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RESUMEN 

 

La incertidumbre en la estimación de la precipitación tiene implicaciones 

directas en la gestión de recursos hídricos. Especialmente en las cuencas de 

montaña, donde la variabilidad es alta y el monitoreo suele ser escaso. Esto es 

particularmente cierto para el páramo, un ecosistema de montaña que provee 

agua a millones de personas en la región andina. En este estudio se cuantificó 

la incertidumbre en la estimación de la precipitación espacial diaria de una 

microcuenca de páramo. Se utilizaron los registros de una red de  monitoreo 

con una cantidad de sensores inédita en la región (13 sensores, 

aproximadamente 1 por cada 0.6 km2). Se analizaron dos fuentes de 

incertidumbre: 1) el efecto del método de interpolación; y 2) el impacto de la 

reducción de la densidad de sensores. A través del krigeado ordinario y del 

método IDW se obtuvieron las mejores estimaciones diarias y se compararon 

con todas las posibles estimaciones obtenidas al descartar pluviógrafos. Para 

el 25% de los días ninguno de los métodos reflejó la variabilidad al interior de la 

microcuenca. En los días restantes ambos métodos tuvieron un buen 

rendimiento. Para todas las densidades de sensores, entre el 20 % y 30% del 

total de redes estimó el promedio de la precipitación espacial diaria sin sesgo. 

Cuando se disminuyó la densidad de sensores se encontró un crecimiento 

exponencial del error absoluto promedio diario. Todas las instancias del estudio 

revelaron que la incertidumbre al estimar la precipitación en regiones al interior 

de la microcuenca podría ser crítica para fines ulteriores.  

 

Palabras clave: Precipitación; interpolación; incertidumbre; pluviógrafo; Andes 

ecuatorianos; páramo. 
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ABSTRACT 

 

Uncertainty in areal rainfall estimation has direct implications for water resource 

management. Especially in mountain catchments, where variability is high and 

monitoring is often scarce. This is particularly true for the Páramo, a mountain 

ecosystem that provides water to millions of people in the Andean region. In this 

study, the uncertainty in daily precipitation estimation of a páramo 

microcatchment is quantified. Records from a monitoring network with an 

unprecedented number of sensors in the region were used (13 sensors, 

approximately 1 per 0.6 km2). Two sources of uncertainty were analyzed: 1) the 

effect of interpolation method; and 2) the impact of reducing sensor density. 

Through Ordinary Kriging and IDW methods, best daily estimates were obtained 

and compared with all possible estimates obtained by discarding tipping 

buckets. For 25% of the days, none of the methods reflected the variability 

inside the microcatchment. In the remaining days, both methods performed 

well. For all sensor densities, between 20% and 30% of all gauge networks 

estimated the mean daily areal precipitation without bias. When the sensor 

density decreased, the mean daily absolute error increased exponentially. All 

instances of the study revealed that the uncertainty in estimating rainfall inside 

the microcatchment could be critical for further purposes. 

 

 

Keywords: Precipitation; interpolation; uncertainty; tipping bucket; Ecuadorian 

Andes; páramo. 
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1. Introducción 

La gestión integral de los recursos hídricos, incluida dentro de los objetivos del 

milenio de las Naciones Unidas (Naciones Unidas, 2015), es uno de los 

principales desafíos de las sociedades actuales. Las decisiones que atañen a 

esta gestión se basan en la interpretación de los resultados de distintos tipos 

de modelos a través de los cuales se desarrolla la investigación científica 

(Sánchez y Fernández, 2007). Estos modelos están sujetos a diversas fuentes 

de incertidumbre y en consecuencia las decisiones que en ellos se sustentan. 

La más importante de estas fuentes de incertidumbre es la precipitación (Beven 

2011; Buytaert et al. 2006; Chang et al., 2005). Así, la exactitud en el cálculo de 

respuestas de una cuenca, tales como la escorrentía, la erosión del suelo o la 

variación de la calidad del agua en un reservorio, provienen de la exactitud en 

la precipitación (Chang et al. 2005). Por lo tanto, la cuantificación de la 

incertidumbre asociada a la precipitación es fundamental para el adecuado 

manejo de los recursos hídricos. 

El equipo de uso más extendido a nivel mundial para medir la precipitación es 

el pluviógrafo de balancín (González et al., 2015), ya sea de modo exclusivo o 

como complemento de medios más sofisticados (Li et al., 2016). Ya que este 

proporciona una medición puntual, la estimación de la precipitación en los sitios 

no monitoreados requiere de la conformación de redes de pluviógrafos que 

caractericen la variabilidad de la precipitación así como de la selección de 

métodos de interpolación idóneos. Por tal motivo, el análisis de la incertidumbre 

asociada a la medición de la precipitación con redes dispersas y a los métodos 

de interpolación constituye una parte ineludible de cualquier estudio destinado 

a proporcionar la información base para la planificación y el manejo de recursos 

hídricos (Shaghaghian y Abedini, 2013). 

A la hora cuantificar la incertidumbre asociada a la precipitación, los sitios 

prioritarios son las cuencas de montaña. En primer lugar por su papel crítico 

como fuentes del recurso hídrico (Viviroli et al. 2007); en segundo lugar por la 

considerable variabilidad que tiene la precipitación en estos ecosistemas  

(Hrachowitz y Weiler 2011; Tsintikidis et al. 2002) incluso en pequeña escala 

(Killeen et al., 2007); y  en tercer lugar porque, debido a la dificultad de acceso 

y al alto costo implicado, las redes pluviográficas suelen tener densidades 

insuficientes y un mantenimiento escaso (Célleri y Feyen, 2009; Hrachowitz y 

Weiler, 2011; Paimazumder y Mölders, 2009) .  

En la gestión de recursos hídricos de la región andina, las cuencas de páramo 

son el caso primordial. Debido a su importancia como fuentes de agua para 

millones de personas (PROCURADURÍA DELEGADA PARA ASUNTOS 

AMBIENTALES, 2008), a nivel regional existen incipientes iniciativas orientadas 

a cuantificar los servicios ambientales hidrológicos de estos ecosistemas de 
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montaña. Uno de los objetivos prioritarios es la extrapolación a escala de 

cuenca del conocimiento de procesos generado en pequeña escala (Célleri y 

Feyen, 2009). En este afán, el conocimiento de la precipitación es uno de los 

vacíos de mayor relevancia (Quintero, 2010). Los escasos estudios al respecto 

revelan que en las cuencas de páramo existe una preeminencia de llovizna y 

una fracción escasa de días secos. Se ha encontrado que la medición de este 

tipo de precipitación a través de sensores de baja resolución como los 

pluviógrafos presenta notables limitaciones (Padrón et al., 2015). En cuanto a 

la variabilidad, Buytaert et al. (2006) evidenciaron que, incluso a pequeña 

escala, esta puede ser considerable y está fuertemente influenciada por la 

topografía. Para la escala de microcuencas de páramos la cuantificación de la 

incertidumbre debida a esta variabilidad aún no ha sido cuantificada. 

A fin de cubrir este vacío del conocimiento, en el presente estudio se lleva cabo 

la cuantificación de la incertidumbre en la estimación de la precipitación 

espacial diaria en una microcuenca de páramo. Dos fuentes de incertidumbre 

son analizadas: 1) el efecto del método de interpolación; y 2) el impacto de la 

reducción de la densidad de sensores. Así, utilizando los registros de 

precipitación de una microcuenca monitoreada con una densidad de sensores 

sin precedentes en la región, se analizó el rendimiento de los métodos de 

interpolación de uso más frecuente y se determinó el efecto de realizar las 

estimaciones con todas las posibles combinaciones de parte de los sensores 

disponibles.  

1.1. Objetivos 

General 

Cuantificar la incertidumbre en la estimación de la precipitación espacial 

causada por la selección del método de interpolación y la reducción en la 

densidad de pluviógrafos. 

Específicos 

-Identificar el efecto del método de interpolación sobre la generación de la 

precipitación espacial 

-Identificar el impacto de la reducción de la densidad de sensores en el cálculo 

de la precipitación espacial  

-Optimizar el número de sensores de la red de monitoreo 

1.2. Área de estudio  

La microcuenca del río Zhurucay es un ecosistema de páramo con una 

superficie de 7.53 km2. Forma parte de la cuenca alta del río Jubones y se 

ubica en la cordillera occidental de los Andes, a 85 km de la ciudad de Cuenca, 

entre las coordenadas X: 694989m a 696944 m e Y: 9658439m a 9661930m 
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(UTM zona 17 WGS84) con una altura aproximada que va desde los 3400 a 

3900 m.s.n.m. (Figura 1). 

Por su ubicación dentro de la cordillera de los Andes, el clima está 

principalmente influenciado por el régimen del Pacífico y en menor medida por 

las masas de aire continentales derivadas de la parte amazónica (Vuille et al., 

2000). La precipitación es continua en todo el año y  la mayor parte del tiempo 

ocurre en forma de neblina. Para el periodo 2011-2014 se registraron los 

siguientes valores promedio de las variables meteorológicas: precipitación 

promedio anual  1345 mm, temperatura promedio 6°C, humedad relativa 

promedio 91%, radiación solar promedio diaria  14 MJ m-2 día-1 (Padrón et al., 

2015). 

2. Materiales y Métodos 

2.1. Conformación de la base de datos 

Se usaron los registros de 4 sensores pertenecientes al Departamento de 

Recursos Hídricos y Ciencias Ambientales de la Universidad de Cuenca 

(iDRHICA). Además se contó con las mediciones de un sensor monitoreado por 

el  Programa para el Manejo del Agua y del Suelo (PROMAS). Adicionalmente, 

con el apoyo del iDRHICA se llevó a cabo, entre marzo y abril de 2014, la 

instalación de 8 sensores adicionales. Siguiendo las recomendaciones de los 

fabricantes y las estipulaciones de la Guía de la Organización Meteorológica 

Mundial (WMO, 2008), los sensores fueron instalados buscando la formación 

de una malla regular abarcando todas las regiones al interior de la microcuenca 

(Figura 1).    

Para garantizar la calidad de las observaciones, durante todo el año 

considerado para el estudio (abril del 2014 a abril del 2015), se realizaron 

descargas regulares con una frecuencia mínima de 2 semanas y máxima 2 

meses. Siguiendo las especificaciones de los fabricantes, se realizó la 

calibración estática de todos los pluviógrafos. Para ello, mediante el uso de una 

micro pipeta se comparó el volumen necesario para producir un tip con el 

volumen nominal. Como resultado se obtuvieron factores de corrección que se 

aplicaron sobre las series de datos. Además, para detectar anomalías en el 

funcionamiento de los pluviógrafos, se compararon periódicamente las 

acumulaciones obtenidas con diferentes sensores.  

La totalidad de los equipos considerados fueron pluviógrafos de balancín. Estos 

disponen de un datalogger Pendant con un circuito de conteo que les permite 

almacenar el tiempo (hh:mm:ss) en que se ha acumulado una cantidad de 

precipitación igual a su resolución. La ubicación y las características de los 

pluviógrafos utilizados se presentan en las Tablas 1 y 2. A pesar de contar con 
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registros instantáneos, las diferencias en la resolución y marca de los sensores,
motivaron el uso de la escala diaria. Según los resultados de Padrón y Célleri
(2013), para escalas inferiores a la diaria las diferencias entre estos modelos
son significativas.

Figura 1. Ubicación del área de estudio y disposición de los pluviógrafos.
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Los registros de lluvia se acumularon para conformar las series diarias. Ya que 

los métodos aplicados requirieron la mayor cantidad de observaciones 

posibles, para la totalidad de los análisis desarrollados se utilizaron únicamente 

los datos acumulados de aquellos días con registros de precipitación en todos 

los pluviómetros (al menos un tip en cada sensor).  Se obtuvo una muestra de 

60 días.  

Sitio 
Resolución 

(mm) 
Modelo del 
pluviógrafo 

Coordenadas 
(UTM Zona 17 

WGS84) 

X Y 

1 0.2 Davis 2 696435 9661930 

2 0.2 Davis 2 695923 9661761 

3 0.2 Onset 696178 9661327 

4 0.2 Davis 2 695463 9661277 

5 0.2 Onset 694989 9660644 

6 0.254 Davis 1 696647 9660736 

7 0.2 Onset 695968 9660247 

8 0.254 Davis 1 695155 9659828 

9 0.2 Davis 2 696944 9659880 

10 0.254 Davis 1 695592 9659244 

11 0.2 Onset 696748 9659130 

12 0.254 Davis 1 696089 9658439 

13 0.2 Onset 696550 9660604 

Tabla 1. Características de los pluviógrafos 
según su ubicación en la microcuenca.  

 

Modelo de 
Pluviógrafo 

Resolución 
(mm) 

Diámetro 
del orificio 

del  
embudo 

(mm) 

Altura 
(mm) 

Peso (lb) 

Precisión 

(%) 
Rango de 
Intensidad 
(mm hora-1) 

Davis 1 0.254 165 240 2 ±1% 0-50 

  
   

±5% 50-100 

       Davis 2 0.2 165 240 2.2 ±3% 0.2-50 

  
   

±5% 50-100 

       Onset 0.2 152.4 257.2 2.5 ±1% 0-20 

Tabla 2. Características de los modelos de pluviógrafos empleados. 
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2.2 Identificación del efecto del método de interpolación sobre la 

generación de la precipitación espacial  

El problema de la interpolación de la precipitación ha sido abordado bajo 

enfoques deterministas, estocásticos y dirigidos por datos (Adhikary at al.,  

2016). Como representativos de los dos primeros se escogieron el método de 

ponderado por el inverso de la distancia (IDW – Inverse distance weighted) y el 

krigeado ordinario. Se trata de los métodos de uso más frecuente (Chang et al., 

2005; Li y Heap, 2011) y su ejecución supone niveles de complejidad 

diferentes.   

IDW 

El método IDW expresa la precipitación en un sitio no muestreado   a partir de 

  precipitaciones observadas  mediante: 

  
∑

  

  
 
   

∑
 
  

 
    

 ( 1 ) 

 

En la ecuación (1)    es la precipitación observada en el punto      es la 

distancia entre el punto no muestreado y el punto  ; y   es la potencia del 

método. Ya que la elección de la potencia puede afectar significativamente la 

exactitud de las interpolaciones (Dirks et al., 1998), se aplicaron dos variantes 

del método, denotadas IDW e IDW2. En la variante IDW se determinó cada día 

la potencia óptima entre un conjunto de 32 valores de prueba (todos los 

múltiplos de 0.25 menores o iguales a 8) mediante el paquete de R Intamap 

(Pebesma et. al., 2013). En la variante IDW2 se utilizó siempre la potencia 

convencional 2 (valor por defecto en software como ArcGIS o Gstat (Pebesma 

et. al., 2016)).   

Krigeado 

A diferencia del método IDW, que realiza las predicciones asumiendo el 

comportamiento espacial independientemente de las observaciones, el 

krigeado hace uso de la teoría Geoestadística para que las predicciones sean 

óptimas. El punto de partida del enfoque geoestadístico es la interpretación de 

las magnitudes que varían en el espacio (denominadas variables 

regionalizadas) como realizaciones de una función aleatoria (Matheron, 1962). 

Por lo tanto, el krigeado consiste en encontrar el predictor óptimo de una 

función aleatoria a partir de una realización de la misma. El rendimiento de un 

predictor se cuantifica a través de una función denominada pérdida por lo que 

el predictor óptimo es aquel que minimiza el valor esperado de la pérdida 

considerada. Debido a las propiedades particulares que posee, la pérdida 
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utilizada en el krigeado es el error cuadrático (cuadrado de la diferencia entre el 

valor real y el valor estimado por el predictor) (Cressie, 1993). Además, el 

krigeado impone al predictor óptimo la propiedad de insesgadez, es decir 

impone que el valor esperado del predictor sea el mismo que el de la función.    

Linealidad de los predictores óptimos  

Para llevar a cabo el krigeado, el paradigma es una función aleatoria con 

distribución normal multivariante. En este caso particular, el predictor óptimo es 

lineal y puede obtenerse de forma sencilla a partir de una realización de la 

función (Cressie, 1993). La linealidad del predictor significa que los valores en 

sitios no muestreados son estimados mediante una suma ponderada de los 

valores observados. Por lo tanto, según los principios del krigeado, las 

ponderaciones que determinan que el predictor sea óptimo deben obtenerse 

mediante la minimización del error cuadrático bajo la condición de insesgadez. 

Según como se asuma el comportamiento de la función en el proceso de 

minimización, el krigeado lineal puede ser simple, ordinario o universal. En el 

krigeado ordinario, se asume que la media de la función es desconocida. En el 

krigeado simple, se expresa a la función  como la suma de una media 

constante y conocida más un error aleatorio de media cero. En el krigeado 

universal, se considera que la función es no estacionaria y se la descompone 

como la suma de una tendencia conocida y un error aleatorio de media cero 

(Giraldo, 2002). Como resultado de la minimización, junto con las 

ponderaciones se obtienen expresiones para calcular el error de predicción 

cuadrático medio conocido como varianza del krigeado. Además de los tipos de 

krigeado lineal mencionados, existe una extensión del krigeado ordinario, 

denominada cokrigeado.  Este método sofisticado permite considerar la 

influencia de variables secundarias caracterizando el fenómeno a través de una 

función denominada variograma cruzado (Webster y Oliver, 2007).  

Si el problema de predicción óptima se aborda descartando que la función 

tenga una distribución normal, el predictor óptimo es usualmente no lineal.  

Cuando el predictor óptimo es no lineal, su obtención requiere un conocimiento 

más completo  de la estructura espacial de la variable regionalizada que el 

proporcionado por el variograma (Journel y Huijbregts, 1978). Incluso cuando el 

predictor óptimo de una función es lineal pero su distribución no es normal,  la 

obtención del predictor óptimo es compleja ya que se necesita conocer la 

distribución de probabilidad condicional de la función dada una realización de la 

misma (Cressie, 1993). Por ello, en la práctica se aplican transformaciones a 

las observaciones con distribución no normal para abordarlas como tales. La 

más común de estas transformaciones es la logarítmica, un caso particular de 

las transformaciones propuestas por Box y Cox (1964). La principal ventaja de 

la transformación logarítmica es que disminuye la influencia de los valores 
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atípicos. Sin embargo, la necesidad de revertir la transformación inicial 

introduce sesgamientos en el predictor y su aplicación exige ciertas 

consideraciones preliminares (Roth, 1998). Otras soluciones al krigeado no 

lineal, entre las que destacan el krigeado indicador y el krigeado disyuntivo, son 

descritas por Webster y Oliver (2007).   

A fin de garantizar el carácter óptimo del krigeado ordinario, como un paso 

preliminar se evaluó la normalidad de las observaciones diarias mediante el 

test de Anderson y Darling (1954). La hipótesis nula (comportamiento normal) 

pudo ser rechazada para un pequeño porcentaje de días. Al considerar las 

observaciones transformadas logarítmicamente se encontraron resultados 

similares e incluso para algunos días los valores p fueron superiores que 

aquellos correspondientes a los datos sin transformar (Tabla A1). En 

consecuencia se aplicó el krigeado sobre los datos sin transformar y el 

tratamiento de los comportamientos no normales se abordó en la etapa de 

caracterización del fenómeno. 

Variograma 

Para los fines concernientes a la Geoestadística, la característica mínima 

necesaria -que puede inferirse a partir de un conjunto de observaciones- es el 

comportamiento en una vecindad del origen de alguna de tres funciones 

equivalentes denominadas: variograma, covariograma y correlograma 

(Matheron y Alfaro, 1970). Aunque todas ellas caracterizan la estructura de 

correlación de la variable regionalizada, la más recomendada, por su 

generalidad y facilidad de cálculo, es el variograma (Cressie, 1993). Para que 

la inferencia del  variograma tenga fundamento se debe asumir al menos que la 

función aleatoria es intrínseca. Esto ocurre cuando para todo vector  , el 

incremento entre dos observaciones a una distancia   admite una esperanza y 

una varianza que son función de la distancia   pero independientes del punto 

de apoyo (Giraldo, 2002). Esta dependencia del modelo de variograma 

constituye la principal limitación del krigeado ordinario (Adhikary et. al., 2016). 

La razón radica en la necesidad de seleccionar varios de sus parámetros. 

Aunque existen valores referenciales avalados por la práctica, la elección final 

queda a criterio del ejecutor (Oliver y Webster 2014). Por lo tanto, es 

imprescindible contrastar los valores obtenidos a partir de las observaciones 

con ciertos comportamientos esperados y aplicar correcciones cuando no es el 

caso.    

Los valores que adopta el variograma habitualmente obedecen un patrón. Sea 

     }   
    una realización de la variable regionalizada gobernada por la función 

aleatoria     . La función variograma asigna un valor a cada par de 

observaciones [           ] en función del módulo del vector distancia entre 
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ellos (‖ ‖). Para valores de ‖ ‖ cercanos a cero, la función suele tender a 

cero. Conforme aumenta ‖ ‖, los valores de la función habitualmente crecen. 

Para valores de ‖ ‖ mayores a un valor crítico denominado rango, se espera 

que la función sea constante en un valor llamado meseta. Aunque teóricamente 

la continuidad del fenómeno exige que cuando ‖ ‖    la función sea nula, en 

la práctica esta adopta un valor distinto denominado efecto pepita. El 

significado y las implicaciones teóricas de estos comportamientos previstos así 

como de otros atípicos pueden consultarse en (Journel y Huijbregts, 1978; 

Cressie, 1993).  

El cálculo del variograma a partir de un conjunto de observaciones      }   
    no 

consiste en la aplicación directa de una definición, requiere consideraciones 

previas. Puesto que los puntos muestreados son limitados, en lugar de 

restringirse a ser una función de ‖ ‖, el variograma experimental asigna un 

valor promedio a todos los pares de observaciones tales que su distancia está 

dentro de un intervalo   . Ya que en general el variograma varía según la 

dirección de  , antes de calcularlo es necesario determinar si el fenómeno es  

isotrópico o anisotrópico. Será isotrópico si el comportamiento de la función 

aleatoria no depende de la dirección entre los pares de observaciones y 

anisótropico en caso contrario. Además, según el atributo que varía con la 

dirección, la anisotropía puede ser geométrica o zonal.  Será geométrica si el 

atributo que depende de la dirección es el rango y zonal en caso contrario 

(varios autores discrepan de esta definición de anisotropía zonal, en 

(Zimmerman, 1993) se detallan diferentes definiciones y se propone una 

clasificación alternativa).  

Para determinar si existe anisotropía se puede aplicar el método gráfico o 

alguno de los test estadísticos desarrollados para el efecto. En el método 

gráfico se representa, en coordenadas polares, el rango correspondiente a 

direcciones selectas y la existencia de anisotropía se refleja en la forma que se 

obtiene (para más detalles consultar (Zimmerman, 1993)). Sin embargo, para 

evitar subjetividades es recomendable optar por la aplicación de test 

estadísticos como los descritos en (Beniston y Stoffel, 2014; Chorti y 

Hristopulos, 2008; Guan et al., 2004; Lu y Zimmerman, 2005; Maity y Sherman, 

2012).  

Si el fenómeno es isotrópico el variograma experimental (      ) se calcula 

mediante:  

        
 

    
∑ ∑[(           )

 
  ]

 

   

 

     

 ( 2 ) 
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Donde     cuando     |     |      y 0 en caso contrario,       es el 

número de observaciones y N    es el número de pares experimentales tales 

que     (Grimes y Pardo-Igúzquiza, 2010).  

Si el fenómeno presenta anisotropía geométrica, en primer lugar se determina 

la razón entre el mínimo y el máximo rango y la dirección del mayor rango. A 

partir de estos parámetros se realiza una rotación de las coordenadas y un 

ajuste de las distancias de separación y se calcula el variograma empírico para 

estas coordenadas transformadas mediante (2). Si el fenómeno presenta 

anisotropía zonal, es necesario identificar y remover posibles tendencias a 

través de los métodos descritos en (Cressie, 1993). De lo contrario la hipótesis 

intrínseca es cuestionable o inviable (Zimmerman, 1993), de modo que se debe 

abandonar el enfoque geoestadístico del fenómeno.  

El cálculo del variograma a través de (2) es sensible a la presencia de valores 

atípicos. Para los fines posteriores a la estimación del variograma la influencia 

de los valores atípicos es sustancial. Considerando que la normalidad de las 

observaciones garantiza el carácter óptimo de las estimaciones, Hawkins y 

Cressie (1984) interpretaron los comportamientos no normales como 

observaciones normales contaminadas con valores atípicos aislados y 

desarrollaron el siguiente estimador robusto (a la contaminación por valores 

atípicos): 

    ̅̅ ̅    {
 

    
∑|           |

 
 ⁄   

    

   

}

 

                ⁄  ⁄  

 

( 3 ) 

Donde la notación es la misma que en (2). Un compendio de otros estimadores 

robustos puede encontrarse en (Cressie, 1993; Oliver y Webster, 2014). 

Además de los mencionados, existen otros factores que influyen en la 

estimación del variograma experimental. En (Oliver y Webster, 2014) se 

expone un análisis de los mismos. 

Una vez que se ha obtenido el variograma experimental, es necesario ajustar 

un modelo teórico que proporcione información para cualquier distancia. 

Aunque no existe un método de ajuste que teóricamente permita obtener la 

mejor estimación (Grimes y Pardo-Igúzquiza, 2010), en la práctica  el método 

más usado es el de mínimos cuadrados ponderados mediante regresión no 

lineal (Pebesma et al., 2016). En Webster y Oliver (2007) puede encontrarse un 

detalle de las curvas permitidas así como de los métodos de ajuste existentes.  
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Selección de parámetros 

Atendiendo al conjunto de criterios y procedimientos involucrados, la 

modelación del semivariograma se llevó a cabo en el entorno de cómputo 

estadístico y visualización R (van de Beek et al., 2012) a través de los paquetes 

geoestadísticos Intamap (Pebesma et al., 2013) y Gstat (Pebesma et al., 2016). 

Si bien estas herramientas realizan el ajuste del variograma experimental de 

manera automática, los valores por defecto que se asignan a los parámetros se 

sustentan en la práctica y carecen de un rigor teórico (Roger et al., 2013). 

Además, algunos de ellos limitan la cantidad de observaciones a considerar y 

para el caso inédito de estudio, resultaron inviables. Por lo tanto, a fin de 

generar un algoritmo válido para todos los días, se seleccionaron valores de 

prueba para cada parámetro (Tabla 3) y se calcularon los modelos 

correspondientes a todas las posibles combinaciones (1080 iteraciones). Para 

el análisis anisotrópico y para el ajuste del semivariograma teórico se utilizaron 

los procedimientos incorporados por defecto.  

La selección del modelo de semivariograma con la combinación óptima de 

parámetros y de la potencia óptima de la variante IDW2 se realizó mediante 

validación cruzada. Para este cometido, el método de validación cruzada 

evalúa el rendimiento de cada uno de los conjuntos de parámetros en la 

obtención de predicciones mediante el método respectivo (krigeado o IDW).  

Suponga que se tiene un conjunto de M observaciones y que se desea evaluar 

un determinado conjunto de parámetros. Entonces, en primer lugar se 

conforman todos los posibles subconjuntos de observaciones que resultan al 

eliminar una  de las M observaciones. Luego, utilizando el conjunto de 

parámetros de prueba, con cada uno los subconjuntos se predice el valor de la 

observación excluida para formar el subconjunto y se calcula el error cometido 

en la predicción. El desempeño de la combinación de parámetros se cuantifica 

a través de los siguientes estadísticos (relativos a los errores de predicción de 

las observaciones excluidas cada vez): error medio (ME), error cuadrático 

medio (MSE) y para el caso de los parámetros del semivariograma la razón 

entre el MSE y la varianza del krigeado (MSDR). Para la variante IDW2 la 

potencia óptima es aquella que produce el menor MSE. Para el krigeado la 

mejor combinación de parámetros es aquella que produce el MSDR más 

próximo a uno. Para ambos métodos el ME deber ser cercano a cero (Oliver y 

Webster, 2014). Ya que el MSDR no es aplicable al método IDW, se 

consideraron dos variantes del krigeado ordinario según el criterio empleado 

para seleccionar el conjunto óptimo de parámetros. En la primera variante, 

denotada OK1, el criterio fue el valor del MSDR y en la otra variante, denotada 

OK2, se utilizó el valor del MSE. Adicionalmente, para cada método se 

calcularon los coeficientes de correlación diarios entre los valores observados y 

estimados para efectuar la validación cruzada.  
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Efecto del método de interpolación 

Finalmente, para analizar el efecto del método de interpolación se compararon 

los resultados de la validación cruzada y las distribuciones de frecuencias de 

las precipitaciones espaciales diarias obtenidas con cada una de las variantes. 

Además, a fin de determinar las diferencias de los métodos para caracterizar la 

variabilidad dentro de la cuenca se compararon mapas de promedios y 

desviaciones estándar de los mapas de precipitación diaria generados con 

cada método. Es decir, en lugar de interpolar los promedios y desviaciones en 

los sitios muestreados, estos fueron calculados para cada uno de los píxeles a 

partir de los mapas generados día a día. Adicionalmente a los mapas referidos, 

para las variantes del krigeado ordinario se obtuvieron mapas de promedios y 

desviaciones estándar relativos a la varianza de krigeado.  

 

 

Parámetro Opciones de prueba Código 

Intervalos de 
distancia 

6 valores en cada intervalo 1 

9-11 valores en cada intervalo 2 

13 valores en cada intervalo 3 

Regulares 400m 4 

Regulares 600m 5 
   Efecto pepita Cero 1 

Valor mínimo de la nube variográfica 2 

Duplo del valor mínimo de la nube variográfica 3 
   Meseta Mediana de la nube variográfica 1 

Media entre la mediana y el máximo de la nube 
variográfica 

2 

Máximo de la nube variográfica 3 

1.5 veces el máximo de la nube variográfica 4 
   Rango  2000 - 

3000 - 

4000 - 
   Tipo Robusto - 

Clásico - 
 

  Modelos Esférico - 

Exponencial - 

Gaussiano - 

 
Tabla 3. Valores de prueba para los parámetros involucrados en la estimación de 

los semivariogramas teóricos diarios. 
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Resumen de métodos de interpolación empleados 

La Tabla 4 muestra el resumen y acrónimos de los diferentes métodos de 

interpolación empleados y evaluados. 

2.3. Identificación del impacto de la reducción de la densidad de sensores 

en el cálculo de la precipitación espacial  

Para determinar el efecto que tiene la desagregación de la red completa sobre 

el cálculo de la precipitación espacial, se compararon exhaustivamente las 

precipitaciones espaciales diarias obtenidas a partir de la red completa y 

aquellas obtenidas a partir de todas las redes que se pudieron conformar al 

excluir pluviógrafos (en total 8190 redes, en adelante referidas como redes 

dispersas). Ya que el número de pluviógrafos de las redes dispersas 

imposibilitó la aplicación de krigeado, las predicciones se realizaron mediante el 

método IDW optimizando diariamente la potencia. En concordancia con la 

metodología empleada por Hrachowitz y Weiler (2011), las diferencias 

asociadas a cada red se cuantificaron mediante el error absoluto diario 

promedio (ecuación (5)). Además, para determinar la relevancia de las 

diferencias en relación con la cantidad de precipitación, se  calcularon: el error 

diario promedio (ecuación (4)), el sesgo diario promedio (ecuación (6)) y el 

sesgo absoluto diario promedio (ecuación (7)). 

                   
 

 
∑      ̂  
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Tabla 4. Resumen de los métodos utilizados 

 

Método 
Criterio de selección de parámetros 

óptimos 
Acrónimo 

Krigeado 
ordinario 

Semivariograma con el MSDR más 
próximo a uno 

OK1 

 
Semivariograma con el MSE  mínimo OK2 

   IDW Potencia que produjo el MSE mínimo IDW 

 
Potencia 2 IDW2 
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En las ecuaciones (4)-(7),   es el total de días analizados (60) mientras    y  ̂  

son las precipitaciones espaciales del día   calculadas, respectivamente, con la 

red completa y con la red dispersa en consideración.   

Para determinar la significancia estadística de las diferencias, se aplicó el test 

de Mann Whitney (Hollander et al, 2013) entre las series diarias de 

precipitación espacial calculadas con la red completa y con cada una de las 

redes dispersas, es decir, un test por cada red dispersa. 

Las densidades de las redes de monitoreo en ecosistemas de montaña, 

particularmente en la región andina (Quintero, 2010),  son considerablemente 

inferiores a la red de este estudio. En tal virtud, se analizaron en detalle las 

diferencias existentes para redes selectas de un sensor, considerando los 

patrones de precipitación al interior de la microcuenca. En base a su 

desempeño y a la importancia de su ubicación en términos de monitoreo, se 

seleccionaron las siguientes redes: i) las que produjeron el mayor y menor 

promedio del  error absoluto diario en el análisis exhaustivo anterior 

(pluviógrafos 9 y 5, respectivamente); ii) el sensor ubicado en el centro de la 

cuenca (pluviógrafo 7); y iv) de los sensores más cercanos a la única vía de 

acceso, aquel que tuvo el menor promedio del  error absoluto diario 

(pluviógrafo 13). Al igual que en las comparaciones de la precipitación espacial, 

se utilizaron los parámetros dados por las ecuaciones (4)-(7) pero aplicándolos 

a cada uno de los píxeles utilizados en las interpolaciones. Para ello, con cada 

uno de estos sensores se calcularon mediante IDW -optimizando cada vez la 

potencia- los mapas de precipitación diarios. Luego se obtuvieron día a día los 

mapas del error, error absoluto, sesgo y sesgo absoluto. Finalmente se 

promediaron cada uno de estos mapas. 

2.3. Optimización del número de sensores de la red de monitoreo 

El procedimiento aplicado consistió en descartar redes según 3 criterios 

aplicados de manera secuencial. En primer lugar, se identificaron todas las 

redes dispersas sin diferencias estadísticamente significativas con respecto a la 

red completa. De este subconjunto, se seleccionaron aquellas redes que 

produjeron los menores errores absolutos promedio con respecto a la red 

principal (cuantificados a través de las ecuación (3)). Por último, se descartaron 

las redes que contenían sensores con alto costo de monitoreo. Para ello se 

consideró la distancia con respecto a la única vía de acceso. Ya que esta rodea 

la microcuenca por el este, se estableció el siguiente orden de prioridad: 

primero las redes dispersas compuestas por combinaciones de los pluviógrafos 

1, 6, 9, 11 o 13; luego las que incluían a los pluviógrafos 3 o 7 y finalmente; las 

que incorporaban a los sensores 2, 4, 5, 8, 10 o 12.   

El detalle de las redes dispersas utilizadas en los análisis de esta sección se 

resume en la Tabla 5. 
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3. Resultados y discusión 

3.1. Identificación del efecto del método de interpolación sobre la 

generación de la precipitación espacial 

Los resultados de la validación cruzada mostraron que, todos los métodos de 

interpolación estimaron la precipitación espacial con buena exactitud y con una 

precisión semejante. De acuerdo con las distribuciones del error diario 

promedio (Figura 2), todos los predictores fueron insesgados. La dispersión de 

estas distribuciones reveló a la variante del krigeado OK1 como el método más 

exacto. Mostrando además, menor dispersión para los dos métodos OK que 

para los dos IDW. Según las distribuciones del error cuadrático medio (Figura 

3), el método más preciso fue la variante del krigeado OK2. En concordancia 

con estas similitudes, la comparación de las precipitaciones espaciales diarias 

tampoco reveló diferencias de consideración entre los métodos (Figura 6.a). La 

correlación lineal para cada pareja de métodos fue casi perfecta (coeficientes 

de correlación superiores a 0.99 en todos los casos) (Figura 4). En 

consecuencia, las distribuciones de frecuencias de la precipitación espacial 

diaria fueron idénticas (Figura 5).  

 

 

Tabla 5. Resumen de las redes dispersas utilizadas para comparar las predicciones 
con respecto a la red completa. 

 

Análisis 
realizado 

Criterio de selección de redes 
Densidad de red                  
Nro. de sensores      

Nro. total 
de redes              

Cálculo de 
errores 

(ecuaciones (4)-
(7)) y aplicación 
del test de Mann 

Whitney 

Todas las combinaciones posibles 1 13 

2 78 

3 286 

4 715 

5 1287 

6 1716 

7 1716 

8 1287 

9 715 

10 286 

11 78 

12 13 

    Mapas de 
errores promedio 

Error absoluto mínimo y máximo, 
ubicación de interés para el 

monitoreo 
 

1 4 
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Figura 32. Distribución de los errores medios diarios entre los valores
observados y los estimados en la validación cruzada.

Figura 3. Distribución de los  errores cuadráticos medios diarios entre los valores
observados y los estimados en la validación cruzada.
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Figura  4.5Dispersiones entre las precipitaciones espaciales diarias calculadas con 
distintos métodos. 
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Figura  5. Distribución de frecuencias de la precipitación espacial diaria.  
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Aunque no se detectaron diferencias sustanciales en cuanto a precisión y 

exactitud entre las variantes OK1 y OK2, las diferencias con respecto a las 

varianzas del krigeado (MSDR) posicionaron al método OK1 como la mejor 

opción para el krigeado. Los mapas del promedio y desviación estándar de la 

varianza del krigeado diaria reflejaron los mismos patrones para ambas 

variantes (Figura 6.c y 6.d). En todos los casos, se encontraron valores 

mínimos alrededor de los puntos monitoreados y valores máximos en los 

lugares más alejados de los sensores (parte oeste de la microcuenca). Ya que 

la varianza del krigeado es una medida de la incertidumbre asociada a cada 

una de las predicciones (Tsintikidis et al., 2002), los patrones encontrados 

fueron los esperados. Sin embargo, se presentaron diferencias entre los 

valores máximos registrados con cada una de las variantes. Estas 

discrepancias fueron una consecuencia de que los parámetros óptimos para el 

krigeado OK2 se determinaron sin considerar el valor de la varianza del 

krigeado. Las distribuciones de los valores del MSDR  mostraron que para el 

método OK2, en un considerable número de días la varianza teórica del error 

fue significativamente distinta de la varianza del error calculada (Figura 7).  

Los mapas del promedio  y de la desviación estándar de la precipitación diaria 

reflejaron, con ligeras diferencias, los mismos patrones y valores para todos los 

métodos. En todos estos mapas, tanto para las variantes del krigeado como 

para las del método IDW se presentaron valores mínimos en el centro de la 

microcuenca con incrementos en todas las direcciones y un mayor gradiente en 

la región este, donde fueron máximas (Figura 6.a y 6.b). La relación entre los 

valores máximos y mínimos (aproximadamente de 2 a 1) evidenció una 

variabilidad considerable al interior de la microcuenca. Adicionalmente, en 

todos los mapas referidos se registraron leves diferencias entre los gradientes. 

Estas estuvieron relacionadas a un comportamiento intrínseco e ineludible a la 

aplicación de IDW conocido como ―ojo de buey‖ (Gotway et al. 1996). Además 

de este efecto, se encontraron diferencias en la precipitación diaria promedio y 

la desviación estándar mínimas. Estas fueron, ambas, 0.4 mm menores para 

las variantes del método IDW que las correspondientes a las variantes del 

krigeado. 

  



 
       Universidad de Cuenca 

 

 

 

Paulo Sebastián Seminario Guallpa 
26 

 

 

 

 

 

  

(d) 

(c) 

(b) 

(a) 

Figura  6. Mapas comparativos de los métodos. a) Promedio de la precipitación 
diaria; b) desviación estándar de la precipitación diaria; c) promedio de la varianza 
de krigeado; d) desviación estándar de la varianza de krigeado diaria. Los círculos 

en rojo muestran sitios de monitoreo. 
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Aunque los resultados descritos reflejan que la precipitación espacial fue
calculada con buena exactitud para todos los días, se encontró que en algunos
días,  ningún método fue capaz de reflejar la variabilidad al interior de la
microcuenca. Tanto para el krigeado como para el método IDW, se obtuvo una
fracción considerable de días (alrededor de la cuarta parte) con un valor
negativo del coeficiente de correlación entre los valores observados y
estimados en la validación cruzada (Figura 9). No se encontraron asociaciones
ni de estacionalidad ni de cantidad de precipitación. Por el contrario, estos días
estuvieron distribuidos en todo el año y registraron cantidades de precipitación
que no estuvieron limitadas a un determinado intervalo dentro del rango
observado el resto de días (Tabla 6). Los semivariogramas experimentales
correspondientes revelaron que en estos días la precipitación careció de
correlación espacial. En la Figura A1 de Anexos se presentan los
semivariogramas óptimos de todos estos días. El comportamiento (Figura 8.c y
8.d), consistió en valores erráticos que no mostraron una tendencia o que
incluso parecieron disminuir con la distancia. Los modelos ajustados fueron
unos con rango mínimo o nulo. Ya que el rango representa la distancia a partir
de la cual no existe correlación espacial (Cressie, 1993), el algoritmo
implementado modeló debidamente esta ausencia de correlación. Por lo tanto,
se atribuyó el mal desempeño de los métodos a su incapacidad intrínseca para
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Figura 7. Valores diarios del MSDR para cada variante del krigeado.
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abordar comportamientos de este tipo y no a carencias en los procesos de 

optimización de parámetros. En todo caso, el comportamiento errático hizo que 

la precipitación al interior de la microcuenca fuera subestimada y sobrestimada 

en proporciones semejantes que tendieron a anularse. Como resultado se 

obtuvieron valores exactos de la precipitación espacial total, aunque inexactos 

(subestimados o sobrestimados)  en regiones al interior de la microcuenca. 

Prueba de ello fueron los valores mínimos del error medio diario (Figura 2), en 

contraste con la considerable dispersión del error absoluto diario promedio que 

se presenta en la Figura 10. Como se evidencia en esta figura, para todos los 

métodos el error absoluto diario promedio fue mayor a 1 mm en más de la 

cuarta parte de los días. Este valor representa más del 20% del promedio de la 

precipitación espacial diaria en los días estudiados (4.4 mm según la variante 

OK1 del krigeado).  
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Figura  8. Semivariogramas óptimos (experimental y ajustado) 
para el día con máxima correlación negativa entre los valores 

observados y estimados en la validación cruzada. Los números al 
lado de cada punto representan la cantidad de pares de 

observaciones promediadas para estimarlo. 
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Coeficientes de correlación diarios
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Figura  9.10Coeficientes de correlación diarios entre los valores
observados y los estimados en la validación cruzada.

Errores absolutos medios diarios

Método de interpolación

Er
ro

r a
bs

ol
ut

o 
m

ed
io

 d
ia

rio
 (m

m
)

OK1 OK2 IDW IDW2

0
1

2
3

4

Figura  10.9Errores absolutos medios diarios entre los valores observados y
los estimados en la validación cruzada.
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Las particularidades de este estudio motivaron la ejecución de elaborados 

procesos de optimización. Las ventajas obtenidas en las predicciones no fueron 

equiparables al esfuerzo invertido. Sin embargo, fue posible determinar ciertas 

características de los parámetros óptimos. Para el método IDW se encontró 

que entre las potencias óptimas enteras, independientemente de la cantidad de 

precipitación, la más frecuente fue la potencia 2 (Figura 11.a y 11.b). Este valor 

coincide con el parámetro incorporado por defecto en software como Arcgis o 

Gstat. Por el contrario, para las dos variantes del krigeado ninguno de los 

valores de prueba de los parámetros fue predominante. Las distribuciones de 

los días para cada parámetro en función de la cantidad de precipitación (como 

las figuras A2 y A3 de Anexos), mostraron que cada uno de los valores de 

prueba fue óptimo en un número semejante de días independientemente de la 

cantidad de precipitación (las combinaciones diarias de parámetros óptimos se 

detallan en las tablas A2 y A3 de Anexos). Por lo tanto, la aplicación krigeado a 

través de las combinaciones de parámetros utilizadas por defecto pudo 

conducir a rendimientos incluso peores que con el método IDW. 

Día 
Coeficiente 

de 
correlación 

Precipitación 
espacial 

(mm) 

Rango OK1 
(mm) 

15/06/2014 -0.63 10.07 412 

02/07/2014 -0.29 2.25 1095 

07/07/2014 -1.00 2.07 1858 

09/07/2014 -0.48 1.33 1747 

28/07/2014 -0.36 1.97 487 

18/10/2014 -0.28 1.43 998 

28/11/2014 -0.06 1.68 24761 

01/12/2014 -0.38 0.43 28035 

05/12/2014 -0.02 1.48 1268 

29/03/2015 -0.14 5.95 477 

03/04/2015 -0.03 15.47 12132 

10/04/2015 -0.70 1.40 13562 

12/04/2015 -0.23 3.44 488 

 
Tabla 6. Características de los días con correlación negativa entre los 

valores observados y estimados en la validación cruzada.   
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 A la luz de todos los resultados expuestos, para la interpolación de la 

precipitación diaria en esta microcuenca, se recomienda, entre las variantes 

consideradas, el uso del método IDW con potencia 2. Mediante su aplicación 

se obtuvieron, con mayor rapidez, resultados similares a los obtenidos con los 

métodos más sofisticados en cuanto a precisión, exactitud y capacidad para 

reflejar los patrones al interior de la microcuenca. En un estudio a mayor escala 

sobre regiones paramunas aledañas al sitio de esta investigación, Buytaert et 

al.(2006) encontraron también un desempeño similar entre el krigeado y un 

método determinista (polígonos de thiessen). A diferencia del presente estudio, 

en esa investigación se incorporaron los resultados de regresión múltiple con 

variables topográficas y se aplicó krigeado universal. La inclusión de estas 
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Figura  12. Características de las potencias óptimas diarias del método IDW. a) 
Distribución de frecuencias; b) Variación en función de la precipitación espacial diaria. 
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Figura  12 Distribución de las direcciones principales de anisotropía. 
La dirección representa el ángulo que fue necesario rotar el eje 
principal (positivo en el sentido de las manecillas del reloj) para 

alinearlo con la dirección horizontal (oeste-este).   
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tendencias externas produjo notables mejoras y fue identificada como la 

principal fuente de incertidumbre en la interpolación y como la mayor debilidad 

del krigeado. En el presente estudio no se consideró la influencia de variables 

secundarias. Sin embargo, el efecto del viento fue abordado indirectamente en 

la modelación del semivariograma. Al aplicar las transformaciones relativas al 

tratamiento de anisotropías geométricas, la distribución de frecuencias de las 

direcciones principales fue similar a la distribución de la dirección del viento 

durante precipitación encontradas por  Padrón y Célleri (2013) (en el mismo 

sitio de estudio pero para el periodo mayo 2011-abril 2012) (Figura 12). 

3.2. Identificación del impacto de la reducción de la densidad de sensores 

en el cálculo de la precipitación espacial 

Las distribuciones del error diario promedio mostraron que para toda densidad 

existe una fracción de combinaciones de sensores a partir de las cuales el 

promedio de precipitación espacial diaria fue estimado sin diferencias 

considerables respecto a la red completa (Figura 13). En términos de 

significación estadística, la aplicación del test de Mann Whitney (entre las 

precipitaciones espaciales calculadas con la red completa y con cada una de 

las redes dispersas), reveló que no existieron diferencias significativas en el 

20% y 30% de la totalidad de redes dispersas para cada densidad (Tabla 5). 

Además, se encontró que a partir de densidades superiores a 9 sensores, las 

diferencias al calcular el promedio de la precipitación diaria son menores que la 

resolución de los pluviógrafos para prácticamente la totalidad de las posibles 

combinaciones de redes (Figura 13). En cuanto a los errores máximos, las 

distribuciones del sesgo diario promedio evidenciaron que el error cometido por 

las peores combinaciones de redes representó, en promedio, entre el 5% (para 

densidades superiores a 9) y el 40% (para redes de un sensor) de las 

precipitaciones diarias estimadas con la red completa (Figura A4 de Anexos). 

Además, la dispersión del error promedio creció exponencialmente al disminuir 

la densidad de la red. 
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Las distribuciones del error absoluto reflejaron un crecimiento exponencial de la 

precisión en las estimaciones de la precipitación espacial diaria cuando se 

incrementó la densidad de sensores (Figura 14). Este patrón  coincide con lo 

encontrado por Hrachowitz y Weiler (2011) al estudiar una microcuenca de 

montaña densamente monitoreada. En contraste con los resultados de este 

estudio y en virtud de los bajos volúmenes de precipitación encontrados (Figura 

5), para ninguna de las redes el promedio del error absoluto diario alcanzó los 

2mm. Sin embargo, al considerar la relación con los volúmenes diarios (Figura 

A5 de Anexos), se encontró que cuando la densidad fue menor a 9 sensores, el 

sesgo absoluto promedio para las peores combinaciones de redes fue superior 

al 10% alcanzando hasta el 50% para las redes de un sensor. Además, todas 

las redes dispersas de 1 y 2 sensores tuvieron un sesgo superior al 10% y 

ninguna de las redes dispersas de 11 y 12 sensores alcanzó este umbral 

(10%).  

  

Figura  13. Distribuciones del error diario promedio en función de la densidad de las 
redes dispersas. El valor correspondiente a cada red dispersa se ha representado con 

un punto negro. Las columnas con trazos rojos señalan aquellas redes que no 
presentaron diferencias estadísticamente significativas con respecto a la red completa 

según el test de Mann Whitney. La columna de la izquierda con un nivel de 
significación del 10% y la columna de la derecha con un nivel del 5%. 
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El conjunto de mapas utilizados para comparar las redes de un sensor con la 

red completa revelaron diferencias considerables para todos los pluviógrafos 

seleccionados. Los mapas del error diario promedio (Figura 15) mostraron que 

para todos los sensores las subestimaciones o sobrestimaciones máximas de 

la precipitación diaria promedio fueron superiores a 1 mm y ocurrieron en las 

zonas donde se registraron los promedios de precipitación diaria extremos 

(Figura 6). Cuando se utilizaron los sensores 7 y 9 (ubicados en esas zonas), 

los errores de uno al estimar la precipitación en la zona del otro superaron los 

2mm en promedio. Los sesgos extremos (positivos y negativos) superaron para 

todas las redes el 25% (Figura A6 de Anexos). Más aún, para los pluviógrafos 7 

y 9, los sesgos máximos fueron mayores al 100% y 40%, respectivamente. En 

cuanto a la dispersión de las estimaciones, los mapas del error absoluto diario 

promedio (Figura 16) reflejaron en todos los casos una clara dependencia de la 

distancia a los sensores. En los lugares más distantes los errores absolutos 

promedio fueron mayores a 1.5 mm y cuando se utilizaron los pluviógrafos 7 y 

9 superaron los 2mm. En términos del sesgo absoluto estos valores 

representaron en promedio más del 40% de las precipitaciones diarias y para el 

sensor 5 superaron el 110% (Figura A7 de Anexos).  

‒‒
‒‒‒

‒‒
‒‒‒‒
‒‒‒‒
‒‒
‒

‒
‒‒

‒‒‒‒

‒

‒
‒

‒
‒

‒

‒

‒
‒

‒

‒‒‒‒
‒
‒

‒

‒

‒
‒

‒‒‒
‒

‒
‒
‒

‒

‒‒

‒

‒
‒

‒‒‒‒‒

‒

‒

‒‒

‒

‒
‒‒‒

‒
‒

‒

‒

‒

‒‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒‒
‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒‒‒

‒
‒

‒

‒

‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒
‒

‒‒
‒
‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒
‒

‒
‒

‒‒

‒

‒

‒
‒
‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒‒

‒

‒

‒
‒

‒

‒

‒

‒

‒
‒‒

‒
‒
‒
‒
‒

‒
‒

‒
‒‒‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒
‒

‒

‒‒

‒
‒

‒

‒

‒

‒‒‒
‒
‒

‒
‒
‒
‒

‒

‒

‒

‒

‒

‒
‒

‒
‒‒

‒
‒

‒

‒

‒‒‒

‒

‒

‒‒

‒
‒

‒

‒‒

‒
‒
‒‒

‒

‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒
‒
‒‒‒

‒‒

‒
‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒‒‒‒

‒

‒

‒

‒‒

‒

‒
‒‒
‒‒
‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒
‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒
‒
‒‒

‒
‒

‒
‒
‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒‒‒
‒

‒
‒‒

‒
‒

‒
‒

‒

‒
‒

‒

‒‒

‒

‒‒

‒
‒

‒

‒

‒‒

‒

‒

‒
‒

‒
‒
‒

‒
‒
‒‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒
‒‒‒

‒‒

‒

‒‒
‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒
‒

‒‒‒
‒
‒

‒

‒
‒
‒

‒

‒
‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒
‒
‒
‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒

‒

‒

‒‒‒

‒

‒

‒
‒‒

‒

‒

‒

‒

‒
‒

‒

‒‒‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒
‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒
‒

‒‒
‒

‒
‒‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒‒

‒‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒
‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒
‒‒‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒
‒
‒

‒

‒‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒‒‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒

‒
‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒‒

‒

‒
‒

‒
‒
‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒
‒

‒‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒‒
‒

‒

‒

‒

‒‒‒
‒

‒

‒

‒

‒‒

‒

‒
‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒‒‒‒‒‒

‒‒
‒‒‒‒
‒‒
‒‒‒‒
‒‒
‒‒

‒
‒
‒‒

‒‒‒‒
‒

‒
‒

‒

‒
‒

‒
‒

‒

‒

‒

‒
‒‒

‒

‒‒‒‒‒
‒

‒

‒

‒

‒

‒
‒

‒‒‒
‒

‒
‒
‒

‒

‒‒

‒
‒

‒
‒

‒‒‒‒‒

‒

‒

‒‒

‒

‒
‒‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒
‒

‒

‒‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒‒‒

‒‒‒

‒

‒

‒

‒
‒‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒
‒

‒

‒
‒

‒

‒‒
‒

‒

‒

‒‒
‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒

‒
‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒‒‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒‒

‒

‒
‒

‒

‒
‒

‒‒‒

‒

‒

‒

‒
‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒
‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒‒

‒

‒‒

‒

‒

‒

‒

‒‒‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒
‒
‒
‒

‒
‒
‒‒

‒
‒

‒
‒

‒‒
‒

‒

‒‒

‒‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒‒

‒
‒

‒

‒

‒
‒

‒

‒‒

‒
‒

‒

‒

‒

‒‒‒
‒
‒

‒

‒

‒
‒
‒

‒
‒

‒

‒

‒

‒

‒
‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒

‒
‒

‒

‒

‒‒

‒

‒

‒‒‒

‒
‒

‒

‒

‒

‒

‒

‒
‒
‒‒‒

‒‒

‒
‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒‒‒‒

‒

‒

‒

‒

‒
‒‒

‒‒

‒

‒
‒‒
‒‒
‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒‒
‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒
‒
‒‒

‒
‒

‒
‒
‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒‒

‒

‒‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒
‒‒‒‒‒
‒

‒
‒‒

‒
‒

‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒‒

‒

‒

‒

‒
‒

‒
‒
‒

‒

‒
‒
‒‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒
‒
‒‒‒‒

‒‒

‒

‒‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒‒
‒
‒

‒

‒

‒
‒
‒

‒

‒
‒‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒

‒
‒

‒

‒
‒
‒
‒
‒
‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒
‒
‒

‒‒

‒‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒‒‒‒

‒

‒

‒
‒‒

‒‒

‒

‒

‒

‒
‒‒

‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒
‒

‒‒
‒

‒

‒

‒

‒
‒‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒
‒

‒
‒

‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒‒

‒‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒
‒

‒

‒
‒

‒
‒

‒

‒
‒

‒

‒

‒
‒‒‒‒‒

‒

‒
‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒

‒

‒

‒‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒‒
‒
‒

‒

‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒
‒‒‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒‒

‒

‒

‒
‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒‒

‒

‒
‒
‒

‒

‒‒

‒‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒
‒

‒‒‒

‒

‒‒‒

‒
‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒‒
‒
‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒‒‒

‒

‒
‒

‒
‒
‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒
‒

‒‒

‒‒‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒‒
‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒‒
‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒

‒‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒
‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒‒

‒
‒
‒

‒

‒

‒

‒‒‒
‒

‒

‒

‒

‒‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒

‒
‒

‒

‒
‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒
‒

‒

‒

‒

‒

‒‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1 2 3 4 5 6 7 8 9 10 11 12

Densidad de red (número de pluviógrafos)

E
rr

o
r 

a
b

s
o

lu
to

 d
ia

ri
o

 p
ro

m
e

d
io

 (
m

m
 d

ia
 ¹

)

Figura  14. Distribuciones del error absoluto diario promedio en función de la densidad 
de las redes dispersas. El valor correspondiente a cada red dispersa se ha 

representado con un punto negro. Las columnas con trazos rojos señalan aquellas 
redes que no presentaron diferencias estadísticamente significativas con respecto a la 
red completa según el test de Mann Whitney. La columna de la izquierda con un nivel 

de significación del 10% y la columna de la derecha con un nivel del 5%. 
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El presente estudio se integra a un conjunto de iniciativas que buscan 

cuantificar los servicios ambientales hidrológicos del páramo (Quintero, 2010). 

Ya que responde a la necesidad de cubrir un vacío en el conocimiento, no fue 

posible contrastar los resultados con otras investigaciones. Aunque las 

características estudiadas varían de una microcuenca a otra, los resultados 

descritos y en particular los rangos de incertidumbre calculados para cada 

densidad de sensores, pueden servir como referencia para la implementación 

de redes de monitoreo en función de las necesidades específicas.  

 

 

 

a) 

c) d) 

b) 

Figura  15.  Mapas de errores diarios promedio entre las precipitaciones diarias 
estimadas con la red completa y las siguientes redes de un sensor (punto rojo 

relleno): a) pluviógrafo que produjo el mayor error absoluto al estimar la precipitación 
espacial; b) pluviógrafo de ubicación preferencial para el monitoreo con un sensor 
(centro de la microcuenca); c) pluviógrafo que produjo el menor error absoluto al 

estimar la precipitación espacial; d) pluviógrafo que produjo el menor error absoluto al 
estimar la precipitación espacial entre aquellos ubicados cerca de la única vía de 

acceso. 
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3.3. Optimización del número de sensores de la red de monitoreo  

El test de Mann Whitnney evidenció que para cada densidad, entre el 20% y 

30% de las redes no mostraron diferencias significativas con respecto la red 

principal (Sección 3.2). Además, las distribuciones del error medio diario 

reflejaron que para una fracción equivalente estos errores fueron despreciables 

(Figura 13). Por lo tanto, independientemente de la densidad de sensores, fue 

posible encontrar redes con errores promedios mínimos que no incluyeran a los 

sensores alejados de la única vía de acceso (2, 4, 5, 8, 10 o 12). De este 

subconjunto, en base al promedio del error absoluto diario se obtuvieron las 

redes óptimas que se presentan en la Tabla 5. Adicionalmente, se incluyeron 

las redes que tuvieron el menor promedio del error absoluto diario pero que 

fueron descartadas por incluir pluviógrafos de costoso monitoreo. Se encontró 

b) 

d) 

a) 

c) 

Figura  16.  Mapas de errores absolutos diarios promedio entre las precipitaciones 
diarias estimadas con la red completa y las siguientes redes de un sensor (punto rojo 
relleno) : a) pluviógrafo que produjo el mayor error absoluto al estimar la precipitación 

espacial; b) pluviógrafo de ubicación preferencial para el monitoreo con un sensor 
(centro de la microcuenca); c) pluviógrafo que produjo el menor error absoluto al 

estimar la precipitación espacial; d) pluviógrafo que produjo el menor error absoluto al 
estimar la precipitación espacial entre aquellos ubicados cerca de la única vía de 

acceso. 
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que la exclusión de estos pluviógrafos no representó aumentos considerables 

ni del error diario ni de los sesgos.  

La optimización de redes de monitoreo es un problema de importancia central 

en la gestión de recursos hídricos (Shaghaghian y Abedini, 2013). Su 

complejidad es tal, que existen numerosas investigaciones donde se lo aborda 

en forma autónoma. En este estudio, la optimización se concibió como un 

objetivo agregado. Aunque la metodología aplicada prescindió de la 

sofisticación de los métodos en vigencia, fue suficiente para alcanzar, a partir 

de los resultados concernientes al objetivo general de la tesis,  el propósito 

esencial de la optimización, a saber: dada una magnitud específica de interés 

(precipitación espacial diaria), encontrar la red más económica que sea capaz 

de medirla con una exactitud específica (semejante a la de la red más densa).  
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Densidad 
de red                  
Nro. de 

sensores      

Nro. total de 
redes               

Todas las 
combinaciones 

posibles 

Redes sin 
diferencias 

significativas 
(p>10%) 

Redes óptimas 

Pluviógrafos que se 
consideran (c) o se 
excluyen (e) para 

conformar la red óptima 

Error diario 
medio  

Error 
absoluto 

diario 
medio         

Sesgo 
diario 
medio  

Sesgo 
absoluto 

diario 
medio                                                                                                                    

Valor p 
test 

Mann 
Whitney  

 Nro.  (%)  (mm dia
-1

) (mm dia
-1

) (%) (%) (%) 

1 13 4 31 c 13           -0.07 0.74 3.4 20.1 75 
    c 5      0.29 0.64 7.5 21.9 33 

                2 78 20 26 c 7 9 
    

0.04 0.63 -2.8 18.5 70 

    
c 2 10 

    
-0.06 0.36 -1.2 12.0 96 

                3 286 60 21 c 6 7 9 
   

0.11 0.46 1.7 12.8 63 

    
c 2 10 13 

   
-0.10 0.25 -0.4 7.4 28 

                4 715 151 21 c 3 6 7 11 
  

0.14 0.35 3.1 9.1 22 

    
c 1 8 12 13 

  
-0.08 0.23 -1.3 5.8 15 

                5 1287 287 22 c 1 3 6 7 11 
 

0.02 0.40 -1.1 11.0 48 

    
c 2 5 10 11 13 

 
-0.05 0.16 0.8 4.8 99 

                6 1716 380 22 c 1 3 6 7 11 13 0.07 0.36 1.3 10.2 62 

    
c 2 4 5 8 9 11 -0.03 0.14 -1.2 4.4 15 

                7 1716 398 23 e 2 3 5 6 8 11 -0.01 0.13 -0.2 3.6 59 

                8 1287 293 23 e 1 3 4 11 13 
 

-0.01 0.10 -0.7 2.6 45 

                9 715 246 34 e 1 4 5 11 
  

0.00 0.11 -1.0 3.2 61 

                10 286 60 21 e 1 12 13 
   

0.04 0.08 0.2 1.8 26 

                11 78 17 22 e 3 13 
    

-0.01 0.07 -0.6 1.7 75 

                12 13 4 31 e 13 
     

0.00 0.04 -0.7 1.2 13 

Tabla 7. Resultados de la optimización. En las densidades para las que aparecen 2 redes, la segunda es aquella con las menores diferencias 
pero que fue descartada en el proceso de optimización por incorporar pluviógrafos con alto costo de monitoreo.    
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3. Conclusiones  

A fin de cubrir un vacío en el conocimiento de los ecosistemas de páramo, con 

implicaciones directas en la gestión de recursos hídricos de la región andina, 

en el presente estudio se cuantificó de la incertidumbre en la estimación de la 

precipitación en una microcuenca de páramo densamente monitoreada. Para 

ello, comparando el rendimiento de dos métodos de interpolación con enfoques 

y complejidad distintos (IDW y krigeado ordinario), se obtuvieron las mejores 

estimaciones diarias para la red completa y se analizaron las diferencias con 

respecto a todas las posibles estimaciones resultantes de excluir sensores.  

Gracias al intenso monitoreo realizado se pudo evidenciar que incluso a escala 

de microcuenca, la variabilidad de la precipitación en el páramo es 

considerable  y en muchos casos inabordable a través de métodos 

convencionales, como los utilizados en este estudio. Al comparar el krigeado 

ordinario con el método IDW se encontró que, a pesar de los exhaustivos 

procesos de optimización de parámetros, en alrededor del 25% de los días, 

todos fueron ineficaces para reflejar la variabilidad al interior de la microcuenca. 

Tanto para las variantes del krigeado como para las del método IDW, el error 

absoluto promedio en todos estos días superó 1mm (equivalente al 20% del 

promedio de la precipitación espacial de todos los días estudiados). Sin 

embargo, la precipitación al interior de la microcuenca fue subestimada y 

sobrestimada en proporciones semejantes que tendieron a anularse y 

resultaron en errores promedios diarios despreciables. Descartando relaciones 

con la cantidad de precipitación o con la estacionalidad, se identificó como 

causa del mal desempeño a la imposibilidad de detectar correlación espacial 

entre las observaciones.   

Para lo días restantes (aquellos con correlación espacial), todos los métodos 

tuvieron un buen desempeño.  La variante OK1 fue la más exacta y la variante 

OK2 la más precisa. Sin embargo, las ventajas obtenidas fueron mínimas en 

comparación a las desventajas relativas al esfuerzo requerido para su 

implementación. Por ello, teniendo en cuenta criterios de exactitud y precisión 

vs esfuerzo de implementación, se identificó que el mejor método fue el IDW 

con potencia 2.  

Las comparaciones exhaustivas entre redes de toda densidad reflejaron 

patrones  de consideración  para  el  monitoreo  del  páramo.  A fin  de  brindar  un 

marco de  referencia  para  la  estimación  de  la  incertidumbre,  los resultados se 

resumieron  en  gráficas  de  distribuciones  de  errores  en  función  de  densidad 

(Figuras 13 y 14). Para toda densidad de sensores se encontró una fracción 

de combinaciones a partir de las cuales el promedio de precipitación espacial

 diaria fue estimado sin sesgo con respecto a la red completa (entre el 20% y 

30%   del   total   de  combinaciones  de  cada  densidad). Sin  embargo,  la 



 
       Universidad de Cuenca 

 

 

 

Paulo Sebastián Seminario Guallpa 
40 

incertidumbre relativa a estas estimaciones mostró un crecimiento exponencial 

a medida que se disminuyó el número de sensores. Mientras que todas las 

redes dispersas de 1 y 2 sensores tuvieron un sesgo absoluto promedio 

superior al 10%, ninguna de las redes dispersas de 11 y 12 sensores alcanzó 

este umbral (10%). Para las peores combinaciones de redes, cuando la 

densidad fue menor a 9 sensores, el sesgo absoluto promedio fue superior al 

10% alcanzando hasta el 50% para las redes de un sensor. 

El conjunto de los resultados encontrados en el presente estudio reflejan que el 

análisis de la incertidumbre asociada a la estimación de la precipitación es 

imprescindible para una gestión integral de los ecosistemas de páramo. 

Limitaciones y recomendaciones 

Utilizando registros instantáneos de un año (abril de 2015 y abril de 2015), el 

estudio se limitó a una muestra de 60 días sin vacíos en ningún sensor y con al 

menos un registro de precipitación en todos los sensores. En muchos de los 

días excluidos hubo registros de precipitación en parte de los sensores. 

Además, para las interpolaciones se escogieron métodos ineficientes para un 

alto número de días. Para superar estas limitaciones y alcanzar una 

cuantificación más completa de la incertidumbre en la estimación de la 

precipitación se recomienda: 

-Validar los resultados para un periodo más extenso de registros. A fin de lograr 

resultados satisfactorios para aquellos días en los cuales el krigeado ordinario y 

el método IDW fueron ineficientes, incorporar variables secundarias en los 

métodos de interpolación. 

-Analizar el efecto de la desagregación de sensores de la red principal en la 

modelación hidrológica seleccionando las redes dispersas que, de acuerdo a 

las características encontradas en los análisis exhaustivos de este estudio, 

pudieran tener un interés específico. 

Todas las instancias del estudio revelaron que la incertidumbre al estimar la 

precipitación en regiones al interior de la microcuenca puede ser crítica para 

fines ulteriores. Esta salvedad fue especialmente cierta cuando se consideraron 

escenarios habituales en la práctica como las redes de un sensor situado en el 

centro de la microcuenca o próximo a las vía de acceso. Para todas las redes 

de un sensor se encontraron zonas donde el promedio del error absoluto diario 

superó el valor de 1.5 mm (correspondiente a un promedio del sesgo absoluto 

diario del 40%). En el peor caso este promedio fue mayor a 2.5 mm 

(correspondiente a un promedio del sesgo absoluto diario del 110%). El

 desarrollo de análisis sobre días donde los errores superen estos  promedios

 (como los de eventos extremos) podría llevar a conclusiones erróneas.    
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-Cuantificar la incertidumbre en la estimación de la precipitación espacial para 

aquellos días en los que una parte de los sensores no registró precipitación. A 

diferencia de otras cuencas, el análisis de estos días con poca precipitación 

detenta un valor significativo en el páramo. En un estudio realizado sobre la 

misma microcuenca, Padrón et al. (2015) encontraron que el 80% del tiempo la 

precipitación ocurrió en forma de llovizna y esta representó el 30% de la 

precipitación anual total. Además, la cuantificación de la variabilidad espacial a 

partir de registros pluviográficas supone dificultades particulares. En el mismo 

estudio se encontró que en alrededor del 15% de los días la magnitud de la 

precipitación diaria fue menor a la resolución de los pluviógrafos. 
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Anexos 

 

Día 
Valores p 

Día 
Valores p  

Día 
Valores p  

Originales 
 

Transformadas Originales 
 

Transformadas Originales 
 

Transformadas 

2014/06/14 0.583   0.855 2014/10/10 0.056   0.302 2014/12/07 0.307   0.491 

2014/06/15 0.880 
 

0.821 2014/10/11 0.306 
 

0.549 2014/12/08 0.352 
 

0.041 

2014/06/16 0.215 
 

0.626 2014/10/12 0.703 
 

0.645 2014/12/12 0.013 
 

0.062 

2014/06/17 0.165 
 

0.153 2014/10/13 0.145 
 

0.179 2014/12/13 0.072 
 

0.522 

2014/06/18 0.984 
 

0.894 2014/10/14 0.093 
 

0.201 2015/02/14 0.204 
 

0.822 

2014/06/27 0.010 
 

0.028 2014/10/15 0.680 
 

0.870 2015/02/15 0.081 
 

0.296 

2014/06/28 0.941 
 

0.873 2014/10/16 0.663 
 

0.608 2015/02/16 0.042 
 

0.417 

2014/07/01 0.823 
 

0.939 2014/10/17 0.860 
 

0.758 2015/03/27 0.144 
 

0.335 

2014/07/02 0.982 
 

0.982 2014/10/18 0.975 
 

0.870 2015/03/28 0.876 
 

0.903 

2014/07/04 0.616 
 

0.893 2014/10/22 0.002 
 

0.013 2015/03/29 0.260 
 

0.109 

2014/07/06 0.245 
 

0.566 2014/10/23 0.201 
 

0.931 2015/03/30 0.778 
 

0.603 

2014/07/07 0.615 
 

0.460 2014/10/24 0.409 
 

0.954 2015/03/31 0.513 
 

0.745 

2014/07/08 0.669 
 

0.477 2014/10/25 0.002 
 

0.023 2015/04/01 0.752 
 

0.945 

2014/07/09 0.100 
 

0.265 2014/10/26 0.532 
 

0.462 2015/04/03 0.248 
 

0.000 

2014/07/18 0.187 
 

0.881 2014/10/28 0.381 
 

0.731 2015/04/10 0.099 
 

0.244 

2014/07/20 0.197 
 

0.440 2014/11/28 0.000 
 

0.023 2015/04/11 0.970 
 

0.996 

2014/07/21 0.342 
 

0.470 2014/12/01 0.035 
 

0.066 2015/04/12 0.046 
 

0.404 

2014/07/26 0.087 
 

0.274 2014/12/02 0.056 
 

0.383 2015/04/13 0.757 
 

0.521 

2014/07/27 0.539 
 

0.246 2014/12/05 0.400 
 

0.688 2015/04/14 0.039 
 

0.190 

2014/07/28 0.732   0.863 2014/12/06 0.289   0.784 2015/04/15 0.797   0.536 

 
Tabla A1. Valores p correspondientes al test de normalidad de Anderson-Darling aplicado a las series diarias de precipitación observadas 

(originales) y transformadas logarítmicamente. 
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Figura A1. Semivariogramas óptimos (experimental y ajustado) para cada uno de los días con correlación negativa entre los 
valores observados y estimados en la validación cruzada. Los números al lado de cada punto representan la cantidad de pares de 

observaciones promediadas para estimarlo. 
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Figura A1. (continuación) 
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Figura A1. (continuación) 
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Figura A1. (continuación) 
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Figura A1. (continuación) 
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Figura A1. (continuación) 
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Figura A1. (continuación) 
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Día 

  OK1   OK2 

 
Tipo 

Intervalo  
(código) 

Modelo 
Rango 

(m) 
Pepita 

(código) 
Meseta  
(código)  

Tipo 
Intervalo 
(código) 

Modelo 
Rango 

(m) 
Pepita 

(código) 
Meseta  
(código) 

14/06/2014   Robusto 1 Esférico 4000 1 1   Robusto 3 Gaussiano 4000 2 4 

15/06/2014 
 

Robusto 4 Gaussiano 3000 3 4 
 

Clásico 1 Gaussiano 4000 2 1 

16/06/2014 
 

Robusto 3 Exponencial 3000 2 2 
 

Clásico 5 Gaussiano 4000 1 4 

17/06/2014 
 

Robusto 1 Exponencial 4000 2 2 
 

Robusto 1 Esférico 4000 2 3 

18/06/2014 
 

Clásico 4 Gaussiano 2000 1 1 
 

Robusto 5 Gaussiano 4000 2 4 

27/06/2014 
 

Robusto 1 Exponencial 2000 2 2 
 

Robusto 1 Gaussiano 4000 2 4 

28/06/2014 
 

Clásico 4 Exponencial 2000 3 1 
 

Robusto 5 Gaussiano 4000 3 4 

01/07/2014 
 

Clásico 2 Esférico 3000 2 2 
 

Robusto 2 Gaussiano 3000 1 1 

02/07/2014 
 

Clásico 5 Esférico 3000 2 3 
 

Robusto 3 Gaussiano 3000 3 2 

04/07/2014 
 

Clásico 1 Exponencial 3000 2 1 
 

Robusto 1 Gaussiano 4000 1 4 

06/07/2014 
 

Clásico 4 Exponencial 4000 2 1 
 

Clásico 2 Gaussiano 4000 1 4 

07/07/2014 
 

Clásico 3 Esférico 3000 1 1 
 

Clásico 2 Gaussiano 4000 2 4 

08/07/2014 
 

Robusto 2 Exponencial 3000 2 1 
 

Robusto 2 Gaussiano 4000 3 4 

09/07/2014 
 

Robusto 5 Exponencial 4000 1 4 
 

Robusto 4 Gaussiano 4000 1 4 

18/07/2014 
 

Robusto 1 Esférico 4000 3 2 
 

Clásico 2 Esférico 3000 3 2 

20/07/2014 
 

Clásico 2 Esférico 3000 2 2 
 

Robusto 4 Gaussiano 4000 2 4 

21/07/2014 
 

Clásico 4 Exponencial 4000 1 1 
 

Robusto 3 Gaussiano 2000 1 1 

26/07/2014 
 

Robusto 5 Gaussiano 3000 2 3 
 

Clásico 1 Gaussiano 3000 1 2 

27/07/2014 
 

Robusto 2 Esférico 2000 2 3 
 

Clásico 2 Gaussiano 4000 2 1 

28/07/2014 
 

Clásico 4 Exponencial 4000 1 1 
 

Robusto 2 Gaussiano 4000 1 4 

10/10/2014 
 

Clásico 1 Exponencial 4000 2 1 
 

Clásico 4 Esférico 4000 3 2 

11/10/2014 
 

Clásico 3 Gaussiano 3000 3 4 
 

Clásico 4 Gaussiano 4000 1 1 

12/10/2014 
 

Clásico 1 Gaussiano 3000 2 2 
 

Robusto 5 Gaussiano 2000 3 3 

13/10/2014 
 

Robusto 1 Exponencial 4000 2 1 
 

Robusto 5 Gaussiano 4000 3 4 

14/10/2014 
 

Robusto 2 Gaussiano 2000 2 2 
 

Robusto 2 Gaussiano 2000 1 2 

15/10/2014 
 

Robusto 2 Gaussiano 4000 2 2 
 

Robusto 2 Gaussiano 3000 2 3 

16/10/2014 
 

Clásico 4 Esférico 3000 3 2 
 

Robusto 2 Gaussiano 3000 1 1 

17/10/2014 
 

Clásico 4 Exponencial 2000 2 4 
 

Clásico 2 Gaussiano 2000 3 1 

18/10/2014 
 

Robusto 5 Esférico 3000 2 2 
 

Clásico 3 Esférico 4000 1 1 

22/10/2014 
 

Robusto 4 Exponencial 4000 2 1 
 

Robusto 1 Exponencial 4000 2 1 

Tabla A2. Parámetros iniciales óptimos en la modelación de los semivariogramas diarios. 



 
       Universidad de Cuenca 

 

 

 

Paulo Sebastián Seminario Guallpa 
55 

Día 

  OK1   OK2 

 
Tipo 

Intervalo  
(código) 

Modelo 
Rango 

(m) 
Pepita 

(código) 
Meseta  
(código)  

Tipo 
Intervalo 
(código) 

Modelo 
Rango 

(m) 
Pepita 

(código) 
Meseta  
(código) 

23/10/2014 
 

Clásico 3 Esférico 4000 1 3 
 

Robusto 5 Esférico 2000 1 4 

24/10/2014 
 

Robusto 1 Exponencial 2000 2 1 
 

Clásico 3 Gaussiano 2000 1 2 

25/10/2014 
 

Clásico 3 Exponencial 3000 1 4 
 

Robusto 5 Gaussiano 2000 3 2 

26/10/2014 
 

Robusto 4 Gaussiano 3000 2 4 
 

Robusto 3 Gaussiano 3000 1 2 

28/10/2014 
 

Robusto 4 Gaussiano 4000 1 4 
 

Clásico 4 Gaussiano 2000 1 4 

28/11/2014 
 

Robusto 3 Esférico 4000 1 1 
 

Robusto 3 Esférico 4000 1 1 

01/12/2014 
 

Clásico 5 Exponencial 3000 2 1 
 

Clásico 3 Gaussiano 4000 3 4 

02/12/2014 
 

Clásico 5 Gaussiano 2000 3 4 
 

Robusto 3 Gaussiano 2000 2 1 

05/12/2014 
 

Robusto 3 Esférico 4000 2 3 
 

Clásico 5 Gaussiano 4000 2 2 

06/12/2014 
 

Clásico 1 Gaussiano 4000 3 2 
 

Clásico 4 Gaussiano 2000 2 4 

07/12/2014 
 

Clásico 5 Gaussiano 4000 2 2 
 

Robusto 4 Esférico 3000 3 1 

08/12/2014 
 

Robusto 4 Exponencial 3000 3 2 
 

Clásico 5 Gaussiano 4000 2 1 

12/12/2014 
 

Clásico 1 Gaussiano 3000 2 3 
 

Clásico 5 Esférico 2000 2 3 

13/12/2014 
 

Robusto 4 Esférico 2000 3 4 
 

Robusto 3 Gaussiano 2000 3 1 

14/02/2015 
 

Clásico 1 Gaussiano 3000 3 1 
 

Clásico 3 Gaussiano 4000 3 1 

15/02/2015 
 

Robusto 3 Exponencial 2000 3 1 
 

Robusto 2 Gaussiano 2000 3 2 

16/02/2015 
 

Robusto 5 Gaussiano 3000 3 1 
 

Robusto 3 Gaussiano 3000 1 3 

27/03/2015 
 

Clásico 1 Exponencial 4000 2 4 
 

Clásico 2 Esférico 4000 1 4 

28/03/2015 
 

Clásico 5 Esférico 3000 3 2 
 

Robusto 5 Esférico 2000 3 2 

29/03/2015 
 

Clásico 2 Gaussiano 3000 2 3 
 

Clásico 5 Gaussiano 4000 1 4 

30/03/2015 
 

Clásico 4 Gaussiano 3000 3 4 
 

Clásico 2 Gaussiano 4000 3 1 

31/03/2015 
 

Clásico 2 Exponencial 4000 2 1 
 

Clásico 4 Esférico 3000 2 3 

01/04/2015 
 

Robusto 5 Gaussiano 4000 3 2 
 

Robusto 4 Gaussiano 4000 2 2 

03/04/2015 
 

Clásico 1 Exponencial 2000 2 3 
 

Robusto 4 Exponencial 4000 2 1 

10/04/2015 
 

Robusto 4 Esférico 2000 2 2 
 

Clásico 3 Esférico 4000 3 3 

11/04/2015 
 

Robusto 1 Gaussiano 3000 2 1 
 

Clásico 1 Gaussiano 3000 2 1 

12/04/2015 
 

Clásico 4 Gaussiano 3000 1 1 
 

Clásico 4 Gaussiano 2000 3 1 

13/04/2015 
 

Clásico 4 Exponencial 4000 2 1 
 

Robusto 4 Gaussiano 2000 1 3 

14/04/2015 
 

Clásico 1 Exponencial 4000 1 3 
 

Robusto 1 Gaussiano 2000 1 3 

15/04/2015   Clásico 1 Exponencial 4000 2 1   Clásico 3 Gaussiano 2000 2 1 

Tabla A2. (Continuación) 
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 Día 

IDW   IDW2   OK1   OK2 

Prec. 
espacial 

(mm) 
 

Prec. 
espacial 

(mm) 

Potencia 
óptima  

Prec. 
espacial 

(mm) 

Pepita 
(mm

2
) 

Modelo 
Rango 

(m) 
Meseta 
(mm

2
)  

Prec. 
espacial 

(mm) 

Pepita 
(mm

2
) 

Modelo 
Rango 

(m) 
Meseta 
(mm

2
) 

2014/06/14 4.52   4.44 0.50   4.43 1.209 Esférico 18017 7.30   4.42 4.290 Gaussiano 685520 404065.50 
2014/06/15 10.01 

 
10.01 2.25 

 
10.07 3.801 Gaussiano 412 9.09 

 
10.17 1.073 Gaussiano 839 9.51 

2014/06/16 0.86 
 

0.84 1.00 
 

0.84 0.227 Exponencial 10417 1.18 
 

0.84 0.490 Gaussiano 553309 33373.58 
2014/06/17 1.81 

 
1.80 1.25 

 
1.82 0.263 Exponencial 29089 7.82 

 
1.81 0.315 Esférico 33330 11.41 

2014/06/18 1.62 
 

1.62 2.00 
 

1.64 0.298 Gaussiano 687 0.67 
 

1.60 1.168 Gaussiano 617375 87451.52 
2014/06/27 1.04 

 
1.02 1.00 

 
1.00 0.067 Exponencial 13452 1.37 

 
1.01 0.302 Gaussiano 512552 36179.70 

2014/06/28 1.44 
 

1.45 3.75 
 

1.43 0.010 Exponencial 41056 3.34 
 

1.43 0.142 Gaussiano 285356 11438.18 
2014/07/01 1.73 

 
1.75 2.75 

 
1.70 0.011 Esférico 1628 0.53 

 
1.72 0.236 Gaussiano 1675 0.96 

2014/07/02 2.28 
 

2.28 0.25 
 

2.25 0.000 Esférico 1095 0.29 
 

2.20 0.000 Gaussiano 1039 0.44 
2014/07/04 1.13 

 
1.13 2.25 

 
1.13 0.056 Exponencial 10589 0.42 

 
1.13 0.413 Gaussiano 561329 51210.70 

2014/07/06 4.79 
 

4.78 6.75 
 

4.81 0.296 Exponencial 98494 107.47 
 

4.83 0.440 Gaussiano 1756 7.22 
2014/07/07 2.06 

 
2.06 8.00 

 
2.07 0.165 Esférico 1858 0.16 

 
2.07 0.000 Gaussiano 654 0.18 

2014/07/08 15.66 
 

15.60 1.50 
 

15.58 5.330 Exponencial 16491 39.43 
 

15.55 13.472 Gaussiano 482050 491230.49 
2014/07/09 1.33 

 
1.31 0.75 

 
1.33 0.210 Exponencial 1747 0.27 

 
1.30 0.287 Gaussiano 522857 13119.74 

2014/07/18 3.17 
 

3.18 2.75 
 

3.20 1.160 Esférico 1831 2.05 
 

3.19 0.021 Esférico 1935 2.73 
2014/07/20 1.33 

 
1.29 0.50 

 
1.29 0.484 Esférico 4366 0.87 

 
1.28 1.146 Gaussiano 734428 87419.98 

2014/07/21 7.88 
 

8.08 3.75 
 

7.83 0.313 Exponencial 174429 1015.65 
 

7.91 5.635 Gaussiano 105009 57051.20 
2014/07/26 1.30 

 
1.29 7.25 

 
1.28 0.299 Gaussiano 2593 1.57 

 
1.32 0.121 Gaussiano 1152 1.14 

2014/07/27 0.67 
 

0.66 1.00 
 

0.65 0.000 Esférico 1283 0.08 
 

0.66 0.000 Gaussiano 631 0.08 
2014/07/28 1.97 

 
1.95 0.75 

 
1.97 0.245 Exponencial 487 0.46 

 
1.94 0.688 Gaussiano 628328 37461.92 

2014/10/10 13.22 
 

13.04 7.25 
 

13.30 0.864 Exponencial 7131 39.16 
 

13.26 0.000 Esférico 32492 2101.07 
2014/10/11 9.21 

 
9.19 5.00 

 
9.27 0.441 Gaussiano 1654 6.67 

 
9.21 0.000 Gaussiano 1346 5.67 

2014/10/12 21.91 
 

21.91 1.75 
 

21.88 0.274 Gaussiano 500 17.82 
 

22.15 0.218 Gaussiano 826 21.73 
2014/10/13 5.68 

 
5.77 3.75 

 
5.70 0.813 Exponencial 20810 14.29 

 
5.69 3.258 Gaussiano 383915 141778.38 

2014/10/14 0.49 
 

0.50 3.75 
 

0.49 0.030 Gaussiano 1921 0.12 
 

0.49 0.014 Gaussiano 1145 0.12 
2014/10/15 1.26 

 
1.28 3.50 

 
1.25 0.090 Gaussiano 1339 0.84 

 
1.25 0.148 Gaussiano 1754 0.86 

2014/10/16 4.82 
 

4.89 3.50 
 

4.81 0.000 Esférico 2215 6.02 
 

4.77 1.769 Gaussiano 1646 9.58 
2014/10/17 4.00 

 
4.01 2.25 

 
3.97 0.000 Exponencial 638 1.64 

 
3.97 0.910 Gaussiano 1747 1.86 

2014/10/18 1.45 
 

1.45 1.00 
 

1.43 0.000 Esférico 998 0.09 
 

1.44 0.116 Esférico 69770 0.94 
2014/10/22 3.27 

 
3.16 4.75 

 
3.33 0.224 Exponencial 8407 27.16 

 
3.33 0.117 Exponencial 6701 19.11 

… …   … …   … … … … …   … … … … … 

Tabla A3. Precipitaciones espaciales diarias y parámetros ajustados óptimos para cada uno de los métodos. 
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Día 

IDW   IDW2   OK1   OK2 

Prec. 
espacial 

(mm) 
 

Prec 
Potencia 
óptima  

Prec. 
espacial 

(mm) 

Pepita 
(mm

2
) 

Modelo 
Rango 

(m) 
Meseta 
(mm

2
)  

Prec. 
espacial 

(mm) 

Pepita 
(mm

2
) 

Modelo 
Rango 

(m) 
Meseta 
(mm

2
) 

2014/10/23 2.98   2.98 2.00   2.84 0.013 Esférico 1368 1.48   2.85 0.000 Esférico 2212 1.69 
2014/10/24 3.16 

 
3.22 6.75 

 
3.20 0.065 Exponencial 125876 66.02 

 
3.13 0.000 Gaussiano 1389 1.90 

2014/10/25 2.88 
 

2.83 7.25 
 

2.90 0.000 Exponencial 6240 8.54 
 

2.88 0.004 Gaussiano 940 1.58 
2014/10/26 5.10 

 
5.13 2.25 

 
5.08 2.697 Gaussiano 1932 9.53 

 
4.87 0.316 Gaussiano 765 6.99 

2014/10/28 1.30 
 

1.33 4.00 
 

1.30 0.027 Gaussiano 3284 1.68 
 

1.28 0.010 Gaussiano 1542 0.50 
2014/11/28 1.75 

 
1.68 8.00 

 
1.67 0.807 Esférico 24761 4.47 

 
1.67 0.807 Esférico 24761 4.47 

2014/12/01 0.44 
 

0.44 0.25 
 

0.43 0.062 Exponencial 28035 0.40 
 

0.43 0.093 Gaussiano 710214 3713.94 
2014/12/02 2.16 

 
2.14 8.00 

 
2.18 0.339 Gaussiano 803 1.16 

 
2.17 0.262 Gaussiano 1456 1.50 

2014/12/05 1.50 
 

1.49 0.50 
 

1.48 0.000 Esférico 1268 0.16 
 

1.50 0.000 Gaussiano 686 0.18 
2014/12/06 11.40 

 
11.44 3.00 

 
11.39 2.020 Gaussiano 1116 13.61 

 
11.39 0.000 Gaussiano 882 13.01 

2014/12/07 8.65 
 

8.85 4.25 
 

8.82 1.856 Gaussiano 123161 71955.04 
 

8.64 0.645 Esférico 14695 64.89 
2014/12/08 7.62 

 
7.70 4.50 

 
7.62 0.650 Exponencial 56928 318.74 

 
7.33 0.000 Gaussiano 1243 13.74 

2014/12/12 3.54 
 

3.45 6.50 
 

3.57 0.202 Gaussiano 1575 3.41 
 

3.55 0.000 Esférico 3464 3.39 
2014/12/13 1.16 

 
1.13 8.00 

 
1.17 0.000 Esférico 3040 1.10 

 
1.25 0.000 Gaussiano 1451 1.27 

2015/02/14 1.89 
 

1.90 3.00 
 

1.89 0.416 Gaussiano 1482 0.86 
 

1.92 0.000 Gaussiano 713 0.73 
2015/02/15 1.09 

 
1.09 2.00 

 
1.07 0.057 Exponencial 1700 0.49 

 
1.07 0.110 Gaussiano 1584 0.44 

2015/02/16 4.67 
 

4.79 6.50 
 

4.69 1.263 Gaussiano 6578 152.57 
 

4.68 0.000 Gaussiano 1656 21.17 
2015/03/27 6.17 

 
6.03 8.00 

 
6.17 0.000 Exponencial 227785 454.27 

 
6.17 0.000 Esférico ###### 2393.04 

2015/03/28 0.96 
 

0.96 1.75 
 

0.95 0.000 Esférico 1033 0.05 
 

0.95 0.000 Esférico 719 0.05 
2015/03/29 6.08 

 
5.99 0.25 

 
5.95 0.000 Gaussiano 477 0.98 

 
5.90 0.000 Gaussiano 688 1.05 

2015/03/30 8.47 
 

8.46 2.25 
 

8.51 0.439 Gaussiano 858 2.66 
 

8.56 0.000 Gaussiano 745 2.86 
2015/03/31 6.69 

 
6.65 5.75 

 
6.76 2.994 Exponencial 11354 18.62 

 
6.69 0.000 Esférico 30460 133.83 

2015/04/01 3.52 
 

3.51 1.50 
 

3.46 0.096 Gaussiano 789 1.06 
 

3.49 0.442 Gaussiano 1780 1.24 
2015/04/03 15.41 

 
15.38 0.75 

 
15.47 23.117 Exponencial 12132 203.13 

 
15.49 0.000 Exponencial 1875 8.79 

2015/04/10 1.40 
 

1.40 0.25 
 

1.40 0.178 Esférico 13562 0.47 
 

1.41 0.217 Esférico 4000 0.22 
2015/04/11 1.81 

 
1.81 2.25 

 
1.83 0.000 Gaussiano 709 0.51 

 
1.83 0.000 Gaussiano 767 0.48 

2015/04/12 3.40 
 

3.42 3.50 
 

3.44 0.065 Gaussiano 488 1.69 
 

3.41 0.271 Gaussiano 785 1.70 
2015/04/13 14.93 

 
15.05 3.00 

 
14.80 1.916 Exponencial 77349 365.56 

 
14.84 2.524 Gaussiano 3754 90.82 

2015/04/14 1.23 
 

1.21 4.00 
 

1.23 0.000 Exponencial 3856 1.21 
 

1.25 0.024 Gaussiano 1253 0.54 
2015/04/15 1.63   1.65 3.00   1.63 0.121 Exponencial 9580 0.74   1.63 0.307 Gaussiano 323689 18553.14 

Tabla A3. (Continuación) 
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Precipitación para cada tipo de variograma OK1
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Figura A2. Distribución de los días en función del mejor tipo de semivariograma y de 

la cantidad de precipitación para: a) la variante OK1; b) la variante OK2 

a) 
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Precipitación para cada modelo de variograma OK1

Mejor modelo de semivariograma OK1

P
re

c
ip

it
a
c
ió

n
 e

s
p

a
c
ia

l 
d

ia
ri

a
 (

m
m

)

Exponencial Gaussiano Esférico

0
5

1
0

1
5

2
0

Precipitación para cada modelo de variograma OK1

Mejor modelo de semivariograma OK2

P
re

c
ip

it
a
c
ió

n
 e

s
p

a
c
ia

l 
d

ia
ri

a
 (

m
m

)

Exponencial Gaussiano Esférico

0
5

1
0

1
5

2
0

Figura A3. Distribución de los días en función del mejor modelo de semivariograma y 

de la cantidad de precipitación para: a) la variante OK1; b) la variante OK2 

b) 
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Figura A4. Distribuciones del sesgo diario promedio en función de la densidad de las 

redes dispersas. El valor correspondiente a cada red dispersa se ha representado con 

un punto negro. Las columnas con trazos rojos señalan aquellas redes que no 

presentaron diferencias estadísticamente significativas con respecto a la red completa 

según el test de Mann Whitney. La columna de la izquierda con un nivel de 

significación del 10% y la columna de la derecha con un nivel del 5%. 
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Figura A5. Distribuciones del sesgo absoluto diario promedio en función de la 

densidad de las redes dispersas. El valor correspondiente a cada red dispersa se ha 

representado con un punto negro. Las columnas con trazos rojos señalan aquellas 

redes que no presentaron diferencias estadísticamente significativas con respecto a 

la red completa según el test de Mann Whitney. La columna de la izquierda con un 

nivel de significación del 10% y la columna de la derecha con un nivel del 5%. 
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a) 

c) d) 

b) 

Figura A6. Mapas de sesgos porcentuales diarios promedio entre las precipitaciones 

diarias estimadas con la red completa y las siguientes redes de un sensor (punto rojo 

relleno) : a) pluviógrafo que produjo el mayor error absoluto al estimar la precipitación 

espacial; b) pluviógrafo de ubicación preferencial para el monitoreo con un sensor 

(centro de la microcuenca); c) pluviógrafo que produjo el menor error absoluto al estimar 

la precipitación espacial; d) pluviógrafo que produjo el menor error absoluto al estimar la 

precipitación espacial entre aquellos ubicados cerca de la única vía de acceso. 
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d) 

b) 

c) 

a) 

Figura A7. Mapas de sesgos absolutos porcentuales diarios promedio entre las 

precipitaciones diarias estimadas con la red completa y las siguientes redes de 

un sensor (punto rojo relleno) : a) pluviógrafo que produjo el mayor error 

absoluto al estimar la precipitación espacial; b) pluviógrafo de ubicación 

preferencial para el monitoreo con un sensor (centro de la microcuenca); c) 

pluviógrafo que produjo el menor error absoluto al estimar la precipitación 

espacial; d) pluviógrafo que produjo el menor error absoluto al estimar la 

precipitación espacial entre aquellos ubicados cerca de la única vía de acceso. 


