

Resumen.

Las telecomunicaciones mediante tecnologías inalámbricas son tal vez las que más auge han presentado en los últimos años, debido principalmente a su rápido y fácil despliegue, muchas de estas tecnologías permiten tener acceso a servicios de banda ancha en cualquier lugar y momento, lo que hace algunos años era algo inconcebible, esto se refleja en el incremento sustancial en la cantidad y calidad de los servicios de telecomunicaciones que se ofrecen a nivel mundial.

Los países tecnológicamente menos desarrollados, tienen redes de acceso limitadas en los centros poblados y casi nulos en sectores rurales, muchas de las tecnologías inalámbricas que se encuentran en auge en nuestro país son tecnologías probadas en países en desarrollo.

El presente trabajo delimita algunos parámetros que permiten considerar que la convergencia favorecerá a WiMAX Móvil (IEEE 802.16e-2005), no es que las redes WiMAX Fijas (IEEE 802.16d-2004), desplegadas mundialmente vayan a desaparecer, lo que se menciona es que un operador que pretenda elegir entre la versión Fija y Móvil se inclinaría por la versión Móvil.

Se presenta algunas consideraciones para el diseño de una Red de Acceso Inalámbrico de última milla, en la parte urbana de la ciudad de Cuenca, empleando WiMAX Móvil; esta red tiene la capacidad y niveles de cobertura suficientes para ofrecer servicios de valor agregado como voz, datos y video.

Además se desarrollo una herramienta informática que determina aproximadamente el radio de cobertura y el número de estaciones base, en función del área cobertura y la capacidad de tráfico de los usuarios.

PALABRAS CLAVES: WIMAX FORUM, Arquitectura, Evolución del Estándar IEEE 802.16, Incompatibilidad y Tendencia WiMAX Fijo y Móvil, Capa Física, MAC WiMAX Móvil. Características WiMAX Móvil, Modelos de propagación NLOS, Marco Regulatorio, Dimensionamiento Ancho de Banda, Calculo de Propagación y Cobertura, Herramienta informática SANTELWIMAX Impacto Móvil. ambiental, Calculo de Emisiones RNI, Análisis Financiero.

Abstract.

Wireless telecommunications technologies have had a paramount boom in recent years, mainly due to their fast and easy development, many of these technologies allow access to broadband services at every time and place, which was some years ago unthinkable, this can be seen as a substantial increment in terms of quantity and quality of telecommunications services that are offered worldwide.

Countries technologically less developed have limited access networks in towns and almost null access infrastructure in rural areas, many wireless technologies that are booming in our country are technologies tested in developing countries.

The present document outlines some parameters that allow considering that convergence will help WiMAX Mobile (IEEE 802.16e-2005), it does not mean that fixed WiMAX networks (IEEE 802.16d-2004), deployed worldwide will disappear; but, as it was mentioned an operator who have to choose between the fixed and mobile version, most probably will select the mobile version.

We present some considerations to design a last-mile wireless network in the urban part of the city of Cuenca, using Mobile WiMAX, this network must have the capacity and coverage levels in order to provide services as value-added voice, data and video.

Also, a tool has been developed that roughly determines the radius of coverage and the number of base stations, depending on the area coverage and traffic capacity users.

KEY WORDS: WiMAX FORUM, Architecture, Evolution of Standard IEEE 802.16, Incompatibility and Tendency Fixed and Mobile WiMAX, Physical Layer, MAC, Mobile WiMAX, Mobile WiMAX Specifications, NLOS propagation models, Dimensioning, Framework. Bandwidth Regulatory Calculation Propagation Tool of and Coverage, SANTELWIMAX Environmental **Emission** Impact, Móvil, Calculation RNI, Financial Analysis.

Universidad de Cuenca

Facultad de Ingeniería Maestría en Telemática

ESTUDIO Y DISEÑO DE UNA RED WIMAX PARA LA CIUDAD DE CUENCA.

Denuncia de Tesis previo a la obtención del título de Magíster en Telemática.

AUTOR: Ing. Santiago Bacuilima Z.

AVAL ACADÉMICO: Ing. Juan Andrade Rodas,

MSc.

Cuenca, Ecuador Abril, 2010

El contenido de esta tesis es de absoluta responsabilidad del autor.

Ing. Santiago Bacuilima Z.

Dedicatoria.

Al finalizar una etapa más de vida, dedico todo el esfuerzo que está dentro de estas páginas а mis PADRES: Wilson У Esperanza, HERMANOS: Karla, Felipe, Cristina y Pepito, por compresión, paciencia y por el infinito apoyo ٧ fuente inspiración han que me brindado a lo largo de este formación proceso de académica.

En especial quiero dedicar esta Tesis, a mi Papi Wilson, por el ejemplo de vida que nos dio al no claudicar ante el Cáncer y dar a toda nuestra familia el ejemplo de que con fe en Dios y con ganas de vivir no hay nada imposible.

Santiago

Agradecimientos.

Agradezco a Dios por estar conmigo en todo momento por darme la fortaleza y paciencia que me han permitido la correcta realización de este proyecto.

También quiero expresar mi más sincero agradecimiento a funcionarios todos los del Académico Consejo de Posgrados, Departamento de Admisión V Becas, la Comisión Académica de Maestría en Telemática por haberme permitido la culminación de la Maestría.

Una nota especial de agradecimiento al Ing. Juan Andrade por su valioso aporte en conocimientos y experiencia, los cuales fueron

fundamentales para concluir el trabajo.

A todas las personas y amigos que de una u otra forma me apoyaron para poder llegar a tan esperada meta, expreso mi más sincera gratitud.

Índice de Contenidos

Capitulo 1	30
Introducción y Objetivos.	30
1 Introducción	30
1.1 Antecedentes.	31
1.2 Estado del arte.	32
1.2.1 Realidad mundial.	32
1.2.2 Situación en el Ecuador.	35
2 Descripción del problema o necesidad	36
2.1 Necesidades a ser satisfechas	36
2.2 Problemas a ser resueltos.	38
3 Justificación del proyecto de tesis	39
3.1 Beneficios para el usuario.	39
3.2 Beneficios para el estudiante	40
4 Objetivos de la tesis de grado	41
4.1 Objetivo general.	41
4.2 Objetivos específicos	41
4.2.1 Objetivos tangibles	41
4.2.2 Objetivos intangibles	41
5. Alcance del proyecto.	42
6. Método de trabajo	43

Capitulo 2	46
Estándar IEEE 802.16x WiMAX	46
1 Introducción a WiMAX.	46
2 WiMAX FORUM	
3 Arquitectura del Estándar IEEE 802.16x	
3.1 Capa MAC	
3.1.1 Subcapa de Convergencia.	
3.1.2 Subcapa de Parte Común	51
3.1.3 Subcapa de Privacidad	51
3.1.4 Modificaciones del estándar IEEE 802.1	6d-
2004 con respecto al IEEE 802.16e-2005	
3.2 Capa Física.	
1B3.2.1 Modificaciones del estándar IEEE 802	
2004 con respecto al IEEE 802.16e-2005	
4 WiMAX Fijo, Nomádico, Portable, Móvil	
4.1 Acceso Fijo4.2 Acceso Nomádico	
4.3 Acceso Portátil.	
4.4 Acceso Móvil.	
4.4.1 Movilidad simple	58
4.4.2 Movilidad completa.	58
5 Caracteristicas principales de WiMAX	59
5.1 Capa física basada en OFDM.	59
5.2 Elevadas Tasas de Transferencia.	59

5.3 Ancho de Banda Variable	59
5.4 Modulación y Codificación adaptativa	60
5.5 Retransmisiones en la capa de enlace de d	atos.
	60
5.6 Soporte de aplicaciones TDD y FDD	61
5.7 Acceso múltiple por división ortogonal de	
frecuencias.	61
5.8 Asignación de recursos por usuario, Flexib	le y
Dinámica	62
5.9 Soporte para sistemas avanzados de anten	as .62
5.10 Soporte de QoS.	62
5.11 Seguridad	63
5.12 Soporte para la movilidad.	63
5.13 Arquitectura basada en IP.	63
6 Aplicaciones que ofrece WiMAX	64
4B7 Incompatibilidad y Tendencia con respecto a	à
WiMAX Fijo y Móvil	66
7.1 Incompatibilidad WiMAX Fijo y Móvil	
7.2 Tendencias WiMAX Fijo y Móvil	67
8 WIMAX MÓVIL.	69
8.1 Calidad de Servicio.	
8.1.1 Servicios Básicos.	
8.1.1.1 UGS.	
8.1.1.2 rtPS	
8.1.1.3 nrtPS.	
VIIIIV III VI	/ ⊣т

8.1.1.4 BE	74
8.1.1.5 ERT-VR	74
8.2 Control de Potencia.	75
8.3 Handoffs.	75
8.3.1 HHO.	76
8.3.2 FBSS Handoff	77
8.3.3 MDHO Handoff	78
9 Modelos de propagación NLOS.	78
9.1 Modelo de propagación IEEE 802.16 SUI	78
6B9.2 Modelo de propagación COST 231-Hata.	84
Capitulo 3	87
Diseño de la Red WiMAX.	87
1 Introducción.	87
2 Arquitectura de Red.	87
2.1 Evaluación de la Infraestructura existente	91
3 Marco Regulatorio WiMAX.	100
3.1 Frecuencia en la que funcionan los equipos	s de
la tecnología seleccionada	100
3.2 Disponibilidad de licencias de espectro	101
4 Definición de Servicios de Operación	112
4.1 Mercado de clientes y servicios	113
4.1.1 Proyección de usuarios (Voz, Datos y V	ideo).
	115

4.2 Dimensionamiento del Ancho de Banda s	egún
el tipo de Servicio.	122
4.2.1 Dimensionamiento del Ancho de Band	la de
Internet/Telefonía.	122
4.2.2 Dimensionamiento del Ancho de Band	la de
Video (IPTV, VoD)	133
4.2.3 Dimensionamiento del Ancho de Banc	la de
Internet/Telefonía y Video (IPTV, VoD)	139
44 5 Análisis de Propagación	140
5.1 Análisis de Cobertura	140
5.2 Calculo de Cobertura.	143
5.2.1 Calculo de Cobertura utilizando el mod	delo de
propagación IEEE 802.16 SUI.	145
5.2.2 Calculo de Cobertura utilizando el mod	delo de
propagación COST 231-Hata	149
5.3 Calculo de la Capacidad.	152
5.4 Resultados del Análisis de Propagación.	165
6 Evaluación de Productos WiMAX Móvil	169
6.1 Descripción de equipos seleccionados	171
6.1.1 Estación Base	171
6.1.1.1 NPU 1+1	172
6.1.1.2 AU 6+1	172
6.1.1.3 PSU N+1	173
6.1.1.4 PIU 1+1	174
6.1.1.5 AVU	174

6.1.2 ASN-GW.	175
75B 7 Diseño de la Herramienta informática de	
planificación WiMAX	178
7.1 Análisis de Propagación para la banda de 2,3	а
2,4 GHz	179
7.2 Análisis de Propagación para la banda de 3,3	а
3,4 GHz	181
8 Impacto ambiental y Localización de las estacion	nes
base.	183
8.1 Localización de las estaciones base y Diagra	ma
de Red.	184
8.2 Calculo de Emisiones de RNI.	192
9 Análisis Financiero.	196
9.1 Determinación de los Ingresos	197
9.2 Determinación de Costos.	205
Capitulo 4	218
Conclusiones y Recomendaciones	218
1 Conclusiones.	218
2 Recomendaciones.	221
Anexos	223

ANEXO 1 Especificaciones Técnicas de Fabric	cantes
de equipos WiMAX.	223
A1.1 Alvarion.	223
A1.2 Airspan.	226
A1.3 Siemens	234
A1.4 ASN-GW	236
ANEXO 2 Descripción de la herramienta information	mática
SANTELwimax Móvil	240
ANEXO 3 Formulario para el informe técnico o	de
inspección de emisiones de RNI	254
Bibliografía y fuentes de consulta	258
Glosario de Términos y Abreviaturas	

Índice de Figuras

Figura 1.1 Logotipo del Foro WiMAX. (WiMAX Forum) 33
Figura 1.2 Escenarios de aplicación WiMAX. (Bacuilima Z.
2009)
Figura 2.1 Estándares Inalámbricos. (Bacuilima Z. 2009).
46
Figura 2.2 Modelos de uso de WiMAX. (Bacuilima Z.
2009) 47
Figura 2.3 Arquitectura del Estándar IEEE 802.16x,
802.16e = 802.16d + movilidad. (Bacuilima Z. 2009) 49
Figura 2.4 QoS in WiMAX Móvil. (Bacuilima Z. 2009) 70
Figura 2.5 Detección Handoff. (Bacuilima Z. 2009) 76
Figura 3.1 N GN con acceso de ultima milla WiMAX Móvil.
(Bacuilima Z. 2009) 88
Figura 3.2 Infraestructura existente en la Ciudad de
Cuenca. (Supertel 2008)99
Figura 3.3 Red de Fibra óptica de ETAPA EP en la Ciudad
de Cuenca. (ETAPA EP 2008)100
Figura 3.4 Plan Nacional de Frecuencias. (Conatel) 102
Figura 3.5 Esquema 1x3x3 y 1x3x6 WiMAX Móvil.
(Bacuilima Z. 2009)
Figura 3.6 Estación Base BreezeMAX, WiMAX Móvil.
(Alvarion)171

Figura 3.7 NPU de la Estación Base BreezeMAX	<.
(Alvarion)	2
Figura 3.8 AU (IDU, ODU), de la Estación Bas	e
BreezeMAX. (Alvarion)	3
Figura 3.9 PSU de la Estación Base BreezeMAX	(.
(Alvarion)	4
Figura 3.10 PIU de la Estación Base BreezeMAX	(.
(Alvarion)	4
Figura 3.11 AVU de la Estación Base BreezeMAX	(.
(Alvarion) 17	5
Figura 3.12 ASN-GW (topología Centralizada	У
Distribuida). (Alvarion)	5
Figura 3.13 Datos de ingreso WiMAX Móvil, banda de 2,	3
a 2,4 GHz. (Bacuilima Z. 2009)	9
Figura 3.14 Datos de salida WiMAX Móvil, banda de 2,3	a
2,4 GHz. (Bacuilima Z. 2009)	0
Figura 3.15 Datos de ingreso WiMAX Móvil, banda de 3,	3
a 3,4 GHz. (Bacuilima Z. 2009) 18	1
Figura 3.16 Datos de salida WiMAX Móvil, banda de 3,3	a
3,4 GHz. (Bacuilima Z. 2009)	2
Figura 3.17 Localización de las estaciones base WiMA	X
Móvil, banda de 2,3 a 2,4 GHz. (Bacuilima Z. 2009) 18	6
Figura 3.18 Localización de las estaciones base WiMA	X
Móvil, banda de 3,3 a 3,4 GHz. (Bacuilima Z. 2009) 18	7

Figura 3.19 Red de acceso de ultima milla, WiMAX Móvil.
(Bacuilima Z. 2009) 191
Figura 3.20 Diagrama de referencia para el cálculo de S _{lim} .
(Senatel)195
Figura 4.1 Herramienta informática SANTELWIMAX Móvil.
(Bacuilima Z. 2009)
Figura 4.2 Partes de SANTEL _{WiMAX Móvil} . (Bacuilima Z.
2009)
Figura 4.3 SANTEL _{WiMAX Móvil} - Estación Base (BS).
(Bacuilima Z. 2009) 242
Figura 4.4 SANTEL _{WiMAX Móvil} - Enlace. (Bacuilima Z. 2009).
243
Figura 4.5 SANTEL _{WiMAX Móvil} - Estación Móvil (MS).
(Bacuilima Z. 2009) 243
Figura 4.6 SANTEL _{WiMAX Móvil} – valores ingreso 1.
(Bacuilima Z. 2009) 244
Figura 4.7 SANTEL _{WiMAX Móvil} – 1 Calculo Path Loss.
(Bacuilima Z. 2009) 246
Figura 4.8 SANTEL _{WiMAX Móvil} – Modelo Propagación IEEE
802.16 SUI. (Bacuilima Z. 2009) 247
Figura 4.9 SANTEL _{WiMAX Móvil} – Modelo Propagación COST
231-Hata. (Bacuilima Z. 2009)
Figura 4.10 SANTEL _{WiMAX Móvil} – valores ingreso 2.
(Bacuilima Z. 2009)

Figura	4.11	SANTELWIMAX	Móvil –	2	Calculo	de	#	BS.
(Bacuili	ma Z. 2	2009)						249
Figura	4.12	SANTELWIMAX	K Móvil –	-	valores	ingr	esc	3.
(Bacuili	ma Z. 2							251
Figura	4.13	$SANTEL_{WiMAX}$	Móvil –	3	Calculo	de	#	BS.
(Bacuili	ma Z. 2	2009)						252

Índice de Tablas

Tabla 2.1 Modificaciones de la capa MAC del estándar
IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.
(Bacuilima Z. 2009) 53
Tabla 2.2 Capas PHY que soporta el estándar IEEE
802.16x. (Bacuilima Z. 2009) 54
Tabla 2.3 Modificaciones de la capa PHY del estándar
IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.
(Bacuilima Z. 2009) 55
Tabla 2.4 Tipos de Acceso WiMAX. (Bacuilima Z. 2009). 56
Tabla 2.5 Clases de Servicios que ofrece WiMAX.
(Bacuilima Z. 2009) 66
Tabla 2.6 QoS WiMAX Móvil. (Bacuilima Z. 2009) 73
Tabla 2.7 Constantes del Modelo IEEE 802.16. (Jeffrey G.
Andrews 2007) 81
Tabla 2.8 Valores de σ , del Modelo IEEE 802.16. (Jeffrey
G. Andrews 2007) 83
Tabla 2.9 Valores de s, para distintas probabilidades de
cobertura. (Bacuilima Z. 2009) 84
Tabla 3.1 Ubicación de la Infraestructura existente de
ETAPA EP. (Supertel)92
Tabla 3.2 Ubicación de la Infraestructura existente de
Movistar. (Supertel)93

Tabla 3.3 Ubicación de la Infraestructura existente de
Porta. (Supertel)96
Tabla 3.4 Ubicación de la Infraestructura existente de
Alegro. (Supertel)97
Tabla 3.5 Perfiles para WiMAX Móvil. (WiMAX Forum
2006)
Tabla 3.6 Atribución de bandas de frecuencia. (Senatel
2009)
Tabla 3.7 Notas del Plan Nacional de Frecuencias.
(Senatel 2009) 108
Tabla 3.8 Segmentación de la Banda 3400-3700 MHz.
(Senatel)
Tabla 3.9 Bloques de frecuencia E, F, G, H. (Senatel). 111
Tabla 3.10 Población Urbano/Rural del cantón Cuenca.
(Censo INEC 2001)
Tabla 3.11 Viviendas con Electricidad en el cantón
Cuenca. (Censo INEC 2001) 114
Tabla 3.12 Estimación del # de Usuarios Totales. (Censo
INEC 2001)
Tabla 3.13 Usuarios proyectados. (Carrillo 2008) 118
Tabla 3.14 Usuarios Potenciales. (Carrillo 2008) 119
Tabla 3.15 Usuarios proyectados según el tipo de Servicio.
(Bacuilima Z. 2009) 120
Tabla 3.16 Usuarios de Internet/Telefonía. (Bacuilima Z.
2009)

Tabla 3.17 Usuarios Video (IPTV/VoD). (Bacuilima Z.
2009)
Tabla 3.18 Fin principal de acceso a la Internet. (INEC
2009)
Tabla 3.19 Diferenciación de usuarios según el factor de
compartición. (Bacuilima Z. 2009)124
Tabla 3.20 Diferenciación de usuarios según el plan
contratado. (Bacuilima Z. 2009) 125
Tabla 3.21 Dimensionamiento del Ancho de Banda de
Internet. (Bacuilima Z. 2009) 126
Tabla 3.22 Dimensionamiento de Internet para el periodo
análisis. (Bacuilima Z. 2009) 127
Tabla 3.23 Diferenciación de usuarios según el tipo de uso
Corporativos y Residenciales. (Bacuilima Z. 2009) 128
Tabla 3.24 Codecs según la ITU. (ITU 2009) 130
Tabla 3.25 Dimensionamiento del Ancho de Banda de Voz.
(Bacuilima Z. 2009)
Tabla 3.26 Dimensionamiento del Ancho de Banda de
Telefonía para el periodo de análisis. (Bacuilima Z. 2009).
132
Tabla 3.27 Dimensionamiento del Ancho de Banda de
Internet/Telefonía. (Bacuilima Z. 2009)
Tabla 3.28 Distribución de Planes y número de canales
ofrecidos. (Carrillo 2008)

Tabla 3.29 Tasa de bit mínima para señal de video SD y
HD. (Carrillo 2008)
Tabla 3.30 Tasa de bit mínima para señal de audio.
(Carrillo 2008)
Tabla 3.31 Dimensionamiento del Ancho de Banda de
IPTV. (Bacuilima Z. 2009)
Tabla 3.32 Tasa de bit mínima para señal de VoD.
(Bacuilima Z. 2009) 137
Tabla 3.33 Dimensionamiento del Ancho de Banda de
VoD, considerando los usuarios totales. (Bacuilima Z.
2009)
Tabla 3.34 Dimensionamiento del Ancho de Banda de
VoD, considerando el 5% de los usuarios totales.
(Bacuilima Z. 2009)
Tabla 3.35 Dimensionamiento del Ancho de Banda de
IPTV/VoD. (Bacuilima Z. 2009)
Tabla 3.36 Ancho de Banda Total de Internet/Telefonía y
Video (IPTV, VoD). (Bacuilima Z. 2009)
Tabla 3.37 Especificaciones para el cálculo de cobertura
WiMAX Móvil. (Bacuilima Z. 2009)145
Tabla 3.38 Path Loss WiMAX Móvil. (Bacuilima Z. 2009).
Tabla 3.39 Constantes del Modelo IEEE 802.16. (WiMAX
Forum)

Tabla 3.40 Variables del Modelo IEEE 802.26 SUI.
(Bacuilima Z. 2009) 147
Tabla 3.41 Radio de cobertura calculado con el modelo de
propagación IEEE 802.16 SUI. (Bacuilima Z. 2009) 148
Tabla 3.42 Área de cobertura por celda calculada IEEE
802.26 SUI. (Bacuilima Z. 2009)
Tabla 3.43 # Estaciones Base calculado con el modelo de
propagación IEEE 802.26 SUI. (Bacuilima Z. 2009) 149
Tabla 3.44 Variables del Modelo Cost 231-Hata.
(Bacuilima Z. 2009) 150
Tabla 3.45 Radio de cobertura calculado con el modelo de
propagación Cost 231-Hata. (Bacuilima Z. 2009) 150
Tabla 3.46 Área de cobertura por celda calculada Cost
231-Hata. (Bacuilima Z. 2009)
Tabla 3.47 # Estaciones Base calculado con el modelo de
propagación Cost 231-Hata. (Bacuilima Z. 2009) 151
Tabla 3.48 Parámetros SOFDMA. (WiMAX Forum 2006).
Tabla 3.49 Parámetros PUSC. (WiMAX Forum) 153
Tabla 3.50 Parámetros AMC. (WiMAX Forum) 154
Tabla 3.51 Espaciamiento entre Sub-portadoras.
(Bacuilima Z. 2009) 155
Tabla 3.52 Frecuencia de muestreo según el ancho de
banda del canal. (Bacuilima Z. 2009) 155

Tabla 3.53 Tiempo útil de símbolo según el ancho de
banda del canal. (Bacuilima Z. 2009) 156
Tabla 3.54 Tiempo de guarda de acuerdo al ancho de
banda del canal. (Bacuilima Z. 2009) 157
Tabla 3.55 Duración de símbolo OFDMA. (Bacuilima Z.
2009)
Tabla 3.56 Numero de símbolos OFDMA. (Bacuilima Z.
2009)
Tabla 3.57 Tasa de código y bits/símbolo según el tipo de
modulación. (WiMAX Forum 2006) 159
Tabla 3.58 Calculo de la Capacidad WiMAX Móvil.
(Bacuilima Z. 2009) 161
Tabla 3.59 Tráfico por celda WiMAX Móvil. (Bacuilima Z.
2009)
Tabla 3.60 Parámetros para el Cálculo de la Capacidad
WiMAX Móvil. (Bacuilima Z. 2009)
Tabla 3.61 Densidad de tráfico proyectada WiMAX Móvil.
(Bacuilima Z. 2009)
Tabla 3.62 Área y radio de cobertura por celda proyectada
WiMAX Móvil. (Bacuilima Z. 2009)
Tabla 3.63 # de Estaciones Base según la demanda de
trafico proyectada para el primer año WiMAX Móvil.
(Bacuilima Z. 2009) 164
Tabla 3.64 Resultados del Análisis de Propagación WiMAX
Móvil. (Bacuilima Z. 2009)

Tabla 3.65 Ajuste de potencia de transmisión BS/MS
según condiciones del cálculo de capacidad WiMAX Móvil.
(Bacuilima Z. 2009)
Tabla 3.66 Resumen de las principales características de
los productos ofertados por los Proveedores: Alvarion,
Airspan y Siemens. (Bacuilima Z. 2009)
Tabla 3.67 Series Cisco 7600. (Bacuilima Z. 2009) 176
Tabla 3.68 Selección del ASN-GW LS, Series Cisco 7600.
(Bacuilima Z. 2009)
Tabla 3.69 Localización de las estaciones base WiMAX
Móvil, banda de 2,3 a 2,4 GHz. (Bacuilima Z. 2009) 189
Tabla 3.70 Localización de las estaciones base WiMAX
Móvil, banda de 3,3 a 3,4 GHz. (Bacuilima Z. 2009) 190
Tabla 3.71 Límites máximos de exposición por estación
radioeléctrica fija. (Senatel)
Tabla 3.72 Valores para calcular el S_{lim} . (Bacuilima Z.
2009)
Tabla 3.73 Cálculo de S_{lim} . (Bacuilima Z. 2009)
Tabla 3.74 Benchmarking de Tarifas de Internet.
(Bacuilima Z. 2009) 198
Tabla 3.75 Tarifas según el plan de Internet. (Bacuilima Z.
2009)
Tabla 3.76 Benchmarking de Tarifas de TV por
subscripción. (Bacuilima Z. 2009)

Tabla 3.77 Tarifas según el plan de Video (IPTV).
(Bacuilima Z. 2009)
Tabla 3.78 Benchmarking de Tarifas de Video (VoD).
(Bacuilima Z. 2009)
Tabla 3.79 Tarifas según el plan de Video (VoD).
(Bacuilima Z. 2009) 202
Tabla 3.80 Resumen de Tarifas según el tipo de plan y
servicio de Internet/Telefonía y Video (IPTV, VoD).
(Bacuilima Z. 2009) 202
Tabla 3.81 # de Usuarios proyectados según el tipo de plan
y servicio de Internet/Telefonía y Video (IPTV, VoD).
(Bacuilima Z. 2009)
Tabla 3.82 Ingresos Totales de servicios de
Internet/telefonía y Video (IPTV, VoD). (Bacuilima Z. 2009).
Tabla 3.83 Determinación de costos de infraestructura
WiMAX Móvil. (Bacuilima Z. 2009)
Tabla 3.84 Determinación del CAPEX. (Bacuilima Z.
2009)
Tabla 3.85 Determinación del OPEX. (Bacuilima Z. 2009).
212
Tabla 3.86 Benchmarking de costos de un E1. (Bacuilima
Z. 2009)
Tabla 3.87 Proyección de costos de transporte redes TDM
(PDH, SDH). (Bacuilima Z. 2009)

Tabla 3.88	Proyección de costos de transporte re	des SDH,
con descuer	nto. (Bacuilima Z. 2009)	214
Tabla 3.89	Determinación del COGS. (Bacuilima	Z. 2009).
		215
Tabla 3.90	Resultados del Análisis de Costos. (Bacuilima
Z. 2009)		217

Capitulo 1

Introducción y Objetivos.

1 Introducción.

El desarrollo tecnológico en el área de la electrónica y telecomunicaciones ha permitido en los últimos años un incremento sustancial en la cantidad y calidad de los servicios de telecomunicaciones que se ofrecen a nivel mundial.

Las telecomunicaciones mediante tecnologías inalámbricas son tal vez las que más auge han presentado debido principalmente a su rápido y fácil despliegue, así como a la economía de escala que ha permitido contar con equipos de red y de usuario a precios muy accesibles, lo cual se refleja en los altos índices de crecimiento y penetración alcanzados por la telefonía móvil.

Hoy en día ya no se habla únicamente de telefonía móvil sino de comunicaciones inalámbricas; es decir, el intercambio de información multimedia a través de redes

inalámbricas se figura como el siguiente reto en las comunicaciones.

Los servicios multimedia integran voz, datos y video en una red común, que es capaz de soportar las crecientes necesidades de información de la sociedad.

1.1 Antecedentes.

La búsqueda de mejorar los servicios ha llevado a varias organizaciones, empresas y profesionales a nivel mundial a realizar estudios sobre las diferentes tecnologías basadas en medios guiados e inalámbricos.

Las tecnologías inalámbricas permiten a los operadores ya sea un ahorro económico en el despliegue de la red de acceso o en su defecto un ahorro en el tiempo requerido para el despliegue lo cual también se puede traducir a un ahorro económico.

El acceso a la información y al conocimiento representa un factor importante en el progreso de los países, ante esto el Gobierno Nacional, Local, Empresas particulares y las Universidades de nuestro país deben estimular el uso de

nuevas tecnologías, que permitan acceder de manera masiva y con velocidades adecuadas a la información.

1.2 Estado del arte.

1.2.1 Realidad mundial.

Se debe tener presente que a nivel mundial muchas de las tecnologías inalámbricas son un elemento indispensable para el desarrollo de las telecomunicaciones, en este sentido los diferentes actores de la sociedad (gobernantes, universidades, empresas proveedoras de servicios, etc.) deben enfocar sus esfuerzos con el objetivo de promover el desarrollo de normas y regulaciones que permitan la implantación de estas tecnologías.

Tener acceso a servicios de banda ancha en cualquier lugar y momento, hace algunos años era algo inconcebible para la mayoría de usuarios, hoy en día existen diferentes tipos de tecnologías que permiten ofrecer estos servicios; uno de los estándares que al momento presenta mayores perspectivas es el estándar IEEE 802.16x, comercialmente conocido como WiMAX.

El WiMAX Forum es la organización promotora de la tecnología WiMAX (equivalente al competidor en Europa HIPERMAN), que se basa en el estándar IEEE 802.16x para las redes de área metropolitana inalámbricas MAN. La Figura 1.1 muestra el logotipo del WiMAX Forum.

Figura 1.1 Logotipo del Foro WiMAX. (WiMAX Forum).

El WiMAX Forum es un consorcio de compañías de todo el mundo, (Siemens, Nokia, Alcatel, SR Telecom, Alvarion, WiLAN, Aperto Networks, Navini, Fujitsu, Intel etc.).

Este foro se encarga de promover la adopción de esta tecnología y de asegurar la interoperabilidad de los productos de diferentes fabricantes, se espera que WiMAX entreguen servicios de acceso a banda ancha a clientes residenciales y corporativos, el Grupo IEEE 802.16x desarrolla estándares enfocados en dos tipos de modelos de uso: modelo de uso fijo (IEEE 802.16d-2004) y modelo que permite movilidad (IEEE 802.16e-2005).

Además la aprobación por parte de Unión Internacional de Telecomunicaciones (19/10/2007), define la tecnología de

Banda Ancha móvil inalámbrica WiMAX como un estándar global de comunicación 3G, siendo un paso trascendental para lo que será el despliegue masivo de dicha tecnología en el Mundo.

WiMAX se presenta como una alternativa a las conexiones tradicionales por cable, con características similares a servicios, DSL ó E1, en una estos red de Metropolitana y promete a los operadores, proveedores de Internet, oportunidades económicamente viables en el mercado. donde la flexibilidad de esta tecnología inalámbrica, permite proporcionar servicios de última milla en condiciones de propagación NLOS, nLOS y LOS, lo cual permite que sea flexible para abonados residenciales, comerciales y corporativos. La Figura 1.2 muestra los diferentes escenarios de aplicación WiMAX.

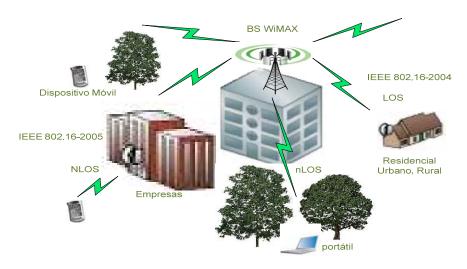


Figura 1.2 Escenarios de aplicación WiMAX. (Bacuilima Z. 2009).

1.2.2 Situación en el Ecuador.

Ecuador se encuentra entre los países tecnológicamente menos desarrollados y con un bajo ingreso per cápita; es decir, cuenta con redes de acceso limitadas en los centros poblados y casi nulas en el sector rural, es por esto que actualmente se encuentra en auge la introducción de inalámbricas diferencia tecnologías а de países desarrollados donde son tecnologías que va han sido probadas. La aplicación más clara de WiMAX es como red de acceso inalámbrica de banda ancha, actualmente existen diversas tecnologías a través de las cuales se puede acceder a la Internet y otras redes:

- Mediante línea telefónica (dial-up y tecnologías xDSL).
- A través de la red de televisión por cable (cable módem).
- A través de algunas redes inalámbricas que satisfacen la norma IEEE 802.11 a/b/g.
- En menor número a través de la red de telefonía móvil.
- Satelital.

Entre las ventajas de usar tecnologías inalámbricas en la red de acceso se puede citar, los costos competitivos que se han alcanzado en la actualidad y la facilidad de

despliegue TTM, especialmente en áreas con topografía irregular.

Debido a lo anteriormente citado, WiMAX es una opción tecnológicamente viable, puesto que el coste de instalar una estación base puede ser comparable con el de realizar el tendido de kilómetros de cableado, aunque los sistemas cableados son mucho más robustos y eficientes que cualquier enlace radio, pero el tiempo de despliegue se reduce sustancialmente.

Por tanto WiMAX se presenta como una buena opción para ofrecer el acceso de última milla en aquellas zonas donde la cobertura de banda ancha es insuficiente (zonas urbanas, suburbanas, rurales), debido a esto no se espera que WiMAX remplace a las redes cableadas, sino más bien una convivencia de las redes cableadas y las inalámbricas, para generar una Red Híbrida, teniendo como parte principal la red cableada y como acceso de última milla una red inalámbrica.

2 Descripción del problema o necesidad.

2.1 Necesidades a ser satisfechas.

El problema principal que se tiene es el servicio a zonas donde se encuentran saturadas o no llegan las redes cableadas de cobre, coaxial ó fibra óptica ya sea por tener que implementar redes costosas ó por ser zonas de difícil acceso.

Es por esto que se da un desigual despliegue territorial de infraestructuras de telecomunicaciones, debido a lo cual se da una escasa ó nula atención de servicios ó accesos a banda ancha de alta velocidad.

Además el acceso a la Internet ya no es un servicio de elite sino una necesidad básica para las personas, el cuál eleva el nivel de vida y la productividad; por esta razón las empresas que brindan servicios de telecomunicaciones en la ciudad de Cuenca, deben mantenerse en constante innovación y adaptación a las necesidades de la población.

Debido a esto se presenta un estudio y diseño de una red de acceso basada en WiMAX para la ciudad de Cuenca. El principal servicio de esta red de acceso será el proporcionar acceso inalámbrico de alta velocidad a la Internet y servicios de valor agregado. Por ende el trabajo presentado será un aporte para la futura implementación de

este importante proyecto por alguna de las empresas de telecomunicaciones de la ciudad y el país.

2.2 Problemas a ser resueltos.

Existen diferentes tecnologías que permiten tener un acceso de alta velocidad ó banda ancha. Las tecnologías de acceso pueden utilizar medios guiados ó inalámbricos; pero debido a que se desea optimizar el tiempo de despliegue, lo que se recomienda es optar por tecnologías de tipo inalámbrico.

WiMAX satisface gran parte de las demandas anteriores, en donde la red a implementar disminuye las excesivas demoras de instalación y puede igualar ó disminuir los elevados costos de las redes cableadas.

El estado tecnológico que tiene la ciudad de Cuenca en telecomunicaciones requiere el estudio del estándar IEEE 802.16x, con el fin de mostrar el análisis teórico de una infraestructura de ultima milla con tecnología WiMAX, que permita contar con un acceso inalámbrico de alta velocidad a servicios Triple Play.

3 Justificación del proyecto de tesis.

El presente proyecto se plantea como un Plan Piloto que servirá como ejemplo para las distintas ciudades del Ecuador.

3.1 Beneficios para el usuario.

Con el presente proyecto sobre WiMAX se abre el camino para diferentes estudios en la línea de tecnologías de comunicación inalámbricas y se sientan bases para la continuación del estudio de esta tecnología.

Además se brinda un texto claro acerca del funcionamiento y de una posible implementación de este tipo de infraestructura en nuestra ciudad.

También se podrá contar con este documento como apoyo para la implementación de este proyecto, mostrando a organizaciones gubernamentales y privadas los diferentes beneficios de esta tecnología inalámbrica.

El sector de Telecomunicaciones de la urbe será altamente beneficiado, al contar con un estudio de las características

más sobresalientes del estándar IEEE 802.16x conocido como WiMAX.

3.2 Beneficios para el estudiante.

Incursionar en un área nueva dentro del desarrollo de nuestra ciudad y país como son las redes inalámbricas de área metropolitana con tecnología WiMAX.

La experiencia que se adquirirá con este estudio brinda un beneficio personal al poder ampliar nuestros conocimientos, y de aportar el estudio de una posible solución inalámbrica para un futuro proyecto en la ciudad.

Desarrollar destrezas y habilidades adquiridas a lo largo de la Maestría, poniendo estas en práctica en un proyecto de actualidad e interés para la ciudad.

Culminar el programa de Maestría con éxito y la satisfacción de aportar con los objetivos de la Universidad de Cuenca al formar profesionales cada vez más preparados para enfrentar el mundo competitivo del Sector de las Telecomunicaciones.

4 Objetivos de la tesis de grado.

4.1 Objetivo general.

ESTUDIO Y DISEÑO DE UNA RED WIMAX PARA LA CIUDAD DE CUENCA.

4.2 Objetivos específicos.

4.2.1 Objetivos tangibles.

- Generar un documento que permita identificar de forma clara las características principales del estándar IEEE 802.16x.
- Realizar el diseño de una red acceso inalámbrico banda ancha con tecnología WiMAX Móvil para la ciudad de Cuenca.
- Desarrollar una herramienta informática que permita estimar de manera sencilla el área de cobertura de la red WiMAX basada en el estándar IEEE 802.16e.

4.2.2 Objetivos intangibles.

 Generar una necesidad de implementar una red inalámbrica en la ciudad de Cuenca.

 Adquirir conocimientos, experiencia y destrezas dentro de este campo.

5. Alcance del proyecto.

Al finalizar el proyecto de tesis se contará con un documento que contenga el estudio de las características más sobresalientes del estándar IEEE 802.16x, el cual servirá de fundamento teórico para entender el principio de funcionamiento de la tecnología WiMAX.

Debido a que la implementación del proyecto requerirá una fuerte inversión económica el proyecto de tesis quedaría en una etapa de diseño (infraestructura WiMAX que permita tener acceso inalámbrico de alta velocidad ó banda ancha), plenamente justificado, con el fin de ser un aporte en la implementación a futuro.

Además se contará con una herramienta informática, para estimar el radio de cobertura y el número de estaciones base, necesarias para dar servicios inalámbricos de banda ancha.

Para el desarrollo de la herramienta informática se utilizara el modelo de propagación SUI, el cual es un modelo de

canal empírico del IEEE 802.16 SUI, desarrollado por el Grupo de Trabajo IEEE 802.16x.

6. Método de trabajo.

El presente proyecto pretende seguir la siguiente metodología:

<u>Recopilación de información:</u> En esta etapa se pretende recopilar información (estándar IEEE 802.16x), de diferentes fuentes bibliográficas (libros, revistas, internet, etc.).

<u>Preselección y análisis de la información:</u> Estudio del estándar IEEE 802.16x con el fin de identificar las características más sobresalientes que ayuden a comprender su funcionamiento.

Formulación del diseño de la red:

- Evaluación de la infraestructura de red de telecomunicaciones existente en la ciudad de Cuenca con miras a posibles acuerdos de alquiler de infraestructura y housing.
- Disponibilidad de licencias del espectro radioeléctrico, posibles frecuencias a utilizar.

- Obtención de información demográfica y socioeconómica de la ciudad, de fuentes tales como el INEC, con el fin de determinar los sectores de cobertura (urbano y rural) a los que se pretenda dar servicio.
- Especificar los servicios a brindar con el fin de determinar la demanda del servicio.
- Análisis de propagación para determinar el área de cobertura en función del balance energético en el que intervengan potencia, ganancias de las antenas, perdidas de antena etc, y para determinar el path loss se utilizara el modelo de propagación recomendado por el estándar IEEE 802.16x.
- Área de cobertura en función del número de usuarios al que se pretende dar servicio en función del tráfico que maneje cada usuario y cada estación base.
- Evaluación de los enlace punto a punto y punto a multipunto para determinar los planos de las posibles ubicaciones de la: Central, estaciones base, repetidoras y posibles impactos ambientales.
- Evaluación de Equipamiento de productos WiMAX.
- Estimación de un breve presupuesto de implementación de la infraestructura inalámbrico.

<u>Diseño y Desarrollo de una herramienta informática:</u> Selección del programa (Excel, Matlab, Visual Basic), en el

cual se va a realizar el diseño y desarrollo de la herramienta informática, utilizando el modelo de propagación del estándar IEEE 802.16x, con el fin de estimar el radio de cobertura y el número de estaciones base, necesarias para dar servicios inalámbricos de banda ancha.

<u>Documentación:</u> se elaboraran los documentos que contenga los resultados de: estudio del estándar IEEE 802.16x, diseño de la red WiMAX, pruebas realizadas con la herramienta informática, conclusiones y recomendaciones.

Capitulo 2

Estándar IEEE 802.16x WiMAX.

1 Introducción a WiMAX.

Las redes inalámbricas se las pueden clasificar de acuerdo a diferentes criterios que pueden ser: movilidad y cobertura, si clasificamos de acuerdo a movilidad se puede distinguir dos tipos de redes inalámbricas: fijas y móviles, mientras que según la cobertura se pueden destacar 4 tipos de redes inalámbricas: WPAN, WLAN, WMAN, WWAN. (Pareek 2006). La Figura 2.1 muestra los estándares de las redes inalámbricas.

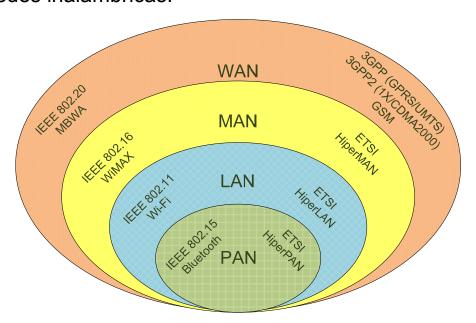


Figura 2.1 Estándares Inalámbricos. (Bacuilima Z. 2009).

WiMAX es una tecnología de acceso en banda ancha orientada a las comunicaciones inalámbricas para áreas metropolitanas, definida por la familia de estándares IEEE 802.16 y el estándar HyperMAN del organismo de estandarización europeo ETSI.

Actualmente WiMAX se enfoca en dos tipos de modelos de uso: modelo de uso fijo que cumple el estándar IEEE 802.16d-2004 y el modelo que permite movilidad basado en el estándar IEEE 802.16e-2005.

La Figura 2.2 muestra los modelos de uso de WiMAX.

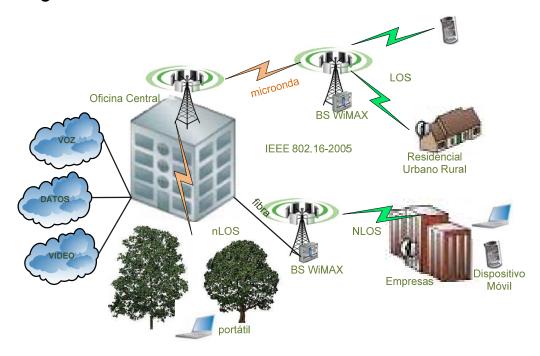


Figura 2.2 Modelos de uso de WiMAX. (Bacuilima Z. 2009).

La tecnología inalámbrica WiMAX permite ofrecer acceso de última milla a redes de comunicaciones de banda ancha, además puede proveer acceso a equipos fijos como móviles, en condiciones de propagación NLOS, nLOS y LOS, entre el equipo terminal del usuario y la estación base transmisora.

2 WIMAX FORUM.

El WiMAX Forum® es una organización sin fines de lucro, cuyo objetivo es promover y acelerar la introducción de sistemas acceso inalámbrico de banda ancha en el mercado de las telecomunicaciones. (WiMAX Forum).

Este foro esta formado por más de 522 miembros en todo el mundo, entre fabricantes de chips, fabricantes de equipos y proveedores de servicios, entre los miembros tenemos: Agilent Technologies, Airspan Networks, Alcatel-Lucent, Alvarion, Aperto Networks, AT4 wireless, ATDI, Axxcelera Broadband, Cisco Systems, Fujitsu Micro Electronics, Huawei, Intel, Motorola, Navini Networks, Nokia Siemens Network, Nortel, Redline Communications, Sequans, etc. (WiMAX Forum).

El WiMAX Forum® fue creado para promover y certificar la compatibilidad e interoperabilidad de productos inalámbricos de banda ancha que emplean las especificaciones IEEE 802.16x y ETSI HiperMAN.

3 Arquitectura del Estándar IEEE 802.16x.

Los estándares IEEE 802.16d-2004 y 802.16e-2005 son especificaciones que hacen referencia al modelo de: capa física y control de acceso al medio, de la tecnología WiMAX. La Figura 2.3 muestra la Arquitectura del Estándar IEEE 802.16x.

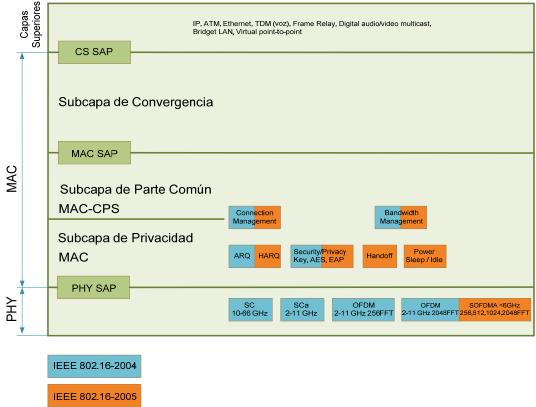


Figura 2.3 Arquitectura del Estándar IEEE 802.16x, 802.16e = 802.16d + movilidad. (*Bacuilima Z. 2009*).

3.1 Capa MAC.

La capa de control de acceso al medio, proporciona una interfaz entre las capas más altas de transporte y la capa física, permite proveer la inteligencia en la capa física; especifica tanto el modo en que los abonados accederán a la red, como la forma en que los recursos de la red se asignarán a estos, las funcionalidades de la capa MAC son:

- Soporte para las diferentes capas físicas definidas en IEEE 802.16x.
- Soporte a las topologías PMP, PP, MESH.
- Capa de convergencia para varios protocolos de las capas más altas.
- Control de QoS.
- Seguridad.
- Soporte a sistemas con antenas adaptativas.

La capa MAC, según el IEEE 802.16x, está compuesta por la Subcapa de Convergencia, Subcapa de Parte Común y la Subcapa de Privacidad.

3.1.1 Subcapa de Convergencia.

Esta subcapa de convergencia interactúa entre las funciones de la capa MAC y la capa superior mediante el CS SAP, puede interconectarse con varios protocolos de las capas más altas, como: ATM, TDM, Ethernet, IP, etc.

3.1.2 Subcapa de Parte Común.

Esta subcapa interconecta a la subcapa de convergencia mediante el MAC SAP, posee todas las funciones necesarias para realizar el intercambio y el control de datos, permitiendo el acceso al medio, estableciendo y manteniendo la conexión, asignando anchos de banda, etc.

3.1.3 Subcapa de Privacidad.

Esta subcapa se interconecta a la capa PHY mediante el PHY SAP y posee todas las funciones necesarias de Seguridad, permite proveer autentificación, intercambio de llaves y cifrado permitiendo proveer a los usuarios un servicio de banda ancha seguro a través de su conexión cifrada, y al operador protegerse de las conexiones no autorizadas.

3.1.4 Modificaciones del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.

La Tabla 2.1 muestra la modificación en la Capa MAC del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.

MAC WiMAX fijo:	MAC WiMAX Móvil
QoS: Best Effort (BE), Non	
Real Time Variable Bit Rate	Mejora QoS: BE, nrtPS,
(nrtPS), Real Time Variable	rtPS, UGS.
Bit Rate (rtPS) y Continuous	Tu 0, 000.
Grant (UGS).	
ARQ (Automatic	Hybrid Automatic Repeat
Retransmission Request).	Request (HARQ).
APC (Automatic Power	Control de Potencia: Sleep,
Control).	Idle Mode.
	Seguridad: Manejo de claves
Seguridad y Encriptación:	PKMv2, Autenticación IETF
Triple DES.	EAP, Encriptación AES-
	CCM.

Gestión de Movilidad:
Gestión de potencia de
alimentación de los equipos,
Soporta handoff

Tabla 2.1 Modificaciones de la capa MAC del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005. (Bacuilima Z. 2009).

3.2 Capa Física.

Especifica las características de los modos de operación de las diferentes capas físicas que soporta, c/u es una variante del estándar según las técnicas de modulación, banda de frecuencias, técnicas de corrección de errores, sincronización entre Tx y Rx, velocidad de los datos etc.

El estándar IEEE 802.16d-2004 establece 5 posibles capas: WirelessMAN-SC, WirelessMAN-SCa, WirelessMAN-OFDM, WirelessMAN-OFDMA y WirelessHUMAN, mientras que el estándar IEEE 802.16e-2005 sólo contemplan la capa física WirelessMAN-OFDMA.

La Tabla 2.2 muestra las diferentes capas físicas del estándar IEEE 802.16x.

Capa Física	Banda (GHz)	Opciones	Duplexaci on
WirelessMAN- SC	10 66 (LOS)/ banda con licencia.		TDD, FDD
WirelessMAN- SCa	< 11 (NLOS)/ banda con licencia.	AAS, ARQ, STC	TDD, FDD
WirelessMAN- OFDM	< 11 (NLOS)/ banda con licencia.	AAS, ARQ, Mesh, STC, movilidad	TDD, FDD
WirelessMAN- OFDMA	< 11 (NLOS)/ banda con licencia.	AAS, ARQ, STC, movilidad	TDD, FDD
WirelessHUM AN	< 11 (NLOS)/ banda sin licencia.	AAS, ARQ, Mesh, STC,	TDD

Tabla 2.2 Capas PHY que soporta el estándar IEEE 802.16x. (Bacuilima Z. 2009).

3.2.1 Modificaciones del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.

La Tabla 2.3 muestra la modificación en la Capa PHY del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005.

PHY WiMAX Fijo:	PHY WiMAX Móvil
Soporta OFDM.	Soporta SOFDM.
Soporta TDD y FDD.	Inicialmente soporta TDD posibilidad de nuevos perfiles soporten FDD.
Soporta "Smart antennas".	Sistemas Avanzados de Antenas. Diversidad en Tx/Rx, Beamforming, Spatial Multiplexing.

Tabla 2.3 Modificaciones de la capa PHY del estándar IEEE 802.16d-2004 con respecto al IEEE 802.16e-2005. (Bacuilima Z. 2009).

4 WiMAX Fijo, Nomádico, Portable, Móvil.

La Tabla 2.4 muestra los escenarios relacionados con el tipo de acceso: fijos, nómadas, portables y móviles.

Acceso	Localización/ Velocidad	Han doff	IEEE 802.16d- 2004	IEEE 802.16e- 2005
Fijo	Única/estacio naria	no	si	si
Nómadas	Múltiples/esta cionaria	no	Si	si
Portable	Múltiples/ped estre	Har d	no	si
Movilidad Simple	Múltiples/vehi cular baja	Har d	no	si
Movilidad Completa	Múltiples/vehi cular alta	Soft	no	si

Tabla 2.4 Tipos de Acceso WiMAX. (Bacuilima Z. 2009).

4.1 Acceso Fijo.

El acceso fijo asume que el usuario puede conectarse y desconectarse en una sola ubicación geográfica, durante el tiempo que accede a la red en el sector o celda de la estación base que le corresponda.

- Servicio limitado a sectores fijos.
- Autentificación y autorización del equipo de usuario.
- Alternativa a DSL, backhaul para celular y WiFi.

4.2 Acceso Nomádico.

El usuario puede conectarse en una ubicación geográfica, durante el tiempo que accede a la red en el sector o celda de la estación base, si se mueve a otra celda se establece una nueva sesión, desconectándose de su unidad fija y reconectándose desde una nueva ubicación.

- Servicio limitado a sectores estacionarios sin handover de estación base.
- Autentificación del usuario.
- Servicio tipo DSL desde diferentes puntos de conexión, aplicaciones de VoIP.

4.3 Acceso Portátil.

El acceso portátil asume que el usuario puede conectarse y desconectarse dentro de un área de cobertura, manteniendo una sesión operacional a medida que se mueve a velocidades pedestres, posee handover limitado a medida que se mueve a una celda diferente.

- Servicio a sectores estacionarios o con movilidad limitada.
- Autentificación del usuario.

- Degradación de QoS durante handover no continuos.
- Aplicaciones de VoIP.

4.4 Acceso Móvil.

4.4.1 Movilidad simple.

El usuario puede conectarse dentro de un área de cobertura, manteniendo una sesión operacional con breves interrupciones (menos de 1 segundo), al moverse entre estaciones base (incorpora handoff) a una velocidad menor a 60Km/h, en aplicaciones sin demanda de tiempo real.

4.4.2 Movilidad completa.

El usuario puede conectarse dentro de un área de cobertura, manteniendo una sesión operacional, con interrupciones casi imperceptibles (no superan los 50 milisegundos y garantiza además una pérdida de paquetes menor al 1%), al moverse entre estaciones base (handoff mas rápido), a una velocidad hasta 120Km/h, proveyendo continuidad para todas las aplicaciones.

5 Caracteristicas principales de WiMAX.

5.1 Capa física basada en OFDM.

Permite funcionar en condiciones NLOS, debido a que la OFDM, ofrece una buena resistencia a la interferencia por reflexiones múltiples (multipath) por medio de la ortogonalización de las portadoras.

5.2 Elevadas Tasas de Transferencia.

La tasa máxima teórica a nivel capa física que se puede alcanzar es 74Mbps (ancho de banda de 20MHz), para un ancho de banda de 10Mhz, con duplexión TDD, modulación 64QAM, relación 3 a 1 entre downlink y uplink, se tiene una tasa de transferencia de 25Mbps y 6Mbps respectivamente, se pueden lograr tasas transferencia más altas utilizando antenas múltiples con multiplexación espacial.

5.3 Ancho de Banda Variable.

La arquitectura de capa física variable permite que la tasa de transferencia se adapte fácilmente al ancho de banda disponible sin perder calidad en los servicios ofrecidos, esto se logra debido a la utilización de OFDMA, donde el

tamaño de la FFT, puede variar dependiendo del ancho de banda del canal disponible.

Según sea el ancho de banda del canal 1.25MHz, 5MHz, 10MHz, 20MHz, se emplea 128, 512, 1024, 2048 portadoras respectivamente para realizar la FFT, esta adaptación se efectúa dinámicamente para soportar Roaming a través de diferentes redes que poseen diferentes asignaciones de ancho de banda.

5.4 Modulación y Codificación adaptativa.

Los diferentes esquemas de modulación y codificación para la corrección de errores que soporta WiMAX, permiten maximizar la tasa de transferencia en un canal que varia con el tiempo, estos esquemas se pueden modificar para cada usuario ó grupo de usuarios, según las condiciones del canal, que son proporcionadas por la relación señalruido y en el coeficiente de interferencia del receptor.

5.5 Retransmisiones en la capa de enlace de datos.

Para conexiones que requieren elevada confiabilidad soporta ARQ, cada paquete transmitido deberá ser

reconocido enviando un "ack" por el receptor, caso contrario se asumen como paquetes perdidos y se retransmitirá, opcionalmente soporta hybrid-ARQ, el cual es un efectivo híbrido entre FEC y ARQ.

5.6 Soporte de aplicaciones TDD y FDD.

WiMAX soporta duplexión TDD y FDD, permitiendo adaptarse a diferentes variantes regulatorias mundiales, los perfiles de certificación WiMAX Móvil no incluyen FDD.

5.7 Acceso múltiple por división ortogonal de frecuencias.

Es la versión multiusuario de OFDM, para implementar el OFDMA se asignan subconjuntos de portadoras a cada usuario individual. Se puede variar la asignación de subportadoras por usuario de acuerdo a la información realimentada sobre las condiciones del canal utilizado, aumentando la robustez frente al fading y la interferencia co-canal, también se puede variar la cantidad de subportadoras asignadas a cada usuario en base a la QoS requerida por cada uno.

5.8 Asignación de recursos por usuario, Flexible y Dinámica.

La Estación Base controla la asignación recursos de los enlaces uplink y downlink, los recursos de ancho de banda son asignados en tiempo, frecuencia y espacio, en modo OFDMA-PHY, la multiplexación se hace en el dominio de la frecuencia, asignando a cada usuario diversos conjuntos de sub portadoras OFDM, cuando se utiliza AAS los recursos son asignados en el dominio espacial.

5.9 Soporte para sistemas avanzados de antenas.

Permiten la utilización de técnicas (Beamforming, Codificación Space Time, Multiplexación espacial) con múltiples antenas tanto en el trasmisor como en el receptor, estos esquemas pueden usarse para mejorar la capacidad global del sistema y la eficiencia espectral.

5.10 Soporte de QoS.

La arquitectura de capa MAC está diseñada para soportar una gran cantidad de usuarios, cada uno con múltiples conexiones y requerimientos de calidad de servicio,

ofreciendo soporte para tráfico UGS, rtPS, nrtPS, BE, ERT-VR.

5.11 Seguridad.

Soporta encriptación de datos usando el estándar de cifrado AES, también ofrece una arquitectura de autenticación muy flexible basada en el protocolo EAP, el cual permite una variedad de credenciales de usuarios incluyendo username/password y certificado digital y tarjetas inteligentes.

5.12 Soporte para la movilidad.

Posee mecanismos que aseguran el "handover" entre celdas sin interrupciones, para aplicaciones móviles tolerables a retardo como VoIP, también tiene mecanismos de soporte que extiende el tiempo de batería de dispositivos portátiles.

5.13 Arquitectura basada en IP.

La arquitectura de red IP permite que todos los servicios end-to-end, dependan de protocolos IP para transporte, QoS, administración de sesión, seguridad y movilidad, esto facilita la convergencia con otras redes y explota el

potencial para los desarrollos de aplicaciones ya existentes para este protocolo IP. (Jeffrey G. Andrews 2007).

6 Aplicaciones que ofrece WiMAX.

Las redes de acceso basadas en WiMAX, permiten a los operadores proveer servicios de voz, datos y vídeo, a zonas donde la infraestructura tradicional de líneas cableadas en muchos casos, no existe o solo han sido accesibles a un segmento de usuarios.

No se espera que este tipo de tecnología inalámbrica, remplace las redes cableadas estableciendo redes alternativas a las redes de los operadores fijos y móviles, lo que se pretende es combinar estas tecnologías en busca de soluciones efectivas en costo y prestación de servicios.

La tecnología WiMAX se puede aplicar en diversos escenarios:

- Enlaces de última milla para radio bases de telefonía móvil.
- Acceso de banda ancha en áreas urbanas y rurales sin infraestructura de cobre.
- Wireless VolP.

- VoD.
- Aplicaciones de seguridad y monitoreo.
- Comunicación Multimedia.
- Redes de sensores, Telemática y Telemetría.
- Monitoreo remoto de signos vitales de pacientes.

La Tabla 2.5 muestra como WiMAX se ha desarrollado para dirigirse a una amplia gama de aplicaciones. (WiMAX Forum).

Class Description	Real Time?	Application Type	Bandwidth
Interactive Gaming	Yes	Interactive Gaming	50 - 85 kbps
VoIP, Video		VoIP	4 - 64 kbps
Conference	Yes	Video Phone	32 - 384 kbps
		Music/Speech	5 - 128 kbps
Streaming	ng Yes	Video Clips	20 -384 kbps
Media		Movies Streaming	> 2 Mbps

		Instant	< 250 byte
Information Technology		Messaging	messages
	No	Web Browsing	> 500 kbps
rearmology		Email (with	> 500 kbps
		attachments)	> 500 Kbps
Media Content		Bulk Data, Movie	> 1 Mbps
Download	No	Download	/ I Wibps
(Store and Forward)	INO	Peer-to-Peer	> 500 kbps

Tabla 2.5 Clases de Servicios que ofrece WiMAX. (Bacuilima Z. 2009).

7 Incompatibilidad y Tendencia con respecto a WiMAX Fijo y Móvil.

7.1 Incompatibilidad WiMAX Fijo y Móvil.

Las dos versiones de WiMAX, fija (IEEE 802.16d-2004) y móvil (IEEE 802.16e-2005), son especificaciones diferentes e incompatibles entre sí, debido a modificaciones en la Capa PHY: OFDM a SOFDM, y en la Capa MAC: handoff, roaming y gestión de recursos (potencia, ancho de banda, QoS).

La versión fija utiliza OFDMA y la versión móvil SOFDMA, es decir el equipo de usuario móvil que maneja SOFDMA no podría funcionar en una red basada en OFDMA, además en la capa MAC móvil se introduce un encabezado con información de control necesario para soportar movilidad (handoffs, etc.).

La diferencia en la capa PHY es el número de subportadoras utilizadas para modular los símbolos de información, WiMAX Fijo soporta 256 subportadoras OFDM por usuario mientras que WiMAX Móvil tolera un numero de portadoras flexible de 128, 256, 512 1024, que pueden operar en diferentes anchos de banda ajustando sus parámetros de sistema mediante OFDMA escalable.

Esta incompatibilidad puede generar confusión en los operadores al momento de tomar una decisión sobre que estándar adoptar para desplegar sus redes de banda ancha.

7.2 Tendencias WiMAX Fijo y Móvil.

Las dos versiones de WiMAX, se definieron para resolver las distintas demandas de aplicaciones fijas y móviles, en mercados emergentes con poca o ninguna infraestructura

física ó en mercados con baja densidad de redes de telecomunicaciones.

La elección del estándar depende de los tipos de servicios a brindar y del modelo de negocio del operador; si se pretende proporcionar acceso inalámbrico a un sector donde los usuarios son residenciales con una antena al aire libre se puede elegir la versión fija de WiMAX, debido a que presenta ventajas como: modulación menos compleja, bandas exentas de licencias, disponibilidad comercial etc.

Mientras que si se pretende brindar movilidad ó complementar una red 3G se debería elegir WiMAX Móvil debido a: mayor flexibilidad en el manejo de los recursos del espectro, mejor cobertura de interior, calidad de servicio, movilidad etc.

Para tomar una decisión sobre que estándar implementar se necesita evaluar factores como:

- Segmento de mercado objetivo: Fijo ó Móvil.
- Flexibilidad del espectro: bandas no licenciadas, bandas licenciadas.
- Entorno Regulatorio.
- Cobertura en interiores

- Mayor uso de dispositivos.
- Tiempo de implementación.

WiMAX en su versión Fija y Móvil satisfacen diferentes tipos de requerimientos, pero se debe tener presente que la movilidad atrae a los usuarios y proveedores, además los dispositivos móviles pueden ser desplegados como terminales fijos lo que no sucede con un terminal fijo que no puede ser móvil.

Debido a los requerimientos del mercado se podría decir que la convergencia favorecerá a WiMAX Móvil, no es que las redes fijas que ya han sido desplegadas vayan a desaparecer, lo que se menciona es que un operador que pretenda elegir entre la versión Fija y Móvil se inclinaría por la versión Móvil.

8 WIMAX MÓVIL.

El estándar IEEE 802.16e-2005, permite movilidad, una característica importante en un entorno inalámbrico, combina servicios fijos y móviles en una arquitectura de red similar a un sistema celular, con velocidades de 120 Km/hora, para usuarios móviles que pueden mantener la

comunicación sin percibir el cambio entre estaciones base (handover), en enlaces de acceso MAN o incluso WAN.

WiMAX Móvil posee diferentes mecanismos que permiten al usuario mantener una conectividad móvil, eficiente y robusta, incluye técnicas como estimación de canales frecuentes, ahorro de potencia, subcanalización de uplink y control de potencia que dan soporte para aplicaciones móviles.

8.1 Calidad de Servicio.

El estándar IEEE 802.16e provee diferenciación de QoS para una gran cantidad de servicios y aplicaciones que podrán funcionar en las redes WiMAX Móvil como se muestra en la Figura 2.4.

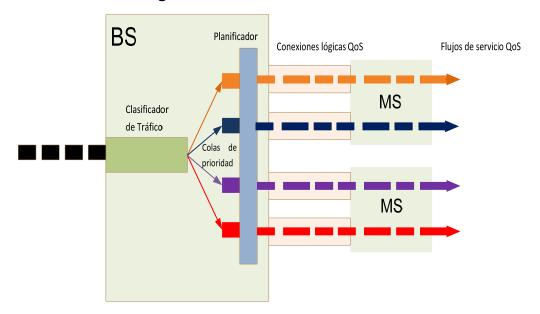


Figura 2.4 QoS in WiMAX Móvil. (Bacuilima Z. 2009).

Este soporte de QoS se realiza en base a la asociación de paquetes mediante flujos de servicio que se caracteriza por parámetros como tasas máximas y mínimas de transmisión, latencia, jitter y rendimiento.

La estación base y el usuario terminal establecen un enlace lógico unidireccional entre las correspondientes MACs, asociando los paquetes que atraviesan la interfaz MAC en un flujo para ser entregado en la conexión.

Estos parámetros de QoS asociados con el flujo de servicio definen el pedido y planificación de la transmisión en la interfaz aire, permitiendo el control de QoS extremo a extremo (downlink y uplink), administrando dinámicamente los parámetros de flujo de servicio según la demanda de servicio.

La Tabla 2.6 define varios servicios y aplicaciones con distintos requerimientos de QoS.

Categoría de QoS	Especificación QoS	Aplicación
UGS	Velocidad máxima mantenida. Máxima tolerancia a latencia.	VoIP

	Tolerancia al Jitter.	
	Velocidad mínima	
	reservada.	
rtPS	Velocidad mínima	Transmisión de datos o
	reservada.	video
	Velocidad máxima	
	mantenida.	
	Máxima tolerancia	
	a latencia.	
	Prioridad de	
	tráfico.	
n#DC	Máxima Tolerancia	Protocolo de transferencia
nrtPS	al Jitter.	de archivos TFP
	Velocidad máxima	
	mantenida.	
	Velocidad mínima	
	reservada	
	Prioridad de	
	tráfico.	
BE	Velocidad máxima	Transferencia de archivos,
DE	mantenida.	Web
	Prioridad de tráfico	
EDT VD	Velocidad mínima	Voz con detección de
ERT-VR	reservada.	actividad (VoIP)
	Velocidad máxima	

mantenida.	
Máxima tolerancia	
a latencia.	

Tabla 2.6 QoS WiMAX Móvil. (Bacuilima Z. 2009).

8.1.1 Servicios Básicos.

8.1.1.1 UGS.

Soporta flujos de datos en tiempo real constituidos de paquetes de datos de tamaño fijo emitidos en intervalos periódicos, como T1/E1 y VoIP sin supresión de silencio. El servicio ofrece capacidad fija de transmisión sin necesidad de solicitarlo.

8.1.1.2 rtPS.

Soporta flujos de datos en tiempo real constituidos de paquetes de datos de un tamaño variable que son emitidos en intervalos periódicos, como el formato de video MPEG, garantizando una tasa mínima de transferencia y un determinado retraso. El servicio ofrece oportunidades de petición de forma periódica que deben concordar con el ancho de banda especificado.

8.1.1.3 nrtPS.

Soporta flujos de datos tolerantes a retardo constituidos de paquetes de datos de un tamaño variable donde se requieren mantener una velocidad mínima, como en FTP. El servicio ofrece sondeos a las SS que garantizan posibilidad de realizar peticiones de ancho de banda incluso cuando el enlace está saturado.

8.1.1.4 BE.

Soporta flujos de datos para los cuales no se requiere un nivel mínimo y que pueden ser transmitidos cuando existe ancho de banda disponible, como en servicios que se ofrecen hoy en día a través de la Internet. Este servicio solo puede realizar peticiones de ancho de bando bajo contienda.

8.1.1.5 ERT-VR.

Posee las mismas características de rtPS, paquetes de datos de tamaño variable, con la diferencia que la tasa máxima de transferencia puede ser modificada durante la transmisión, se utilizará en servicios VoIP con supresión de silencio.

8.2 Control de Potencia.

Un problema crítico que presentan los dispositivos móviles es el tiempo de vida de la batería, debido a que la potencia es muy limitada en el terminal de usuario, WiMAX Móvil tiene dos tipos de modo de operación para el manejo eficiente de la potencia en las estaciones móviles: Sleep Mode, Idle Mode.

8.3 Handoffs.

Permite mantener la conexión activa mientras la MS se mueve en los bordes ó se desplaza a través de diferentes celdas (cambia de estación base), presentándose niveles de fading ó de interferencia altos permitiendo a la MS obtener una mejor QoS en otra BS, como se muestra en la Figura 2.5.

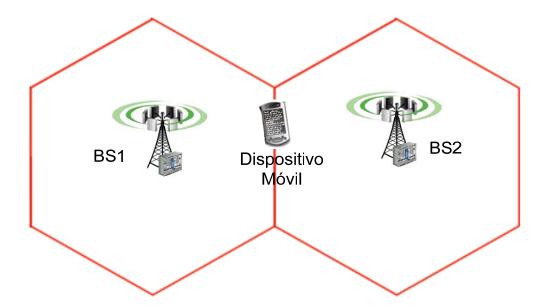


Figura 2.5 Detección Handoff. (Bacuilima Z. 2009).

Este proceso debe ser imperceptible para el usuario, no deberá haber cortes ni retardos en la conexión, el estándar soporta tres métodos de Handoff: HHO, FBSS y MDHO siendo el primero obligatorio y los otros opcionales.

8.3.1 HHO.

Es el método aplicado inicialmente por WiMAX Móvil, implica el cambio de conexión desde una BS a otra, basado en los resultados de las mediciones reportadas por la MS.

La MS periódicamente hace escaneo de radio frecuencia y mediciones de la calidad de la señal de estaciones base vecinas, esta exploración se realiza durante intervalos asignados por la BS, una vez tomada la decisión de que BS

presenta mejores características, la MS deja de demodular y decodificar la información transmitida por la BS1 y se sincroniza con la nueva BS2; comienza a demodular y decodificar la información transmitida desde la BS2 como se muestra en la Figura 2.4, se da una desconexión temporal del canal de tráfico al cambiar de BS, la MS puede estar conectado solo a una estación base en cualquier momento.

El método Hard Handoff tiene un alto estado latente y es ideal para los servicios de datos, siendo muy tolerante en cuanto a retrasos ó latencias en la red, mientras que Soft Handoff es más complejo y presenta poca latencia, ideal para voz y video.

8.3.2 FBSS Handoff.

En el caso FBSS la MS mantienen una conexión válida simultáneamente con más de una BS. La MS conserva una lista de las BSs involucradas, llamado "active set". La MS continuamente monitorea la active set y mantiene una conexión válida ID con cada uno de ellas. La MS sólo se comunica con una BS, llamada "anchor BS", cuando un cambio de "anchor BS" es necesario se cambia la conexión

de una BS a otra sin tener que recurrir a la señalización de handoff, la MS reporta la selección de "anchor BS".

8.3.3 MDHO Handoff.

MDHO es similar a FBSS, excepto que la MS se comunica sobre el enlace ascendente y descendente con todas las estaciones de base simultáneamente en el active set llamada "diversity".

En el enlace downlink dos ó más BSs transmiten simultáneamente de forma sincronizada información a una MS, estas se combinan utilizando cualquiera de las técnicas de diversidad por combinación. En el enlace uplink la MS envía los datos a múltiples estaciones base, de forma que pude aplicarse diversidad de selección para elegir el mejor enlace ascendente.

9 Modelos de propagación NLOS.

9.1 Modelo de propagación IEEE 802.16 SUI.

Los modelos SUI fueron seleccionados para el diseño, desarrollo y prueba de las tecnologías WiMAX, este modelo utiliza como base los modelos Okumura-Hata, COST 231 y

COST 231 Walfisch-Ikegami, agregando factores de corrección de modo que amplía su rango de operación y mejora los resultados obtenidos.

- $1900MHz \le f \le 3500MHz$
- $10m \le h_b \le 80m$
- $2m \le h_m \le 10m$
- 0.1km $\leq d \leq 8$ km

Donde:

- f es la frecuencia en MHz.
- *h_b* es la altura de la estación base en metros.
- h_m es la altura del receptor en metros sobre el piso.
- d es la distancia en metros.

Este modelo IEEE 802.16 (SUI), específica tres tipos básicos de terreno:

- Categoría A Densidad de árboles moderada a fuerte.
- Categoría B Densidad de árboles baja ó densidad de árboles moderada.
- Categoría C Densidad de árboles baja.

En condiciones de NLOS estas categorías permiten estimar la perdida de trayecto de los canales de radio frecuencia, estos modelos de canal SUI fueron seleccionados para el diseño, desarrollo y ensayo de la tecnología WiMAX en seis escenarios diferentes (SUI-1 a SUI-6).

La utilización de estos modelos permite predecir las probabilidades de cobertura que pueden ser logradas dentro de un sector correspondiente a una estación base, ayudando a la planificación de la red inalámbrica con el número de estaciones base necesarias para proveer servicio a una determinada extensión geográfica.

La ecuación 1 muestra la fórmula para el cálculo de la pérdida de propagación.

Para
$$d \rightarrow do$$
 $L = A + 10 \cdot \gamma \cdot \log(d/do) + Xf + Xh + s$

La ecuación 2 describe las pérdidas de espacio libre a una distancia de *do* = 100 m, la ecuación 3 determina el exponente de perdidas.

$$A = 20 \cdot \log(4 \cdot \pi \cdot do/\lambda)$$
 ecuación 2

$$\gamma = \frac{(a-b \cdot hb+c)}{hb}$$
 ecuación 3

La Tabla 2.7 muestra los valores de a, b, c y σ , los que son escogidos de acuerdo a la categoría del ambiente designado por A, B y C.

constante	Categoría A	Categoría B	Categoría C
а	4,6	4	3,6
b	0,0075	0,0065	0,005
С	12,6	17,1	20
σ	10,6	9,6	8,2

Tabla 2.7 Constantes del Modelo IEEE 802.16. (Jeffrey G. Andrews 2007).

El término Xf es un factor de corrección de frecuencia y se calcula de acuerdo a la ecuación 4, mientras que Xh es un factor de corrección de altura de la antena del receptor sobre el piso, descrito por la ecuación 5 y 6, según el tipo ó categoría del ambiente.

$$Xf = 6 \cdot \log \left(\frac{f}{2000} \right)$$

ecuación 4

Para terrenos tipo A y B:

$$Xh = -10.8 \cdot \log(hm/2)$$

ecuación 5

Para terrenos tipo C:

$$Xh = -20 \cdot \log \left(\frac{hm}{2}\right)$$

ecuación 6

El modelo SUI descrito en la ecuación 1, está compuesto por: path loss promedio y el término que es una componente aleatoria gaussiana de media nula y desviación estándar σ (Tabla 2.7), hace referencia al desvanecimiento por árboles, edificios y simula las variaciones sobre la potencia recibida.

La desviación estándar de *s*, comprende valores entre 8.2 y 10.6 dB, dependiendo del tipo de terreno. Para un determinado margen de desvanecimiento la probabilidad de interrupción en el borde de la celda está relacionada con la desviación estándar, mediante la función *Q*, como se describe en la ecuación 7.

$$Outage_{celledge} = \Pr\{\chi \ge s\} = Q(s/\sigma)$$
ecuación 7

Donde s, es el margen de desvanecimiento, χ el margen de desvanecimiento instantáneo y σ es la desviación estándar, para condiciones de NLOS existe una probabilidad del 90% de cobertura, esto indica que el 90% de clientes potenciales bajo un área de cobertura predictiva tendrán suficiente señal para una instalación satisfactoria.

El valor a determinar es el margen de desvanecimiento s, dado en la ecuación 8, para una probabilidad del N%; los

valores que toma σ, depende del tipo de terreno seleccionado como se muestra en la Tabla 2.8.

$$s = [Q_{inversa}(N\%)] \cdot \sigma$$

ecuación 8

constante	Categoría	Categoría	Categoría
constante	Α	В	С
σ	10,6	9,6	8,2

Tabla 2.8 Valores de σ , del Modelo IEEE 802.16. (*Jeffrey G. Andrews 2007*).

Los valores tabulados de distintos % de probabilidad se muestran en la Tabla 2.9.

Probabilidad	S			
%	Categoría A	Categoría B	Categoría C	
	σ=10,6	σ=9,6	σ=8,2	
50	0	0	0	
55	1,332	1,206	1,030	
60	2,686	2,432	2,077	
65	4,084	3,699	3,160	
70	5,559	5,034	4,300	
75	7,150	6,475	5,531	
80	8,921	8,080	6,901	

85	10,986	9,950	8,499
90	13,584	12,303	10,509
95	17,435	15,791	13,488
99	24,659	22,333	19,076

Tabla 2.9 Valores de s, para distintas probabilidades de cobertura. (*Bacuilima Z. 2009*).

9.2 Modelo de propagación COST 231-Hata.

El modelo de propagación Hata se utiliza ampliamente para las redes celulares y ha sido modificado por el European COST group para ser usado en la tecnología WiMAX.

- 150MHz ≤ *f* ≤ 2000MHz
- $30m \le h_b \le 200m$
- $1m \le h_m \le 10m$
- $1 \text{km} \le d \le 20 \text{km}$

Donde:

- f es la frecuencia en MHz.
- h_m es la altura del receptor en metros sobre el piso.
- d es la distancia en Km, entre transmisor y receptor.
- h_b es la altura efectiva de estación base en metros, se calcula mediante la ecuación 9.

$$h_b = h_o + c_t - h_p$$
 ecuación 9

- h_o es la altura sobre el suelo de la antena en metros.
- c_i es la cota del terreno en el lugar en que se encuentra la antena en metros.
- *h*_p nivel medio del terreno en metros.

La ecuación 10 muestra el cálculo del nivel medio del terreno.

$$h_p = \left(\frac{1}{d} \sum_{d=1}^{i=n} c_i\right)$$

ecuación 10

- *d1*, *d2* distancias donde se toman las muestras, punto inicial y final respectivamente.
- c_i son las cotas respectivas de cada punto donde se toman las muestras, n es el último punto correspondiente a la distancia d_2

En medios urbanos para ciudades con poco desnivel se puede considerar que h_b sea igual a la altura sobre el suelo h_o .

La ecuación 11 muestra el cálculo de la pérdida de propagación.

$$L = 46.3 + 33.9 \log(f) - 13.82 \log(h_h) - a(h_m) + (44.9 - 6.55 \log(h_h)) \log(d) + C_M$$

ecuación 11

Para las zonas urbanas y suburbanas el factor de corrección de la altura efectiva de la antena móvil h_m se calcula de acuerdo a la ecuación 12 y 13 respectivamente.

$$a(h_m) = 3.20(\log(11.75 \cdot hm))^2 - 4.97$$

ecuación 12

$$a(h_m) = (1.11\log(f) - 0.7)h_b - (1.56\log(f) - 0.8)$$

ecuación 13

El factor de corrección C_M es de 3dB y 0dB para las zonas urbanas y suburbanas respectivamente.

El WiMAX Forum recomienda el uso del modelo COST 231-Hata, para simulaciones y planificaciones de red en sistemas macrocelular en zonas urbanas y suburbanas, para aplicaciones de movilidad, también se recomienda añadir un margen de desvanecimiento de 10dB al path loss para considerar shadowing. (Jeffrey G. Andrews 2007).

Capitulo 3

Diseño de la Red WiMAX.

1 Introducción.

En este Capítulo se presentara una serie de consideraciones para el diseño de una Red de Acceso de ultima milla Inalámbrico, empleando la tecnología WiMAX Móvil, esta red debe contar con la capacidad y niveles de cobertura suficientes para ofrecer servicios de valor agregado como voz, datos y video, en la Ciudad de Cuenca.

2 Arquitectura de Red.

El WiMAX Forum definió un modelo de referencia de red NRM, como representación lógica de la arquitectura de red WiMAX, que permite asegurar la interoperabilidad entre varios equipos y operadores. La Figura 3.1 muestra la red de acceso de última milla WiMAX Móvil.

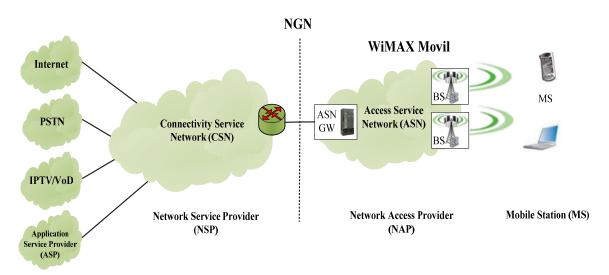


Figura 3.1 NGN con acceso de ultima milla WiMAX Móvil. (Bacuilima Z. 2009).

- MS: Permite al usuario acceder a los servicios del operador.
- ASN: Permite el acceso inalámbrico de las MS, está formado por una ó más BS y ASN GW que forman la red de radio acceso en los bordes de la red. Este componente actúa como entrada entre la red WiMAX y la red IP, actúa como punto de agregación de tráfico dentro de un ASN y es responsable de:
 - ✓ Establecimiento y selección de red del suscriptor preferido del CSN/NSP.

- ✓ Gestión de recursos radio y asignación basada en políticas de QoS y/o peticiones desde la NSP ó la ASP.
- ✓ Funciones relacionadas con la movilidad, como handover, gestión de localización y paginación dentro del ASN.
- ✓ Transferencia de mensajes AAA (authentication, authorization, accounting) y almacenamiento en caché de los perfiles de los abonados.
- ✓ Establecimiento de la conectividad IP con la MS.
- ✓ Túnel ASN-CSN y ASN-ASN.

CSN: Es responsable de:

- ✓ Provee infraestructura de conectividad y políticas de control para cada servicio como acceso a Internet, acceso a otro tipo de red IP, ASPs, servicios basados en localización, peer-to-peer, VPN, servicios multimedia, etc.
- ✓ Brinda funciones de Gateway ó de interoperabilidad con otras redes, tal como la PSTN, 3GPP etc.
- ✓ Asignación de direcciones IP a las MS para sesiones de usuario.
- ✓ Servidor AAA que proporciona authentication, authorization, accounting.

- ✓ QoS basado en SLA con el usuario, tarifación según el perfil de suscriptor.
- ✓ Túnel entre CSN para soportar traspaso entre NSPs, Túnel ASN-CSN.
- ✓ Gestión de movilidad entre ASN y funcionalidad de Agente foráneo.
- NAP: Proveedores de acceso de red operan el ASN.
- NSP: Proveedores de servicios de red permiten brindar los servicios utilizando la infraestructura ASN de un NAP.
- ASP: Proveedores de servicios de aplicación permiten brindar servicios de valor agregado (multimedia, VPNs corporativas etc.). (Jeffrey G. Andrews 2007).

En la actualidad existe una tendencia por las empresas de Telecomunicaciones del Ecuador, hacia entornos convergentes basados en el modelo NGN, por tal se asumirán elementos de la red (CSN, NSP, ASP, etc.), debido a que no son el punto clave del diseño y se dará mayor énfasis en la ASN ó red de acceso inalámbrica de última milla.

2.1 Evaluación de la Infraestructura existente.

Con miras a posibles acuerdos de alquiler de infraestructura y housing, para el despliegue de las estaciones base WiMAX Móvil, se debe evaluar la infraestructura de red de telecomunicaciones existente en la ciudad de Cuenca.

Es posible utilizar sitios donde existe infraestructura instalada de: ETAPA EP y Operadores celulares (Porta, Alegro y Movistar), que se encuentran desplegados en la ciudad de Cuenca. La Tabla 3.1 muestra la ubicación de la Infraestructura existente de ETAPA EP.

#	ETAPA EP	Ubicación		
,,		S	0	
E1	Centro	02°53′41,5"	79°00′14,0"	
E2	Totoracocha	02°53′49,8"	78°59′17,3"	
E3	El Ejido	02°54′32,1"	79°00′41,4"	
E4	El Arenal	02°53′46,4"	79°02′03,7"	
E5	Sayausi	02°52′59,8"	79°03′19,9"	
E6	Narancay	02°55′39,5"	79°02′32,2"	
E7	Capulispamba	02°51′31,3"	78°55′42,0"	
E8	Ricaurte	02°52′25,6"	78°57′50,1"	
E9	Patamarca	02°51′40,1"	78°59′02,1"	

E10	Miraflores	02°52′41,5"	78°59′31,5"
E11	Cebollar	02°52′53,7"	79°01′04,9"
E12	Crea	02°54′05,2"	79°01′36,3"
E13	Ictocruz	02°55′49,7"	78°59′50,5"

Tabla 3.1 Ubicación de la Infraestructura existente de ETAPA EP. (Supertel).

La Tabla 3.2 muestra la ubicación de la Infraestructura existente de Movistar.

#	MOVISTAR (OTECEL)	Ubica	ación
"	WOVIOTAR (OTEOEE)	S	0
M		02°55′16	79°01′0
1	Cerro Hito Cruz	"	1"
M	Calle Amenillas y Av. Guillermo	02°53′10	78°59′1
2	Ramírez Dávalos	,3"	8,5"
M	Av. Luis Cordero 753 y Mariscal	02°53′42	79°00′0
3	Sucre.	,2"	1,9"
M	Oeste Amazonas y Av. Unidad	02°53′59	79°01′1
4	Nacional Esq.	,3"	0,6"
M		02°54′53	79°01′2
5	Calle Unamuno y Calle De Retorno	,38"	5,5"
M		02°53′47	78°59′5
6	Huayna Capac Mariscal Lamar 319	,4"	6,1"

M	José María Rodríguez y Julio	02°54′23	79°00′4
7	Matovelle	,5"	8,7"
M		02°54′12	78°59′2,
8	Monay Carpertier y Cesar Vallejo	"	96"
M	Parque Industrial Carretera Vieja a	02°52′50	78°57′5
9	Quinta Chica	"	8"

Tabla 3.2 Ubicación de la Infraestructura existente de Movistar. (Supertel).

La Tabla 3.3 muestra la ubicación de la Infraestructura existente de Porta.

#	PORTA (CONECEL)	Ubicación	
	T GITTI (GGITEGEE)	S	0
Р	Cebollar Av. Del Chofer y Calle	02°53′1	78°58′3
1	Sin Nombre	5,72"	4,64"
Р	Parque Industrial Camino a	02°52′3	78°58′5
2	Patamarca	9"	8,00"
Р	Gran Colombia 6-59 Entre	02°53′3	79°00′0
3	Borrero y H. Miguel	4,31"	8"
Р	Yanuncay Gsm Calle Santa	02°55′4,	79°02′0
4	María y de la Torre	60"	2,3"
Р	Totoracocha Gsm González	02°53′5	78°58′5
5	Suarez y G. Mistral	9,30"	8,9"

Р	Oro Verde Gsm Barrio El Tejar	02°53′1	79°01′5
6	Calle La Magnolia	0,63"	5,52"
Р	Cuenca Occidental 1 Av.	02°54′7,	79°00′5
7	Remigio Crespo	8"	1,7"
Р	Calla Larga 294	02°54′1	78°59′5
8	Calle Larga 284	5,7"	9,9"
Р	Calle Luis Cordero 1650	02°53′2	79°00′0
9	Calle Luis Coldelo 1030	1,69"	7,7"
Р	Mall Del Rio, Av. Felipe Ii, Cruce	02°55′0	79°00′5
10	con Autopista	3,70"	2,07"
Р	Arenal	02°55′3	78°59′4
11	Alenai	9,58"	1,88"
Р	Calle Luis Cordero y Calle Juan	02°53′5	79°00′1
12	Jaramillo	8,80"	4,66"
Р	Cdla Quinta Chica	02°53′0	78°57′3
13	Cuia Quirita Criica	3,63"	0,67"
Р	Simón Bolívar, entre Tarqui y	02°53′3	79°00′2
14	Montalvo	1,44"	1,83"
Р	Av. 10 De Agosto Edificio	02°54′2	79°00′3
15	Pelicano	1,55"	3,01"
Р	España y Ay Suero 254	02°53′4	78°59′4
16	España y Av. Sucre 254	5,14"	7,17"
Р	Mariano Cueva y Gaspar de	02°53′2	78°59′5
17	Sangurima	4,52"	3,45"
Р	Av. Huagraruma y Calle del Toril	02°52′3	78°58′5

18		2,34"	7,7"
Р	Calle Eloy Alfaro, Sector	02°53′5	78°59′1
19	Mercado 12 De Abril	7,50"	4,02"
Р	Sector Las Caleras de la	02°55′2	79°02′4
20	Parroquia Yanuncay	6,58"	1,74"
Р	Calle Miguel de Unamuno y Calle	02°54′4	79°01′1
21	12 de Octubre	3,83"	8,26"
Р	Avenida de las Américas y Calle	02°53′0	79°00′0
22	Luis Cordero Esq.	5"	1"
Р	Parque Hércules, Sector Las	02°51′4	78°59′1
23	Orquídeas	8,2"	6,4"
Р	Calle Ernesto López y Agustín	02°54′0	79°01′4
24	Cuesta	0,8"	4,5"
Р	Av. 10 De Agosto Edif.	02°54′3	79°00′4
25	Oftalmolaser	5,54"	1,64"
Р	Fray Vicente Solano y Remigio	02°54′2	79°00′2
26	Crespo	2,2"	4,3"
Р	Calle Huagrahuma y Av.	02°53′5	78°59′2
27	Guapondelig	5,7 "	4,6"
Р	Eropto al Marcado 27 Do Enbrara	02°54′4	79°00′2
28	Frente al Mercado 27 De Febrero	6,8"	6,7"
Р	Convención Miguel Morocho y	02°53′3	79°01′0,
29	Av. Gran Colombia	2,7"	2"
Р	Calle Herrerías Entre las Acacias	02°54′4	78°59′4
30	y Av. del Arupo	3,3"	2,8"

Р	Calle 13 de Abril, Sector	02°53′4	78°58′4
31	Yanaurco	0,2"	0,5"

Tabla 3.3 Ubicación de la Infraestructura existente de Porta. (Supertel).

La Tabla 3.4 muestra la ubicación de la Infraestructura existente de Alegro.

#	TELECSA (ALEGRO)	Ubicación	
П	TELECOPT (MELCINO)	S	0
Α	Chaullabamba	02°50′5	78°55′3
1	Criadilabarriba	9,39"	2,77"
Α	Cerro Hito Cruz	02°55′4	78°59′4
2	Cerro i iilo Ciuz	8,50"	9,90"
Α	Aeropuerto Rio Palora y Rio	02°53′4	78°59′1
3	Upano	2"	0"
Α	Bellavista Benigno Malo y Rafael	02°53′2	79°00′1
4	Arizaga	6"	6"
Α	Centro Benigno Malo y	02°53′5	79°00′1
5	Presidente Córdova	4"	7"
Α	El Batan Ernesto López Y A.	02°53′5	79°01′5
6	Cuesta	9"	3"
Α	Estadio José M. Rodríguez y	02°54′1	79°00′4
7	Julio Matovelle	7"	6"
Α	Huayna Capac Calle Larga y	02°54′2	78°59′4

8	Huayna Capac	0"	7"
Α	Machangara Sactor Machangara	02°52′5	78°56′5
9	Machangara Sector Machangara	9"	8"
Α	Oro Verde Ordoñez Lazo y Los	02°53′2	79°01′4
10	Cedros	2"	7"
Α	Parque Industrial Sector Quinta	02°53′0	78°58′0
11	Chica	0"	7"
Α	Datamaraa Caatar Datamaraa	02°51′4	78°59′0
12	Patamarca Sector Patamarca	0"	4"
Α	Politácnica, Silban V Cabogan	02°53′0	78°59′1
13	Politécnica, Silban Y Cabogan	2"	2"
Α	Terminal Terrestre Calle del	02°53′2	78°59′3
14	Chorro y Calle Vieja	6"	8"
Α	Yanuncay Santa María y Av.	02°54′5	79°01′5
15	Loja	8"	6"

Tabla 3.4 Ubicación de la Infraestructura existente de Alegro. (Supertel).

Posteriormente se realizara un cálculo que nos permitirá estimar si estos sitios pueden utilizarse para el despliegue de BS, además se debe considerar: Ubicación geográfica, Infraestructura existente, Impacto ambiental. La Figura 3.2 y 3.3 muestra la ubicación de la infraestructura de los

operadores ETAPA EP, Porta, Movistar, Alegro en la ciudad de Cuenca.

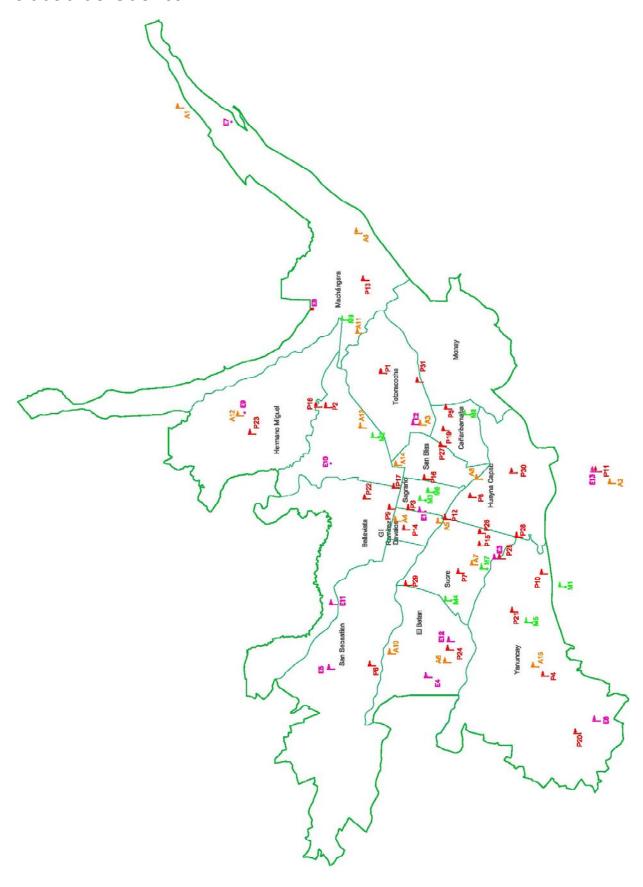


Figura 3.2 Infraestructura existente en la Ciudad de Cuenca. (Supertel 2008).

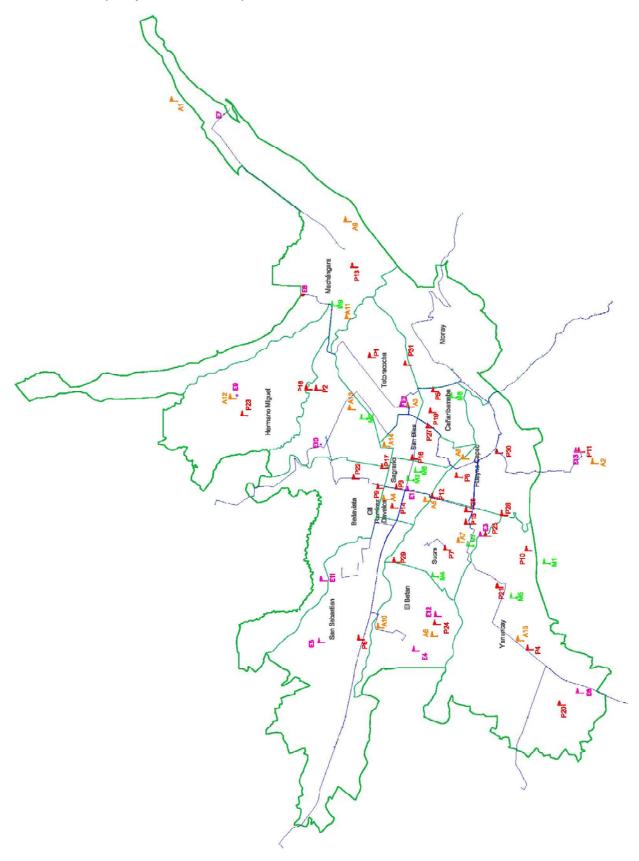


Figura 3.3 Red de Fibra óptica de ETAPA EP en la Ciudad de Cuenca. (ETAPA EP 2008).

3 Marco Regulatorio WiMAX.

Para el dimensionamiento y planeamiento de la red inalámbrica se debe hacer una selección entre las bandas de frecuencia disponibles en las que se debe considerar:

- Frecuencia en la que funcionan los equipos de la tecnología seleccionada.
- Disponibilidad de licencias de espectro.

El escogimiento de la frecuencia a utilizar es importante debido a que limita el alcance y la capacidad de las estaciones base.

Para zonas urbanas y densamente pobladas el número de clientes depende de la capacidad de la BS, mientras que para zonas rurales y escasamente pobladas el número de clientes depende del alcance de la BS.

3.1 Frecuencia en la que funcionan los equipos de la tecnología seleccionada.

Para WiMAX Móvil, el WiMAX Forum en los perfiles iníciales incluyen anchos de banda del canal de 1.25, 5, 10 y 20 MHz para bandas del espectro mundialmente licenciadas como 2.3 GHz, 2.5 GHz, 3.3 GHz y 3.5 GHz. La Tabla 3.5 muestra los perfiles de frecuencia, Duplexión, Tamaño FFT, BW Canal, para WiMAX Móvil.

BW			2,305-			
Canal	Tamañ	2,3 -	2,32/	2,496 -	3,3 -	3,4 -
		2,4	2,345-	2,69	3,4	3,8
MHz	o FFT	GHz	2,36	GHz	GHz	GHz
			GHz			
1,25	128					
5	512	TDD	TDD	TDD	TDD	TDD
10	1024	TDD	TDD	TDD	TDD	TDD
20	2048					

Tabla 3.5 Perfiles para WiMAX Móvil. (WiMAX Forum 2006).

3.2 Disponibilidad de licencias de espectro.

De acuerdo con el Plan Nacional de Frecuencias y de Uso del Espectro Radioeléctrico aprobado el 6 de Marzo del

2008 la banda de 2.3 GHz, 2.5 GHz, 3.3 GHz y 3.5 GHz, contiene las siguientes bandas de frecuencias atribuidas a los servicios de radiocomunicaciones en el Ecuador, la Figura 3.4 muestra el Plan Nacional de Frecuencias.

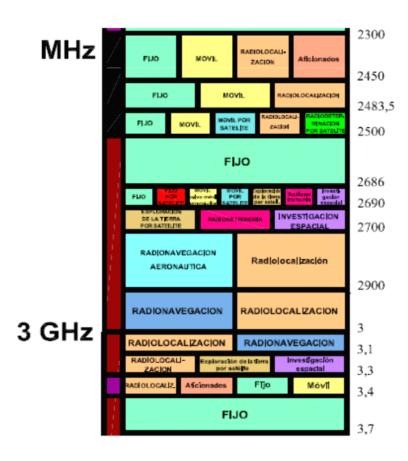


Figura 3.4 Plan Nacional de Frecuencias. (Conatel).

La Tabla 3.6 muestra el Cuadro Nacional de Atribución de Bandas de Frecuencias.

Región 2	Ecuador	
2300-2450	2300-2450	EQA.
Fijo	Fijo	90

Móvil MOD 5384 A	Móvil MOD 5384 A	EQA.
Radio canalización	Radio canalización	140
Aficionados	Aficionados	
5.150 5.582 MOD 5.393 5.396	5.150	
2450-2483,5	2450-2483,5	EQA.
Fijo	Fijo	90
Móvil	Móvil	EQA.
Radio canalización	Radio canalización	140
5.150	5.150	140
2483,5-2500	2483,5-2500	
Fijo	Fijo	
Móvil	Móvil	
Móvil por Satélite (espacio- Tierra) MOD 5.351A	Móvil por Satélite (espacio-Tierra) MOD 5.351A	EQA.
Radio canalización	Radio canalización	140
Radio determinación por	Radio determinación	
satélite	por satélite	
(espacio-Tierra) 5.398	(espacio-Tierra) 5.398	
5.150 5.402	5.150 5.402	
2500-2520	2500-2520	EQA.
Fijo	Fijo	115

Fijo por Satélite (espacio- Tierra) 5.415 Móvil salvo móvil aeronáutico MOD 5.384 A 5.407 MOD 5.414		
2520-2655	2520-2655	
Fijo	Fijo	
Fijo por Satélite (espacio- Tierra) 5.415	MOD 5.384 A	
Móvil salvo móvil		EQA.
aeronáutico MOD 5.384 A		115
Radiodifusión por Satélite		
5.413 MOD 5.416		
5.339 MOD 5.403 5.417C		
5.417D 5.418B 5.418c		
2655-2670	2655-2670	
Fijo	Fijo	
Fijo por Satélite	MOD 5.317A	
(Tierra-espacio) (espacio-	5.149	EQA.
Tierra) MOD 5.347A 5.415		115
Móvil salvo móvil		
aeronáutico MOD 5.384 A		
Radiodifusión por Satélite		
MOD 5.347A 5.413		

MOD 5.416 Exploración de la Tierra por satélite (pasivo) Radioastronomía Investigación espacial (pasivo) 5.149 MOD 5.420 3300-3400 Radio canalización Aficionados Fijo Móvil	3300-3400 Radio canalización Aficionados Fijo Móvil	EQA. 120
5.149	5.149	
3400-3500 Fijo Fijo por Satélite Móvil por Satélite (espacio- Tierra) MOD 5.351A Aficionados Móvil ADD 5.ZZZ Radio canalización 5.433 5.282	3400-3500 Fijo	EQA. 60
3500-3700	3500-3700	EQA.

Fijo	Fijo	60
Fijo por Satélite		
Móvil por Satélite (espacio-		
Tierra) MOD 5.351A		
Móvil salvo móvil		
aeronáutico		
Radio canalización 5.433		

Tabla 3.6 Atribución de bandas de frecuencia. (Senatel 2009).

La Tabla 3.7 muestra el significado de las Notas del Plan Nacional de Frecuencias.

EQA.60	EQA.140
	En las bandas 26,175-27,5 MHz,
	29,7-37,5 MHz, 40,02-40.98 MHz,
	41,015-50 MHz, 72-73 MHz, 74,6-
La Banda 3400-	74,8 MHz, 75,2-76 MHz, 138-144
3700 MHz esta	MHz, 150,05-174 MHz, 247-272 MHz,
utilizada por el	300-328,6 MHz, 387-399,9 MHz, 410-
servicio FIJO para	417,5 MHz, 430-440 MHz, 460-512
la operación de	MHz, 806-824 MHz, 851-869 MHz,
sistemas FWA,	2300-2500 MHz, 4,4-5 GHz, 12,75-
	13,25 GHz, existen segmentos de
	banda para la operación de sistemas
	de uso reservado conforme al Plan

	Militar de Frecuencias.
EQA.90 En las bandas 902-928 MHz, 2400-2483,5 MHz, 5150-5350 MHz y 5470-5725 MHz, también operan sistemas de Modulación Digital de Banda Ancha sin protección contra interferencias perjudiciales.	MOD 5.384A Las bandas 1710-1885 MHz, 2300-2400 MHz y 2500-2690 MHz, o partes de esas bandas, se han identificado para su utilización por las administraciones que deseen introducir las Telecomunicaciones Móviles Internacionales (IMT) de conformidad con la Resolución 223 (Rev.CMR-07). Dicha identificación no excluye su uso por ninguna aplicación de los servicios a los cuales están atribuidas y no implica prioridad alguna en el Reglamento de Radiocomunicaciones.
2686 MHz operan sistemas fijos punto-multipunto	EQA.120 Las Bandas 3300-3400 MHz y 9800 - 1000 MHz, están utilizadas por el servicio Fijo para la operación de enlaces radioeléctricos auxiliares para el servicio de Radiodifusión con emisiones de televisión sin protección

codificada	contra interferencias perjudiciales.
terrestre para el	
servicio FIJO.	

Tabla 3.7 Notas del Plan Nacional de Frecuencias. (Senatel 2009).

Dentro de las reglamentaciones en Telecomunicaciones del país los servicios basados en el estándar IEEE 802.16e-2005 por el momento todavía no se consideran, mientras que los servicios basados en el estándar IEEE 802.16d-2004 se consideran dentro de la banda 3400-3700 MHz para la operación de sistemas de FWA.

La Tabla 3.8 muestra la segmentación de la banda de frecuencia de 3.400-3.700 MHz asignada para sistemas de Acceso Inalámbrico, mediante Resolución 393-18-Conatel-2000, del 28 de septiembre del 2000.

Bloque	Banda (MHz)	Bloque	Banda (MHz)
Α	3400-3425	A'	3500-3525
В	3425-3450	B'	3525-3550
С	3450-3475	C'	3550-3575
D	3475-3500	D'	3575-3600
Е	3600-3625	E'	3650-3675
F	3625-3650	F'	3675-3700

Tabla 3.8 Segmentación de la Banda 3400-3700 MHz. (Senatel).

La banda de 3.400-3.600 MHz ha sido segmentada en bloques de 5 MHz cada uno, con separación entre transmisión y recepción de 100 MHz y de 50 MHz para la banda de 3.600-3.700 MHz.

Los bloques:

- A-A' se adjudicó Andinatel (ahora CNT región Sierra).
- B-B' se adjudicó SETEL.
- C-C' se adjudicó EcuadorTelecom (ahora Telmex).

Mediante oficio SNT-2006-1555 de 14 de noviembre de 2006, la Senatel presenta a consideración del Conatel que existen tres solicitudes para la concesión del bloque de frecuencias D-D', correspondiente a las empresas Pacifictel (ahora CNT EP región Costa), EtapaTelecom S.A. (absorbida por ETAPA EP), y ETAPA (ahora ETAPA EP), la última ha expresado su requerimiento de operar únicamente en el cantón Cuenca.

El Conatel mediante Resolución 601-29-Conatel-2006 de 17 de noviembre de 2006, resolvió:

- Artículo Uno. Disponer a la Senatel proceda a la recanalización del bloque D-D' de la banda FWA, en tres sub-bandas iguales con sus respectivas bandas de guarda.
- Artículo Dos. Aprobar el inicio del proceso de concesión directa para las empresas Pacifictel y EtapaTelecom S.A, en dos de las sub-bandas del bloque D-D' de la banda FWA.
- Artículo Tres. Disponer a la Senatel continúe el proceso de subasta para la sub-banda restante del bloque D-D'; y presente para aprobación del Conatel las bases para el concurso; así como también la valoración respectiva del bloque D-D'.

Mediante Resolución 337-14-Conatel-2008 de 4 de julio de 2008, resolvió:

Artículo Uno. Acoger el informe presentado por la Senatel mediante oficio SNT-2008-0444, de 1 de abril de 2008 y establecer como valores referenciales para la concesión de los bloques de frecuencia E, F, G, H en la banda 3.4-3.7 GHz, como se muestra en la Tabla 3.9.

Bloque	Banda (MHz)	Tipo de Concesión	Banda (MHz)
Е	28.5	Nacional	1'632.457
F, G	28.5	Regional	790.975
Н	28.5	Regional	461.733

Tabla 3.9 Bloques de frecuencia E, F, G, H. (Senatel).

- Artículo Dos. El valor de concesión de la banda D1-D1' es de \$ 602.166 y será concesionada de forma directa por el Conatel a nivel nacional.
- Artículo Tres. El valor de los derechos de concesión de la banda D2-D2' otorgada a favor de Pacifictel mediante resolución 454-59-Conatel-2007, es de \$ 969.975 a nivel nacional.
- Artículo Cuatro. Establecer la banda H de la canalización aprobada para el rango 3600-3700 MHz para ser concesionada a nivel regional.

El carácter de movilidad y frecuencias utilizadas en WiMAX Móvil en términos de regulaciones, se acerca a los servicios, Móvil celular y Móvil avanzado para los cuales se necesita una concesión de frecuencias para no compartir una banda de frecuencia con otros servicios que puedan causar interferencias facilitando la movilidad.

Actualmente en nuestro país se está iniciando con la implementación de sistemas WiMAX Fijo (Grupo TvCable, CNT EP), en términos de regulación la situación de WiMAX Móvil esta algo limitada debido a que no se podría ofrecer movilidad en las bandas mencionadas, pero este estándar aún no está disponible en su versión full movilidad, además proporcionar WiMAX Móvil puede soluciones Fija, Nomádico y Móvil, con lo que hasta que se tenga la full movilidad se podría ofrecer los otros tipos de soluciones hasta que se haga una revisión de las frecuencias disponibles y el estándar IEEE 802.16e-2005 se incluya dentro de las reglamentaciones en Telecomunicaciones en el país.

4 Definición de Servicios de Operación.

La creciente demanda de mayores anchos de banda y conexiones más rápidas ha llevado a que los usuarios busquen empresas que ofrezcan mejores servicios, ante lo cual se pretende brindar servicios de voz, datos y video (IPTV, VoD) en la Ciudad de Cuenca.

El dimensionamiento y diferenciación de servicios de cada uno de los nodos en los que se ubiquen las estaciones base, tiene características propias según el tipo de tráfico

que maneja, número de habitantes y su capacidad económica.

4.1 Mercado de clientes y servicios.

Los servicios de acceso inalámbrico de alta velocidad a la Internet y servicios de valor agregado no están destinados solo a las personas que todavía no cuenten con estos servicios sino también a las personas que ya disponen del mismo pero no se encuentran satisfechas.

Debido a lo cual el número de usuarios potenciales resulta de la diferenciación de clientes tanto en la zona urbana como rural de la ciudad de Cuenca, en la zona rural la implantación de esta tecnología es viable desde el punto de vista de infraestructura pero no de forma comercial debido a que hay muchas personas de escasos recursos, mientras que en la zona urbana es más viable en cuanto a costos.

La Tabla 3.10 muestra los datos poblacionales del cantón Cuenca de acuerdo al último censo realizado por el INEC.

ca Población Área Km² # Parroqu	uias
---------------------------------	------

Urbano	278582	72.41	15
Rural	138637	3017.07	21
Total	417219	3089.48	36

Tabla 3.10 Población Urbano/Rural del cantón Cuenca. (Censo INEC 2001).

En la zona rural muchos de los habitantes son de nivel económico bajo y no cuentan con servicios básicos, esto se refleja en cierto modo en el número de viviendas que tienen electricidad y teléfono, como se muestra en la Tabla 3.11.

Cuen ca	Poblac ión	Personas x vivienda ocupada	Vivienda s con Electricid ad	Viviendas con Teléfono
Urba no	27858	4.06	66601	44087
Rural	13863 7	4.3	29100	7098
Total	41721 9	4.13	96003	51225

Tabla 3.11 Viviendas con Electricidad en el cantón Cuenca. *(Censo INEC 2001)*.

Además se encuentran problemas como:

- Falta de servicios básicos como alimentación eléctrica, agua, servicio telefónico.
- Falta de agua, carreteras, transporte.
- Escasos recursos, actividad económica basada en la agricultura, artesanías, etc.
- Infraestructura social poco o nada desarrollada (salud, educación, etc.)
- Baja densidad poblacional en el área.

En la zona urbana el proyecto resulta más rentable y está destinado a clientes diferenciados de forma residencial, comercial e industrial, debido a lo cual el plan piloto se enfocara en la parte urbana de la ciudad de Cuenca.

Esta diferenciación de zonas urbano y rural permite determinar un posible universo de clientes para el estudio de la tecnología WiMAX Móvil en la ciudad de Cuenca, pero si se pretende implementar se deberá realizar un estudio de Demanda y Mercado detallado acerca de los posibles usuarios, tanto en el aspecto demográfico (nivel económico), como psicográfico (estilo de vida) en la zona que se pretenda dar servicio.

4.1.1 Proyección de usuarios (Voz, Datos y Video).

La Tabla 3.12 muestra una estimación del número de Usuarios Totales, según el número de Población Urbana y el promedio de Personas/Vivienda.

Cuenca	Habitantes
Población Urbana	278582
Promedio de	
Personas/Vivienda	4,06
Usuarios Totales	68.616

Tabla 3.12 Estimación del # de Usuarios Totales. (Censo INEC 2001).

Del total de Usuarios Potenciales en la zona Urbana de la ciudad de Cuenca, se debe realizar la diferenciación de los usuarios que tienen servicios (voz, datos y video) y los que no poseen, además se debería determinar los usuarios que estarían interesados en adquirir algún tipo de servicio Triple Play.

A continuación se muestra un estudio de mercado realizado por la Consultora Advance para la Empresa ETAPA EP, con miras a ofrecer servicios Trile Play en la ciudad de Cuenca, dicho estudio se ejecuto a viviendas de estrato

medio alto y alto de la zona urbana. La Tabla 3.13 detalla el estudio realizando, con un total de 459 encuestas en el que se ha realizado una inferencia para la zona urbana que constituyen un total de 36206 viviendas, con un nivel de confianza del 95% y un nivel de error del 5%. (Carrillo 2008).

	Límite Inferior	Promed io	Límite Superior							
Internet Banda Ancha										
Tiene el servicio	3536	4641	5747							
no tiene pero si le conoce	27463	28790	30118							
no tiene y tampoco le conoce	1809	2675	3540							
Tele	visión Pagad	la								
Tiene el servicio	11547	13137	14426							
no tiene pero si le conoce	20816	22419	24024							
no tiene y tampoco le conoce	146	551	955							
V	oz sobre IP									
Tiene el servicio	8	622	315							
no tiene pero si le conoce	10859	12429	13998							

no tiene y tampoco le	21784	23363	24941
conoce			

Tabla 3.13 Usuarios proyectados. (Carrillo 2008).

La Tabla 3.14 muestra las personas que no tienen el servicio pero si lo conocen y se hace la diferenciación de: los que adquirieran definidamente el servicio, lo considerarían adquirir o definitivamente no lo compraría.

	Defin	nıtıvan	nente	Co	nsider	aria	Definitivamente		
	CC	ompra	ría	C	ompra	rla	no compraría		
	Lími te Infe rior	Pro medi o	Limit e Sup erior	Lím ite Infe rior	Pro medi o	Limit e Sup erior	Lím ite Infe rior	Pro medi o	Limi te Sup erio r
		In	iternet	Ban	da And	cha			
no tiene pero si le	397 4	497 2	5957	151 86	164 94	178 02	492 6	599 8	707

Definitivementa Canaiderería Definitivementa

conoce											
Televisión Pagada											
no tiene pero si le conoce	179 7	243 5	3073	111 55	121 75	131 95	642	738 3	834 6		
			Voz	z sob	re IP						
no tiene pero si le conoce	504	777	1050	373 8	427 3	480 8	612	668	724 1		

Tabla 3.14 Usuarios Potenciales. (Carrillo 2008).

El Ecuador de acuerdo a la información proporcionada por la Supertel el internet tiene una penetración del 11.8%, mientras que los servicios de IPTV y VoD todavía no son ofertados por un operador, lo que se tiene son sistemas de televisión abierta y televisión por suscripción que poseen una penetración del 7.5%; el mercado de Telefonía es un mercado cautivo por las Operadoras Fijas y Móviles que prestan sus servicios en la ciudad de Cuenca, ante esto se realizo la consideración de que el servicio de Telefonía es adicional al servicio de Internet.

La Tasa de crecimiento poblacional según el INEC es: Nacional 2.10%, área urbana 3.00%, área rural 0.85%. (Censo INEC 2001).

La Tabla 3.15 muestra los usuarios proyectados según la tasa de crecimiento poblacional para el área urbana, en un tiempo de diez años; para el valor correspondiente al primer año se consideran los datos promedio de los usuarios que no tienen el servicio pero si le conocen descritos en la Tabla 3.13.

Usuario		Periodos en Años										
s Proyect ados	0	1	2	3	4	5	6	7	8	9	10	
Servicio Internet / Telefoní a		28. 790	29. 654		31. 460						37. 564	
Servicio Video (IPTV/V oD)		22. 419		23. 784	24. 498			26. 769				

Tabla 3.15 Usuarios proyectados según el tipo de Servicio. (Bacuilima Z. 2009).

La Tabla 3.16 muestra el Total de usuarios objetivo para el servicio de Internet/Telefonía; en el año de inicio se cuenta con el número de usuarios que contratarían el servicio según lo descrito en la Tabla 3.14, y para los siguientes años se considera un índice de penetración del 11.8% anual determinado por la Supertel.

uenca		Periodos en Años									
ernet/Telefonía	0	1	2	3	4	5	6	7	8	9	1
uarios ernet/Telefonía tenciales		4972	3499	3604	3712	3824	3938	4056	4178	4303	44
al usuarios ernet/Telefonía		4972	8471	12075	15787	19611	23549	27606	31784	36087	405

Tabla 3.16 Usuarios de Internet/Telefonía. (Bacuilima Z. 2009).

La Tabla 3.17 muestra el Total de usuarios objetivo para el servicio de Video (IPTV/VoD); en el año de inicio se cuenta con el número de usuarios que contratarían el servicio según lo descrito en la Tabla 3.14, y para los siguientes años se considera un índice de penetración del 7,5% anual determinado por la Supertel.

Cuenca			Periodos en Años									
Video	0	1	2	3	4	5	6	7	8	9	10	

(IPTV/VoD)										
Usuarios VoD Potenciales	2435	2725	2807	2891	2977	3067	3159	3254	3351	3452
Total usuarios VoD	2435	5160	7966	10857	13835	16901	20060	23314	26665	30117

Tabla 3.17 Usuarios Video (IPTV/VoD). (Bacuilima Z. 2009).

4.2 Dimensionamiento del Ancho de Banda según el tipo de Servicio.

4.2.1 Dimensionamiento del Ancho de Banda de Internet/Telefonía.

Del Total de usuarios de Internet/Telefonía descritos en la Tabla 3.16 se hace la diferenciación de tres tipos de planes banda ancha (256/128 kbps, 512/256 Kbps, 1024/512 Kbps), con dos tipos de factor de compartición 1-1 y 1-4.

La Tabla 3.18 muestra según sondeo de percepción sobre aspectos técnicos relacionados con el acceso a la Internet, el Fin principal ó mayoritario al acceder a la internet. (INEC 2009).

Fin de Acceso a Internet	%
--------------------------	---

Educación y Aprendizaje	40,10%
Comunicación en general	23,90%
Obtener información	23,40%
Por razones de Trabajo	7,30%
Otros	5,30%
	100,00%

Tabla 3.18 Fin principal de acceso a la Internet. (INEC 2009).

De esta segmentación se hace la consideración de que el porcentaje de usuarios que usan el internet para: Razones de Trabajo y Otros, son usuarios con un factor de compartición 1-1, mientras que los que utilizan para: Educación y Aprendizaje, Comunicación en General y Obtener Información son clientes con un factor de compartición 4-1, la Tabla 3.19 muestra la estimación del porcentaje de clientes según el factor de compartición.

factor de	
compartición 1 –	12,60%
1	
factor de	
compartición 4 –	87,40%
1	

Tabla 3.19 Diferenciación de usuarios según el factor de compartición. (Bacuilima Z. 2009).

Para la estimación del porcentaje de usuarios según los planes banda ancha propuestos se realizo la comparación en cuanto a precios, donde se utilizo tres tipos de factores de comparación 0.5, 1 y 2, es decir a mayor ancho de banda contratado por el usuario le corresponde un mayor precio; se realiza la consideración que para un usuario con un plan de 256/128 Kbps tendría mayor impacto en su economía el contratar un plan de 1024/512 Kbps (factor 2) que un plan de 512/256 Kbps (factor 1), mientras que para un usuario que tenga un plan de 1024/512 Kbps no tendría mayor impacto en su economía el contratar un plan 512/256 Kbps (factor 0,5) ó 256/128 Kbps (factor 0,5), la Tabla 3.20 muestra la estimación del porcentaje de clientes según el plan contratado.

	256/128	512/256	1024/512	Sum	%
	Kbps	Kbps	Kbps	а	70
256/128		1	2	3	55
Kbps		l	_		
512/256	0,5		1	1,5	27
Kbps	0,0		l	1,0	<i>_</i> 1
1024/512	0,5	0,5		1	18

Kbps			
		5,5	10
		0,0	0

Tabla 3.20 Diferenciación de usuarios según el plan contratado. (Bacuilima Z. 2009).

La Tabla 3.21 muestra el ancho de banda requerido para Internet, donde se considera que del total de usuarios para el servicio de Internet/Telefonía en el primer año descritos en la Tabla 3.16, se hace la segmentación del % factor de compartición y del % plan explicados en la Tabla 3.19 y Tabla 3.20 respectivamente.

Plan	% factor de	%	usuarios	Mbps
i idii	compartición	plan	(1año)	efectivos
256 Kbps	12,60% (1 - 1)	55%	341,712	87,5
20011000	87,40% (4 - 1)	0070	2370,288	151,7
Total 256				239,2
Kbps				200,2
512 Kbps	12,60% (1 - 1)	27%	170,856	87,5
	87,40% (4 - 1)		1185,144	151,7
Total 512				239,2
Kbps				200,2
1024 Kbps	12,60% (1 - 1)	18%	113,904	116,6

	87,40% (4 - 1)	790,096	202,3
Total 1024			318,9
Kbps			010,0
Total		4972	797

Tabla 3.21 Dimensionamiento del Ancho de Banda de Internet. (Bacuilima Z. 2009).

La Tabla 3.22 muestra el ancho de banda requerido en el período de análisis.

		Per									en	Ar	ios							
	•	1 2 3 4						1	5			6 7		7 8		3	9		10	
	ario	S	ario	S	ario	S	ario	ک م	ario	S ofoo	ario	S	ario	S	ario	S	ario	C Ofoo	ario	S ofoc
25 6 Kb ps	345	28	285	149	088	212	1085	278	1348	345	1618	414	1897	486	2184	699	2480	989	2785	713
	20	13	40 38	23 8	37 57	၁0 စ	9 <i>0</i>	40 2	95	၁၅ A	22	۱۱	16	04 ე	15	97 0	20	0.1	31	12 36
To tal 25 6		239		408		581		129		943		1133		1328		1529		1736		1949
51 2 Kb ps	171	87	291	149	415	212	543	278	674	345	808	414	946	486	1092	229	1240	635	1392	713
	30	6 61	07	8 67	07	oc	29 10	40 0	0 4 0	နင	20	0	CO	64 40	92	76	00	11	90	9E

To tal 51		239		408		581		759		943		1133		1328		1529		1736		1949
10 24 Kb ps	114	117	194	199	277	283	362	370	449	460	539	552	632	648	728	746	827	847	928	951
	D C	207	င ၁	ე4 გ) 0 0	4 6 7	67	04 ე	ا ک 16	ρ (70	ငန ငန	0,4 7,α	1-1	30 51	7 I	37 35	t ០	94 30	Ω 7 7
To tal 10 24		319		543		277		1013		1258		1510		1771		2039		2315		2599
To tal	1 0 0 0	رع م	04 7.1	ا 2	07	। ५८	78	20	61	ا ک 15	54	37 76	09	44 27	78	20	08	07	52	04 07

Tabla 3.22 Dimensionamiento de Internet para el periodo análisis. (Bacuilima Z. 2009).

En el Capitulo 3, numeral 4.1.1 se hizo la consideración que el servicio de Telefonía se considera adicional al servicio de Internet, por lo tanto del Total de usuarios de Internet/Telefonía descritos en la Tabla 3.16, se realiza el dimensionamiento del ancho de banda necesario para poder transmitir llamadas de voz, por lo tanto el tráfico generado por usuario se obtiene mediante la ecuación 14.

$$A = c \times t/h$$

ecuación 14

Donde *A* es el tráfico generado, *c* es el número de llamadas realizadas, *t* es la duración de la llamada y *h* es el tiempo transcurrido entre 2 llamadas a considerarse. En la Tabla 3.19 se realizo la estimación del porcentaje de clientes según el factor de compartición, donde se considero un 12.60% para usos de Razones de Trabajo, Otros y 87.40% Educación y Aprendizaje, Comunicación en General y Obtener Información.

De esta diferenciación se asume que el 87.40% y el 12.60% corresponden a usuarios: Residenciales y Corporativos (Comercial/Industrial) respectivamente, como se indica en la Tabla 3.23.

		Periodos en Años										
		1	2	3	4	5	6	7	8	9	10	
Corporativ	12,60	62	10	152	198	247	296	347	400	454	510	
os	%	6	67	1	9	1	7	8	5	7	6	
Residenci	87,40	43	74	105	137	171	205	241	277	315	354	
ales	%	46	04	54	98	40	82	28	79	40	15	
	100	49	84	120	157	196	235	276	317	360	405	
Total	%	72	71	75	87	11	49	06	84	87	20	

Tabla 3.23 Diferenciación de usuarios según el tipo de uso Corporativos y Residenciales. (*Bacuilima Z. 2009*).

De manera que si un usuario residencial realiza una llamada cada hora con una duración de 4.2 minutos promedio, entonces el tráfico que genera es de 70 mE,

para un usuario comercial se considera que generará el doble de tráfico y que un usuario industrial 4 veces este tráfico. Entonces el tráfico total en Erlangs, generado por la población resulta del tráfico generado de un usuario por el número de usuarios totales, de la ecuación 15 de Erlang B se obtiene el número de canales necesarios para cursar estas llamadas con una probabilidad de bloqueo ó pérdida de llamadas B del 1%.

$$B(N,A) = \frac{A^{N}/N!}{\sum_{i=0}^{N} A^{i}/i!}$$

ecuación 15

Donde *A* es el tráfico total generado por los usuarios (Residencial, Corporativos), *N* es el número de canales analógicos y *B* la probabilidad de bloqueo ó de pérdida de una llamada.

Se debe considerar el tipo de códec que se utilizara, los más empleados para VoIP son el G711, G723.1, G729, de estos cuando mayor es la compresión la calidad es menor, la Tabla 3.24 muestra diferentes tipos de Codecs. (ITU 2009).

	Bit	Frecue	Duraci	МО	
Códec	rate	ncia de	ón		Aplicación
	(Kb/s	Muestr	muest	S	

)	eo (KHz)	ras/ trama s (ms)		
G.711 (PCM)	64	8	0.125	4.4	Telefonía
G.721 (ADPCM)	32	8	0.125	4.2	Telefonía
G.722 (SB- ADPCM)	48/56 /64	16	0.250		Videoconferenc ia
G.723.1 (MP-MLQ)	6.3	8	30	3.9	Telefonía/Intern et
G.723.1 (ACELP)	5.3		30	3.6	Telefonía/Intern et
G.728 (LD- CELP)	16	8	0.625	4.2	Telefonía/Video conferencia
G.729 (CS- ACELP)	8	8	10	4.1	Telefonía

Tabla 3.24 Codecs según la ITU. (ITU 2009).

La Tabla 3.25 muestra el ancho de banda requerido para Telefonía en el primer año, para un tráfico 480 Erlangs y una probabilidad de pérdida de llamadas *B*, del 1% según Erlang B son necesarios 507 canales, si consideramos el

códec de voz MP-MLQ, G.723.1, haría falta 6.3 Kb/s para cada una de las llamadas antes mencionadas.

			F	Period	o en Añ	os	
					1		
VOZ	%	usua rios	Tráfic o por usuar io (Erla ngs)	Tráfi co TOT AL (Erla ngs)	Canal es para el volum en de tráfico con p=1%	Tasa de bits con el códec MP- MLQ, G.723.	Anch o de Band a Total (Mbp s)
Residencial	87,4 0%	434 6	0,07	304			
Comercial/I ndustrial	12,6 0%	626	0,28	175			
Total				480	507	6300	3,19 41

Tabla 3.25 Dimensionamiento del Ancho de Banda de Voz. (Bacuilima Z. 2009).

La Tabla 3.26 muestra el ancho de banda requerido para Telefonía para el resto del período de análisis.

			Periodos en Años																		
		1		2		3		4		5		6		7		8		9		1	
VOZ	%	S	bs	S	sd	S	sd	S	sd	S	sd	S	bs	S	sd	S	sd	S	bs	S	bs
Reside ncial	4	9		4		54		98		40		82		28		6/		40		15	
Corpor ativos	9	9		/9		17.		68		L)		/9		8/		90		47		90	
Total	100	2	41	_	98	ç <i>)</i>	68	/8	9/	11	96	49	837	90	344	84	/09	/8	593	20	401

Tabla 3.26 Dimensionamiento del Ancho de Banda de Telefonía para el periodo de análisis. (Bacuilima Z. 2009).

La Tabla 3.27 muestra la estimación Total del Ancho de Banda necesario para brindar Internet/Telefonía.

				Р	erio	dos	en Ai	ños			
	0	1	2	3	4	5	6	7	8	9	10
Total Internet (Mbps)		79 7	13 58	19 36		31 45	377 6		50 97	57 87	64 97
Total Telefonía (Mbps)		3	5	8	10	12	14	17	19	22	25
Total Internet / Telefonía (Mbps)		80	13 64	19 44	25 41	31 57	379 1	44 44	51 16	58 09	65 22

Tabla 3.27 Dimensionamiento del Ancho de Banda de Internet/Telefonía. (Bacuilima Z. 2009).

4.2.2 Dimensionamiento del Ancho de Banda de Video (IPTV, VoD).

Para los usuarios de Video con el servicio de IPTV, se realizo la consideración de que el Headend debería transmitir ó difundir todos los canales de video que brinda, a una red con capacidad multicast, por tanto se debería considerar el número de canales disponibles y en el peor de los casos si existe al menos un televidente en cada canal de televisión el ancho de banda necesario sería el producto del ancho de banda de cada canal por el número de canales disponibles.

La mayoría de proveedores de televisión pagada ofrecen tres tipos de planes servicio: Básico, Premium y Súper Premium, los cuales están relacionados con el número de canales que ofrecen en cada plan.

La Tabla 3.28 muestra los porcentajes de distribución entre cada uno de los planes y los canales que se ofrecen en cada uno de ellos, obtenidos en forma ponderada de

acuerdo a la participación del mercado que tiene cada proveedor. (Carrillo 2008).

Plan	Distribución	# de canales
Básico	42%	26
Premium	43%	51
Súper Premium	15%	61

Tabla 3.28 Distribución de Planes y número de canales ofrecidos. (Carrillo 2008).

La Tabla 3.29 y 3.30 muestran las tasas de bits mínimas requeridas para señales de video y audio según el estándar de codificación utilizado.

Señal Video	MPEG-2 (Mbps)	MPEG-4 (Mbps)
Broadcast-SD	2,5	1,75
VoD - SD	3,18	2,1
Broadcast - HD	15	10

Tabla 3.29 Tasa de bit mínima para señal de video SD y HD. (Carrillo 2008).

Señal	MPEG layer	Dolby Digital	ACC	MP3
Audio	2 (Kbps)	(Kbps)	(Kbps)	(Kbps)
Stereo	128	128	96	128

Audio	39/	
5.1	304	

Tabla 3.30 Tasa de bit mínima para señal de audio. (Carrillo 2008).

A las tasas de bits indicadas en las Tablas 3.29 y 3.30 se debe adicionar los bits de las cabeceras, según las tecnologías utilizadas en el transporte. La Tabla 3.31 muestra las consideraciones para calcular el ancho de banda necesario para IPTV; se considero el códec de VIDEO Broadcast-SD / MPEG-4 (2.5 Mbps por flujo de video), el códec de AUDIO Stereo MP3 (128 Kbps), debido a que en nuestro medio no se manejan aún canales de video de alta definición y de audio 5.1.

La oferta internacional de contenido de canales de televisión está por el orden de los 60 canales de video y 20 de audio (Carrillo 2008). Para el dimensionamiento se considero el caso más crítico, donde todos los canales de video y audio son requeridos.

IPTV	Número de	MPEG-2	MPEG-4
IFIV	Canales	(Mbps)	(Mbps)
VIDEO Broadcast-SD	60	150,00	105,00

AUDIO Stereo	20	2,56	2,56
Total IPTV		152,56	107,56

Tabla 3.31 Dimensionamiento del Ancho de Banda de IPTV. (Bacuilima Z. 2009).

Los tipos de servicio para VoD son los siguientes: PPV, Q-VoD, N-VoD, T-VoD, siendo los de menor complejidad, los servicios PPV, mientras que los servicios T-VoD los más difíciles, debido a que el usuario puede solicitar un contenido multimedia en cualquier momento y no depende de programaciones establecidas por el operador.

A continuación se presentan algunos criterios que nos permiten determinar de una forma adecuada y no tan compleja la forma de distribución de tráfico de video dentro la red, por ejemplo podríamos citar:

- Clientes potenciales del servicio dada su condición económica.
- Patrones de acceso de usuarios debido que no son uniformes durante las 24 horas.
- % de usuarios que requieren el servicio de video en forma simultánea a la hora de máximo tráfico.

- Zonificación donde se encuentran los clientes para ubicar los nodos de conmutación y estructura de interconexión de los servidores de video, con el fin de minimizar el congestionamiento en los trayectos a los servidores.
- Nivel de interactividad con el usuario.
- Despliegue de la información al usuario.

La Tabla 3.32 muestra las consideraciones para calcular el ancho de banda para VoD; se considero el códec de VIDEO-SD MPEG-4 y el códec de AUDIO Stereo MP3.

	MPEG-2 (Mbps)	MPEG-4 (Mbps)
VoD - SD	3,18	2,1
Audio Stereo	0,128	0,128
Total por usuario	3,308	2,228

Tabla 3.32 Tasa de bit mínima para señal de VoD. (Bacuilima Z. 2009).

La Tabla 3.33 considera que del total de usuarios para el servicio de VoD descritos en la Tabla 3.17, cada usuario escoja una película diferente al mismo tiempo, de manera que el ancho de banda necesario para la transmisión de las películas depende del número de usuarios conectados simultáneamente.

	Periodos en Años											
VoD		1	2	3	4	5	6	7	8	9	1 0	
Usuarios Potenciales Totales		243 5	01 C	06 <i>/</i>	108	138 35	109	200	233	200 65	301 17	
Total VoD (Mbps)		245 5	1.14 06	111	241 90	308	978	440	81C	394 00	1/0 00	

Tabla 3.33 Dimensionamiento del Ancho de Banda de VoD, considerando los usuarios totales. (Bacuilima Z. 2009).

La falta de control en nuestro País en lo que se refiere a la piratearía de películas y las grandes capacidades en el backbone que necesita el servicio de VoD, determina que la introducción de este servicio no resulte conveniente, a pesar de no ser exacto y para efectos de dimensionado se asume una concurrencia pico del 5% del total de usuarios potenciales descritos en la Tabla 3.33.

La Tabla 3.34 muestra el ancho de banda necesario para el 5% de solicitudes simultáneas de videos.

VoD		Periodos en Años									
עטע	0	1	2	3	4	5	6	7	8	9	10
5 % de los											
Usuarios		12	25	39	54	69	84	10	11	13	15
Potenciales		2	8	8	3	2	5	03	66	33	06
Totales											
Total VoD		27	57	88	12	15	18	22	25	29	33
(Mbps)		1	5	7	09	41	83	35	97	70	55

Tabla 3.34 Dimensionamiento del Ancho de Banda de VoD, considerando el 5% de los usuarios totales. (Bacuilima Z. 2009).

La Tabla 3.35 muestra la estimación Total del Ancho de Banda necesario para poder brindar servicios de Video (IPTV, VoD).

		Periodos en Años									
	0	1	2	3	4	5	6	7	8	9	10
Total IPTV		10	10	10	10	10	10	10	10	10	10
(Mbps)		8	8	8	8	8	8	8	8	8	8
Total VoD		27	57	88	12	15	18	22	25	29	33
(Mbps)		1	5	7	09	41	83	35	97	70	55
Total IPTV/VoD		37	68	99	13	16	19	23	27	30	34
(Mbps)		9	2	5	17	49	90	42	05	78	63

Tabla 3.35 Dimensionamiento del Ancho de Banda de IPTV/VoD. (Bacuilima Z. 2009).

4.2.3 Dimensionamiento del Ancho de Banda de Internet/Telefonía y Video (IPTV, VoD).

La Tabla 3.36 muestra la estimación Total del Ancho de Banda necesario para poder brindar servicios de Internet/Telefonía y Video (IPTV, VoD).

Periodos en Años	
------------------	--

	0	1	2	3	4	5	6	7	8	9	10
Total											
Internet /											
Telefonía		80	13	19	25	31	37	44	51	58	65
(Mbps)		0	64	44	41	57	91	44	16	09	22
Total											
IPTV/VoD		37	68	99	13	16	19	23	27	30	34
(Mbps)		9	2	5	17	49	90	42	05	78	63
TOTAL		11	20	29	38	48	57	67	78	88	99
(Mbps)		79	46	39	58	05	81	86	21	87	85

Tabla 3.36 Ancho de Banda Total de Internet/Telefonía y Video (IPTV, VoD). (Bacuilima Z. 2009).

5 Análisis de Propagación.

5.1 Análisis de Cobertura.

Para enlaces con línea de vista LOS, los obstáculos deben encontrarse fuera de los 0.6 de la primera zona de despeje de Fresnel, este valor compensa la atenuación producida por las zonas de ganancia y atenuaciones sucesivas; depende de la frecuencia de operación y de la distancia entre Tx y Rx.

Mientras que en un enlace NLOS, las señales que viajan desde el Tx al Rx, no siempre se encuentran libres de obstáculos y se propagan mediante reflexiones,

difracciones y dispersiones, presentándose varios tipos de interferencias aleatorias.

Estas señales poseen componentes del camino directo, caminos reflejados múltiples, energía de dispersión y caminos de propagación por difracción, además tienen distintos retardos, atenuaciones, polarizaciones relativos al camino directo.

Ante esto no es posible efectuar un cálculo directo en forma analítica, de las pérdidas de propagación por lo tanto basándose en mediciones de campo, se generan "modelos de propagación" empíricos que se adaptan a diferentes parámetros de frecuencia, condiciones de terreno, altura de antenas, etc., descritos en el Capítulo 2, numeral 9 Modelos de propagación NLOS.

La ecuación 16 del balance energético, permite determinar las pérdidas de propagación entre transmisor y receptor; se consideran todos los equipos que afectan a la potencia del sistema, ya sean antenas, transmisores, receptores, cables etc, en un sistema de comunicaciones.

$$L = P_{Trans} + G_{Beamforning} + G_{STC} + G_{antenaTran} - P_{erdmiscelaneaTrans} - M \arg e n_{interf} - P_{erd, penetracio} + G_{subcanaliacion} + G_{MRC} - P_{erd, miscelaneaTrans} - S$$

$$ecuación 16$$

Donde:

- L(dB): Pérdidas de Propagación.
- Potencia _{Trans.} (dBm): Potencia nominal de Transmisión.
- *G*. Beamforming (dB): Ganancia de antena por Beamforming en el Tx.
- *G*._{STC} (*dB*): Ganancia por Codificación espacio-tiempo en el Tx.
- G. antena Trans. (dBi): Ganancia de la antena de transmisión.
- *Perd._{Misceláneas Trans. (dB):* Pérdidas misceláneas en el Tx por (cableado, conectores, etc).}
- Margen Interf. (dBm): Margen de interferencia.
- *Perd. Penetración (dB):* Pérdida promedio de la señal microonda al atravesar un objeto.
- G. Subcanalización (dBm): Ganancia de subcanalización.
- *G*._{MRC} (*dB*): Ganancia por Combinación tasa máxima en el Rx.
- *Perd*. *Misceláneas Recep*. *(dB)*: Pérdidas misceláneas en Rx por (cableado, conectores, etc.).
- S (dB): Sensibilidad.

El WiMAX Forum recomienda considerar un margen de interferencia de 1,5 dB y 10 dB de pérdidas de Penetración indoor, estas representan la perdida promedio que sufre la señal de microonda al atravesar un objeto (paredes, ventanas o techos), para llegar al abonado. (Jeffrey G. Andrews 2007).

5.2 Calculo de Cobertura.

Los modelos de propagación y el balance energético, permiten estimar el porcentaje de área donde la potencia de señal es suficiente para producir una comunicación aceptable.

La Tabla 3.37 muestra las especificaciones que se van a utilizar para el cálculo del Path Loss.

Frecuencia central	33	М
de la Banda	75	Hz
Ancho de Banda		М
de Canal	5	Hz
Altura BS hb	30	m
	1,	
Altura MS hm	5	m

Downlink		
BS		
Potencia		dB
Transmisión	35	m
Ganancia	6	dB

Opillik		
MS		
Potencia		dB
Transmisión	25	m
Ganancia	0	dB

Beamforming			Beamforming		
Ganancia STC	4	dB	Ganancia STC	0	dB
Ganancia			Ganancia		
subcanalización	0	dB	subcanalización	12	dB
Perdidas			Perdidas		
misceláneas Tx			misceláneas Tx		
(por cableado,			(por cableado,		
conectores,			conectores,		
inserción, equipos			inserción, equipos		
etc.)	-3	dB	etc.)	0	dB
		dB			dB
Ganancia antena	18	i	Ganancia antena	0	i
Enlace			Enlace		
	-			-	
Margen de	1,		Margen de	1,	
Interferencia	5	dB	Interferencia	5	dB
Perdidas por			Perdidas por		
penetración en los	-		penetración en los	-	
edificios.	10	dB	edificios.	10	dB
MS			BS		
				-	
	-			10	
Sensibilidad	98	dB	Sensibilidad	0	dB
Perdidas	0	dB	Perdidas	-3	dB

misceláneas Rx			misceláneas Rx		
(por cableado,			(por cableado,		
inserción, equipos			inserción, equipos		
etc.)			etc.)		
		dB			dB
Ganancia antena	0	i	Ganancia antena	18	i
Ganancia MRC	0	dB	Ganancia MRC	5	dB

Tabla 3.37 Especificaciones para el cálculo de cobertura WiMAX Móvil. (Bacuilima Z. 2009).

La Tabla 3.38 muestra los resultados obtenidos al remplazar los valores de la Tabla 3.37 en la ecuación 16, esto nos permite determinar las perdidas del enlace para downlink y uplink.

	Downlink	Uplink
Path Loss	146,50	145,80

Tabla 3.38 Path Loss WiMAX Móvil. (Bacuilima Z. 2009).

5.2.1 Calculo de Cobertura utilizando el modelo de propagación IEEE 802.16 SUI.

En el Capítulo 2 numeral 9.1 se hizo referencia al Modelo de propagación IEEE 802.16 SUI, que está compuesto del path loss promedio y el margen de desvanecimiento

(término), que está en función del tipo de terreno seleccionado y el porcentaje de probabilidad de cobertura como se muestra en la Tabla 2.9.

La Tabla 3.39 muestra los valores de a, b, c, los que son escogidos de acuerdo a la categoría del ambiente designado por A, B y C.

constante	Categoría	Categoría	Categoría
Constante	Α	В	С
а	4,6	4	3,6
b	0,0075	0,0065	0,005
С	12,6	17,1	20
S	13,584	12,303	10,509

Tabla 3.39 Constantes del Modelo IEEE 802.16. (WiMAX Forum).

De la ecuación 1 se despeja la distancia de cobertura d.

$$d = do \cdot 10^{\left(\frac{L - A - xf - xh - s}{10\gamma}\right)}$$

ecuación 17

Donde

- *L(dB)*: Pérdidas de Propagación calculado en la Tabla 3.38.
- A, xf, xh, γ: Términos descritos en el Capítulo 2 numeral
 9.1.

- *s*(*dB*): Termino calculado en la Tabla 2.9 para una probabilidad de cobertura de 90%.
- *do(m):* Valor constante (do=100m), determinado por IEEE 802.16 SUI.

La Tabla 3.40 muestra los resultados obtenidos al remplazar los valores de la Tabla 3.37, en las ecuaciones 2, 3, 4, 5 ó 6.

	Categoría A	Categoría B	Categoría C
Α		83,007	
Υ	4,795	4,375	4,117
Xf		1,363	
Xh	1,349	1,349	2,499

Tabla 3.40 Variables del Modelo IEEE 802.26 SUI. (Bacuilima Z. 2009).

La Tabla 3.41 muestra los resultados obtenidos de la ecuación 17 (distancia de cobertura que tendrá cada estación base), al remplazar los valores de la Tabla 3.40.

	Downlink				
	Categor Categor Categor				
	ía A	ía B	ía C		
d(m	964,42	1282,4	1560,4		

Uplink					
Categor Categor					
ía A	ía B	ía C			
932,75	1236,3	1500,9			

)	9	83	42	0	87	03
d(K						
m)	0,964	1,282	1,560	0,933	1,236	1,501

Tabla 3.41 Radio de cobertura calculado con el modelo de propagación IEEE 802.16 SUI. (Bacuilima Z. 2009).

La Tabla 3.42 muestra el área de cobertura de la celda hexagonal, que tendrá cada estación base, este valor se calcula de la ecuación 18.

Area
$$_{celda} = 3 \cdot \sqrt{3} \cdot d^{2} / 2$$

ecuación 18

	Downlink			Uplink		
	Catego	Catego	Catego	Catego	Catego	Catego
	ría A	ría B	ría C	ría A	ría B	ría C
A _{celda} (
Km ²)	2,417	4,273	6,326	2,260	3,972	5,853

Tabla 3.42 Área de cobertura por celda calculada IEEE 802.26 SUI. (Bacuilima Z. 2009).

La Tabla 3.43 muestra el número de estaciones base calculado para el Área urbana ciudad de Cuenca (72.41 Km²), este valor se calcula de la ecuación 19.

$$\#BS = \frac{Area_{servir}}{Area_{celda}}$$

ecuación 19

	Downlink		
	Categ Categ Cate		
	oría A	oría B	oría C
# Estaciones	29,96	16,94	11,44
Base (BS)	4	5	6

Uplink				
Categ	Categ	Categ		
oría A	oría B	oría C		
32,03	18,23	12,37		
4	2	2		

Tabla 3.43 # Estaciones Base calculado con el modelo de propagación IEEE 802.26 SUI. (Bacuilima Z. 2009).

Se considero a la ciudad de Cuenca como categoría B (Densidad de árboles moderada), según el modelo de propagación IEEE 802.16 SUI, además el enlace uplink es un limitante en la distancia a cubrir debido a que la potencia del transmisor de la MS es menor que la BS.

5.2.2 Calculo de Cobertura utilizando el modelo de propagación COST 231-Hata.

En el Capítulo 2 numeral 9.2 se hizo referencia al Modelo de propagación COST 231-Hata, de la ecuación 11 se despeja la distancia de cobertura d.

$$d - 10^{\left[\frac{L+13.82\log(h_b) + a(h_m) - 46.3 - 33.9\log(f) - C_M}{44.9 - 6.55\log(h_b)}\right]}$$

ecuación 20

La Tabla 3.44 muestra los resultados obtenidos al remplazar los valores de la Tabla 3.37, en la ecuación 12 y 13.

	Downlink		
	zonas	zonas	
	urbanas	suburbanas	
a (hm)	- 0,00091	0,12046	

U	plink
zonas	zonas
urbanas	suburbanas
- 0,00091	0,12046

Tabla 3.44 Variables del Modelo Cost 231-Hata. (Bacuilima Z. 2009).

La Tabla 3.45 muestra los resultados obtenidos de la ecuación 20 (distancia de cobertura que tendrá cada estación base), al remplazar los valores de la Tabla 3.37.

	Downlink						
	zonas	zonas					
	urbanas	suburbanas					
d(K m)	1,687	2,069					

Uplink						
zonas	zonas					
urbanas	suburbanas					
1,612	1,977					

Tabla 3.45 Radio de cobertura calculado con el modelo de propagación Cost 231-Hata. (Bacuilima Z. 2009).

La Tabla 3.46 muestra el área de cobertura de la celda hexagonal, que tendrá cada estación base, este valor se calcula de la ecuación 18.

	Do	wnlink	Uplink			
	zonas zonas		zonas	zonas		
	urbanas	suburbanas	urbanas	suburbanas		
A(K						
m ²)	7,398	11,126	6,755	10,159		

Tabla 3.46 Área de cobertura por celda calculada Cost 231-Hata. (Bacuilima Z. 2009).

La Tabla 3.47 muestra el número de estaciones base calculado para una Área a servir de 72.41 Km² (Área urbana ciudad de Cuenca), este valor se calcula de la ecuación 19.

	Downlink		Uplink		
	zonas	zonas	zonas	zonas	
	urbanas	suburbanas	urbanas	suburbanas	
#					
Estaciones					
Base (BS)	9,787	6,508	10,719	7,127	

Tabla 3.47 # Estaciones Base calculado con el modelo de propagación Cost 231-Hata. (Bacuilima Z. 2009).

Se considero que la ciudad de Cuenca como zona urbana, según el modelo de propagación Cost 231 Hata, además el enlace uplink es un limitante en la distancia a cubrir debido

a que la potencia del transmisor de la MS es menor que la BS.

5.3 Calculo de la Capacidad.

El estándar 802.16e-2005, soporta subportadoras de: 128, 512, 1042 y 2048 que pueden ser utilizadas cuando el ancho de banda es: 1.25MHz, 5MHz, 10MHz y 20MHz respectivamente, la Tabla 3.48 muestra los principales parámetros de SOFDMA.

Ancho de Banda del Canal					МН
(Bw).	1,25	5	10	20	Z
tamaño _{FFT} .	128	512	1024	2048	
	28/2	28/2	28/2	28/2	
factor muestreo.	5	5	5	5	
duración Frame.	5	5	5	5	ms

Tabla 3.48 Parámetros SOFDMA. (WiMAX Forum 2006).

La distribución de las portadoras ó permutaciones permiten acomodar el sistema a las diferentes condiciones del servicio, brindando una mayor robustez al sistema, para WiMAX fijo se considera la permutación AMC, mientras que para WiMAX Móvil la permutación PUSC.

La Tabla 3.49 muestra como la permutación PUSC sacrifica portadoras de datos, permitiendo dar mayor robustez al sistema, dando más cantidad de portadoras a la sincronización y bandas de guarda, brinda mayor cantidad de portadoras para el enlace de bajada que de subida (asimetría en la transferencia de datos).

	1,25		5,00						
PUSC	MI	MHz		MHz		10 MHz		20 MHz	
	DL	UL	DL	UL	DL	UL	DL	UL	
Sub-Portadoras									
Nulas.	44	32	92	104	184	184	368	368	
Sub-Portadoras									
Piloto.	12	32	60	136	120	280	240	560	
Sub-Portadoras							144	112	
Datos.	72	64	360	272	720	560	0	0	
Sub-Portadoras					102	102	204	204	
Totales.	128	128	512	512	4	4	8	8	
# de Sub-Canales.	3	4	15	17	30	35	60	70	

Tabla 3.49 Parámetros PUSC. (WiMAX Forum).

La Tabla 3.50 muestra como la permutación AMC centra sus recursos en la capacidad, brindando mayor cantidad de portadoras de datos y sacrificando el sincronismo y las

bandas de guardas, permitiendo alta tasa de transferencia de datos simétricos.

	1,	1,25		5,00				
AMC	MI	Hz	MI	Hz	10 MHz		20 MHz	
	DL	UL	DL	UL	DL	UL	DL	UL
Sub-Portadoras								
Nulas.	20	20	80	80	160	160	320	320
Sub-Portadoras								
Piloto.	12	12	48	48	96	96	192	192
Sub-Portadoras							153	153
Datos	96	96	384	384	768	768	6	6
Sub-Portadoras					102	102	204	204
Totales.	128	128	512	512	4	4	8	8
# de Sub-Canales.	2	2	8	8	16	16	32	32

Tabla 3.50 Parámetros AMC. (WiMAX Forum).

El Espaciamiento entre Sub-Portadoras viene dado por la ecuación 21.

$$ecuación 21$$

$$espaciamiento_{sub-Portadoras} = Bw \cdot (factor_{muestreo} / tamaño_{FFT})$$

Donde los valores de Ancho de Banda del Canal, factor de muestreo y tamaño de la FFT se describen en la Tabla

3.48. La Tabla 3.51 muestra los resultados obtenidos de la ecuación 21.

Ancho de Banda del	1,25	5	10	20	МН
Canal (Bw)	1,20	3	10	20	z
Espaciamiento Sub-	10,93	10,93	10,93	10,93	KH
Portadoras	75	75	75	75	Z

Tabla 3.51 Espaciamiento entre Sub-portadoras. (Bacuilima Z. 2009).

La frecuencia de muestreo viene dado por la ecuación 22.

$$frecuencia_{muestreo} = Bw \cdot factor_{muestreo}$$

ecuación 22

Donde los valores de Ancho de Banda del Canal, factor de muestreo, se describen en la Tabla 3.48. La Tabla 3.52 muestra los resultados obtenidos de la ecuación 22.

Ancho de Banda del Canal	1,2	5	10	20	МН
(Bw)	5	5	10	20	Z
fraguancia	1,4	5,6	11,2	22,4	МН
frecuencia muestreo	0	0	0	0	Z

Tabla 3.52 Frecuencia de muestreo según el ancho de banda del canal. (Bacuilima Z. 2009).

El tiempo útil de símbolo viene dado por la ecuación 23.

 $tiempo_{util\ simbolo} = 1/\ frecuencia_{muestreo}$

ecuación 23

Donde los valores de frecuencia de muestreo, se describen en la Tabla 3.52. La Tabla 3.53 muestra los resultados obtenidos de la ecuación 23.

Ancho de Banda del Canal (Bw)	1,25	5	10	20	MH z
tiempo útil símbolo	91,4	91,4	91,4	91,4	us

Tabla 3.53 Tiempo útil de símbolo según el ancho de banda del canal. (Bacuilima Z. 2009).

El tiempo de guarda viene dado por la ecuación 24.

$$tiempo_{\mathit{guarda}} = tiempo_{\mathit{util\ simbolo}} \, / \, 8$$

ecuación 24

Donde los valores de tiempo útil de símbolo, se describen en la Tabla 3.53. La Tabla 3.54 muestra los resultados obtenidos de la ecuación 24.

Ancho de Banda del Canal	1,25	5	10	20	МН
(Bw)	1,23	5	10	20	Z

tiompo	11,4	11,4	11,4	11,4	110
tiempo _{guarda}	3	3	3	3	us

Tabla 3.54 Tiempo de guarda de acuerdo al ancho de banda del canal. (Bacuilima Z. 2009).

La duración de un símbolo OFDMA viene dado por la ecuación 25.

$$duracion_{\textit{simbolo OFDMA}} = tiempo_{\textit{util simbolo}} + tiempo_{\textit{guarda}}$$

ecuación 25

Donde los valores de tiempo útil de símbolo, tiempo de guarda se describen en la Tabla 3.53 y 3.54 respectivamente. La Tabla 3.55 muestra los resultados obtenidos de la ecuación 25.

Ancho de Banda del Canal (Bw)	1,25	5	10	20	MH z
duración _{símbolo OFDMA}	102,8	102,8	102,8	102,8	us
GGT GGT SIMBOIO OF DIVIA	6	6	6	6	ao

Tabla 3.55 Duración de símbolo OFDMA. (Bacuilima Z. 2009).

El numero de símbolos OFDMA viene dado por la ecuación 26.

 $\#_{simbolos\ OFDMA} = duracion_{frame} / duracion_{simbolo\ OFDMA}$

ecuación 26

Donde los valores de duración de frame, duración de símbolo OFDMA, se describen en la Tabla 3.48 y 3.55 respectivamente. La Tabla 3.56 muestra los resultados obtenidos de la ecuación 26.

Ancho de Banda del Canal (Bw)	1,25	5	10	20	MHz
# símbolos OFDMA	48	48	48	48	

Tabla 3.56 Numero de símbolos OFDMA. (Bacuilima Z. 2009).

Cada frame tiene 48 símbolos OFDMA, los símbolos para datos son: 44 símbolos para downlink y 42 símbolos para uplink. (WiMAX Forum 2006).

La tasa_{código} y la cantidad de informacion ó bits/símbolo, dependen del tipo de modulación utilizada, la Tabla 3.57 resume estos parametros.

Modula	Modulación	Cant. información	tasa _{código}
Module		bits/símbolo	codigo

QPSK 1/2	2	1/2
QPSK 3/4	2	3/4
16QAM 1/2	4	1/2
16QAM 3/4	4	3/4
64QAM 1/2	6	1/2
64QAM 2/3	6	2/3
64QAM 3/4	6	3/4
64QAM 5/6	6	5/6

Tabla 3.57 Tasa de código y bits/símbolo según el tipo de modulación. (WiMAX Forum 2006).

La capacidad del sistema WiMAX 802.16e SOFDMA TDD, está dada por la ecuación 27.

$$Capacidad(Mbps) = \frac{(subportadoras_{datos}) \cdot (bits / simbolo) \cdot (tasa_{codigo}) \cdot (simbolos_{datos})}{duracion_{frame}} / \frac{duracion_{frame}}{duracion_{frame}}$$

ecuación 27

Donde los valores de subportadoras_{datos}, corresponden a los descritos en la Tabla 3.49 con permutación PUSC, mientras que la cantidad de informacion ó bits/símbolo y la tasa_{codigo}, se muetran en la Tabla 3.57.

Los valores de duración_{Frame} se describen en la Tabla 3.48, en la Tabla 3.56 se mostro que cada frame tiene 48

símbolos OFDMA, los símbolos_{datos} son: 44 símbolos para downlink y 42 símbolos para uplink,

La Tabla 3.58 muestra los resultados obtenidos de la capacidad de transferencia de datos de los sistemas WiMAX 802.16e TDD SOFDMA.

Ancho de Banda	1,2	25	5		10		2	0			
(MHz)	DL	UL	DL UL [DL	UL	DL	UL			
PUSC											
	0,6	0,5					12,6				
QPSK 1/2	3	4	3,17	2,28	6,34	4,70	7	9,41			
	0,9	0,8					19,0	14,1			
QPSK 3/4	5	1	4,75	3,43	9,50	7,06	1	1			
	1,2	1,0			12,6		25,3	18,8			
16QAM 1/2	7	8	6,34	4,57	7	9,41	4	2			
	1,9	1,6			19,0	14,1	38,0	28,2			
16QAM 3/4	0	1	9,50	6,85	1	1	2	2			
	1,9	1,6			19,0	14,1	38,0	28,2			
64QAM 1/2	0	1	9,50	6,85	1	1	2	2			
	2,5	2,1	12,6		25,3	18,8	50,6	37,6			
64QAM 2/3	3	5	7	9,14	4	2	9	3			
	2,8	2,4	14,2	10,2	28,5	21,1	57,0	42,3			
64QAM 3/4	5	2	6	8	1	7	2	4			

	3,1	2,6	15,8	11,4	31,6	23,5	63,3	47,0
64QAM 5/6	7	9	4	2	8	2	6	4

Tabla 3.58 Calculo de la Capacidad WiMAX Móvil. (Bacuilima Z. 2009).

Si las condiciones del canal son favorables (SNRelevada) se utiliza el esquema de modulación más alto (altas velocidades de transmisión), mientras que si las condiciones del canal no son favorables (SNRbajo) cambia el esquema de modulación a uno menor para mantener la calidad del enlace (se reduce el throughput).

En el Capítulo 3 numeral 3.1 se hizo referencia a la frecuencia en que funcionan los equipos WiMAX Móvil y en el numeral 3.2 la disponibilidad de licencias de espectro, y de cómo en términos de regulación la situación de WiMAX Móvil esta algo limitada, debido el estándar IEEE 802.16e-2005 no se incluye todavía dentro de las reglamentaciones en Telecomunicaciones en el país.

Debido a lo cual para el cálculo de la cantidad de estaciones base se ha tomando en cuenta un ancho de banda referencial de 15Mhz, y un ancho por canal de 5MHz en las bandas de 2,3 a 2,4 y 3.3 a 3,4 GHz, se utilizara el esquema 1x3x3 que utiliza diferentes conjuntos de

portadoras ortogonales (segmentos), para c/u de los sectores de la estación base; para aumentar la capacidad de cada celda se puede considerar incrementar: el número de sectores a 1x3x6 con reutilización 2:1, ó el valor de canal a 10 MHz. La Figura 3.5 muestra el esquema de uso de frecuencias propuesto.

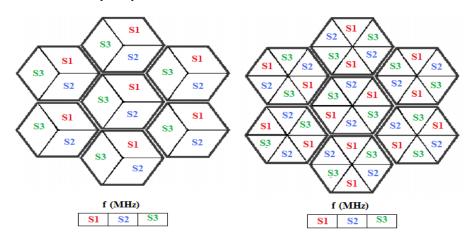


Figura 3.5 Esquema 1x3x3 y 1x3x6 WiMAX Móvil. (Bacuilima Z. 2009).

La Tabla 3.59 muestra el tráfico por celda, con un canal de 5MHz y un esquema de frecuencias 1x3x3.

	DL	UL
Trafico _{celda} (Mbps)	47,52	34,27
Trafico celda Total (Mbps)	81,	792

Tabla 3.59 Tráfico por celda WiMAX Móvil. (Bacuilima Z. 2009).

El área de cobertura de cada Estación Base está en función de: capacidad de tráfico que soportan las BS

(según el ancho de banda seleccionado y la frecuencia), el número de usuarios y el tráfico que generen, según el análisis descrito en el Capitulo 3, numeral 4.2 Dimensionamiento del Ancho de Banda según el tipo de Servicio.

La Tabla 3.60 indica los parámetros de: Trafico Total (descrito en la Tabla 3.36) y Área de Cobertura para los cuales se realizara la estimación del número de estaciones base, para el primer año.

Tráfico Total WiMAX Móvil		Mbps
Área _{Urbana de Cuenca} (Km ²)	72,41	Km ²

Tabla 3.60 Parámetros para el Cálculo de la Capacidad WiMAX Móvil. (Bacuilima Z. 2009).

La Tabla 3.61 muestra el valor de la Densidad de tráfico estimada para la ciudad de Cuenca dada por la ecuación 28.

$$Densidad_{\textit{trafico}} = \frac{TraficoTotal_{\text{WiMAX Movil}}}{Area_{\text{Urbana de Cuenca}}}$$

ecuación 28

Densidad tráfico	16,285	Mbps/Km ²
------------------	--------	----------------------

Tabla 3.61 Densidad de tráfico proyectada WiMAX Móvil. (Bacuilima Z. 2009).

La Tabla 3.62 muestra el área y radio de cobertura de la celda hexagonal, que tendrá cada estación base, estos valores se calculan de las ecuaciones 29 y 30.

$$Area_{celda} = \frac{Trafico_{Celda \text{ Total}}}{Densidad_{trafico}}$$

ecuación 29

radio _{celda hexagonal} =
$$\sqrt{(2 \cdot Area _{celda})} (3 \cdot \sqrt{3})$$

ecuación 30

Área _{celda}	5,02	
r _{celda hexagonal}	1,39	Km

Tabla 3.62 Área y radio de cobertura por celda proyectada WiMAX Móvil. (*Bacuilima Z. 2009*).

La Tabla 3.63 muestra el número de estaciones base necesarias para cubrir la demanda de Tráfico establecido en el primer año y está determinado por la ecuación 19.

Tabla 3.63 # de Estaciones Base según la demanda de trafico proyectada para el primer año WiMAX Móvil. (Bacuilima Z. 2009).

5.4 Resultados del Análisis de Propagación.

Los resultados obtenidos en el Capítulo 3, numeral 5.3 Cálculo de Capacidad y numeral 5.2 Calculo de Cobertura, para los distintos Modelos de Propagación propuestos nos permiten estimar el área de cobertura y número de estaciones base según:

- El porcentaje de área donde la potencia de la señal es la suficiente para producir una aceptable comunicación (Calculo de Cobertura).
- El área de cobertura en función de la capacidad de tráfico que soportan las: Estaciones Base y el número de usuarios a los que se pretenda servir (Calculo de Capacidad).

La Tabla 3.64 muestra el número de estaciones base, necesarias para cubrir la demanda de Tráfico establecido en el primer año.

Calculo de Cobertura

Modelo	Downlink				Uplink			
IEEE	Categ	Categ	Categ		Categ	Categ	Categ	
802.16	oría A	oría B	oría C		oría A	oría B	oría C	
d(Km)	0,964	1,282	1,560		0,933	1,236	1,501	

A(Km ²)	2,417	4,273	6,326	2,260	3,972	5,853
# Estacione s Base	29,964	16,945	11,446	32,03	18,232	12,37
# Estacione s Base	30	17	12	33	19	13

	Downlink			Uplink		
Modelo COST 231	zonas urbanas	zonas suburbana s		zonas urbanas	zonas suburbana s	
d(km)	1,687	2,069	•	1,612	1,977	
A(Km2)	7,398	11,126		6,755	10,159	
# Estaciones Base	9,787	6,508		10,719	7,127	
# Estaciones Base	10	7		11	8	

Calculo de Capacidad

Area _{celda} (Km ²)	5,022229724
r(Km)	1,390

# Estaciones Base	14,418		
# Estaciones Base	15		

Tabla 3.64 Resultados del Análisis de Propagación WiMAX Móvil. (*Bacuilima Z. 2009*).

Según las condiciones de análisis descritas en el Capítulo 3, numeral 3 Marco Regulatorio WiMAX, numeral 4 Definición de servicios de operación, numeral 5.3 Cálculo de Capacidad y numeral 5.2 Calculo de Cobertura; para el diseño de la red inalámbrica de ultima milla WiMAX Móvil, se ha determinado el número de estaciones base y el radio de cobertura de c/u, necesarios para brindar servicios inalámbricos Triple Play, según las estimaciones de tráfico, en la ciudad de Cuenca.

El radio de cobertura para las condiciones dadas según el Cálculo de Capacidad, se debe ajustar al radio de cobertura obtenido en el Cálculo de Cobertura para los distintos tipos de modelo de propagación, para esto se calcula nuevamente el Path Loss y se obtiene la potencia de transmisión en downlink y uplink con las que se cumple las condiciones de trafico establecidas, como se muestra en la Tabla 3.65.

	ĺ	Downlink		Uplink			
	Categ oría A	Categor ía B	Cate goría C	Categ oría A	Categor ía B	Cate goría C	
L (IEEE 802.16 SUI)	154,1 17	148,034	144, 437	154,6 62	148,579	144, 981	
Potencia Transmisió n BS	42,61 9	36,536	32,9 38	33,85 8	27,775	24,1 77	
	zonas	zonas		zonas	zonas		
	urban	suburba		urban	suburba		
	as	nas		as	nas		
L (Modelo COST 231	143,5 37	140,416		145,7 38	142,616		
Potencia Transmisió n BS	32,03 8	28,917		23,27	20,156		

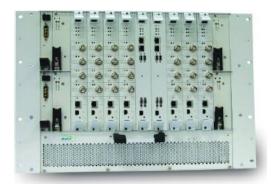
Tabla 3.65 Ajuste de potencia de transmisión BS/MS según condiciones del cálculo de capacidad WiMAX Móvil. (Bacuilima Z. 2009).

6 Evaluación de Productos WiMAX Móvil.

Existen varios proveedores de equipos WiMAX a nivel Mundial que permiten la implementación de una plataforma de acceso WiMAX Móvil. La Tabla 3.66 muestra un resumen de las principales características de los productos ofertados por los Proveedores: Alvarion, Airspan y Siemens, las características técnicas de los equipos se presentan en el Anexo 1.

Proveedor	alvarion Write on your wavelength.	Airspan	SIEMENS
Familia	BreezeMAX	AS.MAX	SkyMAX
Estación Base		MacroMAXe HiperMAX Base Station MicroMAXe	
Equipos Usuario		Emyst ProST-2	WayMAX Residential WayMAX Business Modern
802.16e-2005	si	si	si
Banda de Frecuencia (GHz)	3,4 - 3,6	3,4 - 3,6 - 5,8	3,4 - 3,8
Duplexación	TDD	FDD/TDD	FDD/TDD

Ancho del canal(MHz)	3.5, 5, 7, 10	20, 10, 7, 5, 3.5, 1.75	1.75 a 14
QoS (UGS, rtPS, nrtPS, BE)	si	si	si
Modulación adaptiva (BPSK, QPSK, 16QAM y 64QAM)	si	si	si
MIMO	si	si	no especifica
Beamforming	si	si	no especifica
Encriptación	si	si	si
Autenticación	si	si	si
Telnet, SNMP	si	si	si
Handoff	si	si	si
Software de administración	si	si	si
Software de administración	Si	Si	si
Disponibilidad información	***	**	*


Tabla 3.66 Resumen de las principales características de los productos ofertados por los Proveedores: Alvarion, Airspan y Siemens. (*Bacuilima Z. 2009*).

6.1 Descripción de equipos seleccionados.

Los proveedores analizados en la Tabla 3.66 cumplen con la Certificación de equipos WiMAX de acceso inalámbrico Móvil, sin embargo para la selección de equipos se realizo la consideración de los productos que presentan mayor Disponibilidad de información, ante esto se escogió la opción que brinda la empresa Alvarion, BreezeMAX.

6.1.1 Estación Base.

La Figura 3.6 muestra la Estación Base BreezeMAX, el chasis está formado por 9 slots dobles para los módulos NPU, AU y 6 slots simples para los módulos PIU, PSU.

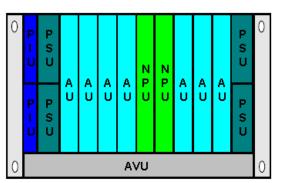


Figura 3.6 Estación Base BreezeMAX, WiMAX Móvil. (Alvarion).

- Unidad de procesamiento de red (NPU).
- Unidad de Acceso (AU).
- Unidad para la conexión al sistema de potencia (PIU).
- Unidad de suministro de energía (PSU).
- Unidad de ventilación (AVU).

6.1.1.1 NPU 1+1.

La Figura 3.7 muestra la unidad de procesamiento central que permite la operación y control de la estación base y unidades de usuario, clasifica el tráfico y establece la conexión de iniciación, maneja los niveles de acuerdos de servicio; para el soporte de redundancia (1+1) se utiliza dos módulos de NPU. Se conecta al backbone vía la interfaz 100/1000 Base-T.

Figura 3.7 NPU de la Estación Base BreezeMAX. (Alvarion).

6.1.1.2 AU 6+1.

La Figura 3.8 muestra la unidad de acceso IDU y ODU.

Figura 3.8 AU (IDU, ODU), de la Estación Base BreezeMAX. (Alvarion).

Cada unidad AU-IDU se conecta a la NPU vía el backplane y es responsable de la conexión de red inalámbrica para el establecimiento y gestión del ancho de banda, además incluye cuatro canales que usan un PHY común (3.5, 5, 7 y 10 MHz). Los módulos AU-IDU se conectan por medio de cables IF a los AU-ODUs, que son unidades de radio de alto poder, multi-portadora que se conecta a una antena externa adaptiva y permiten una penetración de señal a través de paredes y edificios.

6.1.1.3 PSU N+1.

La Figura 3.9 muestra el modulo PSU, que es una fuente de 48VDC, cada BS tiene la posibilidad de contener hasta 4 módulos PSU, posibilitando esquemas n+1.

Figura 3.9 PSU de la Estación Base BreezeMAX. (Alvarion).

6.1.1.4 PIU 1+1.

La Figura 3.10 muestra el módulo de interfaz entre la fuente de potencia del nodo y el módulo PSU, filtra y estabiliza la entrada de potencia a la estación base, además protege a la estación de sobre voltajes, cortos circuitos, polarización inversa y picos de voltaje, se puede utilizar módulos PIU en configuración 1+1.

Figura 3.10 PIU de la Estación Base BreezeMAX. (Alvarion).

6.1.1.5 AVU.

La Figura 3.11 muestra el módulo de ventilación para el flujo de aire.

Figura 3.11 AVU de la Estación Base BreezeMAX. (Alvarion).

6.1.2 ASN-GW.

El ASN-GW es un elemento que puede ser utilizado en topología distribuida y centralizada, según el Profile B y C, del IEEE 802.16e-2005. La Figura 3.12 muestra la topología centralizada y distribuida del ASN-GW.

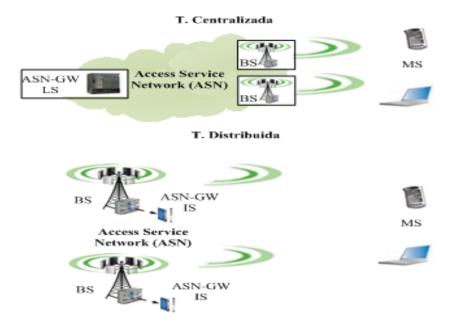


Figura 3.12 ASN-GW (topología Centralizada y Distribuida). (Alvarion).

La topología seleccionada es ASN-GW LS, debido a que es un elemento centrado en la aplicación de una arquitectura IP abierta, en un entorno de múltiples proveedores de WiMAX Móvil. El ASN-GW LS, se encuentra basado en la plataforma Cisco 7600, las características técnicas de los equipos se presentan en el Anexo 1.4. La Tabla 3.67 muestra los diferentes tipos de chasis que son compatibles.

		Capacidad		
Modelo	Cloto	del		
Modelo	31015	backplane		
		(Gbps.)		
7604	4	320		
7606	6	480		
7609	9	720		
7613	13	720		

Tabla 3.67 Series Cisco 7600. (Bacuilima Z. 2009).

El modulo adicional a la plataforma Cisco 7600 que realiza la función de Gateway Inalámbrico Banda Ancha es el modulo IP SAMI.

Este modulo soporta:

- Hasta 500 estaciones de base/sectores por módulo.
- Hasta 100.000 usuarios conectados por modulo.

- Hasta 30.000 usuarios activos por modulo.
- Rendimiento de 5 Gbps.

La Tabla 3.68 muestra el requerimiento de módulos del ASN-GW LS necesario para cumplir las estimaciones de: tráfico, conexión al backbone, conexión a las BS etc.

	Requerimiento Módulos	Dimensionamiento de Módulos			
ASN-GW Cisco 7604 chassis		760 4	760 6	760 9	761 3
Slots		4	6	9	13
Modulo SAMI (simple o redundante)	1 ó 2	1	1	2	2
Modulo Supervisor Engine 720-3BXL (simple o redundante)	1 ó 2	1	1	2	2
Conexión al Backbone, Puertos STM-64 (simple o redundante)	2 (1+1)	1	2	2	2
Conexión a las BS, Puertos STM-1 (1 ^{er} año:15 BS, 5 ^{to} año:30 BS)	2 (16 puertos STM-1 por modulo)	1	2	3	7

Tabla 3.68 Selección del ASN-GW LS, Series Cisco 7600. (Bacuilima Z. 2009).

Los modelos que cumplen con los requerimientos de capacidad son Cisco 7606 y 7609, el ASN-GW LS seleccionado es el 7609 debido a que provee capacidad redundante y de crecimiento.

7 Diseño de la Herramienta informática de planificación WiMAX.

Esta herramienta informática denominada SANTELWIMAX Móvil, resume todo el análisis descrito en el Capítulo 3, numeral 5.3 Calculo de Cobertura, numeral 5.4 Calculo de la Capacidad y numeral 5.5 Resultados del Análisis de Propagación; permitirá estimar de manera sencilla y aproximada el radio de cobertura y el número de necesarias dar estaciones base, para servicios inalámbricos de banda ancha con la tecnología de última milla WiMAX Móvil, en el Anexo 2 se encuentran las especificaciones y descripción de uso de la herramienta informática.

7.1 Análisis de Propagación para la banda de 2,3 a 2,4 GHz.

La Figura 3.13 y 3.14 muestran los valores de ingreso y salida de la herramienta informática SANTEL_{WiMAX Móvil}, para la zona urbana de la ciudad de Cuenca.

Figura 3.13 Datos de ingreso WiMAX Móvil, banda de 2,3 a 2,4 GHz. (*Bacuilima Z. 2009*).

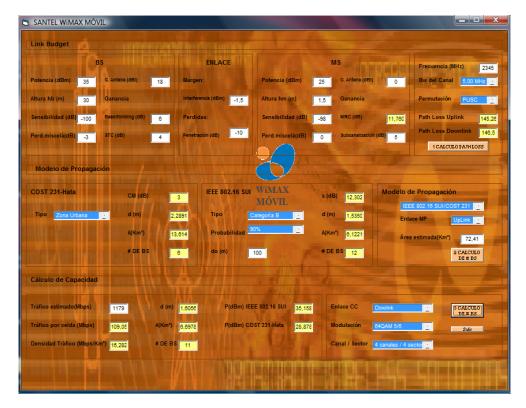


Figura 3.14 Datos de salida WiMAX Móvil, banda de 2,3 a 2,4 GHz. (Bacuilima Z. 2009).

Por lo tanto para cubrir el tráfico estimado en la Zona Urbana se necesitan:

- Trafico Total 1179 Mbps.
- 4 sectores, ancho de banda referencial de 20Mhz, y un ancho por canal de 5MHz.
- # Estaciones Base con el modelo de propagación IEEE 802.16 SUI = 11,82 ≈12.
- # Estaciones Base con el modelo de propagación Cost
 231 Hata = 5,31 ≈ 6.
- # Estaciones Base para el trafico estimado
 = 10,813 ²11.

- # Estaciones Base propuesto = 11.
- Radio de cobertura = 1,605 Km.
- Área a cubrir = 6,697 Km² con cada BS.
- 4 Antenas sectoriales de 90 °.
- Potencia transmisión BS (IEEE 802.16 SUI) =31,15 dBm.
- Potencia transmisión BS (COST 231-Hata) =28,77 dBm.

7.2 Análisis de Propagación para la banda de 3,3 a 3,4 GHz.

La Figura 3.15 y 3.16 muestran los valores de ingreso y salida de la herramienta informática SANTEL_{WiMAX Móvil}, para la zona urbana de la ciudad de Cuenca.

Figura 3.15 Datos de ingreso WiMAX Móvil, banda de 3,3 a 3,4 GHz. (*Bacuilima Z. 2009*).

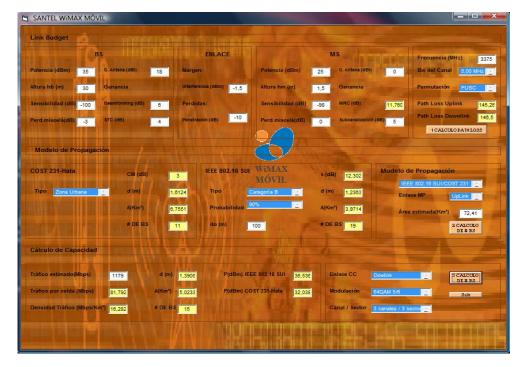


Figura 3.16 Datos de salida WiMAX Móvil, banda de 3,3 a 3,4 GHz. (Bacuilima Z. 2009).

Por lo tanto para cubrir el tráfico estimado en la Zona Urbana se necesitan:

- Trafico Total 1179 Mbps.
- 3 sectores, ancho de banda referencial de 15Mhz, y un ancho por canal de 5MHz.
- # Estaciones Base con el modelo de propagación IEEE 802.16 SUI = 18,232 ≈19.
- # Estaciones Base con el modelo de propagación Cost
 231 Hata = 10,71 ≈11.
- # Estaciones Base para el trafico estimado
 = 14,41 ≈ 15.

- # Estaciones Base propuesto= 15.
- Radio de cobertura = 1,39 Km.
- Área a cubrir = 5,023 Km² con cada BS.
- 3 Antenas sectoriales de 120 °.
- Potencia transmisión BS (IEEE 802.16 SUI) =36,53 dBm.
- Potencia transmisión BS (COST 231-Hata) =31,91 dBm.

8 Impacto ambiental y Localización de las estaciones base.

La implementación de redes inalámbricas implica un mínimo impacto ambiental y gran escalabilidad, en este sentido WiMAX Móvil disminuye los posibles efectos negativos al medioambiente.

Es posible utilizar infraestructuras y edificios existentes, compartiendo instalaciones con otras operadoras, permite reducir el impacto visual y urbanístico, utilizando técnicas de camuflaje ó mimetización, de manera que se impida su visión desde la calle.

Además cumple con la normativa vigente en cuanto a emisiones electromagnéticas, expresada en reglamentos

nacionales e internacionales, debido a que las radiaciones a esas frecuencias son "no ionizantes".

8.1 Localización de las estaciones base y Diagrama de Red.

En el Capitulo 3, numeral 2.1 Evaluación de la Infraestructura existente, se hizo referencia los sitios donde existe infraestructura instalada de: ETAPA EP, Porta, Alegro y Movistar, con miras a posibles acuerdos de alquiler de infraestructura y housing, para el despliegue de las estaciones base de la red inalámbrica WiMAX Móvil. En el Capitulo 3, numeral 7.1 y 7.2, se realizo el Análisis de Propagación para las bandas de 2.3 GHz y 3.3 GHz, además se realizo una aproximación del número de estaciones base necesarias para la zona urbana de la ciudad de Cuenca.

La Figura 3.17 y 3.18 muestran las posibles ubicaciones de los sitios donde se ubicarían las estaciones base, para las bandas de 2.3 GHz y 3.3 GHz respectivamente, se considero como Centro de Administración, Operación y Mantenimiento el nodo E1 desde donde las estaciones base deberán gestionarse y realizar funciones de: configuración, operación, administración, detección de

fallas en la red de acceso de ultima milla y funciones tales como: pruebas, monitorización, visualización de las alarmas y análisis del sistema de forma centralizada y remota.

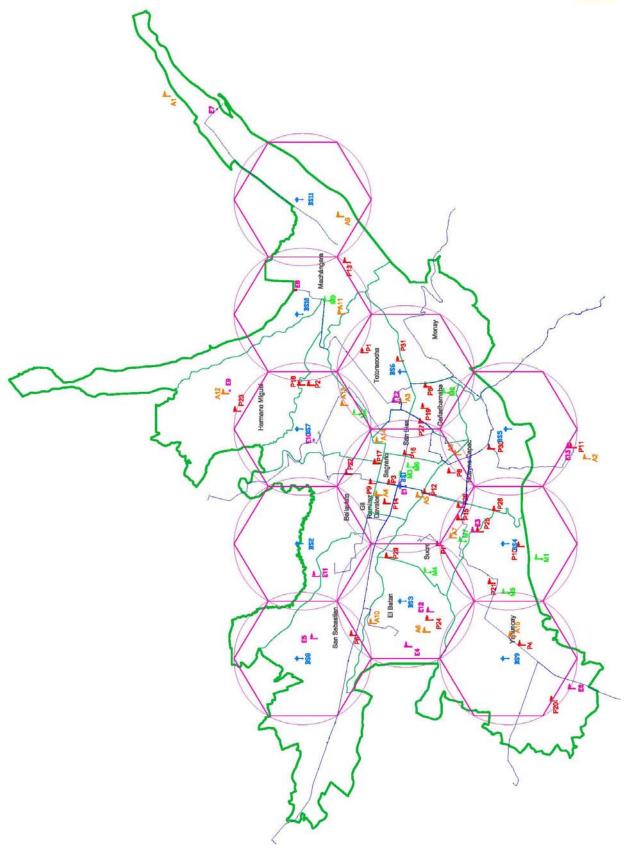


Figura 3.17 Localización de las estaciones base WiMAX Móvil, banda de 2,3 a 2,4 GHz. (Bacuilima Z. 2009).

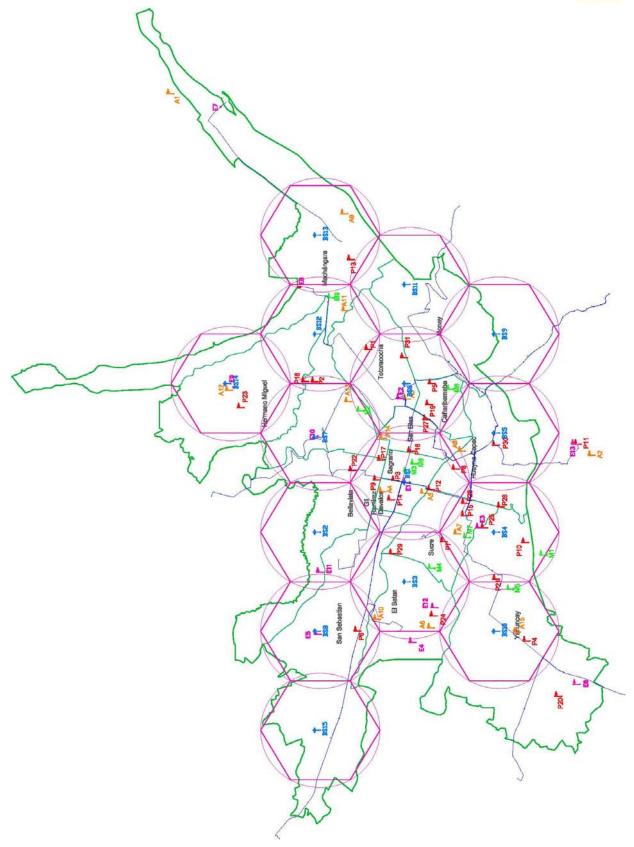


Figura 3.18 Localización de las estaciones base WiMAX Móvil, banda de 3,3 a 3,4 GHz. (Bacuilima Z. 2009).

La Tabla 3.69 y 3.70 describe la ubicación de los sitios propuestos para el despliegue de las estaciones base para las bandas de 2.3 GHz y 3.3 GHz respectivamente, para fines de alquiler de infraestructura y housing se muestra que infraestructura existe en esa ubicación y cuál es la infraestructura cercana que puede servir para conectar la red de acceso de última milla WiMAX Móvil, con la CSN de la NGN.

# BS	Ubicación S O		Infraestruct ura Existente	Infraestruct ura cercana
BS1		79°00′14,0	E1	
BS2	02°52′31,1 1"	79°00′50,4 6"		E11 / Fibra ETAPA EP
BS3	02°53′42,1 3"	79°01′31,0 8"		E12
BS4	02°54′53,0 0"	79°00′50,2 2"	P10	
BS5	02°54′52,8 5"	78°59′28,7 4"		P30 / Fibra ETAPA EP
BS6	02°53′41,8 4"	78°58′48,1 3"	P31	

BS7	02°52′30,9 7"	78°59′28,9 9"	E10	
BS8	02°52′31,2 5"	79°02′11,9 4"		E5
BS9	02°54′53,1 4"	79°02′11,6 9"		P4 / A15 / Fibra ETAPA EP
BS1 0	02°52′30,8 2"	78°58′07,5 2"		E8 / M9 / Fibra ETAPA EP
BS1 1	02°52′30,6 8"	78°56′46,0 5"		Fibra ETAPA EP

Tabla 3.69 Localización de las estaciones base WiMAX Móvil, banda de 2,3 a 2,4 GHz. (Bacuilima Z. 2009).

# BS	Ubica	ación	Infraestructu	Infraestructu
# 50	S	0	ra Existente	ra cercana
BS1	02°53′41,5"	79°00′14,0"	E1	
BS2	02°52′40,5	79°00′45,0		E11 / Fibra
B32	7"	1"		ETAPA EP
BS3	02°53′42,1 79°01′20,2			E12
ВОЗ	1"	0"		
BS4	02°54′43,5	79°00′44,8		P25 / E3
D04	1"	0"		1 25 / 25

	02°54′43,3	78°59′34,2		P30 / Fibra
BS5	9"	0"		ETAPA EP
	02°53′41,8	78°58′59,0		
BS6	6"	1"	E2	
		-		
BS7	02°52′40,4	78°59′34,4	E10	
	5"	1"		
BS8	02°52′40,7	79°01′55,6	E5	
ВОО	0"	0"	Lo	
BS9	02°54′43,2	78°58′23,6		Fibra ETAPA
DOS	6" 0"		EP	
DO4				P4 / A15 /
BS1	02°54′43,6	79°01′55,3		Fibra ETAPA
0	4"	9"		EP
BS1	02°53′41,7	78°57′48,4		Fibra ETAPA
1	3"	2"		EP
BS1	02°52′40,3	78°58′23,8		Fibra ETAPA
2	2"	2"		EP
BS1	02°52′40,2	78°57′13,2		Fibra ETAPA
3	0"	3"		EP
BS1	02°51′38,9	78°58′59,2	E9	
4	2"	3"	E9	
BS1	02°52′40,8	79°03′06,2		Fibra ETAPA
5	2"	0"		EP

Tabla 3.70 Localización de las estaciones base WiMAX Móvil, banda de 3,3 a 3,4 GHz. (*Bacuilima Z. 2009*).

En el Capitulo 3, numeral 2 Arquitectura de Red, se hizo referencia a la representación lógica de la arquitectura de red WiMAX, y se definió que se asumirán los elementos de la red (CSN, NSP, ASP, etc.), debido a que no son el punto clave del diseño, y se dará mayor énfasis en la ASN, para prestar servicios de última milla WiMAX Móvil.

La Figura 3.19 muestra la red de acceso de última milla WiMAX Móvil, donde el enlace backhaul a cada estación base puede ser inalámbrico ó de fibra óptica y se lo considera como un enlace arrendado a otro operador, según la infraestructura cercana a cada estación base descrito en las Tablas 3.69 y 3.70.

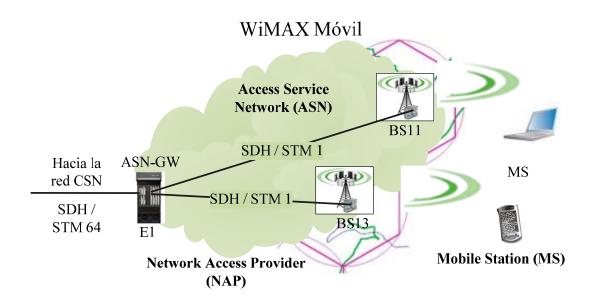


Figura 3.19 Red de acceso de ultima milla, WiMAX Móvil. (Bacuilima Z. 2009).

8.2 Calculo de Emisiones de RNI.

Los formularios para el Estudio Técnico de Emisiones de RNI (cálculo de la distancia de seguridad) descritos en el Anexo 3, se deben realizar para cada uno de los puntos en los que se ubiquen estaciones base; los valores de ganancia y potencia de las antenas en todos los sitios son las mismas por lo tanto para todas las estaciones base se tendrá valores similares.

La Tabla 3.71 muestra los límites máximos de exposición por estación radioeléctrica fija.

Tipo de exposi ción	Rango de frecuenc ias	Intensidad de campo eléctrico, E (V/m)	Intensidad de campo magnético , H (A/m)	Densidad de potencia de onda plana equivalente, S (W/m²)
Ocupa	3 - 65 KHz	610	24,4	-
	0,065 -1 MHz	610	1,6 /f	_
	1 –10 MHz	610 / f	1,6 /f	_
	10-400	61	0,16	10

	MHz			
	400-			
	2000	$3f^{\frac{1}{2}}$	$0,008f^{\frac{1}{2}}$	f/40
	MHz			
	2-300	137	0,36	50
	GHz	107	0,00	00
	3-150	87	5	_
	KHz	01	9	
	0,15-1	87	0,73 /f	-
	MHz	01		
	1-10	87/ f ½	0,73 /f	1
Poblac	MHz	.	3 ,1 3 11	
ional	10-400	28	0,073	2
	MHz		3,010	_
	400-		0,0037f ^{1/2}	
	2000	1,375 <i>f</i> ^½		f/200
	MHz			
	2-300	61	0,16	10
	GHz	0 1		. 0

Tabla 3.71 Límites máximos de exposición por estación radioeléctrica fija. (Senatel).

La implementación de redes inalámbricas implica un mínimo impacto ambiental y gran escalabilidad, en este

sentido WiMAX Móvil disminuye los posibles efectos negativos al medioambiente. La ecuación 31 permite determinar la densidad de potencia de onda plana equivalente.

$$S_{\lim} = \frac{PIRE}{\pi \cdot R^2}$$

ecuación 31

Donde:

- S_{lim} (W/m^2): Densidad de Potencia de la onda plana equivalente.
- PIRE (W): Producto de la potencia suministrada a la antena y la máxima ganancia de la antena respecto a una antena isotrópica, sin tomar en cuenta las pérdidas.
- *R (m)*: Es la distancia entre el punto central de la fuente radiante y el supuesto individuo expuesto a Campos Electro-Magnéticos, y está dado por la ecuación 32.

$$R^2 = x^2 + (h - d)^2$$

ecuación 32

- h (m): Es la altura al punto central de la fuente radiante.
- x (m): Es la distancia desde la base de la torre al usuario.
- *d* (*m*): Es la altura promedio del usuario, para efectos de cálculo se toma como referencia que *d* sea igual a 1.5 m.

La Figura 3.20 muestra el diagrama de referencia para el cálculo de la densidad de potencia de onda plana equivalente.

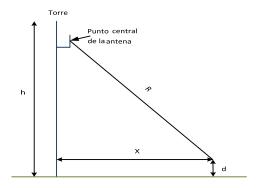


Figura 3.20 Diagrama de referencia para el cálculo de S_{lim}. (Senatel)

La Tabla 3.72 los valores que se utilizaran para el cálculo de la Densidad de Potencia de la onda plana equivalente.

d	1,5	m
h	30	m
Ganancia antena BS	18	dBi
Potencia Transmisión BS	35	dBm
Potencia Transmisión BS	3,16	W
PIRE	23,00	dB
PIRE	199,53	W

Tabla 3.72 Valores para calcular el S_{lim} . (Bacuilima Z. 2009).

La Tabla 3.73 muestra los resultados obtenidos de los límites máximos de exposición que tendrá cada estación base, aplicando los valores de la Tabla 3.72 en las ecuaciones 31 y 32.

X	2	5	10	20	50	m
R	28,57	28,94	30,20	34,82	57,55	m
Slím	0,08	0,08	0,07	0,05	0,02	W/m ²

Tabla 3.73 Cálculo de S_{lim}. (Bacuilima Z. 2009).

Los valores calculados de S_{lim} de la Tabla 3.73, se encuentran muy por debajo de los límites máximos establecidos, descritos en la Tabla 3.71, donde S_{lim} Ocupacional (W/m²) = 50, S_{lim} Poblacional (W/m²) = 10.

9 Análisis Financiero.

Los costos que involucra la implementación de la red de acceso de última milla con tecnología WiMAX Móvil, nos permitirán tener un referente económico del proyecto para determinar de mejor manera la viabilidad del mismo.

En el capítulo 3, numeral 2 Evaluación de la Infraestructura existente, se indicó que todo lo que se refiere a la Conmutación, Enrutamiento, red de datos, servicio

dedicado de Internet, red de video, Core IP, no son el punto clave del diseño, sino que se daría mayor énfasis en la red de acceso inalámbrica de ultima milla WiMAX Móvil.

9.1 Determinación de los Ingresos.

Las tarifas de inclusión al mercado de los servicios de Internet/Telefonía y Video (IPTV/VoD), estarían de acuerdo a los precios y servicios que ofertan proveedores en el medio, considerando planes similares a los que existen en el mercado.

La Tabla 3.74 muestra un Benchmarking de Tarifas de Internet.

	Tarifas	
Planes	[USD]	
[Kbps]	CNT EP	
256	\$ 24,90	
512	\$ 39,90	
1024	\$ 65,00	
2048	\$ 107,00	
5	- :c	

	Tarifas
Planes [Kbps]	[USD]
	ETAPA
	EP
256	\$ 22,00
512	\$ 35,00

Planes	Tarifas
[Kbps]	[USD]

Planes	Tarifas
Corporativos[Kbps]	[USD]

	Grupo Tv		EERCS
	Cable		LLINGS
100	\$ 19,90	128	\$ 50,00
550	\$ 39,90	256	\$ 85,00
700	\$ 49,90	512	\$ 144,50
1100	\$ 69,90	1024	\$ 245,65
2100	\$ 99,90	2048	\$ 417,61
3100	\$ 114,90		

Tabla 3.74 Benchmarking de Tarifas de Internet. (Bacuilima Z. 2009).

La Tabla 3.75 muestra las Tarifas con su respectivo plan de servicio que se consideran para brindar Internet/Telefonía.

	WiMAX Móvil											
Tarifas Internet [USD]												
Planes [Kbps]	Residencial	Corporativo	Inscripción									
256	\$ 20,00	\$ 80,00										
512	\$ 30,00	\$ 140,00	\$ 50,00									
1024	\$ 60,00	\$ 240,00										

Tabla 3.75 Tarifas según el plan de Internet. (Bacuilima Z. 2009).

La Tabla 3.76 muestra un Benchmarking de Tarifas de TV por subscripción.

Planes Tv por subscrip ción	Tarifas [USD] Grupo TvCab	Planes Tv por subscripci ón	Tarif as [USD] Direc	Planes Tv por subscripción	Tarifas [USD]
	le		TV		Onivisa
Familiar	\$ 12,99	Familiar	\$ 26,0 0	Movie Pack	\$ 5,40
Premium	\$ 21,50	Preferenci al	\$ 34,0 0	Premio	\$ 14,29
Súper	\$			Súper	\$
Premium	41,20			Premio	20,54
				Súper	\$
				Premio Plus	25,00

Paquete

Familiar: 34 Paquete Familiar: 4

Canales Canales Nacionales + 65

(Nacionales, Internacionales + 30 Paquete Movie

Internacionale Canales Audio + 6 Pack: 2 Canales

s) Estaciones Radio (Internacionales)

<u>Paquete Preferencial:</u> 4 <u>Paquete Premio:</u>

<u>Premium:</u> Canales Nacionales + 93 19 Canales

Paquete Internacionales + 30 (Internacionales)

Familiar + 25 Canales Audio + 6

Canales Estaciones Radio

<u>Paquete</u> <u>Paquete</u>

<u>Súper</u> <u>Súper</u>

<u>Premium:</u> <u>Premio:</u> 25

Paquete Canales

Premium + 10 (Internacion

Canales ales)

Paquete

<u>Súper</u>

Premio Plus:

27 Canales

(Internacion

ales)

Tabla 3.76 Benchmarking de Tarifas de TV por subscripción. (Bacuilima Z. 2009).

La Tabla 3.77 muestra las Tarifas con su respectivo plan de servicio para brindar IPTV.

WiMAX Móvil									
Tarifas IPTV [USD]									
Planes	IPTV	Inscripción							
Básico	\$ 10,00	\$ 50,00							

Premium	\$ 20,00	
Súper Premium	\$ 40,00	

Tabla 3.77 Tarifas según el plan de Video (IPTV). (Bacuilima Z. 2009).

La Tabla 3.78 muestra un Benchmarking de Tarifas de VoD.

	Tarifas		Tarifas		Tarifas
Planes	[USD]	Planes	[USD]	Planes	[USD]
VoD	Grupo	VoD	Linivino	VoD	DirocT\/
	TvCable		Univisa		DirecTV
PPV	\$ 5,20	PPV	\$ 12,00	PPV	\$ 3,57

Tabla 3.78 Benchmarking de Tarifas de Video (VoD). (Bacuilima Z. 2009).

La Tabla 3.79 muestra las Tarifas con su respectivo plan de servicio que se consideran para brindar Video (VoD).

,	WiMAX Móvil											
Та	Tarifas VoD [USD]											
Planes	VoD	Inscripción										
PPV	\$ 10,00	\$ 30,00										

Tabla 3.79 Tarifas según el plan de Video (VoD). (Bacuilima Z. 2009).

La Tabla 3.80 resume las Tarifas con su respectivo plan de servicio que se consideran para brindar Internet/Telefonía y Video (IPTV, VoD).

1	Tarifas Intern	et [USD]	
Planes [Kbps]	Residencial	Corporativo	Inscripción
256	\$ 20,00	\$ 80,00	
512	\$ 30,00	\$ 140,00	\$ 50,00
1024	\$ 60,00	\$ 240,00	
Tarifa			
Planes	IPTV	Inscripción	
Básico	\$ 10,00		
Premium	\$ 20,00	\$ 50,00	
Súper Premium	\$ 40,00		
Tarifa	as VoD [USD)]	
Planes	VoD	Inscripción	
PPV	\$ 10,00	\$ 30,00	

Tabla 3.80 Resumen de Tarifas según el tipo de plan y servicio de Internet/Telefonía y Video (IPTV, VoD). (Bacuilima Z. 2009).

En función de las consideraciones realizadas, en el Capitulo 3, numerales 4.2 (Dimensionamiento del Ancho de Banda según el tipo de Servicio) y 4.1.1 (Proyección de usuarios Voz, Datos y Video), la Tabla 3.81 detalla el número de usuarios proyectados según el tipo de plan y servicio que se obtienen durante el período de análisis.

					Peri	odos	en A	กัดร			
Detalle	0	1	2	3	4	5	6	7	8	9	10
Usuarios Plan 256 (compartici ón 1-1)		34	58 2	830	108 5	134 8	161 8	189 7	218 4	248 0	278 5
Usuarios Plan 256 (compartici ón 4-1)		23 70	40 38	575 7	752 6	934 9	112 27	131 60	151 52	172 04	193 17
Usuarios Plan 512 (compartici ón 1-1)		17 1	29 1	415	543	674	809	949	109	124 0	139
Usuarios Plan 512 (compartici ón 4-1)		11 85	20 19	287 8	376 3	467 5	561 3	658 0	757 6	860 2	965 9
Usuarios Plan 1024 (compartici ón 1-1)		11 4	19 4	277	362	449	539	632	728	827	928
Usuarios Plan 1024 (compartici ón 4-1)		79 0	13 46	191 9	250 9	311 6	374 2	438 7	505 1	573 5	643 9
Total Usuarios		49 72	84 71	120 75	157 87	196 11	235 49	276 06	317 84	360 87	405 20

Internet/tel efonía										
Usuarios Plan Básico	10 23	21 67	334 6	456 0	581 1	709 9	842 5	979 2	111 99	126 49
Usuarios Plan Premium	10 47	22 19	342 6	466 9	594 9	726 8	862 6	100 25	114 66	129 50
Usuarios Plan Súper Premium	36 5	77 4	119 5	162 9	207 5	253 5	300 9	349 7	400 0	451 7
Total Usuarios Video (IPTV)	24 35	51 60	796 6	108 57	138 35	169 01	200 60	233 14	266 65	301 17
Total Usuarios Video (VoD)	12 2	25 8	398	543	692	845	100	116 6	133 3	150 6

Tabla 3.81 # de Usuarios proyectados según el tipo de plan y servicio de Internet/Telefonía y Video (IPTV, VoD). (Bacuilima Z. 2009).

La Tabla 3.82 detalla los ingresos que se obtienen según las tarifas y usuarios proyectados en las tablas 3.79 y 3.80 respectivamente.

Ingresos		Periodos en Años													
	0	1	2	3	4	5	6	7	8	9	10				
Por															
inscripción															

Internet / Telefonía	248	600	423	557	180	185	612	5	180	196	915	707	923	908	215	175	221	630
IPTV	121	750	136	240	140	344	537	148	873	153	340	157	940	678	167	558	7/1	585
VoD	36	53	40	87	42	433	36	44	66	46	00	4/	24 200	80	20	27	21	78
Ingreso Total por inscripción (\$)	014000	374003	F62994	202004	324743		334485	244520	244320	354855	000100	365501		376466	207760	201100	300303	CECEE
Por # usuarios/a																		
usuai 105/a																		

Por # usuarios/a ño.																				
Internet / Telefonía	/9/9	525	2	0295	1643	5948	2148	8771	5669	3179	5992	3179	5669	3179	5003	3179	5097	3179	<u>'</u>	3179
IPTV	5493	36	1164	052	1611	210	5448	362	3121	079	3812	947	4525	571	5259	57	6015	598	6794	302
VoD	146	10	308	59	411	98	651	43	830	07	101	408	120	361	139	882	159	989	180	700
Ingreso Total por # usuarios/a ño (\$).	7331/71	1.41.00.1	1272530	ထ	1828095	9	2400327		2989726	5	3060753	4	3133911	_	3209263	ထ	32868/6	9	3366818	С
Ingreso Total (\$)	7/05	473	1328	9190	1860	5699	2433	7761	3024	1785	3080	2390	3170	4612	3246	9102	3325	6526	3406	7573

Tabla 3.82 Ingresos Totales de servicios de Internet/telefonía y Video (IPTV, VoD). (Bacuilima Z. 2009).

9.2 Determinación de Costos.

Se consideran los costos necesarios para la red de acceso inalámbrica de última milla WiMAX Móvil, la mayoría de fabricantes existentes en el mercado tienen la política de no publicar los precios de sus productos, por lo que la estimación de costos total del proyecto se realizará utilizando precios aproximados. La Tabla 3.83 muestra los Costos de la infraestructura de última milla WiMAX Móvil.

Estación Base BreezeMAX	C.
Lotation Base Breezewit VX	Unitario
Shelf Estación Base, incluye Modulo de	\$
ventilación (AVU)	5.000,00
Modulo de Suministro de Energía (PSU).	\$
Modale de Callimiene de Energia (1 00).	1.000,00
Modulo de Interfaz de Energía (PIU).	\$
Modale de Interiaz de Energia (1 10).	1.000,00
Modulo de Procesamiento de Red (NPU).	\$
module de l'iococalimente de l'ioc (i'ii e).	10.000,00
Modulo de Unidad de Acceso (AU-IDU).	\$
	7.000,00
Modulo de Unidad de Acceso (AU-ODU).	\$
Module de emidad de Modese (Me ebe).	4.000,00
Antena sectorial	\$
	1.000,00
Cable conexión IDU a ODU (30m).	\$

	110,00
Cable conexión ODU a Antena (0,5m).	\$
	100,00
Total Estación Base BreezeMAX	\$
	29.210,00
Sistema de Gestión AlvariSTAR	C.
Cioterna de Cecucii 7 avano 17 a c	Unitario
Infraestructura Alvaristar	\$
	5.000,00
Herramienta de Gestión.	\$
	1.500,00
Total Sistema de Gestión AlvariSTAR	\$
Total disterna de destion Alvano l'Alv	6.500,00
ASN-GW Cisco 7609 chassis	C.
ASIN-GW CISCO 7009 Chassis	Unitario
Cisco 7609-S Chassis including Fans	\$
Oloco 7 000 O Oliasolo iliciadilig i alia	5.000,00
Modulo SAMI Cisco WS-SVC-SAMI-BB-K9	\$
Widdaio of the close vio over the beautiful be the	65.000,00
Modulo Supervisor Engine 720-3BXL	\$
	30.000,00
Modulo Power Supply SUP7203B	\$
	22.000,00
Conexión al Backbone, Puertos STM-64, SPA-	\$

OC192POS-VSR	33.000,00
Conexión a las BS, 8-Port OC-3/STM-1	\$
SONET/SDH	22.000,00
	\$
Total ASN-GW Cisco 7609 chassis	177.000,0
	0
Estación Usuario	C.
Estación estano	Unitario
CPE Outdoor	\$
Of E Outdoor	500,00
CPE Indoor	\$
OF E INGOOF	100,00
Tarjetas PCMCIA y/o USB	\$
Taljetas i CiviciA y/O OOD	120,00

Tabla 3.83 Determinación de costos de infraestructura WiMAX Móvil. (Bacuilima Z. 2009).

En el Capitulo 3, numeral 3.2, Disponibilidad de licencias de espectro, se hizo referencia a valores referenciales para la concesión de frecuencia para la banda de 3GHz. Mientras que el costo de concesión de audio y video esta dado de acuerdo a la reglamentación del Conartel. (Carrillo 2008).

El numero de dispositivos de usuario (CPE Outdoor, Indoor, Tarjetas PCMCIA y/o USB, Set top Box), que se deberán ir adquiriendo estará de acuerdo al crecimiento del mercado estimado en la Tabla 3.81.

En el Capitulo 3, numeral 8.1, Localización de las estaciones base, se hizo referencia a la posible ubicación y numero de sitios necesarios para el despliegue de las BS, en donde para cada lugar se han considerado factores como: Adecuación de los nodos (obra civil), Sistema de: protección contra rayos, puesta a tierra, respaldo de Energía (generador y baterías). La Tabla 3.84 muestra los costos de inversión considerados necesarios para la red de acceso de última milla WiMAX Móvil para la banda de 3GHz.

								P	er	io	do	os	е	n.	Αi	ño	S						
Concento		()	1	1	2	2	9	3	4	ŀ	E)	5	6)	7	7	W	3	O))	1	0
Concepto		ntid	Sto	ntid	sto	ntid	sto	ntid	sto	ntid	sto	ntid	sto	ntid	sto	ntid	sto	ntid	ots	ntid	Sto	ntid	sto
Total Estación	- (15	7.0		0	3		9	00	9	95	6	90	6	0.0	9	95	7	7.	7	7.0	0	0
Base			1				-)		2		2		•)		2		2		
BreezeMAX																							
Antena sectorial		45	00	0	0	45	00	36	00	36	00	36	00	36	00	36	00	42	00	42	00	0	0
Total Sistema de	00	_	0(0		0		0		0		0		0		0		0		0		0
Gestión	650		920																				
AlvariSTAR	9		9																				
ASN-GW Cisco	90	_	90		0		0)(0		0		0		0		0		0		0
7609 chassis	C		ر ر						S)														
CPE Outdoor	} (1 -	91	- 7	52	- 1	67	- 1	<u>∞</u>	- 0	15	- 1	50) (·	<u>ဂ</u>	- 0	40	- (96		30	9 (30

Tabla 3.84 Determinación del CAPEX. (Bacuilima Z. 2009).

Para los costos que hacen referencia a Publicidad se ha realizado la consideración de que para el año de inicio estos serán el 15% de los ingresos estimados para el primer año de funcionamiento y para el resto del período de análisis sean el 10% de los ingresos por año, mientras que los gastos correspondientes al personal se encuentran dentro de los costos de Operación y Mantenimiento de Red y estos serán el 60% de los ingresos para los dos primeros años y del 30% para los siguientes años.

La Tabla 3.85 muestra los gastos estimados de operación, mantenimiento y administración.

OPEX	Periodos en Años												
UPEX	0	1	2	3	4	5	6	7	8	9	10		
Publicidad	582	582	337	057	377	417	623	046	691	265	675		
Operación y Mantenimiento de Red	0	4623 284	7973 514	3419	1087	2706 2706	9288	9517 384		9766	1022 0272		
Suministros de Oficina	77	71 60	13 23	13 89	14 59	GL GL	9 L	9L 9L	£2 71	69 81	19 55		
Arriendo sitios de BS	006	006	006	80L	144 000	180	216 000	222	788	330	372 000		
Servicios Básicos	00	00	09	09	80	00	20	40	09	00	40		
Imprevistos	00	93	00 15	69 46	7.7 93		80 4	84 43	88	20 20 20 20 20 20 20 20 20 20 20 20 20 2	97 73		

Seguro- Equipos	485	485	99	69/	177	867	789	651	243	763	422	327	303
Total OPEX (\$)	1319	5943	231	CLOL	6328	1826	4935	1583	3298	8138	3300	5107	1447

Tabla 3.85 Determinación del OPEX. (Bacuilima Z. 2009).

El valor que hace referencia al pago de los proveedores de contenido de canales de audio y video es \$15 para un mínimo de 1500 usuarios, las mensualidades por canales de audio y video son las tarifas establecidas por el Conartel por cada canal de audio y video. (Carrillo 2008).

Mientras que para determinar el valor de transporte de tráfico a través de redes TDM (PDH, SDH), se realizo un benchmarking de tarifas y se realizo una proyección de tarifas a los valores de capacidad de transporte necesarios. La Tabla 3.86 muestra un Benchmarking de tarifas de transporte de E1.

Costo E1	Tarifas [USD]
CNT	\$ 680,00
GlobalCrossing	\$ 750,00
Transnexa	\$ 750,00

Tabla 3.86 Benchmarking de costos de un E1. (Bacuilima Z. 2009).

La Tabla 3.87 muestra la proyección de costos de transporte, redes TDM (PDH, SDH).

Capacidad	Mbps	V. Mensual
E1	2,048	\$ 680,00
E2	8,448	\$ 2.805,00
E3	34,368	\$ 11.411,25
E4	139,264	\$ 46.240,00
STM-1	155,52	\$ 51.637,50
STM-4	622,08	\$ 206.550,00
STM-16	2488,32	\$ 826.200,00
STM-64	9953,28	\$ 3.304.800,00

Tabla 3.87 Proyección de costos de transporte redes TDM (PDH, SDH). (Bacuilima Z. 2009).

El valor de proyección de los costos descritos en la Tabla 3.87, se encuentra sujeto a un porcentaje de descuento, mientras más sea la capacidad que se contrate a los proveedores, se tendrá un mayor descuento, ante los cual se asume un costo promedio de un E1 de \$250, y se realiza la proyección para enlaces STM (STM-1, STM-4, STM-16, STM-64), como se muestra en la Tabla 3.88.

Capacidad	Mbps	V. Mensual
STM-1	155,52	\$ 18.984,38
STM-4	622,08	\$ 75.937,50
STM-16	2488,32	\$ 303.750,00
STM-64	9953,28	\$ 1.215.000,00

Tabla 3.88 Proyección de costos de transporte redes SDH, con descuento. (Bacuilima Z. 2009).

La Tabla 3.89 muestra los gastos considerados de servicios generales.

COGS				Pe	riod	os e	n A	ños			
COGS	0	1	2	3	4	5	6	7	8	9	10
Pago por Contenid o Video y Audio		270000	270000	270000	270000	270000	270000	270000	270000	270000	270000
STM-1 de transport e Video- Audio		193641	193641	193641	193641	170859	170859	159469	159469	159469	159469
Mensuali dad Canal de Video.		10800	10800	10800	10800	10800	10800	10800	10800	10800	10800

Mensuali dad Canal de Audio.	096	096	096	096	096	096	096	096	096	096
STM-1 de Internet	1020 000	1836 000	2448 000	3264 000	000 009E	4320 000	4/04	5544 000	6216 000	950/
STM-1 de Transpor te BS	1300500	1127100	1560600	2080800	2295000	2754000	2998800	3427200	3927000	4426800
Total COGS (\$)	27959	34385	44840 01	\circ	63476	75266	4	94124	10584 229	11924 029

Tabla 3.89 Determinación del COGS. (Bacuilima Z. 2009).

Con los valores obtenidos se realiza un análisis económico para evaluar indicadores tales como el VAN y el TIR, con el fin de apreciar si el proyecto es rentable y en cuanto tiempo se recupera la inversión. La Tabla 3.90 muestra el análisis de costos del proyecto.

	Periodos en Años												
	0	1	2	3	4	5	6	7	8	9	1 0		
Ingreso Total (\$).	0	773	1328	1800	2433 7761	3024 1785	2390	317U 4612	3240	3325	340b 7573		
Total OPEX (\$).	1319	5945 231	GLOL	1321	7001	7671	3025 C971	1323	3300	1402	1442		

Total COGS (\$).		0		27.95	3438 F01	4484	2001	2020	0347	,528	619	8144	3412	1058	119Z 4029
Total Costos de Operación (\$).	1310	0 0 0	700	6739	1339	1776	3791	1303	1880	2333	0417	2138	2304	2460	2034 5480
Total CAPEX (\$).	331	978	_	586	277	760		467	895		480	245	265	827	880
Depreciación equipamiento (\$).				24 <i>2</i> 831	3/9 636		333		998	966	986	881	711	663	151
EBITDA		1319	587	1033	3056	84.19	80,78	0442	1137	7483	1972	1032	9423	3047	7722 084
Utilidad Antes de impuestos (\$).	T	1319	587	1276	6853	C7C7	72	1007	1501	3582	OOR	5016	79767	7070	567 567
15% Participación de Trabajadores (\$).		0		0	0	3/88	9	/+ /¤۵	1220	1438	301	1305	196	<u>1000</u>	9060 85
25% Impuesto a la Renta (\$).		0		0	0	926	72	588	438	7 0	017	452	495	249	362
Utilidad Neta Operativa (\$).	ı	1319	587	1276	6853	01.01	16	1017 667	0013	0168	529	5096	5084	4507	3850 861
Flujo de Caja (\$).	1	4639	368	2932	2548	1989		7007	4484	3328	664	3501	2/38	3149 206	26U2 059
Interés	12	2%													
Valor Actual Neto (\$).	36	632	27												
Tasa Interna de Retorno	13	3%													
Periodo de Recuperación (Años)	4														

Tabla 3.90 Resultados del Análisis de Costos. (Bacuilima Z. 2009).

Se puede apreciar que se recupera la inversión luego de 4 años, con una tasa de retorno interno del 13%. Esta red de acceso de última milla WiMAX Móvil, se convierte en una solución atractiva debido al hecho que brinda excelentes características técnicas, así como un fácil, rápido despliegue y gran cobertura en zonas de difícil acceso.

Capitulo 4

Conclusiones y Recomendaciones.

1 Conclusiones.

WiMAX se presenta como una buena opción para ofrecer acceso de última milla a zonas donde se encuentran saturadas o no llegan las redes cableadas de cobre, coaxial y fibra óptica, debido a los costos competitivos, que puede igualar ó disminuir los elevados costos de las redes cableadas y la facilidad de despliegue TTM, que disminuye las excesivas demoras de instalación.

WiMAX es una opción tecnológicamente viable para ofrecer servicios de valor agregado como voz, datos y video, en una Red Híbrida, que tenga como parte principal la red

cableada y como acceso de última milla una red inalámbrica.

El usuario en conformidad con sus necesidades y expectativas será quien defina la tecnología predominante en el mercado, ante esto los tipos de servicios y tarifas que ofrezca el operador tendrán un importante efecto sobre la tecnología adoptada.

Las dos versiones de WiMAX, Fijo (IEEE 802.16d-2004) y Móvil (IEEE 802.16e-2005), son especificaciones diferentes y por el momento incompatibles entre sí, la elección del estándar depende del los tipos de servicios a brindar y del modelo de negocio del operador.

WiMAX en su versión Fija y Móvil satisfacen diferentes tipos de requerimientos, pero se podría decir que la convergencia favorecerá a WiMAX Móvil debido a que la movilidad atrae a los usuarios y proveedores, además los dispositivos móviles pueden ser desplegados como terminales fijos, lo que no sucede con un terminal fijo que no puede ser móvil.

Dentro de las reglamentaciones en Telecomunicaciones en el país, los servicios basados en WiMAX Móvil todavía no

se consideran, debido a esto no se podría ofrecer movilidad en las bandas mencionadas, hasta que se tenga una revisión de frecuencias disponibles y el estándar IEEE 802.16e se incluya dentro de las reglamentaciones, WiMAX Móvil puede proporcionar soluciones fijas, nomádicas y portables, por tanto hasta que se tenga regulación de movilidad se podría ofrecer estos tipos de soluciones.

Al ser WiMAX Móvil una tecnología que posee varias ventajas con respecto a los sistemas cableados tradicionales, aunque estos son más robustos y eficientes que cualquier enlace radio, algunos podrían presionar para que se introduzcan políticas proteccionistas, creando barreras de acceso, en consecuencia, se debe generar un especial interés en la forma de cómo se va a Regular el uso de esta nueva tecnología, con el fin de brindar facilidades a los proveedores en la implementación.

WiMAX Móvil, comparado con los sistemas cableados, disminuye los posibles efectos negativos al medioambiente, permitiendo reducir el impacto visual y urbanístico, utilizando técnicas de camuflaje ó mimetización, además cumple con la normativa vigente en cuanto a emisiones electromagnéticas, expresada en reglamentos nacionales e

internacionales, debido a que las radiaciones a esas frecuencias son "no ionizantes".

Los costos que involucra la implementación de la red de acceso al usuario final con tecnología WiMAX Móvil, muestran que es una solución altamente atractiva debido al gran ahorro de costos en relación a planta externa con la instalación de cobre, sumado al hecho de brindar excelentes características técnicas, un fácil y rápido despliegue.

La herramienta informática que se desarrollo, permite estimar de manera sencilla y aproximada el radio de cobertura y el # de BS, en función de: el porcentaje de área donde la potencia de la señal es la suficiente para producir una aceptable comunicación y de la capacidad de tráfico estimada según el número de usuarios a los que se pretenda servir, los resultados obtenidos son aceptables y muestran que las capacidades reales del sistema WiMAX no son los 72 Mbps de capacidad ni los 50 km de alcance.

2 Recomendaciones.

Si bien se realizo la estimación del número de estaciones base necesaria para dar servicios inalámbricos de banda

ancha en toda el área geográfica de la zona urbana, se debería considerar las zonas donde exista la mayor concentración de tráfico, esto nos permitirá estimar de mejor manera la ubicación de las estaciones base.

Para determinar de forma optima el mercado de clientes y la diferenciación de servicios a brindar se deberá realizar un análisis más detallado acerca de los posibles usuarios, tanto en el aspecto demográfico, como psicográfico en la zona que se pretenda dar servicio.

Se debe tener presente que la estimación de costos total del proyecto se realizo utilizando precios aproximados, debido a que la mayoría de fabricantes existentes en el mercado tienen la política de no publicar los precios de sus productos.

Anexos

ANEXO 1 Especificaciones Técnicas de Fabricantes de equipos WiMAX.

A1.1 Alvarion.

BreezeMAX™

Specifications

Radio and Modem

Frequency 3.650 3.675 GHz

(hard ware ready for 3.650-3.700)

Radio access method TDMA TDD

Modulation OFDM 256 FFT with adaptive sub-carrier modulation: BPSK, QPSK, 16QAM, 64QAM and upstream OFDMA

Channel bandwidth 3.5 MHz, 5 MHz, 7 MHz*, 10 MHz*

(SW selectable)

Central frequency resolution

125 KHz

Antenna for CPE

Integrated vertical and horizontal

antenna

Out door CPE 17 dBi at 3.65 3.7 GHz

Indoor Si CPE

Six integrated antennas with 9 dBi, plus external port for window patch and support of OFDMA to allow full EIRP

Sensitivity typical values -80dBm for highest modulation (QAM64) @ 5 MHz -98 dBm for lowest

modulation (BPSK) @ 5 MHz

Data Communications

Data IEEE 802.3 CSMA/CD

Air Interface IEEE 802.16-2004 / IEEE 802.16-2005

VLAN support Traffic classification IEEE 802.1Q

Layer 2/3 IEEE 802.1p, IP DiffServ

Code Points DSCP

Voice Gateways

Primary voice 1.5 hours, battery backup

Managed voice For OoS management and admission control

Data and voice services Integrated in single box

Interfaces One of two RJ11 connectors

for analog phones

Services Class 5

VolP protocol

Speech codeics 6.711, 6.729ab, AMR

Environmental

Parameter	I ndoor Unit	Outdoor Unit
Operating Temperature	ٰC to 40°C (32°Fto 104°F)	-40°C to 55°C (-40°F to 131°F)
Operating Humidity	5-95% non-condensing	5-95% non condensing, weather protected

Standard Compliance

EM C

ETSI EN 301 489-1

Safety EN 60950 (CF), CR, JEC 60 950 JIS/C

(TUV)

Environmental ETS 300 019

(part 2-1 T 1.2 & part 2-2 T 2.3 for indoor & outdoor). (part 2-3 T 3.2 (or indoor, part 2-4 T 4.1E for outdoor)

Radio

FCC part 27, ETSI EN 301 021 V1.4.1, ETSI EN 301 753 V1.1.1

Alvarion WiMAX™ End User Devices

^{*} Future channel bandwidth options

Specifications

Value Intel	Beæem	Becem	GCT
ai			
2305-2360 MHz	2300-2400 MHz	2300-2400 MHz	2495 - 2695 MHz
WCS: 2305 - 2315 MHz WCS: 2350 - 2360 MHz 2496 - 2690 MHz	2495-2695 MHz	2495-2695 MHz	
3300-3600 MHz 3650-3700 MHz	3400 - 3600 NHz	3400 - 3600 MHz	NA
TDMA TDD	TO MA TOD	TO MA TOD	TDMA TOD
BPSK, QPSK, 16QAM,	BPSK, QPSK, 15QAM,	BPSK, QPSK, 16QAM,	BPSK, Q>SK, 16QAM,
			64QAM
3.5, 5 MH2	5,7, 10 MH2	5, 7, 10 MHZ	5, 10 MHz
12 dp: +1 2 Cun	11 do: ++ 12 dus	NO	No
14 dBi at 2.5 GHz	12 dBi at 2.5 GHz	IV.	NAT
6 integrated antennas 7 dBi each for 2 3/2.5 GHz	2x4 integrated antenna 5.5 dBi at 2.3 GHz, 6 dBi at 2.5 GHz, 8 dBi	2 dBi	2 dBi
-77dBm for 64QAM at 5 MHz -97 dBm for BPSK at 5 MHz	-85dBm for 16QAM 3,44 at 10 MHz -95 dBm for QPSK 1,2 at 10 MHz	-015 dBm for 16Q kM 3,44 at 10 MHz -925 dBm for QPSK 1/2 at 10 MHz	-01.5 dBm for 16QAM 3.44 at 10 MHz -92.5 dBm for QPSK 1. at 10 MHz
JEEE 802 16-2004 / JEEE	IEEE 802 16-2005	JEEF 802 16-2005	IEEE 002, 16-2005
002.16-2005	.ELL 602.10·2003		10-2003
10180	1018 H		
connectors	connectors	1	NA .
			USB 2.0
10/100 Base-T kJ45 connector	10/100 Base-TRI45 connector	NA	NA
Yes	Yes (no static I)	Yes(no static IP)	Yes (no static IP)
Yes	Yes	NA	NA
Yes	Yes	Yes	Yes
No	Yes	No	No
Yes	Yes*	No	No
Yes	Yes	NA .	NA.
		114	114
			NA NA
ves	ves	NA	NA
Ves	Yes	NA	NA
1			
Ves	Yes	NA	NA
		NA	NA
H.323 or 9P	SIP	NA	NA
Yes	Yes	NA	NA
Yes	Yes	NA	NA.
Yes	Yes	NA	NA
Yes	Yes	NA	NA
G.711 (U-law and A- law) , G.729ab	G.711 (U-law and A- law), G.729ab AMR	NA	NA
Yes	No	NA	NA
100-040 Vec 50 50**-	100-040 Verd 50 5005	Host NC	Host PC
Outdoor CPE:25W	Outdoor CPE:25W Si: 21W	NA NA	NA NA
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Ves
			Ves
			Ves
162	res	resi	Yes
FCC part 27 FTS1 RN 2013	23-2.4: FCC nart 15 PM	23-24:FCC nart 15 FM	2.495-269: FCC part
021 V1.4.I	302 326-1 V11.1, BN 302 326-2 V 1.1.2, 2.495-2.69: FCC part 15,27, ETS B1302 326-1 V11.1.1, BN 302 326 V1.1.2	302 326-1 V1.1.1, BN 302 326-2 V1.1.2, 2.495-2.59: FCC part 15:27, ETSI BN 302 326-1 V1.1.1, BN 302 326 V1.1.2	15,27, ETSI BN 302 326-1 VI.1.1, BN 302 326 VI.I.2
	3300-3600 M He 3300-3600 M He 3550-3700 M He 1DMA TDD BPSK, QPSK, 16QA M, 64QA M 3.5, 5 MHe 13 dBi at 2.3 GHz 14 dBi at 2.5 GHz 17 dBi at 3.5 GHz 6 integrated anternas 7 dBi each for 2.32.5 GHz 9 dBi for 3.5 GHz -77 dBm for 64QA M at 5 MHz 1EEE 802.16-2004 / IEEE 802.16-2005 1 X 10/100 Base-T RI45 connectors	3300-3600 MHz 3400-3600 MHz 3650-3700 MHz TDMA TDD BFSK, QFSK, 15QA M, 64QA M 3.5, 5 MHz 5,7, 10 MHz 13 dBi at 2.3 GHz 14 dBi at 2.5 GHz 14 dBi at 2.5 GHz 15 dBi at 2.3 GHz 14 dBi at 2.5 GHz 15 dBi at 3.5 GHz 16 dBi at 2.5 GHz 15 dBi at 3.5 GHz 16 dBi at 2.5 GHz 15 dBi at 3.5 GHz 15 dBi at 3.5 GHz 16 dBi at 2.5 GHz 15 dBi at 3.5 GHz 16 dBi at 2.5 GHz 15 dBi at 3.5 GHz 16 dBi at 2.5 GHz 16 dB	300 - 3600 MHz 3400 - 3600 MHz 3400 - 3600 MHz 3600 3600 MHz

AlvariSTAR™

Specifications	
radit Managemen.	Event logging
	Faut presentation on the map
	Cohe-coding according to fault severity
	Faut filtering by various attributes
	Event correlation and suppression
	Event forwarding to northbound managers
	Alains auknowledgement
	Event severity change
	Automatic email initialization upon fault detection
	Historical event queries
Configuration Management	
configuration management	Auto-discovery of new or changed equipment
	Multiple network-element configuration
	Inventory management
	Inventor; management
Software Download manager	
	Efficient software upgrade management for multiple network elements
	Scheduled execution (to manage peak hours)
	Automatic invocation of device oriented operations (e.g. boot from shadow)
Network view	
	Geographical Topology
	Multi zoom levels from regional network views down to NE
	Logical topology
	Physical topology
	Locations management by regions, cells and sectors
Service Management	Automatic or manual association of devices to locations
Service Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Rea-time performance monitoring (and graphing)
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Rea-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Rea-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data
-	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Rea-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics
Performance Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Rea-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data
Performance Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization
Performance Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management
Performance Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups
Performance Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management
Service Management Performance Management Security Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups
Performance Management Security Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups
Performance Management Security Management	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups
Performance Management Security Management Architecture	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR
Performance Management Security Management Architecture	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR management information and processes.
Performance Management Security Management Architecture	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR
Performance Management Security Management Architecture Operating Systems	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR management information and processes.
Performance Management Security Management Architecture Operating Systems	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR management information and processes.
Performance Management Security Management Architecture Operating Systems Database	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR management information and processes.
Performance Management Security Management Architecture Operating Systems Database	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server arc hitecture. Multiple clients can access AlvariSTAR management information and processes. Wirdows, Sobris Oracle, Versant, MySQL
Performance Management Security Management Architecture Operating Systems Database	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server arc hitecture. Multiple clients can access AlvariSTAR management information and processes. Windows, Solaris Oracle, Versant, MySQL PN 715000: AlvariSTAR Infrastructure (required)
Performance Management Security Management Architecture Operating Systems	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the-air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server architecture. Multiple clients can access AlvariSTAR management information and processes. Windows, Sobris Oracle, Versant, MySQL PN 715000: AlvariSTAR Infrastructure (required) PN 715001: PreezeMAX Device Driver (optional)
Performance Management Security Management Architecture Operating Systems Database	Automatic or manual association of devices to locations Service profile management and distribution Fast service provisioning Service configuration prior to CPE installation - service activated automatically on installation Real-time performance monitoring (and graphing) Scheduled collection of performance statistics Over-the air traffic load statistics Wireless link performance data Quality of service statistics Multi-level access authorization Users and user groups management Functional authorization per users and user groups Location-based authorization per users and user groups Distributed client-server arc hitecture. Multiple clients can access AlvariSTAR management information and processes. Windows, Solaris Oracle, Versant, MySQL PN 715000: AlvariSTAR Infrastructure (required)

A1.2 Airspan.

Technical Datasheet - Base Stations

	HiperMAX	MacroMAXe	MacroMAXd
Mobile WiMAX	Yes	Yes	No
Fixed WiMAX	Yes	No	Yes
Standards Compliance	IEEE802.16e-2005	IEEE802.16e-2005	IEEE802.16-2004
^	IEEE802.16-2004		
Form Factor	Split Indoor / Outdoor and all Outdoor	All Outdoor	Indoor
Frequency Bands	2.3GHz, 2.5GHz, 3.3GHz, 3.5GHz,	2.3GHz, 2.5GHz, 3.5GHz	3.5GHz
	3.7GHz, 4.9GHz (700MHz - Future)	(700MHz - Future)	
Channel Size	20MHz, 2x10MHz, 10MHz, 7MHz, 5MHz,	20MHz, 2x10MHz, 10MHz, 5MHz	3.5MHz
	3.5MHz, 1.75MHz		
FFT	2048, 1024, 512, 256	2048, 1024, 512	256
Duplex Method	TDD, FDD, H-FDD	TDD (FDD - Future)	FDD
Tx Power (Frequency band dependant)	Up to 4x +40dBm	2x +40dBm	2x +35dBm
Maximum EiRP per sector	+63dBm	+60dBm	+53dBm
GPS Synchronization	24hr holdover, Distributed	8hr holdover, Integrated	No
STC	Yes	Yes	Yes
MRC	Yes	Yes	Yes
OMIM	4x2, 2x2	2x2	No
MIMO Matrix Type	Matrix A, Matrix B	Matrix A, Matrix B	No
CSM	Yes	Yes	No
Beamforming	Yes	No	No
Uplink Sub-Channelization	Yes	Yes	Yes
PUSC	Yes	Yes	No
Fractional Frequency Reuse	Yes	Yes	No
Dynamic Frequency Selection (DFS)	No	No	No
Ethernet CS	Yes	Yes (Future)	Yes
IP CS	Yes	Yes	No
IP version support	IPv6, IPv4	IPv6, IPv4	IPv4
Network Interface	1000bT Ethernet / R6	1000bT Ethernet / R6	100bT Ethernet
End to End VLAN (802.1Q)	Yes	No	Yes
Network VLAN Traffic Segregation	Yes	Yes	Yes
ASN Profile	Profile C	Profile C	No
Supported Usage Scenarios	Mobile, Portable, Nomadic, Fixed	Mobile, Portable, Nomadic, Fixed	Nomadic, Fixed
Handover Supported	Yes	Yes	No
Encryption	DES, AES	AES	DES, AES
Authentication	PKM, PKMv2, EAP-TLS, EAP-AKA, EAP-SIM	PKM, PKMv2, EAP-TLS, EAP-AKA, EAP-SIM	PKM
Environmental (outdoor elements)	ETS 300 019-1-4 Class 4.1E	ETS 300 019-1-4 Class 4.1E	ETS 300 019-1-4 Class 4.
Environmental (indoor elements)	ETS 300 019-1-3 Class 3.2		ETS 300 019-1-3 Class 3.

MicroMAXe	MicroMAXd	
Yes	No	Mobile WiMAX
No	Yes	Fixed WiMAX
IEEE802.16e-2005	IEEE802.16-2004	Standards Compliance
		l
All Outdoor	Split Indoor / Outdoor	Form Factor
2.3GHz, 2.5GHz, 3.3GHz, 3.5GHz, 3.7GHz,	1.5GHz, 3.3GHz, 3.5GHz, 3.7GHz, 4.9GHz,	Frequency Bands
4.9GHz, 5.4GHz, 5.8GHz, (700MHz - Future)	5.1GHz, 5.4GHz, 5.8GHz, 5.9GHz	
20MHz, 2x10MHz, 10MHz, 5MHz	10MHz, 5MHz, 3.5MHz, 1.75MHz	Channel Size
2048, 1024, 512	256	FFT
TDD (FDD - Future)	TDD, FDD	Duplex Method
Up to 2 x +36dBm	+27dBm	Tx Power (Frequency band dependant)
56dBm	44dBm	Maximum EiRP per sector
		l
8hr holdover, Integrated	Distributed	GPS Synchronization
Yes	No	STC
Yes	No	MRC
2x2	No	MMO
Matrix A, Matrix B	No	MIMO Matrix Type
Yes	No	CSM
No	No	Beamforming
Yes	Yes	Uplink Sub-Channelization
Yes	No	PUSC
Yes	No	Fractional Frequency Reuse
Yes	Yes	Dynamic Frequency Selection (DFS)
Yes (Future)	Yes	Ethernet CS
Yes	No	IP CS
IPv6, IPv4	IPv4	IP version support
1000bT Ethernet / R6	100bT Ethernet	Network Interface
No	Yes	End to End VLAN (802.1Q)
Yes	Yes	Network VLAN Traffic Segregation
Profile C	No	ASN Profile
Mobile, Portable, Nomadic, Fixed	Nomadic, Fixed	Supported Usage Scenarios
Yes	No	Handover Supported
AES	DES, AES	Encryption
PKM, PKMv2, EAP-TLS, EAP-AKA, EAP-SIM	PKM	Authentication
ETS 300 019-1-4 Class 4.1E	ETS 300 019-1-4 Class 4.1E	Environmental (outdoor elements)
e	ETS 300 019-1-3 Class 3.2	Environmental (indoor elements)

Technical Datasheet - End User Devices

	MIMAX USB	EasyST-2	ProST-2
Mobile WiMAX	Yes	Yes	Yes
Fixed WiMAX	No	Yes	Yes
Standards Compliance	IEEE802.16e-2005	IEEE802.16e-2005	IEEE802.16e-2005
_		IEEE802.16-2004	IEEE802.16-2004
Form Factor	USB 2.0	Indoor Self-Install	Outdoor
Frequency Bands	Quad Band Device	1.5GHz, 3.3GHz, 3.5GHz,	1.5GHz, 3.3GHz, 3.5GHz,
	2.3-2.4GHz, 2.496-2.69GHz,	3.7GHz, 4.9GHz, 5.8GHz	3.7GHz, 4.9GHz, 5.1GHz,
	3.3-3.8GHz, 4.9-5.8GHz	* * * * * * * * * * * * * * * * * * * *	5.4GHz 5.8GHz, 5.9GHz
	(700MHz - Future)		
Channel Size	10MHz, 8.75MHz, 7MHz, 5MHz	10MHz, 7MHz, 5MHz, 3.5MHz, 1.75MHz	10MHz, 7MHz, 5MHz, 3.5MHz, 1.75MHz
FFT	512, 1024	1024, 512, 256	1024, 512, 256
Duplex Method	TDD	TDD, FDD	TDD, FDD
Tx Power (Frequency band dependant)	Up to 22dBm (2.3-2.4GHz, 2.496-	+24dBm	+24dBm
	2.69GHz, 3.3-3.8GHz)		
	up to 17dBm (4.9-5.8GHz)		
Rx Sensitivity	-100dBm @5MHz (QPSK) compliant	-103dBm	-103dBm
	with MRCT 1.0		
STC	Yes	Yes	Yes
MMO	2x2	No	No
MIMO Matrix Type	Matrix A, Matrix B	No	No
CSM	Yes	Yes	Yes
Beamforming	Yes	No	No
*			
Uplink Sub-Channelization	Yes	Yes	Yes
PUSC	Yes	Yes	N0
Fractional Frequency Reuse	Yes	Yes	NC NC
Ethernet CS	No	Yes	Yes
IP CS	Yes	Yes	Yes
IP version support	IPv6, IPv4	IPv6, IPv4	IPv6, IPv4
User Interface	USB 2.0	10/100bT Ethernet, WiFi, POTs	10/100bT Ethernet, WiFi, POTs with
_		with integrated RGW	integrated RGW
End to End VLAN (802.1q)	No	Yes	Yes
Supported Usage Scenarios	Mobile, Portable, Nomadic	Nomadic, Fixed	Fixed
Handover Supported	Yes	Yes	No
Encryption	AES	DES, AES	DES, AES
Authentication	PKMv2, EAP-TLS, EAP-AKA, EAP-SIM	PKM, PKMv2, EAP-TLS, EAP-AKA, EAP-SIM	ΡΚΜ ΡΚΜΥΖ ΕΔΡ-ΤΙ Σ ΕΔΡ-ΔΚΔ ΕΔΡ-ΣΙΜ

Technical Datasheet - ControlMAX

	AN-1	ST-16	ST-40
	AUL	0.13.0	51 M5
=======================================	-	•	
ASN-GW		•	
Home Agent		•	•
Enterprise Access Gateway		•	•
MPM AV			
WiMAX WiFi		•	•
WIFI		2000	•
Open R6 Interface	•	•	•
Distributed Profile C ASN Support	•	•	•
Centralized Profile C ASN Support	•	•	•
User Authentication	•	•	•
Device Authentication	•	•	•
Micro Mobility	•	•	•
Macro Mobility	•	•	•
300 0 0 0			
Paging Controller		•	•
Location Register		•	•:
M-EX-ID			
Mobile IP Simple IP	•	•	•
Simple in	•	•	•
Enhanced Charging Service	s	•	•
Intelligent Traffic Control			<u> </u>
Stateful Firewall		•	•
Content Filtering		•	•
Peer-to-peer Detection & Control		•	•
Reporting / Session Monitoring		•	•
			10-16
Session Recovery		•	•
Geographic Redundancy	•	•	•
		5	1
L2TP LAC		•	•
IPSec Encryption		•	•
Prepaid Accounting		•	•
Post Paid accounting		•	•
Hotlining Accounting		•	
Destination Based accounting		•	•
Layer 2 Traffic Management		•	•
Enhanced Lawful Intercept		•	•
Web Element Manager	•	•	•
3	· · · · · · · · · · · · · · · · · · ·		

Technical Datasheet - Netspan

Communication	Simple Object Access Protocol
s & Networking	(SOAP) Northbound Interface for
3	alarms and provisioning • Physical
	Connectivity: Ethernet • Client-Server:
	HTML over HTTP • Equipment
	Management: SNMP • Database: SQL
Fault	
Management	Events and Traps from 802.16f MIB
	and Private MIB • Active Alarm
	Monitoring • Alarm Customisation •
	Alarm Acknowledgement & Clear •
	Historical Storage / Logging of Alarms
	Alarm and Event Filtering
	Tracking
Configuration	
Management	Inventory Management • Auto
	discovery of network elements •
	Manual entry of network elements •
	Base Station Commissioning &
	Provisioning • Service Provisioning •
	State Tracking of all network elements
	Status Reporting of each network

	element • Network wide status reports
	Software Management • Software
	download scheduling • Import / Export
	of Configuration Profile
Performance	
Management	Periodic Measurements On
	Demand Measurements • Display of
	key performance indicators • Retrieval
	of RF Performance Statistics, Packet
	Counters and Ethernet Counters of all
	network elements • Historical storage /
	logging of statistics • Export of
	statistics data
Security	Password and Security Policy
Management	Management • Encrypted Password
	Storage • Form based authentication •
	Role based authentication • User
	activity logging • Multi-user support
Northbound	Service Provisioning • Service Profile
Interface	Definition • Inventory • Active Alarm
	Management
Database	Management of Fault and Event
Management	Storage • Management of Statistics

	Storage • Database Integrity Checks •
	Integrated Database Administration
GUI	Utilizes AJAX Technology for
	enhanced client experience • Support
	for customised user interface,
	including lists, home page, etc. •
	Integrated Help system • Advanced
	Filters and Search capabilities for
	rapid troubleshooting
Redundancy	Protection against failure of Services
	• Full SQL redundancy • Distributed
	Architecture for full server redundancy
	Support for RAID Controller for disk
	redundancy

A1.3 Siemens.

Technical Data

Standard Compliance	
Air Interface	IEEE 802.16-2004 OFDM 256FFT
Seamless upgrade towards	IEEE802.16e SOFDMA (Scalable OFDMA) OFDM 1024FFT
QoS	
Service Classes	Best Effort, Non-Real-Time/Real-Time Polling, Continuous Grant
Peak Data Rate	Configurable per Service, separately in Up/Down-link
Guaranteed Data Rate	Configurable per Service, separately in Up/Down-link
User Priority	Configurable per Service, separately in Up/Down-link
Radio Frequency Section	
Frequency band	3.4÷3.8 GHz
Duplex Mode WayMAX Basestation	FDD, TDD
Duplex Mode WayMAX Residential and Business	half-FDD (H-FDD), TDD
Sub-carrier Modulation	BPSK, QPSK, 16QAM, 64QAM adaptive
RF Channel size	1.75 ÷ 14 MHz SW configurable
Output power at antenna connector WayMAX Bases	station up to 35 dBm
Output power at antenna connector WayMAX Resid	lential and Business up to 27 dBm
Receiver Sensitivity @ 1.75 MHz/3.5 MHz	-103/-100 dBm ÷ -85/-82 dBm

WayMAX Basestation

-33 °C ÷ +55 °C

Networking	
Network Interface	10/100/1000 BaseT
Packets classification	Layer2 IEEE802.1p; Layer3 IP DSCP
Performance	
Sectors	up to 4 (4+1 protection)
Max net capacity (UL+DL)	320Mbps
Max # of Simultaneous Services	16384
Quality Aspects	
Environmental	ETSI EN 300 019
Acoustic Noise Emission	ETSI EN 300 753(6) class 3.1 Business
Radio	ETSI EN 301 021
EMC	ETSI EN 301 489
Safety	ETSI EN 60950
Power Supply	ETSI EN 300-132
Mechanical & Electrical	
Dimensions Shelf (HxWxD)	405x435x258 mm
Max Power Consumption 3 sectors Basestation	470 W
Operation Temperature indoor part	0°C÷+45°C

WayMAX Customer Premises Equipment

Operation Temperature outdoor part

Networking	
Data Interface WayMAX Residential Modem	10/100 BaseT
Data Interface WayMAX Business	10/100 BaseT; E1/T1 (Optional)
Packets classification	Layer2 IEEE802.1p; Layer3 IP DSCP
Networking functionalities	NAPT; DHCP; PPPoE
Performance	
Max # of simultaneous Services	Up to 16
Max Sustained Data Rate (UL+DL)	30 Mbps
Quality Aspects	
Environmental	ETSI EN 300 019
Acoustic Noise Emission	ETSI EN 300 753(6) class 3.1 Office
Radio	ETSI EN 301 021
EMC	ETSI EN 301 489
Safety	ETSI EN 60950
CE Marking	EU 1999/5/EC
Environmental Protection	WEEE Eco directive; 2002/95/EC (RoHS)
Mechanical & Electrical	
Dimensions WayMAX Residential (HxWxD)	150x140x50 mm
Dimensions WayMAX Business Outdoor Part (HxWxD)	160x160x60 mm
Max Power Consumption	25 W
Operation Temperature WayMAX Residential	0°C÷+40°C
Operation Temperature WayMAX Business	-33 °C ÷ +55 °C
Power supply	100-240 VAC; 50-60Hz

A1.4 ASN-GW.

Product: Cisco 7600 Series

Archi le cture	
Switch Pabric	Switch fabric: 720 Gbps crossbar fabric (Superu kor 720-38XL/RSP720-3CXL); option to histallisecond fully-redundant Sup720-38XL/RSP720-3CXL with onboard 720G switch fabric. Fully compatible with line cards with dual or single fabric as well as non-fabric enabled line cards such as EF kxWAN and SIPs.
Distribution of intelligence	Red undante uglues with switch tab rb Acoutrol plane functions. Serubesmay be applied centrally or distributed @uth DFCs).
Queuing, Buffering	6 4 Д000 que ues (32 Д000 lugress au d 32 Д000 egress) per SIP- 4000 w/bbi 25 6 М 8 b u/ber
Performance	
Switching Capacity	7613 - 720Gbps; (7609-S - 720Gbps; (7606-S - 480Gbps; (7604 - 320Gbps; (7603- S - 240Gbps
Full Euples Switching Capacity	7613 - 360Gbps; (7609-S - 360Gbps; (7606-S - 240Gbps; (7604 - 160Gbps; (7603- S - 120Gbps
Routing/Switching Performance	7613 - 400 Mpps; 7609-6 - 400 Mpps; 7606-6 - 270 Mpps; 7604 - 170 Mpps; 7603- S - 120 Mpps, (with distributed line cards)
Full Cuplet Service Performance	Up to 48Gbps persbt
Rack Dennity	7613 - 2 per rack; (7609-S - 2 per rack; (7606-S - 6 per rack; (7604 - 9 per rack; 7603-S - 11 per rack
Service Assurance	
Hardware Redundancy	Redundant CPU, switch tabric modules, load sharing power supplies (AC & DC), tans; 1:1 SONETAPS & MSP & ATM APS are supported
Redundant Power, Pans, Feeds	Yes, fully redundany power AC or BC power supplies and redundant tans
Redundant Switch Fabric/Forwarding Engine i	Yes
interface Redundancy 1:1	Yes
Interface Redundancy, 1:N	Yes
Redundant Hot Swappable Components	Yes
SONET APS	SOINET APS and SIDH MSP supported
RPR, Standard/Propletary	Res lient Ethernet
Resilience/A valiability	Likk red midde cylls support with SONETAPS, 802,3ad LACP as well as control/ data plane features like INSF,8SO, Fast IP/MPLS concergence
Control, Cata, and Maragement Plane Separation	Yes, Separate data and control plane
Grace ful Re∎tart	Yes
50 m i Link Pallover	Yes
MPLS Part Reroute	Yes
Non-Stop Switcing/Hitless Layer2 Fallover	Yes
Non-Stop Routing/Hitters Layer 3 Fallover	Yes
Non-Stop Service #/Hitle## Layer4 Fallover	Yes
Hitless Software Upgrade	No

Capacity:	
10 Gbp i Porti /Cha i i i (non-blocking)	7613-29; p609-8-34; p606-8-22; p604-14; p603-8-10
10 Gbp i Porti/Chaiili (over- iubichbed)	7613 - 49; [7609-8 - 66; [7606-8 - 42; [7604 - 26; [7603-6 - 18
1 Gbp # Ports/Charele (non-blocking)	7613 - 410; [7609-6 - 386; [7606-6 - 242; [7604 - 146; [7603-6 - 98
1 Gbp i Porti/Charilli (over- iubicribed)	
107100 Mbp i Porti/Cha i i i	7613-820; [7609-6-772; [7606-6-1148; [7604-1314; [7603-6-1078
100 Mbp i Porti/Chairii	7613-650; [7609-6-770; [7606-6-482; [7604-290; [7603-6-194
T3/E3 Portu/Chaudiu	7613 - 192; 7609-6 - 128; 7606-6 - 80; 7604 - 48; 7603-6 - 32
ATM Portu/Charrin (OC-8)	7613-96; [7609-8-64; [7606-8-40; [7604-24; [7603-8-16
ATM Portu/Cha iiii (OC-12)	7613-24; [7609-8-16; [7606-8-10;]7604-6; [7603-8-4
ATM Porti/Chaudi (OC-48)	7613-24; [7609-8-16; [7606-8-10; [7604-6; [7603-8-4
ATM Ports/Chausis (OC-192)	Not Supported
POS Porti/Cha i i i (OC-8/8 TM-1)	C#xxx 7613 - 192; C#xxx 7609-S - 128; C#xxx7606-S - 80; C#xxx 7604 - 48; 7603-S - 32
POS Porti/Cha i i i (OC-12/STM-4)	7613 - 48; 1609-8 - 32; 1606-8 - 20; 1604 - 12; 1603-8 - 8
POS Porta/Cha esta (OC-48/STM-16)	7613 - 48; [7609-S - 32; [7606-S - 20;]7604 - 12;]7603-S - 8
POS Porti/Cha i i i (OC-192/STM-48)	7613 - 12; 7609-\$ - 8; 7606-\$ - 5; 7604 - 3; 7603-\$ - 2
WOM Lambda (/Cha i i i i	32 DWDM, tamb das and 8 CWDM, tamb das are supported using SFPs, GBIC, XENPARs, and XFPs; ES+XP 10G ig IPoDWDM capabilities on 2 or 4 ports per line card
Interface i	
107100 Mbp∎ Ethernet	10/1000 Base-TX (48-port module, RJ-45, RJ21 Interfaces), 108 ase-FL (24-port module, MT-RJ connectors for MMP)
100 Mbps Ethernet	100Base-FX @4-port, MultiMode MT-RJ, MMF, SMF)
100/1000 Mbp# Ethernet	16-, 48-, and 96-port 10/100/1000
1 Gbp i Etherne t	Etiennet Seruices+ 400 LC (40 points); Etiennet Seruices+ 200 LC (40 points); 67xx LC (24 or 48 points); SPA (2-, 5-, and 10-points)
10 Gbp i Etremet	EthennetSerulces+4DG LC (4 ponts); EthernetSerulces+2DG LC (2 ponts);67xx LC (4 or 8 ponts); SPA (1-ponts)
DS-1/DS-3/HS SI	1-port CHOIC-12/CHSTW-4 to DSD; 1-port CHOIC-12/CHSTW-4 to T3/E3; to CHOIC-48 available
ATM	4-port OC3, 1-portOC-12, 1-portOC48 ATM per abt
POS	16-portOC-3,2-portOC-12,1-portOC-48,1-portOC-192 POS listentace per abt
Features	
CoS/QoS	Classification on IP COS, IP Precedence , TOS , DSCP, MP LS EXP; Polibing, RSVP priority mapping , OkcoAssure 12 , L3 , L4 policy management
Hardware-balled QoS	Yes
Forwarding Classe #/Port	SIP and ES2D line cards support up to 8 per logical or physical port
Service-based QoS	Yes
Interface-based QoS	Yes
Subjectiber-based QoS	Yes

Rate Shaping/Limiting/Marking	Yes
Line Rate Forwarding	Yes
Layer 2, IEE802.1p Traffic Prioritization	Yes
Policy-based Tramo Mangement	Yes
Hierarcinia i QoS	3 leue ls
Load Balanding	Supports CEF load-balls chig ouer 16 paths (per 10w)
Link Aggregation	Aggregation and load batancing across 8 Fast Ethernet, or Glgabit Ethernet, or 10 Glgabit Ethernet ports from same I/O module or diverse I/O modules
MPLS	Supports Layer 2 and Layer 3 MPLS VPNs, Ethernet ouer MPLS, frame relay ouer MPLS, ATM AALS and cell relay ouer MPLS, MPLS CoS, RSVP, LDP, and Inter-AS and CsC L3VPNs, VPLS, H-VPLS
Network Mgt	Integrated Net. Analysis Module, RMO N1 (stats, list, alarms, euents), RMO N2, SPAN, Ciscol/Joiks for Swiftblied Internetworks, Cisco Resource Manager
Provisioning	Not available
Routed Protocols	IG RP, EIGRP, RIP, RIP II, BG P4, IS-IS, RTMP, OSP F
Routing Protocols	IG RP, EIGRP, RIP, RIP II, BG P4, IS-IS, RTMP, DECLETP hase IV
Route Scalability	1 M Sim (Haveous IPu 4 FIB Entries or 512K Sim (Haveous IPu 6 FIB Entries
VLA Na/Multica et	IG MP (\$nooping), SSM, BirDir PIM, M-BGP, MSDP, CGMP, GMRP, hardware IP multicastreplication and forwarding, PIM-SM, PIM-DM; VLAN trunking enables multiple enterprise customers to share a single GigE access switch liber but use separate VLANs to access the POP
Advanced Service Module I/ Capabilitie I	
Network Management	
EMS	EMS software applies to both the Catalyst 6500 and Cisco 7600 series. EMS can be used uta the Cisco Element Manager Framework GiUll or through higher-level applications accessing the EMS using its Northbound CO R8 A Interface. IP Solution Center (ISC) for prouisioning and Active Network Abstraction (ANA) for manageability.
Fault Management	CINS Notification Engine software application converts Systog messages to user- selected SNULP trap notifications or XIII. events. De-diplicates and correlates events at the device layer before presenting to the network management layer. Ethernet OAIII capabilities.
Configuration Management	Enables configuration of IP, VLANs, Ether Channel, BGP, EIGRP, OSP F, and provides have fory details for chassis and modules.
Accounting	Records by total bytes/low, total packe ts/low, TOS of packe ts/low, it is taind last packe title stamps/low, so troe, and destination ports. BGP policy accordingly seluces uses the Border Gateway Protocol (BGP) policy according traffic index as the classification criterion to perform services such as destination-sensitive billing/accordingly based on the ultimate destination of a packet.
Performance Management	Seruice Assurance Agent (SAA) embedded in Cisco IOS enables seruice leue i mon floring with outexternal probes. Collects response time, one-way latency, litter, packetioss. Per-class traffic mon floring.
Security	ASIC-based Control Plane Rate Limiting for IP Unibast & Multibast (DoS Protection), ASIC-based ACLs, IPSec VP N, Firewall, IDS

Physical Specifications		
Slots Charrie	7613 - 13 slots, [7600-8 - 9 slots, [7606-8 - 6 slots, [7604 - 4 slots, [76003-8 - 3 slots	
NO 200 P	1613 - 12 ასსა, (1603-6 - შასსა, (1605 - მასსა, (1604 - შასსა, (1603 - 2ასსა, (1 1xed like card persiot. Up to 4 IO slots per SIP-200 and SIP-4000	
Climensions	7613 - (H x W x D):33.3 h .x 17 2 h x 18.1 h (82.3 x 42.5 x 44.7 cm); [F61947609- S - (H x W x D): 36.76 x 17 2 x 20.7 h . (93.3 x 43.1 x 53.3 cm); [F6067605-S - (H x W x D): 12.25 x 17.37 x 21.75 h . (31.11 x 44.12 x 55.25 cm); [F604 - (H x W x D): 5.75 x 17 c x 21.75 h . (22.225 x 44.45 x 55.245 cm); [F603-S (H x W x D): 1 h . x 17.37 h . x 20.3 h .	
MTBF	MTBF figures depend on specific system configurations. Information can be prouided upon request.	
NEBE Compilana	NESC 3Cc rithed on allohassis	
Power Requirements	25000W ACCOC, and 40000W ACCOC and 60000W ACCOC suppty for 7609-6, 7609, 7613; 27000W ACCOC and 19000W ACCOC 7605-6, 7606; 15000W ACCOC and 19000W ACCOC 7605-6, 7606; 15000W ACCOC are not liked JDC powers upplies may operate in overdepending on number of feeds are not liked guide growth as more 1ex billy and hours throughout on a	
Power Draw & Thermal Load	For Specificat, conflacture idon	
Charif Options	13-slot, 9-slot, 6-slot, 4-slot, and 3-slot	
System Applications	MPLS PE,SP Edge ((PJ4/IPu6), Metro Ethernet, Ethernet BRAS,Video, Cell Backharl (Mobile), High-end Enterpite, Lease Line	
RU	7613 - 1860; (7609-S - 21 RU; (7606-S - 7RU; (7604 - 5RU; (7603-S - 4RU	
Chard r/Rack	7613 - 2 per rack; [7603-6 - 2 per rack; [7606-5 - 6 per rack; [7604 - 9 per rack; [7603-5 - 11 per rack	
Term ⊢& Condition ⊨		
Price (List)		
Availability	Requires Cisco IOS 122SR	
Additional information		
Califomeri	Ouer 3 LLL Cristome of a criticing toe F1 provide of as well as challenge of across all geographic theaters. To hame a rewAT&T, Comcast, Cox, Sprint, ColtTe koom, U's Committations, Time Warner, Santi Telecom, Qwest	
Partneri	Nettow parties include Concord Communications (be from ance and auaitability management), Narus (internet Bushess infrastructure Solutions), XACCT (Poining record creation and account prousioning, Portail Software	
Special Note :	1. Support the full Catalyst6500 Series Ethernet, Fast Ethernet, GigE, and 10 GigE Ethernet LAN modules, 2. Supports FlexWAN modules, enabling aggregation of low-speed DS-0 to 00-3 seruices.	
Special Notes	J. The SIP GOD support: VLAN trushings of that multiple customers can is hare a Gigab it Ethernet access switch liber but use VLANs to access the service provider's POP. 4. Several services are centralized in the supervisor, they run at 30 Mpps, in cliding ACL, observation, and marking based on differentiated services code point (DSCP), type of service (ToS) and interface iphysical or bigical, and policy-based routing (PBR).	
Special No.18 II	5. Support: L2 or L3 point2point or multipoint2multipoints enuices. The ES20's Ethernet Virtual Seruice (EVC) capability furthermore allows for VLAN tag manipulation of unarious kind, the ES20 interaction proposition are based forwarding up to 30 Mpps per soft illustration detection system (IDS) and content swifts high northers. Chillish make the Cisco 7600 a complete single-how solution for space-constrained data centers.	

ANEXO 2 Descripción de la herramienta informática SANTEL_{WiMAX Móvil}.

4.1 muestra la herramienta informática La Figura denominada SANTELWIMAX Móvil, se elaboro en Microsoft Visual Basic 6.0, como un archivo ejecutable que puede funcionar en cualquier tipo de computador que tenga instalado Windows (versiones actuales), al momento de inicializar se muestra una ventana con diferentes casilleros, listadas desplegables y botones; al señalar con el puntero del mouse en cada casillero, se muestra una leyenda que describe: parámetros que se deben ingresar (casilleros blancos), parámetros que se deben elegir (listas desplegables y botones), resultados (casilleros amarillos).

Figura 4.1 Herramienta informática SANTEL_{WiMAX Móvil}. (Bacuilima Z. 2009).

Para entender el funcionamiento de la herramienta informática SANTEL_{WiMAX Móvil}, se va a dividir la ventana en tres partes según constan los títulos: Link Budget, Modelo de Propagación y Cálculo de Capacidad, como se muestra en la Figura 4.2

Figura 4.2 Partes de SANTEL_{WiMAX Móvil}. (Bacuilima Z. 2009).

La parte del Link Budget, hace referencia al cálculo para determinar el Path Loss en función de los parámetros descritos en el Capitulo 3 numeral 5.2 Cálculo de Cobertura.

La Figura 4.3 muestra los parámetros que hacen referencia a la Estación Base.

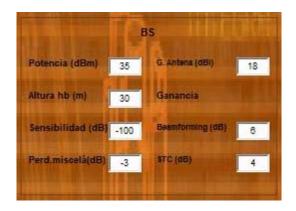


Figura 4.3 SANTEL_{WiMAX Móvil} - Estación Base (BS). (Bacuilima Z. 2009).

- Potencia (dBm): Se ingresa el valor de Potencia de la BS (dada por el fabricante).
- o Altura BS hb (m): Se ingresa el valor de altura de la BS.
- Sensibilidad (dB): Se ingresa el valor de Sensibilidad de la BS.
- Perd. Miscelá. (dB): Se ingresa el valor de Perdidas misceláneas BS (por cableado, conectores, inserción, equipos etc.).
- G. antena (dBi): Se ingresa el valor de Ganancia de la antena de la BS.
- Beamforming (dB): Se ingresa el valor de Ganancia de antena por Beamforming en la BS.
- STC (dB): Se ingresa el valor de Ganancia por Codificación espacio-tiempo en la BS.

La Figura 4.4 muestra los parámetros que hacen referencia al Enlace.

Figura 4.4 SANTEL_{WiMAX Móvil} - Enlace. (Bacuilima Z. 2009).

- o *Margen Interferencia (dBm):* Se ingresa el valor de interferencia por reflexiones múltiples (multipath).
- Perdidas Penetración (dB): Se ingresa el valor de pérdida promedio que sufre la señal de microonda al atravesar un objeto.

La Figura 4.5 muestra los parámetros que hacen referencia a la Estación Móvil.

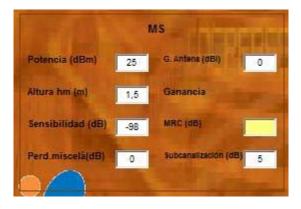


Figura 4.5 SANTEL_{WiMAX Móvil} - Estación Móvil (MS). (Bacuilima Z. 2009).

- Potencia (dBm): Se ingresa el valor de Potencia de la MS.
- o Altura MS hm (dB): Se ingresa el valor de altura promedio del usuario con el dispositivo móvil.
- Sensibilidad (dB): Se ingresa el valor de Sensibilidad de la MS.
- Perd. Miscelá. (dB): Se ingresa el valor de Perdidas misceláneas MS (por cableado, conectores, inserción, equipos etc.).
- G. antena (dBi): Se ingresa el valor de Ganancia de la antena de la MS.
- MRC (dB): Se ingresa el valor de Ganancia por Combinación tasa máxima en el Rx.
- Subcanalización (dB): Se obtiene el valor de Ganancia de subcanalización en la MS (casillero amarillo).

La Figura 4.6 muestra los parámetros que hacen referencia a los valores de ingreso 1.

Figura 4.6 SANTEL_{WiMAX Móvil} – valores ingreso 1. (Bacuilima Z. 2009).

- Frecuencia (MHz): Se ingresa el valor de frecuencia en la que se va a trabajar, según lo analizado en el Capitulo 3 numeral 3 Marco Regulatorio WiMAX.
- Bw Canal: Se elige el valor de ancho de banda del canal con el que se va a trabajar, según lo descrito en el Capitulo 3 numeral 5.3 Cálculo de la Capacidad, SOFDMA (Scalable OFDMA), 1,25 MHz, 5,00 MHz, 10,0 MHz, 20,0 MHz.
- Permutación: Se elige el valor de permutación, WiMAX
 Fijo se considera la permutación AMC, mientras que para
 WiMAX Móvil la permutación PUSC, según lo descrito en el Capitulo 3 numeral 5.3 Cálculo de la Capacidad.

Para obtener el resultado (Path Loss) del Link Budget se tiene que ingresar los datos en los casilleros en blanco descritos anteriormente, elegir de las listas desplegables el ancho de banda del canal (Bw Canal), permutación (Permutación), Enlace MP: Uplink, Downlink (sección Modelo de Propagación) y seleccionar el botón 1 CALCULO PATH LOSS.

La Figura 4.7 muestra los parámetros que hacen referencia al cálculo del path loss.

Figura 4.7 SANTEL_{WiMAX Móvil} – 1 Calculo Path Loss. (*Bacuilima Z. 2009*).

- Path Loss Uplink: Se obtiene el valor de pérdidas del enlace en sentido uplink.
- Path Loss Downlink: Se obtiene el valor de pérdidas del enlace en sentido downlink.

La parte del Modelo de Propagación, hace referencia al cálculo para determinar el radio de cobertura y número de Estaciones Base según el modelo de propagación seleccionado (IEEE 802.16 SUI, COST 231-Hata), en función de los parámetros descritos en el Capitulo 2 numeral 9 Modelos de propagación NLOS y Capitulo 3 numeral 5.2 Cálculo de Cobertura:

La Figura 4.8 muestra los parámetros que hacen referencia al modelo de propagación IEEE 802.16 SUI.

Figura 4.8 SANTEL_{WiMAX Móvil} – Modelo Propagación IEEE 802.16 SUI. (*Bacuilima Z. 2009*).

- Tipo: Se elige la categoría del terreno A, B, C (según recomendación IEEE 802.16), hace referencia al tipo de terreno.
- Probabilidad: Se elige el porcentaje de probabilidad de interrupción en el borde de la celda ó porcentaje de cobertura
- o *do(m):* Es un valor constante determinado por el IEEE 802.16 de 100m.

La Figura 4.9 muestra los parámetros que hacen referencia al modelo de propagación COST 231-Hata.

Figura 4.9 SANTEL_{WiMAX Móvil} – Modelo Propagación COST 231-Hata. (*Bacuilima Z. 2009*).

 Tipo: Se elige el tipo de Zona: Urbana y Suburbana (según recomendación COST 231-Hata).

La Figura 4.10 muestra los parámetros que hacen referencia a los valores de ingreso 2.

Figura 4.10 SANTEL_{WiMAX Móvil} – valores ingreso 2. (*Bacuilima Z. 2009*).

- Área estimada (Km²): Se ingresa el valor del área que se dará servicio.
- Enlace MP: Se elige el enlace uplink ó downlink.
- Modelo de Propagación: Se puede elegir tres opciones.
 - o IEEE 802.16 SUI.
 - o COST 231-Hata.
 - Los dos modelos de Propagación (IEEE 802.16 SUI, COST 231-Hata).

Se tiene que ingresar los datos en los casilleros en blanco descritos anteriormente, elegir de las listas desplegables:

Enlace MP Uplink, Downlink, Modelo de Propagación, Tipo seleccionado (IEEE 802.16 SUI, COST 231-Hata), ancho de banda del canal (Bw Canal), permutación (sección link Budget), y seleccionar el botón 2 CALCULO DE # BS.

La Figura 4.11 muestra los parámetros que hacen referencia al cálculo del # BS.

Figura 4.11 SANTEL $_{WiMAX\ M\acute{o}vil}$ – 2 Calculo de # BS. (Bacuilima Z. 2009).

Según el tipo de Modelo de Propagación seleccionado se obtiene el valor de C_M (dB) y s(dB), además el radio, área de cobertura y # de estación base.

- C_M (dB): Se obtiene el valor de factor de corrección C_M según el tipo de zona seleccionada según recomendación COST 231-Hata (casillero amarillo).
- s(dB): Se obtiene el valor de margen de desvanecimiento por árboles, edificios que simula las variaciones sobre la potencia recibida (casillero amarillo).
- d (m): radio de cobertura donde el nivel de señal es aceptable para establecer la comunicación (casillero amarillo).
- Área (Km²): área estimada con el radio de cobertura anterior (casillero amarillo).
- # BS: número de estaciones base necesarias para dar servicio según el área estimada (casillero amarillo).

La parte de Cálculo de Capacidad determina: radio, área de cobertura, número de Estaciones Base y el valor de potencia de transmisión necesario, en función de los parámetros de Trafico, descritos en el Capitulo 3 numeral 5.3 Calculo de la Capacidad.

La Figura 4.12 muestra los parámetros que hacen referencia a los valores de ingreso 3.

Figura 4.12 SANTEL_{WiMAX Móvil} – valores ingreso 3. (*Bacuilima Z. 2009*).

- Trafico estimado (Mbps): Se ingresa el valor del tráfico total que se pretende manejar.
- Enlace CC: Se elige el enlace uplink ó downlink.
- Modulación: Se puede elegir (QPSK 1/2, QPSK 3/4, 16QAM 1/2, 16QAM 3/4, 64QAM 1/2, 64QAM 2/3, 64QAM 3/4, 64QAM 5/6).
- Canal/Sector: Se puede elegir (1 canal / 1 sector, 1 canal / 2 sectores, 2 canales / 2 sectores, 2 canales / 4 sectores, 3 canales / 3 sectores, 3 canales / 6 sectores, 4 canales / 4 sectores, 4 canales / 8 sectores, 5 canales / 5 sectores, 5 canales / 10 sectores.

Se tiene que ingresar los datos en los casilleros en blanco descritos anteriormente, elegir de las listas desplegables: Enlace CC Uplink, Downlink, Modulación, Canal/Sector, Tipo seleccionado (IEEE 802.16 SUI, COST 231-Hata) según el modelo de Propagación, ancho de banda del canal (Bw Canal), permutación (sección link Budget), y seleccionar el botón 3 CALCULO DE # BS.

La Figura 4.13 muestra los parámetros que hacen referencia al cálculo del # BS según el Tráfico estimado.



Figura 4.13 SANTEL $_{WiMAX\ M\'ovil}$ – 3 Calculo de # BS. (Bacuilima Z. 2009)

- Tráfico por Celda (Mbps): valor de tráfico que soporta cada Estación Base (casillero amarillo).
- Densidad de Tráfico (Mbps/Km²): densidad de tráfico en el área de cobertura determinada (casillero amarillo).
- *d* (*m*): radio de cobertura en función del tráfico establecido (casillero amarillo).
- Área (Km²): área estimada con el radio de cobertura anterior (casillero amarillo).

- # BS: número de estaciones base necesarias para cubrir el trafico establecido (casillero amarillo).
- P (dBm) IEEE 802.16 SUI: valor de la potencia de salida necesaria según el modelo de propagación establecido (casillero amarillo).
- P (dBm) COST 231-Hata: valor de la potencia de salida necesaria según el modelo de propagación establecido (casillero amarillo).

ANEXO 3 Formulario para el informe técnico de inspección de emisiones de RNI.

Scenatorio Nacional de Se	FORMULARIO PARA ESTUDIO TÉCNICO DE EMISIONES DE RNI (CALCULO DE LA DISTANCIA DE SEGURIDAD)	RC-15A RNI-T1			
		Fecha.:23/ 07/08			
1) USUARIO :					
NOMBRE DE LA EMPRES A:					
DIRECCI ÓN : 2) <i>UBICA</i>	CIÓN DEL SITIO :				
L) UDIOA					

Maestría en Telemática							
PROVINC	CIUD	LOCALIDA	LATITUD	LONGITU			
IA:	AD /	D:	(°) (') ('')	D			
	CANT			(°) (') ('')			
	ÓN :						
3) S _{lím} A C	ONSIDE	RAR (VER A	ARTICULO 5 DE	L			
REGLAMENTO):							
FRECUENCIAS		$S_{lím}$	S _{lím} POBLACIONAL				
(MHz)		OCUPACI	(W/m^2)				
		ONAL					
		(W/m ²)					
4) CALCULO DE R ² :							
Altura h		$R = \sqrt{(X^2 + (h - d)^2)}$					
(m):							
DISTANCIA X		VALOR CALCULADO PARA R (m)					
2 m							
5 m							
10 m							
20 m							
50 m							

5) CALCULO DEL PIRE :

Maestria en Telemática								
POTENCIA	GANAN	CIA VA	LOR D	E PIRE (W)				
MÁXIMA DEL	. MÁXIM			()				
EQUIPO (W)	DE LA							
	ANTEN	Α						
6) CALCULO D	EL S _{lím} TEÓ	RICO :						
$S_{lim} = PIRE / (\pi * R^2)$								
DISTANCIA	VALOR	DE (π *	VAI	OR DE S _{lím}				
	R	²)		(W/m^2)				
2 m								
5 m								
10 m								
20 m								
50 m								
7) CERTIFICACIÓN DEL PROFESIONAL TÉCNICO (RESPONSABLE TÉCNICO)								
	APELLIDO	NOMB	RES:	LIC. PROF.:				
	MATERNO							
	:							

e-mail:	CASILLA	λ : ΤΙ	ELÉFONO /		
			FAX:		
DIRECCIÓN:	FECHA:				
DIRECCION.	FECHA.				
		FII	RMA		
8) CERTIFICACIÓ	N DE LA	PERSONA	NATURAL,		
REPRESENTANTE LEGAL O PERSONA DEBIDAMENTE					
AUTORIZADA					
Certifico que	el presente	proyecto	técnico fue		
elaborado acord	e con n	nis neces	sidades de		
comunicación					
NOMBRE:	FECHA:				
		FII	RMA		

Bibliografía y fuentes de consulta.

Ahmadi, Dr. Sassan. «Introduction to mobile WiMAX Radio Access Technology.» 2006.

Airspan. «Productos ASMAX.» http://www.Airspan.com/ (último acceso: 10 de 01 de 2009).

Airspan's WiMAX. «Multiple Antenna Systems in WiMAX.» Copyright Airspan Networks Inc., 2007.

Alvarion. «Productos BreezeMAX.»

http://www.alvarion.com/ (último acceso: 10 de 01 de 2009).

—. The Wild World of Wireless Broadband and WiMAX

According to Alvarion. 2005.

Bacuilima Z., W. Santiago. «Estudio y Diseño de una Red WiMAX para la Ciudad de Cuenca.» Quito, 10 de 05 de 2009.

Carrillo, Alfredo. «Evaluación Técnica y Económica del Servicio de Televisión vía Protocolo internet (IPTV) para una empresa de Telefonía Fija.» 2008: 95 - 104.

Censo INEC. «http://www.inec.gov.ec.» 11 de 2001. (último acceso: 15 de 01 de 2009).

Conatel. http://www.conatel.gov.ec/site_conatel/ (último acceso: 10 de 11 de 2008).

ETAPA EP. 2008.

Fujitsu. WiMAX Technology and Deployment for Last-Mile Wireless Broadband and Backhaul Applications. 2005.

G. S. V. Radha Krishna Rao, G. Radhamani. *WiMAX: A Wireless Technology Revolution*. United States of America: Auerbach Publications / Taylor & Francis Group, 2008.

INEC. «Acceso de los Ecuatorianos a Internet.» 2009.

INEC. «Acceso de los Ecuatorianos a Internet.» 2008.

Intel. «Deploying License-Exempt WiMAX Solutions.» 2005.

- —. Understanding Wi-Fi and WiMAX as Metro-Access Solutions. 2005.
- —. «Understanding Wi-Fi and WiMAX as Metro-Access Solutions.» 2005.
- ITU. *International Telecommunication Union* . 2009. http://www.itu.int.
- J, Regis. *Comunicaciones Inalámbricas De Banda Ancha.* Editorial McGraw-Hill, , 2005.
- Jeffrey G. Andrews, Arunabha Ghosh, Rias Muhamed. Fundamentals of WiMAX: Understanding Broadband Wireless Networking. United States of America: Prentice Hall, 2007.
- P. Nicopolitidis, M.S. Obaidat, G. I. Papadimitriou and A. S. Pomportsis. *Fixed Broadband Wireless*. England: John Wiley and Sons, 2003.

Pareek, Deepak. *The Business of WiMAX.* England: John Wiley and Sons, 2006.

Quobis Networks. «WiMAX: la revolución inalámbrica Estado del arte de la tecnología.» 2006. Senatel. 2009.

Siemens. «Productos SkyMAX.»

http://www.siemens.ie/carrier/ (último acceso: 10 de 01 de 2009).

Supertel. 2008. http://www.supertel.gov.ec/.

—. «Sondeo de percepción sobre aspectos técnicos relacionados con el acceso a la Internet.» 8 de Octubre de 2008.

Vinko Erceg, Senior Member, IEEE, Larry J. Greenstein, Fellow, IEEE. «An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments.» WiMAX Forum. http://www.wimaxforum.org.

- —. Business case models for Fixed Wireless Access based on WiMAX technology and 802.16 standards. 2005.
- —. «Complete guide to WiMAX, the business case for service provider deployment.» 2005.
- —. «Fixed, nomadic, portable and mobile applications for 802.16-2004 and 802.16e WiMAX networks.»
- —. «IEEE 802.16 Standard and WiMAX igniting Broadband Wireless Access.» 2005.

WiMAX Forum. *Mobile WiMAX – Part I: A Technical Overview and Performance Evaluation*. Copyright 2006 WiMAX Forum, 2006.

- —. The business case for Fixed Wireless Access in Emerging countries. 2005.
- —. «WiMAXs technology for LOS and NLOS environments.» 2005.

WirelessMAN. http://WirelessMAN.org.

Xiao, Yang. WiMAX/MobileFi: Advanced Research and Technology. United States of America: Auerbach Publications / Taylor & Francis Group, 2008.

Glosario de Términos y Abreviaturas.

AAA Authentication, Authorization and

Accounting.

Autenticación, Autorización y Registro.

AMC Adaptive Modulation and Coding.

Modulación y Codificación Adaptativa.

ASN Access Service Network.

Red de Acceso a Servicio.

ASP Application Service Provider.

Proveedores de Servicios de Aplicación.

AAS Advance Antenna Systems.

Sistemas avanzados de antena.

AES-CCM Advanced Encryption Standard -

Counter with Cipher-

Block chaining Message authentication code.

ARQ Automatic Retransmision Request.

Petición Automática de Retransmisión.

ATM Asynchronous Transfer Mode.

Modo de Transferencia Asíncrona.

AES Advanced Encription Standard.

Cifrado en bloque simétrico.

ANTEL Administración Nacional de

Telecomunicaciones.

ACC Advanced Audio Coding.

AU Access Unit Card.

Unidad de Acceso.

AVU Air Ventilation Unit.

Unidad de Ventilación.

B Probabilidad de bloqueo o pérdida de

llamadas.

BER Bit Error Rate.

Tasa de Error de Bit.

BE Best Effort Service.

BWA Broadband Wireless Access.

Acceso Inalámbrico de Banda Ancha.

BS Base Station.

Estación Base.

BPSK Binary Phase Shift Keying.

Transmisión por desplazamiento de fase

binaria.

CAPEX Capital Expenditure

Costos de Capital.

CS Convergente Sublayer.

Subcapa de Convergencia.

CPS Privace Sublayer.

Subcapa de Seguridad.

CPS Common Part Sublayer.

Subcapa de Parte Común.

CSN Connectivity Service Network.

Red de Conectividad a Servicio.

CMAC Block Cipher-based Message

Authentication Code.

CNT Corporación Nacional Telecomunicaciones.

CONATEL Consejo Nacional de

Telecomunicaciones.

CBR Constant Bit Rate.

Tasa de bits constante.

DSL Digital Subscriber Line.

Línea de suscripción digital.

DL Downlink.

d Distancia cobertura.

dBm Decibel miliwatt.

dB Decibel.

E1 Formato de Transmisión Digital, Tasa de

2,048 Mbps.

ETSI European Telecommunications Standards

Institute.

Instituto Europeo de Normas de Telecomunicaciones.

ERT-VR Extended Real Time-Variable Rate.

EAP Extensible Authentication Protocol.

ETAPA EP Empresa Municipal de Telecomunicaciones,

Agua Potable, Alcantarillado y Saneamiento

Ambiental.

FEC Forward Error Correction.

Código de corrección de error hacia adelante.

FDD Frequency Division Duplex.

Duplex en el dominio de la frecuencia.

FDM Frequency Division Multiplexing.

Multiplexación por división de frecuencia.

FBSS Handoff Fast Base Station Switching.

f Frecuencia.

FFT Fast Fourier Transform.

Transformada Rápida de Fourier.

FTP File Transfer Protocol.

Protocolo de Transferencia de Archivos.

FWA Fixed Wireless Access.

GHz Gigahercio, múltiplo de la unidad de medida

de frecuencia.

HIPERMAN High Performance Metropolitan Area

Networks.

HARQ Hybrid Automatic Repeat Request.

Petición de repetición automática hibrida.

HMAC Keyed Hash Message Authentication Code.

HHO Hard Handoff.

hb Altura de la estación base.

hm Altura de la estación móvil.

Institute of Electrical and Electronics

Engineers.

39HInstituto de Ingenieros Eléctricos y Electrónicos.

IETF Internet Engineering Task Force.

Grupo de Tareas de Ingeniería de Internet.

IP Internet Protocol.

Protocolo de Internet.

ISI InterSymbol Interference.

Interferencia Intersimbolo.

INEC Instituto Nacional de Estadísticas y

Censos de Ecuador

IPTV Internet Protocol Television.

Televisión sobre Protocolo de Internet

IDU Indoor Unit.

Unidad interior.

LOS Line of Sight.

Línea de vista.

LAN Local Área Network.

Red de área local.

LDR Larga distancia regional.

LDN Larga distancia nacional.

MAN Metropolitan Area Network.

Red de Área Metropolitana.

MAC layer Medium Access Control layer.

Capa Control de Acceso al Medio.

MPEG Moving Picture Expert Group.

MS Mobile Station.

MRC Maximum Ratio Combining.

Combinación de Relación Máxima.

MIMO Multiple input multiple output.

Múltiple entrada múltiple salida.

Mbps Megabit por segundo.

MHz Megahercio.

MDHO Handoff Macro Diversity.

mE mili Erlangs

MP3 MPEG-1 Audio Layer 3.

NLOS Non Line of Sight.

Fuera de la Línea de Visión.

nrtPS Non-Real-Time Polling Services.

NSP Network Service Provider.

Proveedores de servicios de red.

NRM Network Referente Model

Modelo de Referencia de Red.

NGN Next Generation Network.

NPU Network Processing Unit.

Unidad de procesamiento de red.

N-VoD Near Video on Demand.

OFDM Orthogonal Frequency Division Multiple.

Multiplexación por División de Frecuencias

Ortogonales.

OFDMA Orthogonal Frequency Division Multiple

Access.

Acceso múltiple por división ortogonal de

frecuencias.

ODU Output Unit.

Unidad exterior.

PHY layer Physical layer.

Capa física.

PMP Point-to-multipoint.

PP 41HPoint-to-Point.

PPV 41HPay Per View.

PKM Protocolo de Administración de Clave y

Privacidad

PKMv2 versión 2 PKM.

PSTN Public SwitchedTtelephone Network.

Red telefónica pública conmutada.

PUSC Partially Used Sub-Carrier.

Path loss Pérdida básica de propagación.

PoE Power over Ethernet.

PIU Power Interface Unit.

Unidad para la conexión al sistema de

potencia.

PSU Power Supply Unit.

Unidad de suministro de energía.

PIRE Potencia Isotrópica Radiada Efectiva.

QoS Quality of Service.

Calidad de Servicio.

QPSK Cuadratura Phase Shift Keying.

Transmisión por desplazamiento de fase

cuaternaria.

QAM Quadrature Amplitude Modulation.

Modulación de amplitud en cuadratura.

Q-VoD Quasi Video on Demand.

rtPS Real-Time Polling Services.

RSA Sistema criptográfico con clave pública.

Rx Receptor.

RF Radio frecuencia.

RNI Radiación no ionizante.

SUI Stanford University Interim.

SAP Service Acces Point.

SS Subscriber Station.

Estación Usuario.

SOFDMA Scalable OFDMA

SNR Signal to noise ratio.

Relación señal/ruido.

SUPERTEL 42HSuperintendencia de

Telecomunicaciones.

SENATEL 43HSecretaría Nacional de

Telecomunicaciones.

SLA Service Level Agreement.

Acuerdos de Servicio.

SNMP 44HSimple Network Management

Protocol.

Protocolo Simple de Administración de Red.

STC Space-Time Coding.

T1 Formato de transmission digital, Tasa de

1,544 Mbps.

TTM Time To Market.

DES Data Encryption Standard.

Triple DES Triple DES Encryption.

TDD Time Division Duplex.

Duplex en el dominio del tiempo.

Tx Transmisor.

TDM Time Division Multiplexing.

Multiplexación por división de tiempo.

TIR Tasa interna de retorno.

T-VoD True Video-on-Demand.

UIT Unión Internacional de

Telecomunicaciones.

UGS Unsolicited Grant Service.

USIM/SIM Tarjetas Inteligentes.

UL Uplink.

VoIP Voz sobre Protocolo de Internet.

VPN Virtual Private Network.

45HRed privada virtual.

VPLS Virtual Private LAN Services.

VoD Video bajo demanda.

VAN Valor actual neto.

WiMAX Worldwide Interoperability for Microwave

Access.

Interoperabilidad Mundial para Acceso por Microondas.

WiMAX Forum Foro WiMAX.

WAN Wide Area Network.

WiFi Wireless Fidelity.

WPAN Wireless Personal Area Network.

WLAN Wireless Local Area Network.

WMAN Wireless Metropolitan Area Network.

WWAN Wireless Wide Area Network.

WRAN Wireless Regional Area Network.

WSPs Proveedores de servicios inalámbricos.

X.509 Estándar para la infraestructura PKI.

3G 46HTelefonía móvil 3G.

3GPP 3rd Generation Partnership Project.