

UNIVERSIDAD DE CUENCA

FACULTAD DE CIENCIAS AGROPECUARIAS

MAESTRÍA EN REPRODUCCIÓN ANIMAL

"Efecto de la aplicación de eCG antes o después de la IATF sobre la tasa de preñez en vacas Holstein mestizas en la Provincia de Pastaza"

Tesis previa a la obtención del Título de Magister en Reproducción Animal

AUTOR:

Nelson René Ortiz Naveda MVZ. Esp. C.I. 1600360497

DIRECTOR:

Dr. Luis Eduardo Ayala Guanga PhD. C.I. 0102635463

CUENCA, ECUADOR 2017

RESUMEN

El objetivo del estudio fue determinar el efecto de la hormona gonadotropina coriónica equina (eCG) sobre el tamaño del folículo preovulatorio (FPO), cuerpo lúteo en el día 7 y 20 (CL7, CL20) y tasa de preñez a 35 días de vacas *Holstein friesian* mestizas en la provincia de Pastaza. Se aplicaron cuatro tratamientos (T): TA= DIB+BE+PG; TB= TA+ eCG (día 8); TC= TA + eCG (día 14) y TD= TA + eCG (día 8) + eCG (día 14), se usó un protocolo de inseminación artificial a tiempo fijo (IATF). Se utilizaron 100 vacas *Holstein* mestizas, multíparas en periodo posparto entre 60 a 150 días, condición corporal de 2.25 a 2.75; el sistema de alimentación se basó en pastoreo al sogueo con pasto gramalote (*Axonopus scoparius*). Para el análisis de datos se utilizó un modelo lineal general mixto, en el procedimiento GENMOD del SAS vw 9.3 (2013).

El FPO en el TA alcanzaron un diámetro de 15.86 mm y el TB, 15.33 mm (P>0.05). El tamaño del cuerpo lúteo fue mayor en TC, 19.23 mm y TD, 21.88 mm (P<0.01). En el día 20 el CL en el T4 tuvo un diámetro de 23.29 mm (P<0.01). La tasa de preñez fue TA: 64.5%; TB: 47.5%; TC:45,0% y TD: 58.1%, (P>0.05), no se encontró diferencia significativa. En condiciones de la región amazónica el tamaño del FPO, CL y la tasa de preñez, no se incrementó con la administración de eCG en la IATF.

Palabras clave: AMAZONÍA, ECG, FOLÍCULO, CUERPO LÚTEO, IATF

ABSTRACT

The objective of the investigation, was determine the influence exerted by equine chorionic gonadotropin (eCG) on the size of the pre ovulatory follicle (FPO) and corpus luteum (CL day 7 and day 20) in 100 dairy cows Holstein in Pastaza. The application of the eCG was performed with four treatments. Within a conventional protocol of IATF. Treatments: TA= DIB+ BE + PG; TB= TA+ eCG day 8; TC= TA + eCG day 14 y TD= TA + eCG day 8 + eCG day 14). We used 100 holstein cows multiparous in postpartum period between 60 to 150 days, 2.25-2.75 of body condition; the feeding system was based on grazing pasture (Axonopus scoparius). Statistical analysis was performed by a General Mixed Linear Model test, using the Proc gen mod procedure of SAS vw 9.4 (2013).

The results we obtain was for TA Size FPO (15.86 mm) and TB (15.33 mm) there's not significant differences in between treatments with eCG and with out eCG. (P>0.05). The size of CL7 in TC (19.23 mm) and TD (21.88 mm) they were the biggest CL at the time to retire of the DIB (P = 0.0118). At day 20 the CL at T4 had a diameter of 23.29 mm (P<0.01). The pregnancy rate was TA: 64.5%; TB: 47.5%; TC:45,0% y TD: 58.1%, (P>0.05). In the Amazon region the size of the FPO, CL and the pregnancy rate was not increased with the administration of eCG in the IATF.

Keywords: Amazon, eCG, follicle, corpus luteum. IATF.

CONTENIDO

RES	UMEN	2
ABS	TRACT	3
CON	ITENIDO	4
LIST	A DE TABLAS	6
LIST	A DE FIGURAS	7
AGR	ADECIMIENTOS	10
DED	ICATORIA	11
ABR	EVIATURAS Y SIMBOLOGIA	12
CAP	ITULO I: INTRODUCCIÓN	13
OI	BJETIVOS:	16
Ol	ojetivo General	16
Ol	ojetivos Específicos	16
Hi	pótesis	16
CAP	ITULO II: REVISIÓN BIBLIOGRÁFICA	17
2.1 <i>A</i>	Anestro Posparto en Vacas	17
2.2 F	Falla en la Detección de Celo	19
2.2	2.1 Factores asociados con la capacidad del animal	19
2.2	2.2 Clima	21
2.2	2.3 Raza	21
2.2	2.4 Amamantamiento	22
2.2	2.5 Nutrición	22
2.2.2	2 Factor Humano	22
2.2	2.2.1 Identificación	23
2.2	2.2.2 Lugar de detección	23
2.2	2.2.3 Frecuencia de detecciones	24
2.3	Gonadotrofina Coriónica Equina	24
2.4	Reconocimiento Materno Embrionario Bovino	26
2.5	Mortalidad Embrionaria en Bovinos	29
CAP	ITULO III: MATERIALES Y MÉTODOS	32
3.1	Materiales	32
3.	1.1 Materiales de campo	32

3.1.2 Materiales Químicos	32
3.1.3 Materiales Biológicos	32
3.2 Ubicación	32
3.3 Caracterización de la unidad de análisis	33
3.4 Metodología	33
3.4.1 Tratamiento A	34
3.4.2 Tratamiento B	34
3.4.3 Tratamiento C	35
3.4.4 Tratamiento D	36
3.5 Mediciones y evaluaciones de las variables en estudio	37
3.5.1 Ultrasonografía	37
3.5.2 Diseño Experimental y Estadístico	38
CAPITULO IV RESULTADOS	39
4.1. Tamaño (mm) del folículo Preovulatorio	39
4.2. Ovulación del folículo preovulatorio	40
4.3. Tamaño del cuerpo lúteo (mm) del día 7 post-ovulación	40
4.4 Tamaño del cuerpo lúteo (mm) del día 20 post-ovulación	41
4.5 Porcentaje de preñez	42
CAPITULO V: DISCUSIÓN	43
CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES	48
REFERENCIAS BIBLIOGRAFICAS	49
ANFXOS	60

LISTA DE TABLAS

Tabla 1. Media y error estándar del tamaño (mm) del folículo preovula	torio de los
tratamientos en estudio	398
Tabla 2. Porcentaje de ovulación del folículo preovulatorio de los trata	amientos en
estudio	4039
Tabla 3. Media y error estándar del tamaño del cuerpo lúteo (mm) del	día 7 post-
ovulación de los tratamientos en estudio	39
Tabla 4. Media y error estándar del tamaño del cuerpo lúteo (mm) del o	día 20 post-
ovulación de los tratamientos en estudio	410
Tabla 5. Porcentaje de preñez de los tratamientos en estudio	421

LISTA DE FIGURAS

Figura 1. Características relacionadas con la conducta y otros sínton	omas de celos.	
	20	
Figura 2: Diseño experimental para el Tratamiento A (Testigo)	343	
Figura 3. Diseño experimental para el Tratamiento B	354	
Figura 4. Diseño experimental para el Tratamiento C	365	
Figura 5. Diseño experimental para el Tratamiento D	376	

Universidad de Cuenca Cláusula de Propiedad Intelectual

Nelson René Ortiz Naveda, autor de la Tesis, "Efecto de la aplicación de eCG antes o después de la IATF sobre la tasa de preñez en vacas Holstein mestizas en la Provincia de Pastaza", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 16 de julio del 2017

Nelson René Ortiz Naveda MVZ. Esp.

C.I. 1600360497

Universidad de Cuenca Cláusula de Licencia y Autorización para Publicación en el Repositorio Institucional

Nelson René Ortiz Naveda, en calidad de autor y titular de los derechos morales y patrimoniales de la Tesis, "Efecto de la aplicación de eCG antes o después de la IATF sobre la tasa de preñez en vacas Holstein mestizas en la Provincia de Pastaza", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el Repositorio Institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 16 de julio del 2017

Nelson René Ortiz Naveda MVZ. Esp.

C.I. 1600360497

AGRADECIMIENTOS

Un profundo agradecimiento a mis Padres Nelson e Irma por brindarme todo su apoyo incondicional, a lo largo de mi trayectoria personal y profesional, fortaleciéndome cada día a cumplir esta meta tan anhelada.

A mis hermanos Gabriela, Lucía y José Antonio por su cariño, comprensión y motivación para cumplir mis metas.

A todos mis familiares y amigos que me ayudaron en las etapas complicadas de la vida.

Al Dr. Luis Ayala, Director de esta investigación por su guía fundamental durante toda la Tesis.

A todos los Ganaderos de la Provincia de Pastaza, quienes permitieron y colaboraron en la ejecución de la Investigación.

Nelson René Ortiz Naveda

DEDICATORIA

Dedico esta investigación a mi Hijo Nelson Eduardo, por ser el motor de mi vida por quién me esfuerzo todos los días, con su cariño y amor me conmueve a seguir adelante.

A mis Padres por su cariño, paciencia y amor, brindándome siempre su apoyo y son para mí un ejemplo de buenos valores, unión y perseverancia.

Nelson René Ortiz Naveda

ABREVIATURAS Y SIMBOLOGIA

BE Benzoato de Estradiol

CC Condición Corporal

CL Cuerpo Lúteo

DE Detección de Celo

DIB Dispositivo Intravaginal Bovino

E₂ Estradiol_{17β}

eCG Gonadotropina Coriónica Equina

FSH Hormona Folículo Estimulante

GnRH Hormona Liberadora de Gonadotrofinas

HHO Hipotálamo-Hipófisis-Ovario

IA Inseminación Artificial

IATF Inseminación Artificial a Tiempo Fijo

IM Intramuscular

LH Hormona Luteinizante

ME Mortalidad Embrionaria

mg Miligramos

P₄ Progesterona

 $PGF_{2\alpha}$ Prostaglandina $F_{2\alpha}$

UI Unidades Internacionales

US Ultrasonido

CAPITULO I: INTRODUCCIÓN

La Inseminación Artificial (IA), promueve el mejoramiento genético y ganancias económicas mediante el uso de material genético de toros de elite (Baruselli *et al.*, 2004). A pesar de los avances tecnológicos, la ejecución de los programas de IA basadas en la detección de celos se ve obstaculizada principalmente por anestro posparto y fallas en la detección de celos. (Bó *et al.*, 2007).

Para evitar problemas sobre la detección de celos en las ganaderías se han desarrollado protocolos de sincronización de la ovulación, que permiten además inseminar animales en un periodo establecido, estos tratamientos se conocen con el nombre de protocolos de Inseminación Artificial a Tiempo Fijo (IATF) (Baruselli *et al.*, 2012). Las terapias hormonales usada en la IATF se basa en Estradiol (E2) y Progesterona (P4), lo cual ha permitido controlar la dinámica folicular (Baruselli *et al.*, 2012). Sin embargo, dichos protocolos tienen un promedio de fertilidad del 35%, este porcentaje se ve afectado debido al manejo post parto (con el ternero al pie), alimentación y condición corporal. (Charris,, 2000).

En las ganaderías de la Provincia de Pastaza, las vacas permanecen junto con sus crías (ternero al pie), con un sistema de pastoreo rotacional al sogueo, en pasto Gramalote (Axonopus scoparius), se emplea un ordeño manual diario, durante el post parto presentan condición corporal baja, esto imposibilita que el animal restablezca su actividad ovárica dentro del periodo de espera voluntaria; finalmente, al encontrarse en sistemas extensivos la detección de los celos se complique aún más (Ortiz *et al.*, 2015).

Por lo antes indicado, es necesario buscar alternativas a estos protocolos de IATF que permitan mejorar el tamaño del folículo preovulatorio, cuerpo lúteo y la tasa de preñez de los animales tratados (Nuñez, 2014). Una alternativa podría ser la utilización de la Gonadotropina Coriónica equina (eCG), que al tener una acción gonadotropa (FSH-LH) estimularía el crecimiento folicular, la maduración final del folículo preovulatorio; así como, el crecimiento y desarrollo del cuerpo lúteo. (Aba *et al.*, 2013). Diversas alternativas se han planteado para mejorar la tasa de concepción mejorando las condiciones previas al servicio; sin embargo, una limitante ignorada es el alto porcentaje de pérdidas luego del servicio durante la preñez temprana. La mayoría de estas pérdidas ocurren durante el período embrionario de la gestación (Thatcher *et*

al., 1994; Vanroose *et al.*, 2000), gran parte de ellas se producen en los primeros días después de la fecundación y durante la implantación del embrión (Wathes, 1992).

Está demostrado que la tasa de fecundación luego de una inseminación en bovinos es cercana al 90% (Sartori *et al.*, 2010), mientras que la tasa de preñez a los 60 días por lo general no supera el 60–65%, (Diskin y Morris, 2008). Varios estudios, estimaron que la falla en la fertilización y perdidas embrionarias tempranas estaban en el rango de 20% y 45%, las perdidas embrionarias tardías y fetales entre 8% y 17,5%, mientras que los abortos variaron entre 1% y 4% (Humblot, 2001). Esto indica que la mayoría de las perdidas por mortalidad embrionaria se producen dentro de las primeras tres semanas de gestación similar a lo reportado por otros autores (Inskeep y Dailey, 2005; Diskin y Morris, 2008).

En base a lo antes expuesto, una estrategia para disminuir la mortalidad embrionaria seria a través de la estimulación de la producción de progesterona, previo al periodo crítico de la gestación bovina. Por este motivo aquellas estrategias que incrementen las concentraciones de progesterona por periodos prolongados pueden contribuir a aumentar la supervivencia del embrión. Algunos tratamientos podrían actuar generando Cuerpos Lúteos accesorios o incrementando la actividad del CL ya existente. Teniendo en cuenta que el patrón de ondas foliculares continua durante la gestación temprana (Guilbault *et al.*, 1986; Thatcher *et al.*, 1991) se podría inducir ovulación de esos folículos y generar CL accesorios que incrementen la concentración de progesterona (Thatcher *et al.*, 2002).

Según Cutaia *et al.*, (2009), para mejorar las tasas de preñez y pérdidas de la gestación una alternativa es la sincronización, estimulación del crecimiento folicular y formación de cuerpos lúteos accesorios. Dentro de este marco la implementación de programas de IATF donde se puede conjugar la aplicación de hormonas como la eCG, pueden proporcionar información sumamente valiosa, para mejorar la tasa de preñez en las ganaderías de la provincia de Pastaza.

La actividad del CL podría estar influenciada por las características del folículo ovulatorio durante su desarrollo previo (Vasconcelos *et al.*, 2001; Crowe, 2008). Debido a esto, es de interés el diseño de tratamientos de sincronización de la ovulación que aseguren el control de la dinámica folicular. La estimulación y sincronización del crecimiento folicular conjuntamente con la ovulación de folículos de

mayor diámetro y formación de cuerpos lúteos saludables, podría ser una buena alternativa para reducir las pérdidas durante la gestación temprana. Por tal motivo, la administración de Gonadotrofina Coriónica Equina (eCG) a los tratamientos actuales para IATF podría favorecer el desarrollo folicular final previo a la ovulación y obtener así una mejor actividad luteal. Por otra parte, esta hormona podría ser utilizada de nuevo, previo al periodo crítico como un soporte luteal adicional.

OBJETIVOS:

Objetivo General

Evaluar el efecto de la aplicación de eCG 2 días antes y 14 días después de la IATF, frente a la aplicación de una sola dosis de eGG en uno de los momentos elegidos dentro del protocolo, su efecto sobre el folículo preovulatorio, Cuerpo lúteo y tasa de preñez, en vacas Holstein mestizas con ternero al pie, alimentadas al pastoreo.

Objetivos Específicos

- Analizar el efecto de la administración de eCG dos días antes de la IATF, sobre el tamaño del: folículo preovulatorio, Cuerpo lúteo y la tasa de preñez en vacas mestizas
- 2. Valorar el efecto de la administración de eCG 14 días posteriores a la IATF sobre el tamaño del: Cuerpo lúteo y la tasa de preñez en vacas mestizas.
- 3. Evaluar el efecto de la combinación de la administración de eCG 2 días antes y 14 días después de la IATF sobre sobre el tamaño del: folículo preovulatorio, Cuerpo lúteo y la tasa de preñez en vacas mestizas.

Hipótesis

¿La asociación de 2 aplicaciones de eCG dos días antes o 14 días después de la IATF mejora el tamaño del folículo preovulatorio, Cuerpo lúteo y la tasa de preñez en relación a cuando se aplica una sola dosis de eCG en uno de los momentos elegidos?

CAPITULO II: REVISIÓN BIBLIOGRÁFICA

2.1 Anestro Posparto en Vacas

El anestro postparto es una alteración reproductiva que afecta los rebaños bovinos, las regiones tropicales y subtropicales de América, originando importantes pérdidas económicas por el retraso en la preñez, aumento del intervalo entre partos y por reducción de la vida productiva de las hembras bovinas (Soto *et al.*, 2000).

La duración del anestro postparto no está determinada por la emergencia de las ondas foliculares, sino más bien por la desviación folicular y/o el destino del folículo dominante. Bajo condiciones óptimas, hay una desviación en el crecimiento folicular, la selección de un folículo dominante, su crecimiento a la madurez, ovulación, formación de un CL y su posterior luteólisis, dando como resultado el restablecimiento de la actividad ovárica cíclica, como una oportunidad para el logro de la preñez. El incumplimiento de cualquiera de estos procesos prolonga el anestro postparto viéndose afectado también por la ingesta de energía limitada, la disminución de las reservas corporales después del parto y las enfermedades pueden retrasar el retorno a la ciclicidad (Peter *et al.*, 2009).

En vacas que amamantan a su cría, la interacción sensorial entre la madre y la cría origina un bloqueo del eje hipotálamo-hipófisis-ovario (HHO) que impide que se establezca un patrón de secreción pulsátil de LH adecuado para estimular el desarrollo final del folículo dominante y la ovulación (Roche *et al.*, 1992).

Perea et al., (2009) explica que el anestro lactacional es de duración variable y depende de varios factores aparte del amamantamiento. El destete suprime este factor inhibidor de la ciclicidad estral y termina el anestro en caso de no haber otra causa. La causa del anestro lactacional debido al amamantamiento de la cría, además de estimular la liberación de oxitocina por la hipófisis posterior para la "bajada" de la leche y de prolactina por la hipófisis anterior, induce la secreción de endorfinas (opioides) en el hipotálamo, las cuales inhiben la liberación de GnRH; al no haber GnRH no se van a producir y liberar en cantidades suficientes y en el momento

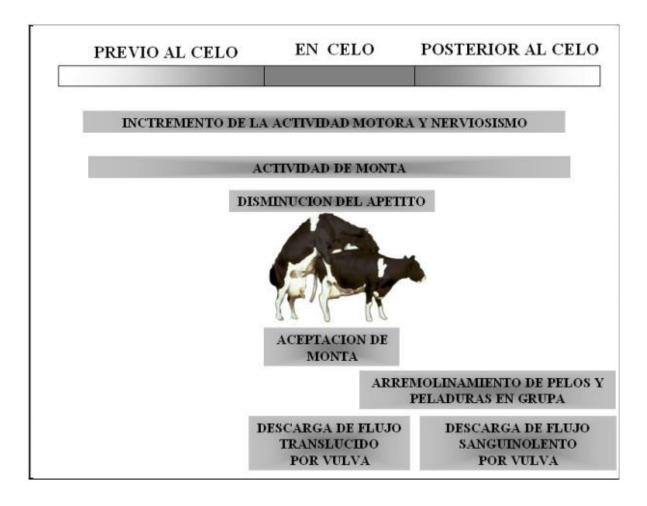
oportuno de la FSH y la LH, por lo tanto no habrá en los ovarios un efecto estimulante del crecimiento, diferenciación, maduración y ovulación del folículo.

Históricamente, el anestro se clasifica en términos generales en fisiológicos y patológicos, con la siguiente representación del tipo patológico: ovarios inactivos, donde se presenta anovulación y la ausencia de un CL y CL persistente en el cuál no ocurre regresión del mismo. Es importante diferenciar entre anestros fisiológicos, patológicos, y los que se producen por mal manejo del rebaño, en esta ultima la alta producción de las vacas lecheras conduce bajas expresiones de los signos de estro, particularmente durante el postparto temprano, con celos que no son observados, dando como resultado animales que son determinados en anestro, y no estándo (falso anestro), los que pueden incrementar la incidencia de anestro en el plantel lechero (Peter et al., 2009).

La evaluación del crecimiento folicular a través del ultrasonido junto con la medición de las hormonas reproductivas circulantes, llevo a la clasificación de la dinámica folicular en tres eventos principales: la emergencia, determinada cuando el primer folículo alcanza un tamaño ≥4mm, la desviación, definida como el comienzo de grandes diferencias en las tasas de crecimiento del folículo más grande y del folículo que lo sigue, sin que estos alcancen un tamaño ovulatorio, y la dominancia, donde el folículo alcanza un tamaño ovulatorio variable de 10 a 20 mm. La clasificación de la condición anovulatoria en estos tres puntos críticos, entrega un diagnostico racional, para una correcta elección del tratamiento según la condición fisiológica existente (Wiltbank *et al.*, 2002).

Perea et al., (2003) manifiestan que para reducir el impacto del anestro postparto bovino sobre el rendimiento económico de las explotaciones bovinas comerciales, requiere la implementación de un riguroso programa de control reproductivo, que garantice la identificación rutinaria de las patologías que con mayor frecuencia afectan la función reproductiva de las hembras y que retardan el reinicio postparto de su ciclicidad ovárica. La evaluación de la condición corporal, suplementación alimenticia desde el periodo pre parto, la implementación del servicio temprano, el uso del efecto bioestimulador del macho, y la aplicación de tratamientos hormonales, han sido utilizados con resultados alentadores en la actualidad y son aplicados con éxito como estrategia para controlar el anestro.

2.2 Falla en la Detección de Celo


La detección de celos en bovinos es una técnica de gran importancia en los programas de inseminación artificial pero debido a una serie de factores que la afectan se producen grandes pérdidas económicas. La expresión de la conducta de estro puede estar anulada o variar en su intensidad y duración por diversos factores como clima, nutrición, amamantamiento y raza. No obstante, son los factores asociados con la calidad con que se ejecuta la técnica de detección de celos que afectan principalmente la eficiencia y/o la exactitud del diagnóstico (conocimiento de los signos y síntomas de una hembra en celo, elección del lugar de detección, momento y tiempo de observación y frecuencia de observación, entre los más importantes). El método más usado es el reconocimiento de los signos que caracterizan dicha fase del ciclo estral mediante observación visual (Catalano y Callejas, 2001).

Catalano *et al.*, (2001) manifiesta que para disminuir las fallas en la detección de celos es necesario reconocer los principales factores que afectan esta técnica los cuales se pueden agrupar en aquéllos asociados con la capacidad del animal para expresar el celo y aquéllos relacionados con la calidad con que se ejecuta la técnica de detección de celos (factor humano).

2.2.1 Factores asociados con la capacidad del animal

El reconocimiento del cambio de conducta y de la aparición de síntomas en el animal en celo permite evitar fallas en la detección principalmente aquéllas asociadas con la calidad en la detección de celos. Si bien la principal característica de un animal con conducta de celo es la actitud de aceptar la monta con los cuatro miembros firmes y separados, se deben reconocer otros que pueden presentarse durante el periodo de celo como también aquéllos que se visualizan en las hembras que están por entrar o que ya pasaron el celo (Figura 1). Según Heres *et al.*, (2000), la utilización de otros signos además de la aceptación de la monta para diagnosticar un animal en celo puede provocar errores que se reflejan en una menor tasa de detección si el operario no está correctamente entrenado; dicha situación se explica porque se introducen otras variables que no son exclusivas de un animal en celo y pueden alterar un correcto diagnóstico.

Figura 1. Características relacionadas con la conducta y otros síntomas de celos.

Fuente: Catalano y Callejas, (2001)

Es importante tener en cuenta que la conducta o la expresión de síntomas de un animal en celo pueden presentar grandes variaciones entre individuos; un animal puede mostrar el celo de manera fuerte, intermedia o débil asociado a una larga, intermedia o corta duración del mismo (Glauber, 1993). Otras características a tener en cuenta son aquéllas relacionadas con el tiempo de manifestación del celo, frecuencia de montas y período del día de mayor presentación de celos. El tiempo en que la hembra manifiesta la conducta de aceptación de la monta es variable; reportándose en algunos casos períodos que varían entre 15 a 18 horas (Esslemont y Bryant, 1976), mientras que en otros casos se ha indicado una duración de 5 a 11 horas (Dransfield *et al.*, 1998; Rae *et al.*, 1999; Xu *et al.*, 1998); además, se ha señalado que 20 a 25% de los períodos de celo duran 4 horas o menos (Glauber, 1993). La mayor actividad de celo se asocia con las horas nocturnas (Esslemont y Bryant, 1976) ya que la manifestación de la conducta se relaciona con una menor

actividad en el establecimiento durante esas horas. Otra característica propia del animal que puede influir en la eficiencia o seguridad de la detección de celos es el tiempo en que dura la monta, el cual es de tan solo 2,5 a 8 segundos (Shipka, 2000; Xu *et al.*, 1998). La frecuencia de montas también presenta una importante variación registrándose valores de 1 a 50 montas (Dransfield *et al.*, 1998; Senger, 1994; Shipka, 2000).

Existen numerosos factores que influyen en la capacidad del animal para expresar el celo y formar los grupos sexualmente activos (GSA), dentro de éstos se mencionan las características propias del animal, el clima, y la raza. Además, existen otros factores como el efecto inhibidor del amamantamiento y la nutrición, que afectan la expresión del celo y que el encargado de la detección de celos debe tenerlas en cuenta no como fallas en la expresión sino como causas ajenas a su capacidad de detectar celo.

2.2.2 Clima

De La Sota y Dalla Lasta, (1998) plantean que cuando las vacas se encuentran en ambientes con altas temperaturas (superiores a 27°C) y elevado porcentaje de humedad, se reduce o se invierte el flujo de calor desde el animal al exterior con lo cual se presenta un estado de hipertermia que puede generar estrés calórico; dicho estado puede provocar una reducción de la duración del celo en 5 o 6 horas acompañado de una menor intensidad en la expresión de dicha conducta. Además, se ha señalado que existe una interacción entre producción de leche y estrés calórico ya que los animales de mayor producción presentan una menor tasa de no retorno correspondiente al servicio de los meses de verano (Alkatanani *et al.*, 1999).

2.2.3 Raza

En un estudio llevado a cabo con ganado Nelore, se observó que el comportamiento de celo es más corto que en las razas europeas y que un tercio de las hembras inician y finalizan la conducta de celo durante la noche (Pinheiro *et al.*, 1998). Además, Rae *et al.*, (1999) evaluaron la conducta de celo en vaquillonas Aberdeen Angus, Brahman y sus cruzas y observaron diferencias entre grupos no sólo en la duración del estro (mayor duración en las vaquillonas cruzas que en las Brahman), sino también en la

frecuencia de montas (mayor en las vaquillonas cruzas que en los animales de raza europea).

2.2.4 Amamantamiento

Se produce un efecto inhibidor de la actividad sexual cuando el ternero se encuentra amamantando. Dicha inhibición se debe a una menor liberación de la secreción de hormona liberadora de Gonadotrofinas (GnRH) con la consecuente ausencia de ovulación (Williams y Griffith, 1992). Los animales que amamantan presentan un intervalo post parto más prolongado que aquéllos que fueron destetados o que disminuyeron su intensidad de amamantamiento (Bell *et al.*, 1998; Lamb *et al.*, 1999).

2.2.5 Nutrición

La nutrición es considerada uno de los factores determinantes de la actividad reproductiva de los rebaños teniendo especial incidencia en el restablecimiento de la actividad ovárica pos parto (Catalano y Sirhan, 1995). En el bovino, la distribución de nutrientes para las diversas funciones corporales sigue un patrón determinado por la prioridad de cada una de ellas; es decir, tiene la capacidad de optar por una función corporal en desmedro de otra cuando la disponibilidad alimenticia es baja. La presentación de los ciclos estrales e inicio de la preñez son funciones poco prioritarias por lo cual dichas funciones serán tomadas en cuenta cuando el balance entre cantidad y calidad de la dieta, las reservas de nutrientes y la demanda para el crecimiento, el metabolismo u otras funciones, así lo permitan (Short y Adams, 1988). El déficit energético durante la lactación temprana está claramente relacionado con el intervalo parto-primer estro detectado, a su vez, dicho déficit es menos importante en vacas de primera lactación que en vacas de más de una lactancia (de Vries *et al.*, 1999).

2.2.2 Factor Humano

Muchos de los errores en la detección por observación visual están asociados con una reducida expresión de la conducta de celo (Shipka, 2000). En un estudio realizado por Stevenson *et al.*, (1996) en vaquillonas de carne se pudo observar una falla por parte del personal que detectaba celo del 27%; no obstante, dicha falla correspondió a

animales que tuvieron una duración más corta del celo y menor número de montas comparados con los animales detectados (8,4 horas y 19,3 montas vs. 15,6 horas y 60,5 montas, respectivamente). Los resultados permiten concluir que normalmente la observación visual presenta una serie de limitaciones que se traducen en una baja tasa de detección de celos.

Si bien las grandes variaciones que existen entre animales en la capacidad de expresar el celo y los factores que la afectan limitan la eficiencia de la detección de celos, existen otros factores relacionados a la calidad con que se ejecuta la técnica que pueden llegar a ser de mayor importancia que los anteriores. Dentro de éstos se deben mencionar: fallas en la identificación de animales, error en la elección del lugar de detección, baja frecuencia de detecciones, escaso tiempo asignado, falta de registros de celos, etc. (Catalano y Callejas, 2001).

2.2.2.1 Identificación

La identificación de animales es uno de los requisitos básicos ya que permite la individualización de los mismos para realizar el seguimiento de su comportamiento reproductivo a lo largo de su vida útil o dentro del período que se realiza el manejo reproductivo (Marcantonio, 1998). Existen varios métodos de identificación como colocación de aretes, identificación temporal con pintura, identificación con collares, tatuajes en orejas, radiotelemetría, microchips, aretes con lector de barras, etc. (Arthur et al., 1991; Dransfield et al., 1998). García Boissou, (2000) indica que uno de los errores en la detección de celos es cuando el número del animal detectado es equivocado u olvidado y otro animal es inseminado; el manejo debe asegurar que cada animal tenga un único número y las nuevas tecnologías en identificación podrían ser usadas para reducir este tipo de errores.

2.2.2.2 Lugar de detección

En las haciendas lecheras, no es aconsejable detectar celos en la sala de espera para el ordeño ya que se ha demostrado que las vacas prefieren montar en piso de tierra y no de cemento (Rodtian *et al*, 1996; Senger, 1994). En caso que se realice durante el arreo desde la parcela o corral a la sala de ordeño (o viceversa), se debe considerar un tiempo de descanso durante ese trayecto para que los animales se adapten al

lugar, se formen los grupos sexualmente activos y se exprese la conducta de celo. Lo mismo debe tenerse en cuenta cuando la detección de celos se realiza en la parcela para pastoreo o en los corrales en caso de haciendas con animales estabulados o semiestabulados.

2.2.2.3 Frecuencia de detecciones

La observación continua normalmente permite detectar mayor número de animales en celo comparada con observaciones puntuales durante el día, es claro que las posibilidades de implementarla son nulas. Por lo tanto, se ha determinado que con 2 o 3 observaciones diarias en momentos estratégicos se obtiene una buena eficiencia de detección que puede alcanzar alrededor del 80%. Ducrot *et al.*, (1999) han indicado que la mediana es entre 2 y 3 aunque en algunos establecimientos, con sistemas de producción intensiva, se realizan hasta 8 observaciones al día.

En caso de hacer 2 detecciones diarias, las mismas se deben realizar en la mañana temprano y al atardecer; si se implementa una tercera, ésta se realiza normalmente al mediodía. El tiempo promedio de cada observación es muy variable; se han reportado evaluaciones de hasta 3 horas con un valor promedio de 40 minutos y se ha determinado que la mayor eficiencia de detección se ha alcanzado cuando el tiempo es cercano a los 60 minutos (Ducrot *et al.*, 1999). Por otra parte, Van Vliet y Van Eerdenburg, (1996) han indicado que 2 observaciones diarias de 30 minutos cada una permiten una eficiencia del 74% con una exactitud del 100% cuando las observaciones se realizan antes del ordeño. Reksen *et al.*, (1999) han señalado que la detección de celos a la última hora del día y frecuentes observaciones durante la jornada estuvieron asociadas con un intervalo parto-último servicio más corto.

2.3 Gonadotrofina Coriónica Equina

La Gonadotrofina Coriónica Equina (eCG) es una glicoproteína compleja con actividad FSH y LH. Tiene una vida media de 40 horas en la vaca, y persiste por más de 10 días en la circulación sanguínea, producida por los cálices endometriales en la yegua preñada entre los días 40 a 130. Esta hormona se vincula a los receptores foliculares de FSH y de LH, y a los receptores de LH del CL, la eCG produce ovulación o

luteinización de folículos durante la gestación con consecuente aumento de progesterona circulante (Murphy et al., 1991).

La administración del suero de yeguas preñadas en ratas prepuberes fue reportada en la década del 30 por los autores Cole y Hart, quienes observaron que este producía madurez sexual y estimulaba el crecimiento del ovario. El componente bioactivo de este suero fue nombrado Gonadotrofina del Suero de la Yegua Preñada (*Pregnant Mare Serum Gonadotrophin*: PMSG), al ser evidenciado en la circulación sanguínea entre el segundo y quinto mes de gestación. Años más tarde se localizó la sustancia responsable de esta estimulación ovárica en el útero de las yeguas, sugiriendo que era de procedencia fetal. Luego los trabajos se extendieron a cerdos y rumiantes en los cuales se observaba, maduración folicular acompañada de estro, ovulación y formación de cuerpos lúteos normales (Murphy, 2012). Estudios realizados en la década del 70 confirmaron que la fuente de hormona proviene de las células coriónicas fetales que invaden el epitelio uterino para formar las copas endometriales, siendo las responsables de secretar esta hormona (Allen y Moor, 1972). Este descubrimiento llevo a cambiar el nombre de la hormona a su nomenclatura actual, Gonadotrofina Coriónica Equina (*equine Chorionic Gonadotropin*: eCG).

La eCG es una glicoproteína que contiene 45% de carbohidratos y un peso molecular de 68 kDa (Humphrey *et al.*, 1979). Posee una vida media en sangre bastante prolongada de 45,6 h (Schams y Papkoff, 1978), la que es debida al 10% de ácido siálico que presenta (Christakos y Bahl, 1979) (Martinuk *et al.*, 1991) y al elevado peso molecular que dificulta su filtración glomerular en el riñón, persistiendo por más de 10 días en la circulación sanguínea (Murphy y Martinuk, 1991). Está constituida por dos subunidades, las que son sintetizadas y secretadas como cadenas heterodímeras α y β, con pesos moleculares de 44 y 17 kDa respectivamente (Moore y Ward, 1980a). La secuenciación de aminoácidos revelo que la estructura primaria de la eCGβ es idéntica a la LHβ equina (e-LHβ) (Sugino *et al.*, 1987); Bousfield *et al.*, 1987) estando ambas codificadas por un mismo gen (Humphrey *et al.*, 1979; (Sherman *et al.*, 1992). Esto explica los efectos biológicos similares obtenidos con eCG y e-LH (Moudgal & Papkoff, 1982), la diferencia es en el grado de glicosilación (Hoppen, 1994). En tejidos de especies diferentes a los equinos puede unirse a receptores tanto de FSH como de LH, esta doble actividad es producida por una sola molécula (Moore & Ward,

1980b). La particularidad de unión al receptor, en especial con el receptor de FSH, es la base para esta doble actividad de la eCG, ya que su estructura primaria permite su interacción con este receptor. Este efecto se ve reforzado por su larga vida media. Es ampliamente usada por su actividad FSH en la inducción del estro en cerdas inmaduras (Bartlett *et al.*, 2009).

En bovinos, trabajos publicados hace un par de décadas, mencionan que la eCG administrada al finalizar un tratamiento de 7-12 días con progesterona puede mejorar la tasa de preñez en vacas de carne con cría al pie y con mala condición corporal (Roche *et al.*, 1992). Por otro lado, Stocco (2012) reporta que varios genes relacionados al desarrollo del CL han sido identificados como objetivos directos de la prolactina. Un estudio reciente comparo la expresión génica y proteica de los receptores de prolactina (PRLR) en cuerpos lúteos de animales tratados con 400 Ul de eCG al finalizar un tratamiento de sincronización de la ovulación, mostrando una participación de la eCG en la regulación de la expresión los PRLR que contribuyen al desarrollo del CL y al aumento de la síntesis de progesterona (Fátima *et al.*, 2012). Esto daría sustento a la hipótesis planteada en la que una dosis de eCG al finalizar un tratamiento con progesterona y estradiol podría favorecer el desarrollo luteal, la producción de progesterona y el mantenimiento de la gestación en vacas de cría.

La eCG estimula el crecimiento folicular a través de su acción de FSH y LH, aumenta el tamaño del folículo, también incrementan las concentraciones plasmáticas de progesterona, mejorando así el desarrollo embrionario y el mantenimiento de la preñez (Baruselli et al., 2004). También la eCG puede mejorar las tasas de preñez en vacas de carne con cría al pie y con mala condición corporal (Roche et al., 1992). Por su parte Kastelic et al., (1999), dice que no podrá ser eficaz la eCG en las vacas con buena condición corporal.

2.4 Reconocimiento Materno Embrionario Bovino

El reconocimiento materno embrionario bovino es uno de los eventos de mayor importancia en la reproducción. Este proceso está regulado por múltiples señales celulares y endocrinas, entre el embrión, el endometrio y el cuerpo lúteo, que constituye la glándula transitoria de gran trascendencia en la ventana de

reconocimiento materno embrionario, por ser el responsable de la producción de la progesterona. El interferón trofoblástico bovino (bINT-T) llamado así por el sitio de producción, es la principal señal para el éxito en el establecimiento de la preñez, que favorece los procesos luteotrópicos funcionales y estructurales, garantizando la producción de progesterona y la integridad de las células, que constituyen el cuerpo lúteo (Lenis *et al.*, 2010).

Se conoce como reconocimiento materno de la preñez o reconocimiento materno embrionario, el proceso fisiológico en el cual el embrión mediante señales moleculares como la secreción de Interferón tau (IFN-t) anuncia su presencia en el tracto reproductivo materno, con el fin de evitar que se descencadene el mecanismo luteolítico ejercido por la prostaglandina $F_{2\alpha}$ (PGF $_{2\alpha}$) sobre el Cuerpo Lúteo, prolongando la vida de este y garantizando la producción de progesterona (Spencer , 1998).

El interferón-t (INT-t), también conocido como interferón trofoblástico, fue descubierto mediante el cultivo, aislamiento y purificación de extractos de blasctocistos ovinos, que secretaban una proteína con propiedades antiluteolíticas y que prolongaban la fase lútea de la hembra (Roberts, 2007), (Asselin *et al.*, 1997). En 1987, se identificó la secuencia aminoacídica, lo que permitió sintetizarlo, de manera exitosa, para la investigación en ciencias básicas (Demmers *et al.*, 2001). En la actualidad, es producido de forma recombinante y se han reconocido diferentes isoformas del mismo. Dentro de las diversas especies rumiantes existen otras isoformas de interferones trofoblásticos, y entre las más estudiadas están: el interferón trofoblástico ovino (oINT-T) y el interferón trofoblástico bovino (bINT-T) y, en menor medida, los interferones trofoblásticos de especies como la jirafa y otros rumiantes (Weems *et al.*, 2006), (Walker *et al.*, 2009).

El IFNT posee una masa molecular entre 22.000 y 24.000kDa. Su estructura de 172 aminoácidos, se encuentra glicosilada en su extremo amino terminal con algunos oligosacáridos, confiriéndole mayor versatilidad química a su estructura, la cual, difiere del olFNT, debido a que este último no posee ninguna glicosilación en su estructura (Roberts, 2007), (Demmers *et al.*, 2001).

La síntesis y la secreción del bIFNT, se efectúa en el trofoectodermo extraembrionario del blastocito, en su etapa preimplantatoria y alcanza niveles máximos durante los días 15 al 17, sintetizándose hasta el día 28 de gestación (Arosh *et al.*, 2004). Entre los días 13 al 15 los niveles de mARN, para el bIFNT, son elevados en las células trofoectodérmicas, coincidiendo con la etapa de reconocimiento materno embrionario; posterior a este evento fisiológico, los niveles del bIFNT van disminuyendo de forma progresiva (Arosh et al. 2004), (Roberts *et al.*, 2008), (Demmers *et al.*, 2001).

El receptor del bIFNT, se encuentra ubicado en la membrana plasmática de las CEEP y CEES, acoplado a proteínas de la familia Jack Kinasas, las cuales, pueden fosforilar otras proteínas, mediante residuos de tirosina (TYK 2) en sus estructuras (Roberts *et al.*, 2008). La ausencia de un embrión durante los días 15 al 18 del ciclo estral bovino induce un aumento de la oxitocina luteal, favoreciendo la síntesis de PGF_{2α} y PGE₂ en la CEEP y, en menor proporción, en las células luteales grandes (CLG) y células luteales pequeñas (CLP), activando la luteólisis funcional y estructural, que conlleva al retorno a un nuevo ciclo. Por el contrario, la presencia de un embrión competente, promueve el inicio de la síntesis de IFNT, que aumenta progresivamente entre los días 13 y 18 del reconocimiento materno embrionario, favoreciendo la presentación de los efectos luteotrópicos y el establecimiento de la gestación (Arosh *et al.*, 2004; Woclawek *et al.*, 2004; Asselin *et al.*, 1996).

El mecanismo de acción propuesto para el bIFNT consiste en la fosforilación de las proteínas activadoras de transcripción o STAT. La naturaleza química de los interferones no les permite ingresar a la célula blanco para ejercer un efecto fisiológico, lo que hace necesarias, la activación de proteínas intracelulares que traducen la señal y desencadenan el efecto final, mediante la inclusión de grupos fosfatos a la STAT (Demmers *et al.*, 2001; Binelli *et al.*, 2001; Billiau *et al.*, 2009). Existen diferentes biotipos para la STAT (STAT1, STAT2, STAT3) ubicadas, generalmente, en el citoplasma de la célula blanco. Cada una de estas posee rutas moleculares diferentes y son activadas por estímulos específicos, como el bIFNT (Cheng *et al.*, 2005).

El éxito o no del reconocimiento materno embrionario depende de la adecuada comodulación entre la progesterona y el bIFNT, o los estrógenos y la oxitocina,

además de la expresión de los receptores específicos. Alteraciones en la señalización celular o molecular podría desencadenar la reabsorción embrionaria (Roberts, 2007).

Se concluye, que el bIFNT es una de las señales más importantes en la ventana de reconocimiento materno embrionario, proceso que está regulado de manera multifactorial. Los mecanismos que potencialmente podrían ser desencadenados por el IFNT, incluyen: 1) Estabilización o "up-regulation" de receptores endometriales para progesterona, con el objeto de extender el período de bloqueo por progesterona y, de este modo, evitar la expresión de receptores para estrógenos y/o receptores para oxitocina. 2) Inhibición directa de receptores para estrógenos. 3) Inhibición directa de la síntesis de receptores para oxitocina evitando la liberación pulsátil de PGF2a (Tithof et al., 2007; Arosh et al., 2004; Jo-Ann et al., 2001).

2.5 Mortalidad Embrionaria en Bovinos

Diskin *et al.*, (2008) manifiesta que la mortalidad embrionaria (ME) es la pérdida de la gestación durante los primeros 42 días que corresponden al periodo embrionario. Es uno de los problemas más difíciles de diagnosticar y corregir en reproducción bovina. Se considera que si una vaca y un toro son fértiles la concepción a un servicio de esos dos individuos será alrededor del 70%. Este número se basa en la probabilidad de fertilización (que se considera es de un 80-100%) sumado a la probabilidad de que el embrión sobreviva al reconocimiento materno. Dentro de los factores que han sido involucrados se tiene factores genéticos, de manejo, estrés, salud animal, entre otros.

Cuando se habla de mortalidad embrionaria se deben diferenciar dos grandes momentos en el desarrollo del conceptus. Los primeros 14 días, (etapa del desarrollo embrionario temprano), corresponden a la etapa anterior al reconocimiento materno de la preñez y después de los 14 días (etapa del desarrollo embrionario tardío) corresponden a la etapa después del reconocimiento materno de gestación (BonDurant, 2007). Este periodo embrionario tiene una duración aproximada de 42 días. Durante este periodo no solamente se da el proceso de organogénesis sino que también se forma la placenta para que el feto pueda continuar su desarrollo. La formación de la placenta termina completamente hacia el día 90 de gestación y por

esto cualquier alteración entre la fertilización y los 90 días de desarrollo tienden a ser letales (BonDurant, 2007; Diskin *et al.*, 2008).

Inskeep et al., (2005) postula que el oocito que persiste por un periodo prolongado de tiempo dentro del folículo se le ve alterada su viabilidad, aunque no siempre se altera su potencial de fertilización. Es decir el espermatozoide es capaz de fertilizar el oocito comprometido e incluso se puede desarrollar el embrión en sus primeras divisiones pero rara vez progresa de la etapa de 16 células. Las posibles causas para que un oocito no tenga un adecuado potencial de desarrollo pueden ser varias. Una hipótesis interesante es que el oocito de las vacas de 2 ondas foliculares permanece por más tiempo dentro del folículo dominante versus el de las vacas de tres ondas y por consiguiente puede tener una menor viabilidad.

Los cuerpos lúteos (CL) provenientes de folículos durante el posparto temprano, tienden a tener una vida media más corta o niveles inadecuados de progesterona (P4). Esto niveles bajos de P4 tienden a favorecer la persistencia de folículos que finalmente ovulan con oocitos comprometidos (Labernia *et al.*, 1996). También se ha discutido que la ME en las vacas de leche puede estar asociada al alto metabolismo hepático de las mismas (Sangsritavong *et al.*, 2002). De esta manera, las vacas lecheras tienen un mayor catabolismo de la progesterona y se sugiere que cuando el embrión necesita producir Interferon Tau (IFN_T) para el reconocimiento materno de la preñez, esta producción se ve directamente afectada por los niveles relativamente más bajos de P4. En otras palabras a mayores niveles de P4 (dentro de niveles fisiológicos) mayor producción de IFN_T mayor probabilidad de pasar el periodo crítico del reconocimiento materno (Binelli *et al.*, 2001).

Se considera que los eventos que ocurran dentro de los dos ciclos estrales anteriores a la ovulación pueden afectar la calidad del oocito. Las causas más comunes serían, vacas que pierden excesiva condición corporal (Silke *et al.*, 2002), sufren una disminución súbita de apetito particularmente alrededor de la IA, dietas ricas en proteína o bajos consumos de materia seca (Roche, 2006; Leroy *et al.*, 2008), estrés particularmente el estrés calórico o por frío (Chebel *et al.*, 2007), traumas, fiebre, cojeras, retención de placenta, endometritis y enfermedades metabólicas.

Inskeep *et al.*, (2005) mencionan que los protocolos de sincronización pueden estar involucrados en la fisiopatología de la ME. Si los progestágenos que se utilizan no logran generar una retroalimentación negativa completa, el folículo tiende a persistir alterándose la viabilidad del oocito. La persistencia del folículo en estas circunstancias se da porque los niveles inadecuados de P4 no logran una adecuada retroalimentación negativa de la GnRH y de la LH, por tanto la pulsatilidad de la LH permite que el folículo se mantenga y no sufra atresia para desencadenar una nueva onda folicular. Adicionalmente se deben considerar el protocolo de IATF, donde se induce la ovulación de un folículo que si tiene un tamaño pequeño, puede terminar con un oocito inmaduro y en la formación de un CL pequeño con niveles insuficientes de P4.

Se han realizado discusiones sobre la posibilidad de generar mortalidad embrionaria a través del diagnóstico de la gestación temprana. Romano *et al.*, (2007) concluyeron que el riesgo es mínimo si un veterinario experimentado realiza el diagnóstico a través del deslizamiento de membranas. Thurmond y Picanso, (1993) encontraron un mayor riesgo de ME cuando se realiza el deslizamiento entre los días 35 y 42 que es el periodo más crítico de la placentación bovina. Indiscutiblemente el uso del ultrasonido (US) en la reproducción bovina va a disminuir aún más el riesgo de ME ya que la manipulación es mínima cuando se utiliza esta técnica; además es una herramienta que permite detectar problemas de mortalidad embrionaria tardía (Vassilev *et al.*, 2005).

CAPITULO III: MATERIALES Y MÉTODOS

3.1 Materiales

3.1.1 Materiales de campo

Termo de Nitrógeno Líquido para transporte de pajuelas, Termo para descongelar pajuelas, Pistola de Inseminación Artificial (Pistola Quick Lock Universal MINITUBE), Catéteres y Camisa sanitaria para Inseminar, corta pajuelas, guantes ginecológicos, guantes de inspección, Ecógrafo (SIUI CTS 800 portátil, provisto de un transductor lineal de 7,5 MHZ, Gel de ultrasonido, Jeringuillas descartables, agujas hipodérmicas, papel absorbente, implantador de dispositivo vaginal, termo de refrigeración, geles refrigerantes, indumentaria de trabajo, botas, libreta o registros de campo, cámara fotográfica, esferos y lápiz.

3.1.2 Materiales Químicos

Benzoato de Estradiol, Dispositivo Intravaginal Bovino de Progesterona, Prostaglandina $PGF_{2\alpha}$, Gonadotrofina Coriónica Equina, Hormona Liberadora de Gonadotropinas (Gonadorelina), Alcohol, Amonio Cuaternario.

3.1.3 Materiales Biológicos

- Vacas Holstein Friesian mestizas
- Pajuelas de semen bovino

3.2 Ubicación

El trabajo de investigación se realizó en varias haciendas ubicadas en la Provincia de Pastaza, utilizando vacas de pastoreo al sogueo en pasto Gramalote. Todos los procedimientos, chequeos ginecológicos, aplicación tanto de inyectables como de los dispositivos intravaginales, Ecografías ováricas, inseminación artificial se las realizo in situ ya que en las ganaderías de la Provincia no disponen de instalaciones para el manejo de los animales. Las altitudes oscilan entre 600 a 950 msnm, con precipitaciones de 3500 mm, clima cálido húmedo con temperaturas que varían entre 18 a 24 °C y 80% de humedad relativa.

3.3 Caracterización de la unidad de análisis

Para este trabajo se utilizaron 100 vacas Holstein mestizas de primer servicio con un rango de 60 a 150 días posparto, con cría al pie, en condiciones de pastoreo al sogueo en pasto Gramalote (Axonopus scoparius), entre su segundo al quinto parto, con una condición corporal entre 2,25 – 2,75, según la escala de 1 a 5 según Edmonson *et al.*, (1989), clínicamente sanas, identificadas con arete en cada una de las fincas. Las unidades de producción se encuentran estandarizadas a un mismo sistema de manejo, un ordeño manual al día, suplementadas con concentrado comercial y sales minerales.

Las unidades experimentales seleccionadas se asignaron de manera aleatoria, dividiendo en 4 grupos experimentales. A todas las vacas postparto se les practico palpación rectal evaluando los órganos reproductivos.

3.4 Metodología

Se realizó cuatro experimentos sobre hembras bovinas, en los que se comparó la respuesta a la administración intramuscular de eCG. Antes de cada experimento se realizó palpación rectal para descartar vacas preñadas y estimar el estado fisiológico de los ovarios. En ese momento se registró la condición corporal individual y datos necesarios en los registros de campo para el desarrollo de la investigación. Todas las vacas recibieron un tratamiento para IATF utilizando un dispositivo intravaginal con 1 gr de Progesterona (DIB® 1g, Syntex) durante 8 días, con 2 mg de Benzoato de estradiol (Grafoleón NF, Life) al momento de colocar el dispositivo vaginal. Al retirar el dispositivo se administró una dosis de 526 µg de Cloprostenol sódico equivalente a 0,50 mg de Cloprostenol Base (Estrumate, MSD Salud Animal). Todos los productos farmacológicos inyectables fueron administrados por vía intramuscular (IM). La inseminación artificial se realizó entre las 52 a 56 horas luego del retiro del dispositivo vaginal con 100 µg de Gonadorelina (Fertagyl, MSD Salud Animal). Se utilizó partidas de semen (pajuelas) que resultaron aptas al examen de calidad de semen, determinado por motilidad individual mínima del 40%, anormalidades totales menor al 30% y concentración mínima 8 millones de espermatozoides viables. En todos los tratamientos el día de la Inseminación fue considerado como día 0.

3.4.1 Tratamiento A

Este tratamiento es el Testigo de la investigación, en el cual no se aplica eCG en ningún momento de la terapia hormonal. Se utilizaron 25 vacas Holstein mestizas. Todas las vacas recibieron un tratamiento con progesterona y estradiol como la descripción del párrafo anterior. La Inseminación artificial se realizó entre las 52 a 56 horas luego del retiro del dispositivo. El tamaño del folículo preovulatorio (FP), CL día 7, CL día 20 pos IATF y diagnóstico de preñez, fueron monitoreados mediante ultrasonografía transrectal (SIUI, CTS-800, Guangdong, China). En la figura 2 Se presenta el esquema del diseño experimental.

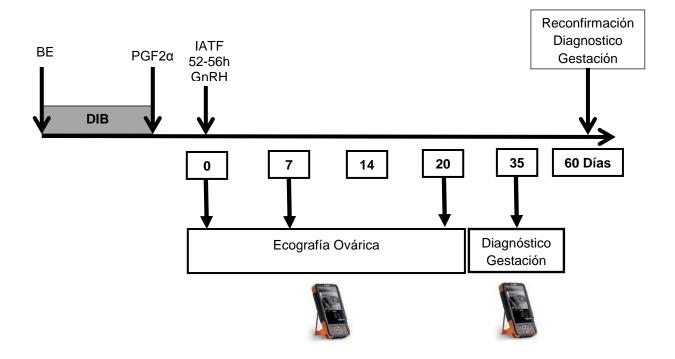


Figura 2: Diseño experimental para el Tratamiento A (Testigo).

3.4.2 Tratamiento B

El objetivo de este experimento fue evaluar el efecto de la administración de eCG al finalizar un tratamiento con progesterona y estradiol para IATF, sobre el tamaño del folículo preovulatorio, CL y tasa de preñez. Se utilizaron 25 vacas Holstein mestizas. Todas las hembras recibieron un tratamiento con progesterona y estradiol. Al retiro del dispositivo se administró 526 µg de Cloprostenol sódico equivalente a 0,50 mg de

Cloprostenol Base (Estrumate, MSD Salud Animal) y una dosis IM de 400 UI de eCG (Folligon, MSD Salud Animal). La Inseminación se realizó entre las 52 a 56 horas luego del retiro del dispositivo. El tamaño del FP, CL día 7, CL día 20 pos IATF y diagnóstico de preñez, fueron monitoreados mediante ultrasonografía transrectal (SIUI, CTS-800, Guangdong, China). En la figura 3 Se presenta el esquema del diseño experimental.

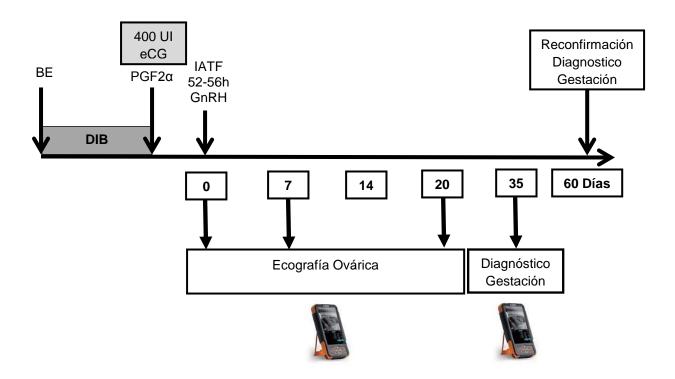


Figura 3. Diseño experimental para el Tratamiento B.

3.4.3 Tratamiento C

El presente tratamiento tiene como objetivo promover un mejor soporte luteotrófico durante el periodo crítico del reconocimiento materno de la gestación (entre los días 15 a 17 luego de la ovulación), evaluando el efecto de la administración de eCG al día 14 luego de la IATF. Se utilizaron 25 vacas Holstein mestizas. Todas las hembras recibieron un tratamiento con progesterona y estradiol. Al retiro del dispositivo se administró 526 µg de Cloprostenol sódico equivalente a 0,50 mg de Cloprostenol Base (Estrumate, MSD Salud Animal). La Inseminación se realizó entre las 52 a 56 horas luego del retiro del dispositivo. Administración intramuscular de 400 UI de eCG (Folligon, MSD Salud Animal) 14 días luego de la IATF. El tamaño del FP, CL día 7,

CL día 20 pos IATF y diagnóstico de preñez, fueron monitoreados mediante ultrasonografía transrectal (SIUI, CTS-800, Guangdong, China). En la figura 4 Se presenta el esquema del diseño experimental.

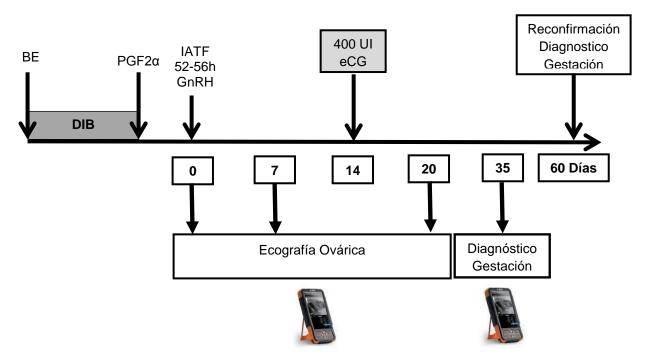
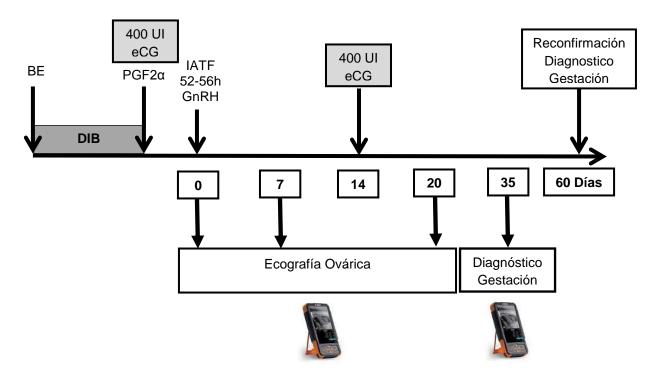



Figura 4. Diseño experimental para el Tratamiento C.

3.4.4 Tratamiento D

El objetivo es evaluar el efecto de la administración de eCG previo a la ovulación y 14 días luego de la Inseminación sobre el tamaño del folículo preovulatorio, CL y tasa de preñez. Se utilizaron 25 vacas Holstein mestizas. Todas las hembras recibieron un tratamiento con progesterona y estradiol. Al retiro del dispositivo se administró 526 µg de Cloprostenol sódico equivalente a 0,50 mg de Cloprostenol Base (Estrumate, MSD Salud Animal) y una dosis IM de 400 UI de eCG (Folligon, MSD Salud Animal) y 14 días posterior a la IATF. La Inseminación se realizó entre las 52 a 56 horas luego del retiro del dispositivo. El tamaño del FP, CL día 7, CL día 20 pos IATF y diagnóstico de preñez, fueron monitoreados mediante ultrasonografía transrectal (SIUI, CTS-800, Guangdong, China). En la figura 5, se presenta el esquema del diseño experimental.

Figura 5. Diseño experimental para el Tratamiento D.

3.5 Mediciones y evaluaciones de las variables en estudio

3.5.1 Ultrasonografía

Para la visualización de las estructuras ováricas se utilizó un Ecógrafo CTS-800 (SIUI, Guangdong, China), provisto de un transductor lineal de 7,5 MHz. Las vacas fueron inmovilizadas en el lugar de pastoreo donde se efectuó la ecografía transrectal para evaluar y registrar las estructuras ováricas (Folículos y CL). Por el sistema de manejo en las fincas en estudio no disponen de instalaciones apropiadas para inmovilizar a los animales, razón por la cual se trabajó esta investigación in situ. El tamaño de los folículos y CL fue calculado utilizando el diámetro mayor y menor. El examen por ultrasonografía se realizó en todas las vacas de los tratamientos mencionados en 3 momentos:

- 1. Tamaño del Foliculo Preovulatorio antes de la IATF
- 2. Tamaño del CL: 7 días y 20 días después de la IATF
- 3. Diagnóstico de preñez temprana 35 días.

3.5.2 Diseño Experimental y Estadístico

El presente estudio se utilizó un diseño completamente al azar con 4 tratamientos (TA, TB, TC y TD), cada uno con 25 repeticiones consideradas como unidades experimentales, con un total de 100 vacas. Para el análisis de los datos se utilizó un modelo lineal general mixto, en el procedimiento GENMOD del SAS vw 9,3 (2013). Para determinar las diferencias estadísticas se aplicó un análisis de varianza.

Los datos obtenidos de las cuatro variables fueron comparados entre tratamientos, para presentar sus resultados se usaron medias y desviación estándar con un nivel de significancia del 5%, considerándose estadísticamente diferentes cuando P<0.05.

Se utilizó la prueba de Chi-cuadrado para determinar la tasa de ovulación y preñez.

CAPITULO IV RESULTADOS

4.1. Tamaño (mm) del folículo Preovulatorio

En la siguiente tabla se detallan los resultados del análisis de varianza de las mediciones ecográficas de los folículos preovulatorios evaluados antes de la IATF.

Tabla 1. Media y error estándar del tamaño (mm) del folículo preovulatorio de los tratamientos en estudio

Tratamiento	×	EE	P
A (Testigo)	15,86	0,70	
B (eCG-día R)	15,33	0,73	
C (eCG-día 14)	14,93	0,65	0,71
D (combinación TA y TB)	15,14	0,71	

X=expresada en mm; EE= error estándar; P<0,05

Los resultados del tamaño del folículo preovulatorio (FPO) se resumen en la tabla 1, se puede observar que no hay diferencia estadística significativa en el tamaño de los FPO entre tratamientos (P>0,05). Se presentó un comportamiento reproductivo homogéneo. La aplicación de eCG en los diferentes tratamientos vs el Tratamiento Testigo, no incrementó el tamaño del folículo preovulatorio. Teniendo un promedio de la media de 15.86mm en el Testigo.

4.2. Ovulación del folículo preovulatorio

Tabla 2. Porcentaje de ovulación del folículo preovulatorio de los tratamientos en estudio

Tratamiento	%	P
A (Testigo)	87,10	
B (eCG-día R)	85,00	
C (eCG-día 14)	90,00	0,90
D (combinación TA y TB)	90.30	

Prueba de Chi cuadrado; P<0,05

Al valorar la ovulación en los diferentes tratamientos podemos observar que no hay diferencia significativa entre los mismos.

4.3. Tamaño del cuerpo lúteo (mm) del día 7 post-ovulación

Corresponde al tamaño del Cuerpo lúteo 7 días después de la IATF en los diferentes tratamientos. Cuyas medidas fueron realizadas por ultrasonido.

Tabla 3. Media y error estándar del tamaño del cuerpo lúteo (mm) del día 7 postovulación de los tratamientos en estudio

Tratamiento	X	EE	P
A (Testigo)	20,54 ^{ab}	0,87	
B (eCG-día R)	20,99 b	0,91	0.05
C (eCG-día 14)	19,23 b	0,82	0,05
D (combinación TA y TB)	21,88 a	0,89	

X=expresada en mm; EE= error estándar; P<0,05

El estudio del tamaño del cuerpo lúteo al día 7 del ciclo fue significativo (P<0.05) para el tratamiento D, alcanzando el tamaño más alto del estudio con una media de 21.88

mm, seguido del Tratamiento B con 20.99 mm, ambos tratamientos correspondieron a la combinación de eCG al retiro del implante vaginal, demostrando que la administración de 400 UI de eCG al finalizar un tratamiento de IATF favorece a un mayor tamaño de CL.

4.4 Tamaño del cuerpo lúteo (mm) del día 20 post-ovulación

Tabla 4. Media y error estándar del tamaño del cuerpo lúteo (mm) del día 20 postovulación de los tratamientos en estudio

Tratamiento	X	EE	P
A (Testigo)	21,23 b	0,90	
B (eCG-día 2)	19,90 b	0,94	0,01
C (eCG-día 14)	20,97 b	0,97	0,01
D (combinación T1 y T2)	23,29 a	0,97	

X=expresada en mm; EE= error estándar; P<0,05

Se evaluó la media del CL del día 20 pos IATF en los diferentes tratamientos, determinando que el TD con 23.29mm, corresponde al CL de mayor tamaño en comparación al Testigo, TB y TC, existe diferencia estadística significativa (P<0,01), los resultados obtenidos de la administración de la eCG en una dosis de 400 UI previa a la ovulación y 14 días después de la IATF, evidencia un efecto positivo de la eCG sobre el tamaño del CL a los 20 días pos IATF, incrementando el tamaño y favoreciendo la actividad luteal durante el período crítico de la gestación.

4.5 Porcentaje de preñez

Tabla 5. Porcentaje de preñez de los tratamientos en estudio

Tratamiento	%	P
A (Testigo)	64,50	
B (eCG-día 2)	47,50	
C (eCG-día 14)	45,00	0,40
D (combinación TA y TB)	58,10	
Drugha da Chi ayadrada D. O O	_	

Prueba de Chi cuadrado; P<0,05

Al analizar la tasa de preñez de los tratamientos en estudio no existe diferencia significativa entre los tratamientos. La administración de eCG no mejora la preñez en las vacas holstein mestizas en la Amazonía Ecuatoriana.

CAPITULO V: DISCUSIÓN

Los folículos preovulatorios de mayor tamaño alcanzaron en el TA (Tratamiento Testigo) con 15.86 mm y TB, 15.33 mm (P>0.05) con eCG al retiro del implante vaginal, comparados con el TC y TD (P>0.05), claramente no existe diferencia significativa. Estos resultados corresponden a los determinados por Bartolomé et al. (2012) con un protocolo similar afirmaron que no hay significancia estadística en cuanto al tamaño del folículo al aplicar eCG, dónde los folículos alcanzaron tamaños de 10 mm, en relación a los animales que no se administró eCG y sus folículos tuvieron diámetros de 7.65mm (P>0.05). Resultados similares fueron reportados por Ferreira et al (2013), al realizar un ensayo en vacas Holstein friesian, utilizaron tres tratamientos: grupo 1, no administraron eCG; grupo 2, se administró eCG, 400 UI; y, grupo 3, se aplicó eCG, 600 UI, no determinaron diferencias significativas (P>0.05) en relación al tamaño del folículo 56 horas después de aplicar eCG entre el grupo 1 (14.60mm) y grupo 2 (15.33mm). Valores inferiores fueron reportados por (Dorneles Tortorella et al (2013), éste autor determinó que el diámetro del folículo dominante en el día 9 (eCG; N = 8) fue de 10.00 ±0.5 mm; un segundo grupo, con aplicación de eCG al día 8, 8.6 ±0.2 mm y, un grupo control, 8.5 ±0.4mm; además, menciona que todos los grupos registraron luteolisis temprana 10 días después de la ovulación.

En la investigación se determinó diferencia significativa del tamaño del cuerpo lúteo del día 7 post IATF, en los tratamientos que se utilizaron eCG al retiro del implante vaginal, TD 21,88 mm y TB 20.99 mm (P<0.05) vs los tratamientos que no recibieron eCG previo a la ovulación, Tratamiento Testigo 20.54 mm y TC con 19.23 mm.

Valores inferiores fueron calculados por Alistair (2011), el cuál reportó medidas de volumen del CL en el día 7 después de administrar eCG en vacas primíparas de 7.4 ± 0.7 cm³ y multíparas 9.1 ±0.6 cm³. Nogueira *et al* (2004), experimentó con dosis de 200, 400 y 600 UI de eCG sobre la influencia del CL y encontró tamaños de (18.1mm – 200), (18,7 -400) y (18,1 mm - 600).

La eCG estimula el crecimiento folicular a través de su acción de FSH y LH, aumentando el tamaño del folículo, y también incrementando las concentraciones plasmáticas de progesterona, mejorando así el desarrollo embrionario y el mantenimiento de la preñez (Baruselli *et al.*, 2004). También la eCG puede mejorar

las tasas de preñez en vacas de carne con cría al pie y con mala condición corporal (Roche *et al.*,1992). Por su parte Kastelic *et al.*, (1999), dice que no podrá ser eficaz la eCG en las vacas con buena condición corporal. Esto último coincide con los resultados encontrados, ya que los porcentajes de preñez independientemente del protocolo utilizado no mostraron diferencias significativas entre ellos.

Además, los valores coinciden con aseveraciones de otros investigadores utilizando similares protocolos de IATF, determinan dentro de los rangos que van de 43,3% a 62,7% (Chesta *et al.*, 2009; Cutaia *et al.*, 2007; Sales *et al.*, 2012). Posiblemente, en este caso más allá que las vacas estaban con cría al pie, se utilizaron vacas que debían tener un estado por encima de los 2,5 asegurando una mejor respuesta reproductiva. La respuesta a la mejora del porcentaje de preñez incorporando eCG es variable ya que dependería de varios factores.

Otros trabajos, sugieren que las tasas de crecimiento folicular en vacas y novillas de la raza Normando, con buena condición corporal y en zonas por encima de los 2800 msnm, disminuyen notablemente cuando se aplica el protocolo CIDR-Synch con eCG, comparado con el grupo control sin eCG. Contrastando esto con lo encontrado en otras razas por Baruselli *et al.*, (2004) menciona que en vacas cebuínas, su uso podría incrementar el tamaño del folículo preovulatorio y/o el tamaño del cuerpo lúteo y la consecuente secreción de progesterona.

En rodeos lecheros de Australia se ha evaluado la utilización de CIDR o implantes de norgestomet con eCG demostrando que el intervalo parto-concepción, en comparación con grupos controles no tratados, no es afectado (Rhodes *et al.*, 2003). Sin embargo Cutaia *et al.*, (2003) y Veneranda *et al.*,(2008) afirman que la utilización de eCG en protocolos de BE-P4 podría mejorar los porcentaje de preñez en vacas en anestro. Tal vez los resultados dependan de varios factores como la edad (Bryan *et al.*, 2010) o la CC (de Nava y Cavestany, 2000); (Souza *et al.*, 2009). Sin embargo, los resultados del trabajo coinciden con las aseveraciones realizadas por (Baruselli *et al.*, 2004) quien afirma que la aplicación de eCG estimula el crecimiento folicular a través de su acción de FSH y LH, aumentando el tamaño del folículo.

En el presente trabajo se observó, que existieron diferencias significativas (p≤0,05) en el tamaño del CL según el tratamiento, resultando el TD el de mayor tamaño de CL,

en donde la aplicación de eCG fue con una dosis previa a la ovulación y una dosis de eCG al día 14 de la IATF.

Nuñez (2014), manifiesta que la eCG administrada al finalizar un tratamiento de sincronización de la ovulación con progesterona y estradiol permite una alta tasa de ovulación, con mejor desarrollo de folículo preovulatorio, mayor tamaño del cuerpo lúteo e incrementa la concentración de progesterona en sangre durante las primeras semanas de gestación. En consecuencia se obtiene un aumento significativo en la tasa de preñez luego de la IATF en vacas con anestro posparto. Adicionalmente se evaluó una dosis de eCG previo al período crítico de la gestación, a los 14 días luego de la IATF, determinando el aumentó la actividad del CL y las concentraciones séricas de progesterona hasta el día 22 de la gestación, consecuentemente la tasa de preñez se incrementó.

Al evaluar la tasa de preñez en el presente estudio, no existió diferencia significativa entre los tratamientos: TA: 64.5%, TB: 47.5%, TC:45,0% y TD: 58.1%, la aplicación de eCG en los diferentes tratamientos no incremento la tasa de preñez. Resultados similares fueron obtenidos por investigadores a nivel nacional e internacional, concluyendo que la administración de eCG 14 días antes no mejora la tasa de preñez.

Pita et al., (2013) evaluó el efecto de la aplicación de eCG en el día 14 post IATF sobre la tasa de preñez en vacas Bos indicus con cría al pie, teniendo como resultado el 68% de preñez en vacas sin eCG (Tratamiento testigo) vs el 48% de vacas preñadas con eCG al día 14 post IATF, el estudio manifiesta no encontrar beneficio de la aplicación de eCG post IATF.

Martínez et al., (2014) no encontraron diferencias significativas (p≤0,05), sobre la tasa de preñez en vacas con crías al pie utilizando 400 UI de eCG 14 días post IATF, 42% preñez vs 30% preñez del tratamiento testigo. A pesar de no haber significancia estadística, el grupo de vacas a las que se aplicó la eCG a los 14 días post IATF, presentó un porcentaje de preñez mayor.

Rosatti *et al.*, (2015) determina que el porcentaje de preñez en vacas de primer parto del grupo Control es de 59,3%; 16/27, fue similar al Grupo de vacas eCG con 46,4%; 13/28, no existe diferencia significativa entre los tratamiento y no es afectado por la

aplicación de eCG 7 días después de la IATF. El área del CL (Día 30) en vacas preñadas no fue diferente (p=0,11) entre vacas del grupo control y vacas del grupo eCG. Concluyen que la administración de eCG 7 días después de la IATF no mejora la fertilidad y no afecta al área del CL de vacas en gestación.

Narvaez (2010), en un estudio con 508 vacas Holstein, cruzas Holstein/Jersey y triple cruzas Holstein Jersey y Montbeliarde o Rojo sueco, con una producció promedio de 22 litros/día y con un promedio de 145 días en leche, determinó que la aplicación de eCG una vez a la semana entre los días 16 a 22 post inseminación no produjo ningún efecto significativo sobre la tasa de concepción 50,6% (77/152), con repecto a las vacas controles no tratadas 44,9% (76/169).

Bartolome *et al.*, (2011) mostró resultados positivos, la combinación de eCG y hCG al día 22 y 29 post inseminación mejoraron la tasa de concepción y redugeron las pérdidas embrionarias, obtuvieron un incremento en la tasa de concepción en el día 45 para vacas que recibieron eCG el día 22 fue mayor en aquellas inseminadas a tiempo fijo (41,2% vs 65,0%) que en las inseminadas a celo detectado (50,0% vs 37,8%). El tratamiento con eCG redujo las pérdidas de preñez entre los días 29 y 45 (7,5% vs 21,4%). El tratamiento con hCG redujo las pérdidas de preñez en vacas tratadas con eCG el día 22 (0,0% vs 15,0%), pero incremento las pérdidas de preñez en las vacas no tratadas con eCG el día 22 (33,3% vs 12,5%), el uso individual de hCG resultó ser negativo.

A pesar de no obtener diferencias significativas en los datos de preñez entre los grupos de vacas y novillas en los tratamientos eCG y control, los resultados sugieren que el empleo de una dosis de 400 UI de eCG al momento del retiro del dispositivo con progesterona, mejoraría de manera positiva las tasas de preñez, comparándolas con las del grupo control. (Nuñez, 2014) Concluyó que la administración de 400 UI de eCG al momento del retiro del dispositivo aumenta la tasa de preñez, tanto en vacas como en vaquillonas en anestro. Sumado a esto, la administración de una segunda dosis de 400 UI de eCG 14 días luego de la inseminación sugiere un posible efecto sobre la supervivencia de embriones en los primeros 30 días de gestación en vacas multíparas, no observándose los mismos resultados en vaquillonas. Estos resultados

observados tanto en vacas como en vaquillonas concuerdan con lo reportado por Sartori *et al.*, (2004).

El uso de eCG pre y post inseminación podría dar mejores resultados, donde las tasas de concepción estén por debajo de un 35%, y con baja Condición Corporal, los tratamientos con eCG sean una alternativa para mejorar la concepción. Si bien es cierto el uso de eCG no se ven afectados en los resultados y no hay cambios significativos como en otros trabajos donde si hubieron cambios positivos al uso combinado e individual de esta misma.

CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES:

- La asociación de 2 aplicaciones de eCG dos días antes de la IATF y 14 días después, no mejora el tamaño del folículo preovulatorio y tasa de preñez en vacas Holstein mestizas criadas en la Amazonia bajo un sistema de alimentación de pastoreo al sogueo con ternero al pie.
- El cuerpo lúteo del día 7 y 20 post IATF se ve favorecido en su tamaño por la aplicación de eCG dos días antes y 14 días después de la IATF, sugiriendo un posible efecto favorable sobre la sobrevivencia embrionaria y el mantenimiento de la gestación temprana, incrementando el desarrollo y la actividad del cuerpo lúteo.
- La administración de eCG después de la IATF incrementa la concentración de Progesterona durante el periodo crítico, mejorando el soporte luteal durante el reconocimiento materno bovino.
- El uso de eCG en los tratamientos en estudio, no se encontró diferencia significativa en la tasa de concepción en las vacas evaluadas.

RECOMENDACIONES:

- Realizar futuros experimentos aplicando eCG en diferentes días post IATF, para determinar su eficiencia.
- Realizar futuros trabajos con mayor número de animales por tratamiento para encontrar diferencias significativas.

REFERENCIAS BIBLIOGRAFICAS

- Aba, M., Chayer, R., Uslenghi, G., González-Chaves, S., & Callejas, S. (2013). Efecto de la gonadotrofina coriónica equina y del inseminador sobre la preñez en vacas con cría en Inseminación Artificial a Tiempo Fijo. *Rev. Vet., 24:1*, 25-28.
- Alistair, G. (2011). Respuesta de los ovarios y supervivencia de embriones en vacas Holstein tratadas con hormona gonadotropina coriónica equina. EEUU: Universidad de California.
- Alkatanani, Y., Webb, W., & Hansen, P. (1999). Factors affecting seasonal variation in 90 day nonreturn rate to first service in lactating Holstein cows in a hot climate. *J. Dairy Sci.*, 82, 2611-2616.
- Allen, W. R., & Moor, R. M. (1972). The origin of the equine endometrial cups. *J. Equine Vet. Sci.*, 29, 313 316.
- Arosh, J. A., Banu, S. K., Kimmins, S., Chapdelaine, P., Maclaren, L. A., & Fortier, M. A. (2004). Effect of interferon T on prostanglandin biosintesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. *Endocrinology*, *145*(11), 528-533.
- Arthur, G., Noakes, D., & Pearson, H. (1991). Reproducción y Obstetricia en Veterinaria. Madrid: Editorial Intermaricana Mc Graw Hill.
- Asselin, E., Goff, A. K., Bergeron, H., & Fortier, M. A. (1996). Influence of sex steroids on the production of prostaglandins F2 alpha and E2 and response to oxytocin in cultured epithelial and stromal cells of the bovine endometrium. *Biol. Reprod.*, *2*, 371-379.
- Asselin, E., Bazer, F. W., & Fortier, M. A. (1997). Recombinant ovine and bovine interferons tau regulate prostaglandin production and oxytocin response in cultured bovine endometrial cells. *Biol. Reprod.*, *2*, 402-408.
- Bartlett, A., Pain, S. J., Hughes, P. E., Stott, P., & van Wettere, W. H. (2009). The effects of PG600 and boar exposure on oestrus detection and potential litter size following matting at either the induced (pubertal) or second oestrus. *Anim. Reprod. Sci.*, *114*, 219-227.
- Bartolome, J. A., Perez, W., de la Sota, R. L., & Thatcher, W. W. (2011). The effect of administering equine chorionic gonadotropin (eCG) and human chorionic

- gonadotropin (hCG) post artificial insemination on fertility of lactating dairly cows. *Theriogenology*, 78 (1110-1116).
- Baruselli, P. S., Reis, E. L., Marques, M. O., Nasser, L. F., & Bó, G. A. (2004). The use of treatments to improve reproductive performance of anestrus beef cattle in tropical climates. *Anim Reprod Sci, 82-83*, 479-486.
- Baruselli, P. S., Sales, J. N., Sala, R. V., Vieira, L. M., & Sá Filho, M. F. (2012). History, evolution and perspectives of timed artificial insemination programs in Brazil. *Animal Reproduction*, *9*, 139-152.
- Bell, D., Spitzer, J., & Burns, G. (1998). Comparative effects of early weaning or once-daily suckling on ocurrence of postpartum estrus in primiparous beef cows. *Theriogenology*, *50*, 707-715.
- Billiau, A., & Matthys, P. (2009). Interferon-gamma: a historical perspective. *Cytokine Growth Factor Rev, 20(2)*, 97-113.
- Binelli, M., Thatcher, W. W., Mattos, R., & Baruselli, P. S. (2001). Antiluteolytic strategies to improve fertility in cattle. *Theriogenology*, *56*, :1451-63.
- Bó, G. A., Cutaia, L., Peres, L. C., Pincinato, D., Maraña, D., & Baruselli, P. S. (2007). Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. *Soc Reprod Fertil Suppl.*, *64*, 223-236.
- BonDurant, R. H. (2007). Selected diseases and conditions associated with bovine conceptus loss in the first trimester. *Theriogenology, 68*, 461-473.
- Bousfield, G., Liu, W. K., Sugino, H., & Ward, D. (1987). Structural studies on equine glycoprotein hormones. Amino acid sequence of equine lutropin b-subunit. *J. Biol. Chem.*(262), 8610-8620.
- Bryan, M. A., Bó, G. A., Heuer, C., & Emslie, F. R. (2010). Use of equine chorionic gonadotrophin in synchronized AI of seasonal-breeding, pasture-based, anoestrous dairy cattle. *Reprod Fertil Dev*, 22:126–131.
- Catalano, R., & Callejas, S. (2001). Deteccion de celos en bovinos. Factores que la afectan y métodos de ayuda. *Revista de Medicina Veterinaria, 82*, 17-22.
- Catalano, R., & Sirhan, L. (1995). Anestro post-parto en vacas de cría y su relación con la nutrición. *Avances en Producción Animal*, 20, 1-16.
- Charris,, C. (2000). ComparaciÛn del celo natural y sincronizaciÛn en raza Brahman utilizando dos protocolos evaluados en inseminaciÛn artificial. Honduras: Tesis Zamorano.

- Chebel, R. C., Santos, J. E., Reynolds, J. P., Cerri, R. L., Juchem, S. O., & Overton, M. (2004). Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. *Anim Reprod Sci, 84*, 239-55.
- Cheng, Z., Abayasekara, D. R., & Wathes, D. C. (2005). The effect of supplementation with n-6 polyunsaturated fatty acids on 1-, 2- and 3-series prostaglandin F production by ovine uterine epithelial cells. *Biochim. Biophys. Acta*, *2*, 128-135.
- Chesta, P., Filippi, L., Ramos, M., Racca, D., & Bó, G. (2009). Evaluación de las tasas de preñez en protocolos de inseminación artificial a tiempo fijo (IATF) utilizando diferentes dosis de cipionato de estradiol en vaquillonas holando. Argentina: VIII Simposio Internacional de Reproducción Animal IRAC.
- Christakos, S., & Bahl, O. (1979). Pregnant Mare Serum Gonadotropin. Purification and physicochemical, biological and inmunological characterization. *J. Biol. Chem.*, *54*, 4253-4261.
- Crowe, M. (2008). Resumption of ovarian cyclicity in post-partum beef and dairy cows. *Reproduction Domestic Animal*, *5*, 20-28.
- Cutaia, L., Peres, L. C., Pincinato, P. M., Chesta, M., & Bó, G. A. (2007). Programas de sincronización de celos en vaquillonas de carne: Puntos críticos a tener en cuenta. *VII Simposio Internacional de Reproducción Animal IRAC*, 83-92.
- Cutaia, L., Ramos, M., Chasta, M., & Bó, G. (2009). Efecto de la aplicación de eCG 14 días después de la IATF en vacas de carne con crías tratadas con dispositivos con Progesterona. *VIII Simposio Internacional de Reproducción Animal.* Cordoba: IRAC.
- Cutaia, L., Veneranda, G., Tribulo, R., Baruselli, P. S., & Bó, G. A. (2003).

 Programas de Inseminación Artificial a Tiempo Fijo en rodeos de cría:

 Factores que lo afectan y resultados productivos. (págs. 119-132). Córdoba: V Simposio Internacional de Reproducción Animal.
- De La Sota, R., & Dalla Lasta, M. (1998). Influencia del medio ambiente sobre la preñez y las pérdidas embrionarias. *En: Memorias de las Cuartas Jornadas Nacionales CABIA y Primeras del Mercosur.*, 111-123.
- de Nava, G., & Cavestany, D. (2000). Efecto de la utilización de dos fuentes de progesterona en el tratamiento del anestro posparto en vacas Holando en producción (resultados preliminares). *INIA La Estanzuela*, 55-57.
- de Vries, M., Vanderbeek, S., Kaallansbergen, L., Ouweltjes, W., & Wilmink, J. (1999). Modeling of energy balance in early lactation and the effect of energy

- deficits in early lactation on first detected estrus postpartum in dairy cows. *J. Dairy Sci.*, 82, 1927-1934.
- Demmers, K. J., Derecka, K., & Flint, A. (2001). Trophoblast interferon and pregnancy. *Reproduction*, 121(1), 41-49.
- Diskin, M. G., & Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. *Reprod Domest Anim, 43*, 260-267.
- Dorneles Tortorella, R., Ferreira, R., Tonellotto dos Santos, J., Silveira de Andrade Neto, O., Barreta, M. H., Oliveira, J. F., . . . Pereira Neves, J. (2013). The effect of equine chorionic gonadotropin on follicular size, luteal volume, circulating progesterone concentrations, and pregnancy rates in anestrous beef cows treated with a novel fixed-time artificial insemination protocol. *Theriogenology*, 79, 1204–1209.
- Dransfield, M., Nebel, R., Pearson, R., & Warnick, L. (1998). Timing of insemination for dairy cows identified in estrus by a radiotelemetric estrus detection system. *J. Dairy Sci., 81*, 1874-82.
- Ducrot, C., Grohn, Y., Bugnard, F., Senlis, Y., Sulpice, P., & Gilbert, R. (1999). A field study on estrus detection in lactating beef cattle. *Veterinary Research, 30*, 87-98.
- Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. *Journal of Dairy Science*, 72, 68-78.
- Esslemont, R., & Bryant, M. (1976). Oestrus behaviour in a herd of dairy cows. *Veterinary Record*, *99*, 472-475.
- Fátima, L. A., Baruselli, P. S., Gimenes, L. U., Binelli, M., Rennó, F. P., Murphy, B. D., & Papa, P. C. (2012). Global gene expression in the bovine corpus luteum is altered after stimulatory and superovulatory treatments. *Reprod. Fertil. Dev.*, 25(7), 998-1011.
- Ferreira, R. M., Ayres, H., Sales, J. N., Souza, A. H., Rodrigues, C. A., & Baruselli, P. S. (2013). Effect of different doses of equine chorionic gonadotropin on follicular and luteal dynamics and P/AI of high-producing Holstein cows. *Anim Reprod Sci.*, 140(1-2):26-33.
- García Boissou, R. (2000). La evolución de las tecnologías reproductivas y su influencia en la fertilidad de los rodeos lecheros. *Revista Taurus*, 7, 52-55.
- Glauber, C. (1993). Detección de celos, factor esencial para una óptima eficiencia reproductiva en rodeos lecheros. *Clínica y Reproducción Veterinaria*, 12, 2-5.

- Guilbault, L. A., Dufour, J. J., Thatcher, W. W., Drost, M., & Haibel, G. K. (1986). Ovarian follicular development during early pregnancy in cattle. *Journal Reproduction and Fertility*, 78, 127-135.
- Heres, L., Dieleman, S., & vanEerdenburg, F. (2000). Validation of a new method of visual oestrus detection on the farm. *Veterinary Quarterly*, 22, 50-55.
- Hoppen, H. O. (1994). The equine placenta and equine chorionic gonadotropin an overview. *Exp. Clin. Endocr.*, *10*2, 235-243.
- Humblot, P. (2001). Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. *Theriogenology*, *56*, 1417–1433.
- Humphrey, W. D., Murphy, B. D., Rieger, D., Mapletoft, R. J., Manns, J. G., & Fretz, P. B. (1979). Effects of FSH-LH ratio of PMSG on ovulatory responses. *Theriogenology, 11*, 101.
- Inskeep, E. K., & Dailey, R. A. (2005). Embryonic death in cattle. *Vet Clin North Am Food Anim Pract*, *21*, 437–61.
- Jo-Ann, G., Fleming, W., Youngsok, C., Greg, A. J., Spencer, T. E., & Bazer, F. W. (2001). Cloning of ovine estrogen receptor-alpha promoter and functional regulation by ovine interferon tau. *Endocrinology*, *142*, :2879-2887.
- Kastelic, J. P., Bergfelt, D. R., & Ginther, O. J. (1990). Relationship between ultrasonic assessment of the corpus luteum and plasma progesterone concentration in heifers. *Theriogenology*, 33, 1269–1278.
- Kastelic, J. P., Olson, W. O., Martinez, M. A., Cook, R. B., & Mapletoft, R. J. (1999). Synchronization of estrous in beef cattle with norgestomet and estradiol valerate. *J Can Vet, 40*, 173–178.
- Labernia, J., Lopez-Gatius, F., Santolaria, P., Lopez-Bejar, M., & Rutllant, J. (1996). Influence of management factors on pregnancy attrition in dairy cattle. *Theriogenology*, *45*, 1247–53.
- Lamb, G., Miller, B., Lynch, J., Thompson, K., Heldt, J., Loest, C., . . . Stevenson, J. (1999). Twice daily suckling but not milking with calf presence prolongs postpartum anovulation. *J. Anim. Sci., 77*, 2207-2218.
- Lenis, Y., Ramón, N., Restrepo, J., Olivera, M. T., & Tarazona, A. (2010). Interferón Tau en la ventana de Reconocimiento Materno Embrionario Bovino. *Rev. U.D.C.A Act. & Div. Cient.*, *13* (1), 17-28.
- Leroy, J. L., Soom, A. V., Opsomer, G., Goovaerts, I. G., & Bols, P. E. (2008). Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in

- danger? Part II: Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairycows. *Reproduction in Domestic Animals, 43*, 623-632.
- Marcantonio, S. (1998). Métodos auxiliares a la detección de celos. *Romage S.A*, 24-28.
- Martínez, L. J., Verdoljak, J. J., Konrad, J. L., Crudeli, G., Ibarra, R., & Dominguez, P. (2014). Efecto de la aplicación de Gonadotrofina Coriónica Equina (eCG) sobre la retención de la preñez en un programa de Inseminación Artificial. Argentina: Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Corrientes.
- Martinuk, S. D., Manning, A. W., Black, W. D., & Murphy, B. D. (1991). Effects of Carbohydrates on the Pharmacokinetics and Biological Activity of Equine Chorionic Gonadotropin In Vivo. *Biol. Reprod.*, *45*, 598–604.
- Moore, J. W., & Ward, D. (1980a). Pregnant Mare Serum Gonadotropin. Rapid chromatographic procedures for the purification of intact hormone and isolation of subunits. *J. Biol. Chem.*, 255, 6923-6929.
- Moore, J. W., & Ward, D. (1980b). Pregnant Mare Serum Gonadotropin: an in vitro biological characterization of the lutropin-folltropin dual activity. *J. Biol. Chem.*, 255, 6930-6936.
- Moudgal, N. R., & Papkoff, H. (1982). Equine luteinizing hormone possesses folliclestimulating hormone activity in hypophysectomized female rats. *Biol. Reprod.*, *26*, 935-942.
- Murphy, B. D. (2012). Equine chorionic gonadotropin: an enigmatic but essential tool. *Anim. Reprod.*, *9*, 223–230.
- Murphy, B. D., & Martinuk, S. D. (1991). Equine chorionic gonadotrophin Endocrine. *Endocr Rev.*, *12*, 27-44.
- Narvaez, J. F. (2010). Efecto de la administración de eCG entre los días 16 y 22 post InseminaciónArtificial sobre la Concepción y el retorno al celo en vacas lecheras. Córdoba, Argentina: Iracbiogen.
- Nogueira, M. F., Melo, D. S., Carvalho, L. M., Fuck, E. J., Trinca, L. A., & Barros, C. M. (2004). Dohigh progesterone concentratios decrease pregnancy rates in embryo recipients synchronized with PGF2a and eCG. *Theriogenology*, 61, 1283-1290.

- Nuñez, R. (2014). Uso de Gonadotropina Coriónica Equina en la sincronización de la ovulación y el mantenimiento de la gestación en vacas de carne. Córdoba, Argentina: IRAC.
- Ortiz, N. R., Castro, W. E., Lammoglia, M. A., Daniel-Renteria, I. C., Marini, P., & Martínez, P. (2015). Eficiencia reproductiva de diferentes genotipos bovinos en la Amazonía Ecuatoriana. *Revista Biológico Agropecuaria Tuxpan*, 4(6) 1339-1343.
- Perea , F., Soto, E., Ramirez , L., Gonzáles, R., Goicolea, J., & Ondis, A. (2003). Tratamientos del anestro postparto con progesterona intravaginal mas eCG en vacas mestizas tropicales. *FCV-LUZ*, 13-39.
- Perea, F., Palomares Naveda, R., De Ondiz, A., Hernández Fonseca, H., Díaz, D., González, R., . . . Soto Belloso, E. (2009). Factores que afectan la respuesta reproductiva de vacas mestizas en anestro tratadas con un progestágeno intravaginal o con destete temporal por 120 horas. *Arch. Latinoam. Prod. Anim,* 17, 43-54.
- Peter, A., Vos, P., & Ambrose, D. (2009). Postpartum anestrus in dairy cattle. *Theriogenology*, *71*, 1333-1342.
- Pinheiro, O., Barros, C., Figueiredo, R., Do Valle, E., Encarnação, R., & Padovani, C. (1998). Celous behavior and the estrus-to-ovulation interval in Nelore cattle (Bos indicus) with natural estrus or estrus induced with prostaglandin F2 alpha or norgestomet and estradiol valerate. *Theriogenology, 49*, 667-681.
- Pita, V. F., Matute, V. R., & Intriago, Z. I. (2013). Efecto de la aplicación de 400 UI de eCG 14 días post IATF sobre la tasa de preñez en vacas Bos indicus con cría al pie. Ecuador: XVI Congreso Latinoamericano de Buiatría.
- Rae, D., Chenoweth, P., Giangreco, M., Dixon, P., & Bennett, F. (1999). Assessment of estrus detection by visual observation and electronic detection methods and characterization of factors associated with estrus and pregnancy in beef heifers. *Theriogenology*, 51, 1121-1132.
- Reksen, O., Tverdal, A., Langree, J., Glattre, E., & Ropstad, E. (1999). Reproduction management of tethered cows on Norwegian dairy farms. *Anim. Reprod. Sci., 57*, 141-151.
- Rhodes, F. M., McDougall, S., Burke, C. R., Verkerk, G. A., & Macmillan, K. L. (2003). Invited review: treatment of cows with an extended postpartum anestrous interval. *J Dairy Sci*, 86:1876–1918.
- Roberts, R. M. (2007). Interferon-tau, a Type 1 interferon involved in maternal recognition of pregnancy. *Cytokine Growth Factor Rev.*, 18(5-6), 403-408.

- Roberts, R. M., Yizhen, C., Toshihiko, E., & Angela, M. W. (2008). Interferons and the Maternalconceptus dialog in mammals. *Review. Seminars in Cell y developmental Biology, 19*, 170-177.
- Roche, J. F. (2006). The effect of nutritional management of the dairy cow on reproductive efficiency. *Anim Reprod Sci*, *96*, 282-96.
- Roche, J. F., Crow, M. A., & Boland, M. P. (1992). Postpartum anoestrous in dairy and beef cows. *Anim. Reprod. Sci, 28*, 371.
- Rodtian, P., King, G., Subrod, S., & Pongpiachan, P. (1996). Oestrous behaviour of Holstein cows during cooler and hotter tropical seasons. *Anim. Reprod. Sci.*, *45*, 47-58.
- Romano, J. E., Thompson, J. A., Kraemer, D. C., Westhusin, M. E., Forrest, D. W., & Tomaszweski, M. A. (2007). Early pregnancy diagnosis by palpation per rectum. influence on embryo/fetal viability in dairy cattle. *Theriogenology, 67*, 486-493.
- Rosatti, G. N., Venturini, M., Vittone, J. S., & Aller, J. F. (2015). Efecto de la eCG aplicada siete días después de la IATF sobre el porcentaje de preñez y el área del Cuerpo Lúteo de gestación en vacas cruzas primíparas. Argentina: XI Simposio Internacional de Reproducción Animal IRAC.
- Sá Filho, M. F., Penteado , L., Reis , E. L., Reis, T., Galvão, K. N., & Baruselli, P. S. (2013). Timed artificial insemination early in the breeding season improves the reproductive performance of suckled beef cows. *Theriogenology, 79*, 625-632. Obtenido de https://www.researchgate.net/publication/233974452_Timed_artificial_insemin ation_early_in_the_breeding_season_improves_the_reproductive_performance_of_suckled_beef_cows
- Sales, J., Carvalho, J., Crepaldi, G., Cipriano, R., Jacomini, J., Maio, J., . . . Baruselli, P. S. (2012). Effects of two estradiol esters (benzoate and cypionate) on the induction of synchronized ovulations in Bos indicus cows submitted to a timed artificial insemination protocol. *Theriogenology*, 78: 510-516.
- Sangsritavong, S., Combs, D. K., Sartori, R. F., & Armentano, L. (2002). High feed intake increases liver blood flow and metabolism of progesterone and estradiol 17b in dairy cattle. *J Dairy Sci, 85*, 2831–2842.
- Sartori R, S. A. (2004). Fertilization rate and embryo quality in superovulated Holstein heifers artificially inseminated with X-sorted or unsorted sperm. *Anim Reprod*, 1:86-90.

- Sartori, R., Bastos, M. R., & Wiltbank, M. C. (2010). Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. *Reprod. Fertil.*, 22, 151-158.
- Schams, D., & Papkoff, H. (1978). Chemical and inmunochemical studies on Pregnant Mare Serum Gonadotropin. *Bioch. Bioph., 263, 39-148.*
- Senger, P. (1994). El problema de la detección de celo. *Producir XXI*, 2, 15-16.
- Sherman, G. B., Wolfe, M. W., Farmerie, T. A., Clay, C. M., Threadgill, D. S., Sharp, D. C., & Nilson, J. H. (1992). A single gene encodes the beta subunits of equine luteinizing hormone and chorionic gonadotropin. *Mol. End. (Baltimore)*, *6*, 951-959.
- Shipka, M. (2000). A note on silent ovulation identified by using radiotelemetry for estrous detection. *Appl. Anim. Behav. Sci, 66*, 153-159.
- Short, R., & Adams, D. (1988). Nutritional and hormonal interrelationships in beef cattle reproduction. *Can. J. Anim. Sci.*, *68*, 799-816.
- Silke, V., Diskin, M. G., Kenny, D. A., Boland, M. P., Dillon, P., Mee, J. F., & Sreenan, J. M. (2002). Extent, pattern and factors associated with late embryonic loss in dairy cows. *Anim Reprod Sci*, 71, :1-12.
- Soto, B., E., G., Portillo, M., De Ondiz, A. S., Rojas, N., Soto, G. C., . . . Perea, F. G. (2000). Evaluación del comportamiento reproductivo mediante el uso de la progesterona por radio inmunoanálisis en vacas mestizas cebú bajo programas de inseminación artificial en Venezuela. Rev. Cient. FCV-LUZ, 10(5), 391.
- Souza, A. H., Viechnieski, S., Lima, F., Silva, F. F., Araújo, R., Bó, G. A., . . . Baruselli, P. S. (2009). Effects of equine chorionic gonadotropin and type of ovulatory stimulus in a timed-Al protocol on reproductive responses in dairy cows. *Theriogenology*, 72:10-21.
- Spencer, T. E. (1998). Pregnancy Maternal Recognition of . En *Encyclopedia of Reproduction* (Vol. 3, págs. 1006-1015). New York: Knobil & Neill .
- Stevenson, J., Smith, M., Jaeger, J., Corah, L., & Lefever, D. (1996). Detection of estrus by visual observation and radiotelemetry in peripubertal, estrussynchronized beef heifers. *J. Anim. Sci., 74*, 729-735.
- Stocco, C. (2012). The long and short of the prolactin receptor: the corpus luteum needs them both. *Biol. Reprod.*, 85-86.

- Sugino, H., Bousfield, G., Moore, J. W., & Ward, D. (1987). Structural studies on equine glycoprotein hormones. Amino acid sequence of equine chorionic gonadotropin b subunit. *J. Biol. Chem.*, 262, 8603-8609.
- Thatcher, W. W., Driancourt, M. A., Terqui, M., & Badinga, L. (1991). Dynamics of ovarian follicular development in cattle following hysterectomy and during early pregnancy. *Domestic Animal Reproduction*, *8*, 223-234.
- Thatcher, W. W., Moreira, F., Pancarci, S. M., Bartolome, J., & Santos, J. E. (2002). Strategies to optimize reproductive efficiency by regulation of ovarian function. *Domestic Animal Endocrinology*, 23, 243-254.
- Thatcher, W. W., Staples, C. R., Danet-Desnoyers, G., Oldick, B., & Schmitt, E. P. (1994). Embryo health and mortality in sheep and cattle. *Animal Science*, 72 (3), 16-30.
- Thurmond, M. C., & Picanso, J. P. (1993). Fetal loss associated with palpation per rectum to diagnose pregnancy in cows. *JAmVet Med Assoc*, *203*, 432-5.
- Tithof, P. K., Roberts, M. P., Guan, W., Elgayyar, M., & Godkin, J. D. (2007). Distinct phospholipase A2 enzymes regulate prostaglandin E2 and F2 alfa production by bovine endometrial epithelial cells. *Reprod. Biol. Endocrinology*, *5*, 5-16.
- Van Vliet, J., & Van Eerdenburg, F. (1996). Sexual activities and oestrus detection in lactating Holstein cows. *Appl. Anim. Behav. Sci, 50*, 57-69.
- Vanroose, G., de Kruif, A., & Van Soom, A. (2000). Embryonic mortality and embryopathogen interactions. *60*, 131-143. Animal Reproduction Science.
- Vasconcelos, J. L., Sartori, R., Oliveira, H. N., Guenther, J. G., & Wiltbank, M. C. (2001). Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. *Theriogenology*, *56*, 307-314.
- Vassilev, N., Yotov, S., & Dimitrov, F. (2005). Incidence of early embryonic death in dairy cows. *Trakia Journal of Sciences*, *3*, 62-64.
- Veneranda, G., Filippi, L., Racca, D., Cutaia, L., & Bó, G. A. (2008). Pregnancy rates in dairy cows treated with intravaginal progesterone devices and GnRH or estradiol benzoate and eCG. *Reprod. Fertil. Dev.*, 20: 90-95.
- Walker, A. M., Kimura, K., & Roberts, R. M. (2009). Expression of bovine interferontau variants according to sex and age of conceptuses. *Theriogenology*, 72(1), 44-53.
- Wathes, D. C. (1992). Embryonic mortality and the uterine environment. *Journal of Endocrinology*, 134, 321-325.

- Weems, W., Weems, Y. S., & Randel, R. D. (2006). Prostaglandins and reproduction in female farm animals. *The Vet. J.*, 171, 206-228.
- Williams, G., & Griffith, M. (1992). Maternal behaviour and neuroendocrine regulation of suckling-mediated anovulation in cows. *J. Physiol. Pharmacol.*, *4*3, 165-177.
- Wiltbank, M., Gumen, A., & Sartory, R. (2002). Physiological classification of anovulatory conditions in cattle. *Theriogenology*, *57*, 21-52.
- Woclawek, P. I., Deptula, K., Bah, M. M., LEE, H. Y., OKUDA, K., & Skarzynski, D. J. (2004). Effects of nitric oxide and tumor necrosis factor-alpha on production of prostaglandin F2alpha and E2 in bovine endometrial cells. *J. Reprod. Dev,* 50(3), 333-340.
- Xu, Z., Mcknight, D., Vishwanath, R., Pitt, C., & Burton, L. (1998). Estrus detection using radiotelemetry or visual observation and tail painting for dairy cows on pasture. *J. Dairy Sci., 81*, 2890-2896.

ANEXOS

Anexo 1: Formato de Campo para el estudio

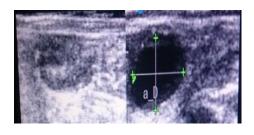
Variable Variable		Levant	amiento de Info	rmación	
Propietario					
Arete					
Nombre					
Raza					
Edad (años)					
N° Partos					
cc					
Amamantando Cría					
Pos Parto (días)					
Aparato Reproductor	and the second s				
Fecha Implante					
Hora					
Tratamiento					
Fecha Retiro					
Hora					,
Fecha IA					
Folículo Preovulatorio					
(mm) Ovario Izquierdo Folículo Preovulatorio					
(mm) Ovario Derecho					5.00
Hora IA					
Celo					
Raza Toro	,				
Nombre Toro					
CL 7 DIAS (mm)					
Ovario Izquierdo					
CL 7 DIAS (mm)					
Ovario Derecho					
eCG 14 días Pos IATF					
Fecha eCG 14 DP IATF					
CL 20 DIAS (mm)					
Ovario Izq. CL 20 DIAS (mm)					
Ovario Derecho					
Ovario Derecho PREÑEZ (35-					
40 DIAS) PRENEZ (60				2	
DÍAS)					

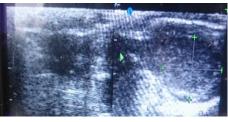
Anexo 2: Registro de resultados del trabajo de campo

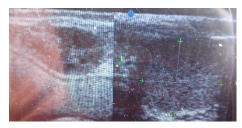
Variable	mestizas en la Provincia de Pastaza" Nelson Ortiz MVZ				
Propietario	Levantamiento de Información JULIO VPANGUI				
	JULIO 2173		2138	2139	01.00
Arete	2145	5, 2175			2140
Nombre		Simental.	Rebeca.	Angela.	Marimar
Raza	H.N.	H.N	H.R.	HN.	H.R.
Edad (años)	7	4	4	5	4
N° Partòs	4	2	2	3	2
СС	3,25	2,75	2,75 .	3,25	3
Amamantando Cria	51	51	SI	SI	51
Pos Parto (días)	420	150	120	125	150
Aparato Reproductor					
Fecha Implante	25.01.2016	25.01.2016	25.01.2016	25.01.2016	25.01.2016
Hora		9			
Tratamiento	A	В	C.	D	A
Fecha Retiro	01.01.16	01.01.16	01.0216	01.02.16	d. 02 2016
Hora			,		
Fecha IA	03.01.16	03.02.16	03.02.16	03.02.16	03.01.16
Folículo Preovulatorio (mm) Ovario Izquierdo			16,4 ×18,2.	12,7 × 11,1 .	16.4
Folículo Preovulatorio (mm.) Ovario Derecho	12,7 × 10,9	09.8 + 9.5			20,2 x 5.4
Hora IA	19:40	18:30	18:20	19:50	17:20
Celo					
Raza Toro	H.N.	H.N.	H.N.	H.N.	H.N.
Nombre Toro	ORION	ORIÓN	ORIÓN	ORIÓN	ORIÓN
CL 7 DIAS (mm) Ovario Izquierdo	2,22.	NOCL	27,4 , 20,0	23,4 × 17,8	QF 27,8
CL 7 DIAS (mm) Ovario Derecho	23,4 × 18,7	NOCL			25,4 × 23,6
eCG 14 días Pos IATF			QCG	a CG	
Fecha eCG 14 DP IATF			17.02.16	17.02.16.	
CL 20 DIAS (mm)		22,7x 22,5	25,6x 19.3	24,7 x18,5	
Ovario Izq. CL 20 DIAS (mm) Ovario Derecho	A.8 x 12,7			en koeen simen omee	12,8×18,9
PRENEZ 35-40 DIAS)	Vacia	Vacia	Prenada	Prenada	Prenada
PRENEZ 60 DÍAS)	Vacía	Vacia	Prenada	Prenada	Prenada

Anexo 3: Materiales y Hormonas utilizadas

Anexo 4: Ultrasonido Veterinario empleado en la investigación

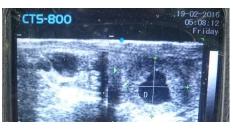

Anexo 5: Inseminación Artificial

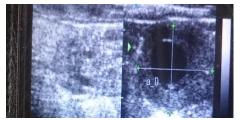



Anexo 6: Ecografía reproductiva en campo

Anexo 7: Registro ecográfico del Tratamiento A

FPO 18 x 13.3 mm


CL día 7: 21.6 x 18.7 mm

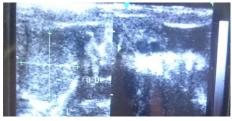

CL día 20: 24.7 x 18,5

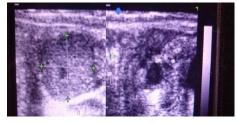
Preñez 35 días

Anexo 8: Registro ecográfico del Tratamiento B

FPO 16.9 x 16.7

CL día 7: 22.1 x 23.2 mm

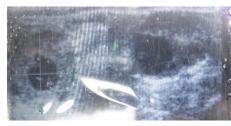

CL día 20: 23.4 x 23.5 mm


Preñez 35 días

Anexo 9: Registro ecográfico del Tratamiento C

FPO 9 x 12 mm

CL día 7: 18.2 x 16.7 mm


CL día 20: 19.2 x 18.4

Preñez 35 días

Anexo 10: Registro ecográfico del Tratamiento D

FPO 14 x 21 mm

CL día 7: 17.5 x 20.4 mm

CL día 20: 18.6 x 21.4 mm

Preñez 35 días