspecifique fugar.	-		_
tamaño máximo 4. Ripio	2.2. Dress densis del seus	27 11	2.10. Proceso de secado	<u> </u>
tamaño máximo	2.3. Procedencia del agua	2.7. Humedece los moldes	1. Gira el adobe, por que?	<u> </u>
5. Guano de caballo	1. Potable, porque?	1. Si, porque?		
6. Paja	2. No potable (ríos,quebradas,pozo,etc.)	2. No, porque?		
7	porque?	7100 4100	inicial, porque?	_
1	1	1	1	The state of the s

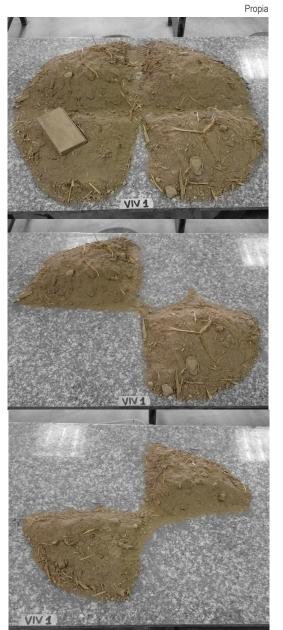


Imagen 69. Material disgregado

Propia

Imagen 70. Cuarteo de la muestra

Ensayos físicos

Preparación de muestras para ensayos (NTE INEN 688)

Ante la composición heterogénea de la tierra, es imprescindible conseguir una muestra representativa de la misma para ser empleada en cada uno de los ensayos, por ello se utiliza el método de cuarteo, como lo establece la norma NTE INEN 0688 (1982).

Este método permite a reducir el tamaño original de la muestra, para así obtener una submuestra representativa de la original, según el requerimiento de cada ensayo (INEN 0688. 1982). El ensayo se repitió tres veces con diferentes submuestras para promediar y validar los datos obtenidos.

Equipos y herramientas

- Balanza digital

- Bandejas y recipientes

- Mazo metálico

Procedimiento

- 1. Disgregar el material (unidad de adobe) (Imagen 69).
- 2. Mezclar el material y formar una pila circular de espesor uniforme.
- 3. Dividir la pila circular en cuatro partes aproximadamente iguales, a lo largo de dos diámetros perpendiculares (Imagen 70).
- 4. Retirar dos partes opuestas (Imagen 70).
- 5. Con las partes restantes se vuelve a formar la pila circular y se procede a dividirla en cuatro partes como lo indica el paso 3.
- 6. Retirar dos partes opuestas, distintas a las retiradas en el paso 4 (Imagen 70).
- 7. Se repite los pasos 5 y 6 hasta obtener la submuestra requerida.

Contenido de humedad (NTE INEN 862)

Determina el porcentaje de humedad evaporable por secado en una muestra de áridos, tanto el correspondiente a la humedad superficial, como la humedad contenida en los poros del árido.

Equipos y herramientas

- Balanza digital

- Recipiente para la muestra

- Horno

Procedimiento

- 1. Pesar 300gr de tierra obtenida mediante cuarteo.
- 2. Secar la muestra completamente en el recipiente por medio de una fuente de temperatura controlada a 110°C ± 5°C (horno).
- 3. Retirar la muestra del horno después de 24 horas y colocar en el desecador.
- 4. Pesar la muestra seca.

Contenido orgánico en suelos mediante pérdida por ignición (AASHTO T-267-86)

El método de "pérdida por ignición" para la determinación del contenido orgánico es aplicable a aquellos materiales que contengan materia vegetal relativamente no descompuesta ni deteriorada o materiales de plantas frescas como madera, raíces, pasto, etc. Es decir para técnicas constructivas con el adobe.

Herramientas y materiales

- Balanza digital

- Recipiente para la muestra

- Horno

- Mufla

- Crisol o plato de evaporación

- Desecadores

Procedimiento

- 1. Pesar 100gr de tierra obtenida mediante cuarteo.
- 2. Secar la muestra completamente en el recipiente por medio de una fuente de temperatura controlada a 110°C ± 5°C (horno).
- 3. Retirar la muestra del horno después de 24 horas y colocar en el desecador.
- 4. Escoger 40 gr de la muestra seca, colocar en crisoles y pesar.
- 5. Colocar el crisol o plato que contiene la muestra dentro de la mufla durante 6 horas a $445^{\circ} \pm 10^{\circ}$ C. Se saca la muestra de la mufla, se coloca en el desecador y se permite su enfriamiento.
- 6. Se remueve la muestra enfriada del desecador y pesar.

Cálculo

$$\%H = \frac{S_H - S_S}{S_S} \times 100$$

Donde:

%H = Porcentaje de humedad

SH = Peso suelo húmedo + recipiente.

Ss = Peso suelo seco + recipiente.

Cálculo

% de materia orgánica =
$$\frac{A - B}{B - C}$$
 x100

Donde:

A = peso del crisol y del suelo seco al horno antes de la ignición,

B = peso del crisol y del suelo seco después de la ignición, y

C = peso del crisol o plato de evaporación.

Tabla 33. Especificaciones características de tamices

Propia	
Tamiz [#]	Abertura [mm]
4	4,750
8	2,360
16	1,180
20	0,850
30	0,600
50	0,300
100	0,150
200	0.075

Imagen 71. Lavado de muestra en el tamiz #200

Propia

Imagen 72. Colocación de tamices en orden ascendente
Propia

La granulometría es la distribución de los diferentes tamaños de partículas (gravas, arenas, arcilla y limos) que tiene una muestra de suelo (Imagen 75 y 76), la cual se determina pasando la muestra por tamices de diferentes aberturas. Cuando hay gran cantidad de arcillas y limos se recomienda la granulometría por lavado, como en este caso. El ensayo se realiza tres veces para validar los datos obtenidos.

Análisis granulométrico en los áridos fino y grueso

Equipos y herramientas

- Recipientes

(NTE INEN 696)

- Balanza
- Tamizadora
- Horno
- Tamices #4, 8, 16, 20, 30, 50, 100 y 200

Imagen 73. Colocación de tamices en la tamizadora Propia

FONDO

Imagen 74. Peso de tamiz mas la muestra retenida

Propia

Imagen 75. Granulometría adobera 1

Propia

Procedimiento

- 1. Colocar la tierra obtenida mediante cuarteo en un recipiente y secar en el horno a 110°C ± 5°C por 24 horas.
- 2. Pesar 1000gr de muestra seca del mortero de barro (por no tener árido grueso) o 2000gr de muestra seca de adobe (por tener árido grueso).
- 3. Por la adherencia de la arcilla a los áridos más gruesos, se debe lavar la muestra en el tamiz #200 para eliminar las arcillas y limos (Imagen 71).
- 3. Secar en el horno, la muestra lavada, durante 24 horas a 110° C \pm 5° C.
- 4. Pesar la muestra, para conocer el porcentaje de limos y arcillas que contenía la muestra antes de realizar el paso 3.
- 5. Limpiar los tamices y pesarlos.
- Colocar la muestra en el juego de tamices, los cuales deberán estar ordenados de arriba hacia abajo de la siguiente manera: tamiz #4, 8, 16, 20, 30, 50, 100, 200 y fondo (Tabla 33) (Imagen 72).
- 7. Tamizar la muestra durante diez minutos (Imagen 73).
- 8. Pesar cada tamiz con la muestra retenida (Imagen 74).

Cálculo

Calcular los porcentajes pasantes, los porcentajes retenidos totales o porcentajes en fracciones de varios tamaños sobre la base de la masa total de la muestra seca inicial.

Peso retenido

Pr = A - B

Peso retenido acumulado

Prc= Pr + Pr anterior

Porcentaje retenido

$$%r = \frac{Pr}{Pi} \times 100$$

Porcentaje retenido acumulado

Porcentaje que pasa

%p1 = 100 - %r1 %p2 = %p1 - %r2 %p3 = %p2 - %r3 ...

Donde:

Pr = peso retenido,

Pr = peso retenido acumulado,

Pi = peso de la muestra antes del lavado,

%t = porcentaje total,

%r = porcentaje retenido,

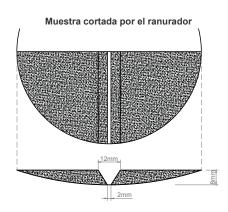
%rc = porcentaje retenido acumulado,

%p = porcentaje que pasa,

A = peso del tamiz y del suelo seco,

B = peso del tamiz.

Imagen 76. Granulometría adoberas y edificaciones patrimoniales Propia


Sólido Semi sólido Plástico Líquido Incremento del contenido de humedad

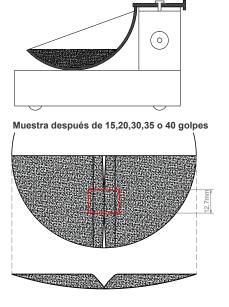

Límite de Límite Límite Contracción Plástico Líquido

Gráfico 38. Límites de Atterberg Propia

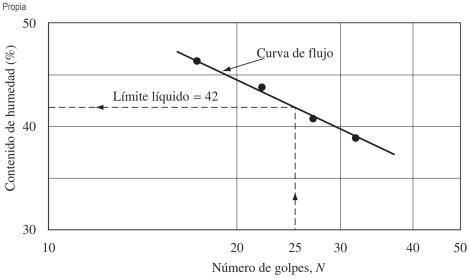


Imagen **77. Cuchara de casa grande** Propia

Gráfico 39. Muestra de tierra pasada por el tamiz #40

Métodos de prueba estándar para el límite de líquido, límite de plástico e índice de plasticidad de los suelos (ASTM D-4318)

Cuando los minerales de arcilla están presentes en el suelo de grano fino, el suelo se puede remover en presencia de algo de humedad sin que se desmorone. Esta naturaleza cohesiva se debe al agua adsorbida que rodea a las partículas de arcilla. En 1900, un científico sueco llamado Albert Mauritz Atterberg desarrolló un método para describir la consistencia de los suelos de grano fino con diferentes contenidos de humedad (Braja. 2015, pg. 85).

Es decir, puede ser quebradizo (bajo contenido de humedad) o fluido (alto contenido de humedad), por esto el suelo se divide en 4 estados básicos: solido, semisólido, plástico y líquido. La transición entre cada uno de estos estados se define como límites (Gráfico 38) (Braja. 2015)

Límite Líquido (LL)

El límite líquido es el porcentaje de humedad que tiene un suelo en la transición entre el estado plástico y líquido. Casagrande (1932) desarrolló un método en laboratorio para determinar el límite líquido del suelo, con un aparato similar al que se muestra en la Imagen 77 conocido como la cuchara de Casagrande.

Existen dos métodos para determinar el límite líquido: Método A, Prueba multipunto y método B, ensayo de un punto. El método del límite líquido multipunto es más preciso que el método de un punto debido a que ese método requiere que el operador juzgue cuándo el espécimen de prueba está en su límite de líquido, no es recomendado para uso por operadores inexpertos (ASTM D-4318).

Equipos y herramientas

- Pera	- Pipeta	- Tierra	- Horno
- Espátula	- Maquina de casa grande	- Tamiz #40	- Pera
- Ranurador	- Envase metálico	- Agua	

Procedimiento

El límite líquido se determina al conseguir el porcentaje de contenido de humedad, necesario para cerrar una distancia de 12.7 mm en el centro de la parte inferior de la ranura después de 25 golpes, por la dificultad de ajustar este contenido de humedad se deben realizar al menos cuatro pruebas para el mismo suelo con un contenido variable de humedad y golpes N, que varía entre 15 y 40, necesario para lograr el cierre (Imagen 77).

- 1. Tamizar (tamiz #40) la tierra obtenida mediante cuarteo y tomar aproximadamente 200 gr. (Imagen 78).
- 3. Humedecer la muestra hasta formar una pasta.
- 4. Limpiar y nivelar el dispositivo de casa grande que consiste en una copa de latón y una base de goma dura.
- 5. Colocar la pasta de suelo en la copa del dispositivo de casa grande hasta quedar paralela a la base.
- 6. Hacer un corte en el centro de la pasta de suelo usando el ranurador estándar (Imagen 79).
- 7. Soltar la copa de latón sobre la base desde una altura de 10 mm accionando la manivela, este movimiento de golpe será repetitivo y constante.
- 6. Contar los golpes y detener hasta completar los necesarios para cerrar la ranura en la parte central inferior 12.7mm (15, 20, 30, 35 y 40 golpes).
- 7. Tomar una muestra de la parte central y pesarla (Imagen 80).
- 8. Secar la muestra en el horno a una temperatura de 110°C durante 24 horas
- 9. Pesar la muestra seca y determinar el contenido de humedad (Imagen 81).

Cálculo

El contenido de humedad del suelo en porcentaje y el correspondiente número de golpes se representan en una gráfica semilogarítmica (Gráfica 39), cuya relación es casi como una línea recta conocida como curva de flujo. El contenido de humedad correspondiente a 25 golpes, determinado a partir de la curva de flujo, da el límite líquido del suelo (Braja. 2015). El ensayo se repitió tres veces con diferentes submuestras para promediar y validar los datos obtenidos.

Imagen 78. Muestra que pasa el tamiz #40

Imagen 79. Muestra cortada por el ranurador

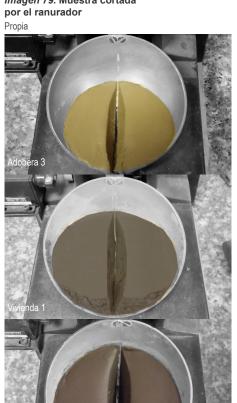


Imagen 81. Muestras secas

Imagen 80. Muestra en la ranura cerrada 12.7 mm en el centro

Imagen 82. Elaboración de los rollos de tierra

Propia

Imagen 84. Rollo de tierra desmoronado Propia

Imagen 83. Comprobando que el rollo se desmorono a los 3.2mm

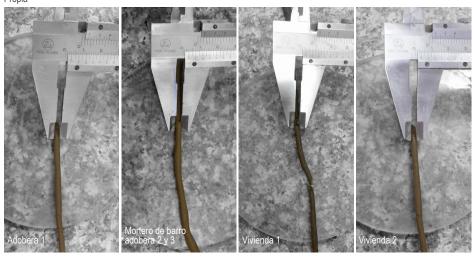


Imagen 85. Muestra pesada

Límite Plástico (PL)

El límite plástico es el porcentaje de humedad que tiene un suelo en la transición del estado semisólido al plástico. El ensayo se realizó 3 veces para validar los datos obtenidos.

Equipos y herramientas

Tierra
 Pipeta
 Base de cristal
 Envase metálico
 Agua
 Balanza
 Tamiz #40
 Horno

Procedimiento

- 1. Tamizar (tamiz #40) la tierra obtenida mediante cuarteo y tomar aproximadamente 200 gr de la muestra.
- 3. Humedecer la muestra hasta formar una pasta de tierra.
- 4. Elaborar rollos con la pasta de tierra, sobre una base de cristal, amasar hasta desmoronar el rollo cuando tenga 3.2mm de sección (Imagen 82 y 83).
- 5. Dividir el rollo en tres partes y pesar cada muestra húmeda (Imagen 84).
- 6. Secar la muestra en el horno a una temperatura de 110°C durante 24 horas (Imagen 85).
- 7. Pesar la muestra seca y determinar el contenido de humedad.

Índice de plasticidad (PI)

El índice de plasticidad (PI) es la diferencia entre el límite líquido y el límite plástico de un suelo, o

PI = LL - PL

Ensayos mecánicos

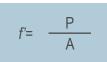
Módulo de Young o módulo de elasticidad

El módulo de Young es un parámetro indispensable para el diseño estructural, que caracteriza el comportamiento de un material según la dirección en la que se aplica una fuerza. Para un material no isótropo como el adobe, el módulo de Young es una variable que obedece a factores como la fabricación, composición del adobe, etc., por ello no es una constante como lo es en otros materiales.

Cálculo

Donde:

E = m'odulo de elasticidad, [MPa],


 σ = esfuerzo, [MPa],

ε = deformación unitaria, [mm/mm]

Resistencia de la tierra a la compresión

Es el esfuerzo máximo que soporta un material bajo una carga de aplastamiento.

Cálculo

Donde:

f' = resistencia a la compresión, [MPa],

P = carga total máxima de la falla, [N],

A = área transversal de la muestra, en [mm²].

Imagen 86. Especímenes de adobe Propia

Imagen 87. Peso de cubos

Propia

Imagen 88. Axonometría de esquema de ensayo a compresión en cubo de adobe

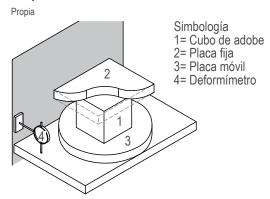


Imagen 89. Esquema de ensayo a compresión en cubo de adobe

Resistencia a la compresión de la unidad de adobe (Norma Peruana E.80)

Equipos y herramientas

- Deformímetro
- Prensa Mecánica
- Balanza
- Cortadora de mesa con disco para hormigón
- Calibrador

Procedimiento

- 1. Cortar 6 cubos de adobe (tiempo de secado mínimo de 28 días) con 10cm de arista aproximadamente (Imagen 86).
- 2. Pesar y medir los cubos (Imagen 87).
- 3. Colocar el cubo de adobe y el deformímetro en la placa de la maquina compresora (Imagen 88).
- 4. Aplicar una carga constante a compresión y detenerla cuando la placa móvil y fija estén en contacto con el adobe sin que estas lo compriman (Imagen 89).
- 5. Encerar el deformímetro.
- 6. Aplicar una carga constante a compresión hasta determinar la resistencia última (Imagen 89) a la vez que se mida la deformación cada 5 o 10 (dependiendo de la velocidad de deformación).

Cálculo

La resistencia última mínima según la norma E. 080 es conforme a la siguiente expresión:

 $f'_0 = 10.2 \text{ Kgf/cm}^2 = 1.02 \text{ MPa}$

Los cubos de adobes deben cumplir con que el promedio de las cuatro mejores muestras (de seis muestras) sea igual o mayor a la resistencia última indicada.

Resistencia a la compresión del mortero de barro (NTE INEN 0488)

Equipos y herramientas

- Deformímetro

- Prensa Mecánica

- Balanza
- Calibrador

Procedimiento

- 1. Llenar los moldes, previamente limpiados y untados con desmoldante (Imagen 90 y 92). Los moldes deben llenarse en dos capas, la primera de 25 mm de espesor (aproximadamente la mitad de la profundidad del molde) en todos los compartimentos cúbicos y apisonar cada motero 32 veces en alrededor de 10 segundos, en 4 rondas (Imagen 91). Llenar los compartimentos cúbicos con el mortero restante y compactar como en la primera capa, luego mediante el compactador y los dedos con las manos enguantadas, colocar nuevamente al interior el mortero que haya rebosado sobre el borde después de cada ronda de compactación, hasta completar cada una de las rondas. Al finalizar la compactación, la superficie de mortero en todos los cubos debe sobresalir ligeramente sobre el borde de los moldes, que debe retirarse con una espátula y alisar, a través de la superficie de cada cubo en sentido perpendicular con el largo del molde (Imagen 92).
- 2. Retirar las muestras de los moldes cuando la muestra este seca y no se pueda deformar aproximadamente en 24 horas (Imagen 93).
- 3. Después de 28 días de haber hecho los cubos, pesarlos y medirlos.
- 4. Colocar el cubo de mortero de barro y el deformímetro en la placa de la maquina compresora.
- 5. Aplicar una carga a compresión y detenerla cuando la placa móvil y fija estén en contacto con la muestra sin que estas lo compriman.
- 6. Encerar el deformímetro.
- 7. Aplicar una carga a compresión hasta determinar la resistencia última (Imagen 94) a la vez que se mida la deformación cada 5 o 10 (dependiendo de la velocidad de deformación).

Imagen 90. Preparación de los moldes

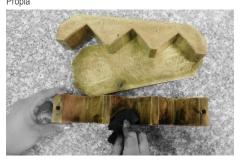


Imagen 91. Orden de apisonado al moldear los especímenes de ensayo

NTE INEN 0488

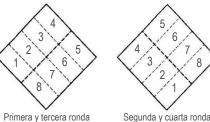


Imagen 93. Desmolde de los cubos de mortero de barro

Propia

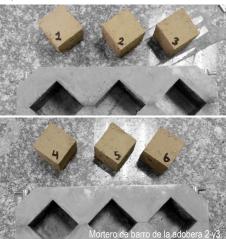


Imagen 92. Mortero de barro adobera 1 Propia

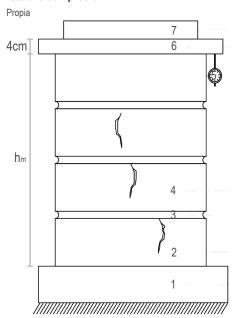
Imagen 94. Resistencia última

Propia

Tabla 34. Formatos de adobe para la conformación de muretes de adobe

Propia

a [mm]	b [mm]	C ₁ [mm]	c ₂ [mm]
225	460	130	675
205	405	180	615
205	410	175	615
	[mm] 225 205	[mm] [mm] 225 460 205 405	[mm] [mm] [mm] 225 460 130 205 405 180


a = ancho del adobe

b = largo del adobe

c₁ = altura del adobe

c₂ = a x 3 = altura del murete

Imagen 96. Esquema ensayo resistencia del murete a la compresión

1= Placa fija

5= Deformimetro

2= Adobe

6= Elemento de madera

3=Mortero

e= 5cm

4= Fisura existente

7= Placa móvil

Imagen 95. Murete para ensayar a compresión Propia

Imagen 97. Determinación del peso de los muretes
Propia

Imagen 98. Aplicación de la carga a compresión Propia

Resistencia del murete⁵ de adobe a la compresión (Norma Peruana E.80)

Herramientas y materiales

- Deformímetro

- Prensa Mecánica

- Balanza

- Flexómetro

Procedimiento

- Seguir los lineamientos para la construcción de muros de adobe que se indican en el capítulo 2: Técnica constructiva para la conformación de muros de adobe.
- 2. Construir muretes de adobe de altura aproximada igual a tres veces el ancho del adobe, el lado más corto del adobe de su superficie más amplia (Tabla 34).
- 3. Secar los muretes durante 28 días, cubierto del sol y el viento, luego pesar y ensayar (Imagen 95 y 97).
- 4. Marcar y medir las fisuras presentes antes del ensayo para determina el comportamiento de las fisuras existentes luego del ensayo.
- 5. Colocar el murete y el deformímetro en la placa de la maquina compresora.
- Aplicar una carga constante a compresión y detenerla cuando la placa móvil y fija estén en contacto con la muestra sin que estas lo compriman para encerar el deformímetro (Imagen 98).
- 7. Aplicar una carga constante a compresión hasta determinar la resistencia última (Imagen 96 y 98) a la vez que se mida la deformación cada 10.
- 8. Después del fracaso del murete medir de nuevo las fisuras y marcar las fisuras provocadas por la carga aplicada.

Cálculo

La resistencia última debe ser mínimo de:

 f'_{m} = 6.12 kgf/cm² = 0.6 MPa

⁵ murete es un muro pequeño, de muy baja altura. www.glosario.net - © 2003 - 2017 HispaNetwork Publicidad y Servicios, S.L. Recuperado el 13 de mayo del 2017 de http://arte-y-arquitectura.glosario. net/construccion-y-arquitectura/murete-7320.html

Resistencia del murete a compresión diagonal o tracción indirecta (Norma Peruana E.80)

La prueba para determinar la resistencia a compresión diagonal de muretes de mampostería consiste en someter a las probetas a una carga de compresión a lo largo de una de sus diagonales (Imagen 99). Durante el ensayo, la carga vertical genera esfuerzos de tensión crecientes que se orientan perpendicularmente a la dirección de carga. Este campo de esfuerzos de tensión conduce a la falla del murete a lo largo de una grieta aproximadamente vertical entre las dos esquinas cargadas.

Herramientas y materiales

- Deformímetro
- Prensa Mecánica
- Balanza
- Calibrador

Procedimiento

- Seguir los lineamientos para la construcción de muros de adobe que se indican en el capítulo 2: Técnica constructiva para la conformación de muros de adobe.
- 2. Construir el muro de tal manera que, cada hilada contenga un adobe y medio y que su altura (hm) sea igual a su largo (bm) aproximadamente de 650mm x 650mm x em. Debido a las condiciones del laboratorio, los muretes no pudieron ser construidos con el formato que indica la norma peruana E.080, ya que la diagonal superaría los 80 cm aproximadamente que permite la prensa mecánica, por ello los adobe fueron cortados con el formato que indica la tabla 35 de modo que cada murete mida 570mm x 570mm x em aproximadamente.
- 3. Secar los muretes durante 28 días, cubierto del sol y el viento, luego pesar y ensayar (Imagen 100).
- 4. Colocar el murete como lo muestra la imagen 101 y 102 en la placa de la maquina compresora al igual que el deformímetro.

Tabla 35. Formatos de adobe para la conformación de muretes para el ensayo de compresión diagonal

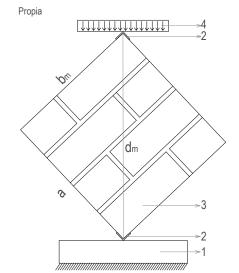
Propia

Código	a [mm]	b [mm]	c [mm]	b ₂ [mm]	b _{1/2} [mm]	f [#]	mortero [mm]	b _m [mm]	h _m [mm]	d [mm]
Adobera 1	225	460	130	360	180	4	60	560	580	806
Adobera 2	205	405	180	360	180	3	40	560	580	806
Adobera 3	205	410	175	370	185	3	40	575	565	806

- a = ancho original del adobe
- b = largo original del adobe
- c = altura original del adobe
- d = diagonal del murete

b₂ = largo del adobe para la construcción del murete

b_{1/2} = largo del medio adobe para la construcción del murete


f = número de filas del murete

mortero = 20mm * (f-1)

 $bm = b_2 + b_{1/2} + 20mm de junta$

hm = (c*3) + mortero

Imagen 99. Esquema de ensayo a tracción indirecta

- 1= Placa fija
- 2= Angulo metálico
- 3= Murete
- 4= Placa móvil
- a= arista del muro

Imagen 100. Murete para ensayo a tracción indirecta de la abobera 1

Propia

114

Imagen 101. Colocación del murete en la prensa mecánica

Propia

- 5. Aplicar una carga constante a compresión y detenerla cuando la placa móvil y fija estén en contacto con la muestra sin que estas lo compriman para encerar el deformímetro.
- 6. Aplicar una carga constante a compresión hasta determinar la resistencia última (Imagen 102) a la vez que se mida la deformación cada 5.

Cálculo

La resistencia última después de 28 días de secado debe ser mínimo de:

 $0.14 \text{ MPa} = 1.42 \text{ kgf/cm}^2$

Ecuación para la resistencia a compresión diagonal o tracción indirecta

$$f'_t = \frac{P}{2 ae_m}$$

Ecuación para la Esfuerzo cortante

$$V_{m} = 0.4 f'_{t}$$

Imagen 102. Murete ensayado a tracción indirecta

Donde:

 f'_t = resistencia a la compresión diagonal o tracción indirecta del muerte de adobe, en Mega Pascales (MPa),

P = carga total máxima de la falla, en Newtons (N),

a = arista del muro (Imagen 99), en mm,

e_ = espesor del murete, en mm,

 $V_{\rm m}^{\rm m}$ = esfuerzo admisible de corte, en Mega Pascales (MPa).

Resistencia del adobe a la flexión (NTE INEN 2554)

El ensayo se lo realiza con dos puntos de carga (diagrama de cargas), para asegurar que el adobe fracase solamente a flexión, debido a que en el tercio medio del elemento la cortante es cero (diagrama de cortante). De no ser así, si la prueba se realizara con un solo punto de carga el adobe fracasaría no solo por flexión sino también por cortante.

La resistencia a flexión se obtiene disponiendo las unidades de adobe (Imagen 103) sobre dos apoyos inferiores que están a una distancia "y" de los bordes, la cual será igual o mayor a 2.54cm y los dos superiores se colocaran en los tercios de la distancia entre los apoyos inferiores "L/3" (Imagen 104), (NTE INEN 2554. 2011), y con la ayuda de un deformimetro se medirá su deformación.

Equipos y herramientas

- Deformímetro Prensa Mecánica
- Balanza Masilla automotriz

Procedimiento

- 1. Medir y pesar los adobes (tiempo de secado 28 días).
- 2. Nivelar con masilla* los lugares de contacto del adobe con los apoyos, cuando la irregularidad del adobe lo necesite (Imagen 105 y 106). Debido a que el adobe tiene una superficie irregular, la cual impide que los apoyos transmitan la carga correctamente, estos lugares fueron nivelados con masilla automotriz, lo cual permitían el contacto en toda la superficie (Imagen 106).
- 3. Colocar el deformímetro en el centro del adobe (Imagen 104 y 107).
- 4. Aplicar una carga constante sobre los apoyos (Imagen 108 y 109) y detenerla cuando estén en contacto con la muestra sin que estas lo compriman, para encerar el deformímetro colocado en el centro inferior de la muestra.
- 5. Aplicar una carga constante hasta determinar la resistencia última (Imagen 98) a la vez que se mida la deformación cada 1 o 2 dependiendo de la velocidad de deformación (Imagen 110 y 111).

Imagen 103. Adobe, ensayo a flexión

Propia

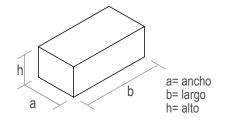
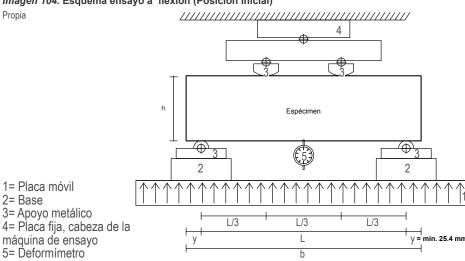



Imagen 104. Esquema ensavo a flexión (Posición inicial)

Imagen 105. Verificación de la irregularidad del adobe

Propia

Imagen 106. Colocación de masilla en puntos de contacto

Propia

Imagen 107. Ubicación del deformímetro durante el ensayo a Flexión

Propia

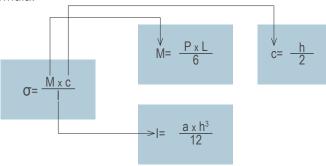
Imagen 108. Apoyos en los tercios nivelado con masilla en el adobe

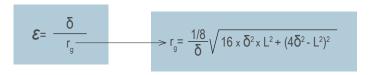
Propia

Figura 110. Adobes fracasados

Figura 111. Fisura provocada por las cargas en los tercios Propia

Figura 109. Acabado final de la superficie de la masilla, mediante lijado





Cálculo

Para determinar el esfuerzo en la fibra más alejada del eje neutro se aplica la siguiente fórmula:

La deformación unitaria de un elemento sometido a una carga a flexión, es la relación entre la deformación medida en el centro del elemento y el radio de giro.

Donde:

L= Longitud entre apoyos [mm]

 δ = Deformación en el centro de la cara inferior del adobe (Imagen 104), obtenida en el laboratorio, [mm].

P = Fuerza aplicada, obtenida en el laboratorio, [N]

c = distancia desde el eje neutro a la fibra más alejada

a = ancho del adobe

h = altura [mm]

r_g = radio de giro I = Inercia

M = Momento

 σ = Esfuerzo máximo

 ε = Deformación unitaria

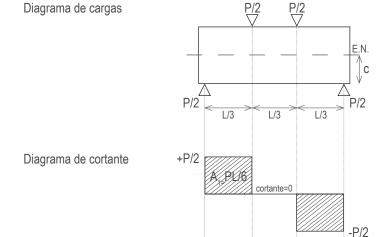
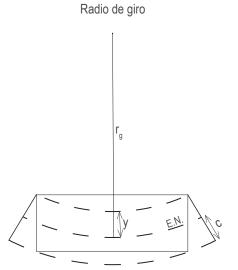



Diagrama de momentos

M=PL/6

Especificaciones técnicas del equipo e instrumentos utilizados en esta investigación


Los equipos y herramientas utilizadas en esta investigación pertecen al Laboratorio de la Facultad de Arquitectura de la Universidad de Cuenca a excepción de la primera máquina que se muestra a continuación.

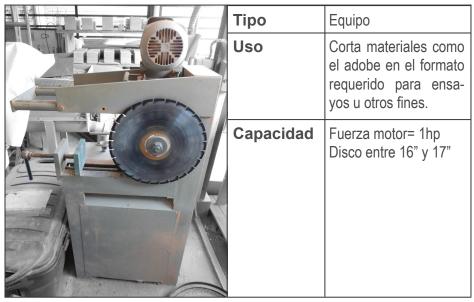
Máquina de universal del Laboratorio de Suelos de la Facultad de Ingeniería de la Universidad de Cuenca

Capacidad máxima= 980000 N

Balanza de plato superior Ohaus

Balanza electrónica Citizen

Capacidad

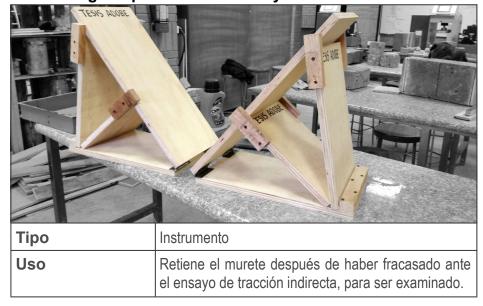

Calibrador Stainless Hardened

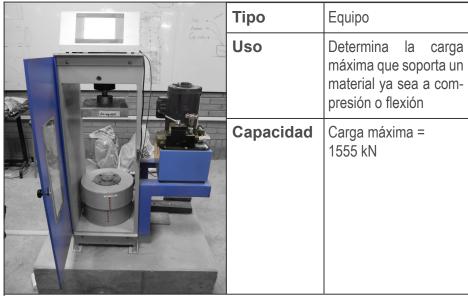
Cuchara de Casa Grande ELE International

Cortadora de banco

Horno para secado

Tamizadora Humboldt


Deformímetro mecánico Humboldt con soporte


Tamices ELE International ASTM E-11

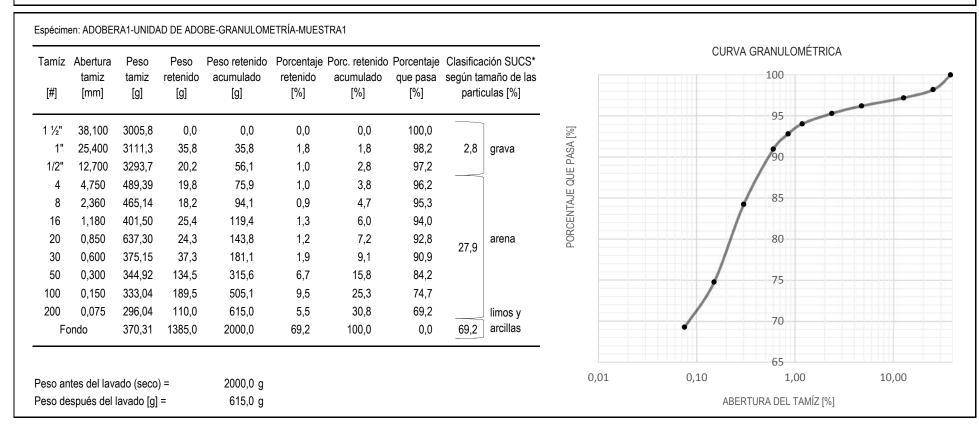
Base triangular para muretes ensayados a tracción indirecta

ACCU-TEK touch 350, ASTM C-39 y AASHTO T-22

Características para el ensayo a flexión en unidades de adobe y mortero de barro Características para el ensayo a compresión en unidades de adobe y mortero de barro

Nivel de falla = 2 % Umbral de falla = 980 N Nivel de ritmo = 289,8 N Límite de tara = 980 N Supresión a cero = 489.6 N Velocidad de carga = 49 N/seg Nivel de falla = 2 % Umbral de falla = 980 N Nivel de ritmo = 882 N Límite de tara = 980 N Supresión a cero = 784 N Velocidad de carga = 980 N/seg

Siendo el adobe un material de baja resistencia se calibro el equipo con los valores más bajos permisibles.



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

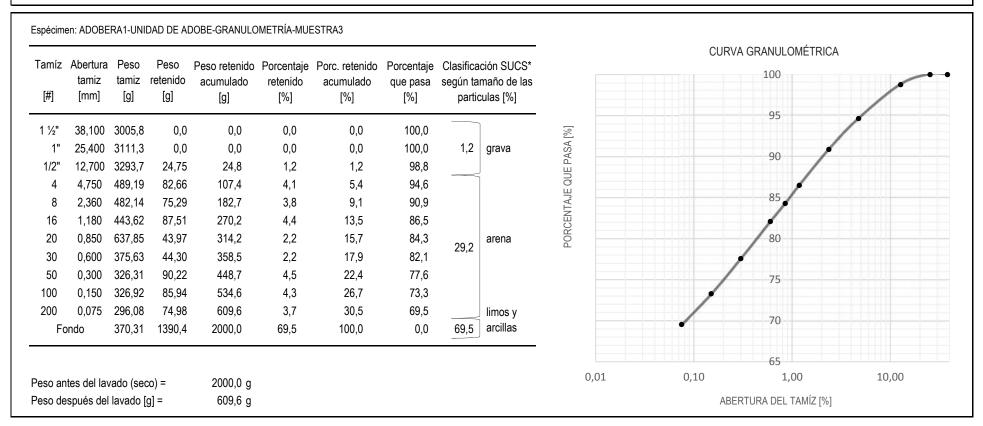
Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

amíz [#]	Abertura tamiz [mm]	Peso tamiz [g]	Peso retenido [g]	Peso retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]	•	según ta	ción SUCS* maño de las culas [%]		C	URVA GRANULOMÉTRICA	
1 ½"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0			[%]		95	
1"	25,400	3111,3	0,0	0,0	0,0	0,0	100,0	1,0	grava	PORCENTAJE QUE PASA [%]		90	
1/2"	12,700	3293,7	20,25	20,3	1,0	1,0	99,0			E P			
4	4,750	489,19	48,70	69,0	2,4	3,4	96,6			П			
8	2,360	482,11	67,26	136,2	3,4	6,8	93,2			ITAJ		36	
16	1,180	443,64	89,53	225,7	4,5	11,3	88,7			E C			
20	0,850	637,85	47,29	273,0	2,4	13,7	86,3	28,2	arena	POR		80	
30	0,600	375,64	45,49	318,5	2,3	15,9	84,1	20,2					
50	0,300	325,59	95,68	414,2	4,8	20,7	79,3					75	
100	0,150	326,92	89,95	504,2	4,5	25,2	74,8						
200	0,075	295,91	80,43	584,6	4,0	29,2	70,8		limos y				
Fo	ondo	370,31	1415,4	2000,0	70,8	100,0	0,0	70,8	arcillas			70	
												65	
'eso an	ites del lava	ado (seco) =	2000,0 g						0,01	0,10	1,00	10,00
	spués del l	•	•	584,6 g								ABERTURA DEL TAMÍZ [%]	

^{*} SUCS: Sistema Unificado de Clasificación de suelo.



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Fecha: 29 de septiembre del 2016

GRANULOMETRÍA PROMEDIO EN UNIDAD DE ADOBE - ADOBERA 1

NTE INEN 696 / NTE INEN 697

		MUES	STRA 1	MUES	STRA 2	MUES	STRA 3		PROME	DIO	CURVA GRANULOMÉTRICA
Tamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	Clasificación SUCS* [%]	100						
1 ½"	38,100	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0		
1"	25,400	1,8	98,2	0,0	100,0	0,0	100,0	0,6	99,4	1,7 grava	PASA [%]
1/2"	12,700	1,0	97,2	1,0	99,0	1,2	98,8	1,1	98,3		С
4	4,750	1,0	96,2	2,4	96,6	4,1	94,6	2,5	95,8		ano a
8	2,360	0,9	95,3	3,4	93,2	3,8	90,9	2,7	93,1		PORCENTAJE
16	1,180	1,3	94,0	4,5	88,7	4,4	86,5	3,4	89,7		N 80
20	0,850	1,2	92,8	2,4	86,3	2,2	84,3	1,9	87,8	28,5 arena	PO
30	0,600	1,9	90,9	2,3	84,1	2,2	82,1	2,1	85,7	20,5	75
50	0,300	6,7	84,2	4,8	79,3	4,5	77,6	5,3	80,4		/ /
100	0,150	9,5	74,7	4,5	74,8	4,3	73,3	6,1	74,3		70
200	0,075	5,5	69,2	4,0	70,8	3,7	69,5	4,4	69,8	limos y	70
Fo	ondo	69,2	0,0	70,8	0,0	69,5	0,0	69,8	0,0	69,8 arcillas	65

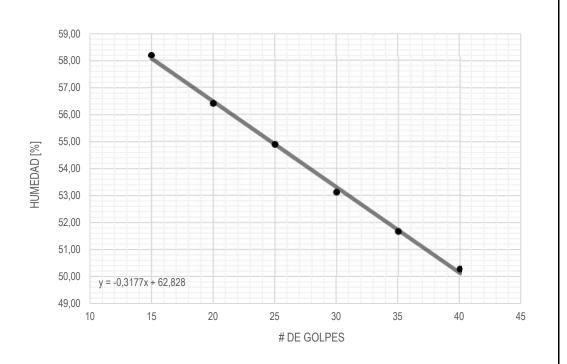
^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación:

Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Fecha:


29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
30.000	[g]	[9]	[g]	[%]
15	43,06	54,74	50,44	58,20
20	7,03	21,87	16,52	56,40
30	47,16	61,76	56,70	53,12
35	49,29	63,38	58,58	51,67
40	43,16	55,45	51,34	50,28
40	43,16	55,45	51,34	50,28

Límite Líquido (25 golpes) =

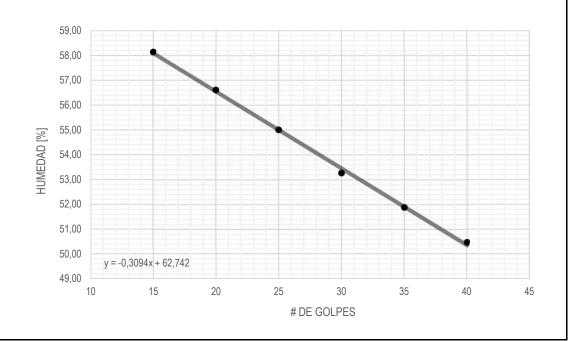
54,89 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación:

Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.


Fecha: 29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

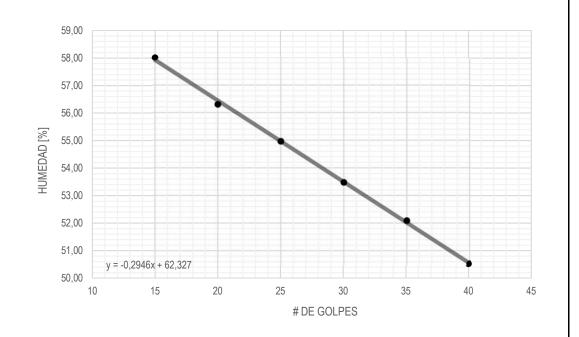
Espécimen: ADOBERA1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA2

Número de	Masa	Masa recipiente +	Masa recipiente +	Humedad
golpes	recipiente [g]	muestra húmeda [g]	muestra seca [g]	[%]
15	41,62	51,63	47,95	58,14
20	44,63	53,04	50,00	56,61
30	45,92	55,53	52,19	53,27
35	40,50	53,35	48,96	51,89
40	48,06	57,36	54,24	50,49

Límite Líquido (25 golpes) =

55,01 %

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.


Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA3

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
15	43,13	53,29	49,56	58,01
20	40,46	58,70	52,13	56,30
30	49,91	61,62	57,54	53,47
35	44,48	61,24	55,50	52,09
40	39,97	50,04	46,66	50,52

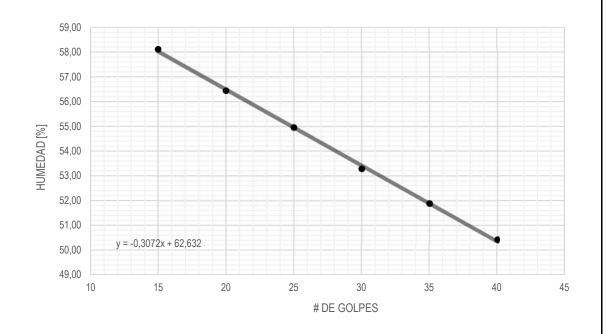
Límite Líquido (25 golpes) =

54,96 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación: Adobera


Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Fecha: 29 de septiembre del 2016

CASA GRANDE
PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE UNIDADES DE ADOBE

NTE INEN 691

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	58,20	58,14	58,01	58,11
20	56,40	56,61	56,30	56,44
30	53,12	53,27	53,47	53,29
35	51,67	51,89	52,09	51,88
40	50,28	50,49	50,52	50,43

Límite Líquido promedio de las 3 muestras (25 golpe 54,95 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

LÍMITE PLÁSTICO EN UNIDADES DE ADOBE

NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
ADOBERA1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA1	49,89	50,86	50,63	31,08
ADOBERA1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA2	45,89	46,66	46,47	32,76
ADOBERA1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA3	42,98	44,06	43,80	31,71
			Promedio	31,85

ÍNDICE DE PLASTICIDAD EN UNIDADES DE ADOBE

Espécimen	Límite líquido (LL) promedio	Límite plástico (PL)	Índice de
	de 3 muestras	promedio de 3 muestras	plasticidad
	[%]	[%]	[%]
ADOBERA1-UNIDAD DE ADOBE-ÍNDICE DE PLASTICIDAD	54,95	31,85	23,10

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

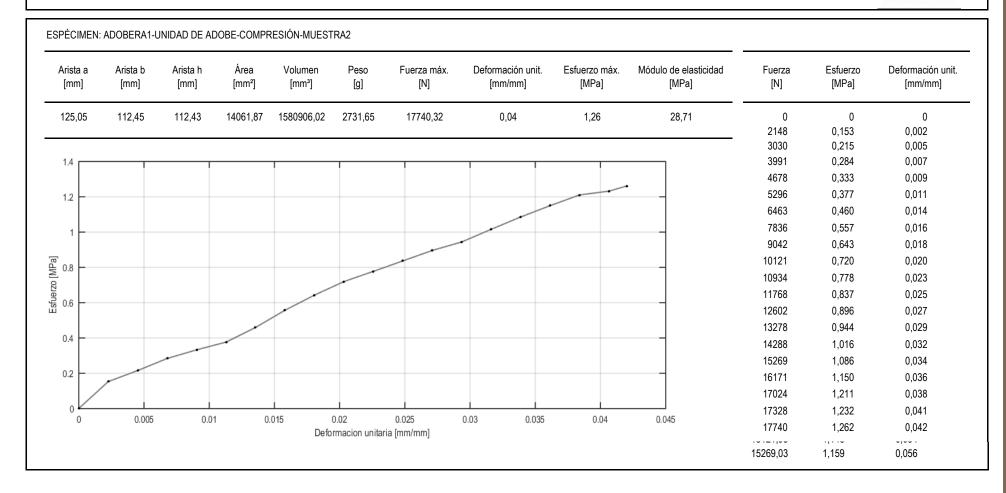
Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

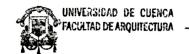
echa: 29 de septiembre del 2016

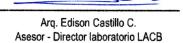
RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit [mm/mm]
106,86	123,24	104,19	13169,43	1372056,69	2355,20	15269,03	0,06	1,16	34,70	0	0	0
										1471,01	0,112	0,002
										1853,47	0,141	0,005
1.2				1			1	1		2226,12	0,169	0,007
										2392,83	0,182	0,010
										2991,04	0,227	0,012
1									-	3726,55	0,283	0,015
					/					4638,57	0,352	0,017
										5629,05	0,427	0,020
).8									7	6737,20	0,512	0,022
										7796,33	0,592	0,024
).6										8943,71	0,679	0,027
,										10208,77	0,775	0,029
										12287,80	0,933	0,032
).4										13013,49	0,988	0,034
										13680,35	1,039	0,037
										13974,55	1,061	0,039
).2		_								14160,87	1,075	0,041
										14258,94	1,083	0,044
. /				I						14572,76	1,107	0,046
0		0.01	0.	02	0.03	0	0.04	0.05	0.06	14749,28	1,120	0,049
Ü		0.01	0.		macion unitaria		, OT	0.00	0.00	14886,57	1,130	0,051
				201011		. []				15121,93	1,148	0,054
										15269,03	1,159	0,056

Facultad de Arquitectura y Urbanismo


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.


Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Adobera 1. Cuenca. 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

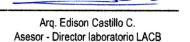
Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

rista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo Elástico [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]
29,85	107,80	108,28	13997,83	1515615,04	2435,42	15622,07	0,04	1,12	39,79	0	0	0
										1098,35	0,078	0,002
										1353,32	0,097	0,005
										1725,98	0,123	0,007
.2					T ₁					2196,70	0,157	0,009
									→	2873,36	0,205	0,012
1										3922,68	0,280	0,014
										5325,04	0,380	0,016
										6756,82	0,483	0,019
.8									-	8100,33	0,579	0,021
										9296,75	0,664	0,023
.6										10552,01	0,754	0,026
.0										12699,68	0,907	0,030
										13494,02	0,964	0,033
.4										14347,20	1,025	0,035
			/							15033,67	1,074	0,038
.2										15386,71	1,099	0,040
.2										15563,23	1,112	0,042
										15622,07	1,116	0,043
0	0.005	0.01	0.0	15 0	.02	0.025	0.03 0.035	0.04	0.045	-		

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. 29 de septiembre del 2016 Fecha:


RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79° 2′ 34.51″ O.

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]
130,10	110,00	111,88	14311,00	1601043,13	2647,93	15622,07	0,04	1,12	15,90	0	0	0
										2608,58	0,182	0,002
										3226,40	0,225	0,005
										3589,25	0,251	0,007
										3912,87 4265,91	0,273 0,298	0,009 0,011
0.9						<u> </u>				4569,92	0,296	0,011
									_	4942,58	0,345	0,014
0.8									-	5236,78	0,366	0,018
										5599,63	0,391	0,020
).7									-	6080,15	0,425	0,023
					_					6580,30	0,460	0,025
0.6									-	7100,05	0,496	0,027
										7629,61	0,533	0,030
0.5									_	8090,53	0,565	0,032
										8600,48	0,601	0,034
0.4										9061,39	0,633	0,036
										9512,50 9826,31	0,665 0,687	0,039 0,041
0.3										10198,97	0,007	0,041
,										10473,56	0,732	0,045
0.2										10728,53	0,750	0,048
"										10954,08	0,765	0,050
0.1										11091,38	0,775	0,052
"· [/										11258,09	0,787	0,054
. /										11444,42	0,800	0,057
0	0.	n1	0.02	0.03	₹	0.04	0.05	0.06	0.07	11689,59	0,817	0,059
U	0.	01	0.02		, macion unitaria		0.03	0.00	0.07	12013,21	0,839	0,061
				Delon	macion umidila	r franskrinnil				12228,95	0,855	0,064
										12425,09	0,868	0,065

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

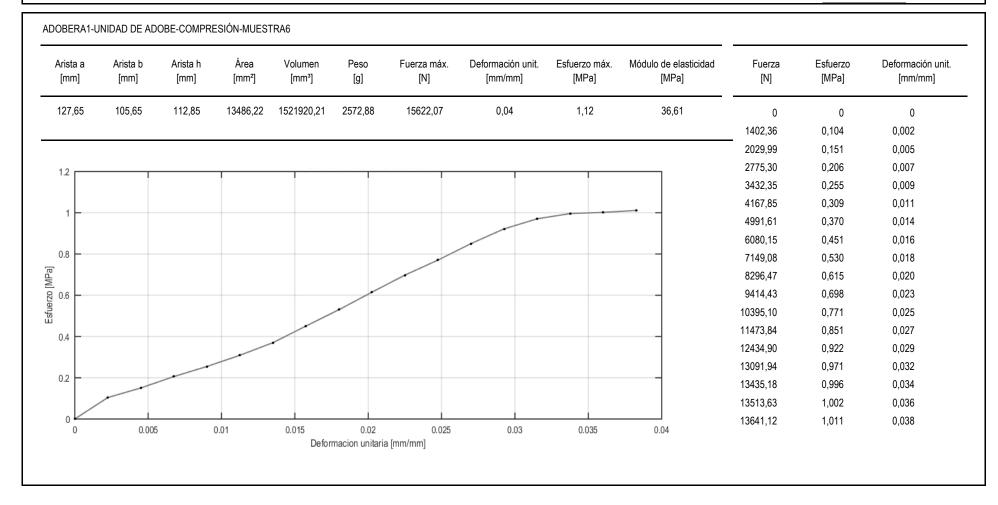
Ubicación:

Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79° 2′ 34.51″ O.

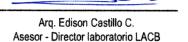
Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit [mm/mm]
1.5	125,90	103,15	14371,49	1482418,68	2565,84	20486,20	0,04	1,43	25,36	0 1206,22 1304,29 1549,46 1843,66 1853,47 1912,31 2059,41 2324,19 2608,58 3020,46 3550,03 3991,33 4363,98 4805,28 5305,42 5854,60 6560,68 7256,96 7747,29 8286,66 9071,20 9943,99 10856,02	0 0,084 0,091 0,108 0,128 0,129 0,133 0,143 0,162 0,182 0,210 0,247 0,278 0,304 0,334 0,369 0,407 0,457 0,505 0,539 0,577 0,631 0,692 0,755	0 0,002 0,005 0,007 0,010 0,012 0,015 0,017 0,020 0,022 0,025 0,027 0,030 0,032 0,034 0,037 0,039 0,042 0,044 0,047 0,049 0,045 0,052
0 0	0.01		0.02	0.03 Deforma	0.04 acion unitaria [n	0.05 nm/mm]	0.06	0.07	0.08	11699,39 12660,45 13778,41 14788,50 15798,59 16887,14 17926,65 18956,35 20339,10	0,814 0,881 0,959 1,029 1,099 1,175 1,247 1,319 1,415	0,047 0,049 0,052 0,054 0,057 0,059 0,062 0,064 0,066 0,069 0,071 0,074 0,076 0,079



Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Fecha: Adobera 1, Cuenca, 2º 51' 38.42" S - 79º 2' 34.51" O.

29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

COMPRESIÓN EN UNIDADES DE ADOBE - ADOBERA 1

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	106,86	123,24	104,19	13169,43	1372056,69	2355,20	15269,03	0,06	1,16	34,70
MUESTRA 2	125,05	112,45	112,43	14061,87	1580906,02	2731,65	17740,32	0,04	1,26	28,71
MUESTRA 3	129,85	107,80	108,28	13997,83	1515615,04	2435,42	15622,07	0,04	1,12	39,79
MUESTRA 4	130,10	110,00	111,88	14311,00	1601043,13	2647,93	12425,09	0,07	0,87	15,90
MUESTRA 5	114,15	125,90	103,15	14371,49	1482418,68	2565,84	20486,20	0,08	1,43	25,36
MUESTRA 6	127,65	105,65	112,85	13486,22	1521920,21	2572,88	13641,12	0,04	1,01	36,61
						Media total	15863,97	0,05	1,14	28,92
						Desviación e	stándar (módulo	de elasticidad)		1,40
					-	Media (esfue	rzo de cuatro me	jores muestras)	1,24	

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. 29 de septiembre del 2016 Fecha:

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

Módulo de elasticidad

[N/mm²]

3035577,90

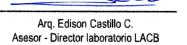
767326,67

344781,73

215020,15

0

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]
465,25	231,50	124,75	33,00	399,25	133,08	28879,63	13436245,53	3,7E+07	21906,0	0	0	0	0	0	0
										882,60 892,41	0,025 0,051	795295,29 397647,66	59134,40 59791,45	·	0,097 0,098
0.112										902,22	0,076	265098,46	60448,50	2,87E-07	0,099
0.11								/		1000,28	0,102	198823,87	67018,99	5,11E-07	0,110
0.108															
0.106															
0.106 - 0.104 - 0.102 -															
0.102															


5

4

3

Deformación unitaria [mm/mm]

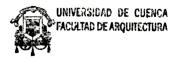
 $\times 10^{-7}$

2

0.1

0.098

0.096


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Ensayo realizado por: Eddy Aquilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

ESPÉCIMEN: ADOBERA1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA2 Área Arista a Arista h Distancia y Distancia L Distancia L/3 Volumen Inercia Peso Fuerza Deformación Radio de Giro Momento Deformación unit. Esfuerzo Módulo de elasticidad Arista b transversal [mm⁴] [g] [N] [N/mm²] [mm] [mm] [mm] [mm] $[mm^3]$ [mm] [mm] [N/mm][mm/mm] [N/mm²] [mm] [mm] [mm²] 226,25 124,75 30,00 410,25 136,75 28224,69 13272659,30 36604039 21937,34 0 0 0 0 0 0 470,25 0 1008,13 0,051 419707,21 69392,86 1,21E-07 0,117 963130,14 1031,66 0,102 209853,64 71012,93 4,84E-07 0,119 246403,96 0.152 1.09E-06 0.121 111490,80 1050.30 139902,47 72295,48 1076,78 0,203 104926,90 74118,06 1.94E-06 0,125 64294,62 0.22 0.254 1110,12 83941.56 76413,15 3.03E-06 0.128 42422.76 1193,48 0,305 69951.35 82150,89 4,36E-06 31672,39 0,138 1203,28 0,356 82825,92 5,93E-06 0,139 23460,73 59958,35 0.2 1215,05 0,406 52463,60 83635,95 7,75E-06 0,141 18137,81 0.457 0.141 1217,01 46634,36 83770,96 9.80E-06 14354.26 1221,91 0,508 41970,97 84108,47 1.21E-05 0,141 11673,81 1222.90 0.559 38155.48 0.141 9655.53 84175.97 1.46E-05 Esfuerzo axial [N/mm²] 91:0 91:0 81:0 1223,88 0,610 34975,90 84243,48 1,74E-05 0,142 8119,84 1226,82 0,660 32285,50 84445,98 2,05E-05 0,142 6935,33 1228,78 0,711 29979,44 84580,99 2,37E-05 0,142 5989,52 1291.54 0.762 27980.86 88901.17 2.72E-05 0.149 5484.04 1380.78 0.813 26232.11 95043.92 3.10E-05 0.160 5153.01 0.864 24689.09 104089.29 3.50E-05 0.175 4999.03 1512.19 1534,75 0.914 23317,52 105641.86 3.92E-05 0.177 4525,53 1611,24 0.965 22090.33 110907,08 4,37E-05 0.186 4264,14 4,84E-05 1639,68 1,016 20985,87 112864,66 0,190 3916,32 1662,24 1,067 19986,59 114417,22 5,34E-05 0,192 3601,09 0.12 117994.87 1714.21 1.118 19078.16 5.86E-05 0.198 3383.77 1784,82 1,168 18248,72 122855,07 6.40E-05 0,206 3223,45 1,219 125082.66 0.210 3014,12 1817,18 17488,41 6.97E-05 0,212 1832,87 1,270 16788,92 126162,71 7,56E-05 2801,80 0.1 1838,76 1,321 16143,24 126567,72 8,18E-05 0,213 2598,75 0.2 0.4 0.6 8.0 1.2 1859,35 1,372 15545,40 127985,28 8,82E-05 0.215 2436,81 Deformación unitaria [mm/mm] $\times 10^{-4}$ 1,422 128525,30 1867,20 14990,25 9.49E-05 0,216 2275,43 1878.96 1.473 14473,40 129335.34 1.02E-04 0.217 2134.58

Eddy Aguilar y Rosa Quezada.

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN UNIDADES DE ADOBE

NTE INEN 2554

rista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticio [N/mm²]
71,25	228,00	128,50	30,00	411,25	137,08	29298,00	13806682,50	4E+07	16229,50	0	0	0	0	0	0	0
										789,44	0,025	811200,80	53418,73	3,13E-08	0,087	2773675,66
										916,93	0,051	405600,42	62045,36	1,25E-07	0,101	805399,65
0.16										918,89	0,076	270400,30	62178,07	2,82E-07	0,101	358721,11
0.16									_	935,56	0,102	202800,25	63306,17	5,01E-07	0,103	205441,55
										947,33	0,127	162240,22	64102,48	7,83E-07	0,104	133136,48
0.15										951,25	0,152	135200,21	64367,91	1,13E-06 1.53E-06	0,105	92838,75
										974,79 1059,12	0,178 0,203	115885,92 101400,20	65960,52 71667.36	1,53E-06 2.00E-06	0,107 0,117	69895,69 58143,88
0.14										1104,23	0,203	90133,54	74719,86	2,00E-06 2,54E-06	0,117	47897,60
					-					1128,75	0,229	81120,21	76378.83	3,13E-06	0,121	39658.45
0.40										1171,90	0,234	73745.67	79298.61	3,79E-06	0,124	34028,53
0.13			-						7	1171,30	0,275	67600,22	79763,12	4,51E-06	0,123	28760,92
0.13 - 0.12 - 0.11 -		/								1209,17	0,330	62400,23	81820,24	5,29E-06	0,133	25138,38
0.12									-	1227,80	0,356	57943.09	83081,05	6,14E-06	0,135	22009,46
	,									1238,59	0,381	54080,24	83811,00	7,05E-06	0,136	19341,14
0.11	/									1259,18	0,406	50700,25	85204,53	8.02E-06	0,139	17281,70
0.11	1									1313,12	0,432	47717,91	88854,26	9,05E-06	0,144	15964,10
										1342,54	0,457	45066,94	90845,02	1,01E-05	0,148	14558,63
0.1	•								1	1360,19	0,483	42695,02	92039,48	1,13E-05	0,150	13238,28
										1375,88	0,508	40560,29	93101,21	1,25E-05	0,151	12085,38
0.09										1393,53	0,533	38628,88	94295,67	1,38E-05	0,153	11102,44
- 1										1403,34	0,559	36873,04	94959,26	1,52E-05	0,154	10187,26
0.08 L										1413,15	0,584	35269,89	95622,84	1,66E-05	0,155	9385,81
0.00	0	.2	0.4	0.6	0.8	1.2	1.4	1.6	1.8	1455,31	0,610	33800,34	98476,27	1,80E-05	0,160	8877,18

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: ADOBERA1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA4

Ubicación: Adober Fecha: 29 de s

Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]
465,75	219,00	130,00	30,00	405,75	135,25	28470,00	13259902,50	4E+07	23145,00
0.22]
0.2				<i>y</i>					
N/mm ²]									-
Esfuerzo axial [N/mm²]									-
0.14									-
0.12									-
0.1									╛

3

Deformación unitaria [mm/mm]

4

2

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
0	0	0	0	0	0	0
1029,70	0,025	861920,53	71821,82	2,95E-08	0,124	4208131,98
1049,32	0,051	430960,29	73189,85	1,18E-07	0,126	1072071,77
1117,96	0,076	287306,88	77977,98	2,65E-07	0,135	507647,73
1127,77	0,102	215480,18	78661,99	4,72E-07	0,136	288056,72
1137,58	0,127	172384,17	79346,01	7,37E-07	0,137	185959,42
1147,38	0,152	143653,50	80030,03	1,06E-06	0,138	130251,77
1245,45	0,178	123131,59	86870,20	1,44E-06	0,150	103874,27
1500,43	0,203	107740,17	104654,65	1,89E-06	0,181	95810,24
1765,21	0,229	95769,06	123123,12	2,39E-06	0,213	89061,10
1863,27	0,254	86192,18	129963,29	2,95E-06	0,224	76147,26
1892,69	0,279	78356,55	132015,34	3,57E-06	0,228	63925,30
1941,73	0,305	71826,86	135435,43	4,24E-06	0,234	55106,61
1951,53	0,330	66301,74	136119,45	4,98E-06	0,235	47191,90

 $\times 10^{-6}$

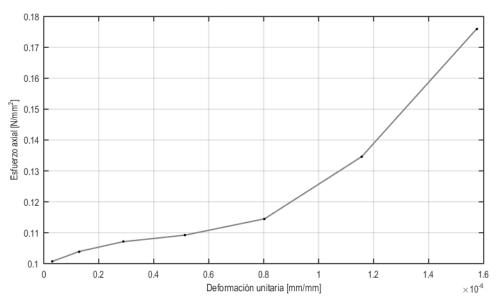
5

ESPÉCIMEN: ADOBERA1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA5

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016


RESISTENCIA A LA FLEXIÓN UNIDADES DE ADOBE

NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]
460,75	226,25	128,00	30,00	400,75	133,58	28960,00	13343320,00	39540053,33	22535,0

n ²]	[mm ³]	[mm ⁴]	[g]	[N]	[mm]	[mm]	[N/mm]	[mm/mm]	[N/mm ²]	[N/mm²]
0.00	13343320.00	39540053,33	22535.0	0	0	0	0	0	0	0
-,	,	,		931,64	0,025	803228,36	62730,19	3,16E-08	0,109	3435713,54
				961,06	0,051	401614,20	64711,14	1,26E-07	0,112	886052,48
				990,48	0,076	267742,82	66692,10	2,85E-07	0,116	405856,27
			7	1010,09	0,102	200807,14	68012,73	5,06E-07	0,118	232814,85
		/	·	1059,12	0,127	160645,73	71314,32	7,91E-07	0,124	156234,61
			4	1245,45	0,152	133871,47	83860,36	1,14E-06	0,145	127583,59
				1627,91	0,178	114747,00	109612,75	1,55E-06	0,190	122519,63

Fuerza Deformación Radio de Giro Momento Deformación unit. Esfuerzo Módulo de elasticidad

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN UNIDADES DE ADOBE

NTE INEN 2554

ESPI	ÉCIM	IEN:ADOB	ERA1-UN	IDAD DE AD	OBE-FLEXIÓ	N-MUESTRA6	5				
Arisi [mi		Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversa [mm²]	al Volume [mm³]		Inercia [mm ⁴]	Peso [g]
481	,50	222,75	126,75	30,00	421,50	140,50	28233,56	13594460),34	37799005,25	22774,5
0.	.12 F		-		,				_		1
0.1	15 -										
[,mr	.11 -										
Esfuerzo axial [N/mm²]	05					-					
Esfuer	0.1										

1.5

Deformación unitaria [mm/mm]

2

2.5

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
0	0	0	0	0	0	0
784,54	0,051	430960,29	54721,39	1,18E-07	0,092	777465,41
805,13	0,102	215480,18	56157,82	4,72E-07	0,094	199468,51
813,96	0,152	143653,50	56773,44	1,06E-06	0,095	89624,53
820,82	0,203	107740,17	57252,25	1,89E-06	0,096	50838,99
841,41	0,254	86192,18	58688,69	2,95E-06	0,098	33353,31
847,30	0,305	71826,86	59099,10	4,24E-06	0,099	23324,01
854,16	0,356	61565,93	59577,91	5,78E-06	0,100	17274,85
862,01	0,406	53870,24	60125,12	7,54E-06	0,101	13347,55
892,41	0,457	47884,70	62245,58	9,55E-06	0,104	10918,16
906,14	0,508	43096,28	63203,20	1,18E-05	0,106	8979,78
910,06	0,559	39178,48	63476,81	1,43E-05	0,106	7453,44
913,98	0,610	35913,66	63750,41	1,70E-05	0,107	6289,96
921,83	0,660	33151,12	64297,63	1,99E-05	0,108	5405,51
968,90	0,711	30783,23	67580,91	2,31E-05	0,113	4898,88
973,81	0,762	28731,07	67922,92	2,65E-05	0,114	4289,07
983,61	0,813	26935,42	68606,94	3,02E-05	0,115	3807,66

 $imes 10^{-5}$

0.095

0.09

0.5

NTE INEN 2554

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

FLEXIÓN EN UNIDADES DE ADOBE - ADOBERA 1

Espécimen	Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área Transversal [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo má: [MPa]
MUESTRA 1	465	232	125	33	399,3	133,1	28880	13436246	21906,00	1000,28	5,11E-07	0,110
MUESTRA 2	470	226	125	30	410,3	136,8	28225	13272659	21937,34	1878,96	1,02E-04	0,217
MUESTRA 3	471	228	129	30	411,3	137,1	29298	13806683	16229,50	1455,31	1,80E-05	0,160
MUESTRA 4	466	219	130	30	405,8	135,3	28470	13259903	23145,00	1951,53	4,98E-06	0,235
MUESTRA 5	461	226	128	30	400,8	133,6	28960	13343320	22535,00	1627,91	1,55E-06	0,190
MUESTRA 6	482	223	127	30	421,5	140,5	28234	13594460	22774,50	983,61	3,02E-05	0,115
								Media total		1482,9	2,62E-05	0,171
							-	Media 4 me	jores muestra	ıs		0,201

Tesis:	Caracterización física y mecánica del adobe en el cantón Cuenca.	Ubicación:	Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O. 29 de septiembre del 2016
Solicitado por:	Eddy Aguilar y Rosa Quezada.	Fecha:	

CONTENIDO DE MATERIA ORGÁNICA POR ÍGNICIÓN - ADOBERA 1

AASTHO T-267-86

Espécimen	ADOBERA1-ADOBE- IGNICIÓN-MUESTRA1	ADOBERA1-ADOBE- IGNICIÓN-MUESTRA2	ADOBERA1-ADOBE- IGNICIÓN-MUESTRA3	Promedic
Loposimon	[%]	[%]	[%]	[%]
ADOBERA1-ADOBE-IGNICIÓN	6,72	6,79	6,69	6,73

ADOBERA1-MORTERO- ADOBERA1-MORTERO- ADOBERA1-MORTERO- Promedio
Espécimen IGNICIÓN-MUESTRA1 IGNICIÓN-MUESTRA2 IGNICIÓN-MUESTRA3

Dra: Guillermina Pauta Química - Analista UNIVERSIDAD DE CUENCA Facultad de Ingeniería LABORATORIO DE INGENIERIA SANITARIA Ensayo realizado por:

Facultad de Arquitectura y Urbanismo

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Eddy Aguilar y Rosa Quezada.

Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O. Ubicación:

29 de septiembre del 2016

Fecha:

GRANULOMETRÍA DEL MORTERO DE BARRO

NTE INEN 696 / NTE INEN 697

amíz	Abertura	Peso	Peso	Peso retenido	Porcentaje	Porc. retenido	•				(CURVA GRANULOM	ÉTRICA	
[#]	tamiz [mm]	tamiz [g]	retenido [g]	acumulado [g]	retenido [%]	acumulado [%]	que pasa [%]		maño de las culas [%]			100		
1 ½"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0]	[%]		95		
1"	25,400	3111,3	0,0	0,0	0,0	0,0	100,0	0,0	grava	PASA [%]		/		
1/2"	12,700	3293,7	0,0	0,0	0,0	0,0	100,0			JE P/		90		
4	4,750	489,27	11,9	11,9	1,2	1,2	98,8			a DO				
8	2,360	465,97	21,4	33,3	2,1	3,3	96,7			TAJ				
16	1,180	401,32	37,9	71,2	3,8	7,1	92,9			PORCENTAJE		85		
20	0,850	637,84	24,7	95,8	2,5	9,6	90,4	27,0	arena	POR		/		
30	0,600	374,94	27,3	123,1	2,7	12,3	87,7	21,0				80		
50	0,300	344,71	51,6	174,7	5,2	17,5	82,5					/ 80		
100	0,150	332,78	52,5	227,2	5,3	22,7	77,3				/			
200	0,075	316,90	43,1	270,3	4,3	27,0	73,0		limos y			75		
Fo	ondo	370,31	729,7	1000,0	73,0	100,0	0,0	73,0	arcillas		-			
										0,01	0,10	70 1,00	10,00	

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA DEL MORTERO DE BARRO

NTE INEN 696 / NTE INEN 697

tamiz [mm] 88,100 25,400 2,700 4,750 2,360	tamiz [g] 3005,8 3111,3 3293,7 489,27	0,0 0,0 0,0 2,1	acumulado [g] 0,0 0,0	retenido [%]	acumulado [%]	[%]		maño de las culas [%]			100	
25,400 2,700 4,750	3111,3 3293,7	0,0	0,0		0.0	400.0						
2,700 4,750	3293,7			0.0	-,-	100,0			[%]		95	
4,750	•	2,1		0,0	0,0	100,0	0,2	grava	PASA [%]			
	489,27		2,1	0,2	0,2	99,8			JE P,		90	
2 360		15,0	17,1	1,5	1,7	98,3			EQUE			
2,000	465,97	19,8	36,9	2,0	3,7	96,3			ITAJI			
1,180	401,32	36,9	73,8	3,7	7,4	92,6			PORCENTAJE		85	
0,850	637,84	24,2	98,0	2,4	9,8	90,2	26,7	arena	POR		/	
0,600	374,94	23,5	121,5	2,4	12,1	87,9	20,1				80	
0,300	344,71	48,1	169,5	4,8	17,0	83,0					80	
0,150	332,78	50,9	220,4	5,1	22,0	78,0				/		
0,075	316,90	48,3	268,8	4,8	26,9	73,1		limos y			75	
0	370,31	731,3	1000,0	73,1	100,0	0,0	73,1	arcillas				
											70	
، ماما امن	ado (seco)) =	1000,0 g						0,01	0,10	1,00	10,00
		vado (seco	370,31 731,3 vado (seco) = lavado [g] =	vado (seco) = 1000,0 g	vado (seco) = 1000,0 g	vado (seco) = 1000,0 g	vado (seco) = 1000,0 g	vado (seco) = 1000,0 g				

SUCS: Sistema Unificado de Clasificación de suelo.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 1, Cuenca 2º 51' 38.42" S - 79º 2' 34.51" O.

Fecha: 29 de septiembre del 2016

GRANULOMETRÍA DEL MORTERO DE BARRO

NTE INEN 696 / NTE INEN 697

amíz	Abertura	Peso	Peso	Peso retenido	Porcentaie	Porc. retenido	Porcentaie	Clasifica	ción SUCS*		CUR	VA GRANULOMÉTRICA	
[#]	tamiz [mm]	tamiz [g]	retenido [g]		retenido [%]		-	según ta	maño de las culas [%]			100	
1 ½"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0]	[%]		95	
1"	25,400	3111,3	0,0	0,0	0,0	0,0	100,0	0,3	grava	4SA		90	
1/2"	12,700	3293,7	3,0	3,0	0,3	0,3	99,7	_		QUE PASA [%]		99	
4	4,750	489,27	14,0	17,1	1,4	1,7	98,3						
8	2,360	465,97	20,1	37,1	2,0	3,7	96,3			ITAJI		85	
16	1,180	401,32	35,7	72,8	3,6	7,3	92,7			PORCENTAJE		/	
20	0,850	637,84	22,5	95,3	2,2	9,5	90,5	26,2	arena	POR	/	80	
30	0,600	374,94	25,0	120,3	2,5	12,0	88,0	20,2			/		
50	0,300	344,71	48,3	168,6	4,8	16,9	83,1					75	
100	0,150	332,78	51,7	220,3	5,2	22,0	78,0				-		
200	0,075	316,90	45,1	265,4	4,5	26,5	73,5		limos y			70	
Fo	ondo	370,31	734,6	1000,0	73,5	100,0	0,0	73,5	arcillas			70	
												65	

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Asesor - Director laboratorio LACB

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Fecha: 29 de septiembre del 2016

GRANULOMETRÍA PROMEDIO DEL MORTERO DE BARRO - ADOBERA 1

NTE INEN 696 / NTE INEN 697

		MUES	STRA 1	MUES	STRA 2	MUES	STRA 3		PROME	DIO	CURVA GRANULOMÉTRICA
Tamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Clasificación SUCS* [%]	100
1 ½"	38,100	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0		95
1"	25,400	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0	0,2 grava	90 9
1/2"	12,700	0,0	100,0	0,2	99,8	0,3	99,7	0,2	99,8		¥d 90 9
4	4,750	1,2	98,8	1,5	98,3	1,4	98,3	1,4	98,5		ano di diamana di diam
8	2,360	2,1	96,7	2,0	96,3	2,0	96,3	2,0	96,4		PORCENTALE 82
16	1,180	3,8	92,9	3,7	92,6	3,6	92,7	3,7	92,7		O
20	0,850	2,5	90,4	2,4	90,2	2,2	90,5	2,4	90,4	26,6 arena	Pog /
30	0,600	2,7	87,7	2,4	87,9	2,5	88,0	2,5	87,8	20,0	80
50	0,300	5,2	82,5	4,8	83,0	4,8	83,1	4,9	82,9		
100	0,150	5,3	77,3	5,1	78,0	5,2	78,0	5,2	77,7		75
200	0,075	4,3	73,0	4,8	73,1	4,5	73,5	4,6	73,2	limos y	
Fo	ondo	73,0	0,0	73,1	0,0	73,5	0,0	73,2	0,0	73,2 arcillas	70

SUCS: Sistema Unificado de Clasificación de suelo.

Universidad de Cuenca
Facultad de Arquitectura y Urbanismo

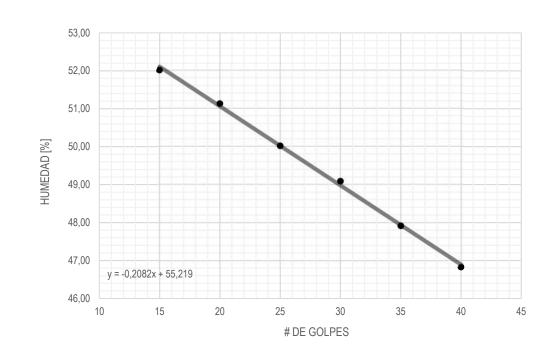
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Fecha:

Adobera 1, Cuenca 2º 51′ 38.42″ S - 79° 2′ 34.51″ O.


29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO

NTE INEN 691

Espécimen: ADOBERA1-MORTERO-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
15	41,74	52,74	48,98	52,00
20	43,22	52,65	49,46	51,12
30	45,91	55,67	52,46	49,08
35	50,52	59,02	56,27	47,91
40	44,41	56,56	52,68	46,83

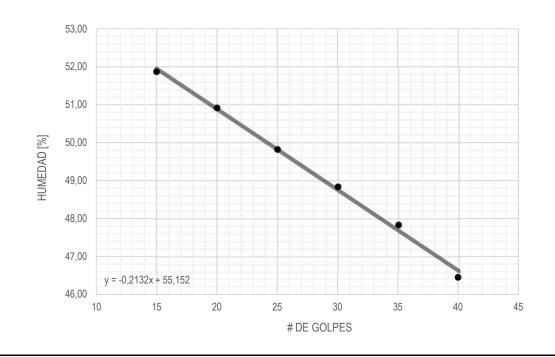
Límite Líquido (25 golpes) = 50,01 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Espécimen: ADOREDA1-MORTEDO-CASA CRANDE-MUESTRA2

Ubicación:


Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Fecha: 29 de septiembre del 2016

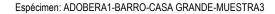
CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO

NTE INEN 691

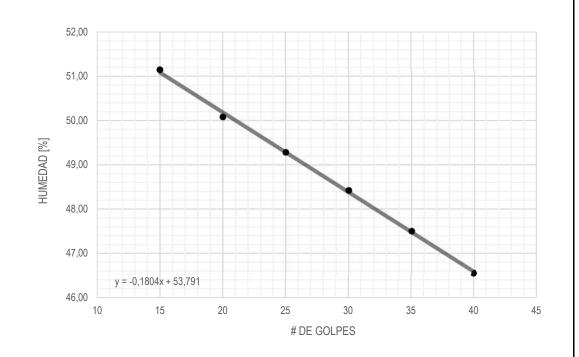
specimen. AL	JUBERA I-IVIUI	RTERU-CASA GRANI	DE-IVIUES I RAZ	
Número de golpes	Masa recipiente	Masa recipiente +	Masa recipiente + muestra seca	Humedad
goipoo	[g]	[9]	[9]	[%]
15	62,81	73,38	69,77	51,87
20	47,71	58,44	54,82	50,91
30	44,86	57,72	53,50	48,84
35	46,28	59,26	55,06	47,84
40	45,77	56,49	53,09	46,45

Límite Líquido (25 golpes) =

49,82 %



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.


Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO, ADOBERA 1

NTE INEN 691

Número de	Masa	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
golpes	recipiente [g]	muestra numeda [g]	muestra seca [g]	[%]
15	8,63	18,53	15,18	51,15
20	5,36	14,86	11,69	50,08
30	6,61	21,66	16,75	48,42
35	6,47	17,09	13,67	47,50
40	42,97	54,65	50,94	46,55

Límite Líquido (25 golpes) =

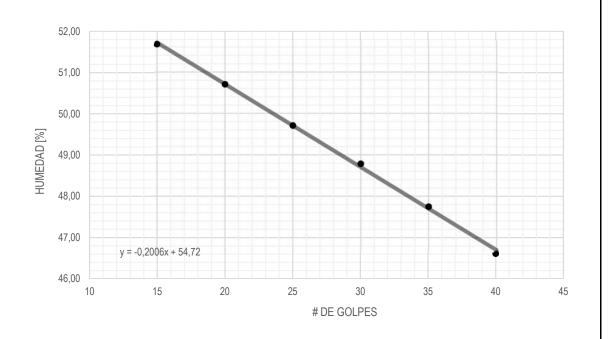
49,28 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Realizado por: Eddy Aguilar, Rosa Quezada.

Ubicación:

Adobera 1, Cuenca 2° 51′ 38.42′′ S - 79° 2′ 34.51′′ O.


Fecha: 29 de septiembre del 2016

CASA GRANDE

PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE MORTERO DE BARRO, ADOBERA 1

NTE INEN 691

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	52,00	51,87	51,15	51,67
20	51,12	50,91	50,08	50,70
30	49,08	48,84	48,42	48,78
35	47,91	47,84	47,50	47,75
40	46,83	46,45	46,55	46,61

Límite Líquido promedio de las 3 muestras (25 golpe 49,71 %

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O. Realizado por: Eddy Aguilar, Rosa Quezada. Fecha: 29 de septiembre del 2016

LÍMITE PLÁSTICO DEL MORTERO DE BARRO

NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
ADOBERA1-BARRO-LÍMITE PLÁSTICO-MUESTRA1	40,50	41,38	41,19	27,54
ADOBERA1-BARRO-LÍMITE PLÁSTICO-MUESTRA2	40,44	41,37	41,17	27,40
ADOBERA1-BARRO-LÍMITE PLÁSTICO-MUESTRA3	48,04	48,91	48,72	27,94
			Promedio	27,62

11/	IDICE	DE	PLAS	HCIDAD	EN UNIDAD	F2 DF ADORF
-----	-------	----	------	--------	-----------	-------------

Espécimen	Límite líquido (LL) promedio	Límite plástico (PL)	Índice de
	de 3 muestras	promedio de 3 muestras	plasticidad
	[%]	[%]	[%]
ADOBERA1-BARRO-ÍNDICE DE PLASTICIDAD	49,71	27,62	22,08

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

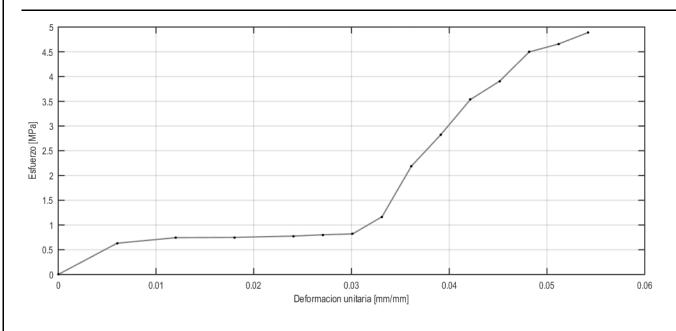
Ensayo realizado por:

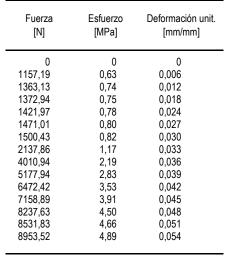
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: ADOBERA1-MORTERO-COMPRESIÓN-MUESTRA1

Ubicación:


Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.


Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unit.	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
43,2	42,4	42,2	1831,68	77251,10	131,83	8953,52	0,054	4,888	227,58

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

200

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2° 51′ 38.42″ S - 79° 2′ 34.51″ O. Tesis:

Eddy Aguilar y Rosa Quezada. Ensayo realizado por: Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

ESPÉCIMEN: ADOBERA1-MORTERO-COMPRESIÓN-MUESTRA2 Arista b Arista h Área Fuerza máx. Deformación unit. Esfuerzo máx. Módulo de elasticidad Fuerza Esfuerzo Deformación unit. Arista a Volumen Peso [mm] [mm] [mm] [mm²] [mm³] [g] [N] [mm/mm] [MPa] [MPa] [N] [MPa] [mm/mm] 43.3 43.6 40.53 1887.88 76506.34 131.83 7727.68 0.088 4.093 66.85 0 0 0 1412,16 0,006 0.75 1431,78 0,76 0.009 1441,58 0.76 0,013 1490,62 0,79 0,016 4.5 1520,04 0.81 0,019 0,88 0.022 1667,14 2020,18 1,07 0,025 2432,06 1,29 0.028 2834.14 1,50 0,031 3.5 0,034 3206,79 1,70 3805.00 2.02 0.038 3 2,23 0,041 4216,88 Esfuerzo [MPa] 4462.05 2,36 0.044 4815,09 2,55 0,047 2,70 0,050 5099.48 2,87 5413,30 0.053 5776.15 3,06 0,056 1.5 6080,15 3,22 0.060 3.48 6560.68 0.063 3,60 0,066 6796,04 3.74 0.069 7060.82 3,85 7276,57 0.072 0.5 3,94 0,075 7443.29 7629,61 4,04 0,078 0 4,05 0,081 7649,23 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 7708,07 4,08 0,085 Deformacion unitaria [mm/mm] 4.09 0.088 7727.68

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

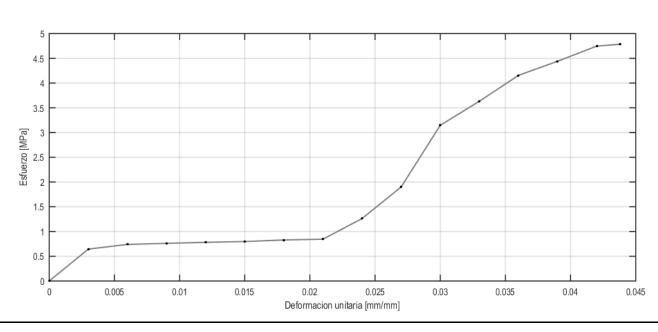
Arg. Edison Castillo C. Asesor - Director laboratorio LACB

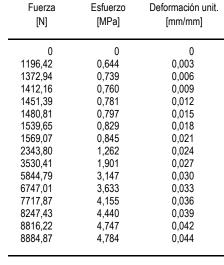
200

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: ADOBERA1-MORTERO-COMPRESIÓN-MUESTRA3

Ubicación:


Adobera 1, Cuenca, 2° 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

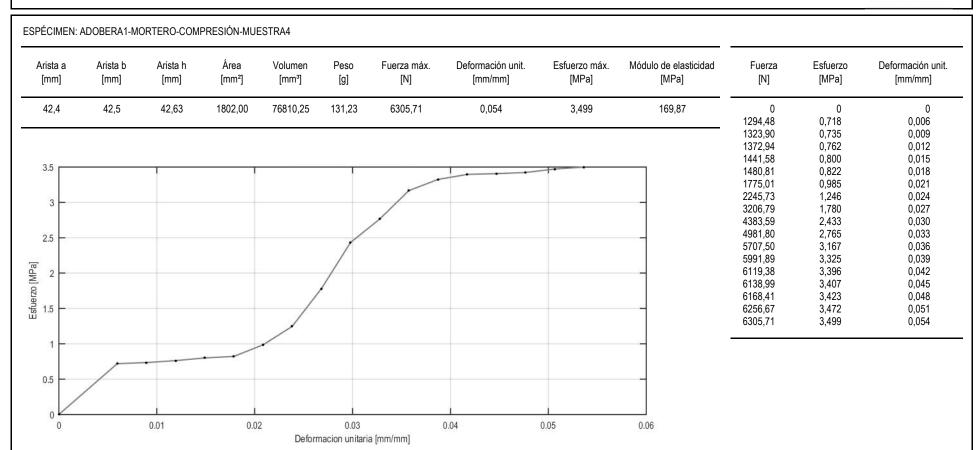

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unit.	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
43.6	42 6	42 33	1857 36	78612 76	131 80	8884.87	0 044	4 784	255 73

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51' 38.42" S - 79° 2' 34.51" O.

Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016 Ensayo realizado por:

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Asesor - Director laboratorio LACB

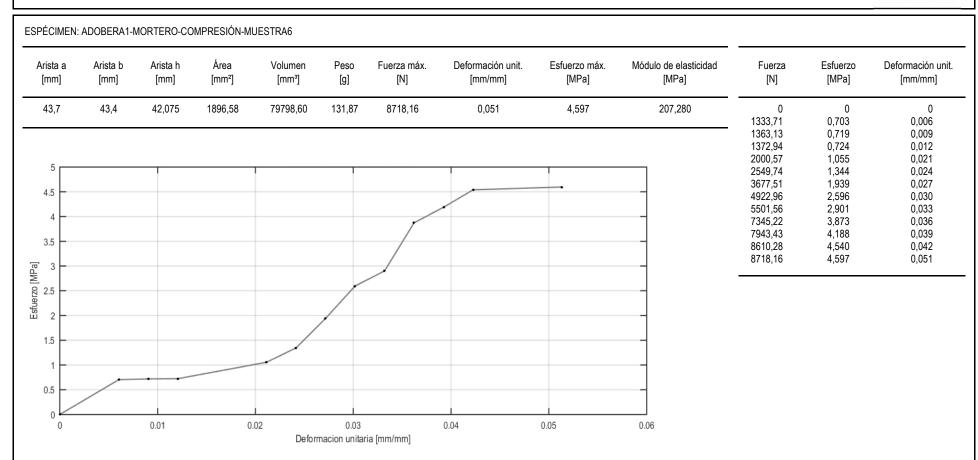
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

sta a nm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación un [mm/mm]
2,7	42,6	41,7	1819,02	75853,13	129,1	7237,34	0,051	3,979	206,226	0 1019,90 1049,32 1068,93	0 0,561 0,577 0,588	0 0,006 0,009 0,012
4										1088,54 1127,77 2098,63	0,598 0,620 1,154	0,015 0,018 0,021
3.5										3412,73 4354,17 5236,78 5756,53	1,876 2,394 2,879 3,165	0,024 0,027 0,030 0,034
2.5										6237,06 6609,72 6884,30	3,429 3,634 3,785	0,034 0,037 0,040 0,043
2.5										7090,24 7129,47 7237,34	3,898 3,919 3,979	0,046 0,049 0,051
1.5												
0.5		-										


Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79º 2′ 34.51′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

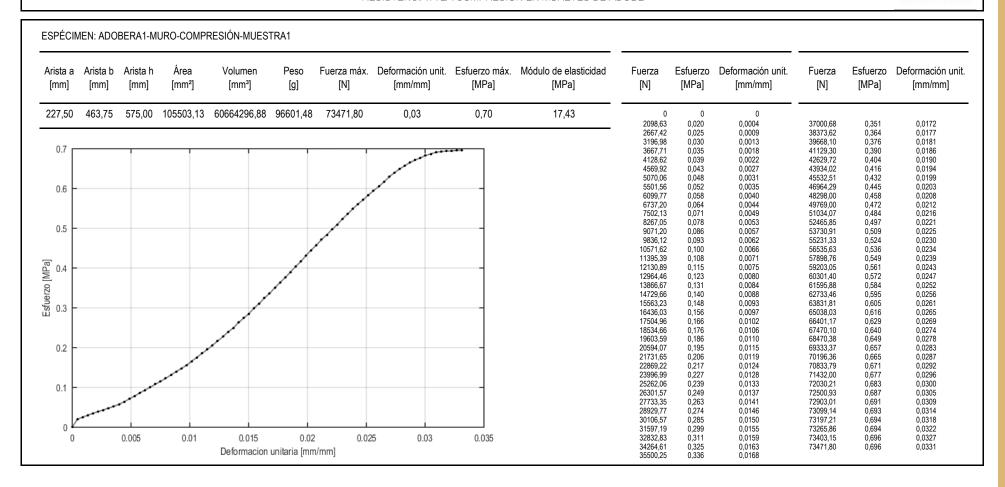
Ubicación: Fecha: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79° 2′ 34.51″ O.

29 de septiembre del 2016

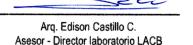
RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO - ADOBERA 1

INEN NET 0488

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de Elasticidad [MPa]
MUESTRA 1	43,2	42,4	42,2	1831,68	77251,10	131,83	8953,52	0,054	4,89	227,58
MUESTRA 2	43,3	43,6	40,5	1887,88	76506,34	132,46	7727,68	0,088	4,09	66,85
MUESTRA 3	43,6	42,6	42,3	1857,36	78612,76	131,80	8884,87	0,044	4,78	255,73
MUESTRA 4	42,4	42,5	42,6	1802,00	76810,25	131,23	6305,71	0,054	3,50	169,87
MUESTRA 5	42,7	42,6	41,7	1819,02	75853,13	129,10	7237,34	0,051	3,98	206,23
MUESTRA 6	43,7	43,4	42,1	1896,58	79798,60	131,87	8718,16	0,051	4,60	207,28
						Media total	7971,21	0,06	4,31	174,52
						Desviación estándar (módulo de elasticidad)				1,63
						Media (esfue	erzo de cuatro me	ejores muestras)	4,59	



Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación:


Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Adobera 1, Cuenca, 2º 51' 38.42" S - 79º 2' 34.51" O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

rista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación uni [mm/mm]
26,75	472,50	465,50	107139,38	49873379,06	79418,08	64302,53	0,04	0,60	21,64	0	0	0	25830,85	0,241	0,0213
										362,85 529,56	0,003 0,005	0,0005 0,0011	27037,07 28400,20	0,252 0,265	0,0218 0,0224
0.7						TURKELEN O LEEF				735,50	0,007	0,0016	29567,20	0,276	0,0229
0.7			13							970,86 1137,58	0,009 0,011	0,0022 0,0027	30734,20 31930,62	0,287 0,298	0,0235 0,0240
										1333,71	0,011	0,0027	33303,55	0,290	0,0246
										1569,07	0,015	0,0038	34637,26	0,323	0.0251
0.6										1765,21	0,016	0,0044	36000,40	0,336	0,0256
412/5/14/20								70-100-00-0		2029,99 2265,35	0,019 0,021	0,0049 0,0055	37265,46 38530,52	0,348 0,360	0,0262 0,0267
							Andrew Control			2530,13	0,021	0,0060	39795,59	0,360	0,0267
										3030,27	0,028	0,0065	41129,30	0,384	0,0278
0.5								7		3471,57	0,032	0,0071	42404,17	0,396	0,0284
										4001,13	0,037	0,0076	43737,88	0,408	0,0289
										4530,70 5030,84	0,042 0,047	0,0082 0,0087	45002,95 46336,66	0,420 0,432	0,0295 0,0300
04						_/				5530,98	0,052	0,0007	47562,50	0,432	0,0306
0.4										6070,35	0,057	0,0098	48670,65	0,454	0,0311
						/				6599,91	0,062	0,0104	49965,14	0,466	0,0316
					/	5				7198,12	0,067	0,0109	52004,93	0,485	0,0327
0.3			-					-		8129,75 8904,48	0,076 0,083	0,0115 0,0120	52965,99 53966,27	0,494 0,504	0,0333 0,0338
										9600,76	0,090	0,0125	54897,91	0,504	0,0344
					/					10336,26	0,096	0,0131	56231,62	0,525	0,0349
										11365,97	0,106	0,0136	57231,90	0,534	0,0355
0.2								1		12101,47	0,113	0,0142	58065,47	0,542	0,0360 0,0366
										13101,75 14033,39	0,122 0,131	0,0147 0,0153	58899,04 59497,25	0,550 0,555	0,0366
			14							14896,38	0,139	0,0158	60232,75	0,562	0,0376
0.1										15965.31	0,149	0,0164	61036,90	0,570	0,0382
0.1			-							16867,52	0,157	0,0169	61595,88	0,575	0,0387
			-							17936,45	0,167	0,0175	62105,83	0,580	0,0393
		***************************************								18995,58 19995,86	0,177 0,187	0,0180 0,0186	62664,81 63233,60	0,585 0,590	0,0398 0,0404
0	**********		1							21202,09	0,107	0,0191	63635,68	0,590	0,0404
0	0.0	05 0	0.01	0.02	0.02	0.03	0.035 0.04	4 0.045		22271,02	0,208	0,0196	64096,59	0,598	0,0420
Ñ	2.0			Deformacion						23565,50	0,220	0,0202	64233,89	0,600	0,0426
				Delomidoloi	i di maria [ii	and the state of t				24663,85	0,230	0,0207	64302,53	0,600	0,0431

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

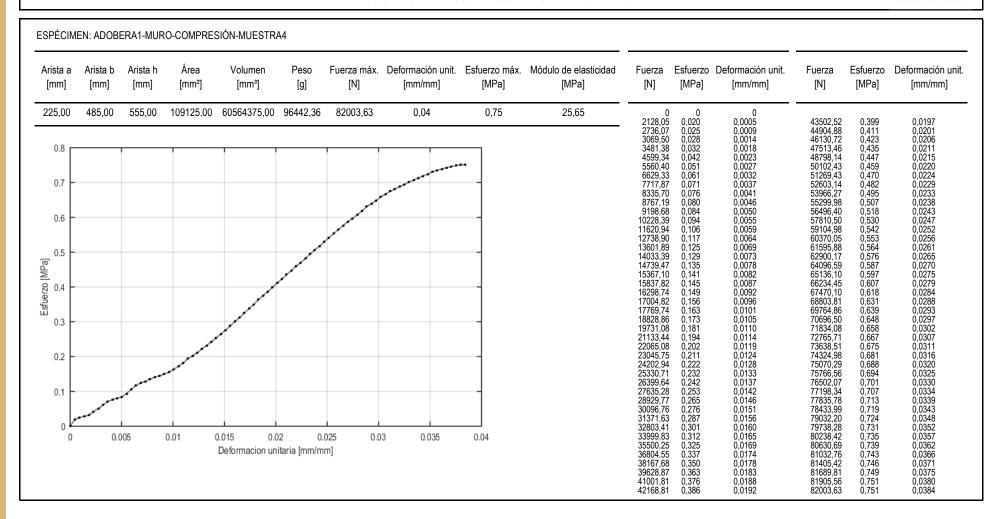
Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79° 2′ 34.51″ O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación uni. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit
225,00	470,00	548,00	105750,00	57951000,00	92280,84	94801,37	0,04	0,90	36,18	0	0	0	47170,23	0,446	0,0185
										2432,06 2991,04	0,023 0,028	0,0005 0,0009	49102,15 51063,49	0,464 0,483	0,0190 0,0195
										3500,99	0,033	0,0014	52965,99	0,501	0,0199
										3599,06	0,034	0,0019	54868,49	0,519	0,0204
0.9		1					200			4128,62	0,039	0,0023	56770,99	0,537	0,0209
							Arrana			4736,64 5295,62	0,045 0,050	0,0028 0,0032	58565,61 60536,76	0,554 0,572	0,0213 0,0218
0.8							-			5864,41	0,050	0,0032	62164,67	0,572	0,0216
0.8								7		6462,62	0,061	0,0042	62733,46	0,593	0,0227
										7100,05	0,067	0,0046	64577,12	0,611	0,0232
0.7										7698,26	0,073	0,0051	65665,66	0,621	0,0236
0.7										8404,34 9031,97	0,079 0,085	0,0056 0,0060	67430,87 69303,95	0,638 0,655	0,0241 0,0246
					,					9669,41	0,000	0,0065	70971,09	0,655	0,0250
0.6					_					10404,91	0,098	0,0070	72500,93	0,686	0,0255
0.0					1					11199,25	0,106	0,0074	74236,72	0,702	0,0260
,										11934,75	0,113	0,0079	75737,14	0,716	0,0264
0.5										12836,97 13699,96	0,121 0,130	0,0083 0,0088	77266,99 78845,87	0,731 0,746	0,0269 0,0273
٠ ا										14602,18	0,138	0,0093	80238,42	0,740	0,0278
										15631,88	0,148	0,0097	81532,90	0,771	0,0283
0.4					_					16700,81	0,158	0,0102	83033,33	0,785	0,0287
										17799,16	0,168	0,0107	84268,97	0,797	0,0292
				/						20035,09 21329,57	0,189 0,202	0,0111 0,0116	85435,97 86701,03	0,808 0,820	0,0297 0,0301
0.3										22663,28	0,202	0,0116	87671,90	0,829	0,0306
			1							24163,71	0,228	0,0125	88613,34	0,838	0,0311
										25536,65	0,241	0,0130	89437,10	0,846	0,0315
0.2										27095,91	0,256	0,0134	90398,16	0,855	0,0320
										28831,70 30430,19	0,273 0,288	0,0139 0,0144	91065,02 91565,16	0,861 0,866	0,0324 0,0329
		ممد								32264,04	0,200	0,0144	92133,95	0,871	0,0329
0.1		and the same						1		33999,83	0,322	0,0153	92702,74	0,877	0,0338
		1								35804,26	0,339	0,0158	93987,41	0,889	0,0343
حل ،	-									37696,95	0,356	0,0162	94134,51	0,890	0,0348
0 -	0	005	0.01	0.015 0	02 4	1025	2 0.025	0.04		39501,39 41433,31	0,374 0,392	0,0167 0,0171	94369,87 94566,01	0,892 0,894	0,0352 0,0357
U	0.	005	0.01			0.025 0.	0.035	0.04		43296,58	0,392	0,0171	94566,01	0,894	0,0362
				Deformacion u	nitaria [mm/r	nm1				45238.31	0,403	0.0181	94801,37	0,896	0.0366



Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Adobera 1, Cuenca, 2° 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Facultad de Arquitectura y Urbanismo

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

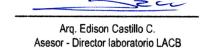
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación:

Adobera 1, Cuenca 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

Fecha: 15 de mayo del 2017

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE - ADOBERA 1

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	227,5	463,8	575,0	105503,13	60664296,88	96601,48	73472	0,033	0,70	17,43
MUESTRA 2	226,8	472,5	465,5	107139,38	49873379,06	79418,08	64303	0,043	0,60	25,65
MUESTRA 3	225,0	470,0	548,0	105750,00	57951000,00	92280,84	94801	0,037	0,90	36,18
MUESTRA 4	225,0	485,0	555,0	109125,00	60564375,00	96442,36	82004	0,038	0,75	25,65
						Media total	78645	0,038	0,74	25,39
						Desviación está	ndar (módulo de el	lasticidad)		1,34


Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

29 de septiembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

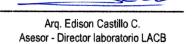
Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
225,00 0.035 0.035 0.025 [WBa] 0.015 0.01	562,50	576,25	805,28	128109,38	72931640,63	116135,92	3932,49	0,01	0,03	3,24	1333,7 1637,7 1735,8 1804,4 1863,3 1931,9 1971,1 2069,2 2998,6 2196,7 2235,9 2334,0 2363,4 260,7 2530,1 2569,4 2667,4 2696,8 2736,1 2804,7 2863,6 2902,8 2971,4 3030,3 3069,5 3138,1 3167,6 3197,0 3265,6 3304,9 3334,3 3363,7 3432,3	0 0,0104 0,0128 0,0135 0,0141 0,0145 0,0151 0,0154 0,0164 0,0177 0,0175 0,0182 0,0188 0,0195 0,0197 0,0201 0,0201 0,0201 0,0201 0,0211 0,0214 0,0219 0,0214 0,0219 0,0224 0,0227 0,0232 0,0234 0,0247 0,0255 0,0255 0,0258 0,0258 0,0260 0,0263	(MPa) 0 0,0042 0,0051 0,0054 0,0056 0,0058 0,0060 0,0062 0,0066 0,0069 0,0073 0,0073 0,0074 0,0075 0,0078 0,0078 0,0088 0,0088 0,0088 0,0088 0,0089 0,0091 0,0095 0,0096 0,0099 0,0099 0,0100 0,0102 0,0103 0,0104 0,0105	0 0,0002 0,0003 0,0005 0,0006 0,0008 0,0009 0,0011 0,0013 0,0014 0,0016 0,0017 0,0022 0,0024 0,0025 0,0027 0,0028 0,0035 0,0035 0,0036 0,0036 0,0044 0,0044 0,0044 0,0046 0,0047 0,0049 0,0055 0,0057 0,0058 0,0057 0,0058 0,0057 0,0058 0,0066 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0068 0,0069
0 (0		0.002	0	.004 Defo	0.006 rmacion unitar	ia [mm/mm]	0.008	0.01	0.012	3471,6 3501,0 3530,4 3599,1 3628,5 3667,7 3736,4 3765,8 3834,4 3903,1	0,0271 0,0273 0,0276 0,0281 0,0283 0,0286 0,0292 0,0294 0,0299 0,0305	0,0108 0,0109 0,0110 0,0112 0,0113 0,0115 0,0117 0,0118 0,0120 0,0122	0,0057 0,0058 0,0060 0,0062 0,0063 0,0065 0,0068 0,0069 0,0073 0 01109

Facultad de Arquitectura y Urbanismo

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.


Ubicación: Fecha:


Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O.

29 de septiembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación un [mm/mm]
230	568	575	808	131388	75051875	119512	3344	0,0060	0.0255	3,17	0	0	0	0
								-,	-,-	-,	1274,87	0,0097	0,0039	0,0002
											1608,30	0,0122	0,0049	0,0003
											1775,01	0,0135	0,0054	0,0005
											1843,66	0,0140	0,0056	0,0006
											1912,31	0,0146	0,0058	0,0008
0.03					0.0000000000000000000000000000000000000	eren merengge					1971,15	0,0150	0,0060	0,0009
2.00						1		1	4		2010,37	0,0153	0,0061	0,0011
											2079,02	0,0158	0,0063	0,0013
											2108,44	0,0160	0,0064	0,0014
0.025											2206,51	0,0168	0,0067	0,0016
2000000000											2245,73	0,0171	0,0068	0,0017
											2275,15	0,0173	0,0069	0,0019
											2304,57	0,0175	0,0070	0,0020
0.02	-									-	2412,45	0,0184	0,0073	0,0022
											2441,87	0,0186	0,0074	0,0024
											2471,29	0,0188	0,0075	0,0025
0.015 -											2539,94	0,0193	0,0077	0,0027
0.015	-									-	2579,16	0,0196	0,0079	0,0028
	_	_									2608,58	0,0199	0,0079	0,0030
											2677,23	0,0204	0,0082	0,0031
1272200	/										2706,65	0,0206	0,0082	0,0033
0.01	1										2745,88	0,0209	0,0084	0,0035
	1										2775,30	0,0211	0,0084	0,0036
	1										2843,94	0,0216	0,0087	0,0038
0.005	1										2873,36 2912,59	0,0219 0,0222	0,0087 0,0089	0,0039 0,0041
0.005	1									7	2912,59 2942,01	0,0224	0,0089	0,0041
	1										3010,66	0,0224	0,0090	0,0042
1/	Ti a										3040,08	0,0229	0,0092	0,0044
0		1	1			1		<u> </u>			3079,30	0,0234	0,0094	0,0046
0		1		2		3		4	5	6	3138,14	0,0239	0,0096	0,0047
U		1		2	D. /			7	3	150	3177,37	0,0242	0,0097	0,0049
					Deform	nacion unit	aria [mm/mm]			$\times 10^{-3}$	3206,79	0,0242	0,0098	0,0052
											3246,02	0,0247	0,0099	0,0057
											3304,86	0,0252	0,0101	0,0058
											3344.08	0.0255	0.0102	0,0060

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42′′ S - 79° 2′ 34.51′′ O. Tesis: Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

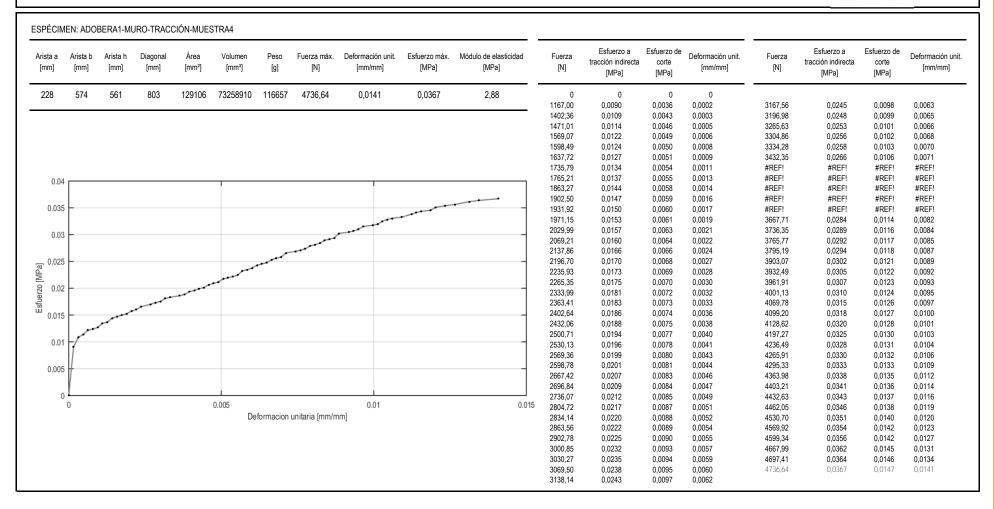
Fecha: 29 de septiembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

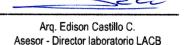
Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit [mm/mm]
230,0	565,0	571,3	803,5	130668,8	74233937,5	118209,7	3196,98	0,0065	0,0245	4,04	0	0	0	0
											833,57	0,0064	0,0026	0,0002
											1265,06	0,0097	0,0039	0,0003
											1431,78 1500,43	0,0110 0,0115	0,0044 0,0046	0,0005 0,0006
											1500,43	0,0115	0,0049	0,0008
											1735,79	0,0122	0,0049	0,0009
0.025 ┌				1			1	I,		-	1765,21	0,0135	0,0054	0,0009
								-			1863,27	0,0143	0,0057	0,0011
											1902,50	0,0146	0,0058	0,0014
											1931,92	0,0148	0,0059	0,0016
0.02										_	1971,15	0,0151	0,0060	0,0017
5.52											2069,21	0,0158	0,0063	0,0019
											2098,63	0,0161	0,0064	0,0021
											2137,86	0,0164	0,0065	0,0022
l											2196,70	0,0168	0,0067	0,0024
0.015											2235,93	0,0171	0,0068	0,0025
											2265,35	0,0173	0,0069	0,0027
0.015											2363,41	0,0181	0,0072	0,0028
	_										2402,64	0,0184	0,0074	0,0030
0.01	/_										2432,06 2500,71	0,0186 0,0191	0,0074 0,0077	0,0032 0,0033
	/										2569,36	0,0191	0,0077	0,0035
	/										2598,78	0,0197	0,0079	0,0036
	/										2667,42	0,0204	0,0082	0,0038
	1										2696,84	0,0204	0,0083	0,0040
0.005											2736,07	0,0209	0,0084	0,0041
	/										2804,72	0,0205	0,0086	0,0043
L	/										2834,14	0,0217	0,0087	0,0044
1/											2863,56	0,0219	0,0088	0,0046
0 L											2902,78	0,0222	0,0089	0,0047
0		1		2	3		4	5	6	7	2971,43	0,0227	0,0091	0,0049
					Defor	macion unita	ria [mm/mm]			×10 ⁻³	3000,85	0,0230	0,0092	0,0052
					Deloi	maoion unital	is print/minj			×IU	3030,27	0,0232	0,0093	0,0054
											3069,50	0,0235	0,0094	0,0055
											3138,14	0,0240	0,0096	0,0058
											3167,56	0,0242	0,0097	0,0060

Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

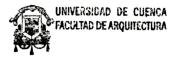

29 de septiembre del 2016

Fecha:


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ubicación: Adobera 1, Cuenca, 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

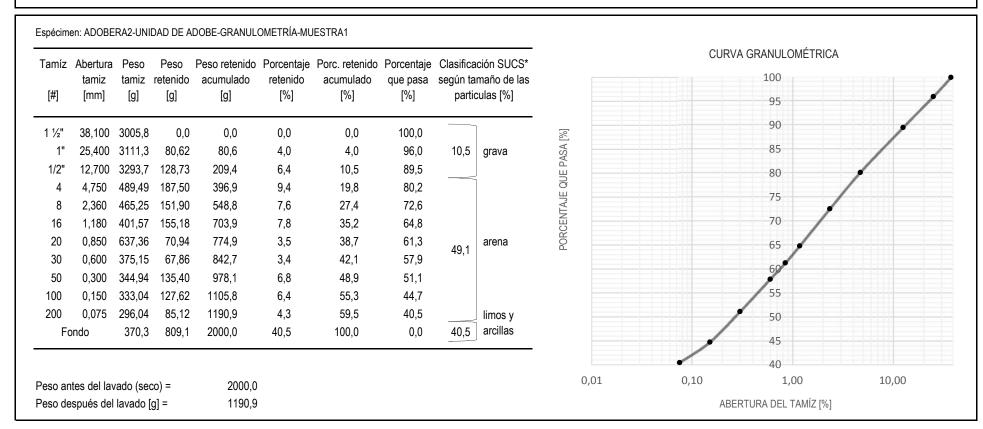
RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 1, Cuenca 2º 51′ 38.42″ S - 79º 2′ 34.51″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 15 de mayo del 2017

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE - ADOBERA 1

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unitaria [mm/mm]	Esfuerzo tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	225,00	562,50	576,25	805,28	128109,38	72931640,63	116135,92	3932,49	0,011	0,031	0,012	3,24
MUESTRA 2	230,00	567,50	575,00	807,89	131387,50	75051875,00	119512,17	3344,08	0,006	0,025	0,010	3,17
MUESTRA 3	230,00	565,00	571,25	803,46	130668,75	74233937,50	118209,69	3196,98	0,006	0,024	0,010	4,04
MUESTRA 4	227,50	573,75	561,25	802,61	129106,25	73258910,16	116657,06	4736,64	0,014	0,037	0,015	2,88
						Media total		3491,19	0,008	0,027	0,011	3,48



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Sinincay 2º 50′ 39.98″ S - 79º 1′ 29,73″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Adobera 2, Sinincay 2º 50′ 39.98′′ S - 79° 1′ 29,73′′ O.

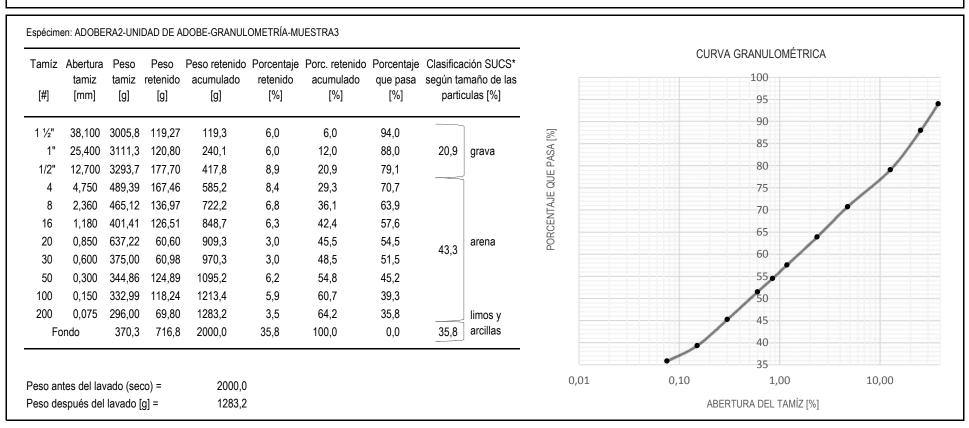
05 de diciembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

1" 25,400 3111,3 80,62 80,6 4,0 4,0 96,0 10,5 97,0 12,700 3293,7 128,73 209,4 6,4 10,5 89,5 4 4,750 489,37 149,53 358,9 7,5 17,9 82,1 8 2,360 465,14 153,01 511,9 7,7 25,6 74,4 16 1,180 401,47 152,97 664,9 7,6 33,2 66,8 20 0,850 637,25 76,68 741,5 3,8 37,1 62,9 30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas	amíz [#]	Abertura tamiz [mm]		Peso retenido [g]		Porcentaje retenido [%]	Porc. retenido acumulado [%]	-	según tai	ción SUCS* maño de las culas [%]		CURV	A GRANULOMÉTRICA 100 95	,
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	1 ½"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0			[%]		90	
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	1"	25,400	3111,3	80,62	80,6	4,0	4,0	96,0	10,5	grava	ASA		85	
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	1/2"	12,700	3293,7	128,73	209,4	6,4	10,5	89,5			JE P.		80	/
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	4	4,750	489,37	149,53	358,9	7,5	17,9	82,1			ПВ		75	
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	8	2,360	465,14	153,01	511,9	7,7	25,6	74,4			TAU			
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	16	1,180	401,47	152,97	664,9	7,6	33,2	66,8			CE		70	
30 0,600 375,09 74,13 815,7 3,7 40,8 59,2 50 0,300 344,88 148,40 964,1 7,4 48,2 51,8 100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	20	0,850	637,25	76,68	741,5	3,8	37,1		49.5	arena	POR		65	
100 0,150 332,94 142,39 1106,5 7,1 55,3 44,7 200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas 45	30	0,600	375,09	74,13	815,7	3,7	40,8	59,2	10,0				6	
200 0,075 296,00 93,25 1199,7 4,7 60,0 40,0 limos y Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas	50		344,88			7,4	48,2							
Fondo 370,3 800,3 2000,0 40,0 100,0 0,0 40,0 arcillas	100	0,150	332,94	142,39	1106,5	7,1	55,3	44,7					55	
45	200	0,075											50	
	Fo	ondo	370,3	800,3	2000,0	40,0	100,0	0,0	40,0	arcillas			45	
Peso antes del lavado (seco) = 2000,0 0,01 0,10 1,00 10	Daen ar	itas dal la	vado (so	20) -	2000 0						0,01	0,10		10,00

^{*} SUCS: Sistema Unificado de Clasificación de suelo.



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Sinincay 2º 50' 39.98" S - 79º 1' 29,73" O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Sinincay 2º 50′ 39.98′′ S - 79º 1′ 29,73′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

GRANULOMETRÍA PROMEDIO EN UNIDAD DE ADOBE - ADOBERA 2

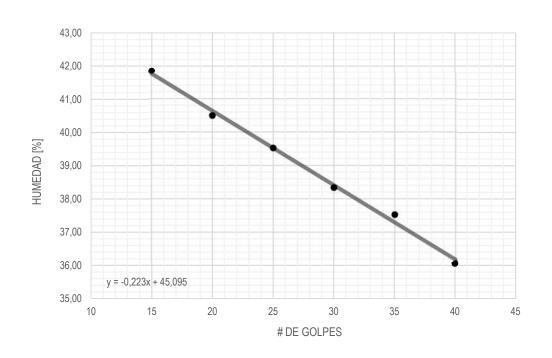
NTE INEN 696 / NTE INEN 697

		MUE	STRA 1	MUES	STRA 2	MUE	STRA 3		PROMED	OIO		CURVA GRANULOMÉTRICA
Tamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	SI	ficación JCS* [%]	100 95						
1 ½"	38,100	0,0	100,0	0,0	100,0	6,0	94,0	2,0	98,0			90 <u>85</u>
1"	25,400	4,0	96,0	4,0	96,0	6,0	88,0	4,7	93,3	13,9	grava	B5 85 80
1/2"	12,700	6,4	89,5	6,4	89,5	8,9	79,1	7,3	86,1			75
4	4,750	9,4	80,2	7,5	82,1	8,4	70,7	8,4	77,7			от Щ
8	2,360	7,6	72,6	7,7	74,4	6,8	63,9	7,4	70,3			ZE 100
16	1,180	7,8	64,8	7,6	66,8	6,3	57,6	7,2	63,0			PORCENTAJE 65 60
20	0,850	3,5	61,3	3,8	62,9	3,0	54,5	3,5	59,6	47,3	arena	60 9
30	0,600	3,4	57,9	3,7	59,2	3,0	51,5	3,4	56,2	41,3		85
50	0,300	6,8	51,1	7,4	51,8	6,2	45,2	6,8	49,4			50
100	0,150	6,4	44,7	7,1	44,7	5,9	39,3	6,5	42,9			45
200	0,075	4,3	40,5	4,7	40,0	3,5	35,8	4,1	38,8		limos y	
F	ondo	40,5	0,0	40,0	0,0	35,8	0,0	38,8	0,0	38,8	arcillas	40

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 2, Sinincay 2º 50′ 39.98′′ S - 79º 1′ 29,73′′ O.


Fecha: 05 de diciembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
	[9]	[9]	[9]	[%]
15	43,06	56,59	52,60	41,85
20	7,03	21,33	17,21	40,49
30	47,15	59,93	56,39	38,33
35	49,30	60,57	57,49	37,52
40	43,20	56,18	52,74	36,06

Límite Líquido (25 golpes) =

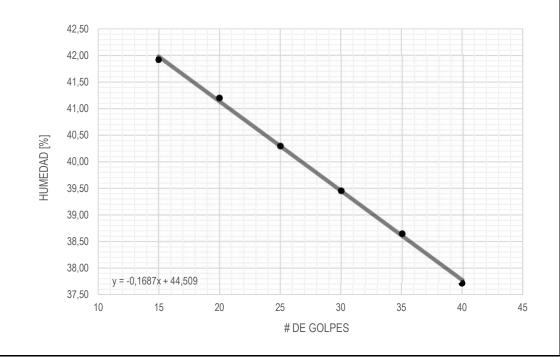
39,52 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

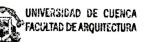
Ubicación:

Adobera 2, Sinincay 2° 50′ 39.98′′ S - 79° 1′ 29,73′′ O.


Fecha: 05 de diciembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

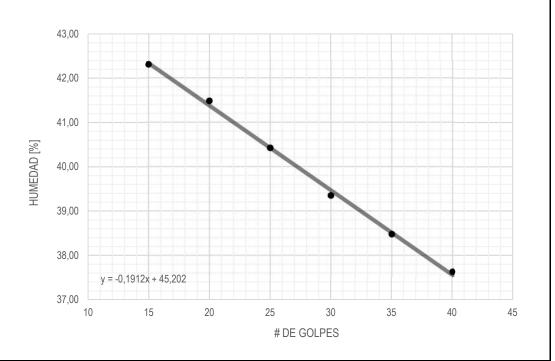

Espécimen: ADOBERA2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA2

Número de golpes	Masa recipiente	Masa recipiente +	Masa recipiente + muestra seca	Humedad
goipoo	[9]	[9]	[9]	[%]
15	43,13	50,90	48,61	41,92
20	44,63	55,70	52,47	41,20
30	49,91	58,87	56,34	39,46
35	40,50	56,07	51,73	38,65
40	48,06	57,70	55,06	37,71

Límite Líquido (25 golpes) =

40,29 %

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Sinincay 2º 50′ 39.98′′ S - 79° 1′ 29,73′′ O. Tesis:


Ensayo realizado por: Eddy Aguilar y Rosa Quezada. 05 de diciembre del 2016 Fecha:

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

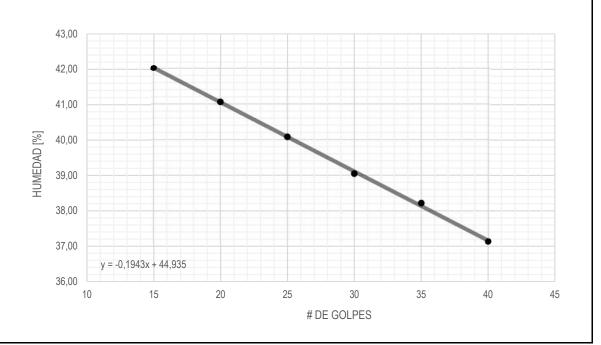
Espécimen: ADOBERA2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA3

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
goipes	[g]	[g]	[g]	[%]
15	6,51	14,60	12,20	42,30
20	5,54	16,25	13,11	41,48
30	5,43	13,54	11,25	39,35
35	5,25	11,98	10,11	38,48
40	5,43	13,55	11,33	37,63

Límite Líquido (25 golpes) = 40,42 %

> UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Adobera 2, Sinincay 2º 50′ 39.98″ S - 79º 1′ 29,73″ O.

Fecha: 05 de diciembre del 2016

CASA GRANDE PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE UNIDADES DE ADOBE, ADOBERA 2

NTE INEN 691

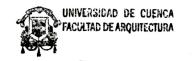
Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	41,85	41,92	42,30	42,02
20	40,49	41,20	41,48	41,06
30	38,33	39,46	39,35	39,04
35	37,52	38,65	38,48	38,22
40	36,06	37,71	37,63	37,13

Límite Líguido promedio de las 3 muestras (25 golpes) = 40,08 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Adobera 2, Sinincay 2° 50′ 39.98′′ S - 79° 1′ 29,73′′ O. Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ubicación:

Ensayo realizado p Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016


LÍMITE PLÁSTICO EN UNIDADES DE ADOBE

NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
ADOBERA2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA1	41,60	42,15	42,05	22,22
ADOBERA2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA2	43,08	43,86	43,72	21,88
ADOBERA2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA3	48,25	49,36	49,16	22,65
			Promedio	22,25

ÍNDICE DE PLASTICIDAD EN UNIDADES DE ADOBE

Espécimen	Límite líquido (LL) promedio	Límite plástico (PL)	Índice de
	de 3 muestras	promedio de 3 muestras	plasticidad
	[%]	[%]	[%]
ADOBERA2-UNIDAD DE ADOBE-ÍNDICE DE PLASTICIDAD	40,08	22,25	17,83

Laboratorio de Sanitarias Universidad de Cuenca - Facultad de Ingeniería

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Sinincay 2º 50′ 39.98′′ S - 79º 1′ 29,73′′ O.

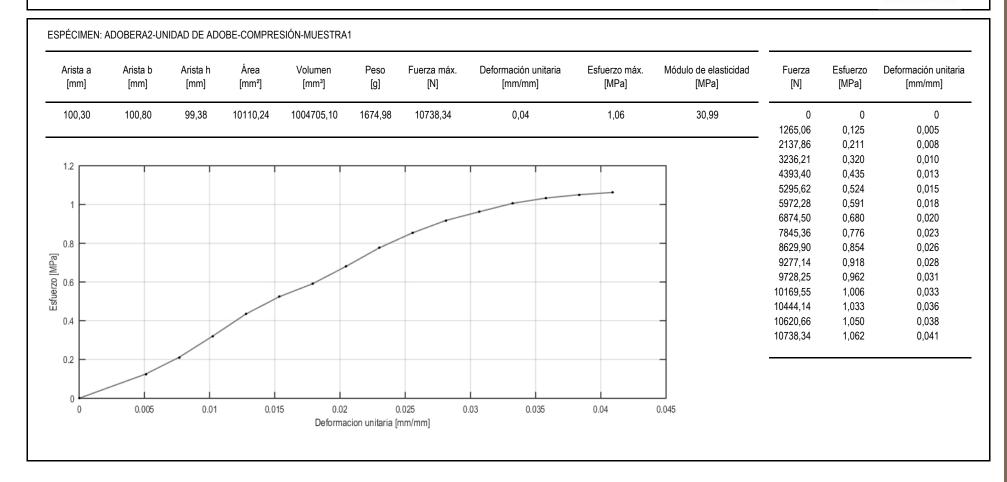
Solicitado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

CONTENIDO DE MATERIA ORGÁNICA POR ÍGNICIÓN - ADOBERA 2

AASTHO T-267-86

	ADOBERA2-ADOBE-	ADOBERA2-ADOBE-IGNICIÓN-	Promedio	
Espécimen	IGNICIÓN-MUESTRA1 [%]	MUESTRA2 [%]	MUESTRA3 [%]	[%]
ADOBERA2-ADOBE-IGNICIÓN	4,31	4,21	4,39	4,30

Dra: Guillermina Pauta Química - Analista UNIVERSIDAD DE CUENCA Facultad de Ingeniería LABORATORIO DE INGENIERIA SANITARIA


Adobera 2, Cuenca 2º 50' 39.98" S - 79º 1' 29.73" O.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Ubicación:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha:

Adobera 2, Cuenca 2º 50' 39.98'' S - 79º 1' 29.73'' O.

05 de diciembre del 2016

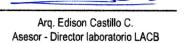
RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitar [mm/mm]
96,37	98,40	94,36	9482,81	894797,76	1554,09	11483,65	0,03	1,21	55,07	0	0	0
										3128,34 4481,66	0,330 0,473	0,003 0,005
										6001,70	0,473	0,003
1.4		Т			1	<u> </u>	ı	l		7345,22	0,775	0,011
										8355,31	0,881	0,013
1.2								-		9414,43	0,993	0,016
										10365,68	1,093	0,019
1									_	11003,12	1,160	0,022
				_						11385,58	1,201	0,024
0.8										11483,65	1,211	0,027
0.8												
n.e. L												
0.0												
0.4												
0.4												
0.2												
. /												
0	0	.005	0.01	1	0.015	0	.02 0.0)25	0.03			

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.


Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: ADOBERA2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA3 Arista a Arista b Arista h Área Volumen Peso Fuerza máx. Deformación unitaria Esfuerzo máx. Módulo de elasticidad Fuerza Esfuerzo Deformación unitaria [mm] [mm] [mm] [mm²] [mm³] [g] [N] [mm/mm] [MPa] [MPa] [N] [MPa] [mm/mm] 94.75 88.05 98.50 8342,74 821759.64 1630.33 8541.64 0.03 1.02 49.00 0 0 0 1010,09 0,121 0,005 1980,95 0,237 0,008 0,470 3922,68 0,010 4932.77 0,591 0.013 1.2 6031,12 0,723 0.015 6756,82 0,810 0,018 7325,60 0,878 0,021 0,949 0,023 7914,01 8208,21 0,984 0.026 0.8 Esfuerzo [MPa] 8394,54 1,006 0,028 8522.02 1.021 0,031 8512,22 1,020 0,034 8541,64 1,024 0,035 0.4 0.2 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Deformacion unitaria [mm/mm]

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Un Ensayo realizado por: Eddy Aguilar y Rosa Quezada. F

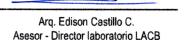
Ubicación: Fecha: Adobera 2, Cuenca $\,2^o\,50^{\prime\prime}\,39.98^{\prime\prime}\,\,S\,$ - $\,79^o\,1^{\prime\prime}\,29.73^{\prime\prime\prime}\,\,O.$

05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

rista a mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitar [mm/mm]
18,90	92,80	99,90	9177,92	916874,21	1790,08	12081,85	0,03	1,32	70,18	0	0	0
									_	2324,19	0,253	0,001
										3196,98	0,348	0,003
										4236,49	0,462	0,004
4		1					1			4795,48	0,523	0,005
										5776,15	0,629	0,006
2									-	6521,46	0,711	0,008
										7413,87	0,808	0,009
1 ├									_	7786,52	0,848	0,010
										8620,09	0,939	0,011
3 L										9090,81	0,991	0,013
`										9698,83	1,057	0,014
.										10061,67	1,096	0,015
3 -									7	10601,04	1,155	0,017
										10816,79	1,179	0,018
4 -									-	11307,13	1,232 1,254	0,019 0,020
.										11513,07 11650,36	1,254	0,020
2 - /									-	11875,91	1,269	0,022
1/										11924,95	1,294	0,023
<u>، لــــــ</u>										12003,40	1,299	0,024
0		0.005	0.0	01	0.015		0.02	0.025	0.03	12003,40	1,316	0,023

UNIDAD DE ADOBE


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50' 39.98" S - 79º 1' 29.73" O. Eddy Aguilar y Rosa Quezada. Ensayo realizado por: Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: ADOBERA2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA5 Arista a Arista b Arista h Área Volumen Peso Fuerza máx. Deformación unitaria Esfuerzo máx. Módulo de elasticidad Fuerza Esfuerzo Deformación unitaria [mm] [mm²] [mm³] [g] [N] [mm/mm] [MPa] [MPa] [N] [MPa] [mm/mm] [mm] [mm] 93.94 97.23 98.94 9133.79 903651.14 1608.24 9130.04 0,04 1,00 22.64 0 0 0 2314,38 0,253 0,003 3128,34 0,343 0,005 3952,10 0,433 0,008 4403.21 0.482 0.010 4834,70 0,529 0,013 0.9 5393,69 0,591 0,015 5903,63 0,646 0,018 0.8 6433,20 0,704 0,021 6992,18 0,766 0,023 0.7 7560,97 0,828 0,026 fuerzo [MPa] 50 90 8090.53 0.886 0.028 8551,44 0,936 0,031 8894,68 0,974 0,033 DJS 0.4 9081,00 0,994 0.036 9110.42 0.997 0,039 0.3 9130,04 1,000 0,039 0.2 0.1 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 Deformacion unitaria [mm/mm]

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: ADOBERA2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA6

Ubicación:


Fecha:

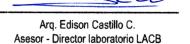
Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.


05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
99,25	103,35	101,70	10257,49	1043186,48	1817,55	10944,28	0,04	1,07	37,26

Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
0 2314,38 2755,68 3275,44 3657,90 4177,65 4815,09 5246,58 5717,31 6246,87 6678,36 7315,80 7610,00 8002,27 8796,61 9120,23 9365,40 9600,76 9855,73 10042,06 10198,97 10306,84 10346,07 10414,72 10473,56 10493,17 10581,43 10686,98 10806,98 10856,02 10875,63 10944,28	0 0,226 0,269 0,319 0,357 0,407 0,469 0,511 0,557 0,609 0,651 0,713 0,742 0,780 0,858 0,889 0,913 0,936 0,961 0,979 0,994 1,005 1,005 1,021 1,023 1,032 1,040 1,058 1,058 1,060 1,067	0 0,001 0,002 0,004 0,005 0,006 0,007 0,009 0,010 0,011 0,012 0,014 0,015 0,016 0,017 0,019 0,020 0,021 0,022 0,024 0,025 0,024 0,025 0,026 0,027 0,029 0,030 0,031 0,032 0,034 0,035 0,036 0,037 0,040


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79º 1′ 29.73″ O.

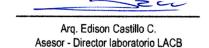
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 15 de mayo del 2017

COMPRESIÓN EN UNIDADES DE ADOBE - ADOBERA 2

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	100,30	100,8	99,38	10110,24	1004705,10	1674,98	10738,34	0,04	1,06	30,99
MUESTRA 2	96,37	98,40	94,36	9482,81	894797,76	1554,09	11483,65	0,03	1,21	55,07
MUESTRA 3	94,75	88,05	98,50	8342,74	821759,64	1630,33	8541,64	0,03	1,02	49,00
MUESTRA 4	98,90	92,80	99,90	9177,92	916874,21	1790,08	12081,85	0,03	1,32	70,18
MUESTRA 5	93,94	97,23	98,94	9133,79	903651,14	1608,24	9130,04	0,04	1,00	22,64
MUESTRA 6	99,25	103,35	101,70	10257,49	1043186,48	1817,55	10944,28	0,04	1,07	37,26
						Media total	10486,63	0,03	1,11	41,28
						Desviación está		1,51		
						Media (esfu	ierzo de cuatro me	ejores muestras)	1,16	

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79º 1′ 29.73′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016


RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

ESPÉCI	MEN: AD	OBERA2	-UNIDAD DE	ADOBE-FL	EXIÓN-MUES	TRA1			
Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]
400,00	205,00	185,00	30,00	340,00	113,33	82000,00	15170000,00	108165260,42	26000
0.22									
0.2									_
0.18	-								-
0.16 mm									-
Esfuerzo axial [N/mm ²]									-
0.12 strerzo									
0.1									
0.08									
0.06	/								
	0	0.2	0.4	0.6	0.8	1 1.2	2 1.4	1.6	1.8

Deformación unitaria [mm/mm]

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [MPa]
0	0	0	0	0	0	0
1123,85	0,051	284448,84	63685	1,79E-07	0,054	304950,65
1366,07	0,102	142224,46	77411	7,14E-07	0,066	92669,37
1583,78	0,152	94816,35	89748	1,61E-06	0,077	47750,21
2010,37	0,203	71112,31	113921	2,86E-06	0,097	34094,11
2261,43	0,254	56889,89	128147	4,46E-06	0,110	24545,12
2686,06	0,305	47408,29	152210	6,43E-06	0,130	20245,84
3080,28	0,356	40635,72	174549	8,75E-06	0,149	17057,63
3443,13	0,406	35556,31	195111	1,14E-05	0,167	14598,16
3914,83	0,457	31605,65	221841	1,45E-05	0,190	13114,56
4188,44	0,508	28445,14	237345	1,79E-05	0,203	11365,23

 $\times 10^{-5}$

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: ADOBERA2-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA2

Ubicación: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79º 1′ 29.73″ O. Fecha:

05 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Pese [g]
410,00	198,00	185,00	30,00	350,00	116,67	81180,00	15018300,00	104471812,50	2567
0.064	·								
0.063	3								•
0.062	2								
0.061	-								
0.00 0.00	; 								
axial 0.059	,								
Esfuerzo axial [N/mm²] 850'0 850'0	3								
0.057	·	\wedge							
0.056	-								
0.055	5-/-								
	1/								

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [MPa]
0	0	0	0	0	0	0
1049,32	0,051	301427,19	61210,15	1,69E-07	0,05	321576,85
1105,22	0,102	150713,63	64470,88	6,74E-07	0,06	84676,92
1128,75	0,152	100475,80	65843,82	1,52E-06	0,06	38435,64
1162,09	0,203	75356,89	67788,81	2,70E-06	0,06	22258,71
1180,73	0,254	60285,56	68875,72	4,21E-06	0,06	14473,99
1196,42	0,305	50238,01	69791,02	6,07E-06	0,06	10184,97
1214,07	0,356	43061,20	70820,72	8,26E-06	0,06	7593,24
1226,82	0,381	40190,48	71564,39	9,48E-06	0,06	6684,02

UNIVERSIDAD DE CUENCA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79º 1′ 29.73′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]
200,00	185,00	30,00	340,00	113,33	80000,00	14800000,00	105527083,33	26059
4 - 2 - 8 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2								
8 6								4.5
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 200,00 185,00	0 200,00 185,00 30,00	0 200,00 185,00 30,00 340,00	0 200,00 185,00 30,00 340,00 113,33	0 200,00 185,00 30,00 340,00 113,33 80000,00	0 200,00 185,00 30,00 340,00 113,33 80000,00 14800000,00	0 200,00 185,00 30,00 340,00 113,33 80000,00 14800000,00 105527083,33

Deformación unitaria [mm/mm]

	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [MPa]
_	0	0	0	0	0	0	0
	1218,97	0,025	568897,65	69075,13	4,46E-08	0,061	1356125,58
	1794,63	0,051	284448,84	101695,48	1,79E-07	0,089	499137,16
	2139,82	0,076	189632,58	121256,58	4,02E-07	0,106	264509,39
	2469,33	0,102	142224,46	139928,53	7,14E-07	0,123	171697,77
	2934,16	0,127	113779,59	166269,33	1,12E-06	0,146	130572,16
	3330,36	0,152	94816,35	188720,13	1,61E-06	0,165	102918,70
	3682,42	0,178	81271,18	208670,23	2,19E-06	0,183	83607,09
	4183,54	0,203	71112,31	237067,17	2,86E-06	0,208	72722,75
	4580,71	0,229	63210,96	259573,54	3,62E-06	0,228	62915,03
	4957,29	0,254	56889,89	280912,92	4,46E-06	0,246	55150,68

 $\times 10^{-6}$

ESPÉCIMEN: ADOBERA2-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA4

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79º 1′ 29.73′′ O.

05 de diciembre del 2016

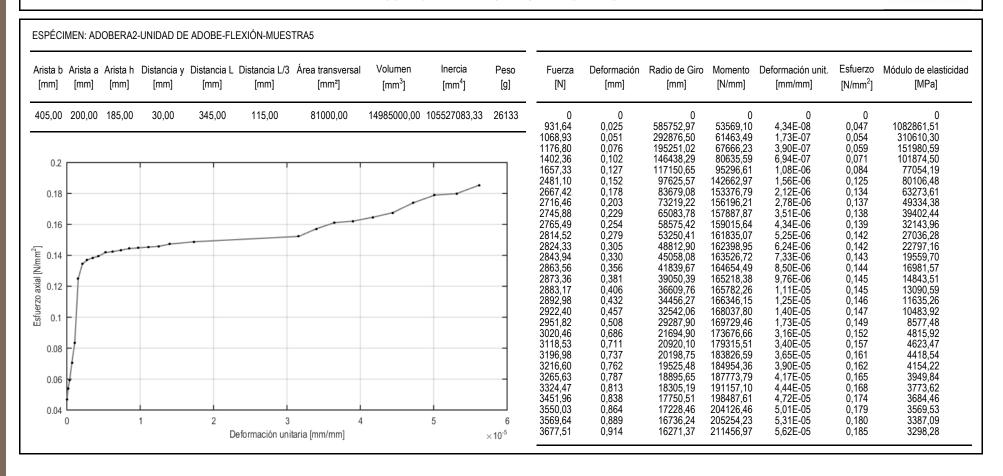
Fecha:

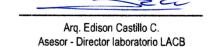
RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

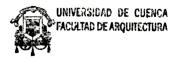
NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]
405,00	205,00	180,00	30,00	345,00	115,00	83025,00	14944500,00	99630000,00	2535
^{0.22} Г			ı					1 /	
0.2									-
0.18									\dashv
0.16	-								-
0.16 - 0.14 - 0.14 - 0.14 - 0.14 - 0.12 - 0.12	•								-
0.12	-								-
0.1									\dashv
0.08	$\overline{}$								\dashv
0.06 L	•	0	.5	1	1.5			2.5	

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [MPa]
0	0	0	0	0	0	0
1217,01	0,025	585752,97	69978,16	4,34E-08	0,06	1457792,38
1533,77	0,051	292876,50	88191,65	1,73E-07	0,08	459304,48
2013,32	0,076	195251,02	115765,64	3,90E-07	0,10	267960,27
2643,89	0,102	146438,29	152023,46	6,94E-07	0,14	197935,61
2971,43	0,127	117150,65	170857,23	1,08E-06	0,15	142372,71
3465,69	0,152	97625,57	199277,05	1,56E-06	0,18	115315,65
3833,44	0,178	83679,08	220422,74	2,12E-06	0,20	93711,73
4172,75	0,203	73219,22	239933,17	2,78E-06	0,22	78098,75






Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79º 1′ 29.73″ O.

Ensayo realizado por: Eddy Aquilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

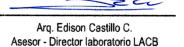
RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ubicación: Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554


Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]
395,00	203,00	176,50	30,00	335,00	111,67	80185,00	14152652,50	93014128,45	25120	928,69	0 0,051	0 276144,22	51852,1
0.18						-				1091,49 1352,34 1645,56 1897,60 2191,80	0,102 0,152 0,203 0,254 0,305	138072,15 92048,14 69036,15 55228,97 46024,18	60941,2 75505,8 91877,3 105949,1 122375,3
0.16	-								.	2584,07 2938,09 3076,36	0,356 0,406 0,432	39449,35 34518,23 32487,77	144276,9 164043,2 171763,5
0.14	-									-			
Esfuerzo axial [N/mm ⁻] 1.0 1.0									-				
Estnerzo	-												

Fuerza	Deformación	Radio de Giro	Momento	Deformación unit.	Esfuerzo	Módulo de elasticidad
[N]	[mm]	[mm]	[N/mm]	[mm/mm]	[N/mm²]	[MPa]
0	0	0	0	0	0	0
928,69	0,051	276144,22	51852,11	1,84E-07	0,049	267426,51
1091,49	0,102	138072,15	60941,29	7,36E-07	0,058	78575,97
1352,34	0,152	92048,14	75505,87	1,66E-06	0,072	43268,97
1645,56	0,203	69036,15	91877,34	2,94E-06	0,087	29616,04
1897,60	0,254	55228,97	105949,14	4,60E-06	0,101	21857,29
2191,80	0,305	46024,18	122375,36	6,62E-06	0,116	17531,98
2584,07	0,356	39449,35	144276,99	9,01E-06	0,137	15185,91
2938,09	0,406	34518,23	164043,21	1,18E-05	0,156	13219,62
3076,36	0,432	32487,77	171763,53	1,33E-05	0,163	12261,23

0.8

Deformación unitaria [mm/mm]

1.4

 $\times 10^{-5}$

1.2

0.2

0.4

0.6

0.06

0.04

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79º 1′ 29.73″ O.

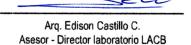
Fecha: 05 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE - ADOBERA 2

Espécimen	Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área Transversal [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]
MUESTRA 1	400	205	185	30	340	113,3	82000	15170000	26000	4188,44	1,79E-05	0,203
MUESTRA 2	410	198	185	30	350	116,7	81180	15018300	25674	1226,82	9,48E-06	0,063
MUESTRA 3	400	200	185	30	340	113,3	80000	14800000	26059	4957,29	4,46E-06	0,246
MUESTRA 4	405	205	180	30	345	115,0	83025	14944500	25358	4172,75	2,78E-06	0,217
MUESTRA 5	405	200	185	30	345	115,0	81000	14985000	26133	3677,51	5,62E-05	0,185
MUESTRA 6	395	203	177	30	335	111,7	80185	14152653	25120	3076,36	1,33E-05	0,163
								Media total		3549,86	1,73E-05	0,180
							-	Media 4 mej	ores muestra		.,	0,213

Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.

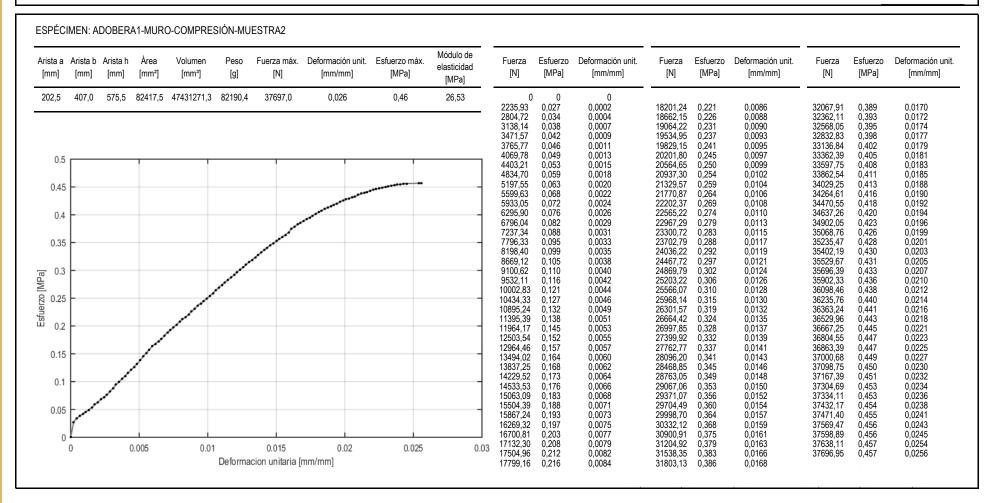
Ubicación:


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

rista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit [mm/mm]
210,0	415,0	580,0	87150,0	50547000,0	87589,4	39501,4	0,020	0,45	31.07	0	0	0	27203,79	0,312	0,0099
										1000,28 1735,79	0,011 0,020	0,0002 0,0004	27733,35 28233,49	0,318 0,324	0,0101 0,0103
										2333,99	0,020	0,0004	28704,21	0,324	0,0105
										3030,27	0,027	0,0007	29204.35	0,335	0,0103
										3599,06	0,041	0,0011	29204,35 29733,91	0,341	0,0107 0,0109
										4197,27	0,048	0,0013	30165,41	0,346	0,0112
										4736,64	0,054	0,0015	30636,13	0,352	0,0114
0.5		_	_	T T					\neg	5295,62	0,061	0,0018	31038,21	0,356	0,0116
										5933,05	0,068	0,0020	31430,47	0,361	0,0118
										6570,49	0,075	0,0022	31803,13	0,365	0,0120
0.45	_							****		7168,70	0,082	0,0024	32195,40	0,369	0,0123
										7698,26	0,088	0,0026	32568,05	0,374	0,0125
							-			8296,47	0,095	0,0028	32999,55	0,379	0,0127
0.4	_						-		-1	8904,48	0,102	0,0031	33303,55	0,382	0,0129
						ممد	•			9434,05	0,108	0,0033	33695,82	0,387	0,0131
						**				10100,90	0,116	0,0035	34029,25	0,390	0,0134 0,0136
0.35	_								7	10699,11 11228,67	0,123	0,0037 0,0039	34362,68 34735,33	0,394 0,399	0,0136
					م					11836,69	0,129 0,136	0,0039	35068,76	0,399	0,0138 0,0140
										12395,67	0,130	0,0042	35362,96	0,402	0,0142
0.25	_								7	13033,10	0,150	0,0044	35696,39	0,410	0,0145
					/					13601,89	0,156	0,0048	35970,98	0,413	0,0147
				J-						14170,68	0,163	0,0050	36265,18	0,416	0.0149
0.25									7	14729,66	0,169	0,0053	36529,96	0,419	0,0149 0,0151
3										15337,68	0,176	0,0055	36735,90	0,422	0,0153
0.2										15935,89	0,183	0,0057	37000,68	0,425	0.0155
0.2				/					7	16436,03	0,189	0,0059	37196,81	0,427	0,0158
										17034,24	0,195	0,0061	37471,40	0,430	0.0160
0.15	_									17603,03	0,202	0,0064	37638,11	0,432	0,0162 0,0164
0.13										18230,66	0,209	0,0066	37863,67	0,434	0,0164
		/	1							18828,86	0,216	0,0068	38000,96	0,436	0,0166
0.1	_									19436,88	0,223	0,0070	38236,32	0,439	0,0169
0.1		1								20035,09	0,230	0,0072	38432,46	0,441	0,0171
		1								20633,30 21300,15	0,237 0,244	0,0074 0,0077	38530,52 38667,82	0,442 0,444	0,0173 0,0175
0.05	/	'								21898,36	0,244	0,0077	38805,11	0,444	0,0175
0.00										22496,57	0,251	0,0079	38932,60	0,445	0,0177
	/									23104,59	0,265	0,0083	39069,89	0,447	0,0182
0 1	/									23702,79	0,203	0,0085	39138,54	0,449	0,0184
() 0	.002	0.004 0.	0.008	0.01	0.012	0.014 0.016	0.018	0.02	24330,42	0,272	0,0088	39266,03	0,451	0,0186
,	. 0.						5.517 0.010	0.010		24899,21	0,286	0,0090	39334,67	0,451	0,0188
				Defor	macion unita	aria [mm/mm]				25497,42	0,293	0,0092	39403,32	0,452	0,0191
										26095,63	0,299	0,0094	39432,74	0,452	0,0193
										26703,64	0,306	0,0096	39501,39	0,453	0,0199



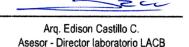
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50´ 39.98´´ S - 79º 1´ 29.73´´ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

Tesis:

Adobera 2, Cuenca 2º 50' 39.98" S - 79º 1' 29.73" O. Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación:

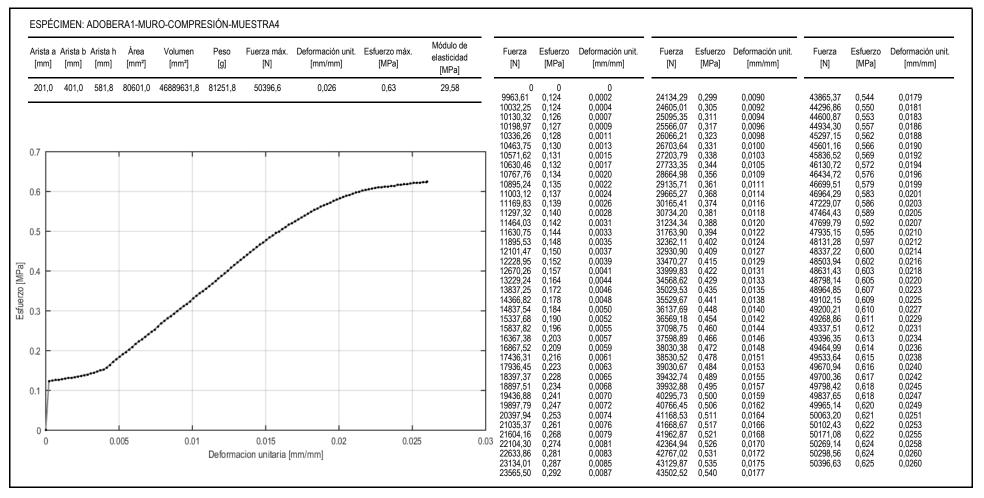

Ensayo realizado por: Eddy Aquilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: ADOBERA1-MURO-COMPRESIÓN-MUESTRA3 Deformación Módulo de Esfuerzo máx. Fuerza Esfuerzo Arista a Arista b Arista h Área Volumen Peso Fuerza máx. Deformación unit. Fuerza Esfuerzo Deformación unit. Fuerza Esfuerzo Deformación unit. unit. elasticidad [g] [MPa] [MPa] [MPa] [N] [MPa] [mm/mm] [mm³] [N] [mm/mm] [N] [mm/mm] [mm] [mm] [MPa] [mm/mm] 203.5 402.5 578.3 81908.8 47363734.7 82073.3 45600.0 0.030 0.56 18.53 0 0,037 0,043 0,056 0,062 0,066 0,071 0,075 0,088 0,092 0,096 0,099 0,103 0,110 0,0002 0,0004 0,0007 0,0009 0,0011 0,0013 0,453 0,457 0,462 0,466 0,470 0,474 3000,00 3530,00 4070,00 17900,00 18230,00 18630,00 0,0099 0,0101 0,0103 37130,00 37470,00 37830,00 0,219 0,223 0,227 0,232 0,237 0,243 0,248 0,254 0,259 0,265 0,270 0.0195 0.0000 0.00 0,0105 0,0108 0,0110 0,0112 0,0114 4570,00 5070,00 5400,00 19000,00 38170,00 38470.00 19430.00 19900.00 38800.00 5800,00 6130,00 0.0015 0,0018 20330.00 20770,00 39100.00 39370,00 0.477 0.481 0.488 0.491 0.508 0.501 0.504 0.508 0.513 0.510 0.527 0.529 0.521 0.534 0.545 0.545 0.545 0.555 0.555 0.555 0.555 0,0020 0,0022 0,0024 0,0026 0,0029 0,0116 0,0119 0,0121 21200,00 21670.00 39630,00 39970.00 6530,00 6900.00 7230,00 22130,00 40230,00 0,277 0,283 0,289 0,295 0,300 0,306 22700,00 23170.00 40470,00 40770.00 7570,00 7870.00 0,0123 0,0125 0.5 8130.00 0,0023 0,0031 0,0033 0,0035 0,0037 23670,00 24170,00 24600,00 0.0127 0.0130 0.0132 0.0134 41030,00 8430,00 8730,00 41300,00 41570,00 41770,00 8970,00 25100,00 0,0040 0,0042 0,0044 0,0136 0,0138 0,0141 0.4 9330,00 9670,00 0,114 0,118 0,122 0,126 0,129 0,133 0,137 0,140 0,143 0,147 0,150 0,165 0,165 0,168 0,177 0,181 0,193 0,197 0,193 0,197 0,193 0,197 25570,00 26070,00 0,312 0,318 42030,00 42230,00 10000,00 26530,00 0,324 42470,00 Esfuerzo [MPa] 0,324 0,339 0,335 0,341 0,347 0,352 0,358 0,363 0,370 10300,00 10600,00 10930,00 11200,00 0,0046 0,0048 0,0051 0,0053 26970,00 27470,00 27930,00 28400,00 0,0143 0,0145 0,0147 0,0149 42670,00 42930,00 43130,00 43300,00 0,0055 0,0057 0,0059 0,0152 0,0154 0,0156 43500,00 43700,00 43870,00 11470.00 28830.00 11700,00 12000,00 29330,00 29700,00 12300.00 0.0061 30270.00 0,0158 44030.00 0,0064 0,0066 0,0068 30730,00 31200,00 31630,00 0,0160 0,0163 0,0165 44200,00 44400,00 44500,00 12630,00 12970,00 0,375 0,381 0,386 0,391 0,395 0,401 0,407 0,412 0,417 0,422 13230,00 0,0070 0,0072 0,0075 32030,00 32370,00 32830,00 0,0167 0,0169 0,0171 13530,00 13770.00 44630,00 44770.00 14170,00 44870,00 0.1 14470,00 14830.00 0,0077 0.0079 33300,00 33770.00 0,0174 0,0176 44930,00 45030.00 0,0270 0.0272 15200,00 15530,00 0,0081 0,0083 34170,00 34570,00 0,0178 0,0180 45170,00 45200,00 0,0275 0,0277 0,0277 0,0279 0,0281 0,0283 0,0286 0,0288 0.0296 15830.00 0.0086 34930.00 0.426 0.0182 45300.00 0,0088 0,0090 0,0092 0,0094 0.0097 16170,00 16470.00 35330,00 35700.00 0,431 0.436 0,0184 0.0187 45370,00 45400,00 0.005 0.01 0.015 0.02 0.025 0.03 0,441 0,444 0.449 Deformacion unitaria [mm/mm] 16870,00 17170,00 17570.00 36100,00 0,0189 45470,00 45530,00 45600.00 0,0191 0.0193 36400,00

Ensayo realizado por:


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79° 1′ 29.73″ O.

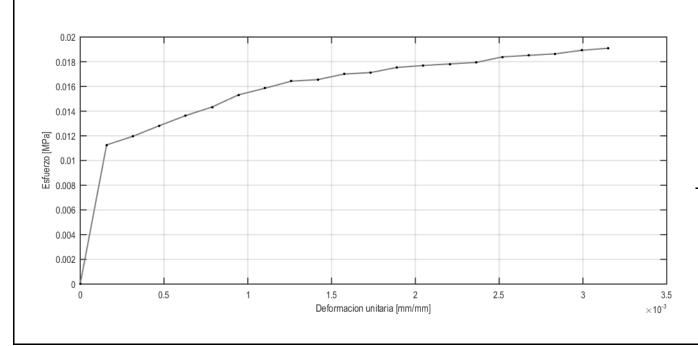
05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98″ S - 79º 1′ 29.73″ O. Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE - ADOBERA 2

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	210	415	580	87150,00	50547000,00	87589,39	39501,39	0,020	0,45	31,07
MUESTRA 2	203	407	576	82417,50	47431271,25	82190,36	37696,95	0,026	0,46	26,53
MUESTRA 3	204	403	578	81908,75	47363734,69	82073,33	45600,00	0,030	0,56	18,53
MUESTRA 4	201	401	582	80601,00	46889631,75	81251,79	50396,63	0,026	0,63	29,58
						Media total	43298,74	0,03	0,52	25,93
						Desviación está	ndar (módulo de	elasticidad)		1,26


ESPÉCIMEN: ADOBERA1-MURO-TRACCIÓN-MUESTRA1

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79º 1′ 29.73′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

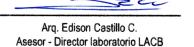
Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
210,0	555,0	585,0	806,4	119700,0	68181750,0	118147,4	4569,92	0,0031	0,019	5,03

Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
0 2696,84 2863,56 3069,50 3265,63 3432,35 3667,71 3795,19 3932,49 3961,91 4069,78 4099,20 4197,27 4236,49 4265,91 4295,33 4403,21 4432,63 4462,05 4530,70 4569,92	0 0,0113 0,0120 0,0128 0,0136 0,0143 0,0153 0,0159 0,0164 0,0165 0,0170 0,0171 0,0175 0,0177 0,0178 0,0179 0,0189 0,0189 0,0191	0 0,0045 0,0048 0,0051 0,0055 0,0067 0,0063 0,0066 0,0068 0,0068 0,0071 0,0071 0,0071 0,0072 0,0074 0,0075 0,0076	0 0,0002 0,0003 0,0005 0,0006 0,0008 0,0009 0,0011 0,0013 0,0014 0,0016 0,0017 0,0019 0,0020 0,0022 0,0022 0,0024 0,0025 0,0027 0,0028 0,0030 0,0031

Facultad de Arquitectura y Urbanismo

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación: Fecha:


Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.

05 de diciembre del 2016

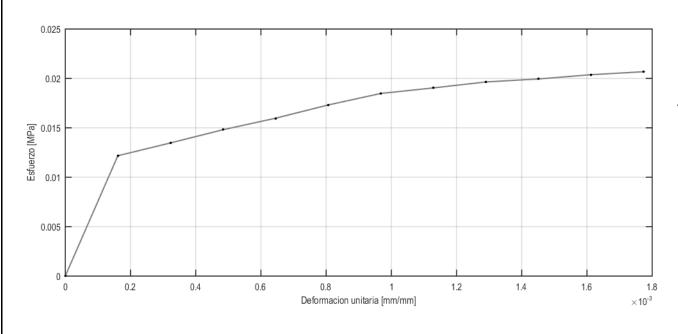
RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a Arista b [mm] [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit [mm/mm]
0.018 0.016 0.014 0.012 0.011 0.008 0.006 0.004	555,0	796,5	113751,3	64042837,5	110975,4	4001,13	0,0059	0,0176	3,65	0 1667,14 1735,79 1765,21 1902,50 2029,99 2167,28 2235,93 2333,99 2471,29 2530,13 2598,78 2667,42 2696,84 2765,49 2804,72 2863,56 2971,43 3069,50 3138,14 3167,56 3236,21 3265,63 3334,28 3402,92 3432,35 3471,57 3530,41 3599,06 3697,13 3805,00 3863,84	0 0,0073 0,0076 0,0078 0,0089 0,0089 0,0095 0,0098 0,0103 0,0110 0,0111 0,0117 0,0119 0,0122 0,0123 0,0126 0,0131 0,0135 0,0138 0,0138 0,0139 0,0144 0,0147 0,0147 0,0150 0,0151 0,0153 0,0153 0,0158 0,0158 0,0163 0,0167 0,0170	0 0,0029 0,0031 0,0031 0,0033 0,0036 0,0038 0,0041 0,0043 0,0044 0,0047 0,0047 0,0049 0,0052 0,0052 0,0055 0,0055 0,0057 0,0057 0,0059 0,0060 0,0061 0,0062 0,0063 0,0065 0,0065 0,0065 0,0065 0,0065 0,0065 0,0065 0,0065 0,0065	0 0,0002 0,0003 0,0005 0,0008 0,0010 0,0011 0,0013 0,0014 0,0016 0,0018 0,0021 0,0022 0,0024 0,0027 0,0029 0,0030 0,0032 0,0033 0,0035 0,0035 0,0037 0,0038 0,0040 0,0041 0,0043 0,0046 0,0049 0,0051 0,0053 0,0056

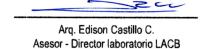
ESPÉCIMEN: ADOBERA1-MURO-TRACCIÓN-MUESTRA3

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.


Ubicación: Fecha:

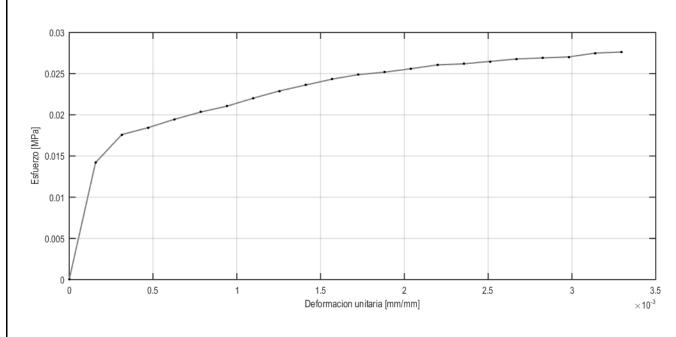
Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.


05 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
204	569	545	788	113577	63205830	109525	4697,41	0,0018	0,0207	7,82

Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
0 2765,49 3059,69 3363,70 3628,48 3932,49 4197,27 4324,75 4462,05 4530,70 4628,76 4697,41	0 0,0122 0,0135 0,0148 0,0160 0,0173 0,0185 0,0190 0,0196 0,0199 0,0204 0,0207	0 0,0049 0,0054 0,0059 0,0064 0,0069 0,0074 0,0076 0,0079 0,0080 0,0082 0,0083	0 0,0002 0,0003 0,0005 0,0006 0,0008 0,0010 0,0011 0,0013 0,0015 0,0016


ESPÉCIMEN: ADOBERA1-MURO-TRACCIÓN-MUESTRA4

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 2, Cuenca 2º 50´ 39.98´´ S - 79° 1´ 29.73´´ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a	Arista b	Arista h	Diagonal	Área	Volumen	Peso	Fuerza máx.	Deformación unit.	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
204	579	565	809	116427	66600717	115408	6433,20	0,0033	0,0276	6,04

Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
0 3304,86 4099,20 4295,33 4530,70 4736,64 4903,35 5128,90 5334,84 5501,56 5668,27 5795,76 5864,41 5962,47 6070,35 6099,77 6168,41 6237,06 6266,48 6295,90 6403,78 6433,20	0 0,0142 0,0176 0,0184 0,0195 0,0203 0,0211 0,0220 0,0229 0,0236 0,0243 0,0249 0,0252 0,0256 0,0261 0,0262 0,0265 0,0268 0,0268 0,0269 0,0275 0,0276	0 0,0057 0,0070 0,0074 0,0078 0,0081 0,0084 0,0092 0,0095 0,0097 0,0100 0,0101 0,0102 0,0104 0,0105 0,0106 0,0107 0,0108 0,0110 0,0111	0 0,0002 0,0003 0,0005 0,0006 0,0008 0,0009 0,0011 0,0013 0,0016 0,0017 0,0019 0,0020 0,0022 0,0024 0,0025 0,0027 0,0028 0,0030 0,0031 0,0033

Adobera 2, Cuenca 2º 50′ 39.98′′ S - 79° 1′ 29.73′′ O.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 05 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE - ADOBERA 2

E. 080 ADOBE

Espécimen	Arista a [mm]	Arista b [mm]	Arista b' [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unitaria [mm/mm]	Esfuerzo tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	210,0	555,0	585,0	806,4	119700,00	68181750,00	118147,42	4569,92	0,0031	0,019	0,008	5,03
MUESTRA 2	202,0	571,3	555,0	796,5	113751,25	64042837,50	110975,38	4001,13	0,0059	0,018	0,007	3,65
MUESTRA 3	204,0	568,5	545,0	787,5	113577,00	63205830,00	109524,99	4697,41	0,0018	0,021	0,008	7,82
MUESTRA 4	203,5	579,3	565,0	809,2	116427,44	66600716,88	115407,76	6433,20	0,0033	0,028	0,011	6,04
						Media total		4925	0,0035	0,0212	0,0085	5,63

Ubicación:

UNIDAD DE ADOBE

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O.

06 de diciembre del 2016 Fecha:

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

amíz	Abertura	Peso	Peso	Peso retenido	Porcentaje	Porc. retenido	Porcentaje	Clasifica	ación SUCS*		CUR	VA GRANULOMÉTRICA	
- //-	tamiz		retenido		retenido	acumulado		-	maño de las			100	
[#]	[mm]	[g]	[g]	[g]	[%]	[%]	[%]	partio	culas [%]			95	
1/2"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0]	[%]		90	/
1"	25,400		137,42		6,9	6,9	93,1	17,6	grava	PASA [%]		85	
1/2"	12,700	3293,7	214,80	352,2	10,7	17,6	82,4			JE P		80	/
4	4,750	489,49	144,50	496,7	7,2	24,8	75,2			PORCENTAJE QUE		75	
8	2,360	465,25	95,02	591,7	4,8	29,6	70,4			ITAJ			
16	1,180	401,57	89,66	681,4	4,5	34,1	65,9			CEN		70	
20	0,850	637,36	46,68	728,1	2,3	36,4	63,6	39,2	arena	PO		65	
30	0,600	375,15	53,74	781,8	2,7	39,1	60,9	00,2				60	
50	0,300	344,92	130,42	912,2	6,5	45,6	54,4						
100	0,150	333,03	127,22	1039,5	6,4	52,0	48,0					55	
200	0,075	296,04	97,20	1136,7	4,9	56,8	43,2		limos y			50	
Fo	ndo	370,31	863,3	2000,0	43,2	100,0	0,0	43,2	arcillas			45	
												40	

SUCS: Sistema Unificado de Clasificación de suelo.

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

Ubicación:

Fecha:

Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O.

06 de diciembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

amíz [#]	Abertura tamiz [mm]		Peso retenido [g]	Peso retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]	-	según ta	nción SUCS* maño de las culas [%]			10	IULOMÉTRICA 00 95	
1 ½"	38,100	3005,8	52,44	52,44	2,6	2,6	100,0			[%]		9	90	
1"	25,400	3111,3	14,95	67,39	0,7	3,4	99,3	8,8	grava	ASA				/
1/2"	12,700	3293,7	109,32	176,7	5,5	8,8	93,8			PORCENTAJE QUE PASA [%]		8	35	
4	4,750	489,35	138,69	315,4	6,9	15,8	86,9			E Q		8	30	
8	2,360	465,09	87,52	402,9	4,4	20,1	82,5			ITAJ			/	
16	1,180	401,42	94,66	497,6	4,7	24,9	77,7			GEN		7	75	
20	0,850	637,22	52,40	550,0	2,6	27,5	75,1	41,4	arena	POR		/	70	
30	0,600	375,06	61,35	611,3	3,1	30,6	72,1	41,4					O .	
50	0,300	344,81	145,92	757,3	7,3	37,9	64,8					/ 6	55	
100	0,150	332,91	145,59	902,8	7,3	45,1	57,5					/		
200	0,075	296,28	102,31	1005,2	5,1	50,3	52,4		limos y			/ 6	50	
Fo	ndo	370,31	994,9	2000,0	49,7	100,0	2,6	49,7	arcillas		/	- 5	55	
										0,01	0,10	_	1,00	10,00

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

UNIDAD DE ADOBE

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79° 1′ 30,00′′ O. Ubicación:

06 de diciembre del 2016 Fecha:

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

1" 25,400 3111,3 197,83 197,8 9,9 9,9 90,1 16,5 1/2" 12,700 3293,7 132,20 330,0 6,6 16,5 83,5 4 4,750 489,39 127,56 457,6 6,4 22,9 77,1 8 2,360 465,12 88,59 546,2 4,4 27,3 72,7 16 1,180 401,41 93,11 639,3 4,7 32,0 68,0 20 0,850 637,22 50,52 689,8 2,5 34,5 65,5 30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 grava	amíz [#]	Abertura tamiz [mm]		Peso retenido [g]	Peso retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]	Porcentaje que pasa [%]	según ta	ación SUCS* amaño de las culas [%]		C	URVA GRANULOMÉTRIC 100 95	;A
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	1 ½"	38,100	3005,8	0,00	0,0	0,0	0,0	100,0]	[%]		90	/
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	1"	25,400	3111,3	197,83	197,8	9,9	9,9	90,1	16,5	grava	ASA		85	/
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	1/2"	12,700	3293,7	132,20	330,0	6,6	16,5	83,5			E P.		80	
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	4	4,750	489,39	127,56	457,6	6,4	22,9	77,1			E Q		75	
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	8	2,360	465,12	88,59	546,2	4,4	27,3	72,7			ITAJ		/3	
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 arcillas	16	1,180	401,41	93,11	639,3	4,7	32,0	68,0			S		70	
30 0,600 375,00 59,42 749,2 3,0 37,5 62,5 50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 arcillas	20	0,850	637,22	50,52	689,8	2,5	34,5	65,5	30.8	arena	POR		65	
50 0,300 344,86 143,97 893,2 7,2 44,7 55,3 100 0,150 332,99 135,16 1028,4 6,8 51,4 48,6 200 0,075 296,00 96,93 1125,3 4,8 56,3 43,7 limos y Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 arcillas	30	0,600	375,00	59,42	749,2	3,0	37,5	62,5	33,0				60	
Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 limos y arcillas	50	0,300	344,86	143,97	893,2	7,2	44,7	55,3						
Fondo 370,31 874,7 2000,0 43,7 100,0 0,0 43,7 arcillas	100	0,150	332,99	135,16	1028,4	6,8	51,4	48,6					55	
45	200	0,075	296,00	96,93	1125,3	4,8	56,3	43,7		,			50	
	Fo	ndo	370,31	874,7	2000,0	43,7	100,0	0,0	43,7	arcillas				

SUCS: Sistema Unificado de Clasificación de suelo.

Asesor - Director laboratorio LACB

Ubicación: Adobera 3, Sinincay 2º 50′ 38.00″ S - 79° 1′ 30,00″ O.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

GRANULOMETRÍA PROMEDIO EN UNIDAD DE ADOBE - ADOBERA 3

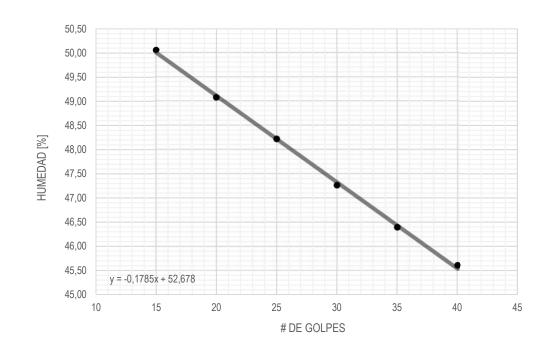
NTE INEN 696 / NTE INEN 697

		MUES	STRA 1	MUES	STRA 2	MUES	STRA 3		PROMED)IO			(CURVA G
Tamíz	Abertura tamiz	Porc. reternido	Porc. que pasa	Porc. reternido	Porc. que pasa	Porc. reternido	Porc. que pasa	Porc. reternido	Porc. que pasa		ficación JCS*			00.17710
[#]	[mm]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	I	[%]			
1 ½"	20 100	0.0	100.0	2.6	100.0		100.0		100.0					
72 1"	38,100 25,400	0,0 6,9	100,0 93,1	2,6 0,7	100,0 99,3	0,0 9,9	100,0 90,1	0,9 5,8	100,0 94,2	14,3	grava	SA [%]		
1/2"	12,700	10,7	82,4	5,7 5,5	93,8	6,6	83,5	7,6	86,6	11,0	grava	E PASA		
4	4,750	7,2	75,2	6,9	86,9	6,4	77,1	6,8	79,7			QUE		
8	2,360	4,8	70,4	4,4	82,5	4,4	72,7	4,5	75,2			PORCENTAJE		
16	1,180	4,5	65,9	4,7	77,7	4,7	68,0	4,6	70,6			CEN		
20	0,850	2,3	63,6	2,6	75,1	2,5	65,5	2,5	68,1	40,1	arena	POR		
30	0,600	2,7	60,9	3,1	72,1	3,0	62,5	2,9	65,2	40,1				
0	0,300	6,5	54,4	7,3	64,8	7,2	55,3	7,0	58,2					-/
00	0,150	6,4	48,0	7,3	57,5	6,8	48,6	6,8	51,4					
00	0,075	4,9	43,2	5,1	52,4	4,8	43,7	4,9	46,4		limos y			
F	ondo	43,2	0,0	49,7	2,6	43,7	0,0	45,5	0,9	45,5	arcillas			

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 2º 50′ 38.00″ S - 79º 1′ 30,00″ O.


Fecha: 06 de diciembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA3-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
	[g]	[g]	[g]	[%]
45	42.05	FC 00	F4.74	50.00
15	43,05	56,09	51,74	50,06
20	7,04	17,91	14,33	49,07
30	47,15	57,78	54,37	47,26
35	49,30	61,48	57,62	46,39
40	43,20	52,65	49,69	45,61

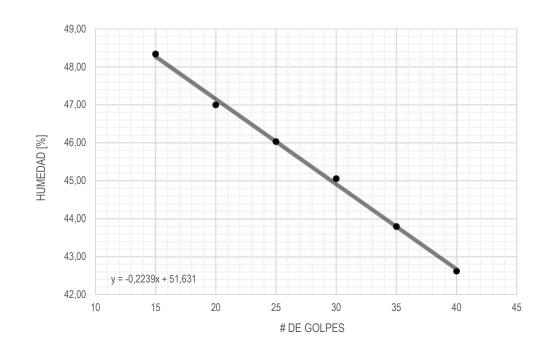
Límite Líquido (25 golpes) =

48,22 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación:

Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79° 1′ 30,00′′ O.


06 de diciembre del 2016 Fecha:

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA3-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA2

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
goipes	[g]	[g]	[g]	[%]
15	52,89	70,97	65,08	48,34
20	44,32	66,73	59,56	47,00
30	46,10	67,98	61,18	45,06
35	6,32	25,97	19,98	43,80
40	40,24	56,42	51,58	42,62

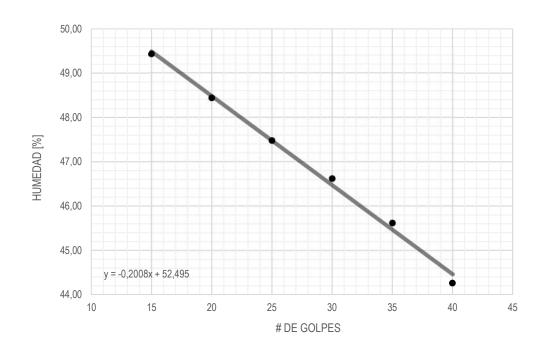
Límite Líquido (25 golpes) =

46,03 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Caracterización física y mecánica del adobe en el cantón Cuenca. Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79° 1′ 30,00′′ O. Tesis: Ubicación:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. 06 de diciembre del 2016 Fecha:


CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: ADOBERA3-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA3

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
	191	191	101	[,-,]
15	42,38	59,32	53,72	49,43
20	42,55	65,10	57,74	48,44
30	47,20	68,79	61,92	46,62
35	44,40	64,09	57,92	45,62
40	41,85	63,28	56,70	44,26

47,48 %

Límite Líquido (25 golpes) =

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 2º 50′ 38.00″ S - 79º 1′ 30,00″ O.

Fecha: 06 de diciembre del 2016

CASA GRANDE PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE UNIDADES DE ADOBE, ADOBERA 3

NTE INEN 691

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	50,06	48,34	49,43	49,27
20	49,07	47,00	48,44	48,17
30	47,26	45,06	46,62	46,31
35	46,39	43,80	45,62	45,27
40	45,61	42,62	44,26	44,16

Límite Líquido promedio de las 3 muestras (25 golpes) = 47,24 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Tesis:	Caracterización física y mecánica del adobe en el cantón Cuenca.	Ubicación:	Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O.
Ensayo realizado por:	Eddy Aguilar y Rosa Quezada.	Fecha:	06 de diciembre del 2016

LÍMITE PLÁSTICO EN UNIDADES DE ADOBE NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
ADOBERA3-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA1	44,61	46,47	45,99	34,78
ADOBERA3-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA2	44,46	45,72	45,42	31,25
ADOBERA3-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA3	45,28	46,65	46,29	35,64
			Promedio	33,89

ÍNDICE DE PLASTICIDAD EN UNIDADES DE ADOBE

Espécimen	Límite líquido (LL) promedio	Límite plástico (PL)	Índice de
	de 3 muestras	promedio de 3 muestras	plasticidad
	[%]	[%]	[%]
ADOBERA3-UNIDAD DE ADOBE-ÍNDICE DE PLASTICIDAD	47,24	33,89	13,35

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

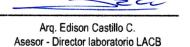
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
97,50	92,53	9121,13	843932,09	1372,55	5736,92	0,021	0,63	16,45	0	0	0
											0,001
											0,003
					· · · · · · · · · · · · · · · · · · ·						0,004
						1					0,005 0,007
							_				0,007
											0,000
									·		0,011
								- 15 co			0,012
								20.4	4099,20		0,014
								_	4422,82	0,485	0,015
									4766,06	0,523	0,016
									5119,10	0,561	0,018
									5442,72	0,597	0,019
/									5736,92	0,629	0,021
	[mm]	[mm] [mm]	[mm] [mm ²]	[mm] [mm ²] [mm ³]	[mm] [mm ²] [mm ³] [g]	[mm] [mm] [mm²] [g] [N]	[mm] [mm] [mm²] [g] [N] [mm/mm]	[mm] [mm] [mm²] [mm³] [g] [N] [mm/mm] [MPa]	[mm] [mm] [mm²] [mm³] [g] [N] [mm/mm] [MPa] [MPa]	[mm] [mm²] [mm²] [g] [N] [mm/mm] [MPa] [MPa] [N] 97,50 92,53 9121,13 843932,09 1372,55 5736,92 0,021 0,63 16,45 0 2039,79 2235,93 2402,64 2608,58 2814,52 3020,46 3226,40 3226,40 3471,57 3775,58 4099,20 4422,82 4766,06 5119,10	[mm] [mm³] [mm³] [g] [N] [mm/mm] [MPa] [MPa] [N] [MPa] 97,50 92,53 9121,13 843932,09 1372,55 5736,92 0,021 0,63 16,45 0 0 2039,79 0,224 2235,93 0,245 22035,93 0,245 2402,64 0,263 2608,58 0,286 2608,58 0,286 2814,52 0,309 3020,46 0,331 3226,40 0,354 3471,57 0,381 3471,57 0,381 3475,58 0,414 4099,20 0,449 4422,82 0,485 4766,06 0,523 5119,10 0,561 5442,72 0,597

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitar [mm/mm]
93,55	97,50	92,53	9121,13	843932,09	1372,55	5952,67	0,041	0,653	15,47	0	0	0
	-	-		-		•	•		·	2147,67	0,235	0,001
										2333,99	0,256	0,003
										2490,90 2657,62	0,273 0,291	0,004 0,005
0.7										2863,56	0,291	0,005
0.7		ļ.			1	1	L			3069,50	0,337	0,008
									-	3236,21	0,355	0,010
0.6										3432,35	0,376	0,011
2000										3648,09	0,400	0,012
										3834,42	0,420	0,014
0.5										4010,94	0,440	0,015
										4158,04	0,456	0,016
r										4344,37 4511,08	0,476 0,495	0,018 0,019
0.4				0-0					-	4648,38	0,495	0,019
0.4 -		_								4824,90	0,510	0,021
										4981,80	0,546	0,023
0.3										5138,71	0,563	0,025
										5266,20	0,577	0,026
i										5374,07	0,589	0.027
0.2									-	5501,56	0,603	0,029
1/										5589,82	0,613	0,030
										5678,08	0,623	0,032
0.1									-	5717,31	0,627	0,033
1/										5776,15 5805,57	0,633 0,636	0,034 0,036
/										5854,60	0,636	0,036
0		.05		0.045				2.005		5884.02	0,642	0,037
0	0.0	105	0.01	0.015	0.02		5 0.03	0.035	0.04	5923,25	0,649	0,030
				Det	formacion unita	aria [mm/mm]				5952,67	0,653	0,041

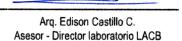
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitari [mm/mm]
93,40	95,50	109,20	8919,70	974031,24	1468,05	4844,51	0,031	0,543	17,33	0 1843,66	0 0,207	0 0,001
										1961,34 2137,86 2314,38	0,220 0,240 0,259	0,002 0,003 0,005
0.6		1	T	9000000	I	I	ı	l.		2500,71 2657,62	0,280 0,298	0,006 0,007
0.5										2834,14 2961,62	0,318 0,332	0,008 0,009
0.0										3138,14 3324,47 3422,54	0,352 0,373 0,384	0,010 0,012 0,013
0.4										3550,03 3697,13	0,398 0,414	0,014 0,015
										3814,81 3932,49	0,428 0.441	0,016 0,017
0.3	7.5								-	4010,94 4118,81	0,450 0,462	0,019 0.020
0.3										4207,07 4334,56	0,472 0,486	0,021 0,022
0.2										4422,82 4471,86 4540,50	0,496 0,501 0,509	0,023 0,024 0,026
0.1										4540,50 4589,54 4667,99	0,509 0,515 0,523	0,026 0,027 0,028
/										4726,83 4746,44	0,523 0,530 0,532	0,028 0,029 0,030
0 1	- 1	.005	0.01		015	0.02	0.025	0.03	0.035	4844,51	0,543	0,031

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

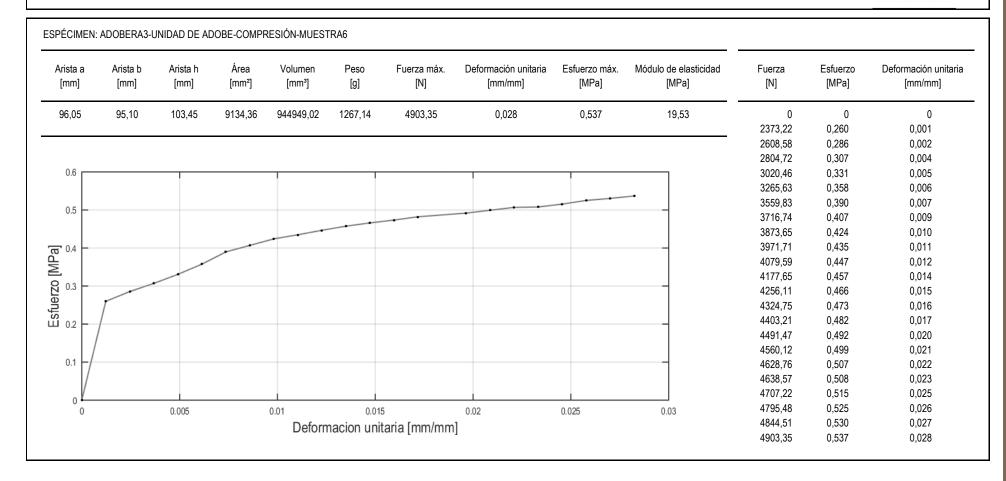
Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unita [mm/mm]
94,50	89,00	103,83	8410,50	873220,16	1205,65	4658,18	0,021	0,554	23,35	0	0	0
										2432,06	0,289	0,001
										2657,62	0,316	0,002
0.6										2912,59	0,346	0,004
0.0										3206,79	0,381	0,005
								•		3628,48	0,431	0,006
0.5						-			_	3824,61	0,455	0,007
										3961,91	0,471	0,009
										4109,01	0,489	0,010
0.4									_	4197,27	0,499	0,011
0.3										4285,53	0,510	0,012
0.3									_	4363,98	0,519	0,013
0.0										4442,44	0,528	0,015
	/									4501,28	0,535	0,016
0.2									_	4550,31	0,541	0,017
/										4609,15	0,548	0,018
/										4638,57	0,552	0,020
0.1										4658,18	0,554	0,021
1/												
₀ <u>/</u>												
0		0.005		0.01		0.015	0.0	2	0.025			

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

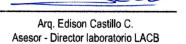
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

SPÉCIMEN	I: ADOBERA3-I	UNIDAD DE AI	OOBE-COMPF	RESIÓN-MUEST	TRA5							
Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
97,00 0.7 0.6 0.5 0.4 0.2 0.1	93,85	102,93	9103,45	936972,59	1395,63	5589,82	0,039	0,614	13,79	0 2157,47 2373,22 2520,32 2667,42 2824,33 2991,04 3147,95 3246,02 3471,57 3599,06 3755,97 3912,87 4079,59 4275,72 4413,02 4540,50 4707,22 4824,90 4972,00 5070,06 5168,13 5256,39 5305,42 5393,69 5432,91 5442,72	0 0,237 0,261 0,277 0,293 0,310 0,329 0,346 0,357 0,381 0,493 0,413 0,430 0,448 0,470 0,485 0,499 0,517 0,530 0,546 0,557 0,568 0,577 0,583 0,592 0,597	0 0,001 0,002 0,004 0,005 0,006 0,007 0,009 0,010 0,011 0,015 0,016 0,017 0,019 0,020 0,021 0,022 0,023 0,025 0,026 0,027 0,028 0,030 0,031 0,032 0,033 0,035 0,036 0,038
0 0	0.0	05	0.01	0.015	0.02 ormacion unita	0.025	5 0.03	0.035	0.04	5472,14 5501,56 5521,17 5540,79 5589,82	0,601 0,604 0,606 0,609 0,614	0,033 0,035 0,036 0,038 0,039



Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Adobera 3, Sinincay 79º 1' 38.00" S - 79º 1' 30.00" O.

Fecha: 06 de diciembre del 2016

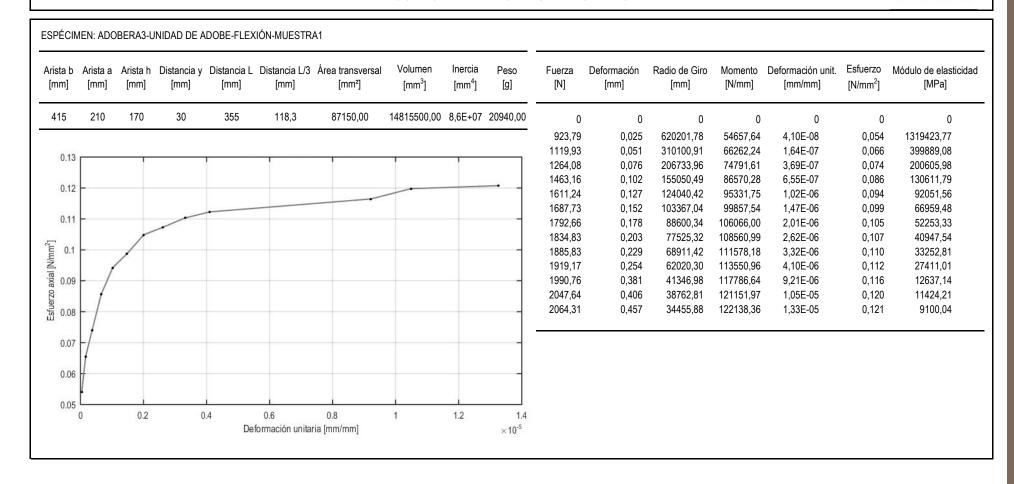
RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

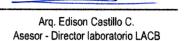
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

COMPRESIÓN EN UNIDADES DE ADOBE - ADOBERA 3

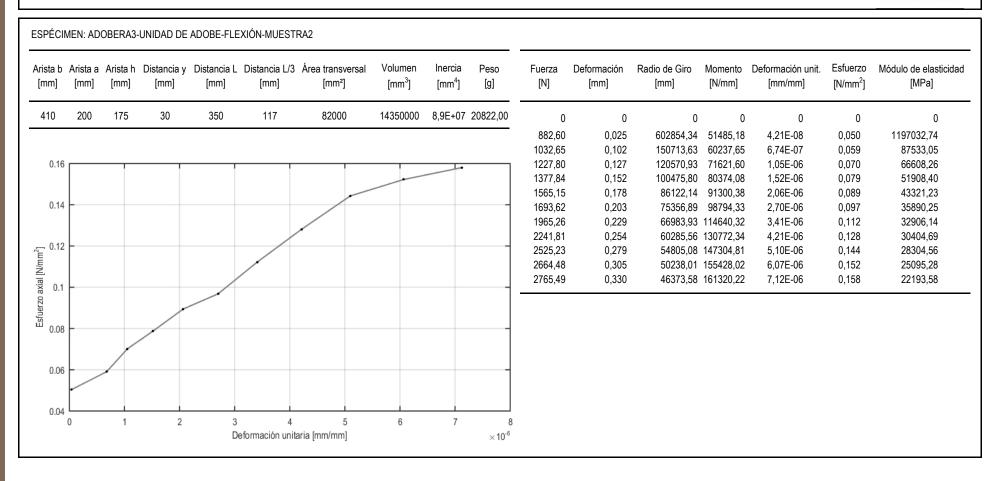
Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
				0101.10	242222	40-0			0.00	
MUESTRA 1	93,55	97,50	92,53	9121,13	843932,09	1372,55	5736,92	0,02	0,63	16,45
MUESTRA 2	96,35	95,80	101,20	9230,33	934109,40	1322,96	5952,67	0,04	0,65	15,47
MUESTRA 3	93,40	95,50	109,20	8919,70	974031,24	1468,05	4844,51	0,03	0,54	17,33
MUESTRA 4	94,50	89,00	103,83	8410,50	873220,16	1205,65	4658,18	0,02	0,55	23,35
MUESTRA 5	97,00	93,85	102,93	9103,45	936972,59	1395,63	5589,82	0,04	0,61	13,79
MUESTRA 6	96,05	95,10	103,45	9134,36	944949,02	1267,14	4903,35	0,03	0,54	19,53
						Media total	5280,91	0,03	0,59	17,40
						Desviación est	ándar (módulo de	elasticidad)		1,20
						Media (es	fuerzo de cuatro n	nejores muestras)	0,61	




Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA ELEXIÓN EN LINIDADES DE ADOBE

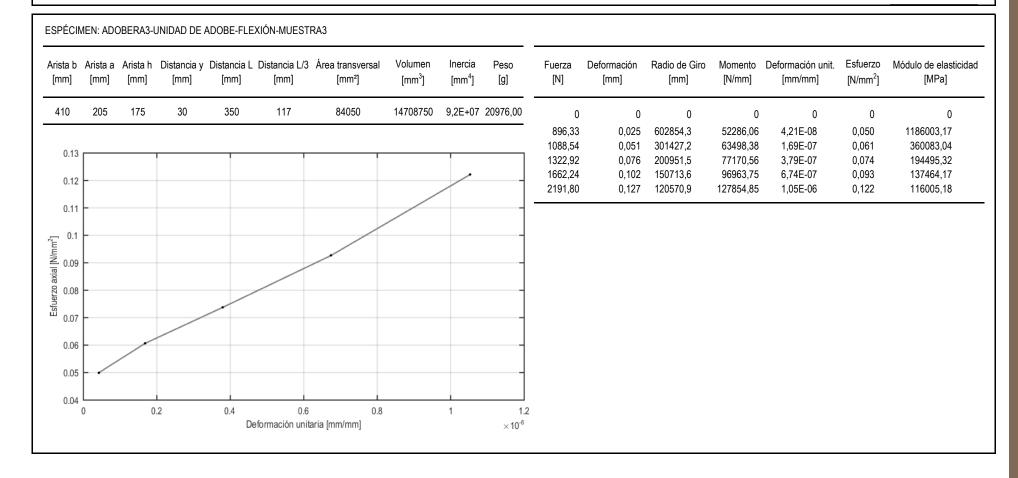

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O.

Fecha: 06 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE


Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

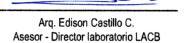
Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.

Fecha: 06 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

ESPÉCIMEN: ADOBERA3-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA4	
Arista b Arista a Arista h Distancia y Distancia L Distancia L/3 Área transversal Volumen Inercia Peso [mm] [mm] [mm] [mm] [mm] [mm] [g]	Fuerza Deformación Radio de Giro Momento Deformación unit. Esfuerzo Módulo de elasticidad [N] [mm] [mm] [N/mm] [MPa] [MPa]
412 201 170 30 352 117 82812 14078040 8,2E+07 21680,00 0.15 0.14 0.13 0.11 0.19 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 147,38 0,025 609763,79 67313,19 4,17E-08 0,070 1669111,81 1331,75 0,051 304881,92 78129,33 1,67E-07 0,081 484327,77 1573,98 0,076 203254,63 92339,89 3,75E-07 0,095 254408,82 1933,88 0,102 152441,00 113454,37 6,66E-07 0,117 175827,43 2436,96 0,127 121952,82 142968,61 1,04E-06 0,148 141803,25

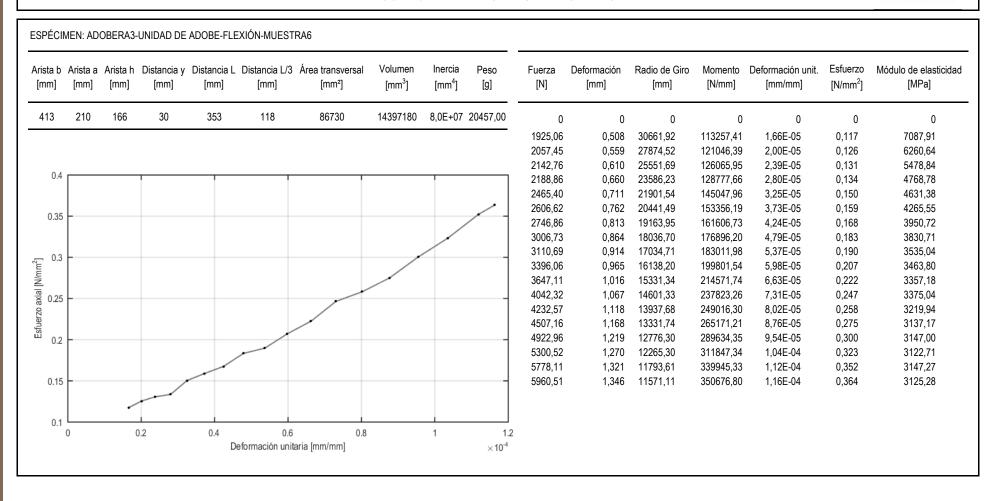
Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Fecha: Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.

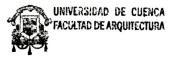
06 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticida [MPa]
410	200	175	30	350	117	82000	14350000	8,9E+07	21255,00	0	0	0	0	0	0	0
									-	941,44	0,025	602854,34	54917,52	4,21E-08	0,054	1276834,92
										1000,28	0,051	301427,19	58349,87	1,69E-07	0,057	339159,30
0.2										1098,35	0,076	200951,48	64070,44	3,79E-07	0,063	165515,67
0.2								1		1157,19	0,102	150713,63	67502,79	6,74E-07	0,066	98090,21
									.	1363,13	0,127	120570,93	79515,99	1,05E-06	0,078	73950,06
						_				1471,01	0,152	100475,80	85808,63	1,52E-06	0,084	55418,22
										1755,40	0,178	86122,14	102398,29	2,06E-06	0,100	48587,09
										1961,34	0,203	75356,89	114411,50	2,70E-06	0,112	41563,69
Estuerzo axial [N/mm²]	-								-	2157,47	0,229	66983,93	125852,65	3,41E-06	0,123	36124,51
E E										2422,25	0,254	60285,56	141298,20	4,21E-06	0,138	32851,97
<u>z</u>										2638,00	0,279	54805,08	153883,47	5,10E-06	0,151	29568,65
axis				/						2765,49	0,305	50238,01	161320,22	6,07E-06	0,158	26046,62
erzo										2932,20	0,330	46373,58	171045,19	7,12E-06	0,168	23531,50
-stu										3040,08	0,356	43061,20	177337,83	8,26E-06	0,174	21036,38
0.1		,	/						_	3167,56	0,381	40190,48	184774,57	9,48E-06	0,181	19093,50
										3324,47	0,406	37678,60	193927,49	1,08E-05	0,190	17612,69
0.05			0.2	0.4	0.6	0.8		1	1.2 ×10 ⁻⁵							



Ensayo realizado por: Eddy Aguilar y Rosa Quezada.


Ubicación: Fecha: Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.

06 de diciembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O. Tesis:

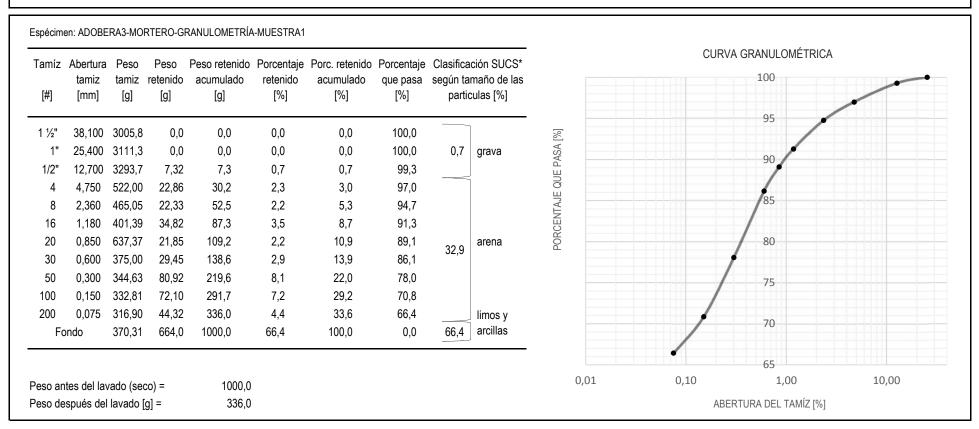
Eddy Aguilar y Rosa Quezada. 06 de diciembre del 2016 Ensayo realizado por: Fecha:

FLEXIÓN EN UNIDADES DE ADOBE - ADOBERA 3

Espécimen	Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Årea Transversal [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx [MPa]
MUESTRA 1	415	210	170	30	355	118,3	87150	14815500	20940	2064,3	1,33E-05	0,121
MUESTRA 2	410	200	175	30	350	116,7	82000	14350000	20822	2765,5	7,12E-06	0,158
MUESTRA 3	410	205	175	30	350	116,7	84050	14708750	20976	2191,8	1,05E-06	0,122
MUESTRA 4	412	201	170	30	352	117,3	82812	14078040	21680	2437,0	1,04E-06	0,148
MUESTRA 5	410	200	175	30	350	116,7	82000	14350000	21255	3324,5	1,08E-05	0,190
MUESTRA 6	413	210	166	30	353	117,7	86730	14397180	20457	5960,5	1,16E-04	0,364
								Media total		3123,92	2,49E-05	0,184

Tesis: Solicitado por:	Caracterización física y mecánica del adobe en el ca Eddy Aguilar y Rosa Quezada.	antón Cuenca.	Ubicación Fecha:	Adobera 3, Sinincay 2° 06 de diciembre del 201		79° 1′ 30,00′′ O.
	COM	ITENIDO DE MATERIA ORGÁNIC	A POR ÍGNICIÓN - ADOBERA	3		AASTHO T-267-86
	Espécimen	ADOBERA3-ADOBE- IGNICIÓN-MUESTRA1 [%]	ADOBERA3-ADOBE- IGNICIÓN-MUESTRA2 [%]	ADOBERA3-ADOBE- IGNICIÓN-MUESTRA3 [%]	Promedio	-
	ADOBERA3-ADOBE-IGNICIÓN	7,29	6,49	6,89	6,89	_

CONTENIDO DE MATERIA ORGÁNICA POR ÍGNICIÓN - MORTERO DE BARRO ADOBERA 3


Espécimen	ADOBERA3-MORTERO- IGNICIÓN-MUESTRA1	ADOBERA3-MORTERO- IGNICIÓN-MUESTRA2	ADOBERA3-MORTERO- IGNICIÓN-MUESTRA3	Promedi
Loposinion	[%]	[%]	[%]	[%]
ADOBERA3-MORTERO-IGNICIÓN	6,11	6,17	6,20	6,16

Dra. Guillermina Pauta Química - Analista UNIVERSIDAD DE CUENCA Facultad de Ingeniería LABORATORIO DE INGENIERIA SANITARIA

Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

GRANULOMETRÍA DEL MORTERO DE BARRO

SUCS: Sistema Unificado de Clasificación de suelo.

Asesor - Director laboratorio LACB

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

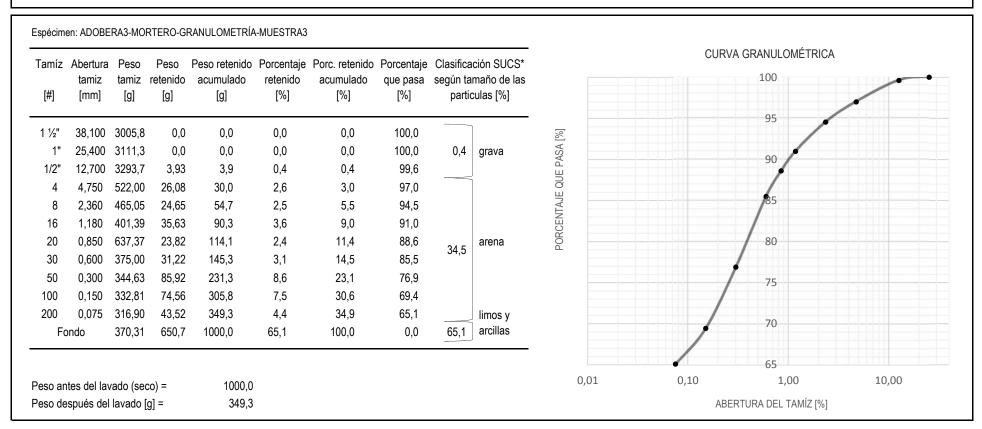
Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O.

06 de diciembre del 2016

GRANULOMETRÍA DEL MORTERO DE BARRO

[#]	Abertura tamiz [mm]	Peso tamiz [g]	Peso retenido [g]	Peso retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]		según tai	ción SUCS* maño de las culas [%]		OUNT	A GRANULOMÉTRICA	,
1/2"	38,100	3005,8	0,0	0,0	0,0	0,0	100,0			[%]		95	
1"	25,400	3111,3	0,0	0,0	0,0	0,0	100,0	0,7	grava	PORCENTAJE QUE PASA [%]		90	
1/2"	12,700	3293,7	7,32	7,3	0,7	0,7	99,3			JE P.			
4	4,750	522,00	29,80	37,1	3,0	3,7	96,3			ПО		35	
8	2,360	465,05	27,00	64,1	2,7	6,4	93,6			TAJ			
16	1,180	401,39	37,00	101,1	3,7	10,1	89,9			CEN		80	
20	0,850	637,37	24,02	125,1	2,4	12,5	87,5	34,4	arena	POR			
30	0,600	375,00	30,51	155,7	3,1	15,6	84,4	54,4			/	75	
50	0,300	344,63	82,45	238,1	8,2	23,8	76,2						
100	0,150	332,81	70,80	308,9	7,1	30,9	69,1					70	
200	0,075	316,90	42,73	351,6	4,3	35,2	64,8		limos y				
For	ndo	370,31	648,4	1000,0	64,8	100,0	0,0	64,8	arcillas			65	
												60	
so ant	es del lav	ado (sec	:0) =	1000,0						0,01	0,10	1,00	10,00


^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

GRANULOMETRÍA DEL MORTERO DE BARRO

SUCS: Sistema Unificado de Clasificación de suelo.

Asesor - Director laboratorio LACB

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación: Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79° 1′ 30,00′′ O.

Fecha: 06 de diciembre del 2016

GRANULOMETRÍA PROMEDIO DEL MORTERO DE BARRO - ADOBERA 3

		MUES	STRA 1	MUES	STRA 2	MUES	STRA 3		PROMEI	DIO		– – CURVA GRANULOMÉTRICA
Tamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	SI	ificación JCS* [%]	100 95
1 ½" 1"	38,100 25,400	0,0 0,0	100,0 100,0	0,0	100,0 100,0	0,0	100,0 100,0	0,0	100,0 100,0	0,6	arava	90 90 90 90 90 90 90 90 90 90 90 90 90 9
1/2"	12,700	0,0	99,3	0,0	99,3	0,4	99,6	0,6	99,4	0,0	grava	Pass
4	4,750	2,3	97,0	3,0	96,3	2,6	97,0	2,6	96,8			₽no ♣5
8	2,360	2,2	94,7	2,7	93,6	2,5	94,5	2,5	94,3			PORCENTALE NAME OF THE PROPERTY OF THE PROPERT
16	1,180	3,5	91,3	3,7	89,9	3,6	91,0	3,6	90,7			N
20	0,850	2,2	89,1	2,4	87,5	2,4	88,6	2,3	88,4	33,9	arena	NO TO
30	0,600	2,9	86,1	3,1	84,4	3,1	85,5	3,0	85,3	55,5		75
50	0,300	8,1	78,0	8,2	76,2	8,6	76,9	8,3	77,0			/ /3
100	0,150	7,2	70,8	7,1	69,1	7,5	69,4	7,2	69,8			70
200	0,075	4,4	66,4	4,3	64,8	4,4	65,1	4,4	65,4		limos y	70
Fo	ondo	66,4	0,0	64,8	0,0	65,1	0,0	65,4	0,0	65,4	arcillas	
		tes del lava spués del la	do (seco) = avado [g] =	2000,0 603,1	-							0,01 0,10 1,00 10,00

SUCS: Sistema Unificado de Clasificación de suelo.

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79º 1′ 30,00′′ O.

42,80

42,23

16,88

59,76

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

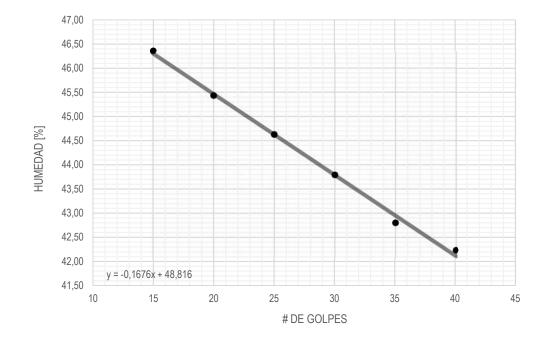
CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO

NTE INEN 691

Número de Masa Masa recipiente + Masa recipiente + Humedad muestra húmeda muestra seca golpes recipiente [%] [g] [g] [g] 15 9,20 27,37 21,61 46,36 20 5,40 23,07 17,55 45,43 30 46,29 64,00 58,61 43,79

21,87

65,19


Espécimen: ADOBERA3-MORTERO-CASA GRANDE-MUESTRA1

35

40

5,21

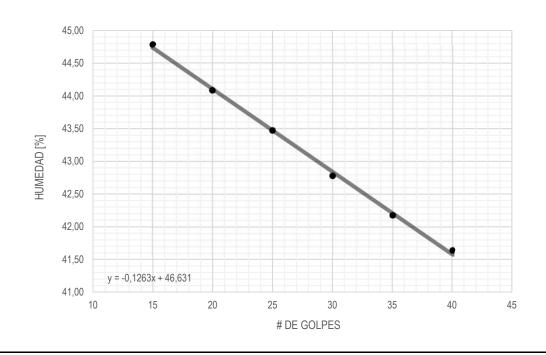
46,92

Límite Líquido (25 golpes) = 44,63 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 2º 50′ 38.00″ S - 79º 1′ 30,00″ O.


Fecha: 06 de diciembre del 2016

CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO

NTE INEN 691

Espécimen: ADOBERA3-MORTERO-CASA GRANDE-MUESTRA2

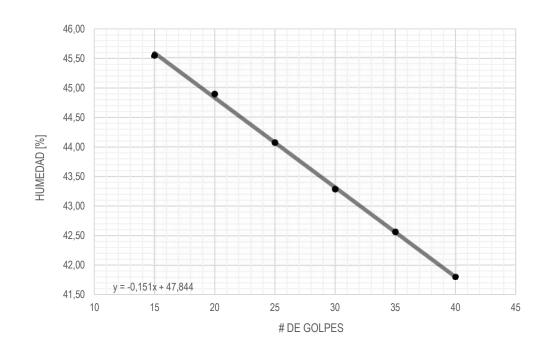
Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
90.000	[9]	[9]	[g]	[%]
15	52.89	72,81	66,65	44.78
20	, , , ,	,	,	, -
	44,32	61,36	56,15	44,08
30	46,20	69,10	62,24	42,78
35	6,32	25,77	20,00	42,18
40	40,24	57,23	52,23	41,64

Límite Líquido (25 golpes) =

43,47 %

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79º 1′ 30,00′′ O.


Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

CASA GRANDE LÍMITE LÍQUIDO DEL MORTERO DE BARRO

NTE INEN 691

Especimen. ADOBERAS-MORTERO-CASA GRANDE-MOESTRAS

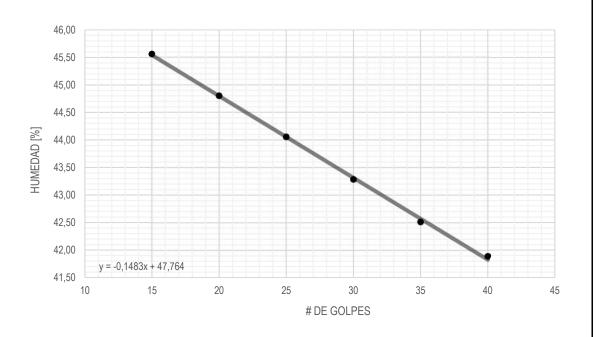
Número de golpes	Masa recipiente	Masa recipiente +	Masa recipiente + muestra seca	Humedad
90.000	[g]	[9]	[9]	[%]
15	5,88	16,81	13,39	45,54
20	7,07	16,35	13,48	44,89
30	7,44	17,26	14,29	43,28
35	5,70	15,48	12,56	42,57
40	5,42	13,20	10,91	41,80

Límite Líquido (25 golpes) = 44,07 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 2º 50′ 38.00′′ S - 79º 1′ 30,00′′ O.


06 de diciembre del 2016

CASA GRANDE

PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE MORTERO DE BARRO, ADOBERA 3 NTE INEN 691

Fecha:

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	46,36	44,78	45,54	45,56
20	45,43	44,08	44,89	44,80
30	43,79	42,78	43,28	43,29
35	42,80	42,18	42,57	42,52
40	42,23	41,64	41,80	41,89

Límite Líquido promedio de las 3 muestras (25 golpes) = 44,06 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 2° 50′ 38.00′′ S - 79° 1′ 30,00′′ O. Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

LÍMITE PLÁSTICO EN MORTERO DE BARRO

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
ADOBERA3-MORTERO-LÍMITE PLÁSTICO-MUESTRA1	40,58	42,06	41,69	33,33
ADOBERA3-MORTERO-LÍMITE PLÁSTICO-MUESTRA2	40,50	41,60	41,32	34,15
ADOBERA3-MORTERO-LÍMITE PLÁSTICO-MUESTRA3	43,14	45,11	44,61	34,01
			Promedio	33,83

ÍNDICE DE PLASTICIDAD EN MORTERO DE BARRO						
 Espécimen	Límite líquido (LL) promedio de 3 muestras [%]	Límite plástico (PL) promedio de 3 muestras [%]	Índice de plasticidad [%]			
 ADOBERA3-MORTERO-ÍNDICE DE PLASTICIDAD	44,06	33,83	10,23			

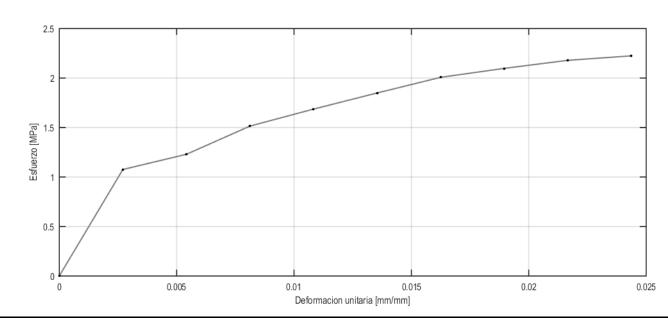
Arq. Edison Castillo C. Asesor - Director laboratorio LACB

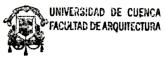
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

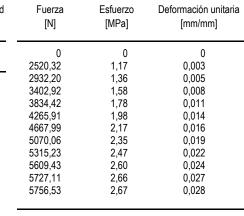

Deformación unitaria

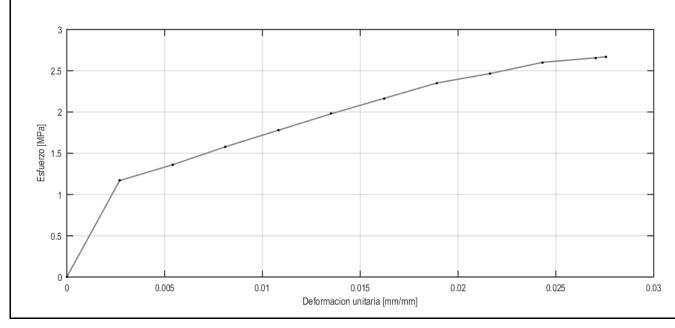

-	Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
	[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
	46,65	46,50	46,90	2169,23	101736,65	170,14	4824,90	0,024	2,224	60,66

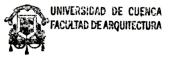
[N]	[MPa]	[mm/mm]
0	0	0
2333,99	1,08	0,003
2667,42	1,23	0,005
3285,24	1,51	0,008
3657,90	1,69	0,011
4010,94	1,85	0,014
4354,17	2,01	0,016
4550,31	2,10	0,019
4726,83	2,18	0,022
4824,90	2,22	0,024

Esfuerzo

Fuerza


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.


Eddy Aguilar y Rosa Quezada. 06 de diciembre del 2016 Ensayo realizado por: Fecha:


RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

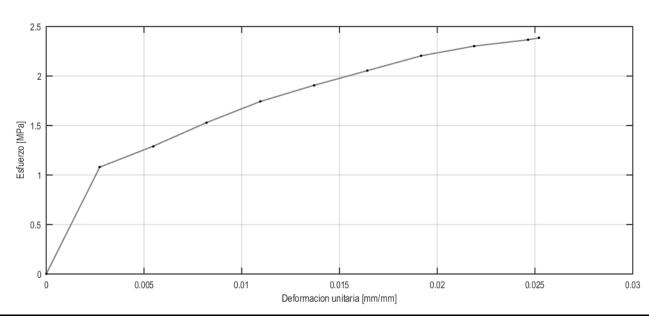
-	Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
	[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
_	46,25	46,60	46,98	2155,25	101242,87	171,26	5756,53	0,028	2,671	72,93

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488


Deformación unitaria

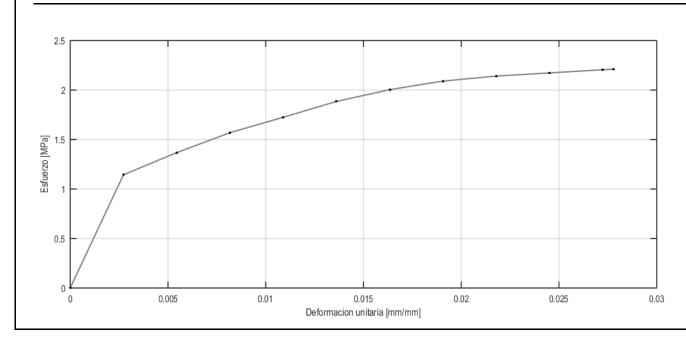
Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
46,50	46,70	46,38	2171,55	100705,63	168,42	5177,94	0,025	2,384	80,80

[N]	[MPa]	[mm/mm]
0	0	0
2343,80	1,08	0,003
2804,72	1,29	0,005
3324,47	1,53	0,008
3785,39	1,74	0,011
4138,43	1,91	0,014
4462,05	2,05	0,016
4785,67	2,20	0,019
5001,42	2,30	0,022
5138,71	2,37	0,025
5177,94	2,38	0,025

Esfuerzo

Fuerza

Arq. Edison Castillo C. Asesor - Director laboratorio LACB


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Arista a [mm]	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
46,20	46,40	46,63	2143,68	99949,08	167,95	4736,64	0,028	2,210	78,10

Fuerza	Esfuerzo	Deformación unitaria
[N]	[MPa]	[mm/mm]
0	0	0
2451,68	1,14	0,003
2932,20	1,37	0,005
3363,70	1,57	0,008
3697,13	1,72	0,011
4040,36	1,88	0,014
4295,33	2,00	0,016
4481,66	2,09	0,019
4589,54	2,14	0,022
4658,18	2,17	0,025
4726,83	2,21	0,027
4736,64	2,21	0,028

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
46.50	46 20	46 68	2148 30	100271 90	171 79	5030 84	0.031	2 342	66.27

2.5							
Estuerzo [MPa]							_
0.5							
0	0.005	0.01	0.015 Deformacion u	0.02 nitaria [mm/mm]	0.025	0.03	0.035

Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
0	0	0
2147,67	1,00	0,003
2657,62	1,24	0,005
2942,01	1,37	0,008
3442,15	1,60	0,011
3824,61	1,78	0,014
4216,88	1,96	0,016
4413,02	2,05	0,019
4530,70	2,11	0,022
4628,76	2,15	0,024
4805,28	2,24	0,027
4922,96	2,29	0,030
5030,84	2,34	0,031

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO

INEN NET 0488

Arista a	Arista b	Arista h	Área	Volumen	Peso	Fuerza máx.	Deformación unitaria	Esfuerzo máx.	Módulo de elasticidad
[mm]	[mm]	[mm]	[mm²]	[mm³]	[g]	[N]	[mm/mm]	[MPa]	[MPa]
46,40	46,20	46,43	2143,68	99520,34	169,76	5276,00	0,027	2,461	93,65

2.5			
2			
1.5			
1.5			
1			
0.5			

0.015

Deformacion unitaria [mm/mm]

	Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
•	0	0	0
	2432,06	1,13	0,003
	3040,08	1,42	0,005
	3589,25	1,67	0,008
	4079,59	1,90	0,011
	4452,24	2,08	0,014
	4756,25	2,22	0,016
	5001,42	2,33	0,019
	5158,32	2,41	0,022
	5187,74	2,42	0,025
	5276,00	2,46	0,027

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

0.025

0.03

0.02

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

0.005

0.01

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha:

Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O.

06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE BARRO - ADOBERA 3

E. 080 ADOBE

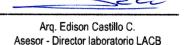
Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de Elasticidad [MPa]
MUESTRA 1	46,65	46,50	46,90	2169,23	101736,65	170,14	4824,90	0,02	2,224	60,66
MUESTRA 2	46,25	46,60	46,98	2155,25	101242,87	171,26	5756,53	0,03	2,671	72,93
MUESTRA 3	46,50	46,70	46,38	2171,55	100705,63	168,42	5177,94	0,03	2,384	80,80
MUESTRA 4	46,20	46,40	46,63	2143,68	99949,08	167,95	4736,64	0,03	2,210	78,10
MUESTRA 5	46,50	46,20	46,68	2148,30	100271,90	171,79	5030,84	0,03	2,342	66,27
MUESTRA 6	46,40	46,20	46,43	2143,68	99520,34	169,76	5276,00	0,03	2,461	93,65
						Media total	5133,81	0,03	2,38	74,66
						Desviación es	stándar (módulo c	de elasticidad)		1,17
						Media (esf	uerzo de cuatro m	nejores muestras)	2,46	

UNIVERSIDAD DE CUENÇA ACULIAD DE ARQUITECTURA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aquilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 79º 1' 38.00" S - 79º 1' 30.00" O.


Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: ADOBERA3-MURO-COMPRESIÓN-MUESTRA1 Deformación Módulo de Esfuerzo máx. Esfuerzo Arista a Arista b Arista h Área Volumen Peso Fuerza máx. Fuerza Deformación unit. Fuerza Esfuerzo Deformación unit. Fuerza Esfuerzo Deformación unit. unit. elasticidad [g] [MPa] [N] [MPa] [mm/mm] [N] [MPa] [mm/mm] [mm²] [mm³] [N] [MPa] [N] [mm/mm] [mm] [mm] [MPa] [mm/mm] 207.5 410.0 535.5 85075.0 45557662.5 66277.1 26262.3 0.030 0.31 15.36 0 2196,70 2736,07 3138,14 3471,57 3795,19 0,0002 0,0005 0,0007 0,0009 0,0012 0,0014 13562,67 13768,61 14033,39 0,0102 0,0104 0,0107 22535,80 22702,51 22869,22 0.026 0.032 0.037 0.041 0.045 0.052 0.052 0.056 0.050 0.063 0.066 0.070 0.073 0.076 0.084 0.084 0.092 0.094 0.094 0.094 0.095 0.094 0.095 0.159 0.162 0.168 0.168 0.168 0.170 0.177 0.179 0.182 0.184 0.195 0.198 0.203 0.203 0.204 0.211 0.223 0.224 0.230 0.237 0.242 0.242 0.245 0.245 0.245 0.250 0.255 0,265 0,267 0,269 0,271 0,272 0,274 0,275 0,277 0,0202 0,0204 0,0214 0,0214 0,0214 0,0214 0,0215 0,0216 0, 14298,17 14504,11 23035,94 23163,43 23271,30 0,0109 0,0111 4128,62 4432,63 4736,64 5030,84 5334,84 14768.89 0.0114 0.35 0.0017 0,0019 15033.67 15200,39 0.0116 0,0119 23438.01 23565,50 0,0121 0,0123 0,0126 15465,17 15671.11 23732,21 23869.51 0,0021 0,0024 0,0026 0,0031 0,0033 0,0036 0,0036 0,0040 0,0045 0,0045 0,0052 0,0055 0,0057 0,0050 0,0062 0,0064 0.279 0.281 0.282 0.284 0.285 0.286 0.289 0.290 0.290 0.293 0.295 0.295 0.293 0.303 0.304 0.303 0.304 0.303 0.305 0.305 0.305 0.306 0.307 0.306 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.308 0.308 5629,05 5933,05 6237,06 0.3 15935,89 23996,99 24134,29 24271.58 16132,02 0,0128 16396,80 6462.62 6737,20 6933,34 7168,70 7364,83 7570,77 16602,74 0,0133 0,0135 0,0138 0,0140 24330.42 24467,72 24565,78 16867,52 17063,66 17299,02 0.25 24663,85 0,0142 0,0145 0,0147 17504,96 17730,51 24771,72 24869,79 Esfuerzo [MPa] 51:0 7796,33 17936,45 24967,86 18162,01 18367,95 18603,31 18799,44 0,0149 0,0152 0,0154 0,0157 25065,93 25163,99 25262,06 25369,93 8002.27 8198,40 8463,18 8737,77 18995,58 19230,94 19397,65 0,0159 0,0161 0,0164 8933.90 25468,00 25536,65 25634,71 9130,04 9365,40 0.113 0,0066 9600.76 19603.59 0.0166 25703.36 19603.59 19829,15 20035,09 20201,80 20437,16 20603,88 20829,43 21064,79 21231,51 9865,54 10130,32 0,0069 0,0071 0,0074 25801,43 25870,07 25928,91 0,0168 0,0171 0,116 0,119 0,121 0,124 0,128 0,130 0,135 0,138 0,142 0,145 0.1 10336,26 0,0173 0,0074 0,0076 0,0078 0,0081 0,0083 0,0085 0,0088 10571,62 10865,82 11101,18 0,0175 0,0178 0,0180 25968,14 26066,21 0.05 26095,63 0,0183 0,0185 0,0187 0,0190 11454,23 11768.04 26134,86 26164,28 21466,87 21604,16 12062,24 12297,60 12532.96 0.147 0.0092 21800.29 0,256 0.0192 0.005 0.01 0.015 0.02 0.025 0.03 12836,97 13101.75 0,151 0,154 0,156 0,0095 0,0097 21967,01 22133.72 0,258 0,260 0,0194 0.0197 Deformacion unitaria [mm/mm] 0.0100 22329.86 13297.89 0.0199

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00′′ S - 79º 1′ 30.00′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

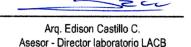
Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit [mm/mm]
Esfuerzo [MPa]	408.5 .45	539.8	0.005	0.4	66558.7	0.015	0.026	0.43	0.03	0 68,65 196,13 235,36 333,43 402,07 500,14 666,86 862,99 1167,00 1431,78 1765,21 2098,63 2432,06 2736,07 3196,98 3628,48 4099,20 4599,34 5128,90 95668,27 6266,48 7031,40 971,20 9590,95 10169,55 10169,55 101728,53 11101,18 11503,34 12101,47 12503,54 12101,47 12503,54 12101,47 12503,54 14504,11 14965,02	0,014 0,021 0,025 0,029 0,032 0,038 0,043 0,044 0,054 0,061	0 0,0000 0,0002 0,0005 0,0007 0,0009 0,0012 0,0014 0,0016 0,0019 0,0021 0,0028 0,0033 0,0033 0,0033 0,0035 0,0038 0,0040 0,0042 0,0044 0,0049 0,0049 0,0049 0,0052 0,0054 0,0059 0,0059 0,0064 0,0066 0,0068 0,0071 0,0073 0,0073 0,0078 0,0078 0,0078 0,0078 0,0080 0,0082 0,0085 0,0085 0,0085 0,0085 0,0085	15465,17 15935,89 16396,80 16896,94 17436,31 17897,33 18289,50 18770,02 19299,59 19799,73 201035,37 21496,23 221937,59 22369,08 22702,51 23134,01 23604,73 24036,22 24467,72 24938,44 25369,93 25762,20 26134,80 27301,85 2	0,182 0,183 0,193 0,211 0,216 0,221 0,228 0,234 0,234 0,243 0,243 0,244 0,259 0,264 0,268 0,273 0,273 0,273 0,273 0,273 0,273 0,273 0,284 0,299 0,304 0,307 0,317 0,335 0,355	0,0089 0,0092 0,0094 0,0096 0,0099 0,0101 0,0104 0,0108 0,0111 0,0115 0,0118 0,01120 0,0122 0,0125 0,0127 0,0129 0,0134 0,0136 0,0139 0,0134 0,0144 0,0148 0,0144 0,0148 0,0151 0,0153 0,0155 0,0158 0,0160 0,0162 0,0167 0,0169 0,0172 0,0174	30930,33 31204,92 31499,12 31734,48 31969,84 32264,04 32528,82 32803,41 33097,61 33362,39 33568,33 33764,47 33970,41 34068,83 34637,26 346	0.365 0.365 0.372 0.374 0.377 0.381 0.384 0.397 0.394 0.398 0.401 0.405 0.407 0.411 0.413 0.414 0.417 0.418 0.424 0.426 0.426 0.426 0.428 0.429 0.431 0.433 0.433	0,0179 0,0181 0,0184 0,0186 0,0188 0,0191 0,0193 0,0195 0,0198 0,0200 0,0205 0,0207 0,0209 0,0212 0,0214 0,0216 0,0219 0,0224 0,0226 0,0231 0,0233 0,0233 0,0233 0,0235 0,0242 0,0245 0,0245 0,0249 0,0256 0,0259 0,0256

Ensayo realizado por:

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

Ubicación: Adobera 3, Sinincay 79º 1' 38.00" S - 79º 1' 30.00" O.


Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: ADOBERA3-MURO-COMPRESIÓN-MUESTRA3 Módulo de Deformación Esfuerzo máx. Arista a Arista b Arista h Área Volumen Peso Fuerza máx. Fuerza Esfuerzo Deformación unit. Fuerza Esfuerzo Deformación unit. Fuerza Esfuerzo Deformación unit. unit. elasticidad [g] [MPa] [MPa] [mm/mm] [N] [MPa] [mm/mm] [N] [MPa] [mm/mm] [mm²] [mm³] [N] [N] [MPa] [mm/mm] 408.8 542.0 84100.3 45582369.4 66313.0 32666.1 0.030 0.39 22.66 0 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.006 0.006 0.011 0.012 0.014 0.025 0.031 0.025 0.031 0.051 205.8 0,0002 0,0005 0,0007 0,0009 0,0012 0,0014 27135,14 27399,92 27635,28 27900,06 28096,20 28370,78 11395,39 11836,69 12199,53 0,0101 0,0103 0,0105 166,71 196,13 235,36 264,78 333,43 362,85 402,07 500,14 529,56 568,79 637,44 804,15 931,64 0.323 0.326 0.329 0.332 0.337 0.339 0.341 0.346 0.346 0.355 0.357 0.360 0.361 0.362 0.362 0.363 0.371 0.373 0.373 0.375 0.0199 0.0202 0.0204 0.0206 0.0209 0.0211 0.0213 0.0216 0.0223 0.0223 0.0232 0.0232 0.0234 0.0237 0.0239 0.0244 0.0255 0.0255 0.0255 0.0256 0.0265 0.0265 0.0265 0.0266 0.0269 0.0272 0.0274 0.0276 0.0279 0.0284 0.0284 0.0279 0.0284 0.0289 0.0289 12670,26 13170,40 13601,89 0,0108 0,0110 0,0112 0.0016 0,0019 14003,97 14435,46 0.0115 0.0117 28498,27 28704,21 0,0019 0,0021 0,0023 0,0026 0,0028 0,0030 0,0035 0,0037 0,0040 0,0120 0,0122 0,0124 14837,54 15229.81 28900,34 0.35 29096.48 29331,84 29537,78 29665,27 15671,11 16132,02 16563,52 17063,66 17504,96 17936,45 18397,37 0,0127 0,0129 0.0131 0,0134 0,0136 0,0138 931,64 1029,70 1196,42 1471,01 1765,21 2098,63 2333,99 2569,36 2863,56 3196,98 3530,41 3961,91 0.3 29871.21 29998,70 30135,99 30263,48 0.25 0,0042 0,0045 0,0047 0,0049 0,0052 0,0054 0,0056 0,0059 0,0061 0,0063 18897,51 19201,52 0,0141 0,0143 30332,12 30469,42 Esfuerzo [MPa] 19701,66 0,0145 30596,90 20103.74 20466,58 20868,66 21231,51 21633,58 22035,65 22271,02 0,0143 0,0150 0,0152 0,0155 0,0157 0,0159 0,0162 30734.20 30871,49 30930,33 31136,27 4295,33 4834,70 5295,62 5629,05 31234.34 31332,41 31469,70 0.15 22702.51 23035,94 23330,14 23702,79 0.0164 31538.35 0,0066 0,0068 0,0070 0,0073 0,0166 0,0169 0,0171 6001,70 6295,90 31636,41 31763,90 0.1 6599,91 31871,78 0,0073 0,0075 0,0077 0,0080 0,0082 0,0084 0,0087 0,0089 7031,40 7531,55 7963,04 8267,05 8600,48 24065,64 24330,42 24605,01 24899,21 25232,64 32067,91 32195,40 32332,69 0,0173 0,0176 0.05 0,0178 0,0180 0,0183 32401,34 32469.98 25536,65 25830,85 0,0185 0,0187 32499,40 32528,82 9031,97 9404,63 0,116 0,122 0,126 0,310 0,314 0,316 0.0091 0,0094 0,0096 0.0190 0,0192 0,0194 0.387 0,388 0,388 0.005 0.01 0.015 0.02 0.025 0.03 9796.89 26066.21 26370,22 32568.05 32636,70 Deformacion unitaria [mm/mm] 10601,04 26595.77 10934.47 0.130 26899.78 0.0197

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Adobe Adobera 3, Sinincay 79° 1′ 38.00″ S - 79° 1′ 30.00″ O.

Fecha: 05 de 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE

E. 080 ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]		fuerzo MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]
207.0 0.5 0.45 0.35 0.25 0.15 0.15 0.15 0.10		0.005	0.0			40700.0 0.02 0. unitaria [mm/r	0.039 0.039	0.48	0.04	11030 11200 11330 11500 11530 11500 11600 11700 11830 12200 12400 12500 12630 12730 12870 13900 13170 13300 13430 13430 14170 14473 14500 14730 14730 14730 14730 14730 14730 14730 15700 15970 16230 16530 16770 17790 1670 17790 1870 1870 1870 1870 1870 1870 1870 187	0,130 0,132 0,133 0,135 0,135 0,136 0,139 0,141 0,146 0,150 0,156 0,156 0,156 0,156 0,161 0,161 0,164 0,173 0,176 0,184 0,173 0,176 0,184 0,173 0,176 0,184 0,176 0,184 0,177 0,184 0,184 0,185 0,186 0,187	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23430 23730 24130 24130 24430 24430 25070 25070 25070 25070 27700 27700 27700 27700 27700 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 27770 28070 2900 2910 29370 2910 29370 2910 2910 2910 30170	0,275 0,279 0,283 0,287 0,291 0,294 0,298 0,306 0,309 0,313 0,326 0,330 0,326 0,333 0,336 0,345 0,345 0,345 0,345 0,348 0,357 0,363	0,0129 0,0131 0,0134 0,0136 0,0138 0,0141 0,0145 0,0148 0,0150 0,0153 0,0157 0,0160 0,0162 0,0165 0,0167 0,0169 0,0172 0,0174 0,0176 0,0188 0,0191 0,0188 0,0191 0,0188 0,0191 0,0188 0,0191 0,0188 0,0191 0,0188 0,0191 0,0188 0,0191 0,0192 0,0205 0,0207 0,0217 0,0217 0,0215 0,0217 0,0217 0,0219 0,0222 0,0224 0,0225 0,0225 0,0225 0,0225 0,0225 0,0225 0,0225	36270 36400 36530 366530 36670 38870 37000 37130 37270 377400 37577 377830 37930 38170 38300 38170 38500 38570 38500 38900 38900 38970 38900 39270 39370 39570 39670 39870 39870 39870 39870 39870 40000 40130 40170 40230 40130 40170 40270 40370 40430 40470 40430 40470 40570 40670 40670 40670 40670	0.426 0.429 0.431 0.433 0.435 0.436 0.439 0.431 0.435 0.436 0.439 0.441 0.444 0.446 0.446 0.451 0.453 0.453 0.459 0.451 0.453 0.450 0.451 0.453 0.456 0.451 0.458 0.459 0.468 0.470 0.471 0.472 0.473 0.473 0.473 0.473 0.473	0.0258 0.0260 0.0262 0.0265 0.0265 0.0267 0.0277 0.0277 0.0277 0.0277 0.0279 0.0284 0.0284 0.0286 0.0289 0.0291 0.0291 0.0293 0.0296 0.0293 0.0296 0.0298 0.0303 0.0305 0.0306 0.0307 0.0317 0.0317 0.0317 0.0317 0.0318 0.0318 0.0318 0.0318 0.0319 0.0318 0.0319 0.0334 0.0336 0.0336 0.0336 0.0336 0.0336 0.0336 0.0336 0.0336 0.0337 0.0348 0.0355 0.0358

Asesor - Director laboratorio LACB

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA COMPRESIÓN EN MURETES DE ADOBE - ADOBERA 3

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unitaria [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	207,5	410,0	535,5	85075,0	45557662,5	66277,08	26262	0,030	0,31	15,4
MUESTRA 2	207,5	408,5	539,8	84763,8	45751234,1	66558,69	36805	0,026	0,43	26,5
MUESTRA 3	205,8	408,8	542,0	84100,3	45582369,4	66313,03	32666	0,030	0,39	22,7
MUESTRA 4	207,0	411,3	532,5	85128,8	45331059,4	65947,42	40700	0,039	0,48	13,8
						Media total	34108	0,0313	0,40	18,91
						Desviación es		1,36		

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1´ 38.00´ S - 79º 1´ 30.00´ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

0.016 0.016 0.017 0.0116 0.0047 0.0013 0.0017 0.0018 0.0019 0.001	Arista a [mm]	Arista b [mm]	Arista b' [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
3805.00 0.0168 0.0067 0.0069	0.018 0.016 0.014 0.012	563	536	777	113446	62288789	90617	3805,00	0,0069	0,0168	3,07	1667,14 1931,92 2069,211 2196,70 2304,57 2402,64 2500,71 2638,00 2696,84 2804,72 2863,56 2971,43 3069,50 3098,92 3167,56 3236,21 3265,63 3334,28 3402,92 34371,57 3530,41 3569,64 3599,06 3638,29 3697,13 3736,35	0 0,0073 0,0085 0,0091 0,0097 0,0102 0,0106 0,0110 0,0116 0,0119 0,0124 0,0135 0,0135 0,0137 0,0140 0,0144 0,0147 0,0150 0,0151 0,0153 0,0155 0,0157 0,0159 0,0160 0,0160	0,0029 0,0034 0,0036 0,0039 0,0041 0,0042 0,0044 0,0047 0,0048 0,0050 0,0052 0,0054 0,0055 0,0056 0,0057 0,0058 0,0059 0,0060 0,0061 0,0061 0,0063 0,0063 0,0063 0,0064 0,0065 0,0066	0,0002 0,0003 0,0005 0,0007 0,0008 0,0010 0,0011 0,0013 0,0015 0,0016 0,0018 0,0020 0,0021 0,0023 0,0025 0,0026 0,0028 0,0029 0,0031 0,0033 0,0034 0,0038 0,0038 0,0039 0,0041 0,0042
			1		2		3	4		L 5	6 7				0,0069

Tesis:

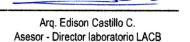
Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación:

Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.


Fecha:

06 de diciembre del 2016

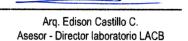
RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

0.016 0.014 0.012	550 783	3 113103	62627339	91110	3432,35	0,0050	0,0152	0,80	0 2098,63 2432,06 2569,36	0 0,0093 0,0108	0 0,0037 0,0043	0 0,0002 0,0003
0.008								•	2598,78 2628,20 2667,42 2736,07 2765,49 2794,91 2834,14 2902,78 2932,20 2961,62 3030,27 3069,50 3098,92 3128,34 3128,34 3128,34 3128,34 3128,34	0,0114 0,0115 0,0116 0,0118 0,0121 0,0122 0,0124 0,0125 0,0130 0,0131 0,0134 0,0136 0,0137 0,0138 0,0138 0,0141	0,0045 0,0046 0,0046 0,0047 0,0048 0,0049 0,0050 0,0051 0,0052 0,0052 0,0054 0,0055 0,0055 0,0055 0,0055	0,0005 0,0006 0,0008 0,0010 0,0011 0,0013 0,0015 0,0016 0,0018 0,0019 0,0021 0,0023 0,0024 0,0026 0,0028 0,0028 0,0029
0.004								-	3265,63 3295,05 3363,70 3402,92	0,0144 0,0146 0,0149 0,0150	0,0058 0,0058 0,0059 0,0060	0,0039 0,0042 0,0045 0,0047
0.002								_	3432,35	0,0152	0,0061	0,0050
0	1		2		3 n unitaria [mm/m	4	5	6 ×10 ⁻³				

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O. Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista b' [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
0.02 0.018 0.016 0.014 0.012 0.008 0.006 0.004 0.002	561	539	778	112037	61581145	89588	4363,98	0,0096	0,0195	1,79	0 1323,90 1500,43 1637,72 1667,14 1765,21 1863,27 1931,92 2098,63 2196,70 2265,35 2333,99 2363,41 2432,06 2569,36 2667,42 2432,06 2569,36 2667,42 2432,06 2569,36 2567,42 2432,06 2569,36 2567,42 2432,06 2569,36 2567,42 2432,06 2567,42 2432,06 2567,42 2433,33 303,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,57 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 2971,43 3030,27 3138,14 4001,13 4099,20 4128,62 4197,27 4236,47 4265,91 4295,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0024 0.0027 0.0029 0.0030 0.0033 0.0034 0.0035 0.0036 0.0037 0.0042 0.0042 0.0042 0.0044 0.0048 0.0048 0.0048 0.0056 0.0057 0.0056 0.0057 0.0056 0.0056 0.0057 0.0062	0.0002 0.0003 0.0007 0.0008 0.0010 0.0011 0.0011 0.0015 0.0016 0.0018 0.0020 0.0021 0.0023 0.0024 0.0028 0.0028 0.0029 0.0031 0.0034 0.0038 0.0039 0.0034 0.0039 0.0031 0.0039 0.0031 0.0039 0.0059 0.0069 0.0059 0.0059 0.0059 0.0069 0.0065 0.0069 0.
0		0.001	0.002	0.00			0.005 on unitaria [mm/n	0.006 0.007 nm]	0.008	0.009 0.01	4001.13 4099.20 4128.62 4197.27 4236.49 4265.91 4295.33	0.0179 0.0183 0.0184 0.0187 0.0189 0.0190 0.0192	0.0071 0.0073 0.0074 0.0075 0.0076 0.0076 0.0077 0.0078	0.0062 0.0064 0.0065 0.0067 0.0069 0.0072 0.0078


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Adobera 3, Sinincay 79º 1′ 38.00″ S - 79º 1′ 30.00″ O.

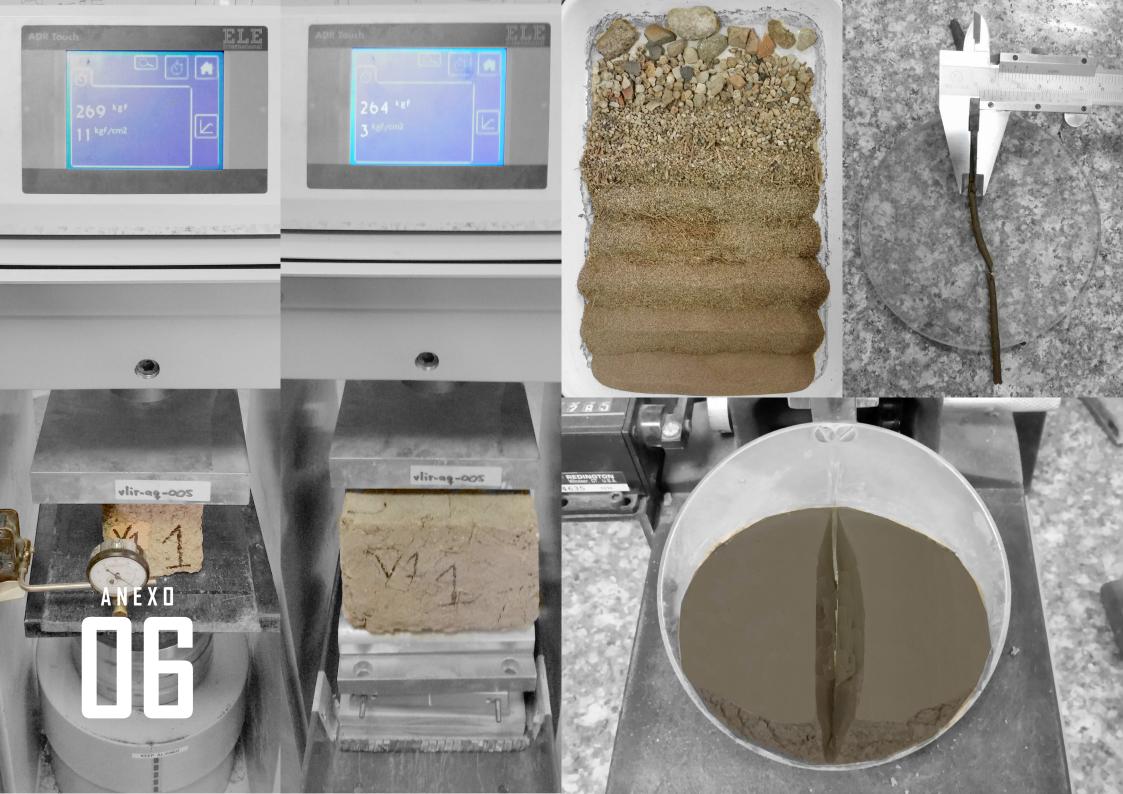
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 06 de diciembre del 2016

RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista b' [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [MPa]	Módulo de elasticidad [MPa]	Fuerza [N]	Esfuerzo a tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Deformación unit. [mm/mm]
0.025	563	536	778	112699	61918777	90079	4599,34	0,0031	0,0204	3,00	0 3196,98 3795,19 3961,91 4069,78 4128,62 4236,49 4265,91 4295,33 4363,98 4403,21 4432,63 4462,05 4530,70 4569,92 4599,34	0 0,0142 0,0168 0,0176 0,0181 0,0183 0,0189 0,0191 0,0195 0,0197 0,0198 0,0201 0,0203 0,0204	0 0,0057 0,0067 0,0070 0,0072 0,0073 0,0075 0,0076 0,0077 0,0078 0,0079 0,0079 0,0080 0,0081 0,0082	0 0,0002 0,0003 0,0005 0,0007 0,0008 0,0011 0,0013 0,0015 0,0016 0,0020 0,0021 0,0024 0,0026 0,0031
0.01		0.5		1		1.5 formacion	2 unitaria [mm/mn	2.5		3 3.5 ×10° ³				

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:


Adobera 3, Sinincay 79° 1′ 38.00′′ S - 79° 1′ 30.00′′ O.

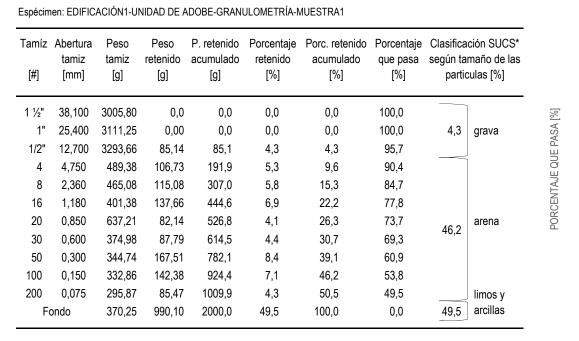
Fecha: 06 de diciembre del 2016

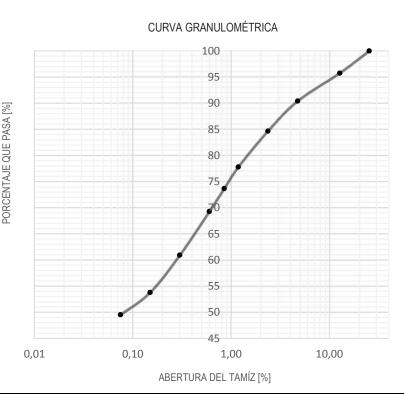
RESISTENCIA A LA TRACCIÓN INDIRECTA EN MURETES DE ADOBE - ADOBERA 3

Espécimen	Arista a [mm]	Arista b [mm]	Arista b' [mm]	Diagonal [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unitaria [mm/mm]	Esfuerzo tracción indirecta [MPa]	Esfuerzo de corte [MPa]	Módulo de elasticidad [MPa]
MUESTRA 1	206,5	562,5	536.3	777,2	113445.9	62288789.1	90617,45	3805,00	0,007	0,017	0,0067	3,07
MUESTRA 2	204,3	558,0	549,5	783,1	113103,4	62627339,3	91109,97	3432,35	0,005	0,015	0,0061	0,80
MUESTRA 3	203,8	561,0	538,8	777,8	112037,0	61581145,3	89587,97	4363,98	0,010	0,019	0,0078	1,79
MUESTRA 4	205,0	563,3	536,3	777,7	112698,8	61918776,6	90079,16	4599,34	0,003	0,020	0,0082	3,00
						Media tot	al	4050,17	0,0062	0,018	0,0072	1,44

UNIDAD DE ADOBE

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.


2000,0 g.


1009,9 g.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

Ubicación: Edificación 1. Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

Peso antes del lavado (seco) =

Peso después del lavado [g] =

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

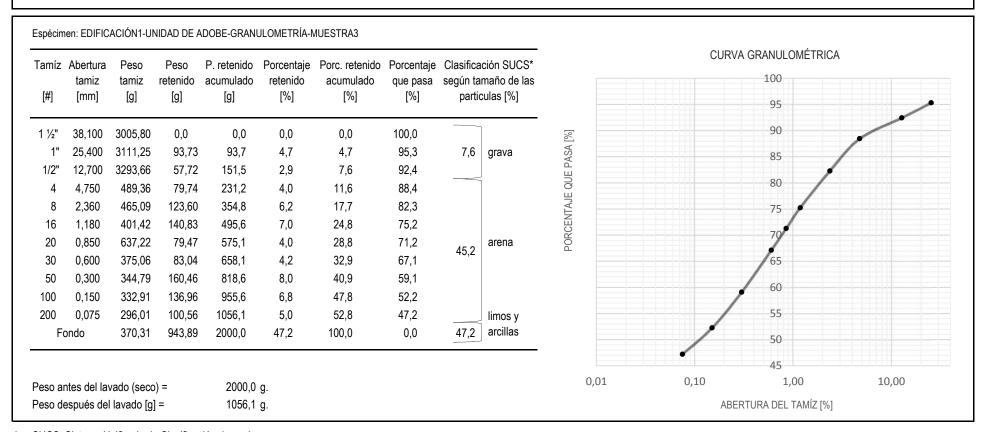
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

amíz [#]	Abertura tamiz [mm]	Peso tamiz [g]	Peso retenido [g]	P. retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]	Porcentaje que pasa [%]	según ta	ción SUCS* maño de las culas [%]		CU	RVA GRANULOMÉTRICA 100 95	
1 ½"	38,100	3005,80	0,0	0,0	0,0	0,0	100,0			[%]		90	
1"	25,400	3111,25	48,61	48,6	2,4	2,4	97,6	6,5	grava	PASA [%]		85	
1/2"	12,700	3293,66	82,13	130,7	4,1	6,5	93,5					80	
4	4,750	489,38	98,62	229,4	4,9	11,5	88,5			PORCENTAJE QUE		80	
8	2,360	465,08	121,46	350,8	6,1	17,5	82,5			TAD		75	
16	1,180	401,38	136,36	487,2	6,8	24,4	75,6			CE		70	
20	0,850	637,21	78,56	565,7	3,9	28,3	71,7	44,9	arena	PO		7	
30	0,600	374,98	81,80	647,5	4,1	32,4	67,6	77,5				65	
50	0,300	344,74	159,16	806,7	8,0	40,3	59,7					60	
100	0,150	332,86	133,36	940,1	6,7	47,0	53,0					/ 00	
200	0,075	295,87	89,24	1029,3	4,5	51,5	48,5		limos y			55	
Fo	ondo	370,31	970,70	2000,0	48,5	100,0	0,0	48,5	arcillas			50	
Daen ar	ntes del lav	vado (seco	n) =	2000,0	a					0,01	0,10	1,00	10,00
	espués del	•	•	1029,3	-						A	ABERTURA DEL TAMÍZ [%]	

^{*} SUCS: Sistema Unificado de Clasificación de suelo.



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.

Ensayo realizado por: Eddy Aquilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

GRANULOMETRÍA PROMEDIO EN UNIDAD DE ADOBE - EDIFICACIÓN 1

NTE INEN 696 / NTE INEN 697

		MUES	STRA 1	MUES	TRA 2	MUES	STRA 3		PROME	DIO			CURVA	GRANULOMÉTRIC	CA
Tamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Porc. reternido [%]	Porc. que pasa [%]	Clasifio SU([%	CS*		OOM,	100	
1 ½"	38,100	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0			[%]		90	
1"	25,400	0,0	100,0	2,4	97,6	4,7	95,3	2,4	97,6	6,1	grava	PORCENTAJE QUE PASA [%]		85	
1/2"	12,700	4,3	95,7	4,1	93,5	2,9	92,4	3,7	93,9			E P/		80	
4	4,750	5,3	90,4	4,9	88,5	4,0	88,4	4,8	89,1			no		75	
8	2,360	5,8	84,7	6,1	82,5	6,2	82,3	6,0	83,1			ITAJI		/3/	
16	1,180	6,9	77,8	6,8	75,6	7,0	75,2	6,9	76,2			CEN		79	
20	0,850	4,1	73,7	3,9	71,7	4,0	71,2	4,0	72,2	45,5	arena	POR		65	
30	0,600	4,4	69,3	4,1	67,6	4,2	67,1	4,2	68,0	40,0				/	
50	0,300	8,4	60,9	8,0	59,7	8,0	59,1	8,1	59,9					60	
100	0,150	7,1	53,8	6,7	53,0	6,8	52,2	6,9	53,0					55	
200	0,075	4,3	49,5	4,5	48,5	5,0	47,2	4,6	48,4	_	imos y			50	
F	ondo	49,5	0,0	48,5	0,0	47,2	0,0	48,4	0,0	48,4	arcillas			45	
			ado (seco) = avado [g] =	2000,0								0,01	0,10	1,00	10,00

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

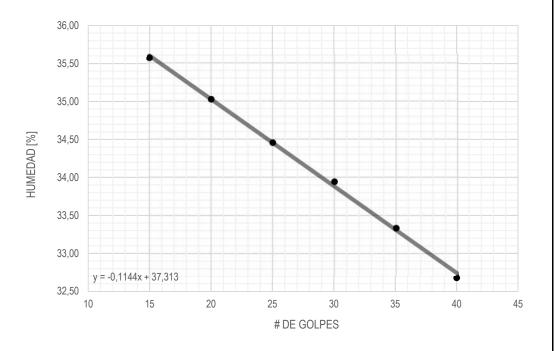
UNIDAD DE ADOBE

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: E

Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.


Fecha: 29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: EDIFICACIÓN1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
15	43,06	59,55	55,22	35,57
20	43,22	62,26	57,32	35,02
30	46,10	62,59	58,41	33,94
35	49,30	69,68	64,58	33,33
40	43,10	65,03	59,63	32,68

Límite Líquido (25 golpes) =

34,45 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Ensayo realizado por:

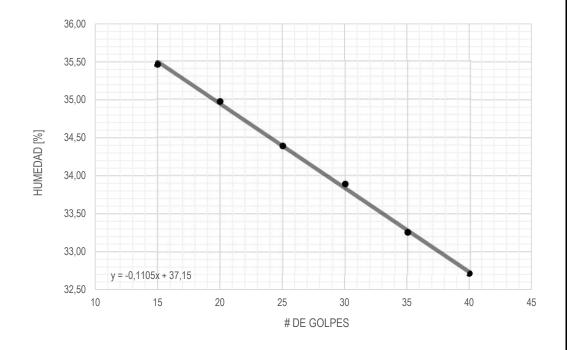
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

Ubicación:

Fecha:

Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.


29 de septiembre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: EDIFICACIÓN1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA2

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
15	52,89	71,96	66,97	35,45
20	44,32	62,21	57,57	34,97
30	46,10	62,99	58,71	33,89
35	6,32	26,35	21,35	33,26
40	40,24	55,19	51,50	32,71

Límite Líquido (25 golpes) =

34,39 %

UNIVERSIDAD DE CUENCA FACULTAD DE ARQUITECTURA

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O. Ubicación:

29 de septiembre del 2016 Fecha:

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

UNIDAD DE ADOBE

Espécimen: EDIFICACIÓN1-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA3

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
90.000	[9]	[9]	[9]	[%]
15	42,38	64,64	58,78	35,72
20	42,55	61,75	56,77	35,06
30	47,20	68,65	63,24	33,72
35	44,43	62,88	58,28	33,16
40	41,85	62,24	57,23	32,56

36,00 35,50 35,00 34,50 HUMEDAD [%] 34,00 33,50 33,00 32,50 y = -0,1266x + 37,591 32,00 15 20 40 10 25 30 35 45 # DE GOLPES

Límite Líquido (25 golpes) =

34,42 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Ensayo realizado por:

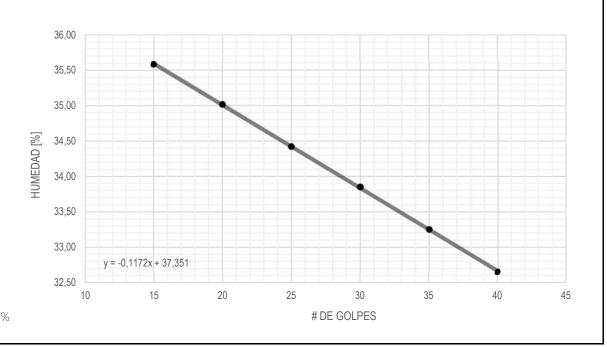
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.

Fecha:


29 de septiembre del 2016

CASA GRANDE

PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE UNIDADES DE ADOBE

NTE INEN 691

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	35,57	35,45	35,72	35,58
20	35,02	34,97	35,06	35,02
30	33,94	33,89	33,72	33,85
35	33,33	33,26	33,16	33,25
40	32,68	32,71	32,56	32,65

Límite Líquido promedio de las 3 muestras (25 golpes) =

34,42 %

Tesis:	Caracterización física y mecánica del adobe en el cantón Cuenca.	Ubicación:	Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79° 0′ 31.63″ O.
Ensayo realizado por:	Eddy Aguilar y Rosa Quezada.	Fecha:	29 de septiembre del 2016

LÍMITE PLÁSTICO EN UNIDADES DE ADOBE

NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
EDIFICACIÓN1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA1	44,68	46,09	45,80	25,89
EDIFICACIÓN1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA2	44,57	46,33	45,97	25,80
EDIFICACIÓN1-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA3	41,67	42,94	42,68	25,74
			Promedio	25,81

ÍNDICE DE PLASTICIDAD EN UNIDADES DE ADOBE

Espécimen	Límite líquido (LL) promedio de 3 muestras [%]	Límite plástico (PL) promedio de 3 muestras [%]	Índice de plasticidad [%]
EDIFICACIÓN1-UNIDAD DE ADOBE-ÍNDICE DE PLASTICIDAD	34,42	25,81	8,61

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

Solicitado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

CONTENIDO DE MATERIA ORGÁNICA POR ÍGNICIÓN - EDIFICACIÓN 1

AASTHO T-267-86

Espécimen	EDIFICACIÓN1-ADOBE- IGNICIÓN-MUESTRA1 [%]	EDIFICACIÓN1-ADOBE- IGNICIÓN-MUESTRA2 [%]	EDIFICACIÓN1-ADOBE- IGNICIÓN-MUESTRA3 [%]	Promedio [%]
EDIFICACIÓN1-ADOBE-IGNICIÓN	8,11	8,27	8,05	8,14

Dra. Guillermina Pauta Química - Analista UNIVERSIDAD DE CUENCA Facultad de Ingeniería LABORATORIO DE INGENIERIA SANITARIA

Tesis:

Ensayo realizado por:

Caracterización física y mecánica del adobe en el cantón Cuenca. Eddy Aguilar y Rosa Quezada. Ubicación:

Edificación 1, Centro Histórico Cuenca 2º 53' 56.99" S - 79º 0' 31.63" O.

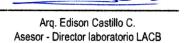
Fecha: 29 de septiembre del 2016

0.012

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA1 Fuerza Esfuerzo Deformación unitaria Arista a Arista b Arista h Área Volumen Peso Fuerza máxima Deformación unitaria Esfuerzo máximo Módulo de elasticidad [mm²] [g] [N] [MPa] [mm] [mm] [mm] [mm³] [N] [mm/mm] [N/mm²] [N/mm²] [mm/mm] 0,010 0,279 8,06 100,9 88,9 100,275 8970,01 899467,75 1353,9 2500,7 0 0 0 0.197 1765.21 0.001 1892,69 0,211 0,003 0.3 1971,15 0,220 0,004 2039,79 0,227 0,005 2255,54 0,251 0,006 0.25 2284,96 0,255 800,0 2392,83 0,267 0,009 2500.71 0.279 0.010 0.2 Esfuerzo [MPa] cro 0.1 0.05


0.008

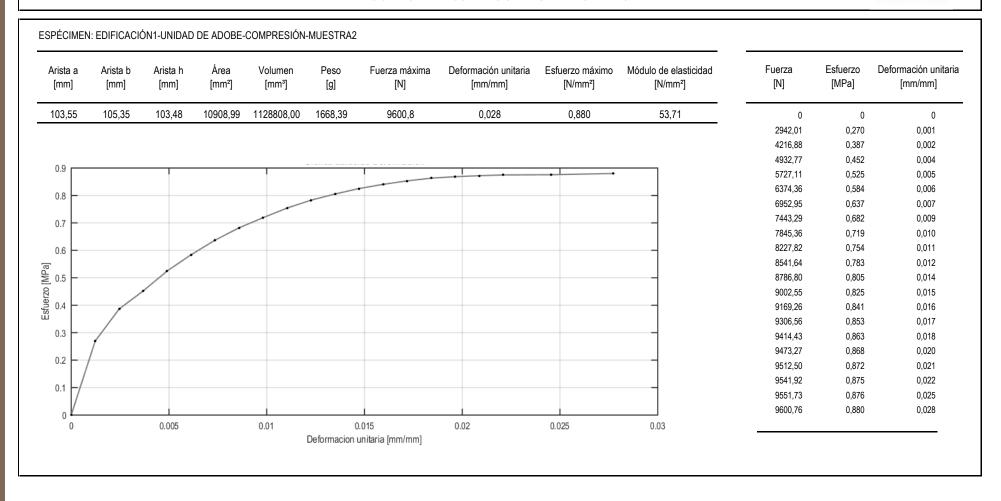
0.006

Deformacion unitaria [mm/mm]

0.004

0.01

0.002


Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Eddy Aguilar y Rosa Quezada. Ensayo realizado por:

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

29 de septiembre del 2016 Fecha:

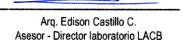
RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.


Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

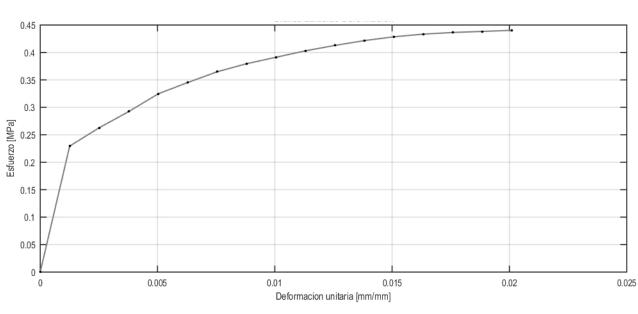
E. 080 ADOBE

ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA3 Deformación unitaria Arista a Arista b Arista h Área Volumen Peso Fuerza máxima Deformación unitaria Esfuerzo máximo Módulo de elasticidad Fuerza Esfuerzo [N] [MPa] [mm/mm] [mm²] [g] [N] [N/mm²] [N/mm²] [mm] [mm] [mm] [mm³] [mm/mm] 9,78 96,13 1356,41 3501,0 0.028 0,355 99,95 98,75 9870,06 948759,76 0 0 0 0.202 1990.76 0.001 2128.05 0.216 0.003 2245,73 0,228 0,004 0.4 2373,22 0,240 0,005 2481,10 0.251 0,007 0.35 2569,36 0,260 800,0 2687,04 0,272 0,009 0.3 2755.68 0.279 0.011 2853,75 0.289 0,012 Estnerzo [MPa] 0.2 0.2 2951,82 0,299 0,013 3030,27 0,307 0,015 3108.72 0.315 0.016 3167,56 0.321 0.017 0,326 3216,60 0,018 3275,44 0.332 0.020 3324,47 0,337 0,021 0.1 3373,50 0,342 0,022 3412,73 0,346 0,024 0.05 3432,35 0.348 0,025 3451,96 0.026 0.350 3481,38 0,028 0.01 0,353 0.005 0.015 0.02 0.025 0.03 Deformacion unitaria [mm/mm] 3500,99 0,355 0,028

ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA4

Tesis: Ensayo realizado por: Caracterización física y mecánica del adobe en el cantón Cuenca. Eddy Aguilar y Rosa Quezada. Ubicación:

Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79º 0′ 31.63′′ O.


Fecha:

29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unitaria [mm/mm]	Esfuerzo máximo [N/mm²]	Módulo de elasticidad [N/mm²]
99,85	100,15	101,05	9999,98	1010497,73	1425,51	4403,21	0,020	0,440	25,23

Fuerza [N]	Esfuerzo [MPa]	Deformación unitaria [mm/mm]
0	0	0
2294,77	0,229	0,001
2628,20	0,263	0,003
2922,40	0,292	0,004
3246,02	0,325	0,005
3451,96	0,345	0,006
3648,09	0,365	0,008
3795,19	0,380	0,009
3912,87	0,391	0,010
4030,55	0,403	0,011
4128,62	0,413	0,013
4216,88	0,422	0,014
4285,53	0,429	0,015
4334,56	0,433	0,016
4363,98	0,436	0,018
4383,59	0,438	0,019
4403,21	0,440	0,020

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Edificación 1, Centro Histórico Cuenca $\,\,2^{o}\,\,53^{'}\,\,56.99^{''}\,\,S\,\,$ - $\,\,79^{o}\,\,0^{'}\,\,31.63^{''}\,\,O.$

29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [N/mm²]	Módulo de elasticidad [N/mm²]
102,05	101,30	99,90	10337,67	1032732,73	1414,72	7266,76	0,050	0,703	24,62
0.8									

0.8											
0.7									•	•	
0.6											\dashv
6.0 Waj											\dashv
Esfuerzo [MPa]											\dashv
0.3											
0.2	-/-										
0.1	1										
0.	0 (0.005	0.01	0.015	0.02	0.025	0.03	0.035	0.04	0.045	0.05
					Defor	macion unitari	a [mm/mm]				

Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]	Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]
0	0	0			
2638,00	0,255	0,001	6570,49	0,636	0,024
3226,40	0,312	0,003	6707,78	0,649	0,025
3618,67	0,350	0,004	6815,66	0,659	0,027
3922,68	0,379	0,005	6913,72	0,669	0,028
4216,88	0,408	0,006	6982,37	0,675	0,029
4520,89	0,437	0,008	7060,82	0,683	0,031
4717,02	0,456	0,009	7109,86	0,688	0,032
4913,16	0,475	0,010	7139,28	0,691	0,033
5109,29	0,494	0,011	7178,50	0,694	0,034
5295,62	0,512	0,013	7207,92	0,697	0,036
5432,91	0,526	0,014	7217,73	0,698	0,037
5609,43	0,543	0,015	7227,54	0,699	0,038
5776,15	0,559	0,017	7247,15	0,701	0,039
5942,86	0,575	0,018	7227,54	0,699	0,041
6089,96	0,589	0,019	7207,92	0,697	0,042
6227,25	0,602	0,020	7237,34	0,700	0,043
6344,93	0,614	0,022	7256,96	0,702	0,048
6472,42	0,626	0,023	7266,76	0,703	0,050

Asesor - Director laboratorio LACB

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

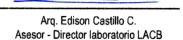
Fecha:

29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unit. [mm/mm]	Esfuerzo máximo [N/mm²]	Módulo de elasticidad [N/mm²]	Fuerza [N]	Esfuerzo [MPa]	Deformación un [mm/mm]
94,85	98,80	98,43	9371,18	922358,39	1241,02	4118,81	0,04	0,44	9,19	0	0	0
										1912,31	0,204	0,001
										2020,18	0,216	0,003
										2137,86	0,228	0,004
.45										2245,73	0,240	0,005
	İ			İ						2353,61	0,251	0,006
0.4										2451,68	0,262	0,008
					_					2549,74	0,272	0,009
.35									_	2667,42	0,285	0,010
										2785,10	0,297	0,012
0.3										2922,40	0,312	0,013
										3040,08	0,324	0,014
25										3147,95	0,336	0,015
										3265,63	0,348	0,017
n 2 -									_	3334,28	0,356	0,018
0.2										3432,35	0,366	0,019
.15										3540,22	0,378	0,021
.13 /										3628,48	0,387	0,022
0.1										3706,93	0,396	0,023
0.1										3795,19	0,405	0,025
.05										3844,23	0,410	0,026
.03										3893,26	0,415	0,027
0										3952,10	0,422	0,028
0	0.005		0.01	0.015	0.0	0.02	5 0.03	0.035	0.04	4001,13	0,427	0,030
•	0.000	,	0.01			itaria [mm/mm]	0.00	5.000	0.01	4030,55	0,430	0,031
				Do	.c.maoioir ui	[minimin]				4069,78	0,434	0,032
										4089,39	0,436	0,034
										4118,81	0,440	0,039


Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O. Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE - EDIFICACIÓN 1

E. 080 ADOBE

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [N/mm²]	Módulo de elasticidad [N/mm²]
MUESTRA 1	100,90	88,90	100,28	8970,01	899467,75	1353,90	2500,71	0,010	0,28	8,06
MUESTRA 2	103,55	105,35	103,48	10908,99	1128808,00	1668,39	9600,76	0,028	0,88	53,71
MUESTRA 3	99,95	98,75	96,13	9870,06	948759,76	1356,41	3500,99	0,028	0,35	9,78
MUESTRA 4	99,85	100,15	101,05	9999,98	1010497,73	1425,51	4403,21	0,020	0,44	25,23
MUESTRA 5	102,05	101,30	99,90	10337,67	1032732,73	1414,72	7266,76	0,050	0,70	24,62
MUESTRA 6	94,85	98,80	98,43	9371,18	922358,39	1241,02	4118,81	0,039	0,44	9,19
						Media total	5231,87	0,03	0,52	17,00
						Desviación es	stándar (módulo d	le elasticidad)		2,13
						Media (e	sfuerzo de cuatro	mejores muestras)	0,62	

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79° 0′ 31.63′′ O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

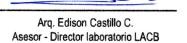
Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
395,0	195,0	140,0	27,0	341,0	113,7	27300,0	10783500,0	44590000,0	15850,0	0	0	0	0	0	0	0
										1676,95	0,051	286124,53	95306,41	1,78E-07	0,150	842702,11
										1745,59	0,102	143062,30	99207,85	7,10E-07	0,156	219299,73
0.32									_	1882,89	0,152	95374,91	107010,71	1,60E-06	0,168	105132,50
5.52										2088,83	0,203	71531,23	118715,01	2,84E-06	0,186	65605,19
0.3								_/_		2245,73	0,254	57225,03	127632,57	4,44E-06	0,200	45141,33
										2422,25	0,305	47687,57	137664,82	6,39E-06	0,216	33812,23
0.28										2647,81	0,356	40875,11	150483,81	8,70E-06	0,236	27154,86
										3079,30 3540,22	0,406 0,457	35765,77 31791,84	175007,10 201202,43	1,14E-05 1,44E-05	0,275 0,316	24178,54
0.26									1	3340,22	0,457	31791,04	201202,43	1,44E-00	0,310	21963,59
0.24 - 0.22 - 0.22 - 0.2																
§ 0.22									_							
0.2																
0.18																
0.10																
0.16																
0.14				0.5		1			1.5							
				Defo	rmación unitaria	[mm/mm]		×	10 ⁻⁵							

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Fecha:

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.


29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

rista b mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticida [N/mm²]
396,3	195,0	130,0	28,0	340,3	113,4	25350,0	10044937,5	35701250,0	15755,0	0	0	0	0	0	0	0
										2294,77	0,838	17265,10	130132,46	4,85E-05	0,237	4880,19
										2618,39	0,864 0,889	16757,33 16278,57	148484,47 152933,44	5,15E-05	0,270	5245,70
										2696,84 2834,14	1,143	12661,34	160719,15	5,46E-05 9,03E-05	0,278 0,293	5098,55 3241,39
0.5										2912,59	1,397	10359,51	165168,12	1,35E-04	0,301	2229,97
										3049,88	1,422	10174,54	172953,82	1,40E-04	0,315	2252,44
										3206,79	1,448	9996,07	181851,77	1,45E-04	0,331	2285,96
0.45									1	3363,70	1,473	9823,75	190749,71	1,50E-04	0,347	2315,84
										3599,06	1,499	9657,27	204096,63	1,55E-04	0,372	2394,61
										3805,00	1,524	9496,34	215775,19	1,60E-04	0,393	2447,95
0.4										3981,52	1,549	9340,69	225785,37	1,66E-04	0,411	2478,23
							/			4167,85	1,575	9190,05	236351,69	1,71E-04	0,430	2511,20
										4305,14	1,600	9044,21	244137,39	1,77E-04	0,444	2512,24
0.35										4481,66	1,626	8902,92	254147,58	1,83E-04	0,463	2534,16
										4599,34	1,651	8765,97	260821,04	1,88E-04	0,475	2521,31
0.3									_	4618,96	1,676	8633,18	261933,28	1,94E-04	0,477	2455,92
0.25																
0.2																

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99′′ S - 79° 0′ 31.63′′ O.

Fecha: 29 de septiembre del 2016

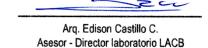
RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

ESPÉCIM	MEN: EDIF	ICACIÓN1	1-UNIDAD DI	E ADOBE-FL	EXIÓN-MUES	TRA3			
Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Inercia [mm ⁴]	Peso [g]
398,0	193,3	134,3	29,0	340,0	113,3	25943,8	10325637,4	38965579,5	15865,5
0.26									\neg
0.24	-						•		-
0.22	-								
0.2 ·									-
0.18 kg	-								-
Esfuerzo axial [N/mm²]									-
0.14									_
0.12	-/								_

1.5

2


Deformación unitaria [mm/mm]

2.5

3

3.5

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
0	0	0	0	0	0	0
967,92	0,025	568897,65	54848,87	4,46E-08	0,094	2116271,05
1349,40	0,051	284448,84	76466,11	1,79E-07	0,132	737585,91
1679,89	0,076	189632,58	95193,64	4,02E-07	0,164	408102,33
1819,14	0,102	142224,46	103084,76	7,14E-07	0,178	248586,89
1993,70	0,127	113779,59	112976,45	1,12E-06	0,195	174361,96
2143,74	0,152	94816,35	121478,86	1,61E-06	0,209	130197,35
2305,56	0,178	81271,18	130648,13	2,19E-06	0,225	102875,31
2426,18	0,203	71112,31	137483,40	2,86E-06	0,237	82884,72
2468,35	0,229	63210,96	139872,96	3,62E-06	0,241	66627,44

 $\times 10^{-6}$

0.08

0.5

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA4

Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

29 de septiembre del 2016 Fecha:

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	P6
391,0	188,0	132,5	25,0	341,0	113,7	24910,0	9739810,0	36443849,0	156
0.19									
0.18									
0.17									\dashv
0.16									\dashv
0.15									4
0.14									_
0.15 -									
0.12	/								
0.11									7
0.1									-
0.09 L	-	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
U		0.2	0.4		o.s mación unitaria		1.2		10 ⁻⁶

Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
0	0	0	0	0	0	0
900,26	0,025	572249,03	51164,50	4,44E-08	0,093	2095471,18
1142,48	0,051	286124,53	64930,98	1,78E-07	0,118	664821,37
1384,71	0,076	190749,71	78697,46	3,99E-07	0,143	358122,23
1495,52	0,102	143062,30	84995,49	7,10E-07	0,155	217564,99
1663,22	0,127	114449,87	94526,13	1,11E-06	0,172	154854,95
1764,23	0,152	95374,91	100266,81	1,60E-06	0,182	114069,10

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 1, Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554


ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA5 Arista b [mm] Arista a [mm] Distancia y [mm] Distancia L Distancia L/3 Área transversal [mm²] Volumen [mm³] Inercia [mm⁴] Peso [mm⁴] 394,5 189,5 129,3 27,0 340,5 113,5 24492,9 9662439,2 34097271,2 14846,5										
[mm] [mm] [mm] [mm] [mm] [mm] [mm²] [mm³] [mm⁴] [g] 394,5 189,5 129,3 27,0 340,5 113,5 24492,9 9662439,2 34097271,2 14846,5	ESPÉCIN	MEN: EDIF	ICACIÓN1	-UNIDAD DI	E ADOBE-FL	EXIÓN-MUES	TRA5			
0.19										
0.18	394,5	189,5	129,3	27,0	340,5	113,5	24492,9	9662439,2	34097271,2	14846,5
0.16	0.18 - 0.17 -									

F	uerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
	0	0	0	0	0	0	0
10	058,14	0,025	570572,11	60049,61	4,45E-08	0,114	2556630,44
13	281,74	0,051	285286,07	72738,50	1,78E-07	0,138	774215,99
18	560,25	0,076	190190,74	88543,96	4,01E-07	0,168	418865,18
10	636,74	0,102	142643,07	92884,89	7,12E-07	0,176	247162,74
1	715,19	0,127	114114,48	97337,14	1,11E-06	0,184	165766,41
17	742,65	0,152	95095,43	98895,42	1,60E-06	0,187	116958,50

1.8

 $\times 10^{-6}$

0.13

0.12

0.11

0.2

0.4

0.6

8.0

Deformación unitaria [mm/mm]

1.2

1.4

1.6

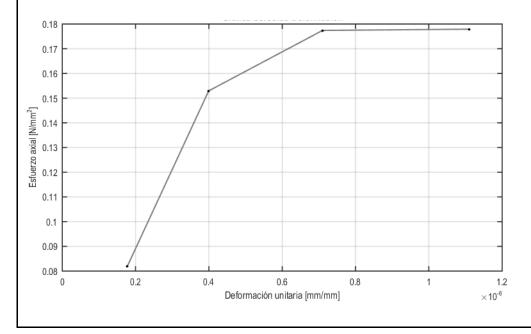
Universidad de Cuenca Facultad de Arquitectura y Urbanismo

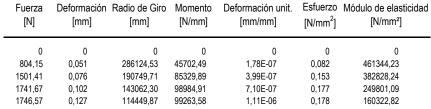
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

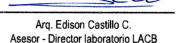
ESPÉCIMEN: EDIFICACIÓN1-UNIDAD DE ADOBE-FLEXIÓN-MUESTRA6

Fecha:


Ubicación: Edificación 1. Centro Histórico Cuenca 2º 53′ 56.99″ S - 79º 0′ 31.63″ O.


29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE


NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deforr [m
391,0	185,8	134,3	25,0	341,0	113,7	24936,9	9750342,6	37453331,9	14655,0	0	0	0	0	
										804,15 1501,41	0,051 0,076	286124,53 190749,71	45702,49 85329,89	;

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 1, Centro Histórico Cuenca 2º53'56.99" S - 79º0'31.63" O.

Fecha: 29 de septiembre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE - EDIFICACIÓN 1

NTE INEN 2554

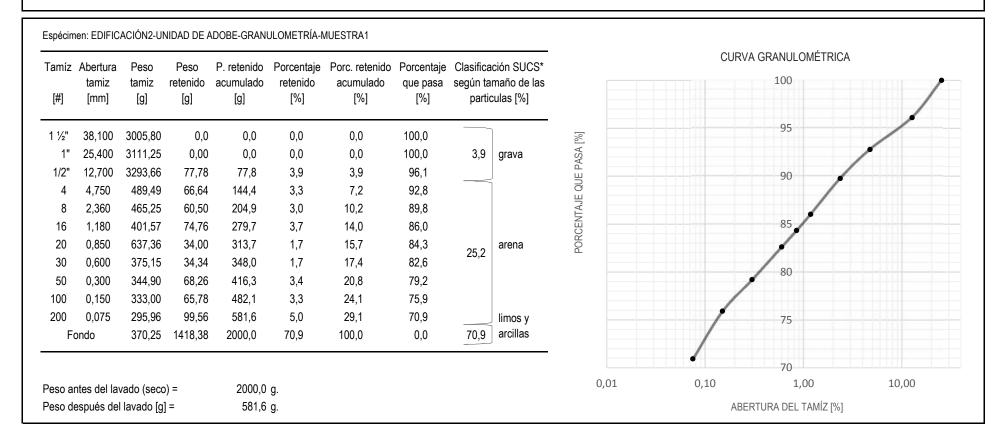
Espécimen	Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Peso [g]	Fuerza max. [N]	Deformación unit. [mm/mm]	Esfuerzo max [N/mm²]
MUESTRA 1	395	195	140	27	341,0	113,7	27300	10783500	15850,0	3540,2	1,44E-05	0,32
MUESTRA 2	396	195	130	28	340,3	113,4	25350	10044938	15755,0	4619,0	1,94E-04	0,48
MUESTRA 3	398	193	134	29	340,0	113,3	25944	10325637	15865,5	2468,3	3,62E-06	0,24
MUESTRA 4	391	188	133	25	341,0	113,7	24910	9739810	15690,0	1764,2	1,60E-06	0,18
MUESTRA 5	395	190	129	27	340,5	113,5	24493	9662439	14846,5	1742,7	1,60E-06	0,19
MUESTRA 6	391	186	134	25	341,0	113,7	24937	9750343	14655,0	1746,6	1,11E-06	0,18
								Media 4 mejo	ores muestra:	3098	5,34E-05	0,30
								Media total		2647	3,61E-05	0,26

Tesis:

Ensayo realizado por:

Caracterización física y mecánica del adobe en el cantón Cuenca.

Eddy Aguilar y Rosa Quezada.


Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

Fecha: 14 de octubre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

UNIDAD DE ADOBE

SUCS: Sistema Unificado de Clasificación de suelo.

Arg. Edison Castillo C. Asesor - Director laboratorio LACB

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O. Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

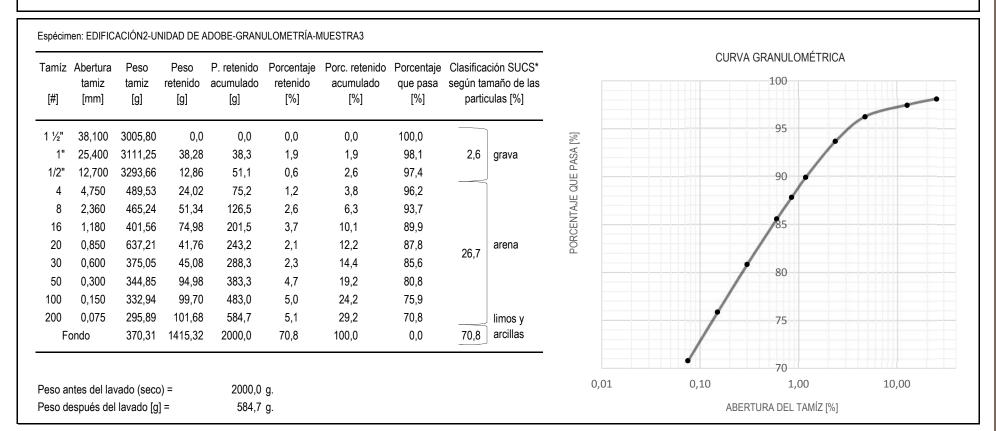
Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 14 de octubre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

amíz [#]	Abertura tamiz [mm]	Peso tamiz [g]	Peso retenido [g]	P. retenido acumulado [g]	Porcentaje retenido [%]	Porc. retenido acumulado [%]	Porcentaje que pasa [%]	según ta	ción SUCS* maño de las culas [%]		COP	RVA GRANULOMÉTRICA 100	
1 ½"	38,100	3005,80	0,0	0,0	0,0	0,0	100,0			[%]		95	
1"	25,400	3111,25	0,00	0,0	0,0	0,0	100,0	2,1	grava	PASA [%]		90	
1/2"	12,700	3293,66	42,40	42,4	2,1	2,1	97,9			E E			
4	4,750	489,53	40,74	83,1	2,0	4,2	95,8			PORCENTAJE QUE		<i>(</i> -	
8	2,360	465,24	47,72	130,9	2,4	6,5	93,5			TAD		85	
16	1,180	401,56	71,24	202,1	3,6	10,1	89,9			SCE			
20	0,850	637,21	39,68	241,8	2,0	12,1	87,9	27,9	arena	PO9		80	
30	0,600	375,05	47,20	289,0	2,4	14,4	85,6	21,5					
50	0,300	344,85	98,04	387,0	4,9	19,4	80,6				/	75	
100	0,150	332,94	106,76	493,8	5,3	24,7	75,3						
200	0,075	295,89	106,74	600,5	5,3	30,0	70,0		limos y			70	
Fo	ondo	370,31	1399,48	2000,0	70,0	100,0	0,0	70,0	arcillas			70	
												65	
oeso ar	ntes del lav	vado (seco	ı) =	2000,0	a					0,01	0,10	1,00	10,00
	espués del	•	•	600,5	-						Δ	BERTURA DEL TAMÍZ [%]	

SUCS: Sistema Unificado de Clasificación de suelo.



Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 14 de octubre del 2016

GRANULOMETRÍA EN UNIDAD DE ADOBE

NTE INEN 696 / NTE INEN 697

^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 14 de octubre del 2016

GRANULOMETRÍA PROMEDIO EN UNIDAD DE ADOBE - EDIFICACIÓN 2

NTE INEN 696 / NTE INEN 697

		MUES	STRA 1	MUES	STRA 2	MUES	STRA 3		PROME	DIO		CURVA GRANULOMÉTRICA	
Γamíz [#]	Abertura tamiz [mm]	Porc. reternido [%]	Porc. que pasa [%]	S	ificación UCS* [%]	100	/						
1 ½"	38,100	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0			<u>95</u>	
1"	25,400	0,0	100,0	0,0	100,0	0,0	100,0	0,0	100,0	2,2	grava	PASA [%]	
1/2"	12,700	3,9	96,1	2,1	97,9	0,6	99,4	2,2	97,8			90 A	
4	4,750	3,3	92,8	2,0	95,8	1,2	98,2	2,2	95,6			PORCENTAJE QUE	
8	2,360	3,0	89,8	2,4	93,5	2,6	95,6	2,7	92,9			<u>F</u>	
16	1,180	3,7	86,0	3,6	89,9	3,7	91,8	3,7	89,3			N	
20	0,850	1,7	84,3	2,0	87,9	2,1	89,8	1,9	87,3	26,6	arena	NO A	
30	0,600	1,7	82,6	2,4	85,6	2,3	87,5	2,1	85,2	20,0		80	
50	0,300	3,4	79,2	4,9	80,6	4,7	82,7	4,4	80,9				
100	0,150	3,3	75,9	5,3	75,3	5,0	77,8	4,5	76,3			75	
200	0,075	5,0	70,9	5,3	70,0	5,1	72,7	5,1	71,2		limos y		
	ondo	70,9	0,0	70,0	0,0	70,8	1,9	70,6	0,6	70,6	arcillas		

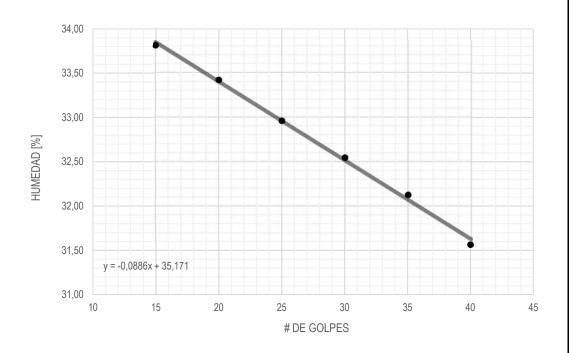
^{*} SUCS: Sistema Unificado de Clasificación de suelo.

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación:

Edificación 2, Centro Histórico Cuenca 2º 53' 51.43" S - 79º 0' 41.79" O.

Fecha: 14 de octubre del 2016


CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

UNIDAD DE ADOBE

Espécimen: EDIFICACIÓN2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA1

Número de golpes	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
15	43,06	59,55	55,38	33,81
20	43,22	62,26	57,49	33,42
30	46,10	62,59	58,54	32,54
35	49,30	69,68	64,72	32,12
40	43,10	65,03	59,77	31,56

Límite Líquido (25 golpes) =

32,96 %

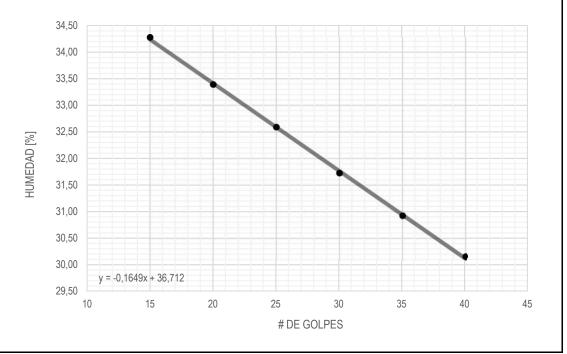
UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O.


Fecha: 14 de octubre del 2016

CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

Espécimen: EDIFICACIÓN2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA2

	Ni/mana ala	Mass	Mana mainianta .	Mana mainianta .	l luma a da d
	Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
	goipes	[g]	[g]	[g]	[%]
		107	.0.2	10.7	
,	45	0.00	00.44	07.00	0.4.00
	15	9,20	33,41	27,23	34,28
	20	5,36	24,46	19,68	33,39
	30	46,28	67,45	62,35	31,73
	35	5,20	23,87	19,46	30,93
	40	46,88	66,69	62,10	30,16

Límite Líquido (25 golpes) =

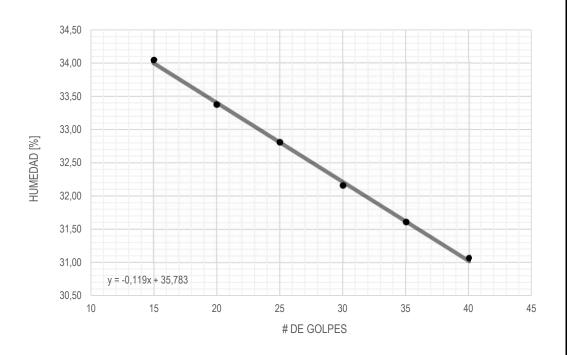
32,59 %

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Edificación 2, Centro Histórico Cuenca 2º 53' 51.43" S - 79º 0' 41.79" O. Ubicación:

Fecha: 14 de octubre del 2016


CASA GRANDE LÍMITE LÍQUIDO EN UNIDADES DE ADOBE

NTE INEN 691

UNIDAD DE ADOBE

Espécimen: EDIFICACIÓN2-UNIDAD DE ADOBE-CASA GRANDE-MUESTRA3

Número de golpes	Masa recipiente	Masa recipiente + muestra húmeda	Masa recipiente + muestra seca	Humedad
90.000	[g]	[9]	[g]	[%]
15	5,88	26,95	21,60	34,04
20	7,07	28,47	23,12	33,37
30	7,44	29,94	24,47	32,16
35	5,70	19,07	15,86	31,61
40	5,42	31,93	25,65	31,07

Límite Líquido (25 golpes) =

32,81 %

UNIVERSIDAD DE CUENÇA FACULTAD DE ARQUITECTURA

Tesis:

Caracterización física y mecánica del adobe en el cantón Cuenca.

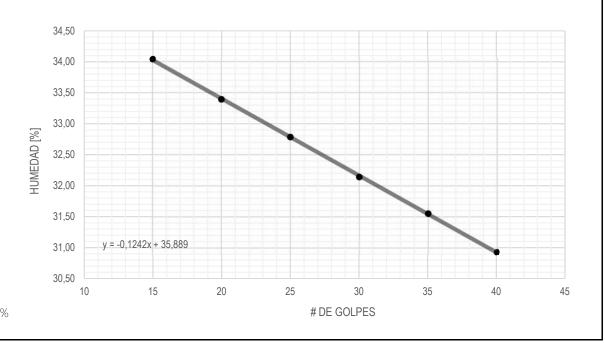
Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O.

Fecha:


14 de octubre del 2016

CASA GRANDE

PROMEDIO DEL LÍMITE LÍQUIDO EN TRES MUESTRAS DE UNIDADES DE ADOBE - EDIFICACIÓN 2

NTE INEN 691

Número de golpes	Muestra 1 Humedad [%]	Muestra 2 Humedad [%]	Muestra 3 Humedad [%]	Promedio Humedad [%]
15	33,81	34,28	34,04	34,04
20	33,42	33,39	33,37	33,39
30	32,54	31,73	32,16	32,14
35	32,12	30,93	31,61	31,55
40	31,56	30,16	31,07	30,93

Límite Líquido promedio de las 3 muestras (25 golpes) =

32,78 %

Tesis:	Caracterización física y mecánica del adobe en el cantón Cuenca.	Ubicación:	Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.
Ensayo realizado por:	Eddy Aguilar y Rosa Quezada.	Fecha:	14 de octubre del 2016

LÍMITE PLÁSTICO EN UNIDADES DE ADOBE

NTE INEN 692

Espécimen	Masa recipiente [g]	Masa recipiente + muestra húmeda [g]	Masa recipiente + muestra seca [g]	Humedad [%]
EDIFICACIÓN2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA1	49,96	51,56	51,23	25,98
EDIFICACIÓN2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA2	45,86	46,78	46,59	26,03
EDIFICACIÓN2-UNIDAD DE ADOBE-LÍMITE PLÁSTICO-MUESTRA3	43,06	44,23	43,99	25,81
			Promedio	25,94

ÍNDICE DE PLASTICIDAD EN UNIDADES DE ADOBE

Espécimen	Límite líquido (LL) promedio	Límite plástico (PL)	Índice de
	de 3 muestras	promedio de 3 muestras	plasticidad
	[%]	[%]	[%]
EDIFICACIÓN2-UNIDAD DE ADOBE-ÍNDICE DE PLASTICIDAD	32,78	25,94	6,84

Arq. Edison Castillo C.
Asesor - Director laboratorio LACB

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca.

Solicitado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

Fecha: 14 de octubre del 2016

CONTENIDO DE MATERIA ORGÁNICA POR ÍGNICIÓN - EDIFICACIÓN 2

AASTHO T-267-86

Espécimen	EDIFICACIÓN2-ADOBE- IGNICIÓN-MUESTRA1 [%]	EDIFICACIÓN2-ADOBE- IGNICIÓN-MUESTRA2 [%]	EDIFICACIÓN2-ADOBE- IGNICIÓN-MUESTRA3 [%]	Promedio [%]
EDIFICACIÓN2-ADOBE-IGNICIÓN	7,49	7,40	7,35	7,41

Dra. Guillermina Pauta Química - Analista UNIVERSIDAD DE CUENCA Facultad de Ingeniería LABORATORIO DE INGENIERIA SANITARIA

Universidad de Cuenca Facultad de Arquitectura y Urbanismo

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O.

Fecha: 14 de octubre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

ESPÉCIMEN: EDIFICACIÓN2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA1 Área Módulo de elasticidad Deformación unit. Arista a Arista b Arista h Volumen Peso Fuerza máxima Deformación unit. Esfuerzo máximo Fuerza Esfuerzo [mm²] [g] [N] [MPa] [mm] [mm] [mm] [mm³] [N] [mm/mm] [N/mm²] [N/mm²] [mm/mm] 93,35 94,85 88,45 8854,2475 783158,19 1142,34 9532,1 0.059 1,077 27,38 0 0 0 1549.46 0,175 0.003 2020,18 0,228 0,006 1.2 2490.90 0.281 0.009 2824,33 0,319 0,011 3363,70 0,380 0,014 4001,13 0,452 0,017 4687,60 0,529 0,020 5374.07 0.607 0.023 0.8 6070,35 0,686 0,026 Esfuerzo [MPa] 6786,24 0,766 0,029 7482,51 0,845 0,032 8090,53 0,914 0,034 8453,38 0,955 0,037 8757.38 0.989 0.040 0.4 8973,13 1.013 0.043 9179,07 1,037 0,046 0.2 9316,37 1,052 0,049 9463.47 1.069 0,052 9502,69 1,073 0,055 9532,11 1,077 0,059 0.01 0.02 0.03 0.04 0.05 0.06 Deformacion unitaria [mm/mm]

Tesis: Ensayo realizado por:

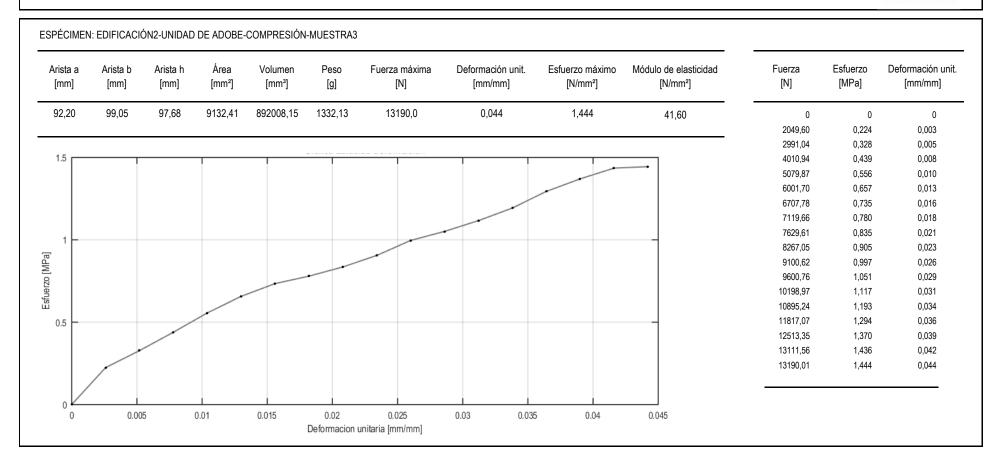
Caracterización física y mecánica del adobe en el cantón Cuenca. Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

Fecha: 14 de octubre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unit. [mm/mm]	Esfuerzo máximo [N/mm²]	Módulo de elasticidad [N/mm²]	Fuerza [N]	Esfuerzo [MPa]	Deformación uni [mm/mm]
94,35	95,00	97,35	8963,25	872572,39	1303,11	13091,9	0,030	1,461	122,45	0	0	0
										4275,72	0,477	0,003
										7139,28	0,797	0,005
1.5								-		8620,09	0,962	0,008
										9738,05	1,086	0,010
										10552,01	1,177	0,013
										11287,51	1,259	0,016
										12003,40	1,339	0,018
1										12523,16	1,397	0,021
										12807,55	1,429	0,023
										12944,84	1,444	0,026
	/									13062,52 13091,94	1,457 1,461	0,029 0,030
0.5										13091,34	1,401	0,030


Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Edificación 2, Centro Histórico Cuenca 2º 53' 51.43" S - 79º 0' 41.79" O. Ubicación:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Fecha: 14 de octubre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Tesis: Ensayo realizado por: Caracterización física y mecánica del adobe en el cantón Cuenca. Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

Fecha:

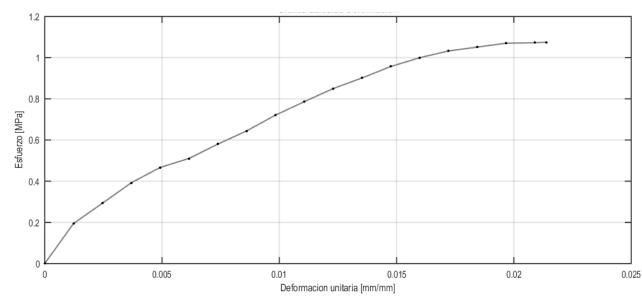
14 de octubre del 2016

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unit. [mm/mm]	Esfuerzo máximo [N/mm²]	Módulo de elasticidad [N/mm²]	Fuerza [N]	Esfuerzo [MPa]	Deformación un [mm/mm]
96,25	103,15	99,13	9928,19	984131,59	1435,00	14837,54	0,019	1,494	139,54	0	0	0
										4658,18	0,469	0,003
										6433,20	0,648	0,004
1.5				Ī		1	-		-	9659,60	0,973	0,005
										11552,29	1,164	0,006
										12631,03	1,272	0,008
										13160,59	1,326	0,009
										13592,09	1,369	0,010
1										13778,41	1,388	0,012
·			/							14249,14	1,435	0,013
										14602,18	1,471	0,014
										14641,40	1,475	0,015
0.5										14837,54	1,494	0,019
0.5												

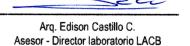
Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

ESPÉCIMEN: EDIFICACIÓN2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA5


Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43″ S - 79º 0′ 41.79″ O.

14 de octubre del 2016 Fecha:


RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máxima [N]	Deformación unit. [mm/mm]	Esfuerzo máximo [N/mm²]	Módulo de elasticidad [N/mm²]
99,80	98,95	103,28	9875,21	1019862,31	1534,00	10620,7	0,021	1,075	73,76
4.0									

Fuerza [N]	Esfuerzo [MPa]	Deformación unit. [mm/mm]
0	0	0
1922,11	0,195	0,001
2892,98	0,293	0,002
3873,65	0,392	0,004
4609,15	0,467	0,005
5040,64	0,510	0,006
5727,11	0,580	0,007
6364,55	0,644	0,009
7119,66	0,721	0,010
7766,91	0,787	0,011
8394,54	0,850	0,012
8904,48	0,902	0,014
9453,66	0,957	0,015
9875,35	1,000	0,016
10198,97	1,033	0,017
10385,30	1,052	0,018
10571,62	1,071	0,020
10591,24	1,073	0,021
10620,66	1,075	0,021

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación: Fecha: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O. 14 de octubre del 2016

1 001.01

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE

E. 080 ADOBE

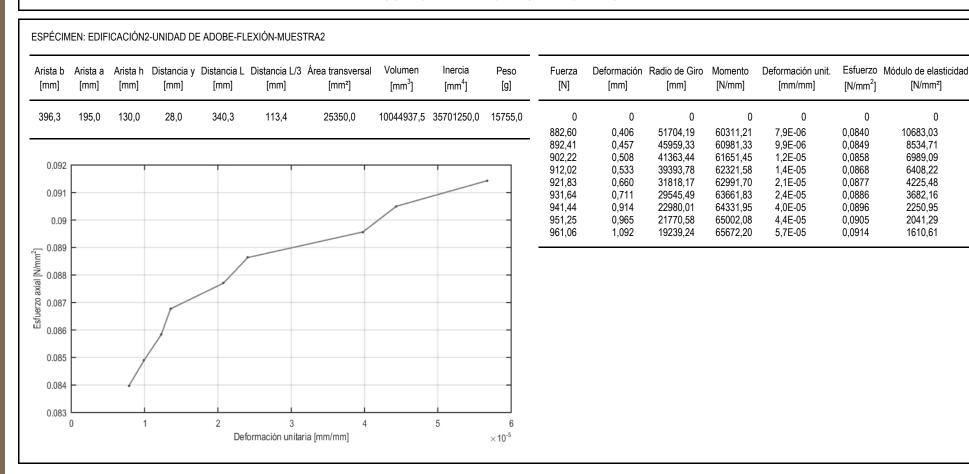
ESPÉCIMEN: EDIFICACIÓN2-UNIDAD DE ADOBE-COMPRESIÓN-MUESTRA6 Área Fuerza Esfuerzo Deformación unit. Arista a Arista b Arista h Volumen Peso Fuerza máxima Deformación unit. Esfuerzo máximo Módulo de elasticidad [mm] [g] [N] [N] [MPa] [mm/mm] [mm] [mm] [mm²] [mm³] [mm/mm] [N/mm²] [N/mm²] 97,25 102,10 103,28 9929,23 1025440,71 1582,41 13405,8 0,021 1,350 72,02 0 0 0 3657,90 0,368 0,001 4618,96 0,465 0,002 5501,56 0.554 0.004 1.4 0,634 0,005 6295,90 6923,53 0,697 0,006 7766,91 0,782 0,007 1.2 8414,15 0,847 0,009 0,010 8992,74 0,906 9561,53 0,963 0,011 10140,13 0,012 1,021 10816,79 1,089 0,014 Esfuerzo [MPa] 11503,26 1,159 0,015 11993.59 1.208 0.016 12513,35 1,260 0,017 13003,68 1,310 0,018 0.020 13248.85 1,334 13366.53 0.021 1,346 0.4 13405,76 1,350 0,021 0.2 0.005 0.01 0.015 0.02 0.025 Deformacion unitaria [mm/mm]

UNIDAD DE ADOBE

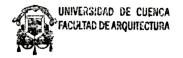
Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Ubicación: Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada. Eddy Aguilar y Rosa Quezada.

RESISTENCIA A LA COMPRESIÓN EN UNIDADES DE ADOBE - EDIFICACIÓN 2

Espécimen	Arista a [mm]	Arista b [mm]	Arista h [mm]	Área [mm²]	Volumen [mm³]	Peso [g]	Fuerza máx. [N]	Deformación unit. [mm/mm]	Esfuerzo máx. [N/mm²]	Módulo de elasticidad [N/mm²]
MUESTRA 1	93,35	94,85	88,45	8854,25	783158,19	1142,34	9532,11	0,059	1,08	27,38
MUESTRA 2	94,35	95,00	97,35	8963,25	872572,39	1303,11	13091,94	0,030	1,46	122,45
MUESTRA 3	92,20	99,05	97,68	9132,41	892008,15	1332,13	13190,01	0,044	1,44	41,60
MUESTRA 4	96,25	103,15	99,13	9928,19	984131,59	1435,00	14837,54	0,019	1,49	139,54
MUESTRA 5	99,80	98,95	103,28	9875,21	1019862,31	1534,00	10620,66	0,021	1,08	73,76
MUESTRA 6	97,25	102,10	103,28	9929,23	1025440,71	1582,41	13405,76	0,021	1,35	72,02
						Media total	12446,34	0,03	1,32	68,50
						Desviación es	stándar (módulo d	de elasticidad)		1,86
						Media (e	sfuerzo de cuatro	mejores muestras)	1,44	


Edificación 2. Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79° 0′ 41.79′′ O. Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación:

Eddy Aguilar y Rosa Quezada. Ensayo realizado por: Fecha: 14 de octubre del 2016


RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

0

Tesis: Caracterización física y mecánica del adobe en el cantón Cuenca. Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79º 0′ 41.79′′ O.

Ensayo realizado por: Eddy Aguilar y Rosa Quezada. Fecha: 14 de octubre del 2016

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

NTE INEN 2554

ESPÉCIM	IEN: EDIF	ICACIÓN:	2-UNIDAD DI	E ADOBE-FL	.EXIÓN-MUES	TRA3										
Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fuerza [N]	Deformación [mm]	Radio de Giro [mm]	Momento [N/mm]	Deformación unit. [mm/mm]	Esfuerzo [N/mm²]	Módulo de elasticidad [N/mm²]
398,0	193,3	134,3	29,0	340,0	113,3	25943,8	10325637,4	38965579,5	15865,5	0 1353,32	0 0,025	0 827263,79	0 92477,18	0 3,07E-08	0 0,116	0 3786467,83

Con un solo dato no es posible graficar el esfuerzo - deformación

Arq. Edison Castillo C. Asesor - Director laboratorio LACB

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis: Ensayo realizado por:

Eddy Aguilar y Rosa Quezada.

Ubicación: Edificación 2, Centro Histórico Cuenca 2º 53′ 51.43′′ S - 79° 0′ 41.79′′ O.

14 de octubre del 2016 Fecha:

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE

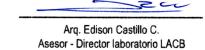
NTE INEN 2554

Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm ³]	Inercia [mm ⁴]	Peso [g]	Fu [
391,0	188,0	132,5	25,0	341,0	113,7	24910,0	9739810,0	36443849,0	15690,0	154
0.147										161
0.146	_								_	
0.145	-								_	
zo axial [N/mm/]	-									
zo axial										

9

Deformación unitaria [mm/mm]

10


11

12

13

 $\times 10^{-8}$

Fuerza	Deformación	Radio de Giro	Momento	Deformación unit.	Esfuerzo	Módulo de elasticidad
[N]	[mm]	[mm]	[N/mm]	[mm/mm]	[N/mm²]	[N/mm²]
0	0	0	0	0	0	0
1549,46	0,025	807209,66	104588,46	3,15E-08	0,141	4466362,94
1618,11	0,051	403604,85	109222,12	1,26E-07	0,147	1166060,00

0.142

0.141

0.14

5

6

Caracterización física y mecánica del adobe en el cantón Cuenca. Tesis:

Ensayo realizado por: Eddy Aguilar y Rosa Quezada.

Ubicación:

Edificación 2, Centro Histórico Cuenca 2º 53' 51.43" S - 79º 0' 41.79" O.

14 de octubre del 2016 Fecha:

RESISTENCIA A LA FLEXIÓN EN UNIDADES DE ADOBE - EDIFICACIÓN 2

NTE INEN 2554

UNIDAD DE ADOBE

Este ensayo cuenta con solo cuatro muestras por la dificultad de recuperar adobes enteros y en buen estado de esta edificación antigua

Espécimen	Arista b [mm]	Arista a [mm]	Arista h [mm]	Distancia y [mm]	Distancia L [mm]	Distancia L/3 [mm]	Área transversal [mm²]	Volumen [mm³]	Peso [g]	Fuerza max. [N]	Deformación unit. [mm/mm]	Esfuerzo max [N/mm²]
MUESTRA 1	500	250	130	45	410	136,7	32500	16250000	24000	Adobe sin da	tos, fracasó por debajo o	del umbral de falla
MUESTRA 2	500	255	130	45	410	136,7	33150	16575000	25875	961,1	5,68E-05	0,091
MUESTRA 3	500	227	145	45	410	136,7	32915	16457500	25616	1353,3	sin datos	0,116
MUESTRA 4	495	245	135	45	405	135,0	33075	16372125	24691	1618,1	1,26E-07	0,147
								Med	lia total	1311	2,84E-05	0,118
								Des	viación estár	ndar		0,029

^{*} Umbral de falla revisar anexo dos, donde se especifica las caracteristicas de la maquina de para ensayos a flexión