

UNIVERSIDAD DE CUENCA

MAESTRÍA EN CONSTRUCCIONES PRIMERA EDICIÓN

DISEÑO DE MEZCLAS DE HORMIGÓN AUTOCOMPACTANTE UTILIZANDO MATERIALES DE LA ZONA

TESIS PREVIA A LA OBTENCIÓN DEL GRADO DE MAGISTER EN CONSTRUCIONES (MSc)

AUTOR: ING. IVÁN GUILLERMO CAÑIZARES BELTRÁN

DIRECTOR: DR. FERNANDO ZALAMEA LEÓN

Cuenca, mayo de 2012

DECLARACIÓN

Yo, Ing. Iván Guillermo Cañizares Beltrán, declaro bajo juramento que el trabajo aquí descrito es de mi auditoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Universidad de Cuenca, según lo establecido por la Ley de Propiedad Intelectual, por su reglamento y por la normatividad institucional vigente.

Autor: Ing. Iván G. Cañizares B.

C.I.: 0100956085

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Ing. Iván Guillermo Cañizares Beltrán, bajo mi supervisión.

Dr. Fernando Zalamea León DIRECTOR DEL PROYECTO

AGRADECIMIENTO

Agradezco a mi Dios que me ha dado fuerzas para empezar, continuar y terminar la Maestría.

Al Dr. Fernando Zalamea, Director de tesis, a la Universidad de Cuenca, a las Empresas SIKA, ADITEC, que de una u otra forma han colaborado con el trabajo.

Un agradecimiento especial a dos personas que desde diferente lado han sido mi apoyo y sustento para llegar a feliz término con la presente tesis: la una con el trabajo manual, pesado; la otra con el apoyo moral, espiritual.

RESUMEN

El Hormigón Autocompactante (HAC) es un hormigón muy fluido, que se compacta por su propio peso, pudiendo rellenar fácilmente el encofrado y pasar por los espacios dejados por el refuerzo, presentando suficiente cohesión, evitando que se produzca segregación.

El Ing. Okamura en el año de 1986 presenta este tipo de hormigón, con la finalidad de eliminar la calidad de mano de obra, a la que se le atribuía el deterioro prematuro de algunas obras por mala compactación del hormigón.

La aplicación del HAC en el mundo ha tenido una tendencia creciente, se considera que con los materiales de construcción que se tiene en la zona se puede confeccionar HAC de buenas características, que posteriormente puede ser utilizado en la construcción de obras, razones para que se haya escogido como tema de investigación para la obtención de la Maestría.

Se estudiaron áridos de otros sectores cercanos a la Ciudad que son utilizados en la industria de la construcción.

La caracterización de los HAC en estado fresco se realizó de acuerdo a la guía propuesta por la European Federation of Concrete Admixture Associations (EFNARC), mediante ensayos como: asentamiento, embudo en V, caja en L, determinación de densidades, temperatura, contenido de aire, módulo de Elasticidad, relación de Poisson, resistencia a compresión.

Se diseñaron mezclas de Concreto Convencional y Hormigón Autocompactante para resistencias a compresión en probetas cilíndricas a los 28 días de edad, de 250 kg/cm² y 350 kg/cm², con materiales de la zona como: cementos Holcim y Guapán, aditivos distribuidos por SIKA y ADITEC, áridos del sector Jubones (mina Sr. Heredia), puzolana del sector Llacao, agua potable que se consume en la Ciudad de Cuenca.

Se comparó las dosificaciones, los resultados de los ensayos entre los Concretos Convencionales y los Hormigones Autocompactantes, tanto en estado fresco como endurecido.

En función de los resultados obtenidos, en el capítulo 7 se presenta conclusiones y recomendaciones, demostrándose que se puede obtener HAC de buena calidad, utilizando Materiales de Construcción de la zona.

Tabla de contenido

CAPÍTULO	0	. 1
CAPÍTULO) 1 LINEAMIENTOS	. 1
1.1 IN	NTRODUCCIÓN	. 1
1.2 P	PLANTEAMIENTO DEL PROBLEMA	. 2
1.3 C	DBJETIVOS DE LA INVESTIGACIÓN	. 3
1.4 J	IUSTIFICACIÓN	. 4
1.5 H	HIPÓTESIS	. 4
1.6 M	METODOLOGÍA	. 5
) 2 ESTADO DEL ARTE DE LOS HORMIGONE MPACTANTES	
CAPITULO	2	. 5
	NTRODUCCIÓN	
2.2 C	CARACTERIZACIÓN DE LOS HAC EN ESTADO FRESCO	.7
2.2.1	Introducción	. 7
2.2.2	Ensayo de asentamiento	. 8
2.2.3	Ensayo del embudo en V	. 8
2.2.4	Ensayo de la caja en L	. 9
2.2.5	Análisis de la segregación	. 9
2.2.6	Determinación de densidades	. 9
2.2.7	Determinación de la temperatura	. 9
2.2.8	Determinación del contenido de aire	10
2.2.9	Determinación del módulo de elasticidad y relación de Poisso 10	on
2.2.10	Criterios de clasificación y aceptación de los HAC	10
) 3 DETERMINACIÓN DE LAS CARACTERÍSTICAS DE LO NES	
CAPITULO	3	13
3.1 N	MEZCLADO	13

3.1.1	Mezclado en laboratorio del concreto convencional	. 13
3.1.2	Mezclado en laboratorio del HAC	. 13
3.2 Conve	DETERMINACIÓN DEL ASENTAMIENTO DEL CONCRE	
3.3	DETERMINACIÓN DEL CONTENIDO DE AIRE	. 14
3.4	DETERMINACIÓN DE LA TEMPERATURA	. 14
3.5	DETERMINACIÓN DE LA DENSIDAD	. 14
3.5.1	En concreto convencional	. 14
3.5.2	En hormigón autocompactante	. 14
3.6 RELAC	DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD IÓN DE POISSON	
3.7	FABRICACIÓN, CURADO Y CAPEADO DE LAS PROBETAS	. 15
3.8	ENSAYO DE COMPRESIÓN SIMPLE	.16
	O 4 MATERIALES UTILIZADOS EN LA CONFECCIÓN DE L ONES	
CAPITUL	O 4	. 17
4.1	ÁRIDOS	. 17
4.2	CEMENTOS	. 20
4.3	ADICIONES	. 20
4.4	ADITIVOS	. 23
4.5	AGUA	. 24
HORMIG	O 5 MATERIALES UTILIZADOS EN LA CONFECCIÓN DE L ONES	. 25
CAPITUL	O 5	. 25
5.1	DISEÑO DE LOS HORMIGONES CONVENCIONALES (CC)	. 25
5.2	DISEÑO DE LOS HORMIGONES AUTOCOMPACTANTES (HA 38	AС
CAPÍTUL	O 6 ANÁLISIS DE RESULTADOS	. 61
CAPITUL	0 6	.61
6.1	TEMPERATURA DEL CONCRETO:	.61
6.2	ASENTAMIENTO VS TIEMPO	. 62

	6.3	CONTENIDO DE AIRE	. 63
	6.4 POISS	MÓDULO DE ELASTICIDAD ESTÁTICO Y RELACIÓN ON	
	6.5	CRITERIOS DE RECHAZO DE LAS MEZCLAS DE HAC	. 66
	6.6 CC Y D	ESTUDIO COMPARATIVO ENTRE LAS DOSIFICACIONES DEL HAC	
	6.7	ESTUDIO COMPARATIVO DE DENSIDADES	.79
	6.8	RESUMEN DE DOSIFICACIONES Y RESISTENCIAS	. 80
С	APÍTUL	O 7 CONCLUSIONES Y RECOMENDACIONES	. 86
C	APITUL	.0 7	. 86
	7.1	SOBRE LA TEMPERATURA DEL CONCRETO	. 86
	7.2	SOBRE LA PÉRDIDA DE TRABAJABILIDAD DEL CONCRETO	86 (
	7.3 CONTE	SOBRE EL RECHAZO DE ALGUNAS MEZCLAS DE HAC Y ROL DE CALIDAD	
	7.4	SOBRE LOS ADITIVOS UTILIZADOS:	. 87
	7.5	SOBRE LOS ÁRIDOS	.88
	7.6	SOBRE LA AGREGACIÓN DE PUZOLANA	.88
	7.7	SOBRE LA DOSIFICACIÓN DE LOS HORMIGONES	.88
	7.8	SOBRE LOS COSTOS DE LOS HORMIGONES	. 89
	7.9	SOBRE EL CONTENIDO DE AIRE	. 90
	7.10 POISS	SOBRE EL MÓDULO DE ELASTICIDAD Y RELACIÓN ON	
C	APITUL	O 8	. 94
	8.1	BIBLIOGRAFÍA	. 94
C	APITUL	O 9	. 99
	9.1	ANEXOS:	.99

DISEÑO DE MEZCLAS DE HORMIGÓN AUTOCOMPACTANTE UTILIZANDO MATERIALES DE LA ZONA

CAPÍTULO 1.- LINEAMIENTOS

1.1 INTRODUCCIÓN

El Hormigón Autocompactante (HAC) es un material de construcción que se densifica por gravedad, que puede ser utilizado en nuestro medio, con ventajas sobre el concreto convencional (CC).

Se realizarán ensayos en los áridos a utilizarse con la finalidad de obtener parámetros que servirán para el diseño de las mezclas y control de calidad.

Se diseñarán mezclas para resistencias de 250 kg/cm² y 350 kg/cm², tanto para el CC (patrón de comparación) como para el HAC.

Las mezclas se prepararán en el laboratorio, se confeccionarán las probetas, se determinará sus propiedades tanto en estado fresco como endurecido.

Los resultados de los diferentes ensayos se recopilarán en forma ordenada, se analizarán estadísticamente, se presentará los comentarios y las conclusiones así como el respectivo informe.

Se espera obtener mezclas de HAC confeccionadas con nuestros materiales, que cumplan con las exigencias de las especificaciones de la Federación Europea de la Asociación del Concreto (EFNARC) y que en el futuro puedan ser utilizadas en la construcción de obras con ventajas sobre el concreto convencional (CC), teniendo al alcance otra alternativa como material de construcción.

Se realizará un análisis de costos, en forma comparativa entre las mezclas de CC y las de HAC.

1.2 PLANTEAMIENTO DEL PROBLEMA

IDENTIFICACIÓN:

Una de las principales fallas en nuestro medio al colocar el CC es no compactar adecuadamente, quedando poroso, mal densificado, con nidos de grava, coqueras, lo que influye en el terminado, resistencia, durabilidad, impermeabilidad; con el HAC al ser muy fluido, se autocompacta, densificándose de mejor manera, mejorando todas las propiedades.

Para que el CC sea colocado eficientemente, es necesario equipo de vibración; el HAC no requiere de éste equipo por que se autocompacta por gravedad en forma más rápida, utilizando menos mano de obra, sin producir ruido, aspecto muy importante en el caso de que el entorno sea sensible al ruido como hospitales, centros educativos, residencias.

Por la facilidad de fluir de la mezcla, el HAC puede ser utilizado para relleno en mampostería estructural.

Se puede utilizar en superficies horizontales (pavimentos), en superficies verticales (muros, columnas), en prefabricados, con ventaja sobre el CC porque facilita el terminado.

FORMULACIÓN:

El HAC es un material de construcción utilizado en otros países desde hace algunos años: en Japón desde finales de los ochenta, en Suecia a mediados de los noventa, pero muy poco conocido en la Ciudad de Cuenca, por lo que un trabajo de investigación en éste campo proporcionará argumentos valederos y confiables para que los constructores tengan a su alcance una alternativa válida como material de construcción.

DELIMITACIÓN:

Las mezclas del CC y del HAC se diseñarán para una resistencia de 250 kg/cm² y 350 kg/cm² a los 28 días de edad (también se ensayarán a edades de 7 y 14 días), se confeccionarán probetas cilíndricas de 10x20 cm, se curarán y se ensayarán de acuerdo a las normas de la Federación Europea EFNARC, a falta de alguna norma se utilizará las normas Norte Americanas ASTM.

Los materiales que se utilizarán en la presente investigación serán:

- Cemento Portland tipo I marca Holcim y marca Guapán
- Agua potable que se consume en la Ciudad de Cuenca
- Arena proveniente de la mina del Sr. Heredia, localizada en el sector Jubones (Cantón Santa Isabel)
- Ripio procedente de la mina del Sr. Heredia, localizada en el sector Jubones (Cantón Santa Isabel), de diámetro máximo entre 19 mm
- Aditivos superplastificantes: uno distribuido por Sika y otro distribuido por ADITEC, se usará diferentes porcentajes de aditivo.

Los ensayos para determinar los parámetros y la calidad de los áridos realizados son: densidades, análisis granulométrico, contenido orgánico, abrasión.

Los ensayos efectuados en el concreto fresco son: contenido de aire, densidad, temperatura, fluidez (cono, embudo en V, caja en L).

Los ensayos realizados en el concreto endurecido son: densidad, resistencia, Módulo de Elasticidad, Relación de Poisson.

1.3 OBJETIVOS DE LA INVESTIGACIÓN

GENERAL

Obtener mezclas de Hormigón Autocompactante (HAC), con resistencias a los 28 días de edad, de 250 y 350 kg/cm² confeccionados con materiales que se utilizan en el campo de la construcción en la Ciudad de Cuenca, que tengan buenas características, tanto en estado fresco como endurecido, y que en lo futuro puedan ser utilizadas en la construcción de obras civiles.

ESPECÍFICOS

- Estudiar los áridos de la zona, a fin de obtener parámetros para los diseños y definir los que se van a utilizar en el presente trabajo.
- Determinar un método de diseño de mezclas, que pueda ser utilizado tanto para el Concreto Convencional (CC) como para el HAC.
- Identificar los métodos y procedimientos de ensayos que se aplicarán para la caracterización de los HAC, de acuerdo a los

- requisitos técnicos de las especificaciones de las Directrices Europeas para el Hormigón Autocompactante (EFNARC 2006).
- Diseñar, ajustar mediante mezclas en laboratorio, efectuar los ensayos en estado fresco, seleccionar las mezclas que cumplan con los requisitos de la EFNARC, confeccionar las probetas.
- Cumplida la edad de las probetas de CC y HAC, se realizarán los ensayos a compresión.
- Se definirá las mezclas que cumplan con los requisitos, tanto en estado fresco como endurecido, que puedan ser aplicadas en obra.
- Se efectuará un análisis comparativo entre las diferentes propiedades de los CC y HAC.

1.4 JUSTIFICACIÓN

Con la presente investigación se pretende introducir un nuevo material en el campo de la construcción, confeccionado con materiales que se utilizan en la zona, introduciendo una tecnología propia para este tipo de hormigón, desarrollada y utilizada en otros países.

El Hormigón Autocompactante (HAC) puede ser utilizado en todo tipo de obras, especialmente en las que el Concreto Convencional (CC) no se puede aplicar como: elementos esbeltos, de poco espesor, de difícil acceso, elementos donde existe congestionamiento de refuerzo, relleno en mampostería estructural, concretos arquitectónicos, prefabricados, revestimiento de túneles, rehabilitación de viviendas, aplicaciones verticales (muros, columnas), mejorando su terminado por eliminación de coqueras, nidos de grava, eflorescencias, terminado más fácil en grandes superficies planas (pavimentos), construcción de obras con entorno sensible al ruido como: hospitales, centros educativos, residencias.(ref. 7)

1.5 HIPÓTESIS

- En Cuenca existe disponibilidad de los materiales que se requieren para confeccionar Hormigón Autocompactante (HAC).
- Se puede determinar un método o guía para diseñar y obtener HAC con materiales que se utilizan en el campo de la construcción en la Ciudad de Cuenca.
- Si se dispone de las herramientas establecidas en la normativa, es posible verificar los criterios de aceptación del HAC de acuerdo a directrices internacionales.

 Si se realiza un correcto diseño de mezcla, con materiales de la zona, es posible obtener HAC, con propiedades similares o mejores a las del CC.

1.6 METODOLOGÍA

La tesis es de tipo experimental, que será desarrollada en el laboratorio, incluye el diseño de mezclas de HAC y CC para resistencias de 250 kg/cm² y 350 kg/cm², utilizando los siguientes materiales: cemento Holcim y Guapán, áridos del sector, aditivo superplastificante SIKA y ADITEC.

Pasos seguidos:

- 1.- Determinación de los parámetros de los áridos que se emplearán en los diseños de las mezclas:
- 1.1.- Muestreo, ensayos de los áridos: determinación de materia orgánica, desgaste, pesos específicos, pesos volumétricos, análisis granulométrico.
 - 1.2.- Se calcula los parámetros para diseñar las mezclas
- 2.- Diseño, ajustes a las mezclas de prueba:

Con los parámetros obtenidos se procederá a diseñar las mezclas en laboratorio, en función del método de diseño determinado.

- 3.- Ensayos en el concreto:
- 3.1. En concreto fresco: Densidad, fluidez: cono de Abrams, cono en V (ensayo específico para HAC), caja en L (ensayo específico para HAC), siguiendo los criterios de la EFNARC, determinación de la temperatura, se procederá a la confección de las probetas cilíndricas de 10 x 20 cm.
- 3.2. En el concreto endurecido: en las probetas confeccionadas y curadas, cumplida la edad, se procederá a los ensayos de resistencia a compresión, determinación de la densidad, determinación del Módulo de Elasticidad y Relación de Poisson.
- 4.- Recopilación y análisis de los resultados de los ensayos, análisis comparativo entre el CC y el HAC: densidades, temperaturas, fluidez, resistencias, costos, Módulo de Elasticidad, Relación de Poisson.
- 5.- Elaboración del informe.

CAPÍTULO 2.- ESTADO DEL ARTE DE LOS HORMIGONES AUTOCOMPACTANTES

2.1 INTRODUCCIÓN

El Hormigón Autocompactante es un hormigón muy fluido, que se compacta por gravedad, sin necesidad de energía externa. (ref. 1)

Por su gran fluidez puede rellenar los orificios, los rincones del encofrado, pasar por los espacios de los refuerzos, autonivelarse, sin que se produzca segregación, lo que en ciertos casos para el Concreto Convencional sería imposible.

Por su fluidez es más rápido su colocado que el Concreto Convencional, disminuyendo la mano de obra y el equipo de compactación, consecuentemente se reduce costos de colocación, mejorando el entorno de trabajo al no utilizarse vibradores que producen ruido.

Otra de las ventajas es mejorar el terminado del hormigón ya que toma exactamente la forma del encofrado, sin huecos, sin segregación, de color homogéneo.

El proceso de endurecimiento del HAC es similar al del CC.

La porosidad y la permeabilidad no se ven afectadas, por lo tanto su durabilidad tampoco, aunque algunos investigadores sostienen que al utilizarse en el HAC menores relaciones agua/cemento y mayor cantidad de finos, se incrementa la durabilidad.

La idea de este tipo de hormigón nació de Okamura en 1986, con la finalidad de solucionar problemas de durabilidad del concreto, que se atribuía a una deficiente calidad de mano de obra al colocar el concreto mediante compactación.

Los principales trabajos de investigación fueron llevados a cabo por Ozawa y Maekawa en la Universidad de Tokio, que posteriormente fueron

presentados en diferentes ponencias y conferencias, difundiendo en todo el mundo este tipo de hormigón.

La primera obra construida con HAC fue en Japón en 1988, utilizando materiales de la zona, con buenos resultados.

Al principio el HAC era tratado como un hormigón especial de alto desempeño, y su utilización se restringía a las grandes empresas de construcción japonesa, pero luego de que varios comités realizaron actividades para difundir y fomentar su uso, se popularizó su empleo en la construcción de obras civiles.

En Norteamérica se fomentó el uso del HAC luego de que el Profesor Okamura dictó una conferencia en la convención del ACI en Nueva Orleáns en 1996.

En Estocolmo, en septiembre de 1999, se realizó el primer congreso internacional sobre HAC, tratando temas como: materiales, dosificación, propiedades y aplicaciones de los HAC.

En el segundo congreso internacional (RILEM) realizado en Tokio en el 2001, se observó el interés y el incremento de la utilización de los HAC, más del 25% de los trabajos presentados se relacionaban con aplicaciones en construcciones civiles, iguales tendencias se observaron en el tercer congreso internacional RILEM efectuado en el 2003 en Islandia y en el cuarto congreso internacional RILEM realizado en Chicago en el 2005.

En Europa, en 1997, varias empresas y universidades dieron inicio al proyecto "Brite Euram BE 96-3801", que tenía como finalidad desarrollar la tecnología para producir HAC a gran escala.

En Europa, con aporte de varios países, se formaron comisiones para el estudio, la normalización y la preparación de guías para los HAC, estos documentos presentan información muy útil para las empresas e investigadores dedicados a éste tipo de hormigones.

Uno de los documentos de mayor aplicación es "Directrices Europeas para el Hormigón Autocompactante", publicado en febrero del 2002 y revisado en febrero del 2006, que trata sobre las especificaciones, producción y uso del HAC, con el apoyo de cinco organizaciones Europeas: BIBM (The European Precast Concrete Organisation), CEMBUREAU (The European Cement Association), ERMCO (The European Ready-mix

Concrete Organisation), EFCA (The European Federation of Concrete admixture Associations), EFNARC (The European Federation of Specialist Constrution Chemicals and Concrete Systems); guía que servirá de base para el presente trabajo.

(Datos obtenidos de la Tesis Doctoral de Jonhson Wilker Rigueira Víctor "Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los HAC")

2.2 CARACTERIZACIÓN DE LOS HAC EN ESTADO FRESCO

2.2.1 Introducción

Las propiedades de los HAC y de los Concretos Convencionales en estado fresco son diferentes, por lo que los ensayos para controlar su calidad, también son diferentes.

Las principales características que deben reunir los HAC, de acuerdo a la EFNARC (Anexo A, pg. 47, requisitos del HAC) son:

- <u>Capacidad de paso</u>: describe la capacidad de la mezcla en estado fresco de fluir a través de espacios estrechos sin que se produzca bloqueo, en éste aspecto se debe considerar la geometría de la pieza, la densidad de la armadura; lo que limita el tamaño del agregado, uso de menor cantidad de agregado, uso de aditivos superplastificantes.
- <u>Capacidad de Ilenado</u>: es la capacidad de la mezcla de fluir dentro del encofrado rellenando todas las superficies, garantizando la calidad del acabado y que las armaduras queden completamente recubiertas de hormigón.
- Resistencia a la segregación: esta propiedad está relacionada con la estabilidad del hormigón, debe permanecer homogéneo durante el mezclado y el colocado, sin que se produzca separación de los áridos o exudación. La inclusión de finos o de agentes modificadores de la viscosidad evitarán la segregación.

Ensayo de asentamiento

Fig. 2.1 - Cono de Abrams

Fig. 2.2 - Hormigón segregado

Fig. 2.3 - Hormigón no segregado

Los ensayos más utilizados para caracterizar los HAC en estado fresco y que serán aplicados en el presente trabajo son:

2.2.2 Ensayo de asentamiento

El ensayo de asentamiento y el tiempo T_{500} son métodos para caracterizar la fluidez y el ritmo de flujo en ausencia de obstrucciones, indica la capacidad de llenado; el tiempo T_{500} es una medida de la velocidad de flujo, por lo tanto de la viscosidad.

El procedimiento de ensayo consiste en colocar el cono de Abrams (fig. 2.1) sobre una bandeja plana marcada el centro y un círculo de 500 mm de diámetro, de superficie horizontal, lisa; se llena el cono con la mezcla sin compactar, luego se levanta el cono dejando fluir el hormigón, se mide el tiempo en segundos, que tarda el hormigón en alcanzar los 500 mm de diámetro (T_{500}) , posteriormente se mide el mayor diámetro de la extensión del flujo del hormigón y el diámetro perpendicular a éste, la media es el escurrimiento. (ref. 2)

Se observa cómo se presenta la mezcla: no debe presentar concentración de árido grueso en el centro ni exudación en su borde. (figs. 2.2, 2.3)

2.2.3 Ensayo del embudo en V

Este ensayo evalúa la capacidad del hormigón de pasar por sitios estrechos (sin obstrucciones) y la resistencia a la segregación. (fig. 2.4, 2.5)

Se llena con la mezcla el embudo, sin compactar, se abre la compuerta localizada en la parte inferior del embudo, se mide el tiempo (Tv) en segundos, desde que se abre la compuerta hasta que se vea la primera entrada de luz en la parte baja del embudo. (ref. 3)

Tiempos altos significa que el hormigón es muy cohesivo debido al exceso de finos, a poca agua o a la baja dosificación del aditivo.

Ensayo del embudo en V

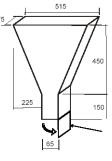


Fig. 2.4 - Embudo en V

Fig. 2.5 – Dimensiones en mm del Embudo en V (ref. 3)

Ensayo de la caja en L

Fig. 2.6 - Caja en L

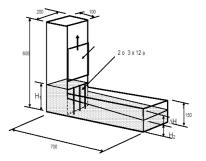


Fig. 2.7 – Dimensiones en mm de la caja en L (ref. 4)

2.2.4 Ensayo de la caja en L

Éste ensayo se utiliza para evaluar la capacidad de paso del HAC a través de aberturas estrechas, incluyendo el espacio entre las barras de refuerzo, la capacidad de llenado y la resistencia a la segregación. (fig. 2.6, 2.7)

Se llena el compartimento vertical de la caja con la mezcla, sin compactar, se abre la compuerta y se permite que el hormigón fluya a través de las barras y del compartimento horizontal hasta que se estabilice, se mide las alturas que alcanza el hormigón en los dos extremos del canal, se divide la altura al final del canal (H2) y la altura al comienzo del canal (H1), éste valor se conoce como coeficiente de bloqueo. (ref. 4)

2.2.5 Análisis de la segregación

La segregación se analizó en forma visual, en base a los ensayos indicados anteriormente y mediante corte longitudinal de la probeta a fin de observar si los agregados están bien distribuidos en la superficie de la cara cortada.

Cuando existe segregación se detecta una capa superior sin árido grueso; se considera segregado cuando presenta una capa superior de pasta de espesor 5 mm o mayor, medido entre la superficie de la probeta y el primer árido de diámetro superior a 8 mm

2.2.6 Determinación de densidades

Es una de las variables que tiene influencia en la calidad del hormigón, una mala compactación se refleja en las densidades, tanto en estado fresco como endurecido, un aumento de la porosidad disminuye la densidad y la calidad del hormigón.

2.2.7 Determinación de la temperatura

Temperaturas altas del hormigón puede traer problemas de retracción, por lo que es necesario que las mismas se encuentren dentro de rangos aceptables, especialmente si el hormigón va a ser utilizado en la construcción de obras masivas.

2.2.8 Determinación del contenido de aire

El contenido de aire en el concreto mejora la trabajabilidad, aumenta la cohesión de la mezcla, disminuyendo la tendencia a la segregación (exudación), es aconsejable incorporar aire cuando el concreto va a estar sujeto a ciclos de congelamiento y descongelamiento, una desventaja es que disminuye la resistencia.

El método utilizado en laboratorio es el de presión, el procedimiento se describe en el capítulo 3.3.

2.2.9 Determinación del módulo de elasticidad y relación de Poisson

El módulo de elasticidad en compresión se ve influenciado por varios factores: muestra húmeda da mayores valores que muestra seca, a mayor módulo de elasticidad del agregado mayor será del concreto, forma del agregado, tipo de agregado, densidad del concreto, proporciones de la mezcla, velocidad de carga, nivel de resistencia.

Varios investigadores han relacionado el módulo de elasticidad con la resistencia a comprensión simple (ref.16):

Ec = 3900 √f'c Ec = módulo de elasticidad en MPa

f'c = resistencia en MPa

Ec = 14000 $\sqrt{\text{f'c}}$ Ec = módulo de elasticidad en kg/cm²

f'c = resistencia en kg/cm² (ref. 5)

2.2.10 Criterios de clasificación y aceptación de los HAC

Para la clasificación y aceptación de los HAC existen varios criterios, así por ejemplo en Japón los ensayos como el asentamiento, el embudo en V y la caja en L son los más utilizados, (ref. 6) en Suecia los métodos más utilizados son: el escurrimiento y la caja en L. (ref. 7)

No existen ensayos ni valores universalmente normalizados y recomendados para aceptar los HAC; en el presente estudio se adopta lo recomendado por las "Directrices Europeas para el Hormigón Autocompactante – 2006".

La capacidad de relleno y la estabilidad del HAC en estado fresco está gobernada por cuatro características principales:

CARACTERÍSTICA	MÉTODO DE ENSAYO	
Flujo	Ensayo de asentamiento	
Viscosidad	$T_{500,}$ ensayo de asentamiento o ensayo del embudo en V	
Capacidad de paso	Ensayo de la caja en L	
Segregación	Ensayo de resistencia a la segregación	

Tabla 2.1 Recomendaciones de la EFNARC para HAC

La clase de HAC será definida entre el productor y el consumidor, dependiendo de las condiciones de confinamiento, de la geometría del elemento, de la cantidad y localización de la armadura de refuerzo, para desarrollar la presente investigación se escogió la clase 1 que indica que es adecuada para la mayoría de aplicaciones, de acuerdo a las Directrices Europeas para el HAC - 2006, páginas 14, 48.

La capacidad de paso, la viscosidad y la resistencia a la segregación se especificará si es necesario.

- Si hay poca o ninguna armadura, no se requerirá la especificación de la capacidad de paso.
- La viscosidad será importante cuando se requiera un buen acabado superficial o cuando haya alta densidad de armadura.

 La resistencia a la segregación es importante, dependiendo de la fluidez, si es necesario se especifica, la clase 1 es la adecuada para la mayor parte de aplicaciones.

Criterios de conformidad para las propiedades del HAC

CLASE	CRITERIO
Asentamiento SF1	520 – 700 mm
Asentamiento SF2	640 – 800 mm
Asentamiento SF3	740 – 900 mm
Ensayo del embudo en V (VF1)	<= 10 s
Ensayo del embudo en V (VF2)	7 – 27 s
Capacidad de paso PA1	>= 0,75
Capacidad de paso PA2	>= 0,75
Ensayo del embudo en V (VF2) Capacidad de paso PA1	7 – 27 s >= 0,75

Tabla 2.2 Recomendaciones de conformidad de acuerdo a la EFNARC para HAC (ref. 8)

SF1 a SF3 - Clases de consistencia de acuerdo al ensayo de asentamiento

VS1 a VS2 - Clases de viscosidad según $T_{\rm 500}$

VF1 a VF2 - Clases de viscosidad según el ensayo del embudo en V

PA1 a PA2 - Clases de capacidad de paso según el ensayo en la caja en L

CAPÍTULO 3.- **DETERMINACIÓN DE LAS CARACTERÍSTICAS DE LOS HORMIGONES**

3.1 MEZCLADO

3.1.1 Mezclado en laboratorio del concreto convencional

El mezclado se realizó mecánicamente, utilizando una concretera basculante de 35 lts de capacidad (fig. 3.1), procediendo de la siguiente manera: se introduce el agregado grueso, un poco de agua, el agregado fino, se da unas pocas vueltas en la mezcladora, se detiene y se adiciona el cemento, el resto de agua, el aditivo; con todos los ingredientes en la olla, se mezcla durante 3 minutos, se deja en reposo 3 minutos, se termina el mezclado por 2 minutos. (ref. 9)

3.1.2 Mezclado en laboratorio del HAC

El mezclado se realizó en la misma concretera utilizada para el CC, procediendo de la siguiente manera: se introduce el agregado grueso, un poco de agua, el agregado fino, la puzolana, se mezcla durante 1 min, se detiene y se adiciona el cemento, la microsílica, el resto de agua, el aditivo; se termina de mezclar durante 5 minutos. (ref. 10)

3.2 DETERMINACIÓN DEL ASENTAMIENTO DEL CONCRETO CONVENCIONAL

Con la muestra del concreto recién mezclado se llena el cono de Abrams (fig. 3.2), en tres capas de igual volumen, en cada capa se da 25 golpes con una varilla lisa de 16 mm de diámetro, distribuidos uniformemente sobre la superficie de la capa, se enraza, se limpia los excesos de material y se levanta en forma vertical el molde, se mide la diferencia de altura entre el molde y el centro de la masa de concreto, esto es el asentamiento o revenimiento, medido en pulgadas o centímetros. (ref. 11)

MEZCLADO EN LABORATORIO DEL HAC

Fig. 3.1 Hormigonera basculante

DETERMINACIÓN DEL ASENTAMIENTO DEL CONCRETO CONVENCIONAL

Fig. 3.2 Cono de Abrams

DETERMINACIÓN DEL CONTENIDO DE AIRE

Fig. 3.3 Medidor contenido de aire

3.3 DETERMINACIÓN DEL CONTENIDO DE AIRE

Con la muestra del concreto recién mezclado se llena el recipiente (fig. 3.3): en CC en tres capas de igual volumen, en cada capa se da 25 golpes con una varilla lisa de 16 mm de diámetro, distribuidos uniformemente sobre la superficie de la capa; en HAC se llena de una sola vez en forma suelta, sin ningún tipo de compactación externa, luego golpear con un mazo de caucho los lados del recipiente, enrazar y limpiar los bordes, poner la tapa en forma hermética, mediante las válvulas introducir agua, luego cerrar e introducir presión, abrir la válvula de comunicación entre la cámara de aire y el recipiente que contiene la mezcla, leer el porcentaje de aire en la carátula del medidor de presión, al valor obtenido se resta el factor de corrección del agregado. (ref. 12)

3.4 DETERMINACIÓN DE LA TEMPERATURA

Se coloca el termómetro dentro de la masa de concreto fresco, se cubre con el hormigón, se espera a que se estabilice la lectura, se registra la temperatura.

3.5 DETERMINACIÓN DE LA DENSIDAD

3.5.1 En concreto convencional

Se pesa el molde vacío, se llena el molde en tres capas de igual volumen, en cada capa se da 25 golpes con una varilla lisa de 16 mm de diámetro, distribuidos uniformemente sobre la superficie de la capa, se enraza, se limpia los excesos de material y se pesa, la diferencia nos da el peso del hormigón que dividido para el volumen del molde obtenemos la densidad del concreto fresco. (ref. 13)

3.5.2 En hormigón autocompactante

El llenado de los moldes se realizó vertiendo la mezcla de una sola vez, sin ningún tipo de compactación.

Fig.3.4 Equipo para determinar el Módulo de Elasticidad y Relación de Poisson

3.6 DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD Y RELACIÓN DE POISSON

Al no existir el tramo recto en la curva esfuerzo – deformación, se calcula el módulo de elasticidad como módulo secante.

$$Ec = (S2 - S1)/(E1 - 0,000050)$$
 (ref. 14)

S2 = Esfuerzo correspondiente al 40% de la resistencia

S1 = Esfuerzo correspondiente a una deformación unitaria de 50

Millonésimas

E1 = Deformación unitaria longitudinal, producida por el esfuerzo S2

La relación de Poisson (U) es la relación entre la deformación unitaria lateral y la deformación unitaria axial aplicada, su valor se encuentra entre 0,15 y 0.20.

$$U = (Et2 - Et1)/(E1 - 0.000050)$$

Et2 = Deformación transversal unitaria, a mitad de altura del espécimen, producida por el esfuerzo S2.

Et1 = Deformación transversal unitaria, a mitad de altura del espécimen, producida por el esfuerzo S1.

E1 = Deformación unitaria longitudinal, producida por el esfuerzo S2.

3.7 FABRICACIÓN, CURADO Y CAPEADO DE LAS PROBETAS

Los moldes que se utilizaron, tanto para el concreto convencional como para el HAC, fueron cilíndricos de 10 cm de diámetro y 20 cm de altura, de material metálico, no deformable.

Las probetas confeccionadas con concreto convencional se llenaron en dos capas, cada capa se compactó mediante varillado, dando 25 golpes con una varilla de 10 mm de diámetro y de 30 cm de longitud, distribuidos

Fig. 3.5 Refrentado de las probetas

Fig. 3.6 Prensa para ensayo de compresión de los cilindros

uniformemente en toda la superficie del concreto, luego se procede al nivelado, enrazado y marcado de cada probeta. (ref. 15)

Las probetas confeccionadas con hormigón autocompactante se llenaron mediante vertido directo de una sola vez, sin aplicar ningún tipo de compactación, a continuación se procede al nivelado, enrazado y marcado de cada probeta.

Luego de la confección de las probetas, las 24 horas permanecieron en los moldes, procediendo al des moldeo y a sumergirlas en agua hasta el día del ensayo.

Previo a realizar el ensayo de compresión se procedió al capeado mediante la colocación de una capa de azufre fundido, que nos garantice que las caras sean lisas, paralelas, normales al eje de carga.

3.8 ENSAYO DE COMPRESIÓN SIMPLE

Previo a realizar el ensayo de compresión, se pesó cada probeta a fin de calcular la densidad del concreto fraguado.

Cada probeta se coloca entre las mordazas de la máquina de ensayo, se procede a dar carga hasta la ruptura, se lee la carga en la carátula de la prensa, dividido para el área de la cara de la probeta obtenemos la resistencia del concreto. (ref. 16)

CAPÍTULO 4.- MATERIALES UTILIZADOS EN LA CONFECCIÓN DE LOS HORMIGONES

Los materiales que se utilizan en la fabricación de los HAC son los mismos que se utilizan en la fabricación de los hormigones convencionales; dosificándose de diferente manera, se necesita mayor contenido de finos a fin de evitar la segregación, se debe emplear aditivos de última generación como superplastificantes (reductores de agua de alto rango), a fin de no incrementar el contenido de agua de la mezcla, además si es necesario se incorporará un material fino (filler) que aumente la cohesión, disminuyendo la tendencia a la segregación.

4.1 ÁRIDOS

Los áridos que se utilizan para confeccionar los HAC son los mismos que los utilizados para hormigones convencionales, con la limitación del tamaño máximo, la mayoría de los investigadores indican que no deben ser mayores a 20 mm (3/4").

Las arenas naturales (rodadas) por su forma redondeada favorecen la trabajabilidad del hormigón; las trituradas aumentan el rozamiento interno, necesitando mayor cantidad de agua para lograr el mismo resultado que las naturales.

Otro factor que se debe considerar en las arenas es el contenido de finos, mayor % de finos mayor cohesión, mayor requerimiento de agua, los finos no deben ser perjudiciales para el hormigón.

Los áridos estudiados provienen de los sectores: Josefina, Descanso, Río Jadán, Paute, Rircay, Jubones, en los que se realizaron ensayos como: determinación de densidades, absorción, abrasión, contenido de materia orgánica, análisis granulométrico, % de finos, los resultados de los ensayos se presenta en los anexos.

Los valores de las densidades y absorción fueron similares; el % de abrasión en todos los ripios de ¾" (19 mm) fue inferior al 40%, aceptable; el contenido de materia orgánica en las arenas estudiadas dio valores

inferiores a 1 comparado con la carta patrón, aceptable; los áridos provenientes del Río Jadán presentaban un alto contenido de material pizarroso, razón para que no sean considerados para el presente trabajo. Lo que definió la selección de los áridos fue su granulometría, la limpieza, la facilidad de obtener en el mercado y el uso en la confección de hormigones en la zona, en función de los criterios expresados se escogió como áridos para trabajar en la tesis los provenientes del Río Jubones, mina del Sr. Heredia: arena rodada natural y ripio de tamaño ¾" (19 mm) obtenido por trituración de los rodados y cantos rodados sedimentados por el Río Jubones, ambos materiales cumplen con las especificaciones de calidad.

En la fig. 4.1se presenta la curva granulométrica de la arena suministrada por el Sr. Heredia, provenientes del Río Jubones:

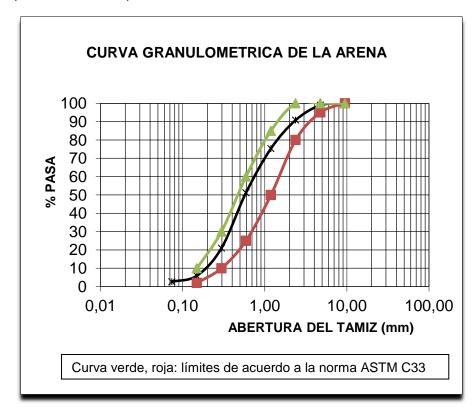


Fig. 4.1 Curva granulométrica de la arena (color negro)

En la fig. 4.2 se presenta la curva granulométrica del ripio suministrado por el Sr. Heredia, provenientes del Río Jubones:

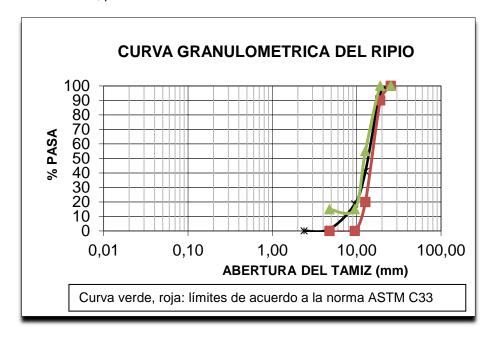


Fig. 4.2 Curva granulométrica del ripio (color negro)

DENSIDADES

En la tabla 4.1 se presenta las densidades y absorción de los áridos

	ARENA	RIPIO
DENSIDAD APARENTE	2,51	2,58
DENSIDAD S.S.S.	2,59	2,64
DENSIDAD ABSOLUTA	2,72	2,73
% ABSORCIÓN	3,14	2,14

Tabla 4.1 Densidades y Absorción de los áridos

Materia orgánica: color menor a 1, comparado con el elemento patrón, aceptable para utilizar en los hormigones.

Observación: en el anexo I se presenta ensayos realizados en los áridos.

4.2 CEMENTOS

Para confeccionar los HAC puede utilizarse cualquier tipo de cemento, que cumpla con las especificaciones, que exista en el mercado (ref. 17); para la presente investigación se trabajó con Cemento Hidráulico HOLCIM, tipo GU, que cumple con la Norma NTE INEN 2380, garantizado por la empresa fabricante y Cemento Portland Puzolánico GUAPÁN, tipo IP, que cumple con la Norma NTE INEN 490, garantizado por la empresa fabricante.

La relación agua/cemento está en función de la resistencia exigida al hormigón, que de acuerdo a lo planteado en la tesis es de 250 kg/cm² y 350 kg/cm², por lo tanto para cada caso se define la cantidad de cemento, lo que se presenta en el capítulo diseños de mezclas de HAC.

La cantidad de cemento que se recomienda está entre 350 kg/m³ y 500 kg/m³ (ref. 18), valores mayores a 500 kg/m³ puede traer problemas por aumento de retracciones y valores cercanos o inferiores a 350 kg/m³ exigen la inclusión de otro material fino como filler, puzolana, escoria de altos hornos, microsílica, etc.

4.3 ADICIONES

La principal función de los finos es darle mayor cohesión a la mezcla, evitando la segregación.

Los principales materiales utilizados como finos son: cenizas volantes, escoria de alto horno o humo de sílice y materiales inertes como filler calizo, silicio o marmolina, dependiendo de la facilidad de suministro y costo en la zona.

Se recomienda que los límites de utilización de las cenizas volantes (puzolanas) no supere el 35% del peso del cemento y del 12% en el caso del humo de sílice.

Fig. 4.3 Puzolana sector LLacao

Los hormigones autocompactantes necesitan mayor contenido de finos (partículas < 0,125 mm, de acuerdo a las Directrices Europeas para HAC - 2006) por lo que se estudió la adición de puzolana obtenida del sector de incorporador del contenido de aire (Sika Aer RMC, proporcionada por la empresa SIKA), cuyos diseños y resultados se encuentran en hojas adjuntas, en el capítulo 5.2 diseño de mezclas de HAC.

En la fig. 4.3 se presenta yacimientos de puzolana existente en el sector de Zhiquir, Llacao, de gran extensión.

La puzolana tiene un color gris claro (plomizo), de buenas características, de acuerdo al resultado del análisis químico realizado en el laboratorio CESEMIN de la Universidad de Cuenca: SiO2 = 56,12 %; Al2O3 = 18,16 %; Fe2O3 = 5,92 %.

En la fig. 4.7 se presenta la curva granulométrica de la puzolana



Fig.4.7 Curva granulométrica de la Puzolana

DENSIDADES

En la tabla 4.2 se presenta las densidades y absorción de la puzolana

	PUZOLANA
DENSIDAD APARENTE	2,44
DENSIDAD S.S.S.	2,54
DENSIDAD ABSOLUTA	2,71
% ABSORCIÓN	4,12

Tabla 4.2 Densidades y absorción de la Puzolana

4.4 ADITIVOS

Para confeccionar los HAC es necesario utilizar aditivos reductores de agua de alto rango (superplastificantes) de última generación, si es necesario aditivos cohesionantes.

A continuación se indica la evolución de los aditivos con el tiempo:

1930	1970	1990	2000
Ligno - sulfonatos	Melamina naftaleno	Polímeros vinílicos	Policarboxilatos
Reducción de agua hasta un 10%	Reducción de agua hasta un 20%	Reducción de agua hasta un 30%	Reducción de agua hasta un 40%

Tabla 4.3 Evolución de los aditivos reductores de agua con el tiempo (Tesis Doctoral "Influencia de la dosificación y empleo de diferentes tipos de cemento y adiciones en las propiedades mecánicas del HAC" Ángel Vilanova Fernández. Madrid – 2009. Pg. 51)

En el presente caso se utilizó aditivos superplastificantes, fabricados por SIKA: Sika Viscocrete 2100 R, que cumple con la Norma ASTM C-494, tipos A y F, fabricado con polímeros policarboxilicatos recomendado para producir hormigones autocompactantes, con pequeñas dosificaciones se puede reducir entre 10% y 15% de agua, con altas dosificaciones se puede lograr reducciones de hasta un 45%.

La dosis varía de acuerdo al tipo de materiales utilizados, a las condiciones ambientales y a los requerimientos del proyecto específico, lo que recomienda SIKA ECUATORIANA es entre 0,19% y 0,9% del peso del cemento, se debe adicionar al final del mezclado, dejándose mezclar por lo menos durante 60 segundos.

Sika Viscocrete 2100 es recomendable usar con microsílica por su capacidad de reducción de agua y mayor control de la plasticidad.

A fin de darle mayor cohesión a la mezcla para controlar la exudación, se adicionó un incorporador de aire como Sika Aer RMC, que cumple con la Norma ASTM C-260, no contiene cloruros, además reduce la capilaridad, la permeabilidad y el desecamiento superficial del hormigón en estado

plástico, aumentado la durabilidad, se adiciona a la mezcla disuelto en la última porción de agua de amasado.

La dosificación recomendada por SIKA ECUATORIANA es entre 0,1% y 0,6% del peso del cemento.

Se adicionó Sika Fume, que es un polvo fino, de color gris, a base de microsílica, cumple con la Norma ASTM C-1240, con la finalidad de aumentar las resistencias mecánicas y químicas del hormigón, aumentar la cohesión, reducir la exudación y la segregación, viene listo para ser usado, se adiciona a la mezcla con los agregados o el cemento, a fin de garantizar la distribución homogénea se debe incrementar el tiempo de mezclado.

La dosificación recomendada por SIKA ECUATORIANA es entre 3% y 10% del peso del cemento, debido a que es un material muy fino se requerirá una mayor cantidad de agua que deberá ser controlada con la incorporación del aditivo superplastificante.

Otro aditivo superplastificante, reductor de agua de alto rango, que se utilizó fue ADITEC SF-106, proporcionado por la Empresa ADITEC, que cumple con la Norma ASTM C-494, tipo F, recomendado para producir hormigones autocompactantes, se adiciona con la última parte de agua de amasado, recomendándose extender el tiempo de amasado por lo menos 5 minutos hasta obtener una mezcla fluida, nunca añadir directamente al cemento o a los agregados.

La dosificación recomendada por ADITEC ECUATORIANA es entre 0,8% y 1,6% del peso del cemento.

4.5 AGUA

La calidad como la cantidad de agua tiene mucha importancia en la calidad del hormigón, así las impurezas pueden interferir con el fraguado del cemento afectando la resistencia, causar manchas superficiales, provocar corrosión del acero de refuerzo.

El agua debe cumplir con parámetros de calidad, de acuerdo a la norma especificada, se considera que el agua de consumo humano es una buena agua para confeccionar concretos, para la presente investigación se utilizó agua potable que se consume en la Ciudad de Cuenca.

CAPÍTULO 5.- MATERIALES UTILIZADOS EN LA CONFECCIÓN DE LOS HORMIGONES

5.1 DISEÑO DE LOS HORMIGONES CONVENCIONALES (CC)

Los materiales utilizados para diseñar y elaborar las mezclas de Concreto Convencional fueron: cementos Holcim y Guapán, agua potable de uso en la Ciudad de Cuenca, áridos del sector Jubones de la mina Heredia, aditivos de la casa Sika y de la casa Aditec.

El método seguido para el diseño de las mezclas fue el propuesto por la Road Research Laboratory (ver Dosificaciones de Hormigones de Fernando Arredondo, pg. 159), básicamente consiste en definir la relación agua/cemento en función de la resistencia de diseño del concreto a los 28 días de edad en probeta cilíndrica, en el presente caso tenemos resistencias de diseño de 250 kg/cm² y de 350 kg/cm², la cantidad de agua en función del asentamiento método del cono de Abrams de 7 a 10 cm, la proporción de los áridos se determinó ajustando a las curvas que para el efecto trae el método (ver fig. 5.1), en el presente caso se ajustó a la curva N° 4 para un tamaño máximo de árido de ¾" (19 mm), que nos da mezclas más trabajables, con mayor contenido de mortero que para el resto de curvas.

De acuerdo a las granulometrías de los áridos empleados para la presente tesis (áridos procedentes del Río Jubones: arena natural, ripio de diámetro máximo = 19 mm), es aceptable si la proporción de los áridos cae dentro del rango indicado en el gráfico como ajuste 1 y ajuste 2.

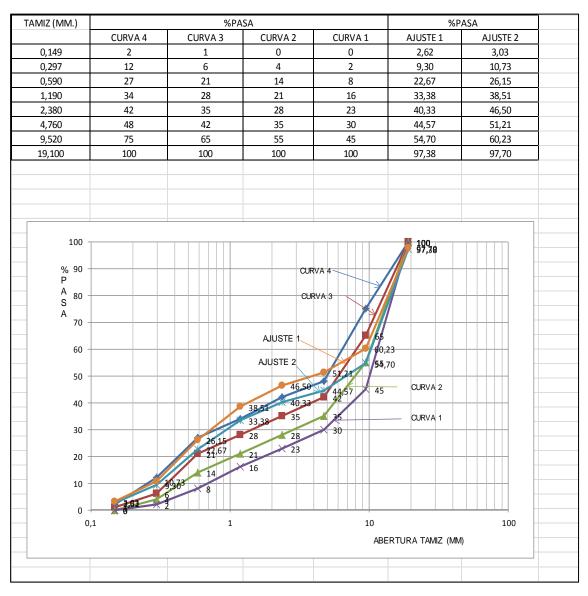


Fig. 5.1 Diseño de los áridos (ref. 22)

A continuación se explica la nomenclatura utilizada en las mezclas:

CC = Concreto Convencional

H = Cemento Holcim **G** = Cemento Guapán

S = Aditivos Sika A = Aditivos Aditec

001, 002 = Número de mezcla **250–350** = Resistencia del concreto

Ejemplo: mezcla A = CCHS250-002; Concreto Convencional con cemento Holcim, aditivo Sika, para una resistencia de 250 kg/cm², mezcla N° 2.

De todas las mezclas en estado fresco, que cumplen con las exigencias de la EFNARC, se confeccionaron 6 probetas para ser ensayadas a los 7, 14 y 28 días de edad.

En hojas adjuntas se presenta las mezclas de CC, que cumplen con las exigencias de asentamiento y resistencia a los 28 días:

Mezcla A: resistencia 250 kg/cm², cemento Holcim, aditivo Sika

Mezcla B: resistencia 350 kg/cm², cemento Holcim, aditivo Sika

Mezcla I: resistencia 250 kg/cm², cemento Guapán, aditivo Sika

Mezcla H: resistencia 350 kg/cm², cemento Guapán, aditivo Sika

Mezcla L: resistencia 250 kg/cm², cemento Holcim, aditivo Aditec

Mezcla M: resistencia 350 kg/cm², cemento Holcim, aditivo Aditec

Mezcla N: resistencia 250 kg/cm², cemento Guapán, aditivo Aditec

Mezcla O: resistencia 350 kg/cm², cemento Guapán, aditivo Aditec

Ver Anexo IV "Resultado de los ensayos a compresión de los CC", pg. 153

MEZCLA A:

Resistencia de diseño = 250 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Holcim

			DOSIFIC	ACION	CONCRI	ETO CON	/ENCION	AL (CC)					
MEZCLA: CCHS250-002	RESISTE	NCIA HO	RMIGÓN :	= 250 KG/	CM2								
(A)						CUENCA; AI	RFNA = .IU	BONES (F	IEREDIA).	RIPIO = 3	u" .IUBO	NES (HE	REDIA
(1)	NO CI LICO	LLO. OL				00 R (SIKA)	_III/\ - 00	. , 0.11.0	ierceony,	111110-01)	
	ΔSENTΔ	MIFNTO:	7 - 10			JOIN (OILUI)							
			ACIÓN = 0										
	LOTIVE		101011 - 0	1,01,2011					16				
CON	STANTES	DELOS	MATERIA	ES		MAT	ERIALES /N	VI3.		ATERIALE	S/16 LT	S.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO				PESO S.S.S			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3.10					370	370	119.35	5.920	5.920		5.920	
AGUA	1.00					243	200	200.00	3.896	3.200		2.534	
ARENA	2,72	2,59	2,51	3,14		738	761	294,00	11,807	12,178	7,98	12,749	
RIPIO 3/4"	2,73	2,64	2,58	2,14		949	970	368,00	15,191	15,516	2,76	15,610	
VISCOCRETE 2100 R (0,8%	1,10		,,,,,	,		2,96	2,96	2,69	0,047	0.047	, -	0,047	
AIRE	, -					,	,	16,00	-,-	- //-		- ,,-	
TOTAL						2304	2304	1000					
								1000					
Relación W/C =	0,541		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	662					
Relación Agr/C =	4,678		Peso =	3720	3686	gr.			•				
Asent. Medido =	7,50	cm.	Densidad =	2368	2346	kg/m3							
Dens. Conc. Fresco =	2357	kg/m3.					Ps/Pr (peso	0)=	0,796				
							Vs/Vr (vol.)	=	0,799				
							Volumen de	e Arena =	294				
							Volumen de	e Ripio =	368				
	A1	A2	A3	Y1									
TAMIZ	% PASA		% PASA		CURVA DE								
	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1 =	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5.92			2,00	2.62	SUM. A3*Y1 =	0						

MEZCLA B:

Resistencia de diseño = 350 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Holcim

			DOSIFIC	ACION	CONC	RETO COI	NVENCIO	NAL (CC	·)				
MEZCLA: CCHS350-001	RESISTE	NCIA HO	RMIGÓN =	: 350 KG	/CM2								
(B)						CUENCA;	ΔRFNΔ = .II	URONES (HEREDIA)	RIPIO = 3/	u" JUBO	NES (HER	FDIA)
(5)	110 (1 =1(0					100 R (SIKA)		0001120 (1111110 - 07	1 0000	NEO (IIEN	,
	ΔSENTΔ	MIENTO	= 7 - 10 CM		OILLE Z	TOO IT (OIITA)							
			ACIÓN = 01										
	LOUIAL	LADOINA	101014 - 01	70172011					16				
CONS	TANTES	DELOS	MATERIAL	FS		МАТ	ERIALES /I	ИЗ		IATERIALE	S/16 L TS		
00110	DENS.	DENS.	DENS.	ABS.		PESO SECO		VOL. AP.		PESO S.S.S			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3.10	5.5.6.	7.2 741.	,,,		415	415	133.87	6.640	6.640	,,,	6.640	
AGUA	1.00					243	200	200.00	3.881	3,200		2.514	
ARENA	2.72	2.59	2.51	3.14		723	746	288.00	11.566	11.929	7.98	12.489	
RIPIO 3/4"	2.73	2.64	2.58	2.14		929	949	360.00	14.861	15,179	2.99	15,305	
VISCOCRETE 2100 R (0,89	1.10	2,0 /	2,00	-,		3.32	3.32	3.02	0.053	0.053	2,00	0.053	
AIRE	.,10					0,02	5,52	15.00	3,500	3,500		5,500	
TOTAL						2313	2313	1000					
						20.0	2010	1000					
Relación W/C =	0.482		Vol. Prob. =	1571	1571	cc.	Vr + Vs =	648					
Relación Agr/C =	4.083		Peso =	3754	3709	ar.							
Asent, Medido =	9.00	cm.	Densidad =	2390	2361	kg/m3							
Dens. Conc. Fresco =	2375	kg/m3.					Ps/Pr (pes	o)=	0.796				
		J -					Vs/Vr (vol.)		0,799				
							Volumen de	e Arena =	288				
							Volumen de	e Ripio =	360				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1 =	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5.92			2.00	2.62	SUM. A3*Y1=	0						

MEZCLA I:

Resistencia de diseño = 250 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Guapán

			DOSIFIC	ACION	CONCRE	TO CONV	ENCION	AL (CC)					
MEZCLA: CCGS250-003	RESISTE	NCIA HO	RMIGÓN :	= 250 KG/	CM2								
(1)						CUENCA; A	RENA – II	IRONES	(HEREDIA)	· RIPIO - 1	3/4" .IIIB	ONES (HE	REDI
(1)	WIAT LINE	ALLO. OL				00 R (SIKA)	INEINA - OC	DONLO	(IILKEDIA	,, itii 10 = i	J/4 00L	ONLO (III	-11.
	ΔSENTΔ	MIENTO :	7-10			JOIN (OINA)							
			CIÓN = 1										
	LONAL	LADOINA	101011 - 1	0/01/2011					26				
CON	STANTES	DELOS	MATERIA	FS		МАТЕ	RIALES /N	//3		ATERIALE	S/26 I T	S	
00.11	DENS.	DENS.	DENS.	ABS.		PESO SECO							
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG KG	
CEMENTO GUAPÁN	3.10	0.0.0.	74.744.	-/-		360	360	116.13	9.360	9.360	,,,	9.360	
AGUA	1.00					233	192	192.00	6.053	4.992		3.692	
ARENA	2.72	2.59	2.51	3.14		866	893	345.00	22.515	23.222	9.58	24.672	
RIPIO 3/4"	2.73	2,64	2.58	2.14		849	867	329.00	22,069	22,542	1.46	22.392	
VISCOCRETE 2100 R (0,8%	1.10	2,0 /	2,00	-,		2.88	2.88	2,62	0.075	0.075	1,10	0.075	
AIRE	.,10					_,00	_,50	15.00	5,510	5,570		5,510	
TOTAL						2310	2315	1000					
101112						20.0	20.0	1000					
Relación W/C =	0.533		Vol. Prob. =	1571	1571	cc.	Vr + Vs =	674					
Relación Agr/C =	4,889		Peso =	3638	3620	ar.							
Asent, Medido =	9.00	cm.	Densidad =	2316	2304	ka/m3							
Dens. Conc. Fresco =	2310	kg/m3.				J -	Ps/Pr (pes	0)=	1.046				
		Ü					Vs/Vr (vol.)	=	1,050				
							Volumen de	e Arena =	345				
							Volumen de	e Ripio =	329				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5.92			3,00	3,03	SUM. A3*Y1 =	0						

MEZCLA H:

Resistencia de diseño = 350 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Guapán

			D00	ionoio		RETO COI	11 211010	147L (00	1				
MEZCLA: CCGS350-002	RESISTE	NCIA HO	RMIGÓN	= 350 KG	CM2								
(H)	MATERIA	ALES: CE	MENTO:	= GUAPÁ	N; AGUA	= CUENCA;	ARENA = J	UBONES	(HEREDIA)	; RIPIO = 3	4" JUBO	NES (HEF	REDIA
. ,			ADITIVO	= VISCO	CRETE 2	100 R (SIKA)			,				
	ASENTA	MIENTO	= 7 - 10 C			, ,							
	FECHA E	ELABOR/	ACIÓN = 1	3/07/201	1								
									26				
CONS	TANTES	DE LOS	MATERIA	LES		MAT	ERIALES /I	M3.	M	ATERIALE	S/26 LTS	3.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					400	400	129,03	10,400	10,400		10,400	
AGUA	1,00					230	190	190,00	5,984	4,940		3,658	l
ARENA	2,72	2,59	2,51	3,14		853	880	340,00	22,188	22,885	9,58	24,314	l
RIPIO 3/4"	2,73	2,64	2,58	2,14		833	851	323,00	21,667	22,131	1,46	21,983	ĺ
VISCOCRETE 2100 R (0,89	1,10					3,20	3,20	2,91	0,083	0,083		0,083	
AIRE	,					,	,	15,00		,			
TOTAL						2320	2325	1000					
								1000					
Relación W/C =	0,475		Vol. Prob.	1571	1571	CC.	Vr + Vs =	663					
Relación Agr/C =	4,328		Peso =	3712	3714	gr.		•	•				
Asent. Medido =	10,00	cm.	Densidad :	2363	2364	kg/m3							
Dens. Conc. Fresco =	2363	kg/m3.					Ps/Pr (pes	0)=	1,046				
							Vs/Vr (vol.)	=	1,050				
Observaciones:							Volumen de	e Arena =	340				
							Volumen de	e Ripio =	323				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3.00	3.03	SUM. A3*Y1 =	0						

MEZCLA L:

Resistencia de diseño = 250 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Holcim

Aditivo = Aditec SF-106 (ADITEC)

			DOSIFIC	ACION	CONCRI	ETO CON	VENCION	AL (CC)				
MEZCLA: CCHA250-001			RMIGÓN =									
(L)	MATERIA	ALES: CE				CUENCA; A	RENA = JU	BONES (I	HEREDIA);	RIPIO = 3	4" JUBC	NES (HERED
			ADITIVO:		SF-106							
			7 - 10									
	FECHA	ELABORA	ACIÓN = 2	5/08/2011								
									16			
CON			MATERIA	_			ERIALES /			ATERIALE		
	DENS.	DENS.	DENS.	ABS.			PESO S.S.S.		PESO SECO		-	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					355	355	114,52	5,680	5,680		5,680
AGUA	1,00					239	195	195,00	3,830	3,120		3,384
ARENA	2,72	2,59	2,51	3,14		781	805	311,00	12,490	12,882	2,74	12,832
RIPIO 3/4"	2,73	2,64	2,58	2,14		929	949	360,00	14,861	15,179	0,70	14,965
ADITEC SF-106 (1,4%)	1,17					4,97	4,97	4,25	0,080	0,080		0,080
AIRE								15,00				
TOTAL						2309	2309	1000			L	
								1000				
Relación W/C =	0,549		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	671				
Relación Agr/C =	4,940		Peso =	3707	3678	gr.	1					
Asent. Medido =	9,00	cm.	Densidad =	2360	2341	kg/m3						
Dens. Conc. Fresco =	2350	kg/m3.					Ps/Pr (peso	,	0,839			
							Vs/Vr (vol.)		0,862			
	Observac	ión: buena	a mezcla				Volumen de		311			
							Volumen de	e Ripio =	360			
	A1	A2	A3	Y1								
TAMIZ	% PASA		% PASA		CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =						
3/4"	100,00	95,30		100,00	97,44	SUM. A1*A2 =	11533	Arena =	0,483	0,456		
3/8"	100,00	18,64		75,00	55,76	SUM. A1*A3 =	0	Ripio =	0,575	0,544		
# 4	98,93	1,29		45,00	45,83	SUM. A1*Y1 =	29222	suma =	1,058			
#8	90,84	0,13		38,00	41,51	SUM. A2*A2 =	9431					
#16	75,32			32,00	34,36	SUM. A2*A3 =	0					
# 30	51,16			24,00	23,34	SUM. A2*Y1 =	10991					
# 50	20,98			8,00	9,57	SUM. A3*A3 =	0					
# 100	5,92			2,00	2,70	SUM. A3*Y1 =	0					

MEZCLA M:

Resistencia de diseño = 350 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Holcim

Aditivo = Aditec SF-106(ADITEC)

			טורוטטור	ACION	CONCR	ETO CONV	LINCION	AL (UU)				
MEZCLA: CCHA350-001	DECICTE	ENICIA LIC	RMIGÓN =	250 KC#	^Ma							
						CUENCA; AF		DONES (IEDEDIA).	DIDIO 2	/4" ILID <i>C</i>	MICC /IIC
(M)	WAIERIA	ALES. CE	ADITIVO:			JUENCA, AF	KENA = JU	DONES (I	IEKEDIA),	KIPIO = 3/	4 JUBC	MES (HE
	ACENTA	MICHTO	7-10		3F-100							
			- 7 - 10 ACIÓN = 2									
	FECHAL	LABURA	ACION = 2	3/06/2011					16			
CON	STANTES	DELOS	MATERIA	FS		МАТІ	ERIALES /	VI3		ATERIALE	S/16 LT	S
0011	DENS.	DENS.	DENS.	ABS.		PESO SECO		_	PESO SECO	_	_	_
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10					405	405	130,65	6,480	6.480		6.480
AGUA	1.00					234	190	190.00	3,739	3.040		3.300
ARENA	2,72	2,59	2,51	3,14		768	792	306,00	12,289	12,675	2,74	12,626
RIPIO 3/4"	2,73	2,64	2,58	2,14		916	936	355,00	14,654	14,968	0,70	14,757
ADITEC SF-106 (1,4%)	1,17		-	,		5,67	5,67	4,85	0,091	0,091	,	0,091
AIRE	,					,	,	14,00				,
TOTAL						2328	2328	1000				
								1000				
Relación W/C =	0,469		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	661				
Relación Agr/C =	4,266		Peso =	3687	3732	gr.						
Asent. Medido =	8,50	cm.	Densidad =	2347	2376	kg/m3						
Dens. Conc. Fresco =	2361	kg/m3.					Ps/Pr (peso	0)=	0,839			
							Vs/Vr (vol.)	=	0,862			
							Volumen de	e Arena =	306			
	Observac	ión: buena	a mezcla				Volumen de	e Ripio =	355			
TAMIZ	A1 % PASA	A2 % PASA	A3 % PASA	Y1	CURVA DE							
IAMIL	Arena	Ripio	/0 F AGA	Y1		SUM. A1*A1 =	46805					
3/4"	100.00	95.30		100.00		SUM. A1*A2 =	11533	Arena =	0.483	0.456		
3/8"	100,00	18,64		75.00	- /	SUM. A1*A3 =	0	Ripio =	0,463	0,430		
# 4	98.93	1.29		45.00	45.83	SUM. A1*Y1=	29222	suma =	1.058	0,044		
#8	90.84	0.13		38.00	41,51	SUM. A2*A2 =	9431	Juna –	1,000			
#16	75,32	0,10		32.00	34,36	SUM. A2*A3 =	0					
# 30	51.16			24.00		SUM. A2*Y1 =	10991					
# 50	20.98			8.00	9.57	SUM. A3*A3 =	0					
# 100	5,92			2.00	2.70	SUM. A3*Y1 =	0					

MEZCLA N:

Resistencia de diseño = 250 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Guapán

Aditivo = Aditec SF-106 (ADITEC)

			DOSIFIC	ACION	CONCRI	ETO CON	/ENCION	AL (CC)					-
MEZCLA: CCGA250-001	RESISTE	ENCIA HO	RMIGÓN =	= 250 KG/	CM2								
(N)						CUENCA; A	RENA = JI	JBONES (HEREDIA)	: RIPIO = 3	4" JUB	ONES (HE	RED
(,			ADITIVO:		,			,	,	,			
	ASENTA	MIENTO:	7 - 10		0								
			ACIÓN = 26										
	0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					16				
CON	STANTES	DELOS	MATERIA	FS		МДТ	ERIALES /	VI3		ATERIALE	S/16 LT	s	1
00.11	DENS.	DENS.	DENS.	ABS.		PESO SECO				,		PESO HUM.	1
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3.10	0.0.0.	70701	,,,		350	350	112.90	5.600	5.600	,,	5.600	1
AGUA	1.00					231	185	185.00	3.697	2.960		3,251	I
ARENA	2.72	2.59	2.51	3.14		889	916	354.00	14.217	14.663	2.61	14.588	t
RIPIO 3/4"	2.73	2.64	2.58	2.14		849	867	329.00	13.581	13.872	0.55	13,656	1
ADITEC SF-106 (1,4%)	1.17	_,_,	_,00	_,		4.90	4.90	4,19	0.078	0.078	0,00	0.078	1
AIRE	.,					.,00	.,00	15.00	0,0.0	0,0.0		5,5.5	1
TOTAL						2323	2323	1000					1
								1000					
Relación W/C =	0,529		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	683					
Relación Agr/C =	5,095		Peso =	3729	3642	gr.							
Asent. Medido =	10,00	cm.	Densidad =	2374	2318	kg/m3							
Dens. Conc. Fresco =	2346	kg/m3.					Ps/Pr (peso	0)=	1,046				
		_					Vs/Vr (vol.)		1,075				
	Observac	ión: buena	a mezcla				Volumen de	e Arena =	354				
							Volumen de	e Ripio =	329				
	A1	A2	A3	Y1									
TAMIZ	% PASA		% PASA		CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1 =	0						

MEZCLA 0:

Resistencia de diseño = 350 kg/cm²

Asentamiento = 7 - 10 cm

Cemento = Guapán

Aditivo = Aditec SF-106 (ADITEC)

			DOSIFIC	ACION	CONCRI	ETO CON	/ENCION	AL (CC)					
MEZCLA: CCGA350-001	RESISTE	NCIA HO	RMIGÓN =	= 350 KG/(CM2								
(0)	MATERIA	ALES: CE	MENTO =	GUAPÁN	: AGUA =	CUENCA; A	RENA = JI	JBONES (HEREDIA)	RIPIO = 3	8/4" JUB	ONES (HE	REDIA
(0)		0. 0_	ADITIVO:					, , , ,	,	,			
	ASENTA	MIENTO:	7 - 10		0								
			ACIÓN = 26	-									
				70072011					16				
CON	STANTES	DE LOS	MATERIA	ES		MAT	ERIALES /I	ИЗ.	M	ATERIALE	S/16 LT	S.	
•	DENS.	DENS.	DENS.	ABS.		PESO SECO			PESO SECO	,			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3.10					415	415	133.87	6.640	6.640		6.640	
AGUA	1.00					236	192	192.00	3.778	3.072		3,351	
ARENA	2,72	2,59	2,51	3,14		851	878	339,00	13,614	14,042	2,61	13,970	
RIPIO 3/4"	2,73	2,64	2,58	2,14		813	830	315,00	13,003	13,281	0,55	13,075	
ADITEC SF-106 (1,4%)	1,17	,-	,	,		5,81	5,81	4,97	0.093	0.093	-,	0.093	
AIRE						-,-	- /-	15,00	.,	.,		.,	
TOTAL						2321	2321	1000					
								1000					
Relación W/C =	0,463		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	654					
Relación Agr/C =	4,115		Peso =	3667	3718	gr.							
Asent. Medido =	7,50	cm.	Densidad =	2334	2367	kg/m3							
Dens. Conc. Fresco =	2350	kg/m3.					Ps/Pr (pes	0)=	1,046				
							Vs/Vr (vol.)	=	1,075				
							Volumen de	e Arena =	339				
							Volumen de	e Ripio =	315				
	A1	A2	A3	Y1									
TAMIZ	% PASA		% PASA		CURVA DE								
	Arena	Ripio		Y1		SUM. A1*A1 =	46805		ı				
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489]		
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3=	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1=	0						

A continuación se presenta un resumen de la dosificación de las mezclas de CC para resistencias de 250 kg/cm² y 350 kg/cm² a los 28 días de edad.

De cada tipo de mezcla se confeccionaron 7 probetas, ensayadas: 2 a los 7, 2 a los 14 días y 3 a los 28 días de edad.

Resistencia de 250 kg/cm²:

NOM	MEZOLA	MATERIALEC	PESO/M3	ASENT.	DENS.	R28
NOM.	MEZCLA	MATERIALES	S.S.S.	CM.	KG/M3	KG/CM2
Α	CCHS250-002	CEM. HOLCIM	370	7,50	2357	270
		AGUA	200			
		ARENA	761			
		RIPIO	970			
		VISCOCRETE 2100R	2,96			
1	CCGS250-002	CEM. GUAPÁN	360	9,00	2310	263
		AGUA	192			
		ARENA	893			
		RIPIO	867			
		VISCOCRETE 2100R	2,88			
L	CCHA250-001	CEM. HOLCIM	355	9,00	2350	268
		AGUA	195			
		ARENA	805			
		RIPIO	949			
		ADITEC SF-106	4,97			
N	CCGA250-001	CEM. GUAPÁN	350	10,00	2346	273
		AGUA	185			
		ARENA	916			
		RIPIO	867			
		ADITEC SF-106	4,90			

Resistencia de 350 kg/cm²:

NOM.	MEZCLA	MATERIALES	PESO/M3	ASENT.	DENS.	R28
NOW.	WIEZCLA	WATERIALES	S.S.S.	CM.	KG/M3	KG/CM2
В	CCHS350-001	CEM. HOLCIM	415	9,00	2375	365
		AGUA	200			
		ARENA	746			
		RIPIO	949			
		VISCOCRETE 2100R	3,32			
Н	CCGS350-002	CEM. GUAPÁN	400	10,00	2363	359
		AGUA	190			
		ARENA	880			
		RIPIO	851			
		VISCOCRETE 2100R	3,20			
M	CCHA350-001	CEM. HOLCIM	405	8,50	2361	366
		AGUA	190			
		ARENA	792			
		RIPIO	936			
		ADITEC SF-106	5,67			
0	CCGA350-001	CEM. GUAPÁN	415	7,50	2350	361
		AGUA	192			
		ARENA	878			
		RIPIO	830			
		ADITEC SF-106	5,81			

5.2 DISEÑO DE LOS HORMIGONES AUTOCOMPACTANTES (HAC)

Existen varios métodos de diseño para los HAC (ref. 19), pero ninguno normalizado, generalmente los métodos de diseño usan el volumen como factor clave, rellenando los vacíos que quedan entre las partículas de los áridos, otros tratan de definir curvas granulométricas óptimas para rellenar los huecos entre los granos de los áridos, otros tratan de evaluar y optimizar la fluidez y la estabilidad de la pasta, luego la de las fracciones de mortero antes de introducir las partículas gruesas, para posteriormente ensayar la mezcla completa del HAC.

A continuación se indica algunos principios de diseño:

Mediante la selección de la cantidad de cemento y adiciones se hace un balance de la fluidez y la viscosidad.

Se añade un superplastificante y, si es necesario se adiciona un aditivo modificador de la viscosidad.

Se debe usar un tipo de cemento adecuado y/o incluir adiciones que controlen el aumento de temperatura y el fisuramiento por retracción térmica.

La pasta es el vehículo para el transporte de los áridos, por lo que deberá ser mayor al volumen de huecos dejados por los áridos, incrementando la fluidez.

La relación gruesos/finos debe ser menor, para que cada partícula gruesa quede cubierta por mortero, reduciendo la posibilidad de bloqueo y segregación.

El proceso de diseño se representa en la siguiente figura:

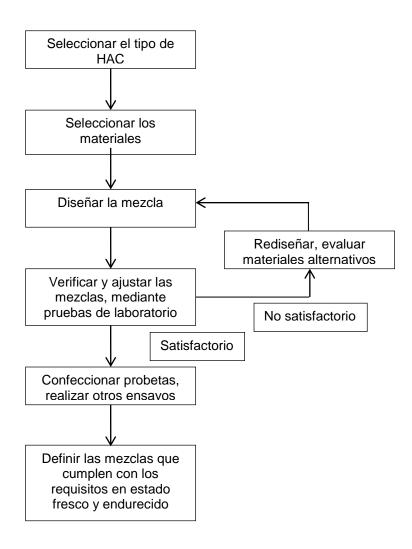


Fig. 5.2 Proceso de diseño para HAC (ref. 20)

Existen tablas que nos puede servir de guía, pero no son restrictivas, algunos componentes de las mezclas pueden salirse de los rangos establecidos.

Componente	Rango en kg/m³	Rango en Its/m³
Finos	380 - 600	
Pasta		300 – 380
Agua	150 - 210	150 – 210
Áridos gruesos	750 - 1000	270 – 360
Áridos finos	45 – 55% del peso	total de los áridos
Relación agua/finos por volumen		0,85 – 1,10

Tabla 5.1 Valores guía para el diseño de HAC (ref. 21)

Como guía se puede aplicar un método de diseño, lo importante es obtener mezclas de HAC que cumplan con los requisitos exigidos, tanto en estado fresco como endurecido.

En el presente trabajo de investigación se tomó como guía lo propuesto por el ACI 237R que consiste en:

- Se define la clase de HAC, asumimos clase 1 por ser la que se aplica a la mayoría de obras, según la EFNARC – 2006 Pg. 14
- Los criterios de conformidad para clase 1 son:

Asentamiento = SF1 = 520 - 700 mm

Ensayo en el embudo en V = VF1 <= 10 s

Capacidad de paso = PA1 >= 0.75

Escurrimiento = T_{500} = VS

Relación VS/VF <= 2

- Se calcula la relación agua/cemento en función de la resistencia especificada, en el presente caso las resistencias de diseño son 250 kg/cm² y 350 kg/cm² en probeta cilíndrica a los 28 días de edad.
- Se establece el contenido de cemento y agua.

- Se impone un valor de la densidad del hormigón fresco, dentro del rango de densidades de hormigón de peso normal.
- Por diferencia se calcula el peso de los áridos.
- Se distribuyen los áridos en función de sus curvas granulométricas, (ver fig. 5.3, curvas 4, 3 propuesto por la Road Research Laboratory, ref. 22 pg. 159), dando como resultado la curva indicada como AJUSTE.
- En laboratorio se procede a correr la mezcla, comprobando que cumpla con las especificaciones del HAC en estado fresco.
- Si no cumple las especificaciones del HAC en estado fresco, se rediseña, procediendo de la misma manera indicada anteriormente, si cumple se continúa con los otros ensayos como: contenido de aire, determinación de la temperatura, densidades, se confeccionan las probetas cilíndricas para que a la edad especificada se proceda a realizar el ensayo de compresión.
- En las primeras mezclas, se diseñó considerando la puzolana como árido fino, pero no se ajustaba a la curva requerida, obteniéndose cantidades altas que incrementó considerablemente la cohesión, produciendo mezclas que no fluían, por lo que se procedió a dosificar en función de un porcentaje del cemento, entre el 10 % y el 12 % se obtuvieron los mejores resultados.
- Otro material que se adicionó a la mezcla fue un incorporador de aire (Sika Aer), con la finalidad de mejorar la cohesión, evitando la exudación, pero los resultados no fueron satisfactorios ya que el hormigón resultó muy poroso con bajas resistencias, por lo que se desechó el uso de éste aditivo.
- Se adicionó microsílica (Sika Fume), obteniéndose mejores resultados en el hormigón fresco y en el fraguado.

TAMIZ (MM.)		%PASA	
	CURVA 4	CURVA 3	AJUSTE
0,149	2	1	3,91
0,297	12	6	13,85
0,590	27	21	33,76
1,190	34	28	49,71
2,380	42	35	60,00
4,760	48	42	65,73
9,520	75	65	72,34
19,100	100	100	98,40
100			20
100		98	3,40
% 90			
A	CURVA 4		
A S 80	CORVA 4		
		75 72,34	
70	AJUSTE	65,73 65	
60		60,00	
			CUDVA
50	49,71	48	CURVA 3
		42 42	
40			
30	33,76 34	35	
	27 28		
20	21		
	13,85		
10			
0	6		
0,1	1	10	100
——————————————————————————————————————	-	ABERTURA TAMIZ	
			` ′
Fig. 5.3 Aiusto d	o áridos para disc	oão do UAC (our	va 3 v 4 rango

Fig. 5.3 Ajuste de áridos para diseño de HAC (curva 3 y 4, rangos granulométricos de los áridos que nos da una buena trabajabilidad para CC, AJUSTE = mezcla de áridos para HAC)

Los Concretos Convencionales (CC) y los Hormigones Autocompactantes (HAC) fueron confeccionados con los mismos áridos, cementos, agua; para el segundo caso se incorporó a las mezclas otros materiales como: aire, puzolana, microsílica, como se puede observar en las hojas de dosificación que se adjunta en el anexo III, pág. 133 "Diseño de HAC".

La nomenclatura utilizada es la siguiente:

HAC = Hormigón Autocompactante

H = Cemento Holcim **G** = Cemento Guapán

S = Aditivo Sika **A** = Aditivo Aditec

250 - 350 = Resistencia del concreto

001, 002 ... = Número de mezcla

Letras AA, BB, CC... = HAC, corresponde a cada tipo de mezcla de Concreto Convencional, ejemplo: AA corresponde a la mezcla A de CC; BB corresponde a la mezcla B de CC, etc.

Ejemplo: mezcla AA-05 = HACHS250-005 = mezcla de Hormigón autocompactante con cemento Holcim, aditivo Sika, para una resistencia de 250 kg/cm², mezcla número 5.

De todas las mezclas en estado fresco, que cumplen con las exigencias de la EFNARC, se confeccionaron 6 probetas para ser ensayadas a los 7, 14 y 28 días de edad.

A continuación se presenta los diseños que cumplen con las especificaciones para HAC, tanto en estado fresco como resistencia:

Ver Anexo V "Resultado de los ensayos a compresión de los HAC", pg. 157

MEZCLA AA-08:

Resistencia de diseño = 250 kg/cm² Cemento = Holcim Aditivo = SIKA

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACHS250-008	DECICTER	ICIV NUDI	MICÓN - 250	K C/CM2								
					- CHENC	A; ARENA = J	HIDONES (H	EDEDIA)	. DIDIO – 2	M" HIDONE	e /UEDEI	NA)
(AA-08)	WAIERIAL	LES: CEIVII				SIKA); SIKA F	•		; KIPIO = 3	/4 JUDUNE	S (HEKEL	JIA)
			ADITIVO = V	ISCOURE	IE ZIUUK (SINA); SINA	-UNE; PUZU	LANA				
	EECHA EI	ADODAC	ÓN = 01/09/2	011								
	ILCIIALL	LADONACI	ON - 0 1/03/2	VII					18			
^	ONSTANT	S DE LOS	MATERIALE	:9		МАТ	RIALES /M3		10	MATERIALE	S/18 I TS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		DESO SECO			
	ABS.	S.S.S.	APAR.	АВЗ. %		KG.	KG.	LTS.		KG.	MUWI. NAT.	KG
CEMENTO HOLCIM	3,10	3.3.3.	AFAR.	/0		380	380	122,58	KG .	6,840	76	6,840
CEMENTO HOLCIM AGUA	1,00					254	210	210.00	4,568	3,780		3.820
AGUA ARENA	2,72	2.59	2.51	3.14		1032	1064	411.00		19.152	3.37	19,195
RIPIO 3/4"	2,72	2,59	2,51	2,14		531	543	206.00	9,567	9,771	1,30	9,691
		2,04	2,00	۷,14		8,74	8,74	7,95	0,157	0,157	1,30	0,157
VISCOCRETE 2100 R (2,3% SIKA FUME (6%)	3,10					22.80	22.80	7,95	0,157	0,157	1	0,157
	2,71	2,54	2,44	4,12		38,00	39,57	15,57	0,410	0,410	3,83	0,410
PUZOLANA (10%) AIRE	2,71	2,34	2,44	4,12		30,00	39,37	20.00	0,004	0,712	3,03	0,710
TOTAL						2266	2268	1000				
IOIAL						2265	2200	1000				
Relación W/MC =	0.550	0.504	0 (0.0)	0.70	0.75	2203 1		1000				
	0,553	0,521 S.	Cap. paso (PA)=	0,78	>= 0,75		Pr + Ps =	1562				
ESCURR. (T500) = VS =	2,32		Relac. VS/VF =	0,53	<= 2		FI + FS =	1302			Dissãs	
ASENTAMIENTO (SF) =	552	520 - 700					Da/Da/aaaa)		4.044		Diseño	
VISCOSIDAD (VF) =	4,41	<=10 S.	V I D I	4574	4574		Ps/Pr (peso)		1,941	Vol. Ripio (%) =	20,60	
01			Vol. Prob. =	1571	1571	CC.	Peso de Are	(0/		Fracc. Pasta (%)		
Observaciones:	buena mezcla	3	Peso =	3476	3474	gr.	Peso de Rip	(0/	531	Fracc. Mort. (%) =		
	no exuda		Densidad =	2213	2211	kg/m3	Volumen Are	. ,		Agua	21,00	
			D. Conc. Fres. =	2212	kg/m3.		Volumen Rip	010 (Its) =	206	Finos (kg/m3) =	481	
TA NAI7	A1	A2	A3	Y1	OLID) (A DE							
TAMIZ	% PASA	% PASA	% PASA		CURVA DE		10005	1				
0/48	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	<u> </u>				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	-	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
# 8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431	-				
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0	-				
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075	-				
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0	-				
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA BB-04:

Resistencia de diseño = 350 kg/cm² Cemento = Holcim Aditivo = SIKA

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACHS350-004	DECICTE	ICIA LIODI	MOÓN 250	VO/CNO								
					. AUENA	A ADENIA	UDONEO (U		DIDIO	/4" IIIDONE	0 (11555	NIAN
(BB-04)	MATERIAL	LES: CEMI				A; ARENA = J			; RIPIO = 3	/4" JUBONE	S (HEREL	JIA)
			ADITIVO = V	ISCOCKE	TE 2100R (SIKA); SIKA F	-UME; PUZO	LANA				
	FFCUA FI	ADODAC	ÓN = 16/08/2	044								
	FECHA EL	ABURACI	UN = 16/08/2	VII					40			
	ONICTANIT	C DE LOC	MATERIALE			MATE	DIALEC MA		18	MATERIALE	CHOLTC	
<u>_</u>	DENS.		MATERIALE		1		PESO S.S.S.			MATERIALE		
		DENS.	DENS.	ABS.		PESO					-	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470	-	7,470
AGUA	1,00	2.50	0.54	244		242	198	198,00	4,350	3,564	4.00	3,378
ARENA	2,72	2,59	2,51	3,14		1029	1061	410,00	18,524	19,105	4,92	19,435
RIPIO 3/4"	2,73	2,64	2,58	2,14		531	543	206,00	9,567	9,771	0,63	9,627
VISCOCRETE 2100 R (2%)	1,10					8,30	8,30	7,55	0,149	0,149	-	0,149
SIKA FUME (6%)	3,10	0.54	0.44	4.40		24,90	24,90	8,03	0,448	0,448	4.47	0,448
PUZOLANA (10%)	2,71	2,54	2,44	4,12		41,50	43,21	17,01	0,747	0,778	4,17	0,778
AIRE						****		20,00				
TOTAL						2292	2294	1000				
						2292		1000				
Relación W/C =	0,477	0,450	Cap. paso (PA)=	0,75	>= 0,75							
ESCURR. (T500) = VS =	3,79	S.	Relac. VS/VF =	0,40	<= 2		Pr + Ps =	1561				
ASENTAMIENTO (SF) =	620	520 - 700									Diseño	
VISCOSIDAD (VF) =	9,50	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	20,60	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	1030	Fracc. Pasta (%)	35,64	
Observaciones:	buena mezcla	a	Peso =	3541	3551	gr.	Peso de Rip	(0,	531	Fracc. Mort. (%) =	77,74	
	no exuda		Densidad =	2254	2260	kg/m3	Volumen Are	ena (Its) =	410	Agua	19,80	
			D. Conc. Fres. =	2257	kg/m3.		Volumen Rip	oio (lts) =	206	Finos (kg/m3) =	522	
	A1	A2	А3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20.00	3,91	SUM. A3*Y1 =	0					

MEZCLA LL-03:

Resistencia de diseño = 250 kg/cm² Cemento = Holcim Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)				
MEZCLA: HACHA250-003													
(LL-03)	MATERIAL	LES: CEME				A; ARENA = J		EREDIA)	; RIPIO = 3	/4" JUBONE	S (HEREI	DIA)	
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); PUZOLA	NA						
	FECHA EL	_ABORACI	ÓN = 05/09/2	011									
	ONSTANT	S DE I OS	MATERIALE	:e		MATI	RIALES /M3		18	MATERIALE	C/10 TC		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		DESU SECO		1		
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10	5.5.5.	7	,,,		415	415	133,87	7,470	7,470	,,	7,470	
AGUA	1,00					265	223	223,00	4,773	4,014		4,109	
ARENA	2,72	2,59	2,51	3,14		994	1025	396,00	17,891	18,453	3,31	18,483	
RIPIO 3/4"	2,73	2,64	2,58	2,14		511	522	198,00	9,195	9,392	0,63	9,253	
ADITEC SF-106 (2,8%)	1,17	,	,			11,62	11,62	9,93	0,209	0,209	,	0,209	
PUZOLANA (11%)	2,71	2,54	2,44	4,12		45,65	47,53	18,71	0,822	0,856	5,80	0,869	
AIRE								20,00					
TOTAL						2242	2244	1000					
						2243		1000					
Relación W/C =	0,537		Cap. paso (PA)=	0,76	>= 0,75								
ESCURR. (T500) = VS =	2,10	S.	Relac. VS/VF =	0,46	<= 2		Pr + Ps =	1506					
ASENTAMIENTO (SF) =	573	520 - 700									Diseño		
VISCOSIDAD (VF) =	4,55	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,80		
			Vol. Prob. =	1571	1571	CC.	Peso de Are		994	Fracc. Pasta (%)	38,68		
Observaciones:	buena mezcla	a	Peso =	3631	3594	gr.	Peso de Rip	` 0,	512	Fracc. Mort. (%) =	78,15		
	no exuda		Densidad =	2311	2288	kg/m3	Volumen Are		396	Agua	22,30		
	pierde trabajabil	idad rápidamente	D. Conc. Fres. =	2299	kg/m3.		Volumen Rip	. ,	198	Finos (kg/m3) =	499		
	A1	A2	A3	Y1				. ,					
TAMIZ	% PASA	% PASA	% PASA		CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0						

MEZCLA MM-02:

Resistencia de diseño = 350 kg/cm² Cemento = Holcim Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	PACTANT	E (HAC)			
MEZCLA: HACHA350-002					OUE!:	A ADENIA :	UDANES ""	FDEDIX	DIDIO 1	/41 UIDA::=	0 (11555	\
(MM-02)	MATERIA	LES: CEMI				A; ARENA = J		EKEDIA)	; KIPIO = 3	/4" JUBONE	S (HEREL	JIA)
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); PUZOLA	NA					
	FECHA EI	LABORACI	ÓN = 05/09/2	011								
									18			
C	ONSTANTI	ES DE LOS	MATERIALE	S	•	MATE	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					480	480	154,84	8,640	8,640		8,640
AGUA	1,00					268	228	228,00	4,828	4,104		4,193
ARENA	2,72	2,59	2,51	3,14		949	979	378,00	17,078	17,614	3,31	17,643
RIPIO 3/4"	2,73	2,64	2,58	2,14		488	498	189,00	8,777	8,965	0,63	8,832
ADITEC SF-106 (2,5%)	1,17					12,00	12,00	10,26	0,216	0,216		0,216
PUZOLANA (10%)	2,71	2,54	2,44	4,12		48,00	49,98	19,67	0,864	0,900	5,80	0,914
AIRE				-				20,00				
TOTAL						2245	2247	1000				
						2245		1000				
Relación W/C =	0,475		Cap. paso (PA)=	0,75	>= 0,75							
ESCURR. (T500) = VS =	2,23	S.	Relac. VS/VF =	0,30	<= 2		Pr + Ps =	1437				
ASENTAMIENTO (SF) =	593	520 - 700							•		Diseño	
VISCOSIDAD (VF) =	7,48	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	18,90	
, ,			Vol. Prob. =	1571	1571	cc.	Peso de Are		948	Fracc. Pasta (%)	41,31	
Observaciones:	buena mezcl	a	Peso =	3567	3509	gr.	Peso de Rip	. 0,	489	Fracc. Mort. (%) =	79,08	
	no exuda		Densidad =	2271	2234	kg/m3	Volumen Are	ena (lts) =	378	Agua	22,80	
	pierde plastici	idad rápidame	D. Conc. Fres. =	2252	kg/m3.		Volumen Rip	oio (lts) =	189	Finos (kg/m3) =	565	
	A1	A2	A3	Y1				, ,				
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	1				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0					

MEZCLA NN-01:

Resistencia de diseño = 250 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CION HC	RMIGON	AUTOCOM	IPACTANT	E (HAC)				
MEZCLA: HACGA250-001													
(NN-01)	MATERIA	LES: CEME				CA; ARENA =		IEREDIA);	3/4" JUBONE	S (HERE	DIA)	
			ADITIVO = A	DITEC SF	-106 (ADIT	EC); PUZOLA	NA						
	FECHA EL	.ABORACI	ÓN = 06/09/2	011									
									18				
C	ONSTANT	S DE LOS	MATERIALE	S		MATI	RIALES /M3			MATERIALE	S/18 LTS		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					410	410	132,26	7,380	7,380		7,380	
AGUA	1,00					256	213	213,00	4,605	3,834		4,044	
ARENA	2,72	2,59	2,51	3,14		1009	1041	402,00	18,162	18,733	2,75	18,662	
RIPIO 3/4"	2,73	2,64	2,58	2,14		521	532	202,00	9,381	9,582	0,60	9,437	
ADITEC SF-106 (2,95%)	1,17					12,10	12,10	10,34	0,218	0,218		0,218	
PUZOLANA (12%)	2,71	2,54	2,44	4,12		49,20	51,23	20,16	0,886	0,922	4,76	0,928	
AIRE								20,00					
								,					
TOTAL						2257	2259	1000					
						2257		1000					
Relación W/C =	0,520		Cap. paso (PA)=	0,86	>= 0,75				1				
ESCURR. (T500) = VS =	2,10	S.	Relac. VS/VF =	0,29	<= 2		Pr + Ps =	1530					
ASENTAMIENTO (SF) =	665	520 - 700									Diseño		
VISCOSIDAD (VF) =	7,17	<=10 S.					Ps/Pr (peso)		1,941	Vol. Ripio (%) =	20,20		
			Vol. Prob. =	1571	1571	CC.	Peso de Are	(0/		Fracc. Pasta (%)			
Observaciones:	buena mezcla	ì	Peso =	3562	3551	gr.	Peso de Rip	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	520	Fracc. Mort. (%) =			
			Densidad =	2267	2260	kg/m3	Volumen Are	. ,	402	Agua	21,30		
			D. Conc. Fres. =	2264	kg/m3.		Volumen Rip	oio (lts) =	202	Finos (kg/m3) =	499		
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA		CURVA DE			1					
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805			,			
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0						

MEZCLA OO-01:

Resistencia de diseño = 350 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	PACTANT	E (HAC)			
			<u></u>									
MEZCLA: HACGA350-001												
(00-01)	MATERIA	LES: CEME				CA; ARENA =		IEREDIA);	3/4" JUBONE	S (HERE	DIA)
			ADITIVO = A	DITEC SF	-106 (ADIT	EC); PUZOLA	NA					
	FECHA EL	_ABORACI	ÓN = 06/09/2	011								
									18			
С	ONSTANTE	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					490	490	158,06	8,820	8,820		8,820
AGUA	1,00					262	222	222,00	4,722	3,996		4,193
ARENA	2,72	2,59	2,51	3,14		951	981	379,00	17,123	17,661	2,75	17,594
RIPIO 3/4"	2,73	2,64	2,58	2,14		490	501	190,00	8,824	9,012	0,60	8,877
ADITEC SF-106 (2,5%)	1,17					12,25	12,25	10,47	0,221	0,221		0,221
PUZOLANA (10%)	2,71	2,54	2,44	4,12		49,00	51,02	20,08	0,882	0,918	4,76	0,924
AIRE				-				20,00				
TOTAL						2255	2257	1000				
						2255		1000				
Relación W/C =	0,453		Cap. paso (PA)=	0,95	>= 0,75							
ESCURR. (T500) = VS =	1,85	S.	Relac. VS/VF =	0,35	<= 2		Pr + Ps =	1441				
ASENTAMIENTO (SF) =	680	520 - 700						ı			Diseño	
VISCOSIDAD (VF) =	5,35	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,00	
. ,			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	951	Fracc. Pasta (%)	41,05	
Observaciones:	buena mezcla	3	Peso =	3543	3571	gr.	Peso de Rip		490	Fracc. Mort. (%) =		
	no exuda		Densidad =	2255	2273	kg/m3	Volumen Are		379	Agua	22,20	
			D. Conc. Fres. =	2264	kg/m3.		Volumen Rip	oio (lts) =	190	Finos (kg/m3) =	576	
	A1	A2	A3	Y1				, ,				
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20.00	3,91	SUM. A3*Y1 =	0					

MEZCLA II-06:

Resistencia de diseño = 250 kg/cm² Cemento = Guapán Aditivo = SIKA

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC				
MEZCLA: HACGS250-006	DECICTE	ICIA HODA	41CÓN - 250	V C/CM2								
MEZCLA: HACGS250-006 (II-06)					A - CHENC	CA; ARENA =	IIIBONES /L	IEDEDIV.	· DIDIO –	S/A" ILIBONI	C /UEDE	DIA)
(11-06)	WAIERIAL	.ES: CEIVI				SIKA); SIKA F	•		; KIPIO = .	3/4 JUDUNE	S (HEKE	DIA)
			ADITIVO = V	ISCOCKE	1 E 2 1 UUR (SINA); SINA	OWE, PUZO	LANA				
	FECHA EL	.ABORACI	ÓN = 10/09/2	011								
									18			
C	ONSTANTE	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					445	445	143,55	8,010	8,010		8,010
AGUA	1,00					266	225	225,00	4,788	4,050		4,190
ARENA	2,72	2,59	2,51	3,14		966	997	385,00	17,394	17,940	3,16	17,944
RIPIO 3/4"	2,73	2,64	2,58	2,14		498	509	193,00	8,963	9,155	0,50	9,008
VISCOCRETE 2100 R (2,0%)	1,10					8,90	8,90	8,09	0,160	0,160		0,160
SIKA FUME (5%)	3,10					22,25	22,25	7,18	0,401	0,401		0,401
PUZOLANA (10%)	2,71	2,54	2,44	4,12		44,50	46,33	18,24	0,801	0,834	4,50	0,837
AIRE								20,00				
TOTAL						2251	2253	1000				
						2252	•	1000				
Relación W/C =	0,506	0,482	Cap. paso (PA)=	0,87	>= 0,75							
ESCURR. (T500) = VS =	2,23	S.	Relac. VS/VF =	0,37	<= 2		Pr + Ps =	1465				
ASENTAMIENTO (SF) =	660	520 - 700									Diseño	
VISCOSIDAD (VF) =	6,04	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,30	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	967	Fracc. Pasta (%)	39,49	
Observaciones:	buena mezcla	1	Peso =	3623	3607	gr.	Peso de Rip	io (kg) =	498	Fracc. Mort. (%) =	78,88	
			Densidad =	2306	2296	kg/m3	Volumen Are	ena (lts) =	385	Agua	22,50	
			D. Conc. Fres. =	2301	kg/m3.		Volumen Rip	oio (lts) =	193	Finos (kg/m3) =	550	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20.00	3,91	SUM. A3*Y1 =	0					

MEZCLA HH-04:

Resistencia de diseño = 350 kg/cm² Cemento = Guapán Aditivo = SIKA

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)				
			200111071	0.0		7.01.000	,	_ (,				
MEZCLA: HACGS350-004	RESISTEN	ICIA HORI	/IIGÓN = 350	KG/CM2									
(HH-04)					A = CUENC	A; ARENA =	JUBONES (F	IEREDIA): RIPIO =	3/4" JUBONI	S (HERE	DIA)	
(,						SIKA); SIKA I			,,			- u .y	
						,, -	,						
	FECHA EL	ABORACI	ÓN = 10/09/20	011									
									18				
C	ONSTANTE	S DE LOS	MATERIALE	S	•	MATI	RIALES /M3	•		MATERIALE	S/18 LTS		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					490	490	158,06	8,820	8,820		8,820	
AGUA	1,00					260	220	220,00	4,681	3,960		4,097	
ARENA	2,72	2,59	2,51	3,14		944	973	376,00	16,988	17,521	3,16	17,524	
RIPIO 3/4"	2,73	2,64	2,58	2,14		488	498	189,00	8,777	8,965	0,50	8,821	
VISCOCRETE 2100 R (2,0%)	1,10					9,80	9,80	8,91	0,176	0,176		0,176	
SIKA FUME (5%)	3,10					24,50	24,50	7,90	0,441	0,441		0,441	
PUZOLANA (10%)	2,71	2,54	2,44	4,12		49,00	51,02	20,08	0,882	0,918	4,50	0,922	
AIRE								20,00					
TOTAL						2265	2267	1000					
						2265	•	1000					
Relación W/C =	0,449	0,428	Cap. paso (PA)=	0,90	>= 0,75								
ESCURR. (T500) = VS =	2,35	S.	Relac. VS/VF =	0,34	<= 2		Pr + Ps =	1432					
ASENTAMIENTO (SF) =	680	520 - 700									Diseño		
VISCOSIDAD (VF) =	6,91	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	18,90		
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	945	Fracc. Pasta (%)	40,71		
Observaciones:			Peso =	3666	3641	gr.	Peso de Rip	io (kg) =	487	Fracc. Mort. (%) :	79,09		
			Densidad =	2334	2318	kg/m3	Volumen Are		376	Agua	22,00		
			D. Conc. Fres. =	2326	kg/m3.		Volumen Rip	oio (lts) =	189	Finos (kg/m3) =	600		
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA		CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
#16	75,32	·		48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0						

MEZCLA LL-04:

Resistencia de diseño = 250 kg/cm² Cemento = Holcim Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)				
MEZCLA: HACHA250-004													
(LL-04)	MATERIAL	LES: CEMI		•		A; ARENA = J		EREDIA)	RIPIO = 3	/4" JUBONE	S (HERE	DIA)	
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); PUZOLA	NA						
	EECHA EI	ARODACI	ÓN = 15/09/2	N11									
	LOUAL	ADOINAGI	011 - 15/03/2	011					18				
С	ONSTANTE	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10					440	440	141,94	7,920	7,920		7,920	
AGUA	1,00					276	235	235,00	4,966	4,230		4,522	
ARENA	2,72	2,59	2,51	3,14		964	994	384,00	17,349	17,894	2,28	17,745	
RIPIO 3/4"	2,73	2,64	2,58	2,14		495	506	192,00	8,916	9,107	0,50	8,961	
ADITEC SF-106 (2,5%)	1,17					11,00	11,00	9,40	0,198	0,198		0,198	
PUZOLANA (10%)	2,71	2,54	2,44	4,12		44,00	45,81	18,03	0,792	0,825	4,50	0,828	
AIRE								20,00		·			
TOTAL						2230	2232	1000					
10.11.2						2230	1202	1000					
Relación W/C =	0,534		Cap. paso (PA)=	0,76	>= 0,75]		.000					
ESCURR. (T500) = VS =	1,37	S.	Relac. VS/VF =	0.53	<= 2		Pr + Ps =	1459					
ASENTAMIENTO (SF) =	590	520 - 700	rtolas. re, rr	0,00							Diseño		
VISCOSIDAD (VF) =	2,58	<=10 S.					Ps/Pr (peso)	=	1.941	Vol. Ripio (%) =	19.20		
Hoodishis (H) =	2,00	1-10 0.	Vol. Prob. =	1571	1571	cc.	Peso de Are		963	Fracc. Pasta (%)	-, -		
Observaciones:	pierde plasticida	ıd ránidamente	Peso =	3705	3666	gr.	Peso de Rip	(0/	496	Fracc. Mort. (%) =	,		
	F.S. GO PIGOGOIGO		Densidad =	2358	2334	kg/m3	Volumen Are	` 0,	384	Agua	23,50		
			D. Conc. Fres. =	2346	kg/m3.		Volumen Rip	\ /		Finos (kg/m3) =	522		
	A1	A2	A3	Y1	n.grino.		. Jonathor Pap	(110) -		35 (ng/m3) =	OLL		
TAMIZ	% PASA	% PASA	% PASA		CURVA DE								
17 WHE	Arena	Ripio	70171071	Y1		SUM. A1*A1 =	46805						
3/4"	100.00	95,30		100.00	98.40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100.00	18,64		78.00	72.34	SUM. A1*A3 =	0	Ripio =	0.348	0.34			
# 4	98,93	1.29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024	-,			
#8	90.84	0.13		55.00	60.00	SUM. A2*A2 =	9431		.,				
# 16	75,32	-,		48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40.00	33.76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0						

MEZCLA MM-03:

Resistencia de diseño = 350 kg/cm² Cemento = Holcim Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)				
MEZCLA: HACHA350-003	DEGISTER	ICIV NUDI	/ICÓN - 250	K C/C M2									
					CHENC	A. ADENA	HIDONES (III		DIDIO 1	WILLIAME	C /UEDE	NIA)	
(MM-03)	WAIERIA	LES: CEIVII				A; ARENA = J EC); PUZOLA		EKEDIA)	KIPIO = 3	74 JUDUNE	S (HEKEL	ЛА)	
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); PUZULA	NA						
	FECHA FI	ARORACI	ÓN = 15/09/2	011									
	ILONALI	LADOINACI	014 - 13/03/2	011					18				
C	ONSTANT	S DE LOS	MATERIALE	S		MATI	ERIALES /M3		10	MATERIALE	S/18 LTS		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		PESO SECO				
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3.10					470	470	151.61	8.460	8.460		8.460	
AGUA	1,00					257	215	215,00	4,618	3,870		4,168	
ARENA	2,72	2,59	2,51	3,14		979	1010	390,00	17,620	18,173	2,28	18,022	
RIPIO 3/4"	2,73	2,64	2,58	2,14		506	517	196,00	9,102	9,297	0,50	9,148	
ADITEC SF-106 (3%)	1,17					14,10	14,10	12,05	0,254	0,254		0,254	
PUZOLANA (8%)	2,71	2,54	2,44	4,12		37,60	39,15	15,41	0,677	0,705	4,50	0,707	
AIRE								20,00					
TOTAL						2263	2264	1000					
						2262	•	1000					
Relación W/C =	0,457		Cap. paso (PA)=	0,82	>= 0,75								
ESCURR. (T500) = VS =	2,41	S.	Relac. VS/VF =	0,41	<= 2		Pr + Ps =	1484					
ASENTAMIENTO (SF) =	605	520 - 700									Diseño		
VISCOSIDAD (VF) =	5,87	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,60		
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	979	Fracc. Pasta (%)	39,87		
Observaciones:	buena mezcla	a	Peso =	3657	3614	gr.	Peso de Rip	io (kg) =	505	Fracc. Mort. (%) =	78,41		
			Densidad =	2328	2300	kg/m3	Volumen Are	. ,	390	Agua	21,50		
			D. Conc. Fres. =	2314	kg/m3.		Volumen Rip	oio (lts) =	196	Finos (kg/m3) =	546		
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0						

MEZCLA NN-02:

Resistencia de diseño = 250 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCON	IPACTANT	E (HAC)				_
								,	1				
MEZCLA: HACGA250-002	RESISTEN	ICIA HORI	/IIGÓN = 250	KG/CM2									
(NN-02)	MATERIAL	LES: CEME	ENTO = GUAF	PÁN; AGU	A = CUENC	A; ARENA =	JUBONES (H	IEREDIA); RIPIO =	3/4" JUBONE	S (HERE	DIA)	
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); PUZOLA	NA						
	FECHA EL	ABORACI	ÓN = 27/09/20	011									
									18				
С	ONSTANTE	S DE LOS	MATERIALE	S		MATI	RIALES /M3			MATERIALE	S/18 LTS		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					415	415	133,87	7,470	7,470		7,470	
AGUA	1,00					255	212	212,00	4,588	3,816		3,849	
ARENA	2,72	2,59	2,51	3,14		1012	1043	403,00	18,208	18,779	3,78	18,896	
RIPIO 3/4"	2,73	2,64	2,58	2,14		521	532	202,00	9,381	9,582	0,50	9,428	
ADITEC SF-106 (2,4%)	1,17					9,96	9,96	8,51	0,179	0,179		0,179	
PUZOLANA (12%)	2,71	2,54	2,44	4,12		49,80	51,85	20,41	0,896	0,933	4,58	0,937	
AIRE								20,00					
TOTAL						2262	2264	1000					
						2263		1000					
Relación W/C =	0,511		Cap. paso (PA)=	0,85	>= 0,75				•				
ESCURR. (T500) = VS =	1,44	S.	Relac. VS/VF =	0,15	<= 2		Pr + Ps =	1533					
ASENTAMIENTO (SF) =	680	520 - 700									Diseño		
VISCOSIDAD (VF) =	9,40	<=10 S.					Ps/Pr (peso)		1,941	Vol. Ripio (%) =	20,20		
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	1012	Fracc. Pasta (%)	37,44		
Observaciones:	buena mezcla	a	Peso =	3639	3554	gr.	Peso de Rip	. 0,	521	Fracc. Mort. (%) =			
			Densidad =	2316	2262	kg/m3	Volumen Are	\ /	403	Agua	21,20		
			D. Conc. Fres. =	2289	kg/m3.		Volumen Rip	io (lts) =	202	Finos (kg/m3) =	504		
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA		CURVA DE								
	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
# 8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5,92		<u> </u>	20,00	3,91	SUM. A3*Y1 =	0						

MEZCLA OO-02:

Resistencia de diseño = 350 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CION HO	KIVIIGUN	AUTOCOM	FACIANI	⊏ (⊓AC)				
ME7CI A. UACC A250 000	DEGISTER	ICIV FIUDI	MICÓN - 350	K G IC M2									
MEZGLA: HACGA350-002 (OO-02)					Δ – CHENO	`Δ· ΔRENA -	IIIRONES /L	IEBEDIV	\· RIPIO −	3/4" IIIRONE	S (HEDE	DIA)	
(00-02)	WAIERIAL	LES. CEIVI						IEKEDIA), KIPIO =	3/4 JUDUNE	O (HEKE	DIA)	
			ADIIIVO - A	DII LO OI	וועה) טטו	LO), I OZOLA	IA .						
	FECHA EL	ABORAC	IÓN = 27/09/2	011									
									18				
C	ONSTANTE	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS		
-	1,00 2,72 2,59 2,51 2,73 2,64 2,58 6) 1,17 2,71 2,71 2,54 2,44 0,438 Cap. paso (PA)= S = 1,48 S. Relac. VS/VF = 1 9 = 690 5,19 <=10 S. Vol. Prob. = buena mezcla no exuda Densidad = D. Conc. Fres. = 1					PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					495	495	159,68	8,910	8,910		8,910	
AGUA	1,00					258	217	217,00	4,640	3,906		3,937	
ARENA	2,72	2,59	2,51	3,14		961	992	383,00	17,304	17,847	3,78	17,958	
RIPIO 3/4"	2,73	2,64	2,58	2,14		495	506	192,00	8,916	9,107	0,50	8,961	
ADITEC SF-106 (2,0%)	1,17					9,90	9,90	8,46		0,178		0,178	
PUZOLANA (10%)	2,71	2,54	2,44	4,12		49,50	51,54	20,29	0,891	0,928	4,58	0,932	
AIRE								20,00					
TOTAL						2269	2271	1000					
						2270	_	1000					
Relación W/C =	0,438		Cap. paso (PA)=	0,91	>= 0,75								
ESCURR. (T500) = VS =	1,48	S.	Relac. VS/VF =	0,29	<= 2		Pr + Ps =	1458					
ASENTAMIENTO (SF) =	690	520 - 700									Diseño		
VISCOSIDAD (VF) =	5,19	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	19,20		
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	962	Fracc. Pasta (%)	40,51		
Observaciones:	buena mezcl	a	Peso =	3660	3632	gr.	Peso de Rip	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	496	Fracc. Mort. (%) =	78,84		
	no exuda		Densidad =	2330	2312	kg/m3	Volumen Are	\ /	383	Agua	21,70		
			D. Conc. Fres. =	2321	kg/m3.		Volumen Rip	oio (lts) =	192	Finos (kg/m3) =	582		
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66			
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34			
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024				
# 8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431						
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0						
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075						
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0						
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0						

MEZCLA NN-03:

Resistencia de diseño = 250 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
	DECICEE	ICIA LICE	MOÓN 252	V C ICMC								
MEZCLA: HACGA250-003 (NN-03)					A - CHENC	A; ARENA =	HIDONES (IEDED!A	. DIDIO	2/4" ILIDONI	e (UEDE	DIA)
(NN-U3)	WAIERIA	LES: CEIVII				A; ARENA = EC); PUZOLA		IEKEDIA); KIPIU =	3/4 JUBUNE	S (HEKE	DIA)
			ADITIVO = A	DITEC SF	-100 (ADITI	C); PUZULA	NA					
	FECHA EI	ABORACI	ÓN = 29/09/2	011								
									18			
C	ONSTANTI	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					465	465	150,00	8,370	8,370		8,370
AGUA	1,00					271	231	231,00	4,887	4,158		4,087
ARENA	2,72	2,59	2,51	3,14		954	984	380,00	17,168	17,707	4,38	17,920
RIPIO 3/4"	2,73	2,64	2,58	2,14		493	503	191,00	8,870	9,060	0,50	8,914
ADITEC SF-106 (1,7%)	1,17					7,91	7,91	6,76	0,142	0,142		0,142
PUZOLANA (11%)	2,71	2,54	2,44	4,12		51,15	53,26	20,96	0,921	0,959	4,55	0,963
AIRE								20,00				
TOTAL						2242	2244	1000				
						2242	•	1000				
Relación W/C =	0,497		Cap. paso (PA)=	0,85	>= 0,75							
ESCURR. (T500) = VS =	2,55	S.	Relac. VS/VF =	0,66	<= 2		Pr + Ps =	1446				
ASENTAMIENTO (SF) =	585	520 - 700									Diseño	
VISCOSIDAD (VF) =	3,85	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	19,10	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	955	Fracc. Pasta (%)	40,78	
Observaciones:			Peso =	3618	3619	gr.	Peso de Rip	io (kg) =	492	Fracc. Mort. (%) =	78,87	
			Densidad =	2303	2304	kg/m3	Volumen Are	ena (lts) =	380	Agua	23,10	
			D. Conc. Fres. =	2303	kg/m3.		Volumen Rip	oio (lts) =	191	Finos (kg/m3) =	553	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA OO-03:

Resistencia de diseño = 350 kg/cm² Cemento = Guapán Aditivo = ADITEC

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
	DECICE	IOIA IIOD	MOÓN 252	VOICNO								
MEZCLA: HACGA350-003					A - CHENC	NA. ADENA	ILIDONES (IEDED!A). DIDIO	3/4" ILIDONI	EG (HEDE	DIA)
(00-03)	WAIEKIAI	LES: CEMI				CA; ARENA =		IEKEDIA); KIPIU =	3/4" JUBUNI	E9 (HEKE	DIA)
			ADITIVO = A	DITEC SF	- IUO (ADIII	EC); PUZOLA	NA					
	EECHA EI	ARORACI	ÓN = 29/09/2	011								
	LONAEL	- ADOINACI	O14 - 23/03/2	V 1 1					18			
C	ONSTANT	S DE LOS	MATERIALE	S		MATE	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO			PESO SECO	PESO S.S.S.		
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10	2.3.0.	1			510	510	164,52	9,180	9,180		9,180
AGUA	1,00					269	229	229,00	4,836	4,122		4,052
ARENA	2,72	2,59	2,51	3,14		934	963	372,00	16,807	17,335	4,38	17,543
RIPIO 3/4"	2,73	2,64	2,58	2,14		482	493	187,00	8,684	8,870	0,50	8,728
ADITEC SF-106 (1,50%)	1,17					7,65	7,65	6,54		0,138		0,138
PUZOLANA (10%)	2,71	2,54	2,44	4,12		51,00	53,10	20,90	0,918	0,956	4,55	0,960
AIRE								20,00				
TOTAL						2253	2256	1000				
						2253	_	1000				
Relación W/C =	0,449		Cap. paso (PA)=	0,76	>= 0,75							
ESCURR. (T500) = VS =	2,69	S.	Relac. VS/VF =	0,90	<= 2		Pr + Ps =	1416				
ASENTAMIENTO (SF) =	550	520 - 700									Diseño	
VISCOSIDAD (VF) =	2,98	<=10 S.					Ps/Pr (peso)		1,941	Vol. Ripio (%) =	18,70	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	934	Fracc. Pasta (%)	42,01	
Observaciones:			Peso =	3619	3607	gr.	Peso de Rip	\ U/	481	Fracc. Mort. (%) :	79,30	
			Densidad =	2304	2296	kg/m3	Volumen Are	\ /		Agua	22,90	
			D. Conc. Fres. =	2300	kg/m3.]	Volumen Rip	io (lts) =	187	Finos (kg/m3) =	597	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	1	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
# 8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

A continuación se presenta un resumen de la dosificación de las mezclas de HAC para resistencias de 250 kg/cm² y 350 kg/cm² a los 28 días de edad, con Cemento Holcim, Cemento Guapán, aditivos Sika, aditivos Aditec.

De cada tipo de mezcla se confeccionaron 7 probetas, ensayadas: 2 a los 7, 2 a los 14 días y 3 a los 28 días de edad.

Resistencia de diseño = 250 kg/cm²:

NOM.	MEZCLA	MATER.	KG/M3 S.S.S.	T ₅₀₀ S VS	ASENT. SF	VISC. VF	C.P. PA	VS/VF	D. FR. kg/m³	R28 kg/cm ²
AA-08	HACHS250-008	C.H.	380	2,32	552	4,41	0,78	0,53	2212	261
		AGUA	210							
		ARENA	1064							
		RIPIO	543							
		VISC.	8,74							
		S. F.	22,80							
		PUZ.	39,57							
LL-03	HACHA250-003	C. H.	415	2,10	573	4,55	0,76	0,46	2299	268
		AGUA	223							
		ARENA	1025							
		RIPIO	522							
		ADITEC	11,62							
		PUZ.	47,53							
II-06	HACGS250-006	C. G.	445	2,23	660	6,04	0,87	0,37	2301	266
		AGUA	225	,			,	,		
		ARENA	997							
		RIPIO	509							
		VISC.	8,90							

NOM.	MEZCLA	MATER.	KG/M3 S.S.S.	T ₅₀₀ S VS	ASENT. SF	VISC. VF	C.P. PA	VS/VF	D. FR. kg/m³	R28 kg/cm ²
		S. F.	22,25							
		PUZ.	46,33							
NN-02	HACGA250-002	C. G.	415	1,44	680	9,40	0,85	0,15	2289	257
		AGUA	212							
		ARENA	1043							
		RIPIO	532							
		ADITEC	9,96							
		PUZ.	51,85							

Resistencia de diseño = 350 kg/cm2:

NOM.	MEZCLA	MATER.	KG/M3 S.S.S.	T ₅₀₀ S VS	ASENT. SF	VISC. VF	C. P. PA	VS/VF	D. FR kg/m ³ .	R28 kg/cm ²
BB-04	HACHS350-004	C. H.	415	3,79	620	9,50	0,75	0,40	2257	376
		AGUA	198							
		ARENA	1061							
		RIPIO	543							
		VISC.	8,30							
		S. F.	24,90							
		PUZ.	43,21							
MM-02	HACHA350-002	C. H.	480	2,23	593	7,48	0,75	0,30	2252	372
		AGUA	228							
		ARENA	979							
		RIPIO	498							

NOM.	MEZCLA	MATER.	KG/M3 S.S.S.	T ₅₀₀ S VS	ASENT. SF	VISC. VF	C. P. PA	VS/VF	D. FR kg/m ³ .	R28 kg/cm ²
		ADITEC	12,00							
		PUZ.	49,98							
20.21			100	4.05					0001	0.50
00-01	HACGA350-001	C. G.	490	1,85	680	5,35	0,95	0,35	2264	358
		AGUA	222							
		ARENA	981							
		RIPIO	501							
		ADITEC	12,25							
		PUZ.	51,02							
HH-04	HACGS350-004	C. G.	510	2,35	680	6,91	0,90	0,34	2326	357
		AGUA	215							
		ARENA	968							
		RIPIO	495							
		VISC.	10,20							
		S. F.	25,50							
		PUZ.	53,10							

NOMENCLATURA:

C.H. = Cemento Holcim C.G. = Cemento Guapán

VISC. = Aditivo Viscocrete 2100 R **ADITEC** = Aditivo Aditec SF-106

S.F. = Aditivo Sika Fume **PUZ.** = Puzolana

VS = Escurrimiento T_{500} **SF** = Asentamiento

VF = Viscosidad **PA** = Capacidad de paso

D.FR. = Dens. Con. Fresco **R28** = Resistencia del concreto

CAPÍTULO 6.- ANÁLISIS DE RESULTADOS

En el presente capítulo se hace un análisis de los resultados de los diferentes ensayos realizados en las mezclas de CC y de HAC.

6.1 TEMPERATURA DEL CONCRETO:

En las tablas 6.1 y 6.2 se presenta la variación de la temperatura vs tiempo del CC y del HAC.

CONCRETO CONVENCIONAL:

FECHA	NOM.	MEZCLA	TEMP.	TEMPERATURA DEL CONCRETO							
ENSAYO			AMBIENTE	5´	30´	60´	90′				
13/07/2011	А	CCHS250-002	14,8	15,40	15,20	15,20	15,20				
13/07/2011	В	CCHS350-001	15,0	15,60	16,60	17,00	17,40				
	Н	CCGS350-002	17,5	18,80	18,80	18,70					
	- 1	CCGS250-003	14,8	15,20	15,40	15,30	15,30				
_											

Tabla 6.1 Temperatura vs Tiempo

HORMIGÓN AUTOCOMPACTANTE:

FECHA	NOM. MEZCLA 5 MINUTOS		15 MIN	15 MINUTOS		NUTOS	45 MII	NUTOS	60 MINUTOS			
ENSAYO			T. AMB. (°C)	T. CONC. (°C)								
	ADITIV	O VISCOCRE	TE 2100R	(SIKA):								
25/10/2011	AA-08	HACHS250-008	19,80	20,30	20,40	21,90	21,50	21,80	20,80	21,60	22,10	22,80
	ADITIV	O ADITEC 10	6F (ADITE	C):								
25/10/2011	LL-03	HACHA250-003	22,10	24,80	22,60	25,40	22,80	25,60	22,90	24,80	22,40	24,10

Tabla 6.2 Temperatura vs tiempo

La variación de temperatura del concreto CC y del HAC hasta los 60 minutos es inferior a los 2°C, no presentará problemas por retracciones. En caso de ser utilizado en obras, periódicamente se deberá monitorear la temperatura del concreto.

6.2 ASENTAMIENTO VS TIEMPO

En la fig. 6.1 se presenta la variación del asentamiento vs tiempo en Concreto Convencional

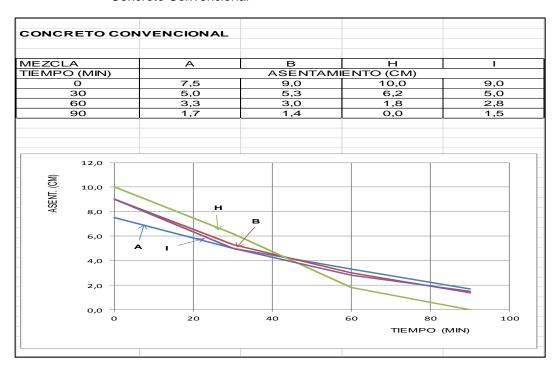


Fig. 6.1 Asentamiento vs. Tiempo

En 40 minutos el asentamiento disminuye aproximadamente a la mitad, perdiendo considerablemente la trabajabilidad, a partir de éste tiempo no sería recomendable colocar el concreto.

6.3 CONTENIDO DE AIRE

En la tabla 6.3 se presenta el porcentaje de aire contenido en la mezcla en CC y en HAC.

cc		HAC		ADITIVO
MEZCLA	%	MEZCLA	%	
I	2,90	II	7,85	VISCOCRETE 2100R
L	1,50	LL	1,25	ADITEC SF-106
В	2,40	BB	7,35	VISCOCRETE 2100R
0	1,50	00	1,35	ADITEC SF-106

Tabla 6.3 Resumen del contenido de aire para CC y HAC

El aditivo Viscocrete 2100R elaborado por SIKA incorpora aire a la mezcla: en CC entre el 2,4% y el 2,9% y en HAC entre el 7,35% y el 7,85%, lo que variará en función del porcentaje de aditivo.

El aditivo Aditec SF-106 elaborado por ADITEC, incorpora una pequeña cantidad de aire, entre el 1,35% y el 1,5%, tanto para CC como para HAC.

6.4 MÓDULO DE ELASTICIDAD ESTÁTICO Y RELACIÓN DE POISSON

El Módulo de Elasticidad es utilizado en el análisis y diseño de estructuras de concreto, se puede estimar en función de la resistencia a compresión simple y/o en función de la densidad.

Varios organismos han planteado ecuaciones como:

ACI: $Ec = 0.05W^{1.5}(f'c)^{1/2}$; W = densidad, $f'c = resistencia en kg/cm^2$

ACI: Ec = $14000 (f'c)^{1/2}$; f'c = resistencia en kg/cm²

Norma Colombiana NSR-98, propone: Ec = 12500 (f'c) $^{1/2}$; f'c = resistencia en kg/cm 2

Investigaciones realizadas en Colombia propone: Ec = $6250 \text{ (f'c)}^{1/2}$; f'c = resistencia en kg/cm²

Otras investigaciones: Ec = $3900 (f'c)^{1/2}$; f'c = resistencia en MPa.

Son varios los factores que influyen en el Módulo de Elasticidad como: forma, textura, porosidad, módulo de elasticidad de los agregados, módulo de elasticidad de la matriz de la pasta, porosidad, dosificación de la mezcla, contenido de humedad de los especímenes, velocidad de aplicación de la carga.

En la tabla 6.4 se presenta el resumen de las resistencias a compresión, Módulo de Elasticidad y Relación de Poisson obtenidas en el laboratorio.

RESUMEN M	ÓDULO DE E	LASTICIDAD	YRELACIÓN	DE POISSON	
CONCRE	TO CONVEN	CIONAL	HORMIGÓI	N AUTOCOMP	ACTANTE
RESISTENCIA	MÓD. ELAS.	RELACIÓN	RESISTENCIA	MÓD. ELAS.	RELACIÓN
KG/CM2	KG/CM2	POISSON	KG/CM2	KG/CM2	POISSON
273	105761	0,188	250	79725	0,197
269	136160	0,194	249	83188	0,208
286	107415	0,190	255	93608	0,216
268	114153	0,187	263	104505	0,195
354	159157	0,187	322	110585	0,199
361	169497	0,186	313	111970	0,203
355	140320	0,188	232	99269	0,200
364	138411	0,182	242	96102	0,196
CONCRETO C	ONVENCION	AL:		EC = K*(F´c) 1	/2
				ì í	
RESISTENCIA	PROMEDIO	(KG/CM2) =	274	RAÍZ CUAD. F´c =	16,553
MÓDULO DE I	ELASTICIDAD	(KG/CM2) =	115872	K =	7000
RELACIÓN DE	POISSON =		0,190		
RESISTENCIA	PROMEDIO	(KG/CM2) =	359	RAÍZ CUAD. F´c =	18,934
MÓDULO DE I	ELASTICIDAD	(KG/CM2) =	151846	K =	8020
RELACIÓN DE	POISSON =		0,186		
HORMIGÓM A	UTOCOMPAC	CTANTE:			
RESISTENCIA	PROMEDIO	(KG/CM2) =	249	RAÍZ CUAD. F´c =	15,764
MÓDULO DE	ELASTICIDAD) (KG/CM2) =	92733	K =	5883
RELACIÓN DE	POISSON =		0,202		
RESISTENCIA	PROMEDIO	(KG/CM2) =	318	RAÍZ CUAD. F´c =	17,819
MÓDULO DE I	ELASTICIDAD) (KG/CM2) =	111278	K =	6245
RELACIÓN DE	POISSON =		0,201		

Tabla 6.4. Resumen del Módulo de Elasticidad y Relación de Poisson para CC y HAC

De acuerdo a los resultados obtenidos, se plantea las siguientes ecuaciones:

Concreto Convencional: Ec = (7000 - 8000) (f'c)^{1/2} Hormigón Autocompactante: Ec = (5800 - 6200) (f'c)^{1/2}

f'c = resistencia del concreto en kg/cm²

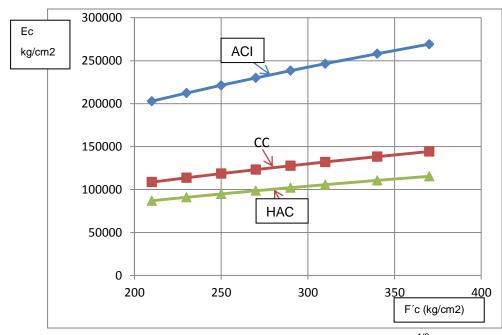


Fig. 6.2 Módulo de Elasticidad: A.C.I. (Ec = $14000(f^{\prime}c)^{1/2}$), Concreto Convencional (CC) Hormigón Autocompactante (HAC)

RELACIÓN DE POISSON:

A continuación se indica los valores calculados:

Concreto Convencional = 0,18 - 0,19

Hormigón Autocompactante = 0,20

6.5 CRITERIOS DE RECHAZO DE LAS MEZCLAS DE HAC

MEZCLAS AA: Resistencia de diseño = 250 kg/cm²

Materiales utilizados: Cemento Holcim

Aditivo: Viscocrete 2100 R

Aditivo: Sika Fume (microsílica)

Aditivo: Sika Aer RMC (incorporador de aire)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

AA-01: HACHS250-001

Criterios de rechazo: No cumple con el ensayo de asentamiento, el valor determinado se encuentra fuera del límite inferior.

No cumple con el ensayo de capacidad de paso, no llega al tope de la caja en L, la puzolana aumenta la cohesión, impidiendo que la mezcla fluya, se debe disminuir el contenido de puzolana.

AA-02: HACHS250-002

Criterios de rechazo: A pesar que se aumenta el contenido de aditivo y la cantidad de agua, la mezcla no fluye.

AA-03: HACHS250-003

Criterios de rechazo: No se adiciona puzolana, la mezcla fluye pero exuda bastante.

AA-04: HACHS250-004

Criterios de rechazo: Se adiciona puzolana en menor cantidad que en las mezclas AA-01 y AA-02, la mezcla no fluye, se concluye que la adición de puzolana incrementa la cohesión, requiriendo mayor cantidad de agua.

AA-05: HACHS250-005

Criterios de rechazo: No se adiciona puzolana, se incrementa el contenido de aditivo al 2,5%, la mezcla se demora en fraguar, se concluye que el máximo porcentaje de aditivo a ser adicionado debe ser del 2%, a fin de evitar problemas de fraguado. Las densidades y las resistencias obtenidas son bajas.

AA-06: HACHS250-006

Criterios de rechazo: Se adiciona un incorporador de aire (Sika Aer RMC), se obtiene una buena mezcla, con poca exudación, los cilindros confeccionados presentan mucha porosidad, las resistencias son bajas.

AA-07: HACHS250-007

Criterios de rechazo: A la mezcla AA-06 se adiciona puzolana, se obtiene una buena mezcla, sin exudación, los cilindros confeccionados presentan mucha porosidad, bajas resistencias.

AA-08: HACHS250-008

Se utilizaron los aditivos Viscocrete 2100 R (2,3%) y Sika Fume (6%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC en estado fresco y con la resistencia especificada (250 kg/cm²); se procede a realizar el resto de ensayos.

AA-09: HACHS250-009

Criterios de rechazo: Se disminuye el porcentaje de aditivo a 1,6%, la mezcla no fluye, requiere mucha agua.

MEZCLAS BB: Resistencia de diseño = 350 kg/cm²

Materiales utilizados: Cemento Holcim

Aditivo: Viscocrete 2100 R

Aditivo: Sika Fume (microsílica)

Aditivo: Sika Aer RMC (incorporador de aire)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

BB-01: HACHS350-001

Criterios de rechazo: Se dosifica el aditivo Viscocrete 2100 R (2,5%), se tiene problemas en el fraguado del concreto, para las siguientes mezclas se disminuye el porcentaje de aditivo, las resistencias son bajas.

BB-02: HACHS350-002

Criterios de rechazo: se adiciona a la mezcla Sika Aer RMC (incorporador de aire), obteniéndose una buena mezcla, que cumple con las exigencias de la EFNARC en estado fresco, presenta poca exudación, los cilindros presentan mucha porosidad, baja densidad y baja resistencia.

BB-03: HACHS350-003

Criterios de rechazo: se adiciona a la mezcla Sika Aer RMC (incorporador de aire) y puzolana, obteniéndose una buena mezcla, que cumple con las exigencias de la EFNARC en estado fresco, no presenta exudación, los cilindros presentan alta porosidad, baja densidad y baja resistencia.

BB-04: HACHS350-004

Se utilizan los aditivos Viscocrete 2100 R (2%) y Sika Fume (6%), puzolana (10%), la mezcla presenta buenas características en estado fresco, cumple con las exigencias de la EFNARC, no exuda, cumple con la resistencia especificada (350 kg/cm²), se procede a realizar el resto de ensayos.

BB-05: HACHS350-005

Criterios de rechazo: Se disminuye el porcentaje de Viscocrete 2100 R (1,5%), a pesar que se aumenta el contenido de agua, la mezcla no fluye.

MEZCLAS HH: Resistencia de diseño = 350 kg/cm²

Materiales utilizados: Cemento Guapán

Aditivo: Viscocrete 2100 R

Aditivo: Sika Fume (microsílica)

Aditivo: Sika Aer RMC (incorporador de aire)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

HH-01: HACGS350-001

Criterios de rechazo: Se dosifica el aditivo Viscocrete 2100 R (1,8%), Sika Aer RMC (0,3%), la mezcla presenta exudación.

HH-02: HACGS350-002

Criterios de rechazo: Se dosifica el aditivo Viscocrete 2100 R (1,8%), Sika Aer RMC (0,3%), puzolana (15%), la mezcla presenta poca exudación, baja densidad y baja resistencia.

HH-03: HACGS350-003

Criterios de rechazo: Se adiciona Sika Fume (5%), la mezcla cumple con las exigencias de la EFNARC en estado fresco, los cilindros son muy porosos de baja densidad y baja resistencia.

HH-04: HACGS350-004

Se utilizan los aditivos Viscocrete 2100 R (2%) y Sika Fume (5%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC en estado fresco y con la resistencia especificada (350 kg/cm²), se procede a realizar el resto de ensayos.

HH-05: HACGS350-005

Criterios de rechazo: Se disminuye el contenido de Viscocrete 2100 R (1,5%), requiriendo mayor contenido de agua, se segrega el árido grueso.

MEZCLAS II: Resistencia de diseño = 250 kg/cm²

Materiales utilizados: Cemento Guapán

Aditivo: Viscocrete 2100 R

Aditivo: Sika Fume (microsílica)

Aditivo: Sika Aer RMC (incorporador de aire)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

II-03: HACGS250-003

Criterios de rechazo: Se dosifica el aditivo Viscocrete 2100 R (2%), Sika Aer RMC (0,3%), la mezcla presenta exudación.

II-04: HACGS250-004

Criterios de rechazo: A la mezcla II-03 se adiciona puzolana (15%), disminuyendo la exudación, presenta bajas densidades y bajas resistencias.

II-05: HACGS250-005

Criterios de rechazo: Se adiciona Sika Fume (6%), puzolana (15%), presenta bajas resistencias.

II-06: HACGS250-006

Se utilizan los aditivos Viscocrete 2100 R (2%) y Sika Fume (5%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC, y con la resistencia especificada (250 kg/cm²), se procede a realizar el resto de ensayos.

MEZCLAS LL: Resistencia de diseño = 250 kg/cm²

Materiales utilizados: Cemento Holcim

Aditivo: ADITEC SF-106

Aditivo: Sika Fume (microsílica)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

LL-01: HACHA250-001

Criterios de rechazo: Se dosifica el aditivo ADITEC SF-106 (1,75%), Sika Fume (7%), puzolana (11%), la mezcla no fluye.

LL-02: HACHA250-002

Criterios de rechazo: Se dosifica el aditivo ADITEC SF-106 (2,65%), Sika Fume (7%), puzolana (11%), la mezcla no fluye.

LL-03: HACHA250-003

No se adiciona el aditivo Sika Fume, dando mejores resultados, se dosifica el aditivo ADITEC SF-106 (2,8%), puzolana (11%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (250 kg/cm²), se procede a realizar el resto de ensayos.

LL-04: HACHA250-004

Se dosifica el aditivo ADITEC SF-106 (2,5%), puzolana (10%), la mezcla requiere mayor cantidad de agua, presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (250 kg/cm²)

MEZCLAS MM: Resistencia de diseño = 350 kg/cm²

Materiales utilizados: Cemento Holcim

Aditivo: ADITEC SF-106

Aditivo: Sika Fume (microsílica)

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

MM-01: HACHA350-001

Criterios de rechazo: Se dosifica el aditivo ADITEC SF-106 (1,6%), Sika

Fume (6%), puzolana (10%), la mezcla no fluye.

MM-02: HACHA350-002

Se dosifica el aditivo ADITEC SF-106 (2,5%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (350 kg/cm²), se procede a realizar el resto de ensayos.

MM-03: HACHA350-003

Se dosifica el aditivo ADITEC SF-106 (3%), puzolana (8%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (350 kg/cm²)

MEZCLAS NN: Resistencia de diseño = 250 kg/cm²

Materiales utilizados: Cemento Guapán

Aditivo: ADITEC SF-106

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

NN-01: HACGA250-001

Se dosifica el aditivo ADITEC SF-106 (2,95%), puzolana (12%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (250 kg/cm²)

NN-02: HACGA250-002

Se dosifica el aditivo ADITEC SF-106 (2,4%), puzolana (12%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (250 kg/cm²), se procede a realizar el resto de ensayos.

NN-03: HACGA250-003

Se disminuye la cantidad de aditivo ADITEC SF-106 (1,7%), puzolana (11%), la mezcla requiere mayor cantidad de agua, presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (250 kg/cm²)

MEZCLAS OO: Resistencia de diseño = 350 kg/cm²

Materiales utilizados: Cemento Guapán

Aditivo: ADITEC SF-106

Puzolana de Llacao

Áridos del Jubones (Mina Heredia)

00-01: HACGA350-001

Se dosifica el aditivo ADITEC SF-106 (2,5%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (350 kg/cm²), se procede a realizar el resto de ensayos.

OO-02: HACGA350-002

Se disminuye la cantidad de aditivo ADITEC SF-106 (2%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (350 kg/cm²)

OO-03: HACGA350-003

Se disminuye la cantidad de aditivo ADITEC SF-106 (1,5%), puzolana (10%), la mezcla presenta buenas características en estado fresco, no exuda, cumple con las exigencias de la EFNARC y con la resistencia especificada (350 kg/cm²)

Observación: los porcentajes de aditivo y puzolana, están referidos al peso del cemento.

6.6 ESTUDIO COMPARATIVO ENTRE LAS DOSIFICACIONES DEL CC Y DEL HAC

RESISTENCIA DE 250 kg/cm²:

١	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	Kg/m ³
СС	HAC		СС	HAC	CC	HAC	CC	HAC
Α	AA-08	C. HOLCIM	370	380	0,541	0,511	2357	2212
		AGUA	200	210				
		ARENA	761	1064				
		RIPIO	970	543				
		VISCOCRETE 2100R	2,96	8,74				
		SIKA FUME		22,80				
		PUZOLANA		39,57				

Mezcla A = CCHS250-002

Mezcla AA-08 = HACHS250-008

1	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
СС	HAC		CC	HAC	CC	HAC	CC	HAC
I	II-06	C. GUAPÁN	360	445	0,533	0,455	2310	2301
		AGUA	192	225				
		ARENA	893	997				
		RIPIO	867	509				
		VISCOCRETE 2100R	2,88	8,90				
		SIKA FUME		22,25				
		PUZOLANA		46,33				

Mezcla I = CCGS250-002

Mezcla II-06 = HACGS250-006

N	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
CC	HAC		CC	HAC	CC	HAC	CC	HAC
L	LL-04	C. HOLCIM	355	440	0,549	0,534	2350	2301
		AGUA	195	235				
		ARENA	805	994				
		RIPIO	949	506				
		ADITEC SF-106	4,97	11,00				
		PUZOLANA		45,81				

Mezcla L = CCHA250-001

Mezcla LL-04 = HACHA250-004

N	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
CC	HAC		СС	HAC	СС	HAC	СС	HAC
N	NN-02	C. GUAPÁN	350	415	0,529	0,511	2346	2289
		AGUA	185	212				
		ARENA	916	1043				
		RIPIO	867	532				
		ADITEC SF-106	4,90	9,96				
		PUZOLANA		51,85				

Mezcla N = CCGA250-001

Mezcla NN-02 = HACGA250-002

RESISTENCIA DE 350 kg/cm²:

N	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
CC	HAC		CC	HAC	CC	HAC	CC	HAC
В	BB-04	C. HOLCIM	415	415	0,482	0,450	2375	2257
		AGUA	200	198				
		ARENA	746	1061				
		RIPIO	949	543				
		VISCOCRETE 2100R	3,32	8,30				
		SIKA FUME		24,90				
		PUZOLANA		43,21				

Mezcla B = CCHS350-001

Mezcla BB-04 = HACHS350-004

ı	NOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
СС	HAC		CC	HAC	CC	HAC	CC	HAC
Н	HH-04	C. GUAPÁN	400	510	0,475	0,401	2363	2326
		AGUA	190	215				
		ARENA	880	968				
		RIPIO	851	495				
		VISCOCRETE 2100R	3,20	10,20				
		SIKA FUME		25,50				
		PUZOLANA		53,10				

Mezcla H = CCGS350-002

Mezcla HH-04 = HACGS350-004

N	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
СС	HAC		СС	HAC	CC	HAC	CC	HAC
М	MM-03	C. HOLCIM	405	470	0,469	0,457	2361	2314
		AGUA	190	215				
		ARENA	792	1010				
		RIPIO	936	517				
		ADITEC SF-106	5,67	14,10				
		PUZOLANA		39,15				

Mezcla M = CCHA350-001

Mezcla MM-03 = HACHA350-003

N	IOM.	MATERIALES	PESO	kg/m³	REL.	W/MC	DENS.	kg/m³
CC	HAC		CC	HAC	CC	HAC	CC	HAC
0	00-01	C. GUAPÁN	415	490	0,463	0,453	2350	2264
		AGUA	192	222				
		ARENA	878	981				
		RIPIO	830	501				
		ADITEC SF-106	5,81	12,25				
		PUZOLANA		51,02				

Mezcla 0 = CCGA350-001

Mezcla 00-01 = HACGA350-001

- Los HAC requieren un mayor contenido de cemento, agua, arena, finos y aditivo superplastificante que los CC.
- A fin de evitar la exudación, los HAC requieren la adición de filler, en el presente trabajo se utilizó puzolana del sector LLacao.
- Para obtener resistencias similares, las relaciones agua/material cementante de los HAC deben ser menores entre el 3 % y 15 % con respecto a los CC.
- La densidad del HAC fresco es menor en un 3 % a la densidad del CC.
- Los HAC utilizan mezclas más ricas en cemento y aditivos, por lo que son más costosos. (ver anexo VII, costos; pág. 173)

6.7 ESTUDIO COMPARATIVO DE DENSIDADES

En la tabla $6.5~{\rm se}$ resume las densidades obtenidas de los CC y HAC fraguados, a edades de 7, 14 y 28 días.

DENSI	DADES								
ME	ZCLA	HORMIGÓN FF	RESCO (KG/M3)		HORN	IIGÓN FRA	AGUADO (KG/M3)	
CC	HAC	CC	HAC		CC			HAC	
				7 DÍAS	14 DÍAS	28 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS
R250									
Α	AA-08	2357	2212	2362	2347	2343	2228	2243	2233
1	II-06	2310	2301	2338	2346	2336	2270	2292	2277
L	LL-04	2350	2301	2344	2337	2363	2273	2282	2297
N	NN-02	2346	2289	2339	2337	2340	2301	2301	2303
PROME	DIO =	2341	2276	2346	2342	2346	2268	2280	2278
DESV. S	ΓANDARD =	21,00	42,87	11,15	5,50	12,01	30,10	25,54	31,68
% DENSI	DAD		2,78				3,31	2,66	2,90
R350									
В	BB-04	2375	2257	2359	2381	2364	2258	2250	2245
Н	HH-04	2363	2326	2381	2388	2394	2290	2291	2314
М	MM-03	2361	2314	2347	2338	2344	2284	2282	2294
0	00-01	2350	2264	2326	2314	2323	2263	2292	2272
DDOM	DIO	2202	2200	2252	2255	0050	2074	0070	2204
PROME	:DIO = [ANDARD =	2362 10,24	2290 34,82	2353 22,98	2355 35,28	2356 30,23	2274 15,63	2279 19,69	2281
% DENSI		10,24	34,62	22,90	33,26	30,23	3,38	3,25	29,64 3,18
70 DENSI	JAU		3,03				3,36	ა,∠ა	3,10

Tabla 6.5 Estudio comparativo de densidades del CC y HAC

Las densidades de los HAC, tanto en estado fresco como endurecido, son menores en un 3 % a las densidades del CC.

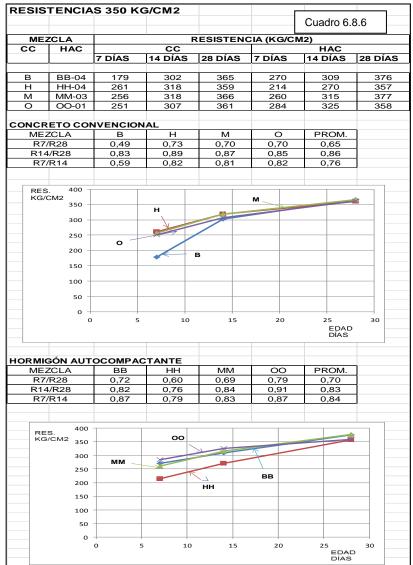
6.8 RESUMEN DE DOSIFICACIONES Y RESISTENCIAS

En los cuadros 6.8.1y 6.8.2 se presentan los resúmenes de las dosificaciones para $F'c = 250 \text{ kg/cm}^2 \text{ y } F'c = 350 \text{ kg/cm}^2 \text{ para CC}$.

	MILZOLAG DI	_ 00 Q0L 00	ANII ELIVO	DIN LOO IVL	(0.011.001	DE ASENTAMIENTO	, i KEOIO	ILITOIA	
RESIST	ENCIA DE DISEÑO	D = 250 KG/CI	M2:					Cuadr	ი 6.8.1
NOM.	MEZCLA		DOSIFICAC	CIÓN PESO I	EN S.S.S (I	(G/M3)	RESIST	TENCIAS (F	(G/CM2)
		CEMENTO	AGUA	ARENA	RIPIO	ADITIVO	R7	R14	R28
Α	CCHS250-002	HOLCIM				VISCOC. 2100R (0,80%)			
		370	200	761	970	2,96	127	198	270
1	CCGS250-002	GUAPÁN				VISCOC. 2100R (0,80%)			
		360	192	893	867	2,88	169	195	263
L	CCHA250-001	HOLCIM				ADITEC SF-106 (1,40%)			
		355	195	805	949	4,97	186	247	268
N	CCGA250-001	GUAPÁN				ADITEC SF-106 (1,40%)			
		350	185	916	867	4,90	186	221	271

COLOT	 ENCIA DE DISEÑO	250 KO/O	MO.					Cuadr	ი 6.8.2
(ESIS I	ENCIA DE DISENC) = 350 KG/C	VIZ:						
NOM.	MEZCLA		DOSIFICAC	CIÓN PESO I	EN S.S.S (I	(G/M3)	RESIST	ENCIAS (F	(G/CM2)
		CEMENTO	AGUA	ARENA	RIPIO	ADITIVO	R7	R14	R28
В	CCHS350-001	HOLCIM				VISCOC. 2100R (0,80%)			
		415	200	746	949	3,32	179	302	365
Н	CCGS350-002	GUAPÁN				VISCOC. 2100R (0,80%)			
		400	190	880	851	3,20	261	318	359
М	CCHA350-001	HOLCIM				ADITEC SF-106 (1,40%)			
		405	190	792	936	5,67	256	318	366
0	CCGA350-001	GUAPÁN				ADITEC SF-106 (1,40%)			
		415	192	878	830	5,81	251	307	361

En los cuadros 6.8.3 y 6.8.4 se presentan los resúmenes de las dosificaciones para $F'c=250~kg/cm^2~y~F'c=350~kg/cm^2~para~HAC$.


	WEZCLAS	E HAC QU	E COWIFE	EN CON LC	S KEQUI	SITOS DE LA EFN	NARC EN ES	IADOFRESC	O I KESI	SIENCIA	
DE0101	ENGLA DE DIGE	10 050 10	10110							Cuadro	683
RESIST	ENCIA DE DISEÑ	NO = 250 KC	5/CM2:						L	CALACITA	().())
NOM.	MEZCLA			DOSIFICA	CIÓN PE	SO EN S.S.S (KG	/M3)		RESIS	TENCIAS (F	(G/CM2)
		CEMENTO	AGUA	ARENA	RIPIO	ADITIVO	ADICIÓN 1	ADICIÓN 2	R7	R14	R28
AA-08	HACHS250-008	HOLCIM				VISCOC. 2100R (2,3%)	SIKA FUME (6%)	PUZOLANA (10.41%)			
		380	210	1064	543	8,74	22,80	39,57	146	203	261
LL-03	HACHA250-003	HOLCIM				ADITEC SF-106 (2,8%)		PUZOLANA (11,45%)			
		415	223	1025	522	11,62		47,53	199	224	268
II-06	HACGS250-006	GUAPÁN				VISCOC, 2100R (2%)	SIKA FILME (5%)	PUZOLANA (10.41%)			
00	18.000200 000	445	225	997	509	8,90	22,25	46,33	173	222	266
NN-01	HACGA250-001	GUAPÁN				ADITEC SF-106 (2,95%)		PUZOLANA (12,50%)			
1414 01	11/10/07/200 001	410	213	1041	532	12,10		51,23	186	221	271
NN-02	HACGA250-002	GUAPÁN									
ININ-UZ	HACGA250-002	415	212	1043	532	ADITEC SF-106 (2,40%) 9,96		PUZOLANA (12,49%) 51,85	182	230	257
NN-03	HACGA250-003	GUAPÁN				ADITEC SF-106 (1,70%)		PUZOLANA (11,45%)			
		465	231	984	503	7,91		53,26	192	234	260
LL-04	HACHA250-004	HOLCIM				ADITEC SF-106 (2,50%)		PUZOLANA (10,41%)			
		440	235	994	506	11,00		45,81	191	206	274

	MEZCLAS D	E HAC QUE	COMPLE	N CON LO	KEQUIS	SITOS DE LA EFN	NAKC EN ES	IADOFRESCO	TRES	SIENCIA	
RESIST	ENCIA DE DISEÑ	O = 350 KG	CM2							Cuadro	6.8.4
NOM.	MEZCLA			DOSIFICA	CIÓN PE	SO EN S.S.S (KG	6/M3)		RESIS	TENCIAS (KG/CM2
		CEMENTO	AGUA	ARENA	RIPIO	ADITIVO	ADICIÓN 1	ADICIÓN 2	R7	R14	R28
BB-04	HACHS350-004	HOLCIM				VISCOC. 2100R (2%)	SIKA FUME (6%)	PUZOLANA (10,41%)			
		415	198	1061	543	8,30	24,90	43,21	270	309	376
MM-02	HACHA350-002	HOLCIM				ADITEC SF-106 (2,5%)		PUZOLANA (10,41%)			
02	1 11 10 1 11 10 00 002	480	228	979	498	12,00		49,98	267	312	372
HH-04	HACGS350-004	GUAPÁN				VISCOC. 2100R (2%)	SIKA FIME (5%)	PUZOLANA (10,41%)			
	111100000000	490	220	973	498	9,80	24,50	51,02	214	270	357
00-01	HACGA350-001	GUAPÁN				ADITEC SF-106 (2,5%)		PUZOLANA (10,41%)			
0001	11110011000 001	490	222	981	501	12,25		51,02	284	325	358
MM-03	HACHA350-003	HOLCIM				ADITEC SF-106 (3,0%)		PUZOLANA (8,33%)		1	
	1 2 10 1 2 1000 000	470	215	1010	517	14,10		39,15	260	315	377
00-02	HACGA350-002	GUAPÁN				ADITEC SF-106 (2,0%)		PUZOLANA (10,41%)			
00-02	TIACGASSO-002	495	217	992	506	9,90		51,54	286	336	379
OO-03	HACGA350-003	GUAPÁN				ADITEC SF-106 (1,5%)		PUZOLANA (10,41%)			
00-03	1 IACGA350-003	510	229	963	493	7,65		53,1	261	302	374

En los cuadros 6.8.5 y 6.8.6 se presentan los resúmenes de las resistencias a los 7, 14 y 28 días de edad para CC y HAC.

A fin de evitar que los HAC fluyan sin producir segregación, las mezclas requieren un mayor contenido de cemento, arena y aditivo que los CC.

RELACIÓN DE RESISTENCIAS:

RESISTENCIA DE 250 kg/cm²:

Relación de resistencias entre 7 días y 28 días:

Concreto Convencional = 0,62; Hormigón Autocompactante = 0,65

Relación de resistencias entre 14 días y 28 días:

Concreto Convencional = 0,78; Hormigón Autocompactante = 0,82

Relación de resistencias entre 7 días y 14 días:

Concreto Convencional = 0,80; Hormigón Autocompactante = 0,80

RESISTENCIA DE 350 kg/cm²:

Relación de resistencias entre 7 días y 28 días:

Concreto Convencional = 0,65; Hormigón Autocompactante = 0,70

Relación de resistencias entre 14 días y 28 días:

Concreto Convencional = 0,86; Hormigón Autocompactante = 0,83

Relación de resistencias entre 7 días y 14 días:

Concreto Convencional = 0,76; Hormigón Autocompactante = 0,84

El desarrollo de resistencia con la edad es similar para el CC y para el HAC, tanto para un nivel de resistencia de 250 kg/cm² como para un nivel de resistencia de 350 kg/cm².

CAPÍTULO 7.- CONCLUSIONES Y RECOMENDACIONES

7.1 SOBRE LA TEMPERATURA DEL CONCRETO

La variación de temperatura del CC y del HAC en estado fresco, es menor a los 2 °C, no se producirá mayores cambios de volumen ni posteriores retracciones que pueda dañar la estructura. En caso de utilizarse el concreto en la construcción de obras se deberá monitorear la temperatura a diferentes edades.

7.2 SOBRE LA PÉRDIDA DE TRABAJABILIDAD DEL CONCRETO

La trabajabilidad en el CC es aceptable hasta los 40 minutos del inicio del mezclado, en éste lapso de tiempo el concreto baja a la mitad su asentamiento, no recomendable para que sea colocado en éstas condiciones.

El HAC a los 30 minutos del inicio del mezclado pierde todas las propiedades de Hormigón Autocompactante, por lo tanto no podría ser colocado en obra.

Se plantea como una futura línea de investigación, el estudio de aditivos retardantes de fraguado que puedan prolongar el tiempo libre del HAC.

7.3 SOBRE EL RECHAZO DE ALGUNAS MEZCLAS DE HAC Y EL CONTROL DE CALIDAD

Algunas mezclas de HAC se rechazaron por no cumplir con las exigencias de la EFNARC en estado fresco, ya sea porque no fluyeron, presentaban exudación, o el flujo muy alto que superaba los límites de la especificación.

El HAC es más sensible a los cambios en el contenido de humedad de la mezcla, por lo que debe ser supervisado en forma más estricta que el CC.

A pesar que teóricamente se pueden hacer correcciones por el contenido de humedad de los áridos, se recomienda que se trabaje con la humedad lo más cercano a las condiciones S.S.S.

7.4 SOBRE LOS ADITIVOS UTILIZADOS:

Los aditivos superplastificantes utilizados para la presente investigación fueron: Viscocrete 2100R de la casa SIKA y Aditec SF-106 de la casa ADITEC; para el CC se dosificó de acuerdo a las recomendaciones de sus técnicos, dando resultados aceptables; para el HAC se dosificó en mayor cantidad de lo recomendado ya que no fluía en forma adecuada o producía segregación.

Con el aditivo Viscocrete 2100R se dosificó hasta el 2,5% del peso del cemento, teniendo problemas en el tiempo de fraguado del concreto, por lo que se limitó hasta un máximo del 2%.

Con el aditivo Aditec SF-106 se dosificó hasta el 2,8% del peso del cemento, el doble de lo recomendado por los técnicos, sin tener problemas de fraguado.

El aditivo Viscocrete 2100R debe adicionarse al final de la mezcla, cuando todos los materiales estén colocados en la olla, incluido el agua, nunca mezclar previamente con el agua porque produce exudación excesiva de color blanquecino. El aditivo Aditec SF-106, antes de colocar en la olla previamente se mezcla con aproximadamente la tercera parte del agua requerida para la mezcla.

El aditivo Viscocrete 2100R incrementa el contenido de aire de la mezcla, a mayor contenido de aditivo mayor % de aire: en CC en promedio se tiene 2,5% y en HAC 7,5%.

Con el aditivo Aditec SF-106 el contenido de aire se mantiene aproximadamente igual para el CC y para el HAC, entre el 1,25% y 1,5%.

La adición de Sika Fume (microsílica) da mezclas con mayor adherencia, endurándose rápidamente en reposo, se recomienda usar sólo con Viscocrete 2100R, con Aditec SF-106 no trabaja bien, para otros aditivos se deberá investigar. La microsílica incrementa la cohesión, disminuyendo la tendencia a la segregación.

Una de las recomendaciones de los investigadores y técnicos en concretos es que para aumentar la cohesión, disminuir la exudación, disminuir la

permeabilidad, se adicione un aditivo incorporador de aire, lo que se realizó en el presente trabajo, incorporando Sika Aer RMC, obteniéndose pésimos resultados: los cilindros muy porosos, con baja densidad y muy bajas resistencias (ver anexo V, pg. 158, 159), lo que obligó a no utilizar éste tipo de aditivo, buscando como alternativa la adición de puzolana, con mejores resultados.

Ambos aditivos pueden ser utilizados, el Viscocrete 2100R al incorporarse al último a la mezcla se puede ver con facilidad el efecto superplastificante.

7.5 SOBRE LOS ÁRIDOS

Se estudiaron áridos de varios sectores cercanos a la Ciudad de Cuenca: árido grueso triturado de tamaño máximo ¾" y arena natural.

Los áridos gruesos presentan características similares en lo referente a granulometría, pesos específicos, absorción, abrasión, unos de color gris claro, predominantemente Andesíticos, no alterados, de mejor calidad que otros que presentan cierto grado de alteración.

Arenas del sector Jadán se rechazaron por presentar un alto contenido de finos (>5%), otras un alto contenido de pizarra.

Si los áridos son de buena calidad y cumplen con el rango granulométrico especificado (norma ASTM C-33. pg. 23), pueden ser utilizados en la confección de Hormigones Autocompactantes.

7.6 SOBRE LA AGREGACIÓN DE PUZOLANA

Con la finalidad de incrementar la cohesión de las mezclas, se añadió puzolana, en un principio entre un 40 % y un 50% del peso del cemento, la mezcla no fluía, mejores resultados se obtuvo entre un 10% y un 15% del peso del cemento.

7.7 SOBRE LA DOSIFICACIÓN DE LOS HORMIGONES

El método de diseño aplicado para el Concreto Convencional es el propuesto por la Road Research Laboratory y para el Hormigón

Autocompactante es el propuesto por el ACI-237R, para el ajuste de los áridos se tomó como referencia la curva 4 propuesto por la Road Research Laboratory, a la que se le agregó material fino hasta obtener la curva denominada como AJUSTE.

Se puede obtener HAC de buenas características, con los materiales de la zona, siguiendo el método indicado anteriormente, mezclando los áridos hasta aproximarse a la curva AJUSTE.

Los métodos de ensayo propuestos por la EFNARC para HAC en estado fresco, se han adaptado adecuadamente a los confeccionados con los materiales de la zona.

Por el alto contenido de finos y de aditivo, en los HAC es necesario un mayor tiempo de mezclado que en los CC, recomendándose que el tiempo mínimo de mezclado sea de 5 minutos, contados a partir de que todos los materiales han sido colocados en la olla.

Los HAC presentan mayor sensibilidad a la variación en el contenido de agua de la mezcla, por lo que deben ser controlados de mejor manera que los CC.

7.8 SOBRE LOS COSTOS DE LOS HORMIGONES

A continuación se indica los costos directos para producir un metro cúbico de hormigón:

Concreto Convencional para una resistencia de 250 kg/m³ = \$ 104,75

Concreto Convencional para una resistencia de 350 kg/m³ = \$ 13,06

Hormigón Autocompactante para una resistencia de 250 kg/m³ = \$ 152,32

Hormigón Autocompactante para una resistencia de 350 kg/m³ = \$ 175,99

El producir HAC tiene un costo mayor al CC, entre el 45% y 55%.

Los costos de colocar en obra del HAC son menores al CC porque no es necesario equipo de compactación y es más rápido el colocado, disminuyendo el requerimiento de mano de obra.

Hormigonado de muro con CC, F´c = 250 kg/cm2 = \$ 173,07

Hormigonado de muro con CC, F´c = 350 kg/cm2 = \$ 181,38

Hormigonado de muro con HAC, F´c = 250 kg/cm2 = \$ 211,55

Hormigonado de muro con HAC, F´c = 350 kg/cm2 = \$ 235,22

El incremento de costo para fundir un muro con HAC, se encuentra entre el 22% y el 29%. (ver anexo VII "Análisis de costos"; pág. 173).

Para cada obra se deberá analizar los costos integrales de todo lo que involucre su construcción.

7.9 SOBRE EL CONTENIDO DE AIRE

El aditivo Viscocrete 2100 R producido por SIKA incorpora aire a la mezcla: en CC entre el 2,4% y el 2,9% y en HAC entre el 7,35% y el 7,85%, lo que variará en función del porcentaje de aditivo. En caso del HAC se deberá profundizar el estudio sobre el porcentaje de Viscocrete 2100 R, desde el punto de vista de contenido de aire.

El aditivo Aditec SF-106 producido por ADITEC, incorpora una pequeña cantidad de aire, entre el 1,35% y el 1,5%, tanto para CC como para HAC.

7.10 SOBRE EL MÓDULO DE ELASTICIDAD Y RELACIÓN DE POISSON

De acuerdo a los resultados de los ensayos a compresión de los hormigones de estudio, a continuación se presenta las ecuaciones que se podrían aplicar para calcular el módulo de elasticidad en función de la resistencia a compresión:

CC: Ec = $(7000 - 8000) (f'c)^{1/2}$ HAC: Ec = $(5800 - 6200) (f'c)^{1/2}$

f'c = resistencia del concreto en kg/cm²

Se recomienda como tema de investigación, profundizar éste estudio, mediante la realización de un mayor número de ensayos, con diferentes materiales y otros niveles de resistencia.

Relación de Poisson:

Los valores determinados se encuentran dentro del rango que los investigadores recomiendan (ref. 5), esto es:

CC = 0.18 - 0.19; HAC = 0.20

REFERENCIAS:

- 1. Directrices Europeas para HAC, febrero 2006. pg. 5
- 2. Directrices Europeas para HAC, febrero 2006. Anexo B.1 pg. 51
- 3. Directrices Europeas para HAC, febrero 2006. Anexo B.2 pg. 54, 55
- 4. Directrices Europeas para HAC, febrero 2006. Anexo B.3 pg. 57, 58
- 5. Publicación del ACI sobre concretos pg. 317
- Tesis Doctoral "Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los HAC". Autor "Jonhson Wilker Rigueira Víctor". Octubre 2007. pg. 37
- Tesis Doctoral "Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los HAC". Autor "Jonhson Wilker Riqueira Víctor". Octubre 2007. Pg. 37
- 8. Directrices Europeas para HAC, febrero 2006. pg. 50
- 9. ASTM C 192 "Mezclado de laboratorio del concreto"
- 10. Manual de aditivos de SIKA
- 11. ASTM C 143 "Revenimiento del concreto hecho con Cemento Portland"
- 12. ASTM C 231 "Contenido de aire en concreto fresco, por el método de presión"
- 13. ASTM C 138 "Determinación de la densidad del concreto fresco"
- 14. ASTM C 469 "Determinación del módulo de elasticidad estático y relación de Poisson en compresión de cilindros de concreto"
- 15. ASTM C 192 "Fabricación y curado de especímenes de concreto en el laboratorio"; ASTM C 617 "Cabeceo de especímenes de concreto"
- 16. ASTM C 39 "Resistencia a compresión de cilindros de concreto"
- 17. INECYC: requisitos técnicos para cemento y hormigón
- Tesis Doctoral "Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los HAC". Autor "Jonhson Wilker Rigueira Víctor". Octubre 2007. pg. 41
- Tesis Doctoral "Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los HAC". Autor "Jonhson Wilker Rigueira Víctor". Octubre 2007. pg. 50
- 20. Directrices Europeas para HAC, febrero 2006. pg. 25
- 21. Directrices Europeas para HAC, febrero 2006. pg. 24
- 22. Dosificación de Hormigones de Fernando Arredondo

LISTADO DE FOTOGRAFÍAS DEL AUTOR

	Pág.
2.1 Cono de Abrams	8
2.2 Hormigón segregado	8
2.3 Hormigón no segregado	8
2.4 Embudo en V	9
2.6 Caja en L	9
3.1 Hormigonera basculante (laboratorio)	13
3.2 Cono de Abrams	13
3.3 Medidor contenido de aire	14
3.4 Equipo para determinar el Módulo de Elasticidad y la relación de	
Poisson	15
3.5 Refrentado de las probetas	16
3.6 Prensa para ensayo de compresión	16
4.3 Puzolana sector Llacao (1)	21
4.4 Puzolana sector Llacao (2)	21
4.5 Puzolana sector Llacao (3)	21
4.6 Puzolana sector Llacao (4)	21
LISTADO DE FIGURAS	
2.5 Dimensiones del embudo en V	9
2.7 Dimensiones de la caja en L	9
5.1 Ajuste de los áridos para diseño de CC	26
5.2 Proceso de diseño de mezclas para HAC	39
5.3 Ajuste de los áridos para diseño de HAC	42
6.1 Asentamiento vs tiempo	62
6.2 Módulo de Elasticidad	65

LISTADO DE TABLAS

2.1 Recomendaciones de la EFNARC para HAC	11
2.2 Recomendaciones de conformidad de acuerdo a la EFNARC	
para HAC	12
4.1 Resumen de las propiedades físicas de los áridos	19
4.2 Resumen de las propiedades físicas de la puzolana	22
4.3 Evolución de los aditivos reductores de agua con el tiempo	23
5.1 Valores guía para el diseño de HAC	40
5.3 Ajuste de áridos para diseño de HAC	42
6.1 Temperatura vs tiempo en CC	61
6.2 Temperatura vs tiempo en HAC	61
6.3 Resumen del contenido de aire para CC y HAC	63
6.4 Resumen del Módulo de Elasticidad y Relación de Poisson para	
CC y HAC	64
6.5 Estudio comparativo de densidades del CC y del HAC	79

8.1 BIBLIOGRAFÍA

- American Concrete Institute (ACI): publicación del ACI sobre concretos, capítulo 1 al 17, trata sobre concretos convencionales, el 18 trata sobre concretos especiales.
- ASTM C-117: Material que pasa la malla N°200 en agregados minerales por medio de lavado.
- ASTM C-127: Peso Específico y Absorción de áridos gruesos.
- ASTM C-128: Peso Específico y Absorción de áridos finos.
- ASTM C-131: Resistencia a la abrasión de agregado grueso de tamaño pequeño, por medio de la máquina de Los Ángeles.
- ASTM C-136: Análisis granulométrico de agregados finos y gruesos.
- ASTM C-143: Revenimiento de concreto hecho con cemento portland.
- ASTM C-192: Concreto, mezclado de laboratorio.
- ASTM C-192: Fabricación y curado de especímenes de concreto en el laboratorio.
- ASTM C-231: Contenido de aire en concreto fresco, por el método de presión.
- ASTM C-29: Peso volumétrico de agregados.
- ASTM C-39: Compresión de probetas cúbicas y cilíndricas de hormigón.
- ASTM C-39: Resistencia a compresión de cilindros moldeados de concreto.
- ASTM C-40: Impurezas orgánicas en arenas para concreto.
- ASTM C-469: Módulo de elasticidad estático y relación de Poisson, en compresión de especímenes cilíndricos de concreto.
- ASTM C-566: Contenido de humedad total de los agregados por secado.
- ASTM C-617: Cabeceo de especímenes cilíndricos de concreto.
- ASTM: Normas Americanas para realizar los ensayos de laboratorio. 2000 – 2001:
- Concreto Rheodynamic autocompactable. BASF. Chemical Company, con asesoramiento de Master Builders.

- El Manual de Pepe Hormigón: Consejos prácticos sobre el hormigón, Instituto Ecuatoriano del Cemento y el Concreto (INECYC), 2007.
- Escuela Superior Politécnica Del Litoral, Centro de Investigación Científica y Tecnológica. Diseño de mezclas para Hormigón Autocompactante. Lady León Parra. Ing. Hugo Eguez Álava.
- EUROPEAN FEDERATION OF CONCRETE ADMIXTURE ASSOCIATIONS (EFNARC): Directrices Europeas para el Hormigón Autocompactante, especificaciones. 2006.
- Filler calizo. Alta resistencia del HAC.
- Gómez Gabriel: copiados sobre el curso tecnología del concreto, dictado en la Maestría de Construcciones en la Universidad de Cuenca, en el año 2010.
- Gómez Gabriel: Durabilidad del Concreto, conferencia dictada en Ecuador, con auspicio de Sika, 2010.
- Gorchacov G.I: Materiales de Construcción, editorial MIR Moscú, 1984, pg. 168 – 261.
- GRACE Constrution Products: Un túnel de 4,5 km. Trae a la luz una nueva oportunidad de mercado, reportaje técnico, 2006, pg. 40 – 41.
- Humberto Bálzamo, Claudio Hernández, Diego Mantegna, Gastón Fomasier. Centro Técnico Loma Negra. Buenos Aires. Argentina.
- INECYC: Instituto Ecuatoriano del cemento y el Concreto. El Manual de Pepe Hormigón. 2007.
- INECYC: Instituto Ecuatoriano del cemento y el Concreto.
 Requisitos Técnicos para cemento y hormigón. 2006.
- INSTITUTO DEL CONCRETO. Construcción de pavimentos. 2000. PG. 51-53.
- INSTITUTO MEXICANO DEL CEMENTO Y DEL CONCRETO (MCYC): varias publicaciones sobre temas específicos relacionados con el concreto
- Mena Carmona José: Variaciones en las características de fluidez en mezclas de concreto mediante la modificación de aditivo y agua para la obtención de un concreto autocompactable, Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Construcción, 2004.

- Método Brasileño: Diseño de la mezcla del hormigón autocompactante, R. Alencar Sika, Brasil, P. Helene Universidad de Sao Paulo – Brasil, 2008.
- Neville A.M. Tecnología del concreto, Instituto Mexicano del Cemento y del Concreto, México, 1979.
- Paneles de fachada confeccionados con HAC. Dr. José Manuel Pérez Luzardo y Ricardo J. Santana Rodríguez.
- Producción y uso, Grupo Europeo SCC, 2006.
- Sánchez Diego: Durabilidad y Patología del Concreto, Asocreto, Bogotá – Colombia. 2002.
- Sánchez Diego: Tecnología del concreto y del mortero, Pontificia
 Universidad Javeriana, Bogotá Colombia, 2000.
- SIKA, ADITEC: Manuales técnicos sobre aditivos para el concreto, 2010.
- Universidad Autónoma de Nuevo León, México. Concreto fluido con ceniza volante. Pedro Valdez, Alejandro Durán, Jorge Rivera, César Juárez. 2007.
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de caminos, Canales y Puertos. Dosificación, Propiedades y Durabilidad en Hormigón Autocompactante para Edificaciones. Tesis Doctoral. Ester B. Bermejo Nuñez. Madrid 2009.
- Universitat Politécnica de Valencia. E.T.S. De Ingenieros de Caminos, Canales y Puertos. Departamento de Ingeniería de la Construcción y de proyectos de Ingeniería Civil. Tesis Doctoral. Estudio de la sensibilidad e influencia de la composición en las propiedades reológicas y mecánicas de los hormigones autocompactantes. Jonhson Wilker Rigueira Victor. 2007
- Uribe Luis: Uso de Hormigón Autocompactante en el Proyecto RALCO, artículo técnico publicado por Ingendesa.

ARTÍCULOS CONSULTADOS EN INTERNET: 2010 – 2012

- Análisis de sensibilidad para estimar el Módulo de Elasticidad Estático del Concreto. María Fernanda Serrano, Diego Darío Pérez
- Anejo 21. Hormigón Autocompactante.
- ASKA 926. Nano aditivo superplastificante. 11/2008.
- Concreto Autocompactante (CAC). El Concreto en la práctica.
 NRMCA.
- Concreto fluido. Universidad nacional de Ingeniería. 08/07/2011.
- Diseño, desarrollo y caracterización de hormigones autocompactantes de alta resistencia.
- Diseño CAC, SIKA, 08/05/2010.
- El Guayacán Constructor. Concretos Autocompactantes (CAC).
 2008.
- La arena volcánica, QuimiNet, 02/02/2010.
- Guidelines For Testing Fresh Self Compacting Concrete. G. De Schutter, 09/2005.
- Hormigón Autocompactante.
- Hormigón Autocompactante. Beatriz Barragán Rajo. 22/07/2011
- ICOTEC. Variación de las características de fluidez en mezclas de concreto mediante la modificación de aditivo y agua para la obtención de un concreto autocompactante.
- Optimización de Hormigones Autocompactantes con bajo contenido de polvo. Humberto Bálzamo, Claudio Hernández, Diego Mantegna, Gastón Fornasier.
- Presentación Hormigones/Concretos. Concretenan Technology Ulmen. 20/08/2008.
- Tesis Doctoral "Influencia de la dosificación y empleo de diferentes tipos de cemento y adiciones en las propiedades mecánicas del HAC". Ángel Vilanova Fernández. Universidad de Madrid – 2009.
- Universidad Carlos III de Madrid. Escuela Politécnica Superior.
 Ingeniería Industrial.
- Efecto de las cenizas volantes y del superplastificador en el proceso de fraguado del mortero autocompactante. Fernando López Nieto.
- Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil.
 Departamento Académico de Construcción. Concreto fluido.

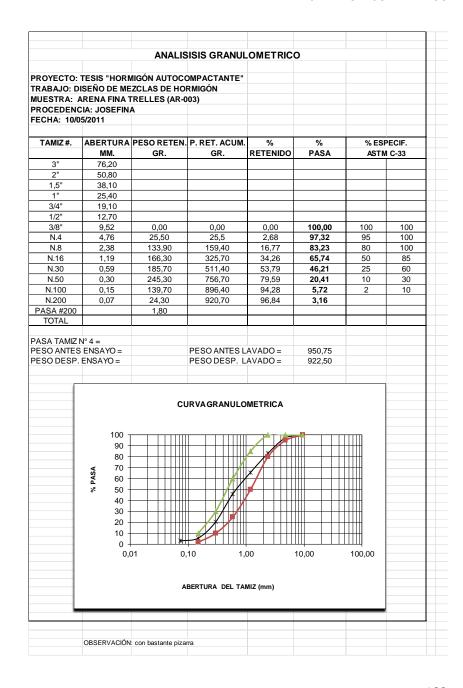
DIRECCIONES ELECTRÓNICAS DE INTERÉS

- www.upcommons.upc.edu
- www.oa.upm.es
- www.upct.es
- www.efnarc.org
- www.efca.info
- ice.ucv.cl/hormigón/autoc.doc
- www.cemex.es
- www.lomanegra.com.ar
- www.admixtures.basf-cc.es
- www.cemartigas.com.uy
- www.ieca.es
- www.dspace.espol.edu.ec
- www.tesisen red.net/handle/10803/6176
- www.nrmca.org
- www.es.graceconstruction.com
- www.imcyc.com
- artcromteam.wordpress.com

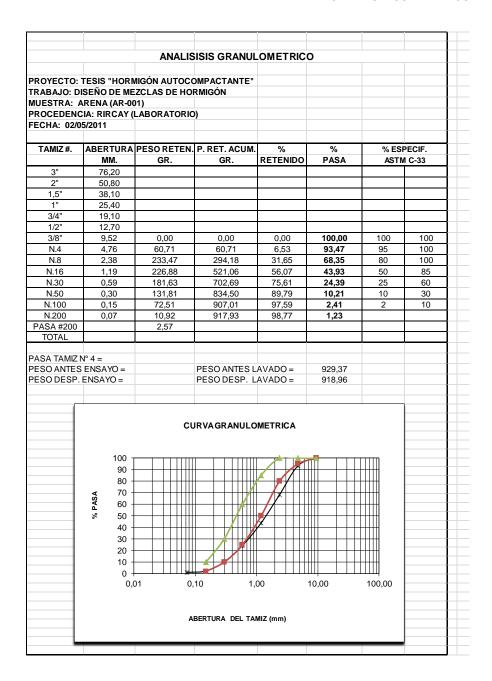
9.1 ANEXOS:

	Pág.
Anexo I: Ensayos en áridos	100 – 118
Anexo II: Diseños de CC	119 – 132
Anexo III: Diseños de HAC	133 – 152
Anexo IV: Resultado de los ensayos a compresión de los CC	153 – 156
Anexo V: Resultado de los ensayos a compresión de los HAC	157 – 163
Anexo VI: Resultado de los ensayos para determinar el Módulo de Elasticidad y la Relación de Poisson	164 – 172
Anexo VII: Costos	173 – 182

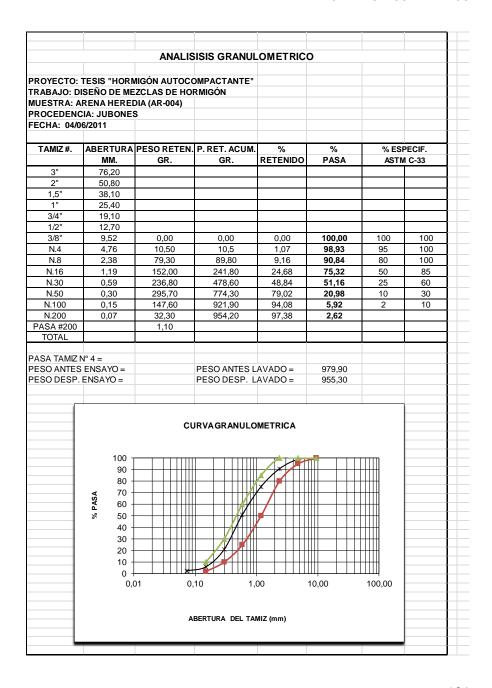
ANEXO I

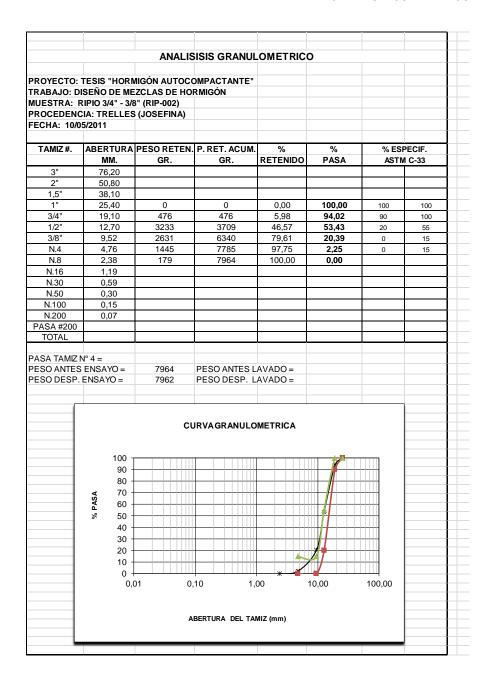

ENSAYO EN ÁRIDOS

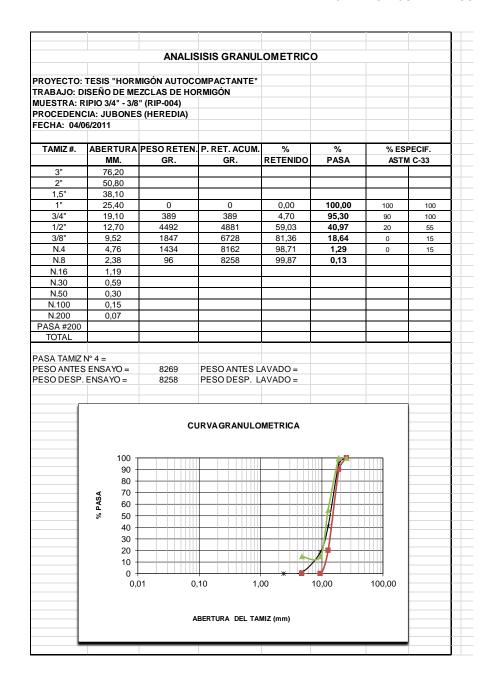
	Pág
ANÁLISIS GRANULOMÉTRICO	101 – 108
DENSIDADES Y ABSORCIÓN	109 – 115
ANÁLISIS QUÍMICO DE LA PUZOLANA	116
ENSAYO DE ABRASIÓN	117
CONTENIDO ORGÁNICO	118

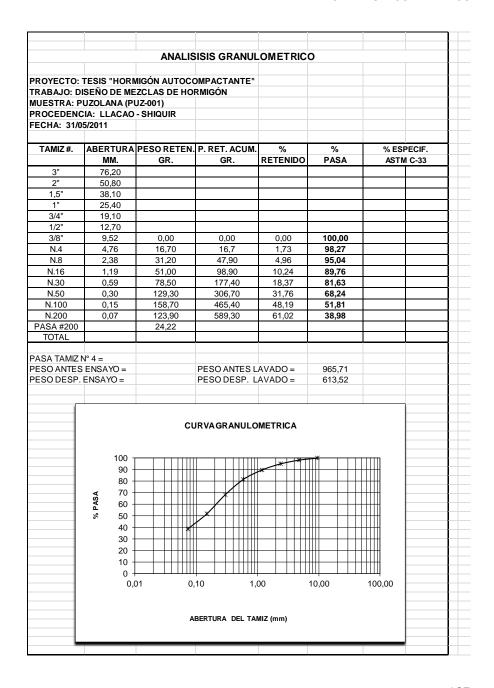


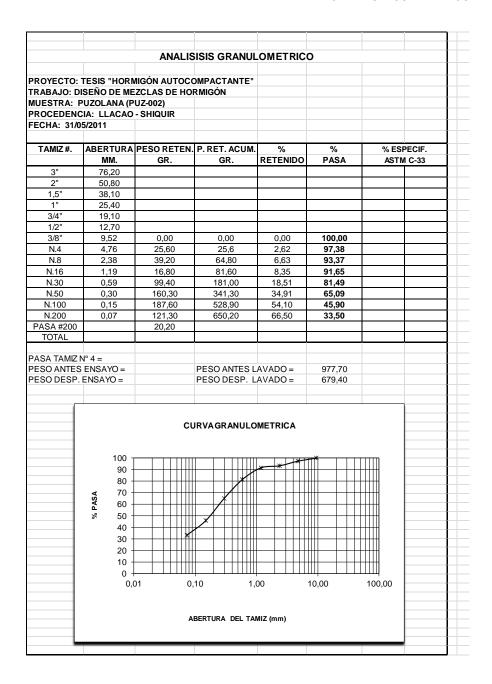
		ZCLAS DE HOI SA TRELLES (/					
	CIA: JOSEFINA	•					
ECHA: 10/0	05/2011						
TAMIZ#.	ABERTURA	PESO RETEN.	P. RET. ACUM.	%	%	% ESI	PECIF.
	MM.	GR.	GR.	RETENIDO	PASA	ASTN	I C-33
3"	76,20						
2"	50,80						
1,5"	38,10						
1"	25,40						
3/4"	19,10						
1/2"	12,70					ļ	
3/8"	9,52	0,00	0,00	0,00	100,00	100	100
N.4	4,76	36,90	36,9	3,88	96,12	95	100
N.8	2,38	163,30	200,20	21,02	78,98	80	100
N.16	1,19	200,70	400,90	42,10	57,90	50	85
N.30	0,59	203,90	604,80	63,52	36,48	25	60
NIFO	0,30	215,60	820,40	86,16 95,72	13,84 4,28	10	30 10
N.50		01.00			4.78		. 10
N.100	0,15	91,00	911,40			-	
N.100 N.200		18,50	911,40 929,90	97,66	2,34		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ	0,15 0,07			97,66 AVADO =			
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO =	18,50	929,90 PESO ANTES L	97,66 AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO =	18,50 2,50	929,90 PESO ANTES L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = 8 ENSAYO = ENSAYO =	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO =	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 90	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 100	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 100	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 0 0,000 = 0 0 0,000 = 0 0,000 = 0 0 0,000 = 0 0 0,000 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 0 ENSAYO = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = ENSAYO = 000	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = SENSAYO = ENSAYO = ENSAYO = 100 70 80 - 80 60 - 80 60 40 - 40 40 - 40 -	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ	0,15 0,07 N° 4 = SENSAYO = ENSAYO = ENSAYO = 40 40 40 40 40 40 40 40 40 40 40 40 40 4	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = 0 ENSAYO = 0 80 - 0 8	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = ENSAYO = 40 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	2,34 952,20	100,00	
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = ENSAYO = 40 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	952,20 932,40		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ ESO ANTES	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = ENSAYO = 40 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO =	952,20 932,40		
N.100 N.200 PASA #200 TOTAL ASA TAMIZ	0,15 0,07 N° 4 = S ENSAYO = ENSAYO = ENSAYO = 40 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	18,50 2,50	929,90 PESO ANTES L PESO DESP. L	97,66 AVADO = AVADO = METRICA	952,20 932,40		











		DENS	SIDADES	Y ABSO	RCION		
PROYEC1	O: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTRA	A: ARENA	HEREDIA	(AR-004)				
DD 005D		DONES					
PROCEDI	ENCIA: JU	BONES					
FECHA: 1	0/06/2011						
	A =	500,00	(Peso mat	erial superfi	icie saturad	a seca)	
	B =	998,65	(Peso picr	nómetro + a	gua + mate	rial)	
						,	
	C =	691,90	(Peso picr	nómetro + a	gua)		
	D =	484,80	(Peso mat	erial seco)			
	Densidad	aparente		2,51			
	Densidad	sup. sat. s	seca =	2,59			
	Densidad	absoluta		2,72			
	% absorc	ión de agu	a =	3,14			

		DENS	IDADES	Y ABSOI	RCION		
PROYEC [*]	TO: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	D: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTR	A: ARENA	HEREDIA	M2 (AR-004	l)			
PROCED	ENCIA: JU	BONES					
FFOUA.	10/00/0044						
FECHA: 1	13/06/2011						
	Δ.	000.00	/D	1f		1 \	
	A =	200,00	(Peso mate	erial superfi	cie saturac	ia seca)	
	B =	773,40	(Peso picn	ómetro + a	gua + mate	rial)	
	C =	651,50	(Peso picn	ómetro + a	gua)		
	D =	193,73	(Peso mate	erial seco)			
	Densidad	aparente =		2,48			
	Densidad	sup. sat. s	eca =	2,56			
	Densidad	absoluta =		2,70			
	% absorc	ión de agu	a =	3,24			

		DENS	IDADES	Y ABSOI	RCION		
PROYEC	TO: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	D: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTR	A: ARENA ((AR-001)					
PROCED	ENCIA: RIR	CAY (LAB	ORATORIO	D)			
FECHA: (02/05/2011						
	A =	200.00	(Daga mat			2222	
	A =	200,00	(Peso mai	enai supeni	cie saturada	a seca)	
	B =	780,70	(Peso picr	ómetro + a	gua + materi	ial)	
	C =	658,80	(Peso picr	iómetro + a	gua)		
		10151					
	D =	194,54	(Peso mat	erial seco)			
	D ! -			0.40			
	Densidad	aparente =		2,49			
	Densidad	sup. sat. s	eca =	2,56			
	Densidad	absoluta =		2,68			
	% absorc	ión de agua	a =	2,81			
				,			

		DENS	SIDADES	Y ABSOI	RCION		
PROYEC	TO: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	D: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTR	A: RIPIO 3/4	4"-3/8" M1 ((RIP-004)				
PROCED	ENCIA: JU	BONES (HI	EREDIA)				
FECHA:	11/06/2011						
	, 30,2011						
			-			,	
	A =	3008,00	(Peso mat	erial superfi	icie saturada	seca)	
	B =	7755,00	(Peso picr	nómetro + a	gua + materia	al)	
	C =	5887,00	(Peso picr	∣ nómetro + a	gua)		
	D =	2945,00	(Doop mot	erial seco)			
	D =	2945,00	(Feso mai	eriai seco)			
	Densidad	aparente =	_	2,58			
				2,00			
	Densidad	sup. sat. s	eca =	2,64			
	Densidad	absoluta =		2,73			
	% absorc	ión de agu	a =	2,14			
				·			

		DENS	SIDADES	Y ABSOI	RCION		
PROYEC	TO: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	D: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTR	A: RIPIO 3/4	4" - 3/8" (RI	P-004)				
PROCED	ENCIA: JU	BONES (HE	EREDIA)				
FFCHA:	13/06/2011						
. = 01174.	.0,00,2011						
	A =	1902,00	(Peso mat	erial superfi	cie saturada	seca)	
	B =	6593,00	(Peso picr	nómetro + a	gua + materi	al)	
	C =	5417,00	(Peso picr	iómetro + a	gua)		
	D =	1862,00	(Peso mat	erial seco)			
	Danaidad			0.50			
	Densidad	aparente =	<u> </u>	2,56			
	Densidad	sup. sat. s	eca =	2,62			
	Densidad	absoluta =	:	2,71			
	% absorc	ión de agua	a =	2,15			
				·			

		DENS	IDADES	Y ABSO	RCION		
PROYEC	TO: TESIS	"HORMIGÓ	N AUTOC	OMPACTA	NTE"		
TRABAJO	D: DISEÑO	DE MEZCL	AS DE HO	RMIGÓN			
MUESTR	A: PUZOLA	NA (PH7-0	01)				
MOLOTIK	A. 1 020LA	117 (1 02-0					
PROCED	ENCIA: LL	ACAO-SHI	QUIR				
FECHA:	10/06/2011						
			-				
	A =	500,00	(Peso mat	erial superfi	cie saturada	a seca)	
	B =	995,00	(Peso picr	nómetro + a	gua + mater	ial)	
	C =	691,90	(Peso picr	∣ nómetro + a	gua)		
	_				,		
	D =	480,20	(Peso mat	erial seco)			
	D i.d i			0.11			
	Densidad	aparente =		2,44			
	Densidad	sup. sat. s	eca =	2,54			
	Densidad	absoluta =		2,71			
	% absorc	ión de agua	a =	4,12			
				·			

		DENS	SIDADES	Y ABSOI	RCION		
		_					
PROYECT	O: TESIS '	'HORMIGÓ	N AUTOC	OMPACTAI	NTE"		
TRABAIO	· DISEÑO	DE MEZCL	AS DE HOI	RMIGÓN			
INADAJO	. DIOLINO	DE MILZOE	AS DE HO	KIMIOON			
MUESTRA	A: PUZOLA	NA (PUZ-0	02)				
PROCEDE	ENCIA: LL	ACAO-SHIG	QUIR				
FECHA: 1	0/06/2011						
	A =	500,00	(Peso mate	erial superfi	cie saturad	a seca)	
	B =	994,30	(Peso picn	ómetro + a	gua + mate	rial)	
						,	
	C =	691,90	(Peso picn	ómetro + a	gua)		
	D =	479,50	(Peso mate	erial seco)			
	Densidad	aparente =		2,43			
	Densidad	sup. sat. s	eca =	2,53			
		_					
	Densidad	absoluta =		2,71			
	% absorc	ión de agua	a =	4,28			

ANÁLISIS QUÍMICO DE LA PUZOLANA:

CESEMIN

Centro de Servicios y Análisis de Minerales Metálicos y No Metálicos UNIVERSIDAD DE CUENCA

REPORTE DE RESULTADOS

CLIENTE:

MAESTRIA EN CONSTRUCCION ING. IVAN CAÑIZARES

SOLICITADO POR: MUESTRAS:

1 MUESTRA

FECHA:

2012-02-08

ANÁLISIS QUÍMICO

% Oxido	PUZOLANA SECTOR LLACAO
SiO ₂	56,12
Al ₂ O ₃	18,16
Fe ₂ O ₃	5,92

OBSERVACIONES:

 Método: Fusión con Hidróxidos. Espectroscopía de Absorción Atómica.

Ing. Cecilia Castro Responsable análisis

Ing. Catalina Peñaherrera Directora

cc. archivo

Universidad de Cuenca, sector Balzaín- Telefax: (07) 4089561 Cuenca - Ecuador

Email: cesemin@ucuenca.edu.ec http://rai.ucuenca.edu.ec/cesemin

	ENSAYO	DE ABRA	SION	
PROYECTO: TESIS				
SOLICITADO POR:	ING. IVÁN CAÑIZA	RES		
PROCEDENCIA: R	IPIO 3/4". JUBONE	S (HEREDIA)		
GRANULOMETRIA	TIPO B			
FECHA: 16/06/2011	1			
REVOLUCIONES	PESO INICIAL	RETENIDO TAM. N. 12	PASA TAM. N. 12	% DESGASTE
0	5004	.,	.,	22001012
100				
500		3736	1268	25,34

	ENSAYO	DE ABRA	SION	
PROYECTO: TESIS				
SOLICITADO POR:	ING. IVÁN CAÑIZA	ARES		
PROCEDENCIA: RI	PIO 3/4". JUBONE	S (HEREDIA)		
GRANULOMETRIA	TIPO B			
FECHA: 14/10/2011				
REVOLUCIONES	PESO INICIAL	RETENIDO TAM. N. 12	PASA TAM. N. 12	% DESGASTE
0	5000			
100				
500		3760	1240	24,80

	CON				
	CON	TENIDO ORGA	NICO		
PROYECTO: TESIS	S "HAC"				
MUESTRA: AREN	A HEREDIA 1				
PROCEDENCIA: R	NO JUBONES				
FECHA: 12/08/2011	1				
	MENOR A 1 (de	do al eleme	t otrón)		
	MENOR A 1 (~~	acuerdo al ele	nto pauon,		
	CONT	TENIDO ORGA	NICO		
PROYECTO: TESIS	"""				
MUESTRA: ARENA					
PROCEDENCIA: R	IIO JUBONES				
FECHA: 20/10/2011	ı				
	MENOR A 1 (de	acuerdo al eleme	nto patrón)		
	CON	TENIDO ORGA	NICO		
	CON	TENIDO ORGA	NICO		
PROYECTO: TESIS		TENIDO ORGA	NICO		
	S "HAC"	TENIDO ORGA	NICO		
	S "HAC" A TRELLES (2)	TENIDO ORGA	NICO		
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN	TENIDO ORGA	NICO		
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN	TENIDO ORGA	NICO		
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN	TENIDO ORGA	NICO		
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN				
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN				
MUESTRA: AREN	RENA HEREDIA 1 A: RIO JUBONES 2011 MENOR A 1 (de acuerdo al elemento patrón) CONTENIDO ORGANICO ESIS "HAC" RENA HEREDIA 2 A: RIO JUBONES 2011 MENOR A 1 (de acuerdo al elemento patrón) CONTENIDO ORGANICO ESIS "HAC" RENA TRELLES (2) A: RIO JADAN 2011 SEMEJANTE A 1 (de acuerdo al elemento patrón) CONTENIDO ORGANICO ESIS "HAC" RENA TRELLES (2) A: RIO JADÁN 2011				
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2011	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2017 PROYECTO: TESIS MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2011 PROYECTO: TESIS MUESTRA: AREN PROCEDENCIA: R	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT S "HAC" A TRELLES RIO JADÁN	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2017 PROYECTO: TESIS MUESTRA: AREN	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT S "HAC" A TRELLES RIO JADÁN	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2011 PROYECTO: TESIS MUESTRA: AREN PROCEDENCIA: R	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT S "HAC" A TRELLES RIO JADÁN	1 (de acuerdo al e	elemento patrón)		
MUESTRA: AREN PROCEDENCIA: F FECHA: 15/07/2011 PROYECTO: TESIS MUESTRA: AREN PROCEDENCIA: R FECHA: 15/07/2011	S "HAC" A TRELLES (2) RIO JADAN 1 SEMEJANTE A CONT S "HAC" A TRELLES RIO JADÁN	1 (de acuerdo al e	elemento patrón)		

ANEXO II

DISEÑOS DE CONCRETOS CONVENCIONALES (CC)

Pág.

DISEÑOS DE CONCRETOS CONVENCIONALES

120 – 132

						ETO CON		= (= =)					
MEZCLA: CCHS250-002	RESISTE	NCIA HO	RMIGÓN =	= 250 KG/	CM2								
(A)						CUENCA; AI	RENA = JU	BONES (H	: EREDIA):	RIPIO = 3/	4" JUBO	NES (HER	EDI
()						00 R (SIKA)			,				
	ASENTA	MIENTO:	7 - 10			(- ,-							
	FECHA E	ELABOR A	ACIÓN = 0	1/07/2011									
									16				
CON	STANTES	DE LOS	MATERIA	LES		MAT	ERIALES /	ИЗ.		MATERIALE	S/16 LTS.		
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10					370	370	119,35	5,920	5,920		5,920	
AGUA	1,00					243	200	200,00	3,896	3,200		2,534	
ARENA	2,72	2,59	2,51	3,14		738	761	294,00	11,807	12,178	7,98	12,749	
RIPIO 3/4"	2,73	2,64	2,58	2,14		949	970	368,00	15,191	15,516	2,76	15,610	
VISCOCRETE 2100 R (0,8%	1,10					2,96	2,96	2,69	0,047	0,047		0,047	
AIRE								16,00					
TOTAL						2304	2304	1000					
								1000					
Relación W/C =	0,541		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	662					
Relación Agr/C =	4,678		Peso =	3720	3686	gr.			•				
Asent. Medido =	7,50	cm.	Densidad =	2368	2346	kg/m3							
Dens. Conc. Fresco =		kg/m3.					Ps/Pr (peso	0)=	0,796				
							Vs/Vr (vol.)	=	0,799				
							Volumen de	e Arena =	294				
							Volumen de	e Ripio =	368				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1=	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1=	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5.92			2.00	2.62	SUM. A3*Y1=	0						

						RETO COI		,					
MEZCLA: CCHS350-001	RESISTE	NCIA HO	RMIGÓN =	: 350 KG	/CM2								
(B)	MATERIA	ALES: CE	MENTO =	HOLCIM	; AGUA :	CUENCA;	ARENA = J	UBONES (HEREDIA)	RIPIO = 3/4	4" JUBO	NES (HER	EDIA
			ADITIVO :	= VISCO	CRETE 2	100 R (SIKA))		,			·	
	ASENTA	MIENTO:	= 7 - 10 CM										
	FECHA E	ELABOR A	ACIÓN = 01	/07/2011									
									16				
CONS	TANTES	DE LOS I	MATERIAL	ES		MAT	ERIALES /I	VI3.		MATERIALES	6/16 LTS.		ĺ
	DENS.	DENS.	DENS.	ABS.		PESO SECO	ESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10					415	415	133,87	6,640	6,640		6,640	
AGUA	1,00					243	200	200,00	3,881	3,200		2,514	
ARENA	2,72	2,59	2,51	3,14		723	746	288,00	11,566	11,929	7,98	12,489	
RIPIO 3/4"	2,73	2,64	2,58	2,14		929	949	360,00	14,861	15,179	2,99	15,305	
VISCOCRETE 2100 R (0,8%	1,10					3,32	3,32	3,02	0,053	0,053		0,053	
AIRE								15,00					
TOTAL						2313	2313	1000					
								1000					
Relación W/C =	0,482		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	648					
Relación Agr/C =	4,083		Peso =	3754	3709	gr.							
Asent. Medido =	9,00	cm.	Densidad =	2390	2361	kg/m3							
Dens. Conc. Fresco =	2375	kg/m3.					Ps/Pr (pes		0,796				
							Vs/Vr (vol.)		0,799				
							Volumen de	e Arena =	288				
							Volumen de	e Ripio =	360				
	A1	A2	A3	Y1									
TAMIZ		% PASA	% PASA	,				Ì					
	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1 =	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5,92	<u> </u>		2,00	2,62	SUM. A3*Y1 =	0						

			_			ETO CON		/					
MEZCLA: CCHS250-003	RESISTE	NCIA HO	RMIGÓN =	250 KG/0	M2								
(C)	MATERIA	ALES: CE	MENTO = I	HOLCIM;	AGUA = (CUENCA; AI	RENA = JU	BONES (H	IEREDIA);	RIPIO = 3/	4" JUBO	ONES (HEF	REDI/
. ,			ADITIVO =					,	,			,	
	ASENTA	MIENTO:	7 - 10	CM.		,							
	FECHA E	LABOR A	ACIÓN = 05	/07/2011									
									26				
CON	STANTES	DE LOS	MATERIAL	.ES		MAT	ERIALES /	//3.		MATERIALE	S/26 LTS.		
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10					370	370	119,35	9,620	9,620		9,620	
AGUA	1,00					244	200	200,00	6,332	5,200		3,943	
ARENA	2,72	2,59	2,51	3,14		738	761	294,00	19,186	19,789	9,50	21,009	
RIPIO 3/4"	2,73	2,64	2,58	2,14		952	972	369,00	24,753	25,282	2,29	25,319	
VISCOCRETE 2100 (0,8%)	1,10					2,96	2,96	2,69	0,077	0,077		0,077	
AIRE								15,00					
TOTAL						2306	2306	1000					
								1000					
Relación W/C =	0,541		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	663					
Relación Agr/C =	4,685		Peso =	3686	3673	gr.							
Asent. Medido =	7,00	cm.	Densidad =	2346	2338	kg/m3							
Dens. Conc. Fresco =	2342	kg/m3.					Ps/Pr (peso	o)=	0,796				
							Vs/Vr (vol.)	=	0,799				
							Volumen de	e Arena =	294				
							Volumen de	e Ripio =	369				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE									
	Arena	Ripio		Y1		SUM. A1*A1 =	46805		I				
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00		SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00		SUM. A2*A3 =	0						
# 30	51,16			24,00		SUM. A2*Y1=	10842						
# 50	20,98			8,00		SUM. A3*A3 =	0						
# 100	5,92			2,00	2,62	SUM. A3*Y1=	0						

			DOSIFI	CACIÓI	N CONC	RETO CO	NVENCIO	NAL (CC	C)			
	DECICE	NOIA IIO	DMICÓN	250 1/0	/CMO							
MEZCLA: CCHS350-002						OUENOA		IDANIES	(LIEDEDIA)	DIDIO 0	/4" "IDO	NEO (HEDEDIA
(D)	MAIERIA	ALES: CE					AKENA = J	DRONES (HEKEDIA);	KIPIO = 3/	4" JUBO	NES (HEREDIA
	4051154				CREIE 2	100 (SIKA)						
			= 7 - 10 CN									
	FECHAE	ELABOR A	ACIÓN = 05	/07/2011								
									26			
CONS	_		MATERIAL	_			ERIALES /N			MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO SECO					.HUM. NAT	.PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					410	410	132,26	10,660	10,660		10,660
AGUA	1,00					236	197	197,00	6,126	5,122		4,003
ARENA	2,72	2,59	2,51	3,14		728	751	290,00	18,925	19,520	9,00	20,629
RIPIO 3/4"	2,73	2,64	2,58	2,14		937	957	363,00	24,350	24,871	2,18	24,881
VISCOCRETE 2100 (0,8%	1,10					3,28	3,28	2,98	0,085	0,085		0,085
AIRE								15,00				
TOTAL						2313	2318	1000				
								1000				
Relación W/C =	0,480		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	653				
Relación Agr/C =	4,164		Peso =	3673	3696	gr.						
Asent. Medido =	10,00	cm.	Densidad =	2338	2353	kg/m3						
Dens. Conc. Fresco =	2345	kg/m3.					Ps/Pr (peso	0)=	0,796			
							Vs/Vr (vol.)	=	0,799			
							Volumen de	e Arena =	290			
							Volumen de	e Ripio =	363			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443		
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557		
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1 =	28422	suma =	1,046			
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431					
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0					
# 30	51,16		İ	24,00	22,67	SUM. A2*Y1 =	10842					
# 50	20,98		Ì	8,00	9,30	SUM. A3*A3 =	0					
# 100	5,92			2.00		SUM. A3*Y1 =	0					

			אוזופטע	ACIUN	CONCRE	ETO CON	ENCION	4L (UU)					
MEZCLA: CCGS250-001	RESISTE	NCIA HO	RMIGÓN :	= 250 KG/	CM2								
(E)						CUENCA; A	RFNA = .II	IRONES	(HEREDIA	· RIPIO =	3/4" .IUF	ONES (HE	RFDI
(L)	III/AT ETAI	LLO. OL				00 R (SIKA)	WEITA - OC	DONLO	(IIEIKEDIA	, 1111 10 -	0/4 002	OIVEO (IIIE	.11.6017
	ASENTA	MIENTO:	7-10			Jon (Gillary							
			CIÓN = 0										
									26				
CON	STANTES	DE LOS	MATERIA	LES		MAT	ERIALES /N	M3.		MATERIALE	S/26 LTS.		
	_	P. ESP.	_	ABS.	PESO	PESO SECO			PESO SECO	PESO S.S.S	HUM. NAT	PESO HUM.	
	AP.	S.S.S.	SECO	%	VOL.	KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					368	368	118,71	9,568	9,568		9,568	
AGUA	1,00					250	208	208,00	6,487	5,408		4,685	
ARENA	2,72	2,59	2,51	3,14		792	816	291,00	20,580	21,226	6,94	22,008	
RIPIO 3/4"	2,73	2,64	2,58	2,14		994	1015	364,00	25,837	26,390	1,91	26,330	
VISCOCRETE 2100 R (0,8%						2,94	2,94	2,68	0,077	0,077		0,077	
AIRE								15,00					
TOTAL						2406	2410	999					
								1000					
Relación W/C =	0,565		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	656					
Relación Agr/C =	4,977		Peso =			gr.							
Asent. Medido =	5,50	cm.	Densidad =	0	0	kg/m3							
Dens. Conc. Fresco =	0	kg/m3.					Ps/Pr (peso		0,796				
							Vs/Vr (vol.)	=	0,799				
							Volumen de	e Arena =	291				
							Volumen de	e Ripio =	364				
	A1	A2	A3	Y1									
TAMIZ			% PASA										
0/:"	Arena	Ripio		Y1		SUM. A1*A1 =			0				
3/4"	100,00	95,30		100,00		SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	- , -	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00		SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1 =	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5,92			2,00	2,62	SUM. A3*Y1 =	0						

			DOSIF	CACIÓ	N CONC	RETO COI	NVENCIO	NAL (CC)		1		
	DEGIGE	- 11014 110	DINOÓN	0501/4	10110								
MEZCLA: CCGS350-001													
(F)	MATERIA	ALES: CE				= CUENCA;		UBONES	(HEREDIA)); RIPIO = 3	/4" JUBC	NES (HER	EDIA
					CRETE 2	100 R (SIKA)							
			= 7 - 10 CI										
	FECHA	ELABOR/	ACIÓN = 0	8/07/201	1								
									26				
CONS		_	MATERIA				ERIALES /			MATERIALE			
	P. ESP.	P. ESP.	-	ABS.		PESO SECO					HUM. NAT	PESO HUM.	
	AP.	S.S.S.	SECO	%	VOL.	KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					500	500	161,29	13,000	13,000		13,000	
AGUA	1,00					246	207	207,00	6,392	5,382		4,707	
ARENA	2,72	2,59	2,51	3,14		740	763	272,00	19,236	19,840	6,94	20,571	
RIPIO 3/4"	2,73	2,64	2,58	2,14		931	951	341,00	24,204	24,722	1,91	24,666	
VISCOCRETE 2100 R (0,89	1,10					4,00	4,00	3,64	0,104	0,104		0,104	
AIRE								15,00					
TOTAL						2421	2425	1000					
								1000					
Relación W/C =	0,414		Vol. Prob.	1571	1571	CC.	Vr + Vs =	613					
Relación Agr/C =	3,428		Peso =			gr.							
Asent. Medido =		cm.	Densidad =	0	0	kg/m3							
Dens. Conc. Fresco =	0	kg/m3.					Ps/Pr (peso	0)=	0,796				
							Vs/Vr (vol.)	=	0,799				
							Volumen de	e Arena =	272				
							Volumen de	e Ripio =	341				
	A1	A2	A3	Y1									
TAMIZ			% PASA		CURVA DE		105						
-/	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,38	SUM. A1*A2 =	11533	Arena =	0,464	0,443			
3/8"	100,00	18,64		67,00	54,70	SUM. A1*A3 =	0	Ripio =	0,583	0,557			
# 4	98,93	1,29		45,00	44,57	SUM. A1*Y1 =	28422	suma =	1,046				
#8	90,84	0,13		38,00	40,33	SUM. A2*A2 =	9431						
# 16	75,32			32,00	33,38	SUM. A2*A3 =	0						
# 30	51,16			24,00	22,67	SUM. A2*Y1=	10842						
# 50	20,98			8,00	9,30	SUM. A3*A3 =	0						
# 100	5,92			2,00	2,62	SUM. A3*Y1 =	0						

			DOSIFIC	ACION	CONCRE	TO CON	ENCION	AL (CC)					
MEZCLA: CCGS250-002													
(G)	MATERIA	ALES: CE				CUENCA; A	RENA = JU	JBONES	(HEREDIA));	3/4" JUB	ONES (HE	:REDI
					RETE 210	00 R (SIKA)							
			7 - 10										
	FECHA E	LABORA	CIÓN = 1	3/07/2011									
									26				
CON			MATERIA	LES			ERIALES /N			MATERIALE			
	-	P. ESP.	P. ESP.	ABS.		PESO SECO					HUM. NAT	PESO HUM.	
	AP.	S.S.S.	SECO	%	VOL.	KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					420	420	135,48	10,920	10,920		10,920	
AGUA	1,00					242	200	200,00	6,283	5,200		3,915	
ARENA	2,72	2,59	2,51	3,14		862	889	317,00	22,418	23,122	9,58	24,566	
RIPIO 3/4"	2,73	2,64	2,58	2,14		898	917	329,00	23,352	23,852	1,46	23,693	
VISCOCRETE 2100 R (0,8%	1,10					3,36	3,36	3,05	0,087	0,087		0,087	
AIRE								15,00					
TOTAL						2425	2430	1000					
								1000					
Relación W/C =	0,476		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	646					
Relación Agr/C =	4,302		Peso =			gr.							
Asent. Medido =	fluído	cm.	Densidad =			kg/m3							
Dens. Conc. Fresco =		kg/m3.					Ps/Pr (peso		0,959				
							Vs/Vr (vol.)	=	0,963				
Observación:	muy fluído	, no se pu	ede medir	el asentan	niento		Volumen de	e Arena =	317				
	exuda mu	icho, la pa	sta blanque	ea			Volumen de	e Ripio =	329				
	se mezcló e	el aditivo co	n el agua										
	no se confe	eccionan pr	obetas										
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1=	46805						
3/4"	100,00	95,30		100,00	97,60	SUM. A1*A2 =	11533	Arena =	0,515	0,490			
3/8"	100,00	18,64		75,00	58,48	SUM. A1*A3 =	0	Ripio =	0,536	0,510			
# 4	98,93	1,29		48,00	49,10	SUM. A1*Y1 =	30276	suma =	1,051				
#8	90,84	0,13		42,00	44,54	SUM. A2*A2=	9431						
#16	75,32			34,00	36,88	SUM. A2*A3 =	0						
# 30	51,16			27,00	25,05	SUM. A2*Y1 =	10995						
# 50	20,98			12,00	10,27	SUM. A3*A3 =	0						
# 100	5,92			3,00	2,90	SUM. A3*Y1 =	0						

			ואופטע	CACIO	N CUNC	RETO COI	NVENCIO	NAL (CC)				
MEZCLA: CCGS350-002	RESISTE	NCIA HO	RMIGÓN	= 350 KO	S/CM2								
(H)						= CUENCA;	ΔRFNΔI	IIIRONES	(HEREDIA)	· RIPIO – 3	/4" .IURC	NES (HER	FDΙΔ
(11)	III/AT ETAI	ALLO. OL				100 R (SIKA)		OBONEO	(IIEINEDIA)	, 1111 10 = 0	7 0000	JALO (IILIA	LDIN
	ASENTA	MIFNTO -			VILLE	TOO IT (OIITA)							
	FECHA E				1								
	LOINE		101011 - 1	0,01,201					26				
CONS	TANTES	DELOSI	ΜΔΤΕRΙΔ	LFS		МΔТ	ERIALES /I	VI3		MATERIALES	S/26 LTS		
00.110	DENS.	DENS.	DENS.	ABS.		PESO SECO			PESO SECO			DESO HIIM	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10	0.0.0.	74.74	70		400	400	129,03	10,400	10,400	70	10.400	
AGUA	1,00					230	190	190,00	5,984	4,940		3,658	
ARENA	2,72	2,59	2,51	3,14		853	880	340,00	22,188	22,885	9,58	24,314	
RIPIO 3/4"	2,73	2,64	2,58	2,14		833	851	323,00	21,667	22,131	1,46	21,983	
VISCOCRETE 2100 R (0,89	,	-,-:	_,-,	,		3,20	3,20	2,91	0,083	0,083	.,	0,083	
AIRE	-					, -	, -	15,00	,	,		,	
TOTAL						2320	2325	1000					
								1000					
Relación W/C =	0,475		Vol. Prob.	1571	1571	CC.	Vr + Vs =	663					
Relación Agr/C =	4,328		Peso =	3712	3714	gr.		•					
Asent. Medido =	10,00	cm.	Densidad =	2363	2364	kg/m3							
Dens. Conc. Fresco =	2363	kg/m3.					Ps/Pr (peso	0)=	1,046				
							Vs/Vr (vol.)	=	1,050				
Observaciones:							Volumen de	e Arena =	340				
							Volumen de	e Ripio =	323				
	A1	A2	A3	Y1									
TAMIZ			% PASA		CURVA DE								
	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00		SUM. A2*Y1=	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1=	0						

			DOSIFIC	ACIÓN (CONCRE	TO CONV	ENCION	AL (CC)					
MEZCLA: CCGS250-003	DESISTE	NCIV HO	PMICÓN -	- 250 KG/	°M2								
						CHENCA: A	DENIA II	IDONES	(HEDEDIA)	. DIDIO	2/4" ILID	ONES (HE	DEDIA
(1)	WAIEKIA	ALES: CE				CUENCA; A	KENA = JU	IBUNE3	(HEKEDIA)	; KIPIU=	3/4 JUB	ONES (HE	KEDIA
	ACENTA	MICNITO	7-10		KETE 210	00 R (SIKA)							
			7 - 10 CIÓN = 1										
	FEURA	LABURA	ICION = 1	3/07/2011					26				
CONG	TANTEC	DELOC	MATERIAI	FC		MATI	ERIALES /N	In .			0/00 70		
CONS						PESO SECO		-		MATERIALE		DEGG LILIM	
	DENS.	DENS.	DENS.	ABS.									
OFMENTO OUADÁN	ABS.	S.S.S.	APAR.	70		KG.	KG.	LTS.	KG.	KG.	%	KG 0.260	
CEMENTO GUAPÁN	3,10					360 233	360 192	116,13 192,00	9,360 6,053	9,360 4,992		9,360 3,692	
AGUA	1,00 2,72	2,59	2.51	2 1 /		233 866	893		,	23,222	9,58	24,672	
ARENA	2,72	2,59	2,51 2,58	3,14 2,14		849	867	345,00 329,00	22,515 22,069	23,222	-	22,392	
RIPIO 3/4"	1,10	2,04	2,30	Z,14		2,88	2,88	2,62	0,075	0,075	1,46	0,075	
VISCOCRETE 2100 R (0,8% AIRE	1,10					۷,00	۷,00	15,00	0,073	0,073		0,070	
TOTAL						2310	2315	1000					
IOIAL						2310	2313	1000					
Relación W/C =	0,533		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	674					
Relación Agr/C =	4,889		Peso =	3638	3620	gr.	VIT V3 -	0/4					
Asent. Medido =	9,00	cm.	Densidad =	2316	2304	kg/m3	,						
Dens. Conc. Fresco =		kg/m3.	Delisidad =	2310	2304		Ps/Pr (pes	n)-	1,046				
Delis. Colic. 1 lesco =	2010	rg/IIIo.					Vs/Vr (vol.)	/	1,050				
							Volumen de		345				
							Volumen de		329				
							v olullicil u	- upio –	023				
	A1	A2	A3	Y1									
TAMIZ			% PASA		CURVA DE								
	Arena	Ripio		Y1		SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00		SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00		SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047	·			
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1 =	0						

			DOSIFIC	ACIÓN	CONCRI	ETO CON	ENCION	AL (CC)					
	DEGIOTE		DMOÓN	0501/0/	0110								
MEZCLA: CCHA250-001			RMIGÓN =										
(L)	MATERIA	ALES: CE				CUENCA; AI	RENA = JU	BONES (F	IEREDIA);	RIPIO = 3/	4" JUBC	ONES (HEF	₹EDIA
			ADITIVO:		SF-106								
			7 - 10										
	FECHA E	LABORA	ACIÓN = 2	5/08/2011									
									16				
CON	_		MATERIA				ERIALES /N			MATERIALE		I	
	DENS.	DENS.	DENS.	ABS.		PESO SECO							
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10					355	355	114,52	5,680	5,680		5,680	
AGUA	1,00					239	195	195,00	3,830	3,120		3,384	
ARENA	2,72	2,59	2,51	3,14		781	805	311,00	12,490	12,882	2,74	12,832	
RIPIO 3/4"	2,73	2,64	2,58	2,14		929	949	360,00	14,861	15,179	0,70	14,965	
ADITEC SF-106 (1,4%)	1,17					4,97	4,97	4,25	0,080	0,080		0,080	
AIRE								15,00					
TOTAL						2309	2309	1000					
								1000					
Relación W/C =	0,549		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	671					
Relación Agr/C =	4,940		Peso =	3707	3678	gr.							
Asent. Medido =	9,00	cm.	Densidad =	2360	2341	kg/m3							
Dens. Conc. Fresco =	2350	kg/m3.					Ps/Pr (peso)=	0,839				
							Vs/Vr (vol.)	=	0,862				
	Observac	ión: buena	a mezcla				Volumen de	e Arena =	311				
							Volumen de	Ripio =	360				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,44	SUM. A1*A2 =	11533	Arena =	0,483	0,456			
3/8"	100,00	18,64		75,00	55,76	SUM. A1*A3 =	0	Ripio =	0,575	0,544			
# 4	98,93	1,29		45,00	45,83	SUM. A1*Y1 =	29222	suma =	1,058				
#8	90,84	0,13		38,00	41,51	SUM. A2*A2 =	9431						
# 16	75,32			32,00	34,36	SUM. A2*A3 =	0						
# 30	51,16			24,00	23,34	SUM. A2*Y1 =	10991						
# 50	20,98			8,00	9,57	SUM. A3*A3 =	0						
# 100	5,92			2.00	2,70	SUM. A3*Y1=	0						

			סורוט	HOION	OUNCK	ETO CON	LINCIUN	AL (CC)					
MEZCLA: CCHA350-001	DEGISTE	NCIV HO	PMICÓN -	. 350 KG/	CM2								
(M)						CHENICA: AI	DENA _ III	DONES /L	IEDEDIV).	DIDIO - 2	u" IIIBC	NES (HERE	אוח
(IVI)	WAIERIA	ALES. CE	ADITIVO:			JUENCA, AI	KENA = JU	DONES (F	IEREDIA),	KIPIO = 3/	4 JUDC	MES (HEKE	DIA
	ACENTA	MIENTO.	7-10		3F-100								
			CIÓN = 2										
	FEUNAL	LADUNA	(CION = 2	J/U0/2011					16				
CON	STANTES	DELOS	MATERIAI	FS		МДТ	ERIALES /I	M3		MATERIALE	S/16 TS		
- COM	DENS.	DENS.	DENS.	ABS.		PESO SECO						PESO HUM	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO HOLCIM	3,10	0.0.0.				405	405	130,65	6,480	6,480		6,480	
AGUA	1,00					234	190	190,00	3,739	3,040		3,300	
ARENA	2,72	2,59	2,51	3,14		768	792	306,00	12,289	12,675	2,74	12,626	
RIPIO 3/4"	2,73	2,64	2,58	2,14		916	936	355,00	14,654	14,968	0,70	14,757	
ADITEC SF-106 (1,4%)	1,17	,-	,	,		5,67	5,67	4,85	0,091	0,091	-, -	0,091	
AIRE	, ·					,	,	14,00	,	<u> </u>		<i>'</i>	
TOTAL						2328	2328	1000					
								1000					
Relación W/C =	0,469		Vol. Prob. =	1571	1571	cc.	Vr + Vs =	661					
Relación Agr/C =	4,266		Peso =	3687	3732	gr.			•				
Asent. Medido =	8,50	cm.	Densidad =	2347	2376	kg/m3							
Dens. Conc. Fresco =	2361	kg/m3.					Ps/Pr (pes	0)=	0,839				
							Vs/Vr (vol.)	=	0,862				
							Volumen d	e Arena =	306				
	Observac	ión: buena	mezcla				Volumen d	e Ripio =	355				
	A1	A2	A3	Y1									
TAMIZ			% PASA	AJUSTE									
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =			1				
3/4"	100,00	95,30		100,00	97,44	SUM. A1*A2 =	11533	Arena =	0,483	0,456			
3/8"	100,00	18,64		75,00	<u> </u>	SUM. A1*A3 =	0	Ripio =	0,575	0,544			
# 4	98,93	1,29		45,00	,	SUM. A1*Y1 =	29222	suma =	1,058				
#8	90,84	0,13		38,00	41,51	SUM. A2*A2 =	9431						
# 16	75,32			32,00	34,36	SUM. A2*A3 =	0						
# 30	51,16			24,00	23,34	SUM. A2*Y1 =	10991						
# 50	20,98			8,00	9,57	SUM. A3*A3 =	0						
# 100	5,92			2,00	2,70	SUM. A3*Y1 =	0						

						ETO CON		. ,					
MEZCLA: CCGA250-001	RESISTE	NCIA HO	RMIGÓN =	= 250 KG/	CM2								
(N)	MATERIA	ALES: CE	MENTO =	GUAPÁN	I; AGUA =	CUENCA; A	RENA = JU	JBONES (HEREDIA):	RIPIO = 3	/4" JUB	ONES (HEI	REDIA
()			ADITIVO:			,		,	,				
	ASENTA	MIENTO :	7 - 10	CM.									
	FECHA E	LABORA	CIÓN = 26	/08/2011									
									16				
CON	STANTES	DE LOS	MATERIA	LES	•	MAT	ERIALES /I	ИЗ.		MATERIALE	S/16 LTS.		
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM.	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG	
CEMENTO GUAPÁN	3,10					350	350	112,90	5,600	5,600		5,600	
AGUA	1,00					231	185	185,00	3,697	2,960		3,251	
ARENA	2,72	2,59	2,51	3,14		889	916	354,00	14,217	14,663	2,61	14,588	
RIPIO 3/4"	2,73	2,64	2,58	2,14		849	867	329,00	13,581	13,872	0,55	13,656	
ADITEC SF-106 (1,4%)	1,17					4,90	4,90	4,19	0,078	0,078		0,078	
AIRE								15,00					
TOTAL						2323	2323	1000					
								1000					
Relación W/C =	0,529		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	683					
Relación Agr/C =	5,095		Peso =	3729	3642	gr.							
Asent. Medido =	10,00	cm.	Densidad =	2374	2318	kg/m3							
Dens. Conc. Fresco =	2346	kg/m3.					Ps/Pr (peso	0)=	1,046				
							Vs/Vr (vol.)	=	1,075				
	Observac	ión: buena	a mezcla				Volumen de	e Arena =	354				
							Volumen de	e Ripio =	329				
	A1	A2	A3	Y1									
TAMIZ	% PASA		% PASA	AJUSTE									
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00		SUM. A2*A2 =	9431						
# 16	75,32			34,00		SUM. A2*A3 =	0						
# 30	51,16			27,00		SUM. A2*Y1 =	11004						
# 50	20,98			12,00		SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1 =	0						

			DOSIFIC	ACION	CONCRI	ETO CON	/ENCION	AL (CC)					
METOL A. 000 A0EC 004	DECICT	NCIA UC	RMIGÓN :	250 V.C.	CMO								
MEZCLA: CCGA350-001						CUENCA: A	DENA "	IDONES A	HEDED!A\	. DIDIO 1	MI IUD	ONEC /ITE	DED
(0)	MAIEKI	ALES: CE				CUENCA; A	KENA = JU	IRONE2 (HEKEDIA)	; KIPIO = 3	74" JUB	ONES (HE	KEUI
	ACENTA	MICHTO	ADITIVO:		SF-106								
			7-10										
	FECHAL	LABUKA	ACIÓN = 26	/08/2011					4.6				
CON	STANTES	DELOS	MATERIA	FS		МАТ	ERIALES /I	113	16	MATERIALE	9/16 I TS		
CON	DENS.	DENS.	DENS.	ABS.		PESO SECO						DESO HIIM	
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	% %	KG	
CEMENTO GUAPÁN	3,10	0.0.0.	AI AIV	70		415	415	133,87	6,640	6,640	70	6.640	
AGUA	1,00					236	192	192,00	3,778	3,072		3,351	
ARENA	2,72	2,59	2,51	3,14		851	878	339,00	13,614	14,042	2,61	13,970	
RIPIO 3/4"	2,73	2,64	2,58	2,14		813	830	315,00	13,003	13,281	0,55	13,075	
ADITEC SF-106 (1,4%)	1,17	2,0 1	2,00	<u> </u>		5.81	5,81	4,97	0,093	0,093	0,00	0,093	
AIRE	-,					0,01	0,01	15,00	0,000	0,000		0,000	
TOTAL						2321	2321	1000					
						2021		1000					
Relación W/C =	0,463		Vol. Prob. =	1571	1571	CC.	Vr + Vs =	654					
Relación Agr/C =	4,115		Peso =	3667	3718	gr.							
Asent. Medido =	7,50	cm.	Densidad =	2334	2367	kg/m3							
Dens. Conc. Fresco =		kg/m3.					Ps/Pr (peso	0)=	1,046				
		<u> </u>					Vs/Vr (vol.)		1,075				
							Volumen de		339				
							Volumen de	e Ripio =	315				
	A1	A2	A3	Y1									
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE								
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805						
3/4"	100,00	95,30		100,00	97,70	SUM. A1*A2 =	11533	Arena =	0,535	0,511			
3/8"	100,00	18,64		75,00	60,23	SUM. A1*A3 =	0	Ripio =	0,512	0,489			
# 4	98,93	1,29		55,00	51,21	SUM. A1*Y1 =	30968	suma =	1,047				
#8	90,84	0,13		42,00	46,50	SUM. A2*A2 =	9431						
# 16	75,32			34,00	38,51	SUM. A2*A3 =	0						
# 30	51,16			27,00	26,15	SUM. A2*Y1 =	11004						
# 50	20,98			12,00	10,73	SUM. A3*A3 =	0						
# 100	5,92			3,00	3,03	SUM. A3*Y1 =	0						

ANEXO III

DISEÑOS DE HORMIGONES AUTOCOMPACTANTES (HAC)

Pág.

DISEÑOS DE HORMIGONES AUTOCOMPACTANTES

134 - 152

MEZCLA: HACHS250-001	RESISTE	NCIA HOI	RMIGÓN = 2	50 KG/C	M2							
(AA-01)	MATERIA	LES: CEI	MENTO = H	OLCIM; A	GUA = C	UENCA; AF	RENA = JU	BONES (HEF	EDIA); RI	PIO = 3/4" J	UBONES	(HEREDI
			ADITIVO =	VISCOCI	RETE 210	OOR (SIKA);	PUZOLAN	A (LLACAO)				
	FECHA E	LABORA	CIÓN = 15/0	7/2011								
									18			
CON			MATERIALE	_			TERIALES			MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO SECO			PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					400	400	129,03	7,200	7,200		7,200
AGUA	1,00					256	220	220,00	4,774	3,960		3,098
ARENA	2,72	2,59	2,51	3,14		668	689	266,00	12,018	12,395	9,18	13,121
RIPIO 3/4"	2,73	2,64	2,58	2,14		712	727	276,00	12,817	13,092	2,89	13,188
VISCOCRETE 2100 R (1,29	1,10					4,80	4,80	4,36	0,086	0,086		0,086
PUZOLANA	2,71	2,54	2,44	4,12		210	218	86,00	3,777	3,933	5,18	3,973
AIRE								19,00				
TOTAL						2251	2259	1000				
						2370		1000				
Relación W/C =	0,550		Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =	9	s.	Relac. VS/VF =	3	<= 2		Pr + Ps + Pp =	1709				
ASENTAMIENTO (SF) =	500	520 - 700 mm						•			Diseño	
VISCOSIDAD (VF) =	3	<= 10 s.					Peso de A	rena (kg) =	723	Vol. Ripio (%)	27,60	ĺ
			Vol. Prob. =	1571	1571	cc.	Peso de R	ipio (kg) =	752	Fracc. Pasta (9	35,34	
Observaciones:	* no llega al	tope	Peso =			gr.	Peso de pu	ızolana =	234	Fracc. Mort. (%	70,54	
	se rediseña,	falta finos	Densidad =	0	0	kg/m3	Volumen d	e Arena (Its) =	266	Agua =	22,00	
	no se confe	ccionan cilin.	D. Conc. Fres.	0	kg/m3.		Volumen d	e Ripio (lts) =	276			
	A1	A2	A3	Y1				Puzolana (Its)	86			
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE			, ,				
	Arena	Ripio	Puzolana	Y1	AJUSTE	SUM. A1*A1 =	46805	1				
3/4"	100,00	95,30	100,00	100,00	97,93	SUM. A1*A2 =	11533	Arena =	0,441	0,423		
3/8"	100,00	18,64	100,00	78,00	64,18	SUM. A1*A3 =	51031	Ripio =	0,459	0,440		
# 4	98,93	1,29	98,27	55,00	55,85	SUM. A1*Y1 =	33216	Puzolana =	0,143	0,137		
#8	90,84	0,13	95,04	50,00	51,48	SUM. A2*A2 =	9431	Suma =	1,043			
#16	75,32		89,76	42,00	44,14	SUM. A2*A3 =	11533					
#30	51,16		81,63	35,00	32,81	SUM. A2*Y1 =	11061	ĺ				
# 50	20,98		68,24	20,00	18,21	SUM. A3*A3 =	60751					
# 100	5.92		51.81	10.00	9.60	SUM. A3*Y1 =	36467	i .				

MEZCLA: HACHS250-002												
(AA-02)	MATERIA	LES: CE						BONES (HER	EDIA); R	PIO = 3/4" J	UBONES	(HEREDIA
			ADITIVO =	VISCOCI	RETE 210	OOR (SIKA);	PUZOLAN	A (LLACAO)				
	FECHA E	LABORA	CIÓN = 19/0	7/2011								
									18			
CON	_		MATERIALE	_			TERIALES			MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO SECO				PESO S.S.S.		
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					259	230	230,00	4,969	4,140		3,672
ARENA	2,72	2,59	2,51	3,14		462	476	184,00	8,313	8,574	8,41	9,012
RIPIO 3/4"	2,73	2,64	2,58	2,14		673	688	261,00	12,121	12,380	1,98	12,361
VISCOCRETE 2100 R (2%)	1,10					8,30	8,30	7,55	0,149	0,149		0,149
PUZOLANA	2,71	2,54	2,44	4,12		400	417	164,00	7,203	7,500	4,81	7,549
AIRE						0040	2234	20,00				
TOTAL						2218	2234	1000				
						2340		1000				
Relación W/C =	0,554		Cap. paso (PA)=		>= 0,75			4050				
ESCURR. (T500) = VS =		S.	Relac. VS/VF =		<= 2		Pr + Ps + Pp =	1658				
ASENTAMIENTO (SF) =		520 - 700						a)	===		Diseño	
VISCOSIDAD (VF) =		<= 10 s.					Peso de A	. 0,	501	Vol. Ripio (%) :	26,10	
			Vol. Prob. =	1571	1571	cc.	Peso de R		712	Fracc. Pasta (9	37,14	
Observaciones:	Se aumenta					gr.	Peso de pu		445	Fracc. Mort. (%	71,94	
	no se conf. (Cilindros	Densidad =	0	0	kg/m3		e Arena (lts) =	184	Agua =	23,00	
			D. Conc. Fres.	0	kg/m3.	l .		e Ripio (lts) =	261			
T	A1	A2	A3	Y1			Volumen de	Puzolana (Its)	164	1		
TAMIZ		% PASA	% PASA		CURVA DE							
0/41	Arena	Ripio	Puzolana	Y1	AJUSTE	SUM. A1*A1 =	46805		0.044	0.000		
3/4"	100,00	95,30	100,00	100,00	97,98	SUM. A1*A2 =	11533	Arena =	0,314	0,302		
	100,00	18,64	100,00	78,00	65,06	SUM. A1*A3 =	51031	Ripio =	0,447	0,429		
#4	98,93	1,29	98,27	58,00	56,83	SUM A1*Y1 =	34136	Puzolana =	0,280	0,269		
#8	90,84	0,13	95,04	52,00	53,02	SUM. A2*A2 =	9431	Suma =	1,041			
# 16	75,32		89,76	45,00	46,86	SUM. A2*A3 =	11533	{				
# 30 # 50	51,16		81,63 68,24	35,00 28.00	37,37	SUM. A2*Y1 =	11066	-				
# 100	20,98 5.92	-	51.81	18.00	24,66 15.70	SUM. A3*A3 = SUM. A3*Y1 =	60751 38181	-				

			DOSIFICA	ACION H	UKWIGU	N AUTOCO	MPAC I AN	IE (HAC	ر,			
MEZCLA: HACHS250-00	RESISTE	NCIA HORI	MIGÓN = 25	0 KG/CM2								
(AA-03)	MATERIAL	LES: CEM	ENTO = HO	LCIM; AGI	JA = CUEN	CA; ARENA =	JUBONES (HEREDIA	A); RIPIO =	3/4" JUBOI	NES (HER	EDIA)
, ,			ADITIVO =						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ·	
	FECHA EI	ABORAC	IÓN = 19/07	/2011								
									18			
	CONSTANT	TES DE LOS	MATERIALES			MATE	RIALES /M3			MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					263	220	220,00	4,662	3,960		3,073
ARENA	2,72	2,59	2,51	3,14		954	984	380,00	17,168	17,707	8,41	18,612
RIPIO 3/4"	2,73	2,64	2,58	2,14		624	638	242,00	11,238	11,479	1,98	11,461
VISCOCRETE 2100 R (2%	1,10					8,30	8,30	7,55	0,149	0,149		0,149
SUSTITUCIÓN												
AIRE								17,00				
TOTAL						2265	2265	1000				
						2380		1000				
Relación W/C =	0,530		Cap. paso (PA)+	0,96	>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =		>2		Pr + Ps =	1693				
ASENTAMIENTO (SF) =	640	520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)=	1,564	Vol. Ripio (%) =	24,20	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	1033	Fracc. Pasta (%)	36,14	
Observaciones:	fluye, exuda	a	Peso =			gr.	Peso de Rip	oio (kg) =	660	Fracc. Mort. (%)	75,84	
	no se conf.	Cilindros	Densidad =	0	0	kg/m3	Volumen Ar	ena (lts) =	380	Agua	22,00	
			D. Conc. Fres.	0	kg/m3.		Volumen Rij	pio (lts) =	242			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,17	SUM. A1*A2 =	11533	Arena =	0,630	0,61		
3/8"	100,00	18,64		78,00	68,27	SUM. A1*A3 =	0	Ripio =	0,403	0,39]	
# 4	98,93	1,29		58,00	60,85	SUM. A1*Y1 =	34136	suma =	1,033			
#8	90,84	0,13		52,00	55,47	SUM. A2*A2 =	9431					
# 16	75,32			45,00	45,95	SUM. A2*A3 =	0					
# 30	51,16			35,00	31,21	SUM. A2*Y1 =	11066					
# 50	20,98			28,00	12,80	SUM. A3*A3 =	0					
# 100	5,92	l	l	18,00	3,61	SUM. A3*Y1 =	0	I				

MEZCLA: HACHS250-004	RESISTE	NCIA HO	RMIGÓN = 2	50 KG/CI	M2							
(AA-04)						LIENCA: A	RENA = JUI	BONES (HER	FDIΔ)· RI	PIO = 3/4" .I	URONES	(HEREDIA
(22.04)	IIIA I EIGIA	LLO. OL						A (LLACAO)	LDIAJ, IKI	1 10 = 5/4 0	ODONEO	(IILIKEDIA
			7.011110 -			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 02027.01	/ (LL/10/10)				
	FECHA E	LABORA	CIÓN = 19/0	7/2011								
									18			
CON	STANTES	DE LOS I	MATERIALE	S		MA	TERIALES	/M3.		MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					259	220	220,00	4,762	3,960		3,197
ARENA	2,72	2,59	2,51	3,14		806	831	321,00	14,503	14,958	8,41	15,722
RIPIO 3/4"	2,73	2,64	2,58	2,14		630	643	244,00	11,331	11,574	1,98	11,556
VISCOCRETE 2100 R (2%)	1,10					8,30	8,30	7,55	0,149	0,149		0,149
PUZOLANA	2,71	2,54	2,44	4,12		134	140	55,00	2,416	2,515	4,81	2,532
AIRE								19,00				
TOTAL						2252	2257	1000				
						2370		1000				
Relación W/C =	0,530		Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =		<= 2		Pr + Ps + Pp =	1688				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<= 10 s.					Peso de Ai	rena (kg) =	873	Vol. Ripio (%) =	24,40	
			Vol. Prob. =	1571	1571	cc.	Peso de Ri	ipio (kg) =	666	Fracc. Pasta (9	36,14	
Observaciones: la puzolana i	ncrementa cor	nsiderableme	Peso =			gr.	Peso de pu	ızolana =	149	Fracc. Mort. (%	73,74	
el requerimiento de agua	, no fluye		Densidad =			kg/m3	Volumen de	e Arena (lts) =	321	Agua =	22,00	
mejor mezda la AA-03 (si	n puzolana)		D. Conc. Fres.	=	kg/m3.		Volumen de	e Ripio (Its) =	244			
	A1	A2	A3	Y1			Volumen de	Puzolana (Its)	55	1		
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE			(/				
	Arena	Ripio	Puzolana	Y1 `	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30	100,00	100,00	98,15	SUM. A1*A2 =	11533	Arena =	0,534	0,517		
3/8"	100,00	18,64	100,00	78,00	67,90	SUM. A1*A3 =	51031	Ripio =	0,408	0,395		
# 4	98,93	1,29	98,27	58,00	60,35	SUM. A1*Y1 =	34385	Puzolana =	0,091	0,088		
#8	90,84	0,13	95,04	52,00	55,42	SUM. A2*A2 =	9431	Suma =	1,034			
# 16	75,32		89,76	50,00	46,88	SUM. A2*A3 =	11533					
# 30	51,16		81,63	40,00	33,67	SUM. A2*Y1 =	11066					
# 50	20,98		68,24	12,00	16,88	SUM. A3*A3 =	60751					
# 100	5.92		51.81	10.00	7.64	SUM. A3*Y1 =	37532					

			DOSIFICA	ACION H	ORMIGO	N AUTOCO	//PACTAN	TE (HA	C)			
MEZCLA: HACHS250-00	RESISTER	ICIA HORI	MIGÓN = 25	0 KG/CM2								
(AA-05)						CA; ARENA =	JUBONES	HEREDI	۵۱۰ RIPIO =	3/4" .IUBOI	NES (HEE	FDIA)
(70.00)					ETE 2100F		000020 (.,,o -	0,1 0000.	120 (1121	,
			7.5			(0)						
	FECHA EI	ABORAC	ÓN = 20/07	2011								
									18			
	CONSTAN	TES DE LOS	MATERIALES			MATE	RIALES /M3			MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					410	410	132,26	7,380	7,380		7,380
AGUA	1,00					259	215	215,00	4,587	3,870		3,240
ARENA	2,72	2,59	2,51	3,14		1037	1069	413,00	18,659	19,245	6,60	19,891
RIPIO 3/4"	2,73	2,64	2,58	2,14		547	559	212,00	9,845	10,056	1,98	10,040
VISCOCRETE 2100 R (2,5%)	1,10					10,25	10,25	9,32	0,185	0,185		0,185
SUSTITUCIÓN												
AIRE								18,00				
TOTAL						2263	2263	1000				
						2380		1000				
Relación W/C =	0,524		Cap. paso (PA)	0,76	>= 0,75							
ESCURR. (T500) = VS =	3	S.	Relac. VS/VF =	0,47	<= 2		Pr + Ps =	1700				
ASENTAMIENTO (SF) =	540	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,35	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	21,20	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	1122	Fracc. Pasta (%)	35,66	
Observaciones:	se demora		Peso =	3189	3184	gr.	Peso de Rip		578	Fracc. Mort. (%)	78,76	
	mermar ad	itivo	Densidad =	2030	2027	kg/m3	Volumen Ar	ena (lts) =	413	Agua	21,50	
			D. Conc. Fres.	2028	kg/m3.		Volumen Ri	oio (lts) =	212			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92	l	1	20,00	3,91	SUM. A3*Y1 =	0	l				

			- C C 10A	0.0.4110		AUTOCOM		_ (.1.70				
MEZCLA: HACHS250-00	RESISTE	NCIA HORI	MIGÓN = 25	0 KG/CM2								
(AA-06)						CA; ARENA =	JUBONES (HEREDIA	A): RIPIO =	3/4" JUBON	IES (HEF	REDIA)
(ETE 2100F		,		,,		(,
						,						
	FECHA EI	ABORAC	IÓN = 26/07	2011								
									18			
	CONSTANT	TES DE LOS	MATERIALES			MATE	RIALES /M3			MATERIALES	/18 LTS.	
	DENS.	DENS.	DENS.	ABS.	PESO	PESO SECO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT	PESO HUM.
	ABS.	S.S.S.	APAR.	%	VOL.	KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					263	220	220,00	4,658	3,960		2,663
ARENA	2,72	2,59	2,51	3,14		1009	1041	402,00	18,162	18,733	10,62	20,091
RIPIO 3/4"	2,73	2,64	2,58	2,14		531	543	206,00	9,567	9,771	1,50	9,710
VISCOCRETE 2100 R (2,0 %)	1,10					8,30	8,30	7,55	0,149	0,149		0,149
SIKA AER RMC (0,3%)	1,00					1,25	1,25	1,25	0,022	0,022		0,022
AIRE								29,00				
TOTAL						2228	2228	1000				
						2340	•	1000				
Relación W/C =	0,530		Cap. paso (PA)	0,81	>= 0,75							
ESCURR. (T500) = VS =	2,20	S.	Relac. VS/VF =	0,53	<= 2		Pr + Ps =	1654				
ASENTAMIENTO (SF) =	675	520 - 700							•		Diseño	
VISCOSIDAD (VF) =	4,17	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	20,60	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	1091	Fracc. Pasta (%)	36,27	ĺ
Observaciones:	buena mez	cla	Peso =	3424	3398	gr.	Peso de Rip	oio (kg) =	562	Fracc. Mort. (%) =	76,47	ĺ
	exuda poco)	Densidad =	2180	2163	kg/m3	Volumen Ar	ena (lts) =	401	Agua	22,00	
			D. Conc. Fres.	2171	kg/m3.		Volumen Rip	oio (lts) =	206	Finos (kg/m3)	454	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE	1						
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805]				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACHS250-007	DESISTER	ICIA HORI	MIGÓN - 250	KG/CM2								
(AA-07)					- CHENC	A; ARENA = J	LIBONES (H	EREDIA)	· PIPIO - 3	# IIIRONE	S (HEREI)IA)
(AA-01)	IIIAI EINA	LLO. OLIVI				(SIKA); PUZO			, 1011 10 = 3	14 JOBONE	O (IIIEKEE	, inj
			ADITIVO = V	IOOOOIKE	LZIOOK	(Oliva), 1 020	LAIVA (LLAO	ΑΟ,				
	EECHA EI	AROPAC	IÓN = 08/08/2	011								
	LOUIALI	LADORAG	1014 - 00/00/2						18			
С	ONSTANT	S DE LOS	MATERIALE	S		MATI	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10					400	400	129.03	7.200	7.200		7.200
AGUA	1.00					250	207	207.00	4.493	3.726		3,655
ARENA	2,72	2,59	2,51	3,14		1004	1036	400,00	18,072	18,639	4,20	18,831
RIPIO 3/4"	2,73	2,64	2,58	2,14		519	530	201,00	9,334	9,534	0,75	9,404
VISCOCRETE 2100 R (2%)	1,10					8,00	8,00	7,27	0,144	0,144		0,144
SIKA AER (0,3%)	1,00					1,20	1,20	1,20	0,022	0,022		0,022
PUZOLANA (15%)	2,71	2,54	2,44	4,12		60,00	62,47	24,59	1,080	1,124	5,00	1,134
AIRE								30,00				
TOTAL						2241	2244	1000				
						2180	•	1000				
Relación W/C =	0,518		Cap. paso (PA)=	0,86	>= 0,75							
ESCURR. (T500) = VS =	2,23	S.	Relac. VS/VF =	0,72	<= 2	1	Pr + Ps =	1522				
ASENTAMIENTO (SF) =	625	520 - 700						•	•		Diseño	
VISCOSIDAD (VF) =	3,10	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	20,10	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	1005	Fracc. Pasta (%)	36,79	
Observaciones:	buena mez	cla	Peso =	2976	3008	gr.	Peso de Rip	io (kg) =	518	Fracc. Mort. (%) =	77,45	
	no exuda		Densidad =	1894	1915	kg/m3	Volumen Are	ena (lts) =	400	Agua	20,70	
			D. Conc. Fres. =	1905	kg/m3.		Volumen Rip	oio (lts) =	201	Finos (kg/m3) =	500	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
#30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

	DEGIGE	1014 1167	MOÓN 655	V 0/0146								
MEZCLA: HACHS250-008												
(AA-08)	MATERIA	LES: CEMI				A; ARENA = J			RIPIO = 3	4" JUBONES	S (HEREE	DIA)
			ADITIVO = V	ISCOURE	TE 2100R (SIKA); SIKA I	UME; PUZO	LANA				
	FFOUL F	400040	ÓN = 01/09/2	044								
	FECHA EI	LABORACI	ON = 01/09/2	U11								
	ONOTANT	-0 DE 1 00	MATERIALE	-			RIALES /M3		18	MATERIALE	040170	
· ·	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	•	0500 0500			PESO HUM
	ABS.			ABS. %				-				
OCHENTO HOLONA		S.S.S.	APAR.	76	-	KG.	KG. 380	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10		-			380 254	210	122,58 210.00	6,840 4.568	6,840 3.780		6,840 3.820
AGUA	1,00	2.50	0.54	244							2.27	-,-
ARENA RIPIO 3/4"	2,72	2,59	2,51	3,14 2.14		1032	1064	411,00	18,569	19,152	3,37	19,195
	2,73	2,64	2,58	2,14		531	543 8.74	206,00	9,567	9,771	1,30	9,691
VISCOCRETE 2100 R (2,3%	1,10 3.10					8,74 22.80	22.80	7,95 7.35	0,157	0,157		0,157
SIKA FUME (6%)		0.54	0.44	110	-	,			0,410	0,410	0.00	0,410
PUZOLANA (10%)	2,71	2,54	2,44	4,12		38,00	39,57	15,57	0,684	0,712	3,83	0,710
AIRE						0000	2000	20,00				
TOTAL						2266 2265	2268	1000				
						2265		1000				
Relación W/MC =	0,553	0,521	Cap. paso (PA)=	0,78	>= 0,75				1			
ESCURR. (T500) = VS =	2,32	S.	Relac. VS/VF =	0,53	<= 2		Pr + Ps =	1562			B1 4	
ASENTAMIENTO (SF) =	552	520 - 700									Diseño	
VISCOSIDAD (VF) =	4,41	<=10 S.	= .				Ps/Pr (peso)		1,941	Vol. Ripio (%) =	20,60	
			Vol. Prob. =	1571	1571	cc.	Peso de Are		1031	Fracc. Pasta (%)	35,61	
Observaciones:	buena mezcl	а	Peso =	3476	3474	gr.	Peso de Rip		531	Fracc. Mort. (%) =	77,89	
	no exuda		Densidad =	2213	2211	kg/m3	Volumen Are	. (/	411	Agua	21,00	
			D. Conc. Fres. =	2212	kg/m3.		Volumen Rip	io (lts) =	206	Finos (kg/m3) =	481	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024	J		
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92	l		20,00	3,91	SUM. A3*Y1 =	0	1				

			DOSIFICA	CION HC	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACHS250-009	DEGIGTER	ICIA HODI	AICÓN - 2EO	KCICMS								
(AA-09)					- CHENC	A; ARENA = .	IIIDONES /LI	EDEDIA)	· DIDIO - 2	A" ILIDONE	e /UEDEI	NA)
(AA-03)	MATERIA	LES. CEIVII				(SIKA); SIKA I			, KIFIO = 3	4 JUBUNE	3 (HEKEL	/IA)
			ADITIVO = V	ISCOURE	1E 2100K (SIKAJ; SIKA I	OWE, PUZO	LANA				
	EECHA EI	ADODAC	ÓN = 06/10/2	011								
	FECHALI	ABORAC	ON = 00/10/2	V11					18			
C	ONSTANT	SDELOS	MATERIALE	s		МАТ	RIALES /M3		10	MATERIALE	SHRITS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		DESO SECO	PESO S.S.S.		
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10	0.0.0.	74 744	,,,		430	430	138.71	7.740	7.740	~	7.740
AGUA	1.00					318	280	280.00	5.715	5.040		5.093
ARENA	2.72	2.59	2.51	3.14		884	911	352.00	15.903	16.403	3.66	16,485
RIPIO 3/4"	2.73	2.64	2.58	2.14		457	466	177.00	8.220	8.396	0.50	8.261
/ISCOCRETE 2100 R (1.6%	1.10		_,	_,		6.88	6.88	6.25	0.124	0.124	1 -,	0.124
SIKA FUME (6%)	3.10					25.80	25.80	8.32	0.464	0.464		0.464
PUZOLANA (10%)	2.71	2.54	2.44	4.12		43.00	44.77	17.62	0,774	0.806	4.00	0.805
AIRE		,,	, i					20.00		.,		- 7,1
TOTAL						2163	2165	1000				
						2163	•	1000				
Relación W/MC =	0,651	0,614	Cap. paso (PA)=		>= 0,75							
SCURR. (T500) = VS =		S.	Relac. VS/VF =		<= 2		Pr + Ps =	1340	1			
ASENTAMIENTO (SF) =		520 - 700						•	•		Diseño	
/ISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	17,70	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	884	Fracc. Pasta (%)	44,26	
Observaciones:	no fluye		Peso =			gr.	Peso de Rip	io (kg) =	456	Fracc. Mort. (%) :	80,53	
	requiere mucl	ha agua	Densidad =			kg/m3	Volumen Are	ena (lts) =	352	Agua	28,00	
	no se confec	cionan cilindro	D. Conc. Fres. =		kg/m3.		Volumen Rip	io (lts) =	177	Finos (kg/m3) =	533	
	A1	A2	A3	Y1					1			
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805]				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
#100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

						NAUTOCON		_ ,	-,			
MEZCLA: HACHS350-00	RESISTER	ICIA HORI	MIGÓN = 35	0 KG/CM2								
(BB-01)						CA; ARENA =	JUBONES (HEREDI	A): RIPIO =	3/4" JUBOI	NES (HER	EDIA)
(/					ETE 2100R		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,		,	,
						,						
	FECHA EL	ABORACI	ÓN = 20/07/	2011								
									18			
	CONSTANT	TES DE LOS	MATERIALES			MATE	RIALES /M3			MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					510	510	164,52	9,180	9,180		9,180
AGUA	1,00					252	210	210,00	4,539	3,780		3,176
ARENA	2,72	2,59	2,51	3,14		994	1025	396,00	17,891	18,453	6,60	19,072
RIPIO 3/4"	2,73	2,64	2,58	2,14		511	522	198,00	9,195	9,392	1,98	9,377
VISCOCRETE 2100 R (2,5%)	1,10					12,75	12,75	11,59	0,230	0,230		0,230
SUSTITUCIÓN												
AIRE								20,00				
TOTAL						2280	2280	1000				
						2275		1000				
Relación W/C =	0,412		Cap. paso (PA)	0,90	>= 0,75							
ESCURR. (T500) = VS =	2,85	S.	Relac. VS/VF =	0,40	<= 2		Pr + Ps =	1500				
ASENTAMIENTO (SF) =	630	520 - 700									Diseño	
VISCOSIDAD (VF) =	7,20	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	19,80	
			Vol. Prob. =	1571	1571	CC.	Peso de An	ena (kg) =	990	Fracc. Pasta (%)	38,61	
Observaciones:	se demora	en fraguar	Peso =	3350	3413	gr.	Peso de Rip	oio (kg) =	510	Fracc. Mort. (%)	80,21	
	disminuir a	ditivo	Densidad =	2132	2173	kg/m3	Volumen Ar		394	Agua	21,00	
			D. Conc. Fres.	2152	kg/m3.		Volumen Ri	oio (lts) =	198			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	,	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	,	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	, -	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92	l		20,00	3,91	SUM. A3*Y1 =	0					

			DOGIFICA	CIONTIC	JI NIE GON	AUTOCOM	II ACTANI	L (AAC	,			
MEZCLA: HACHS350-002	RESISTEN	ICIA HORI	MIGÓN = 35	0 KG/CM2								
(BB-02)	MATERIAL	ES: CEM	ENTO = HO	LCIM; AGI	JA = CUEN	CA; ARENA =	JUBONES (HEREDIA	A); RIPIO :	3/4" JUBOI	NES (HER	EDIA)
, , ,			ADITIVO =						,,			
						,						
	FECHA EL	ABORAC	IÓN = 26/07	2011								
									18			
	CONSTANT	ES DE LOS I	MATERIALES			MATE	RIALES /M3	l.		MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM, NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					500	500	161,29	9,000	9,000		9,000
AGUA	1,00					252	210	210,00	4,533	3,780		2,510
ARENA	2,72	2,59	2,51	3,14		986	1017	393,00	17,756	18,313	10,62	19,641
RIPIO 3/4"	2,73	2,64	2,58	2,14		508	519	197,00	9,149	9,344	1,50	9,286
VISCOCRETE 2100 R (1,8%)	1,10					9,00	9,00	8,18	0,162	0,162		0,162
SIKA AER (0,3%)	1,00					1,50	1,50	1,50	0,027	0,027		0,027
AIRE								29,00				
TOTAL						2257	2257	1000				
						2255	•	1000				
Relación W/C =	0,420		Cap. paso (PA)	0,86	>= 0,75							
ESCURR. (T500) = VS =	2,30	S.	Relac. VS/VF =	0,80	<= 2		Pr + Ps =	1494				
ASENTAMIENTO (SF) =	695	520 - 700					•				Diseño	
VISCOSIDAD (VF) =	2,87	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	19,70	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	986	Fracc. Pasta (%)	37,95	
Observaciones:	buena mez	cla	Peso =	3279	3227	gr.	Peso de Rip	oio (kg) =	508	Fracc. Mort. (%)	80,30	
	exuda poco)	Densidad =	2087	2054	kg/m3	Volumen Ar	ena (lts) =	393	Agua	21,00	
			D. Conc. Fres.	2071	kg/m3.		Volumen Ri	pio (lts) =	197			
	A1	A2	A3	Y1						Finos (kg/m3) =	539	
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE]						
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0					

MEZCLA: HACHS350-003	DECICEE	ICIA HODI	MCÓN 250	V C/CM2								
					OUENO		UDONEO (II		DIDIO (WILLIAM TO THE	0 (115555	
(BB-03)	MATERIA	LES: CEMI				A; ARENA = J			KIPIO = 3	74" JUBONE	S (HEKEL	JIA)
			ADITIVO = V	ISCOURE	1 E 2100K (SIKA); PUZO	LANA (LLAC	AO)				
	FF0114 F1	400040	ÓN = 08/08/2									
	FECHA EI	ABURAC	ION = 08/08/2	U11								
	ONCTANT	C DE LOS	MATERIALE			MATI	RIALES /M3		18	MATERIALE	CHOLTC	
· ·	DENS.	DENS.	DENS.	ABS.	1	PESO	PESO S.S.S.		2500 0500			
	ABS.	S.S.S.	APAR.	ABS.		KG.	KG.	LTS.		KG.	HUM. NAT.	
05145150 1101 0114	3.10	3.3.3.	APAR.	76		450	450	145.16	KG. 8.100	8.100	%	KG 8.100
CEMENTO HOLCIM AGUA	1.00					450 248	207	207.00	4,468	3,726	-	3,655
	2.72	2.59	2.51	3.14	-	971	1002	387,00	17,485	18,034	4.20	18,219
ARENA RIPIO 3/4"	2,72	2,59	2,51	2,14		501	511	194.00	9,009	9,202	0.75	9.077
VISCOCRETE 2100 R (1.8%	1.10	2,04	2,50	2,14		8.10	8.10	7.36	0.146	0.146	0,75	0.146
VISCOCRETE 2100 R (1,8% SIKA AER (0,3%)	1,10	-	-		-	1.35	1.35	1,35	0,146	0,146	-	0,146
PUZOLANA (15%)	2.71	2.54	2.44	4.12		67.50	70.28	27.66	1,215	1,265	5.00	1.276
	2,11	2,04	2,44	4,12		67,30	70,20	30.00	1,210	1,203	3,00	1,270
AIRE TOTAL						2247	2250	1000				
IOIAL						2180	2250	1000				
D 1	0.460			0.00	0.75	2100		1000				
Relación W/C =	3.76	S.	Cap. paso (PA)= Relac. VS/VF =	0,82	>= 0,75		Pr + Ps =	1474				
ESCURR. (T500) = VS =	3,76 583	520 - 700	Relac. VS/VF =	0,86	<= 2		PI + PS =	14/4			Diseño	
ASENTAMIENTO (SF) =							D. (D. (1.941			-
VISCOSIDAD (VF) =	4,35	<=10 S.		4574	4574		Ps/Pr (peso Peso de Are			Vol. Ripio (%) =	19,40	
Observaciones:	buena mez	ala.	Vol. Prob. = Peso =	1571 2990	1571 3053	cc.	Peso de Rip		973 501	Fracc. Pasta (%)	38,72	-
Observaciones.		CIA				gr.				Fracc. Mort. (%)		-
	no exuda		Densidad =	1903	1943	kg/m3	Volumen Are		387 194	Agua	20,70	-
			D. Conc. Fres. =	1923	kg/m3.		Volumen Rip)IU (ITS) =	194	Finos (kg/m3) =	557	
TAMIZ	% PASA	% PASA	A3 % PASA	Y1 AJUSTE	CURVA DE							
IAMIZ	,	,	% PASA				40005	1				
3/4"	Arena 100.00	Ripio 95.30	-	Y1 100.00	AJUSTE 98.40	SUM. A1*A1 = SUM. A1*A2 =	46805 11533		0.070			
3/4"							11533	Arena =	0,676	0,66	-	
3/8" # 4	100,00 98.93	18,64	-	78,00 65.00	72,34 65.73	SUM. A1*A3 =	35636	Ripio =	0,348	0,34		
# 4	98,93	0.13		55.00	60.00	SUM. A1*Y1 = SUM. A2*A2 =	9431	suma =	1,024	1		
# 16	75.32	0,13	-	48.00	49,71		0	-				
# 16	75,32 51.16			48,00	49,71 33,76	SUM. A2*A3 = SUM. A2*Y1 =	11075	-				
# 30	20.98	-		30.00	13.85		0					
# 100	5.92		-	20.00	3,91	SUM. A3*A3 = SUM. A3*Y1 =	0	-				

			DOSIFICA	CION HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACHS350-004	DEGIGTER	ICIA HODI	MICÓN - 250	K C/CM2								
(BB-04)					- CHENC	A; ARENA = J	IIIRONES (H	EREDIA)	PIPIO - 3	//" IURONE	S/HEREI	NA)
(55-04)	MATERIA	LLO. OLIVII				(SIKA); SIKA			, 1(11 10 = 3	74 JOBONE	O (IILIKEE	, in
			ADIIIVO = V	IOOOOKE	1 L 2 1001 ((Oliva), Oliva i	OME, 1 OZO	LAITA				
	EECHA EI	AROPAC	IÓN = 16/08/2	011								
	I LONA LI	LADOILAGI	10/4 = 10/00/2	011					18			
C	ONSTANT	S DE LOS	MATERIALE	s		MATI	ERIALES /M3		- 10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S S S	VOI AP	PESO SECO	PESO S.S.S.	HIIM NAT	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10			- '-		415	415	133.87	7.470	7.470		7.470
AGUA	1.00					242	198	198.00	4.350	3,564		3.378
ARENA	2,72	2,59	2,51	3,14		1029	1061	410,00	18,524	19,105	4,92	19,435
RIPIO 3/4"	2,73	2,64	2,58	2,14		531	543	206,00	9,567	9,771	0,63	9,627
VISCOCRETE 2100 R (2%)	1,10					8,30	8,30	7,55	0,149	0,149		0,149
SIKA FUME (6%)	3,10					24,90	24,90	8,03	0,448	0,448		0,448
PUZOLANA (10%)	2,71	2,54	2,44	4,12		41,50	43,21	17,01	0,747	0,778	4,17	0,778
AIRE								20,00				
TOTAL						2292	2294	1000				
						2292	•	1000				
Relación W/C =	0,477	0,450	Cap. paso (PA)=	0,75	>= 0,75							
ESCURR. (T500) = VS =	3,79	S.	Relac. VS/VF =	0,40	<= 2		Pr + Ps =	1561				
ASENTAMIENTO (SF) =	620	520 - 700									Diseño	
VISCOSIDAD (VF) =	9,50	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	20,60	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	1030	Fracc. Pasta (%)	35,64	
Observaciones:	buena mezcla	3	Peso =	3541	3551	gr.	Peso de Rip	io (kg) =	531	Fracc. Mort. (%) =	77,74	
	no exuda		Densidad =	2254	2260	kg/m3	Volumen Are		410	Agua	19,80	
			D. Conc. Fres. =	2257	kg/m3.		Volumen Rip	oio (lts) =	206	Finos (kg/m3) =	522	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0	-				
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACHS350-005	RESISTE	ICIA HORI	MIGÓN = 350	KG/CM2								
(BB-05)	MATERIA	LES: CEMI	ENTO = HOL	CIM; AGUA	A = CUENC	A; ARENA = J	JUBONES (H	EREDIA)	RIPIO = 3	/4" JUBONE	S (HERED	DIA)
			ADITIVO = V	ISCOCRE	TE 2100R ((SIKA); SIKA F	FUME; PUZO	LANA				
	FECHA EI	ABORAC	ION = 06/10/2	011								
									18			
С	ONSTANT	S DE LOS	MATERIALE	S		MATE	ERIALES /M3	١.		MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					430	430	138,71	7,740	7,740		7,740
AGUA	1,00					327	290	290,00	5,883	5,220		5,271
ARENA	2,72	2,59	2,51	3,14		868	896	346,00	15,632	16,123	3,66	16,204
RIPIO 3/4"	2,73	2,64	2,58	2,14		446	456	173,00	8,034	8,206	0,50	8,074
VISCOCRETE 2100 R (1,5%	1,10					6,45	6,45	5,86	0,116	0,116		0,116
SIKA FUME (6%)	3,10					25,80	25,80	8,32	0,464	0,464		0,464
PUZOLANA (10%)	2,71	2,54	2,44	4,12		43,00	44,77	17,62	0,774	0,806	4,00	0,805
AIRE								20,00				
TOTAL						2147	2149	1000				
						2148	•	1000				
Relación W/C =	0,674	0,636	Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =	#¡DIV/0!	<= 2		Pr + Ps =	1316				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	17,30	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	868	Fracc. Pasta (%)	45,22	
Observaciones:	no fluye		Peso =			gr.	Peso de Rip	io (kg) =	447	Fracc. Mort. (%) =	80,89	
	no se confecc	ionan cilindros	Densidad =	0	0	kg/m3	Volumen Are	ena (lts) =	346	Agua	29,00	
			D. Conc. Fres. =	0	kg/m3.		Volumen Rip	oio (lts) =	173	Finos (kg/m3) =	533	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92		1	20,00	3,91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCOM	PACTANT	E (HAC)			
MEZCLA: HACGS350-001	DEGIGTER	NCIA HODI	MGÓN - 250	KCICMS								
(HH-01)					A - CHENC	CA; ARENA = .	IIIDONES (JEDEDIA	V DIDIO -	2/4" ILIDON	EG /UED	EDIA)
(nn-01)	WATERIA	LES. CEIVIL	ADITIVO = V				JOBONES (I	ILKLDIA), KIFIO =	3/4 JUBUN	L3 (HEK	LDIA)
			ADITIVO = V	ISCOURE	IE Z IUUK	SIKA)						
	EECHA EI	ABODACI	ÓN = 28/07/2	044								
	FECHALI	LABORACI	ON = 20/07/2	011					18			
	CONSTAN	TES DE LOS	MATERIALES			MATE	RIALES /M3	1	10	MATERIALE	C/10 TC	
	DENS.	DENS.	DENS.	ABS.		PESO SECO		_	DESU SECU			PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPAN	3.10					500	500	161.29	9.000	9.000		9.000
AGUA	1.00					257	220	220.00	4.697	3,960		2.897
ARENA	2.72	2.59	2.51	3.14		959	989	382.00	17.259	17.801	9.48	18.895
RIPIO 3/4"	2.73	2.64	2.58	2.14		506	517	196.00	9.102	9.297	1.80	9.266
VISCOCRETE 2100 R (1,8%)	1,10	,	,,,,,,	,		9,00	9,00	8,18	0,162	0,162	,	0,162
SIKA AER (0,3%)	1,00					1,50	1,50	1,50	0,027	0,027		0,027
AIRE								31,00				
TOTAL						2232	2236	1000				
						2340	•	1000				
Relación W/C =	0,440		Cap. paso (PA)=	0,97	>= 0,75	Ī						
ESCURR. (T500) = VS =	4,32	S.	Relac. VS/VF =	1,48	<= 2		Pr + Ps =	1574				
ASENTAMIENTO (SF) =	650	520 - 700									Diseño	
VISCOSIDAD (VF) =	2,91	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	19,60	
			Vol. Prob. =	1571	1571	CC.	Peso de An	ena (kg) =	1039	Fracc. Pasta (%)	38,95	
Observaciones:	presenta exu	dación	Peso =	2965	3120	gr.	Peso de Ri	pio (kg) =	535	Fracc. Mort. (%)	80,40	
	no se confec	cionan cilindro	Densidad =	1887	1986	kg/m3	Volumen Ar	ena (lts) =	382	Agua	22,00	
			D. Conc. Fres. =	1937	kg/m3.		Volumen Ri	pio (lts) =	196			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
# 8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92	1		20,00	3,91	SUM. A3*Y1 =	0	I				

MEZCLA: HACGS350-002	RESISTEM	NCIA HORI	MIGÓN = 350	KG/CM2								
(HH-02)	MATERIAL	LES: CEM	ENTO = GUA	PAN; AGU	A = CUENC	CA; ARENA =	JUBONES (H	IEREDIA	; RIPIO =	3/4" JUBONE	S (HERE	DIA)
			ADITIVO = V	ISCOCRE	TE 2100R (SIKA); PUZOI	_ANA					
	FECHA EL	LABORAC	ION = 09/08/2	011								
									18			
С			MATERIALE	_			RIALES /M3	_		MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					435	435	140,32	7,830	7,830		7,830
AGUA	1,00					249	207	207,00	4,475	3,726		3,655
ARENA	2,72	2,59	2,51	3,14		981	1012	391,00	17,665	18,220	4,20	18,407
RIPIO 3/4"	2,73	2,64	2,58	2,14		506	517	196,00	9,102	9,297	0,75	9,171
VISCOCRETE 2100 R (1,8%	1,10					7,83	7,83	7,12	0,141	0,141		0,141
SIKA AER (0,3%)	1,00					1,31	1,31	1,31	0,023	0,023		0,023
PUZOLANA (15%)	2,71	2,54	2,44	4,12		65,25	67,94	26,74	1,175	1,223	5,00	1,233
AIRE								31,00				
TOTAL						2245	2248	1000				
						2180	Ì	1000				
Relación W/C =	0,476		Cap. paso (PA)=	0,89	>= 0,75							
ESCURR. (T500) = VS =	3,56	S.	Relac. VS/VF =	0,67	<= 2		Pr + Ps =	1489				
ASENTAMIENTO (SF) =	640	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,35	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,60	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	982	Fracc. Pasta (%)	38,12	
Observaciones:	presenta poc	a exudación	Peso =	3081	3092	gr.	Peso de Rip	io (kg) =	506	Fracc. Mort. (%) =	77,77	
			Densidad =	1961	1968	kg/m3	Volumen Are	ena (lts) =	391	Agua	20,70	
			D. Conc. Fres. =	1965	kg/m3.		Volumen Rip	io (lts) =	196	Finos (kg/m3) =	540	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGS350-003	RESISTEN	ICIA HORI	MIGÓN = 350	KG/CM2								
(HH-03)					A = CUENC	A; ARENA =	IURONES (H	IER EDIA)- RIPIO = 1	R/A" .ILIRONI	S (HERE	DIA)
(00)	MU TI LITURE					SIKA); SIKA F			,,	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J.,,
			ADITIVO - V	IOOOOKE	IL ZIOOK (Olitaj, Olita i	OIIIL, I OLO	LAITA				
	FECHA FI	ARORACI	ÓN = 10/08/2	011								
	LOIDYEL	.,	0.1 - 10/00/2						18			
С	ONSTANTE	S DE LOS	MATERIALE	s		MATE	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					430	430	138,71	7,740	7,740		7,740
AGUA	1,00					257	215	215,00	4,618	3,870		3,401
ARENA	2,72	2,59	2,51	3,14		979	1010	390,00	17,620	18,173	6,49	18,764
RIPIO 3/4"	2,73	2,64	2,58	2,14		506	517	196,00	9,102	9,297	0,70	9,166
MSCOCRETE 2100 R (1,8%	1,10					7,74	7,74	7,04	0,139	0,139		0,139
SIKA FUME (5%)	3,10					21,50	21,50	6,94	0,387	0,387		0,387
PUZOLANA (15%)	2,71	2,54	2,44	4,12		64,50	67,16	26,43	1,161	1,209	5,00	1,219
AIRE								20,00				
TOTAL						2265	2268	1000				
						2180		1000				
Relación W/C =	0,500		Cap. paso (PA)=	0,87	>= 0,75							
ESCURR. (T500) = VS =	3,60	S.	Relac. VS/VF =	0,54	<= 2		Pr + Ps =	1486				
ASENTAMIENTO (SF) =	665	520 - 700									Diseño	
VISCOSIDAD (VF) =	6,63	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,60	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	981	Fracc. Pasta (%)	38,72	
Observaciones:	buena mezcla	1	Peso =	3501	3536	gr.	Peso de Rip	io (kg) =	505	Fracc. Mort. (%) :	77,77	
			Densidad =	2229	2251	kg/m3	Volumen Are		391	Agua	21,50	
			D. Conc. Fres. =	2240	kg/m3.		Volumen Rip	io (lts) =	196	Finos (kg/m3) =	554	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92		1	20,00	3,91	SUM. A3*Y1 =	0	ı				

MEZCLA: HACGS350-004												
(HH-04)	MATERIAL	LES: CEM				CA; ARENA =			; RIPIO =	3/4" JUBONE	S (HERE	DIA)
			ADITIVO = V	ISCOCRE	TE 2100R	(SIKA); SIKA F	TUME; PUZO	LANA				
	FECHA EL	LABORAC	IÓN = 10/09/2	011								
									18			
С	ONSTANTE	ES DE LOS	MATERIALE	S		MATI	ERIALES /M3			MATERIALE	S/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					510	510	164,52	9,180	9,180		9,180
AGUA	1,00					255	215	215,00	4,587	3,870		4,006
ARENA	2,72	2,59	2,51	3,14		939	968	374,00	16,897	17,428	3,16	17,431
RIPIO 3/4"	2,73	2,64	2,58	2,14		485	495	188,00	8,731	8,918	0,50	8,774
VISCOCRETE 2100 R (2,0%	1,10					10,20	10,20	9,27	0,184	0,184		0,184
SIKA FUME (5%)	3,10					25,50	25,50	8,23	0,459	0,459		0,459
PUZOLANA (10%)	2,71	2,54	2,44	4,12		51,00	53,10	20,90	0,918	0,956	4,50	0,959
AIRE								20,00				
TOTAL						2275	2277	1000				
						2275	•	1000				
Relación W/C =	0,422	0,401	Cap. paso (PA)=	0,90	>= 0,75							
ESCURR. (T500) = VS =	2,35	S.	Relac. VS/VF =	0,34	<= 2		Pr + Ps =	1423				
ASENTAMIENTO (SF) =	680	520 - 700									Diseño	
VISCOSIDAD (VF) =	6,91	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	18,80	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	939	Fracc. Pasta (%)	40,97	
Observaciones:			Peso =	3666	3641	gr.	Peso de Rip	io (kg) =	484	Fracc. Mort. (%) =	79,10	
			Densidad =	2334	2318	kg/m3	Volumen Are	ena (lts) =	374	Agua	21,50	
			D. Conc. Fres. =	2326	kg/m3.		Volumen Rip	oio (lts) =	188	Finos (kg/m3) =	623	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	1	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
#30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGS350-005	DECICTER	ICIA HODI	MICÓN - 250	KCICMS								
(HH-05)					A CHENC	A; ARENA =	ILIDONES (IEDEDIA). DIDIO	MI IIIDONI	e (uene	DIA)
(nn-uə)	WAIERIAL	LES: CEIVI				SIKA); SIKA I); KIPIU =	3/4 JUDUNI	S (HEKE	DIA)
			ADITIVO = V	ISCOURE	1E 2100K (SIKA); SIKA I	-UME; PUZO	LANA				
	EECHA EI	ADODAC	IÓN = 06/10/2	011								
	FECHALI	ABORAC	1014 = 00/10/2	011					18			
C	ONSTANTE	S DE LOS	MATERIALE	s		MATI	ERIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S S S	VOI AP	PESO SECO	PESO S.S.S.	HUM NAT	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10		İ			530	530	170,97	9,540	9,540		9,540
AGUA	1,00					268	230	230,00	4,832	4,140		4,194
ARENA	2,72	2,59	2,51	3,14		906	935	361,00	16,310	16,822	3,66	16,907
RIPIO 3/4"	2,73	2,64	2,58	2,14		467	477	181,00	8,406	8,586	0,50	8,448
VISCOCRETE 2100 R (1,5%	1,10					7,95	7,95	7,23	0,143	0,143		0,143
SIKA FUME (5%)	3,10					26,50	26,50	8,55	0,477	0,477		0,477
PUZOLANA (10%)	2,71	2,54	2,44	4,12		53,00	55,18	21,72	0,954	0,993	4,00	0,992
AIRE								20,00				
TOTAL						2259	2261	1000				
						2260	•	1000				
Relación W/C =	0,434	0,413	Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VSNF =		<= 2		Pr + Ps =	1374				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	18,10	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	907	Fracc. Pasta (%)	42,99	
Observaciones:	se segrega el	ripio	Peso =			gr.	Peso de Rip	io (kg) =	467	Fracc. Mort. (%) =	79,77	
	no se confec	cionan cilindro	Densidad =			kg/m3	Volumen Are	ena (lts) =	361	Agua	23,00	
			D. Conc. Fres. =		kg/m3.		Volumen Rip	oio (lts) =	181	Finos (kg/m3) =	645	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92		I	20,00	3,91	SUM. A3*Y1 =	0	l				

						AUTOCOM		_ (
MEZCLA: HACGS250-001	RESISTE	ICIA HORI	MIGÓN = 250	KG/CM2								
(II-01)	MATERIAL	LES: CEM	ENTO = GUA	PÁN; AGU	A = CUENC	CA; ARENA =	JUBONES (F	EREDIA	; RIPIO =	3/4" JUBONE	S (HERE	DIA)
, ,			ADITIVO = V	ISCOCRE	TE 2100R ((SIKA); PUZO	LANA					
	FECHA EL	ABORAC	IÓN =									
									18			
С	ONSTANT	S DE LOS	MATERIALE	S		MATI	ERIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SEC	PESO S.S.S.	HUM, NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3.10					400	400	129.03	7.200	7.200		7.200
AGUA	1,00					250	207	207,00	4,493	3,726		3,655
ARENA	2,72	2,59	2,51	3,14		1004	1036	400,00	18,072	18,639	4,20	18,831
RIPIO 3/4"	2,73	2,64	2,58	2,14		519	530	201,00	9,334	9,534	0,75	9,404
MSCOCRETE 2100 R (2%)	1,10					8,00	8,00	7,27	0,144	0,144		0,144
SIKA AER (0,3%)	1,00					1,20	1,20	1,20	0,022	0,022		0,022
PUZOLANA (15%)	2,71	2,54	2,44	4,12		60,00	62,47	24,59	1,080	1,124	5,00	1,134
AIRE							i '	30,00				
TOTAL						2241	2244	1000				
						2180	•	1000				
Relación W/C =	0,518		Cap. paso (PA)=		>= 0,75	1						
ESCURR. (T500) = VS =		S.	Relac. VS/VF =	#¡DIV/0!	<= 2	1	Pr + Ps =	1522				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.	1				Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	20,10	
			Vol. Prob. =	1571	1571	cc.	Peso de Are		1005	Fracc. Pasta (%)	36,79	
Observaciones:			Peso =			gr.	Peso de Rip		518	Fracc. Mort. (%) =	77,45	
			Densidad =			kg/m3	Volumen Are	ena (lts) =	400	Agua	20,70	
			D. Conc. Fres. =	0	ka/m3.	1	Volumen Ric	oio (lts) =	201	Finos (kg/m3) =	500	
	A1	A2	A3	Y1		1		,				
TAMIZ	% PASA	% PASA	% PASA		CURVA DE	1						
	Arena	Ripio	1	Y1		SUM. A1*A1 =	46805	1				
3/4"	100,00	95,30	İ	100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34	1	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075	ĺ				
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0	i				

			OSIFICA	CION HO	RMIGON	AUTOCOME	PACTANTI	E (HAC)				
MEZCLA: HACGS250-003	DESISTER	ICIA HORI	//GÓN - 250	KG/CM2								
(II-03)					A - CHEN	CA; ARENA =	IIIDONES /I	JEDEDIA	V DIDIO -	2/4" ILIDON	IEG /UED	EDIA)
(11-03)	WAILKIA	LES. CEIVIL	ADITIVO = \				JOBONES (I	ILKLUIA	y, KIFIO =	3/4 JUBON	ILS (HEN	LUIA)
			ADITIVO = 1	/ISCOURE	IL ZIOUK	(SIKA)						
	FECHA FI	ARORACI	ÓN = 28/07/2	011								
			011 - 20/01/2						18			
	CONSTAN	TES DE LOS	MATERIALES			MATE	RIALES /M3			MATERIALES	1/18 LTS.	
	DENS.	DENS.	DENS.	ABS.		PESO SECO			PESO SECO			PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPAN	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					263	220	220,00	4,734	3,960		2,844
ARENA	2,72	2,59	2,51	3,14		1007	1038	401,00	18,117	18,686	9,48	19,835
RIPIO 3/4"	2,73	2,64	2,58	2,14		531	543	206,00	9,567	9,771	1,80	9,739
VISCOCRETE 2100 R (2,0 %)	1,10					8,30	8,30	7,55	0,149	0,149		0,149
SIKA AER RMC (0,3%)	1,00					1,25	1,25	1,25	0,022	0,022		0,022
AIRE								30,00				
TOTAL						2226	2226	1000				
						2340		1000				
Relación W/C =	0,530		Cap. paso (PA)=	0,91	>= 0,75							
ESCURR. (T500) = VS =	2,04	S.	Relac. VS/VF =	0,92	<= 2	l	Pr + Ps =	1654				
ASENTAMIENTO (SF) =	690	520 - 700									Diseño	
VISCOSIDAD (VF) =	2,22	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	20,60	
			Vol. Prob. =	1571	1571	CC.	Peso de Are		1091	Fracc. Pasta (%)	36,27	
Observaciones:	presenta exu	dación	Peso =	2932	2919	gr.	Peso de Rip	oio (kg) =	562	Fracc. Mort. (%) =	76,37	
	no se confec	cionan cilindro	Densidad =	1866	1858	kg/m3	Volumen Ar	ena (lts) =	401	Agua	22,00	
			D. Conc. Fres. =	1862	kg/m3.	l	Volumen Rip	oio (lts) =	206			
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACGS250-004												
(II-04)	MATERIAL	LES: CEMI				CA; ARENA =		IEREDIA	; RIPIO =	3/4" JUBONE	S (HERE	DIA)
			ADITIVO = V	ISCOCRE	TE 2100R (SIKA); PUZOI	_ANA					
	FECHA EL	ABORACI	$\dot{O}N = 09/08/2$	011								
									18			
C			MATERIALE			MATE	RIALES /M3			MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					400	400	129,03	7,200	7,200		7,200
AGUA	1,00					243	200	200,00	4,376	3,600		3,528
ARENA	2,72	2,59	2,51	3,14		1017	1048	405,00	18,298	18,872	4,20	19,066
RIPIO 3/4"	2,73	2,64	2,58	2,14		524	535	203,00	9,427	9,629	0,75	9,498
VISCOCRETE 2100 R (2%)	1,10					8,00	8,00	7,27	0,144	0,144		0,144
SIKA AER (0,3%)	1,00					1,20	1,20	1,20	0,022	0,022		0,022
PUZOLANA (15%)	2,71	2,54	2,44	4,12		60,00	62,47	24,59	1,080	1,124	5,00	1,134
AIRE								30,00				
TOTAL						2253	2255	1000				
						2190	1	1000				
Relación W/C =	0,500		Cap. paso (PA)=	0,82	>= 0,75							
ESCURR. (T500) = VS =	3,22	S.	Relac. VS/VF =	0,75	<= 2		Pr + Ps =	1539				
ASENTAMIENTO (SF) =	633	520 - 700									Diseño	
VISCOSIDAD (VF) =	4,29	<=10 S.					Ps/Pr (peso)		1,941	Vol. Ripio (%) =	20,30	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	1016	Fracc. Pasta (%)	36,09	
Observaciones:	presenta poc	a exudación	Peso =	3022	3043	gr.	Peso de Rip		523	Fracc. Mort. (%) =	77,25	
			Densidad =	1924	1937	kg/m3	Volumen Are	na (lts) =	405	Agua	20,00	
			D. Conc. Fres. =	1930	kg/m3.		Volumen Rip	io (lts) =	203	Finos (kg/m3) =	501	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
#30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGS250-005	RESISTEN	ICIA HORI	MIGÓN = 250	KG/CM2								
(II-05)					A = CUENC	A; ARENA =	JUBONES (H	IEREDIA	: RIPIO = 3	3/4" JUBONE	S (HERE	DIA)
()						SIKA); SIKA F			,,		(,
						,,,	, , , , ,					
	FECHA EL	ABORAC	ÓN = 10/08/2	011								
									18			
С	ONSTANT	S DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM, NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					420	420	135,48	7,560	7,560		7,560
AGUA	1,00					252	210	210,00	4,537	3,780		3,305
ARENA	2,72	2,59	2,51	3,14		991	1023	395,00	17,846	18,406	6,49	19,004
RIPIO 3/4"	2,73	2,64	2,58	2,14		511	522	198,00	9,195	9,392	0,70	9,259
VISCOCRETE 2100 R (2%)	1,10					8,40	8,40	7,64	0,151	0,151		0,151
SIKA FUME (6%)	3,10					25,20	25,20	8,13	0,454	0,454		0,454
PUZOLANA (15%)	2,71	2,54	2,44	4,12		63,00	65,60	25,82	1,134	1,181	5,00	1,191
AIRE								20,00				
TOTAL						2271	2274	1000				
						2183	•	1000				
Relación W/C =	0,500		Cap. paso (PA)=	0,87	>= 0,75							
ESCURR. (T500) = VS =	3,55	S.	Relac. VS/VF =	0,66	<= 2		Pr + Ps =	1503				
ASENTAMIENTO (SF) =	658	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,38	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,80	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	992	Fracc. Pasta (%)	37,89	
Observaciones:	buena mezcla	a .	Peso =	3511	3530	gr.	Peso de Rip	io (kg) =	511	Fracc. Mort. (%) =	77,62	
	se oscurece	a mezcla	Densidad =	2235	2247	kg/m3	Volumen Are		395	Agua	21,00	
			D. Conc. Fres. =	2241	kg/m3.		Volumen Rip	oio (lts) =	198	Finos (kg/m3) =	547	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92	l		20,00	3,91	SUM. A3*Y1 =	0	l				

MEZCLA: HACGS250-006												
(II-06)	MATERIAL	LES: CEM				CA; ARENA =			; RIPIO =	3/4" JUBONE	S (HERE	DIA)
			ADITIVO = V	ISCOCRE	TE 2100R	(SIKA); SIKA F	FUME; PUZO	LANA				
			,									
	FECHA EL	LABORAC	IÓN = 10/09/2	011								
									18			
C			MATERIALE				ERIALES /M3			MATERIALE		
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					475	475	153,23	8,550	8,550		8,550
AGUA	1,00					267	227	227,00	4,806	4,086		4,223
ARENA	2,72	2,59	2,51	3,14		944	973	376,00	16,988	17,521	3,16	17,524
RIPIO 3/4"	2,73	2,64	2,58	2,14		485	495	188,00	8,731	8,918	0,50	8,774
ASCOCRETE 2100 R (2,0%	1,10					9,50	9,50	8,64	0,171	0,171		0,171
SIKA FUME (5%)	3,10					23,75	23,75	7,66	0,428	0,428		0,428
PUZOLANA (10%)	2,71	2,54	2,44	4,12		47,50	49,46	19,47	0,855	0,890	4,50	0,893
AIRE								20,00				
TOTAL						2252	2254	1000				
						2252		1000				
Relación W/C =	0,478	0,455	Cap. paso (PA)=	0,87	>= 0,75							
ESCURR. (T500) = VS =	2,23	S.	Relac. VS/VF =	0,37	<= 2	1	Pr + Ps =	1429				
ASENTAMIENTO (SF) =	660	520 - 700									Diseño	
VISCOSIDAD (VF) =	6,04	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	18,80	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	943	Fracc. Pasta (%)	40,83	
Observaciones:	buena mezcla	а	Peso =	3623	3607	gr.	Peso de Rip	io (kg) =	486	Fracc. Mort. (%) =	79,25	
			Densidad =	2306	2296	kg/m3	Volumen Are	ena (lts) =	376	Agua	22,70	
			D. Conc. Fres. =	2301	kg/m3.		Volumen Rip	oio (lts) =	188	Finos (kg/m3) =	583	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	1				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	1	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34	f	
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075	ĺ				
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
#100	5.92			20.00	3.91	SUM A3*Y1 =	0	1				

			DOSIFICA	CIÓN HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACAS250-001	DECICTE	ICIA HODI	MCÓN 250	V C/CM2								
MEZCLA: HACAS250-001 (LL-01)					CHENC	A; ARENA = J	LIBONES (LI	EDEDIA).	DIDIO 2	W IIIDONE	e (HEDER	\1A\
(LL-U1)	WAIERIAL	LES: CEIVII				EC); SIKA FU			KIPIO = 3	4 JUBUNE	S (HEKEL	JIA)
			ADITIVO = A	DITEC SF	-106 (ADITI	EC); SIKA FU	WIE; PUZULA	INA				
	EECHA EI	APODAC	ÓN = 02/09/2	011								
	FECHALI	ABORACI	ON = 02/03/2	011					18			
	ONSTANTE	S DE LOS	MATERIALE	s		MATI	ERIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		PESO SECO	PESO S S S	HIM NAT	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10			- /-		375	375	120.97	6.750	6.750		6.750
AGUA	1.00					305	265	265.00	5,489	4,770		4.670
ARENA	2,72	2,59	2,51	3,14		941	971	375,00	16,943	17,474	4,13	17,642
RIPIO 3/4"	2,73	2,64	2,58	2,14		485	495	188,00	8,731	8,918	1,20	8,835
ADITEC SF-106 (1,75%)	1,17		,			6,56	6,56	5,61	0,118	0,118		0,118
SIKA FUME (7%)	3,10					26,25	26,25	8,47	0,473	0,473		0,473
PUZOLANA (11%)	2,71	2,54	2,44	4,12		41,25	42,95	16,91	0,743	0,773	6,09	0,788
AIRE				·				20,00				
TOTAL						2180	2182	1000				
						2180	•	1000				
Relación W/MC =	0,660		Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =	#¡DIV/0!	<= 2		Pr + Ps =	1426				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	18,80	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	941	Fracc. Pasta (%)	40,85	
Observaciones:	mezcla seca		Peso =	3541	3551	gr.	Peso de Rip	io (kg) =	485	Fracc. Mort. (%) =	79,50	
	no se confec	cionan cilindro	Densidad =	2254	2260	kg/m3	Volumen Are	ena (lts) =	375	Agua	26,50	
	no sirve el ad	itivo	D. Conc. Fres. =	2257	kg/m3.		Volumen Rip	oio (lts) =	188	Finos (kg/m3) =	479	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACAS250-002	DECICTED	ICIA HODI	MICÓN - 250	KC/CM2								
					CHERIO	A; ARENA = J	LIBONES "	EDEDIA'	. DIDIO 1	WI HIDOM	e (ucocc	NA)
(LL-02)	MAIERIA	LES: CEM				A; AKENA = J EC); SIKA FUI			; KIPIO = 3	14" JUBONE	S (HEKEL	ЛА)
			ADITIVO = A	DITEC SF	-106 (ADIT	EC); SIKA FUI	ME; PUZULA	INA				
	EECHA E	ADODAC	IÓN = 03/09/2	044								
	FECHAE	LABURAC	ION = 03/09/2	UII								
	ONSTANT	ES DE LOS	MATERIALE	s		МАТЕ	RIALES /M3		18	MATERIALE	S/18 TS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		PESO SECO			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10	0.0.0.	74 744	,,,		390	390	125,81	7.020	7.020	~	7.020
AGUA	1.00					309	270	270,00	5,561	4.860		4.899
ARENA	2.72	2.59	2.51	3.14		919	948	366.00	16.536	17.055	3.31	17.083
RIPIO 3/4"	2.73	2.64	2.58	2.14		472	482	183.00	8,499	8,680	1.20	8,601
ADITEC SF-106 (2.65%)	1.17	,**	,,,,,,	,,,,		10.34	10.34	8.83	0.186	0,186		0.186
SIKA FUME (7%)	3.10					27,30	27.30	8.81	0,491	0,491	1	0,491
PUZOLANA (11%)	2.71	2.54	2.44	4.12		42.90	44.67	17.58	0.772	0.804	5.80	0.817
AIRE	_,	_,,,,,	_,	.,,.=		,.,	,	20.00		-,	0,00	
TOTAL						2170	2172	1000				
						2170	•	1000				
Relación W/MC =	0,647		Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =	#¡DIV/0!	<= 2		Pr + Ps =	1391				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	18,30	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	918	Fracc. Pasta (%)	42,22	
Observaciones:	no fluye		Peso =			gr.	Peso de Rip	io (kg) =	473	Fracc. Mort. (%)	79.94	
	no sirve el ad	itivo	Densidad =	0	0	kg/m3	Volumen Are	ena (lts) =	366	Agua	27,00	
	no se confec	cionan cilindre	D. Conc. Fres. =	0	kg/m3.		Volumen Ric	oio (lts) =	183	Finos (kg/m3) =	496	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	1				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	1	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34	1	
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92	ı ——	1	20,00	3.91	SUM. A3*Y1 =	0					

			DUSIFICA	CION HU	KINIGON	AUTOCOM	IFAC I ANI	E (MAC	,			
MEZCLA: HACHA250-003	RESISTE	ICIA HORI	MIGÓN = 250	KG/CM2								
(LL-03)	MATERIAL	LES: CEMI	ENTO = HOLO	CIM; AGUA	= CUENC	A; ARENA = J	UBONES (H	EREDIA)	; RIPIO = 3	4" JUBONE	S (HERE	DIA)
			ADITIVO = A	DITEC SF	-106 (ADIT	EC); PUZOLA	NA .					
	FECHA EL	ABORAC	IÓN = 05/09/2	011								
									18			
C	ONSTANT	ES DE LOS	MATERIALE	S		MATI	ERIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					265	223	223,00	4,773	4,014		4,109
ARENA	2,72	2,59	2,51	3,14		994	1025	396,00	17,891	18,453	3,31	18,483
RIPIO 3/4"	2,73	2,64	2,58	2,14		511	522	198,00	9,195	9,392	0,63	9,253
ADITEC SF-106 (2,8%)	1,17					11,62	11,62	9,93	0,209	0,209		0,209
PUZOLANA (11%)	2,71	2,54	2,44	4,12		45,65	47,53	18,71	0,822	0,856	5,80	0,869
AIRE								20,00				
FOTAL						2242	2244	1000				
						2243	•	1000				
Relación W/C =	0,537		Cap. paso (PA)=	0,76	>= 0,75							
SCURR. (T500) = VS =	2,10	S.	Relac. VS/VF =	0,46	<= 2		Pr + Ps =	1506				
ASENTAMIENTO (SF) =	573	520 - 700									Diseño	
/ISCOSIDAD (VF) =	4,55	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,80	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	994	Fracc. Pasta (%)	38,68	
Observaciones:	buena mezcla	3	Peso =	3631	3594	gr.	Peso de Rip	io (kg) =	512	Fracc. Mort. (%) =	78,15	
	no exuda		Densidad =	2311	2288	kg/m3	Volumen Are	ena (lts) =	396	Agua	22,30	
	pierde trabajabil	idad rápidamenti	D. Conc. Fres. =	2299	kg/m3.		Volumen Rip	oio (lts) =	198	Finos (kg/m3) =	499	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACHA250-004	DECICTER	ICIA HODI	MICÓN - 250	KC/CM2								
					OUTNO		UDONEO (II	EDEDIA)	DIDIO 0	(411 III DONE	0 (115055	
(LL-04)	MAIERIAI	LES: CEM				A; ARENA = J		EREDIA)	; RIPIO = 3	/4" JUBONE	S (HEREL	JIA)
			ADITIVO = A	DITEC SF	-106 (ADII	EC); PUZOLA	NA					
	FF0114 F1	400040	IÓN 45 MOM	044								
	FECHA EI	ABURAC	IÓN = 15/09/2	U11								
	ONSTANT	S DE LOS	MATERIALE			MATE	RIALES /M3		18	MATERIALE	C/40 I TC	
	DENS.	DENS.	DENS.	ABS.	1	PESO	PESO S.S.S.		DEED SECO			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10	3.3.3.	AFAN.	/0		440	440	141.94	7,920	7.920	76	7.920
AGUA	1.00				ļ	276	235	235.00	4,966	4.230		4,522
ARENA	2.72	2.59	2.51	3.14		964	994	384.00	17.349	17.894	2.28	17.745
RIPIO 3/4"	2,72	2,59	2,51	2.14		495	506	192.00	8,916	9,107	0.50	8,961
ADITEC SF-106 (2.5%)	1.17	2,04	2,00	2,14		11.00	11.00	9.40	0.198	0.198	0,00	0.198
PUZOLANA (10%)	2.71	2.54	2.44	4.12	 	44.00	45.81	18.03	0,198	0,196	4.50	0,198
AIRE	2,/1	2,04	2,44	7,12	-	77,00	70,01	20.00	0,732	0,020	7,30	0,020
MINE					†			20,00			t	
TOTAL						2230	2232	1000				
					l	2230		1000				
Relación W/C =	0.534		Cap. paso (PA)=	0,76	>= 0.75							
ESCURR. (T500) = VS =	1.37	S.	Relac. VS/VF =	0.53	<= 2		Pr + Ps =	1459	1			
ASENTAMIENTO (SF) =	590	520 - 700		-,							Diseño	
VISCOSIDAD (VF) =	2.58	<=10 S.					Ps/Pr (peso)	=	1.941	Vol. Ripio (%) =	19.20	
	2,00	1 10 01	Vol. Prob. =	1571	1571	cc.	Peso de Are		963	Fracc. Pasta (%)	-, -	
Observaciones:	pierde plasticida	d ránidamente	Peso =	3705	3666	ar.	Peso de Rip		496	Fracc. Mort. (%)		
	, p		Densidad =	2358	2334	kg/m3	Volumen Are		384	Agua	23,50	
			D. Conc. Fres. =	2346	kg/m3.		Volumen Ric		192	Finos (kg/m3) =	522	
	A1	A2	A3	Y1				() =		(g/mo) =		
TAMIZ	% PASA	% PASA	% PASA		CURVA DE	1						
	Arena	Ripio		Y1		SUM. A1*A1 =	46805	Ì				
3/4"	100.00	95.30		100.00	98.40	SUM. A1*A2 =	11533	Arena =	0.676	0.66	•	
3/8"	100.00	18.64		78.00	72.34	SUM. A1*A3 =	0	Ripio =	0,348	0.34	1	
# 4	98.93	1.29		65.00	65.73	SUM. A1*Y1 =	35636	suma =	1.024	-,	1	
#8	90.84	0.13		55.00	60.00	SUM. A2*A2 =	9431		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
#16	75,32	.,		48,00	49,71	SUM. A2*A3 =	0	ĺ				
#30	51.16			40.00	33.76	SUM. A2*Y1 =	11075	i				
#50	20,98			30,00	13,85	SUM. A3*A3 =	0	ĺ				
# 100	5.92			20,00	3.91	SUM. A3*Y1 =	0	i				

			DOSIFICA	CION HO	RMIGON	AUTOCOM	PACTANT	E (HAC)			
MEZCLA: HACHA350-001	DESISTEN	ICIA HODI	MIGÓN - 350	KG/CM2								
(MM-01)					- CHENC	A; ARENA = J	LIBONES (H	EDEDIA)	PIPIO - 3	" IIIBONE	S (HEREI	DIA)
(111111-01)	MATERIAL	LO. OLINI				EC); SIKA FU			10-3	4 JOBONE	O (IILKEL	, inj
			ADITIVO = A	DITECSF	-100 (ADI1	EC), SIKA FU	WIE, FUZULA	IVA				
	EECHA EI	AROPAC	ÓN = 03/09/2	011								
	LOUIALL	ADOINAG	03/03/2	011					18			
C	ONSTANTE	S DE LOS	MATERIALE	S		MATI	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					420	420	135,48	7,560	7,560		7,560
AGUA	1,00					242	198	198,00	4,349	3,564		3,378
ARENA	2,72	2,59	2,51	3,14		1029	1061	410,00	18,524	19,105	4,92	19,435
RIPIO 3/4"	2,73	2,64	2,58	2,14		529	540	205,00	9,520	9,724	0,63	9,580
ADITEC SF-106 (1,6%)	1,17					6,72	6,72	5,74	0,121	0,121		0,121
SIKA FUME (6%)	3,10					25,20	25,20	8,13	0,454	0,454		0,454
PUZOLANA (10%)	2,71	2,54	2,44	4,12		42,00	43,73	17,21	0,756	0,787	4,17	0,788
AIRE								20,00				
TOTAL						2294	2295	1000				
						2293	<u> </u>	1000				
Relación W/C =	0,471	0,445	Cap. paso (PA)=		>= 0,75							
ESCURR. (T500) = VS =		S.	Relac. VS/VF =	#¡DIV/0!	<= 2		Pr + Ps =	1557				
ASENTAMIENTO (SF) =		520 - 700									Diseño	
VISCOSIDAD (VF) =		<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	20,50	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	1028	Fracc. Pasta (%)	35,64	
Observaciones:	no fluye		Peso =	3541	3551	gr.	Peso de Rip		530	Fracc. Mort. (%) =	77,74	
	no se confec	cionan cilindro	Densidad =	2254	2260	kg/m3	Volumen Are		410	Agua	19,80	
			D. Conc. Fres. =	2257	kg/m3.		Volumen Rip	io (lts) =	205	Finos (kg/m3) =	527	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0	[
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0	l				

MEZCLA: HACHA350-002	PESISTEN	ICIA HORI	MIGÓN - 350	KC/CM2								
(MM-02)					- CHENC	A; ARENA = J	IIIDONES /U	EDEDIA)	DIDIO - 2	/4" IIIDONE	e (UEDEI	NA)
(MMPOZ)	MATERIAL	LES. CEIVI				EC); PUZOLA		EKEDIAJ	, KIFIO = 3	4 JUBUNE	3 (HEKEL	лај
			ADITIVO = A	DITLOGI	-100 (ADIII	LOJ, I OZOLA						
	FECHA FI	ARORACI	IÓN = 05/09/2	011								
	LOUIAL	LADORAGI	ON = 03/03/2	J					18			
C	ONSTANT	S DE LOS	MATERIALE	s	-	MATE	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		PESO SECO		HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3.10					480	480	154,84	8.640	8.640		8.640
AGUA	1.00					268	228	228.00	4.828	4.104		4,193
ARENA	2,72	2,59	2,51	3,14		949	979	378,00	17,078	17,614	3,31	17,643
RIPIO 3/4"	2,73	2,64	2,58	2,14		488	498	189,00	8,777	8,965	0,63	8,832
ADITEC SF-106 (2,5%)	1,17					12,00	12,00	10,26	0,216	0,216		0,216
PUZOLANA (10%)	2,71	2,54	2,44	4,12		48,00	49,98	19,67	0,864	0,900	5,80	0,914
AIRE								20,00				
TOTAL						2245	2247	1000				
						2245	•	1000				
Relación W/C =	0,475		Cap. paso (PA)=	0,75	>= 0,75							
ESCURR. (T500) = VS =	2,23	S.	Relac. VS/VF =	0,30	<= 2		Pr + Ps =	1437				
ASENTAMIENTO (SF) =	593	520 - 700									Diseño	
VISCOSIDAD (VF) =	7,48	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	18,90	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	948	Fracc. Pasta (%)	41,31	
Observaciones:	buena mezcla	3	Peso =	3567	3509	gr.	Peso de Rip	io (kg) =	489	Fracc. Mort. (%) :	79,08	
	no exuda		Densidad =	2271	2234	kg/m3	Volumen Are	ena (lts) =	378	Agua	22,80	
	pierde plastici	dad rápidame	D. Conc. Fres. =	2252	kg/m3.		Volumen Rip	oio (lts) =	189	Finos (kg/m3) =	565	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
#30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCON	IPACTANT	E (HAC)			
MEZCLA: HACHA350-003												
(MM-03)	MATERIA	.ES: CEM				A; ARENA = .		EREDIA)	; RIPIO = 3	14" JUBONE	S (HEREL	JIA)
			ADITIVO = A	DITEC SF	-106 (ADIT	EC); PUZOLA	NA					
	CECUA E	ADODAC	IÓN = 15/09/2	044								
	FEURALI	ADUKAU	IUN = 15/09/2	UII					18			
C	ONSTANT	S DE LOS	MATERIALE	S		MAT	ERIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO HOLCIM	3,10					470	470	151,61	8,460	8,460		8,460
AGUA	1,00					263	222	222,00	4,735	3,996		4,290
ARENA	2,72	2,59	2,51	3,14		969	999	386,00	17,439	17,987	2,28	17,837
RIPIO 3/4"	2,73	2,64	2,58	2,14		498	509	193,00	8,963	9,155	0,50	9,008
ADITEC SF-106 (3%)	1,17					14,10	14,10	12,05	0,254	0,254		0,254
PUZOLANA (8%)	2,71	2,54	2,44	4,12		37,60	39,15	15,41	0,677	0,705	4,50	0,707
AIRE								20,00				
TOTAL						2252	2253	1000				
						2252	•	1000				
Relación W/C =	0,472		Cap. paso (PA)=	0,82	>= 0,75							
ESCURR. (T500) = VS =	2,41	S.	Relac. VS/VF =	0,41	<= 2		Pr + Ps =	1467				
ASENTAMIENTO (SF) =	605	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,87	<=10 S.					Ps/Pr (peso)		1,941	Vol. Ripio (%) =	19,30	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	na (kg) =	968	Fracc. Pasta (%)	40,57	
Observaciones:	buena mezcl	3	Peso =	3657	3614	gr.	Peso de Ripi		499	Fracc. Mort. (%) =	78,71	
			Densidad =	2328	2300	kg/m3	Volumen Are			Agua	22,20	[
			D. Conc. Fres. =	2314	kg/m3.		Volumen Rip	io (lts) =	193	Finos (kg/m3) =	545	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64	ļ	78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
#100	5,92		I	20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACGA250-001	RESISTEN	ICIA HOR	MIGÓN = 250	KG/CM2								
(NN-01)					A - CUENC	CA; ARENA =	ILIBONES (IEBEDIA	· DIDIO -	3/4" ILIBONI	ES (HERE	DIA)
(1414-01)	WATERIAL	LES. CEIVI				EC); PUZOLA		IEREDIA), KIFIO = .	3/4 JUBUNI	L3 (HEKE	DIA)
			ADIIIVO	DII LO OI	וועה) טטו	LOJ, I OZOLA						
	EECHA EI	AROPAC	IÓN = 06/09/2	011								
	LOUIAL	LADORAG	00/03/2						18			
C	ONSTANT	ES DE LOS	MATERIALE	s		МАТЕ	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.		PESO SECO			
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3.10					410	410	132.26	7,380	7.380		7.380
AGUA	1.00					256	213	213.00	4.605	3,834		4.044
ARENA	2.72	2.59	2.51	3.14		1009	1041	402.00	18.162	18,733	2.75	18,662
RIPIO 3/4"	2,73	2,64	2,58	2,14		521	532	202,00	9,381	9,582	0,60	9,437
ADITEC SF-106 (2,95%)	1,17					12,10	12,10	10,34	0,218	0,218		0,218
PUZOLANA (12%)	2,71	2,54	2,44	4,12		49,20	51,23	20,16	0,886	0,922	4,76	0,928
AIRE								20,00				
TOTAL						2257	2259	1000				
						2257		1000				
Relación W/C =	0,520		Cap. paso (PA)=	0,86	>= 0,75							
ESCURR. (T500) = VS =	2,10	S.	Relac. VS/VF =	0,29	<= 2		Pr + Ps =	1530				
ASENTAMIENTO (SF) =	665	520 - 700						•	•		Diseño	
VISCOSIDAD (VF) =	7,17	<=10 S.					Ps/Pr (peso)=	1,941	Vol. Ripio (%) =	20,20	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	1010	Fracc. Pasta (%)	37,56	
Observaciones:	buena mezcla	3	Peso =	3562	3551	gr.	Peso de Rip	io (kg) =	520	Fracc. Mort. (%)	77,78	
			Densidad =	2267	2260	kg/m3	Volumen Are	ena (lts) =	402	Agua	21,30	
			D. Conc. Fres. =	2264	kg/m3.		Volumen Rip	oio (lts) =	202	Finos (kg/m3) =	499	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	Ì				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66	1	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13	-	55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92		1	20.00	3.91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	RMIGON	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGA250-002	RESISTEN	ICIA HORI	MIGÓN = 250	KG/CM2								
(NN-02)					A = CUENC	CA; ARENA =	IURONES (H	IFREDIA	· RIPIO =	R/A" .ILIRONE	S (HERE	DIA)
(1111 02)	III CITE III					EC); PUZOLA), .to = .	,,, 0000		J.,,
	FECHA EL	ABORACI	ÓN = 27/09/2	011								
									18			
С	ONSTANTE	S DE LOS	MATERIALE	S		MATI	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM, NAT	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					415	415	133,87	7,470	7,470		7,470
AGUA	1,00					255	212	212,00	4,588	3,816		3,849
ARENA	2,72	2,59	2,51	3,14		1012	1043	403,00	18,208	18,779	3,78	18,896
RIPIO 3/4"	2,73	2,64	2,58	2,14		521	532	202,00	9,381	9,582	0,50	9,428
ADITEC SF-106 (2,4%)	1,17					9,96	9,96	8,51	0,179	0,179		0,179
PUZOLANA (12%)	2,71	2,54	2,44	4,12		49,80	51,85	20,41	0,896	0,933	4,58	0,937
AIRE								20,00				
TOTAL						2262	2264	1000				
						2263		1000				
Relación W/C =	0.511		Cap. paso (PA)=	0.85	>= 0.75	1						
ESCURR. (T500) = VS =	1.44	S.	Relac. VS/VF =	0.15	<= 2		Pr + Ps =	1533				
ASENTAMIENTO (SF) =	680	520 - 700									Diseño	
VISCOSIDAD (VF) =	9.40	<=10 S.					Ps/Pr (peso)	=	1.941	Vol. Ripio (%) =	20.20	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	1012	Fracc. Pasta (%)	37,44	i
Observaciones:	buena mezcla	3	Peso =	3639	3554	gr.	Peso de Rip	io (kg) =	521	Fracc. Mort. (%)	77,78	
			Densidad =	2316	2262	kg/m3	Volumen Are		403	Agua	21,20	ĺ
			D. Conc. Fres. =	2289	kg/m3.		Volumen Rip	oio (lts) =	202	Finos (kg/m3) =	504	ĺ
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805	Ì				
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0					

			DOSIFICA	CION HO	KMIGON	AUTOCON	IPACTANT	E (HAC)			
MEZCLA: HACGA250-003												
(NN-03)	MATERIAL	.ES: CEM				CA; ARENA = EC); PUZOLA		EKEUIA); KIPIO = .	3/4" JUBUNI	5 (HEKE	DIA)
			ADII IVO = A	IDII EC SF	-106 (ADII	EG); PUZULA	NA					
	EECHA EI	AROPAC	IÓN = 29/09/2	011								
	LOUINE	ADOINAG	014 - 23/03/2						18			
C	ONSTANTE	S DE LOS	MATERIALE	s		MAT	ERIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM, NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					465	465	150,00	8,370	8,370		8,370
AGUA	1,00					271	231	231,00	4,887	4,158		4,087
ARENA	2,72	2,59	2,51	3,14		954	984	380,00	17,168	17,707	4,38	17,920
RIPIO 3/4"	2,73	2,64	2,58	2,14		493	503	191,00	8,870	9,060	0,50	8,914
ADITEC SF-106 (1,7%)	1,17					7,91	7,91	6,76	0,142	0,142		0,142
PUZOLANA (11%)	2,71	2,54	2,44	4,12		51,15	53,26	20,96	0,921	0,959	4,55	0,963
AIRE								20,00				
·												
TOTAL						2242	2244	1000				
						2242	•	1000				
Relación W/C =	0,497		Cap. paso (PA)=	0,85	>= 0,75							
ESCURR. (T500) = VS =	2,55	S.	Relac. VS/VF =	0,66	<= 2		Pr + Ps =	1446				
ASENTAMIENTO (SF) =	585	520 - 700									Diseño	
VISCOSIDAD (VF) =	3,85	<=10 S.					Ps/Pr (peso)			Val. Ripio (%) =	19,10	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	1 97		Fracc. Pasta (%)	40,78	
Observaciones:			Peso =	3618	3619	gr.	Peso de Rip		492	Fracc. Mort. (%) :	78,87	
			Densidad =	2303	2304	kg/m3	Volumen Are	,	380	Agua	23,10	
			D. Conc. Fres. =	2303	kg/m3.		Volumen Rip	io (lts) =	191	Finos (kg/m3) =	553	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1		SUM. A1"A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
# 4	98,93	1,29		65,00	65,73	SUM. A1"Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2"Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92		1	20,00	3,91	SUM. A3"Y1 =	0					

			DOSIFICA	CION HO	RMIGÓN	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGA350-001	DESISTEN	ICIA HODI	MIGÓN - 350	KG/CM2								
(OO-01)					A - CHENC	CA; ARENA =	IIIDONES (L	IEDEDIA). DIDIO - 1	M" ILIDONI	e /ucbc	DIA)
(00-01)	MATERIAL	LO. OLIIII				EC); PUZOLA		ILIKEDIA	,, itii 10 = t	,,4 00DOI1	LO (IILIKE	DIA)
			ADITIVO	DII LO OI	TIOO (ADITI	LOJ, I OZOLA						
	EECHA EI	AROPACI	ÓN = 06/09/2	011								
	I LONA LL	ADONAOI	014 = 00/03/2	011					18			
C	ONSTANTE	S DE LOS	MATERIALE	s		MATI	RIALES /M3		10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOI AP	PESO SECO	PESO S.S.S.	HIIM NAT	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3.10	. ,,,,,,				490	490	158.06	8.820	8.820		8.820
AGUA	1.00					262	222	222.00	4.722	3.996		4.193
ARENA	2,72	2,59	2,51	3,14		951	981	379,00	17,123	17,661	2,75	17,594
RIPIO 3/4"	2,73	2,64	2,58	2,14		490	501	190,00	8,824	9,012	0,60	8,877
ADITEC SF-106 (2,5%)	1,17					12,25	12,25	10,47	0,221	0,221		0,221
PUZOLANA (10%)	2,71	2,54	2,44	4,12		49,00	51,02	20,08	0,882	0,918	4,76	0,924
AIRE								20,00				
TOTAL						2255	2257	1000				
						2255		1000				
Relación W/C =	0,453		Cap. paso (PA)=	0,95	>= 0,75							
ESCURR. (T500) = VS =	1,85	S.	Relac. VS/VF =	0,35	<= 2		Pr + Ps =	1441				
ASENTAMIENTO (SF) =	680	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,35	<=10 S.					Ps/Pr (peso)	=	1,941	Vol. Ripio (%) =	19,00	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	na (kg) =	951	Fracc. Pasta (%)	41,05	
Observaciones:	buena mezcla	1	Peso =	3543	3571	gr.	Peso de Rip		490	Fracc. Mort. (%)	78,96	
	no exuda		Densidad =	2255	2273	kg/m3	Volumen Are		379	Agua	22,20	
			D. Conc. Fres. =	2264	kg/m3.		Volumen Rip	io (lts) =	190	Finos (kg/m3) =	576	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

MEZCLA: HACGA350-002	RESISTEN	ICIA HORI	MIGÓN = 350	KG/CM2								
(00-02)					A - CHENC	CA; ARENA =	IIIRONES (L	IEREDIA	· PIPIO -	RA" ILIBONI	ES (HERE	DIA)
(00-02)	MATERIAL	LO. OLIII				EC); PUZOLA		ILIKEDIA	,, Kii 10 = 1	3/4 GODON	LO (IILIKE	DIA)
	FECHA FI	ARORAC	IÓN = 27/09/2	011								
	LOUAL	ADOILAG	1014 - 21/03/2	J					18			
С	ONSTANT	S DE LOS	MATERIALE	S		MATE	ERIALES /M3		- 10	MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					495	495	159,68	8,910	8,910		8,910
AGUA	1,00					258	217	217,00	4,640	3,906		3,937
ARENA	2,72	2,59	2,51	3,14		961	992	383,00	17,304	17,847	3,78	17,958
RIPIO 3/4"	2,73	2,64	2,58	2,14		495	506	192,00	8,916	9,107	0,50	8,961
ADITEC SF-106 (2,0%)	1,17					9,90	9,90	8,46		0,178		0,178
PUZOLANA (10%)	2,71	2,54	2,44	4,12		49,50	51,54	20,29	0,891	0,928	4,58	0,932
AIRE								20,00				
TOTAL						2269	2271	1000				
						2270		1000				
Relación W/C =	0,438		Cap. paso (PA)=	0,91	>= 0,75							
ESCURR. (T500) = VS =	1,48	S.	Relac. VS/VF =	0,29	<= 2		Pr + Ps =	1458				
ASENTAMIENTO (SF) =	690	520 - 700									Diseño	
VISCOSIDAD (VF) =	5,19	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	19,20	
			Vol. Prob. =	1571	1571	cc.	Peso de Are	ena (kg) =	962	Fracc. Pasta (%)	40,51	
Observaciones:	buena mezd	a	Peso =	3660	3632	gr.	Peso de Rip		496	Fracc. Mort. (%)	78,84	
	no exuda		Densidad =	2330	2312	kg/m3	Volumen Are	ena (lts) =	383	Agua	21,70	
			D. Conc. Fres. =	2321	kg/m3.		Volumen Rip	oio (lts) =	192	Finos (kg/m3) =	582	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA		CURVA DE							
	Arena	Ripio		Y1	AJUSTE	SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66]	
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34]	
# 4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431					
#16	75,32			48,00	49,71	SUM. A2*A3 =	0					
# 30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5.92			20.00	3.91	SUM. A3*Y1 =	0	1				

			DOSIFICA	CION HO	RMIGON	AUTOCOM	IPACTANT	E (HAC)			
MEZCLA: HACGA350-003	RESISTE	NCIA HORI	MIGÓN = 350	KG/CM2								
(OO-03)					A = CUENC	CA; ARENA =	JUBONES (F	IFREDIA	· RIPIO - 1	R/A" .IURONE	S (HERE	DIA)
(00 00)	IIIA I EIGH	LLO. OLIII				EC); PUZOLA		LICEDIA	,, itil 10 = i	J- 00D0111	- C (I I L I K L	Dirij
			7.5	J 20 0.		-0,, . 0202/						
	FECHA E	LABORAC	ÓN = 29/09/2	011								
									18			
С	ONSTANT	ES DE LOS	MATERIALE	S		MATE	RIALES /M3			MATERIALE	S/18 LTS	
	DENS.	DENS.	DENS.	ABS.		PESO	PESO S.S.S.	VOL. AP.	PESO SECO	PESO S.S.S.	HUM. NAT.	PESO HUM.
	ABS.	S.S.S.	APAR.	%		KG.	KG.	LTS.	KG.	KG.	%	KG
CEMENTO GUAPÁN	3,10					510	510	164,52	9,180	9,180		9,180
AGUA	1,00					269	229	229,00	4,836	4,122		4,052
ARENA	2,72	2,59	2,51	3,14		934	963	372,00	16,807	17,335	4,38	17,543
RIPIO 3/4"	2,73	2,64	2,58	2,14		482	493	187,00	8,684	8,870	0,50	8,728
ADITEC SF-106 (1,50%)	1,17					7,65	7,65	6,54		0,138		0,138
PUZOLANA (10%)	2,71	2,54	2,44	4,12		51,00	53,10	20,90	0,918	0,956	4,55	0,960
AIRE								20,00				
TOTAL						2253	2256	1000				
						2253		1000				
Relación W/C =	0,449		Cap. paso (PA)=	0,76	>= 0,75							
ESCURR. (T500) = VS =	2,69	S.	Relac. VS/VF =	0,90	<= 2		Pr + Ps =	1416				
ASENTAMIENTO (SF) =	550	520 - 700									Diseño	
VISCOSIDAD (VF) =	2,98	<=10 S.					Ps/Pr (peso))=	1,941	Vol. Ripio (%) =	18,70	
			Vol. Prob. =	1571	1571	CC.	Peso de Are	ena (kg) =	934	Fracc. Pasta (%)	42,01	
Observaciones:			Peso =	3619	3607	gr.	Peso de Rip		481	Fracc. Mort. (%) :	79,30	
			Densidad =	2304	2296	kg/m3	Volumen Are	()	372	Agua	22,90	ļ
			D. Conc. Fres. =	2300	kg/m3.		Volumen Rip	oio (lts) =	187	Finos (kg/m3) =	597	
	A1	A2	A3	Y1								
TAMIZ	% PASA	% PASA	% PASA	AJUSTE	CURVA DE							
	Arena	Ripio		Y1		SUM. A1*A1 =	46805					
3/4"	100,00	95,30		100,00	98,40	SUM. A1*A2 =	11533	Arena =	0,676	0,66		
3/8"	100,00	18,64		78,00	72,34	SUM. A1*A3 =	0	Ripio =	0,348	0,34		
#4	98,93	1,29		65,00	65,73	SUM. A1*Y1 =	35636	suma =	1,024			
#8	90,84	0,13		55,00	60,00	SUM. A2*A2 =	9431	-				
# 16	75,32			48,00	49,71	SUM. A2*A3 =	0	-				
#30	51,16			40,00	33,76	SUM. A2*Y1 =	11075					
# 50	20,98			30,00	13,85	SUM. A3*A3 =	0					
# 100	5,92			20,00	3,91	SUM. A3*Y1 =	0					

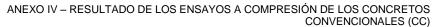
ANEXO IV

RESULTADO DE LOS ENSAYOS A COMPRESIÓN DE LOS CONCRETOS CONVENCIONALES (CC)

Pág.

RESULTADO DE LOS ENSAYOS A COMPRESIÓN DE LOS CONCRETOS CONVENCIONALES (CC)

154 – 156

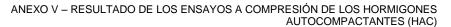

-0				LABOR	ATORIO DE S	HELOS V CO	NCDETOS			
				LABUK			JNCKETUS			
 ■, ·					"(CC"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUT	OCOMPACTANTE								
STUDIANTE:	IVÁN CAÑIZARE	S								
IPO:	CONCRETO CO	NVENCIONAL								
HOJA N° =	1		DIÁMETRO =	10,00	CM.					
			ÁREA = VOLUMEN =	78,54 1571	CM2.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
		CONFECC.	ROTURA	días	gr.	Kg/m ³	Lb.	Kg/cm ²	Kg/cm2	
A	CCHS250-002	01-jul-11	08-jul-11	7	3698	2354	21000	121	127	Con Viscocrete 2100 R
Α	CCHS250-002	01-jul-11	08-jul-11	7	3723	2370	23000	133		
Α	CCHS250-002	01-jul-11	15-jul-11	14	3685	2346	35000	202	198	
Α	CCHS250-002	01-jul-11	15-jul-11	14	3688	2348	33500	194		
Α	CCHS250-002	01-jul-11	29-jul-11	28	3728	2373	47000	272	270	
Α	CCHS250-002	01-jul-11	29-jul-11	28	3688	2348	46500	269		
В	CCHS350-001	01-jul-11	08-jul-11	7	3671	2337	30500	176	179	Con Viscocrete 2100 R
В	CCHS350-001	01-jul-11	08-jul-11	7	3738	2380	31500	182		
В	CCHS350-001	01-jul-11	15-jul-11	14	3752	2389	53000	306	302	
В	CCHS350-001	01-jul-11	15-jul-11	14	3728	2373	51500	298		
В	CCHS350-001	01-jul-11	29-jul-11	28	3713	2364	64000	370	365	
В	CCHS350-001	01-jul-11	29-jul-11	28	3713	2364	62500	361		

\circ				LABORA	TORIO DE SI	JELOS Y CO	NCRETOS			
)					"(C"				
		Lab.: Ciudade la CICA (Monay)	TELF. 098995111							
			EN	SAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	го		
ESIS:	HORMIGÓN AUT	OCOMPACTANTE								
	IVÁN CAÑIZARE									
IPO:	CONCRETO CO	NVENCIONAL								
IOJA N° =	2		DIÁMETRO =	10,00	CM.					
			ÁREA =	78,54	CM2.					
			VOLUMEN =	1571	CM3.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
С	CCHS250-003	05-jul-11	12-jul-11	7	3679	2342	32000	185	179	Con Viscocrete 2100
С	CCHS250-003	05-jul-11	12-jul-11	7	3695	2352	30000	173		
С	CCHS250-003	05-jul-11	19-jul-11	14	3680	2343	39500	228	225	
С	CCHS250-003	05-jul-11	19-jul-11	14	3720	2368	38500	222		
С	CCHS250-003	05-jul-11	02-ago-11	28	3697	2354	48000	277	273	
С	CCHS250-003	05-jul-11	02-ago-11	28	3700	2355	46500	269		
D	CCHS350-002	05-jul-11	12-jul-11	7	3706	2359	49000	283	279	Con Viscocrete 2100
D	CCHS350-002	05-jul-11	12-jul-11	7	3683	2345	47500	274		
D	CCHS350-002	05-jul-11	19-jul-11	14	3704	2358	58500	338	341	
D	CCHS350-002	05-jul-11	19-jul-11	14	3727	2373	59500	344		
D	CCHS350-002	05-jul-11	02-ago-11	28	3698	2354	65000	376	371	
D	CCHS350-002	05-jul-11	02-ago-11	28	3723	2370	63500	367		

()				LABOR	ATORIO DE S	IEI OS V O	NODETOS			
\subseteq				LABOR			NCRETOS			
- - - 		Lab.: Ciudadela CICA (Monay)	TELF, 098995111		"(CC"				
		cab Citidadela CiCA (moliay)	TELF: 090990111							
			EN	SAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	го		
TESIS:	HORMIGÓN AUT	TOCOMPACTANTE								
ESTUDIANTE:	IVÁN CAÑIZARE	:S								
TIPO:	CONCRETO CO	NVENCIONAL								
HOJA N° =	3		DIÁMETRO =	10,00	CM.					
			ÁREA = VOLUMEN =	78,54 1571	CM2. CM3.					
			VOLUMEN =	1571	CM3.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
HOMEHOE.		CONFECC.	ROTURA	días	gr.	Kg/m ³	Lb.	Kg/cm ²	Kg/cm2	
Н	CCGS350-002	13-jul-11	20-jul-11	7	3741	2382	46000	266	261	
Н	CCGS350-002	13-jul-11	20-jul-11	7	3739	2380	44500	257		
Н	CCGS350-002	13-jul-11	27-jul-11	14	3742	2382	55500	320	318	
Н	CCGS350-002	13-jul-11	27-jul-11	14	3760	2394	54500	315		
Н	CCGS350-002	13-jul-11	10-ago-11	28	3751	2388	61500	355	359	
Н	CCGS350-002	13-jul-11	10-ago-11	28	3769	2399	63000	364		
I	CCGS250-003	13-jul-11	20-jul-11	7	3671	2337	29000	167	169	
I	CCGS250-003	13-jul-11	20-jul-11	7	3672	2338	29500	170		
- 1	CCGS250-003	13-jul-11	27-jul-11	14	3687	2347	34500	199	195	
I	CCGS250-003	13-jul-11	27-jul-11	14	3683	2345	33000	191		
I	CCGS250-003	13-jul-11	10-ago-11	28	3660	2330	45000	260	263	
I	CCGS250-003	13-jul-11	10-ago-11	28	3678	2341	46000	266		

						CC"				
	l l	.ab.: Ciudadela CICA (Monay)	TELF. 098996111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUTO									
	IVÁN CAÑIZARES									
TIPO:	CONCRETO CON	IVENCIONAL	,							
HOJA N° =	4		DIÁMETRO = ÁRFA =	10,00 78,54	CM CM2.					
			VOLUMEN =	1571	CMB.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOWIENCE.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
L	CCHA250-001	25-ago-11	01-sep-11	7	3706	2359	31500	182	186	
L	CCHA250-001	25-ago-11	01-sep-11	7	3657	2328	33000	191		
L	CCHA250-001	25-ago-11	08-sep-11	14	3653	2326	43500	251	247	
L	CCHA250-001	25-ago-11	08-sep-11	14	3686	2347	42000	243		
L	CCHA250-001	25-ago-11	22-sep-11	28	3695	2352	47500	274	268	
L	CCHA250-001	25-ago-11	22-sep-11	28	3720	2368	46000	266		
L	CCHA250-001	25-ago-11	22-sep-11	28	3721	2369	45500	263		
M	CCHA350-001	25-ago-11	01-sep-11	7	3690	2349	45000	260	256	
М	CCHA350-001	25-ago-11	01-sep-11	7	3683	2345	43500	251		
М	CCHA350-001	25-ago-11	08-sep-11	14	3672	2338	53500	309	318	
М	CCHA350-001	25-ago-11	08-sep-11	14	3671	2337	56500	326		-
М	CCHA350-001	25-ago-11	22-sep-11	28	3654	2326	64500	372	366	
М	CCHA350-001	25-ago-11	22-sep-11	28	3722	2369	63000	364		
М	CCHA350-001	25-ago-11	22-sep-11	28	3672	2338	62500	361		

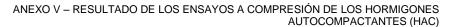
0				LABOR	ATORIO DE S	UELOS Y CO	NCRETOS			
.						CC"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	SAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUT	OCOMPACTANTE								
STUDIANTE:	IVÁN CAÑIZARE	S								
IPO:	CONCRETO CO									
IOJA N° =	5		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54 1571	CM2. CM3.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.	MEZULA	CONFECC.	ROTURA	días	gr.	Kg/m ³	Lb.	Kg/cm ²	Kg/cm2	OBSERVACIONES
N	CCGA250-001	26-ago-11	02-sep-11	7	3656	2327	31500	182	185	
N	CCGA250-001	26-ago-11	02-sep-11	7	3692	2350	32500	188		
N	CCGA250-001	26-ago-11	09-sep-11	14	3687	2347	34000	196	201	
N	CCGA250-001	26-ago-11	09-sep-11	14	3655	2327	35500	205		
N	CCGA250-001	26-ago-11	23-sep-11	28	3675	2340	48000	277	273	
N	CCGA250-001	26-ago-11	23-sep-11	28	3686	2347	46500	269		
N	CCGA250-001	26-ago-11	23-sep-11	28	3666	2334	47500	274		
0	CCGA350-001	26-ago-11	02-sep-11	7	3658	2329	42500	245	251	
0	CCGA350-001	26-ago-11	02-sep-11	7	3649	2323	44500	257		·
0	CCGA350-001	26-ago-11	09-sep-11	14	3637	2315	51000	294	307	
0	CCGA350-001	26-ago-11	09-sep-11	14	3631	2312	55500	320		
0	CCGA350-001	26-ago-11	23-sep-11	28	3654	2326	61000	352	361	
0	CCGA350-001	26-ago-11	23-sep-11	28	3651	2324	62500	361		
0	CCGA350-001	26-ago-11	23-sep-11	28	3644	2320	64000	370		



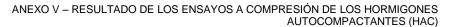
ANEXO V

RESULTADO DE LOS ENSAYOS A COMPRESIÓN DE LOS HORMIGONES AUTOCOMPACTANTES (HAC)

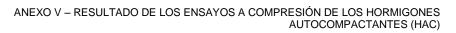
Pág.


RESULTADO DE LOS ENSAYOS A COMPRESIÓN DE LOS 158 - 163 HORMIGONES AUTOCOMPACTANTES (HAC)

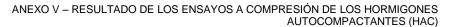
0				LABORA	TORIO DE SI	JELOS Y CO	NCRETOS			
.					"6	:C"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	SAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRET	го		
TESIS:	HODMICÓN ALIZ	TOCOMPACTANTE								
TIPO:	HAC									
HOJA N° =	1		DIÁMETRO =	10,00	CM.					
			ÁREA =	78,54	CM2.					
			VOLUMEN =	1571	CM3.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
AA-05	HACHS250-005	20-jul-11	27-jul-11	7	3242	2064	13500	78	74	Cilindros porosos todos
AA-05	HACHS250-005	20-jul-11	27-jul-11	7	3235	2059	12000	69		
AA-05	HACHS250-005	20-jul-11	03-ago-11	14	3292	2096	14000	81	82	
AA-05	HACHS250-005	20-jul-11	03-ago-11	14	3231	2057	14500	84		
AA-05	HACHS250-005	20-jul-11	17-ago-11	28	3301	2101	20000	115	115	
AA-05	HACHS250-005	20-jul-11	17-ago-11	28	3251	2070	20500	118		
AA-05	HACHS250-005	20-jul-11	17-ago-11	28	3410	2171	19500	113		
BB-01	HACHS350-001	20-jul-11	27-jul-11	7	3410	2171	25500	147	153	Cilindros porosos todos
BB-01	HACHS350-001	20-jul-11	27-jul-11	7	3370	2145	27500	159		
BB-01	HACHS350-001	20-jul-11	03-ago-11	14	3439	2189	33500	193	201	
BB-01	HACHS350-001	20-jul-11	03-ago-11	14	3427	2182	36000	208		
BB-01	HACHS350-001	20-jul-11	17-ago-11	28	3445	2193	41000	237	252	
BB-01	HACHS350-001	20-jul-11	17-ago-11	28	3454	2199	46500	269		
BB-01	HACHS350-001	20-jul-11	17-ago-11	28	3460	2203	43500	251		


					"	CC"				
		Lab.: Ciudadela CICA (Monay	TELF. 098995111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUT	OCOMPACTANTE								
STUDIANTE:	IVÁN CAÑIZARE	S								
IPO:	HAC									
IOJA N° =	2		DIÁMETRO =	10,00	CM.					
			ÁREA =	78,54	CM2.					
			VOLUMEN =	1571	CM3.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
AA-06	HACHS250-006	26-jul-11	02-ago-11	7	3400	2165	14500	84	88	CILINDROS POROSOS TODOS
AA-06	HACHS250-006	26-jul-11	02-ago-11	7	3394	2161	16000	92		
AA-06	HACHS250-006	26-jul-11	09-ago-11	14	3436	2187	19000	110	113	
AA-06	HACHS250-006	26-jul-11	09-ago-11	14	3413	2173	20000	115		
AA-06	HACHS250-006	26-jul-11	23-ago-11	28	3444	2193	23500	136	137	
AA-06	HACHS250-006	26-jul-11	23-ago-11	28	3427	2182	21000	121		
AA-06	HACHS250-006	26-jul-11	23-ago-11	28	3436	2187	26500	153		
BB-02	HACHS350-002	26-jul-11	02-ago-11	7	3314	2110	19500	113	108	CILINDROS POROSOS TODOS
BB-02	HACHS350-002	26-jul-11	02-ago-11	7	3281	2089	18000	104		
BB-02	HACHS350-002	26-jul-11	09-ago-11	14	3286	2092	23500	136	133	
BB-02	HACHS350-002	26-jul-11	09-ago-11	14	3279	2087	22500	130		
BB-02	HACHS350-002	26-jul-11	23-ago-11	28	3276	2086	29000	167	172	
BB-02	HACHS350-002	26-jul-11	23-ago-11	28	3332	2121	30500	176		
BB-02	HACHS350-002	26-jul-11	23-ago-11	28	3284	2091	30000	173		

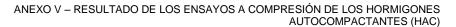
0				LABORA	TORIO DE SU	JELOS Y CO	ONCRETOS			
1					"C	C"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
[5 -			- FN	CAVO A LA	COMPRESIÓNIA	DE CIL INDDO	S DE CONCRE	TO.		
			EN	SATUALA	JUMPRESION	JE CILINDRO	DE CUNCRE	10		
TESIS:		TOCOMPACTANTE								
	IVÁN CAÑIZARE	S								
TIPO:	HAC									
HOJA N° =	3		DIÁMETRO = ÁRFA =	10,00 78.54	CMP					
			VOLUMEN =	1571	CM2.					
				EDAD						
NOMENCL.	MEZCLA	FECHA CONFECC.	FECHA ROTURA	días	PESO gr.	DENSIDAD Kg/m³	C. ROTURA Lb.	F. ROTURA Kg/cm ²	F.ROT. PROM. Kg/cm2	OBSERVACIONES
AA-07	HACHS250-007	08-ago-11	15-ago-11	7	2995	1907	9000	52	51	Cilindros porosos
									31	Olimbros porosos
AA-07	HACHS250-007		15-ago-11	7	3006	1914	8500	49		
AA-07	HACHS250-007	08-ago-11	22-ago-11	14	3010	1916	13500	78	81	
AA-07	HACHS250-007	08-ago-11	22-ago-11	14	3060	1948	14500	84		
AA-07	HACHS250-007	08-ago-11	05-sep-11	28	3043	1937	20000	115	114	
AA-07	HACHS250-007	08-ago-11	05-sep-11	28	3128	1991	19000	110		
AA-07	HACHS250-007	08-ago-11	05-sep-11	28	3032	1930	20000	115		
BB-03	HACHS350-003	08-ago-11	15-ago-11	7	3081	1961	17000	98	100	Cilindros porosos
BB-03	HACHS350-003	08-ago-11	15-ago-11	7	3036	1933	17500	101		
BB-03	HACHS350-003	08-ago-11	22-ago-11	14	3039	1935	24000	139	136	
BB-03	HACHS350-003	08-ago-11	22-ago-11	14	3007	1914	23000	133		
BB-03	HACHS350-003	08-ago-11	05-sep-11	28	3028	1928	26500	153	151	
BB-03	HACHS350-003	08-ago-11	05-sep-11	28	3083	1963	27000	156		
BB-03	HACHS350-003	08-ago-11	05-sep-11	28	2987	1902	25000	144		


						CC"				
	L	.ab.: Ciudadela CICA (Monay	TELF. 098995111							
	· · · · · · · · · · · · · · · · · · ·		EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
TESIS:	HORMIGÓN AUTO	DCOMPACTANTE								
ESTUDIANTE:	IVÁN CAÑIZARES	3								
TIPO:	HAC									
HOJA N° =	4		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54 1571	CM2. CM3.					
NOMENCL.	MEZCLA	FECHA CONFECC.	FECHA ROTURA	EDAD días	PESO	DENSIDAD Kg/m³	C. ROTURA Lb.	F. ROTURA Kg/cm ²	F.ROT. PROM.	OBSERVACIONES
HH-02	HACGS350-002	09-ago-11	16-ago-11	dias 7	gr. 3076	1958	10000	58	Kg/cm2 52	
				1					32	
HH-02	HACGS350-002	09-ago-11	16-ago-11	7	3121	1987	8000	46		
HH-02	HACGS350-002	09-ago-11	23-ago-11	14	3092	1968	18500	107	104	
HH-02	HACGS350-002	09-ago-11	23-ago-11	14	3099	1973	17500	101		
HH-02	HACGS350-002	09-ago-11	06-sep-11	28	3120	1986	23500	136	137	
HH-02	HACGS350-002	09-ago-11	06-sep-11	28	3144	2002	24000	139		
HH-02	HACGS350-002	09-ago-11	06-sep-11	28	3112	1981	23500	136		
II-04	HACGS250-004	09-ago-11	16-ago-11	7	3015	1919	7000	40	42	
II-04	HACGS250-004	09-ago-11	16-ago-11	7	3103	1975	7500	43		
II-04	HACGS250-004	09-ago-11	23-ago-11	14	3095	1970	12500	72	68	
II-04	HACGS250-004	09-ago-11	23-ago-11	14	3016	1920	11000	64		
II-04	HACGS250-004	09-ago-11	06-sep-11	28	3090	1967	15000	87	95	
II-04	HACGS250-004	09-ago-11	06-sep-11	28	3103	1975	17000	98		
II-04	HACGS250-004	09-ago-11	06-sep-11	28	3050	1942	17500	101		

0				LABORA	TORIO DE SI	JELOS Y CO	NCRETOS			
1 :					"(:C"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111		`					
(
			EN	SAYO A LA (COMPRESIÓN	DE CILINDRO	S DE CONCRET	ГО		
TESIS:	HORMIGÓN AUT	FOCOMPACTANTE								
	IVÁN CAÑIZARE	S								
	HAC									
HOJA N° =	5		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54	CM2.					
			VOLUMEN =	1571	CMS.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
		CONFECC.	ROTURA	días	gr.	Kg/m ³	Lb.	Kg/cm ²	Kg/cm2	
HH-03	HACGS350-003	10-ago-11	17-ago-11	7	3466	2207	19500	113	117	Con microsítica
HH-03	HACGS350-003	10-ago-11	17-ago-11	7	3440	2190	21000	121		
HH-03	HACGS350-003	10-ago-11	24-ago-11	14	3491	2222	26500	153	159	
HH-03	HACGS350-003	10-ago-11	24-ago-11	14	3518	2240	28500	165		
HH-03	HACGS350-003	10-ago-11	07-sep-11	28	3505	2231	35000	202	205	
HH-03	HACGS350-003	10-ago-11	07-sep-11	28	3470	2209	36500	211		
HH-03	HACGS350-003	10-ago-11	07-sep-11	28	3469	2208	35000	202		
II-05	HACGS250-005	10-ago-11	17-ago-11	7	3516	2238	17000	98	101	Con microsítica
II-05	HACGS250-005	10-ago-11	17-ago-11	7	3494	2224	18000	104		
II-05	HACGS250-005	10-ago-11	24-ago-11	14	3454	2199	25000	144	144	
II-05	HACGS250-005	10-ago-11	24-ago-11	14	3509	2234	25000	144		
II-05	HACGS250-005	10-ago-11	07-sep-11	28	3505	2231	31500	182	190	•
II-05	HACGS250-005	10-ago-11	07-sep-11	28	3501	2229	34500	199		
II-05	HACGS250-005	10-ago-11	07-sep-11	28	3531	2248	32500	188		
		•								


						CC"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
			El	SAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUT	OCOMPACTANTE								
STUDIANTE:	IVÁN CAÑIZARE	S								
IPO:	HAC									
IOJA N° =	6		DIÁMETRO =	10,00	CM					
			ÁREA =	78,54	CM2.					
			VOLUMEN =	1571	CMB.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
BB-04	HACHS350-004	16-ago-11	23-ago-11	7	3558	2265	46000	266	270	Con microsilica
BB-04	HACHS350-004	16-ago-11	23-ago-11	7	3536	2251	47500	274		
BB-04	HACHS350-004	16-ago-11	30-ago-11	14	3528	2246	54000	312	309	
BB-04	HACHS350-004	16-ago-11	30-ago-11	14	3539	2253	53000	306		
BB-04	HACHS350-004	16-ago-11	13-sep-11	28	3517	2239	66500	384	376	
BB-04	HACHS350-004	16-ago-11	13-sep-11	28	3540	2254	64000	370		
BB-04	HACHS350-004	16-ago-11	13-sep-11	28	3522	2242	65000	375		
AA-08	HACHS250-008	01-sep-11	08-sep-11	7	3522	2242	25000	144	146	Con microsilica
AA-08	HACHS250-008	01-sep-11	08-sep-11	7	3478	2214	25500	147		
AA-08	HACHS250-008	01-sep-11	15-sep-11	14	3519	2240	34500	199	204	
AA-08	HACHS250-008	01-sep-11	15-sep-11	14	3527	2245	36000	208		
AA-08	HACHS250-008	01-sep-11	29-sep-11	28	3517	2239	46000	266	261	
AA-08	HACHS250-008	01-sep-11	29-sep-11	28	3482	2217	45000	260		
AA-08	HACHS250-008	01-sep-11	29-sep-11	28	3522	2242	44500	257		

0				LABOR	ATORIO DE S	UELOS Y CO	NCRETOS			
						CC"				
	L	ab.: Ciudadela CICA (Monay	TELF. 098995111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN AUTO	COMPACTANTE								
STUDIANTE:	IVÁN CAÑIZARES	1								
IPO:	HAC									
OJA N° =	7		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54 1571	CM2. CM3.					
NOMENCL.	MEZCLA	FECHA CONFECC.	FECHA ROTURA	EDAD días	PESO	DENSIDAD Kg/m ³	C. ROTURA Lb.	F. ROTURA Kg/cm ²	F.ROT. PROM. Kg/cm2	OBSERVACIONES
LL-03	HACHA250-003	05-sep-11	12-sep-11	dias 7	gr. 3534	2250	33500	193	199	
									199	
LL-03	HACHA250-003	05-sep-11	12-sep-11	7	3551	2261	35500	205		
LL-03	HACHA250-003	05-sep-11	19-sep-11	14	3544	2256	38000	219	224	
LL-03	HACHA250-003	05-sep-11	19-sep-11	14	3577	2277	39500	228		
LL-03	HACHA250-003	05-sep-11	03-oct-11	28	3578	2278	47500	274	268	
LL-03	HACHA250-003	05-sep-11	03-oct-11	28	3584	2282	46000	266		
LL-03	HACHA250-003	05-sep-11	03-oct-11	28	3548	2259	45500	263		
MM-02	HACHA350-002	05-sep-11	12-sep-11	7	3564	2269	47000	271	267	
MM-02	HACHA350-002	05-sep-11	12-sep-11	7	3581	2280	45500	263		
MM-02	HACHA350-002	05-sep-11	19-sep-11	14	3581	2280	52500	303	312	
MM-02	HACHA350-002	05-sep-11	19-sep-11	14	3602	2293	55500	320		
MM-02	HACHA350-002	05-sep-11	03-oct-11	28	3587	2284	64000	370	372	
MM-02	HACHA350-002	05-sep-11	03-oct-11	28	3573	2275	66000	381		
MM-02	HACHA350-002	05-sep-11	03-oct-11	28	3596	2289	63500	367		


						CC"				
	ı	.ab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
ESIS:	HORMIGÓN ALIT	OCOMPACTANTE								
	IVÁN CAÑIZARES									
ГІРО:	HAC									
HOJA N° =	8		DIÁMETRO =	10,00	CM.					
			ÁREA = VOLUMEN =	78,54 1571	CM2.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.	MEZCLA	CONFECC.	ROTURA	días	gr.	Kg/m ³	Lb.	Kg/cm ²	Kg/cm2	OBSERVACIONES
NN-01	HACGA250-001	06-sep-11	13-sep-11	7	3554	2263	33000	191	186	
NN-01	HACGA250-001	06-sep-11	13-sep-11	7	3550	2260	31500	182		
NN-01	HACGA250-001	06-sep-11	20-sep-11	14	3557	2264	37500	217	221	
NN-01	HACGA250-001	06-sep-11	20-sep-11	14	3542	2255	39000	225		
NN-01	HACGA250-001	06-sep-11	04-oct-11	28	3544	2256	46000	266	271	
NN-01	HACGA250-001	06-sep-11	04-oct-11	28	3555	2263	47500	274		
NN-01	HACGA250-001	06-sep-11	04-oct-11	28	3512	2236	47500	274		
00-01	HACGA350-001	06-sep-11	13-sep-11	7	3555	2263	48000	277	284	
00-01	HACGA350-001	06-sep-11	13-sep-11	7	3553	2262	50500	292		
00-01	HACGA350-001	06-sep-11	20-sep-11	14	3583	2281	57500	332	325	
00-01	HACGA350-001	06-sep-11	20-sep-11	14	3618	2303	55000	318		
00-01	HACGA350-001	06-sep-11	04-oct-11	28	3571	2273	60500	349	358	
00-01	HACGA350-001	06-sep-11	04-oct-11	28	3562	2268	64000	370		
00-01	HACGA350-001	06-sep-11	04-oct-11	28	3575	2276	61500	355		

0				LABORA	TORIO DE SU	JELOS Y CO	NCRETOS			
					"C	C"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098996111							
			EN	SAVOALA	OMDDESIÓN	DE CII INDDO	S DE CONCRET	ΓN		
				OAI O A LA	JOHN REGION	DE OILINDING	O DE CONORE			
		TOCOMPACTANTE								
	IVÁN CAÑIZARE	S								
	HAC									
HOJA N° =	9		DIÁMETRO =	10,00	CM.					
			ÁREA = VOLUMEN =	78,54 1571	CM2.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
II-06	HACGS250-006	10-sep-11	17-sep-11	7	3572	2274	30500	176	173	
II-06	HACGS250-006	10-sep-11	17-sep-11	7	3560	2266	29500	170		
II-06	HACGS250-006	10-sep-11	24-sep-11	14	3573	2275	37000	214	222	
II-06	HACGS250-006	10-sep-11	24-sep-11	14	3625	2308	40000	231		
II-06	HACGS250-006	10-sep-11	08-oct-11	28	3585	2282	44500	257	266	
II-06	HACGS250-006	10-sep-11	08-oct-11	28	3576	2277	47500	274		
II-06	HACGS250-006	10-sep-11	08-oct-11	28	3571	2273	46000	266		
HH-04	HACGS350-004	10-sep-11	17-sep-11	7	3582	2280	37500	217	214	
HH-04	HACGS350-004	10-sep-11	17-sep-11	7	3611	2299	36500	211		
HH-04	HACGS350-004	10-sep-11	24-sep-11	14	3592	2287	46000	266	270	
HH-04	HACGS350-004	10-sep-11	24-sep-11	14	3604	2294	47500	274		
HH-04	HACGS350-004	10-sep-11	08-oct-11	28	3634	2313	60500	349	357	
HH-04	HACGS350-004	10-sep-11	08-oct-11	28	3641	2318	63000	364		
HH-04	HACGS350-004	10-sep-11	08-oct-11	28	3628	2310	62000	358		

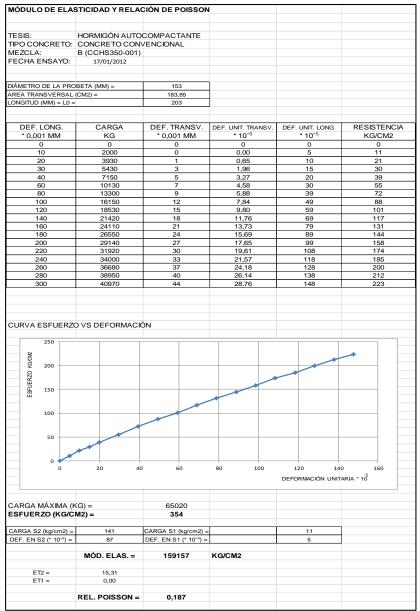
						CC"				
	L	ab.: Ciudadela CICA (Monay	TELF. 098995111							
	1		EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
TESIS:	HORMIGÓN AUT	OCOMPACTANTE								
ESTUDIANTE:	IVÁN CAÑIZARES	3								
TIPO:	HAC									
HOJA N° =	10		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54 1571	CM2.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCE.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
LL-04	HACHA250-004	15-sep-11	22-sep-11	7	3543	2256	32500	188	191	
LL-04	HACHA250-004	15-sep-11	22-sep-11	7	3596	2289	33500	193		
LL-04	HACHA250-004	15-sep-11	29-sep-11	14	3585	2282	35000	202	206	
LL-04	HACHA250-004	15-sep-11	29-sep-11	14	3584	2282	36500	211		
LL-04	HACHA250-004	15-sep-11	13-oct-11	28	3610	2298	48500	280	274	
LL-04	HACHA250-004	15-sep-11	13-oct-11	28	3602	2293	46000	266		
LL-04	HACHA250-004	15-sep-11	13-oct-11	28	3611	2299	48000	277		
MM-03	HACHA350-003	15-sep-11	22-sep-11	7	3578	2278	45500	263	260	
MM-03	HACHA350-003	15-sep-11	22-sep-11	7	3595	2289	44500	257		
MM-03	HACHA350-003	15-sep-11	29-sep-11	14	3582	2280	55000	318	315	
MM-03	HACHA350-003	15-sep-11	29-sep-11	14	3587	2284	54000	312		
MM-03	HACHA350-003	15-sep-11	13-oct-11	28	3601	2292	65500	378	377	
MM-03	HACHA350-003	15-sep-11	13-oct-11	28	3628	2310	64000	370		
MM-03	HACHA350-003	15-sep-11	13-oct-11	28	3582	2280	66500	384		

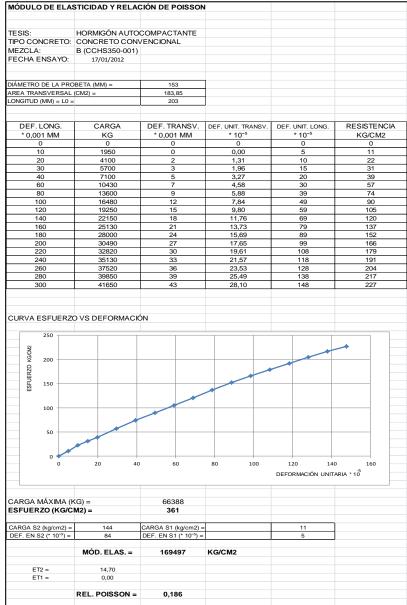
0				LABORA	TORIO DE SU	JELOS Y CO	NCRETOS			
					"C	C"				
		Lab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	SAVOALAC	OMBDESIÓNI	DE CII INDDO	S DE CONCRET	rn.		
			LIV	JAIO ALAC	JOHN I NEGICIA	DE CILINDIO	3 DE CONCRE			
TESIS:		OCOMPACTANTE								
ESTUDIANTE: TIPO:	IVÁN CAÑIZARE HAC	S								
HOJA N° =	11		DIÁMETRO =	10.00	CM					
			ÁREA =	78.54	CM2.					
			VOLUMEN =	1571	CM3.					
	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
NOMENCL.		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
NN-02	HACGA250-002	27-sep-11	04-oct-11	7	3598	2291	30500	176	182	
NN-02	HACGA250-002	27-sep-11	04-oct-11	7	3629	2310	32500	188		
NN-02	HACGA250-002	27-sep-11	11-oct-11	14	3612	2299	38000	219	230	
NN-02	HACGA250-002	27-sep-11	11-oct-11	14	3616	2302	41500	240		
NN-02	HACGA250-002	27-sep-11	25-oct-11	28	3624	2307	46000	266	257	
NN-02	HACGA250-002	27-sep-11	25-oct-11	28	3619	2304	43500	251		
NN-02	HACGA250-002	27-sep-11	25-oct-11	28	3612	2299	44000	254		
00-02	HACGA350-002	27-sep-11	04-oct-11	7	3652	2325	49000	283	286	
00-02	HACGA350-002	27-sep-11	04-oct-11	7	3619	2304	50000	289		
00-02	HACGA350-002	27-sep-11	11-oct-11	14	3626	2308	56500	326	336	
00-02	HACGA350-002	27-sep-11	11-oct-11	14	3598	2291	60000	346		
00-02	HACGA350-002	27-sep-11	25-oct-11	28	3638	2316	66000	381	379	
00-02	HACGA350-002	27-sep-11	25-oct-11	28	3620	2305	63000	364		
00-02	HACGA350-002	27-sep-11	25-oct-11	28	3641	2318	68000	393		

						CC"				
	L	ab.: Ciudadela CICA (Monay)	TELF. 098995111							
			EN	ISAYO A LA	COMPRESIÓN	DE CILINDRO	S DE CONCRE	то		
TESIS:	HORMIGÓN AUTO	COMPACTANTE								
ESTUDIANTE:	IVÁN CAÑIZARES									
TIPO:	HAC									
HOJA N° =	12		DIÁMETRO =	10,00	CM					
			ÁREA = VOLUMEN =	78,54 1571	CM2. CM3.					
NOMENCL.	MEZCLA	FECHA	FECHA	EDAD	PESO	DENSIDAD Kutus ³	C. ROTURA	F. ROTURA	F.ROT. PROM.	OBSERVACIONES
		CONFECC.	ROTURA	días	gr.	Kg/m³	Lb.	Kg/cm ²	Kg/cm2	
NN-03	HACGA250-003	29-sep-11	06-oct-11	7	3597	2290	34000	196	192	
NN-03	HACGA250-003	29-sep-11	06-oct-11	7	3615	2301	32500	188		
NN-03	HACGA250-003	29-sep-11	13-oct-11	14	3613	2300	39500	228	234	
NN-03	HACGA250-003	29-sep-11	13-oct-11	14	3616	2302	41500	240		
NN-03	HACGA250-003	29-sep-11	27-oct-11	28	3627	2309	45500	263	260	
NN-03	HACGA250-003	29-sep-11	27-oct-11	28	3630	2311	46500	269		
NN-03	HACGA250-003	29-sep-11	27-oct-11	28	3625	2308	43000	248		
00-03	HACGA350-003	29-sep-11	06-oct-11	7	3625	2308	45000	260	261	
00-03	HACGA350-003	29-sep-11	06-oct-11	7	3611	2299	45500	263		
00-03	HACGA350-003	29-sep-11	13-oct-11	14	3622	2306	53500	309	302	-
00-03	HACGA350-003	29-sep-11	13-oct-11	14	3663	2332	51000	294		-
00-03	HACGA350-003	29-sep-11	27-oct-11	28	3637	2315	66500	384	374	
00-03	HACGA350-003	29-sep-11	27-oct-11	28	3639	2317	63000	364		
00-03	HACGA350-003	29-sep-11	27-oct-11	28	3633	2313	65000	375		

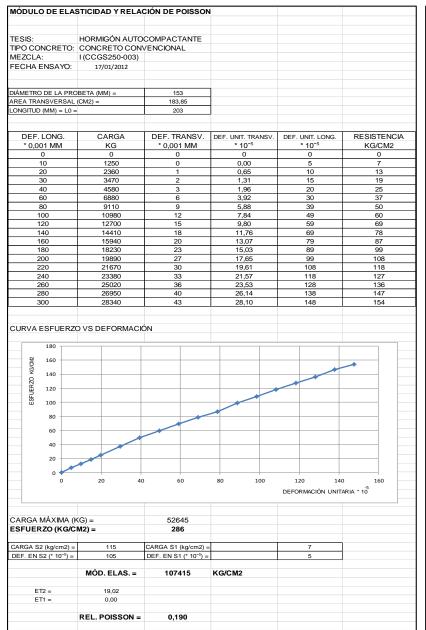
ANEXO VI

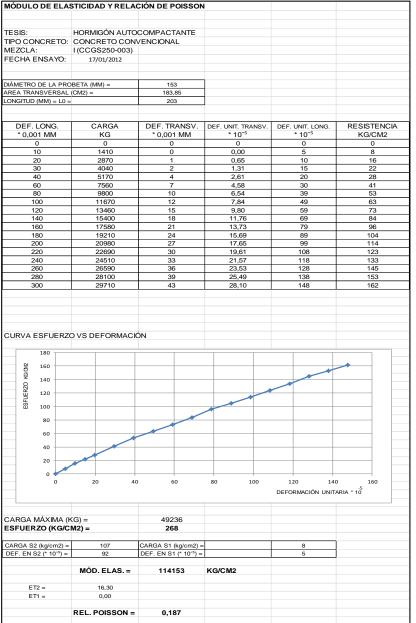
RESULTADO DE LOS ENSAYOS PARA DETERMINAR EL MÓDULO DE ELASTICIDAD Y LA RELACIÓN DE POISSON

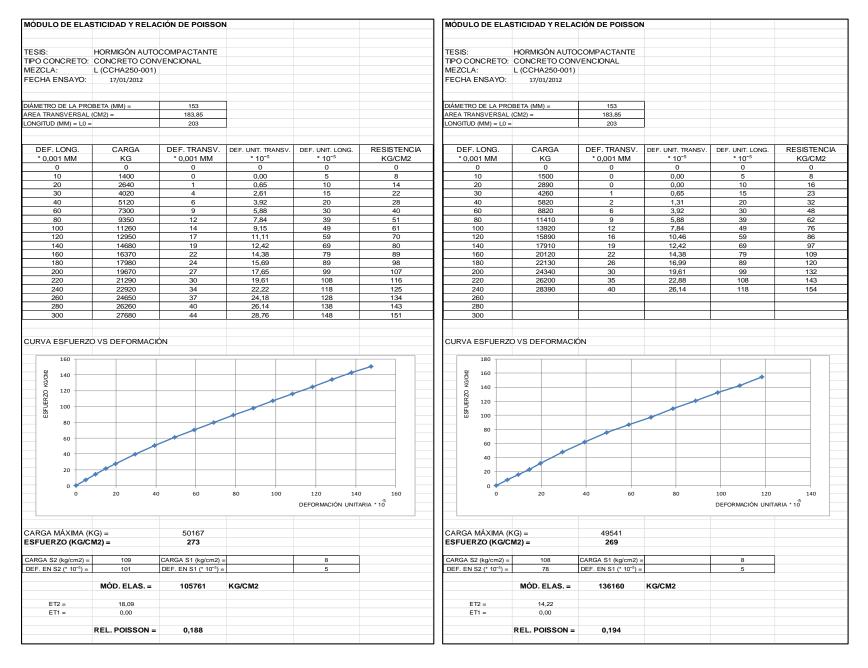

Pág.


RESULTADO DE LOS ENSAYOS PARA DETERMINAR EL MÓDULO DE ELASTICIDAD Y LA RELACIÓN DE POISSON

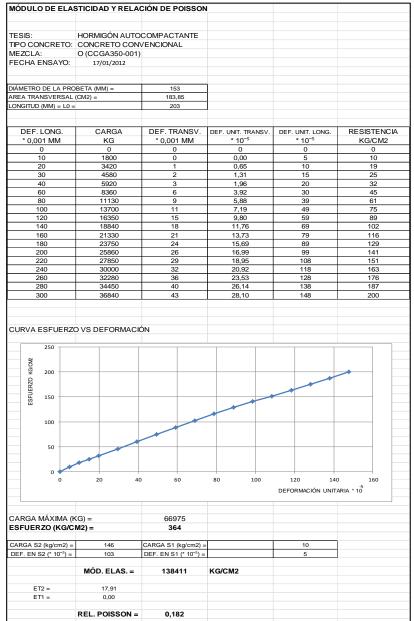
165 - 172

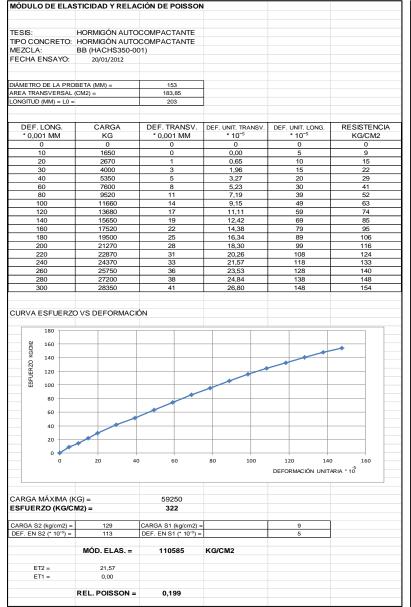


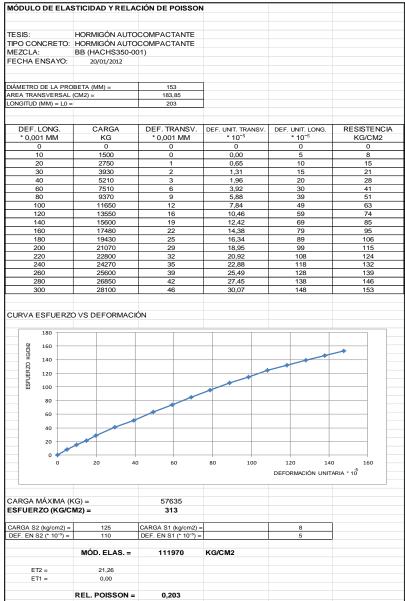

CONCRETO CONVENCIONAL:

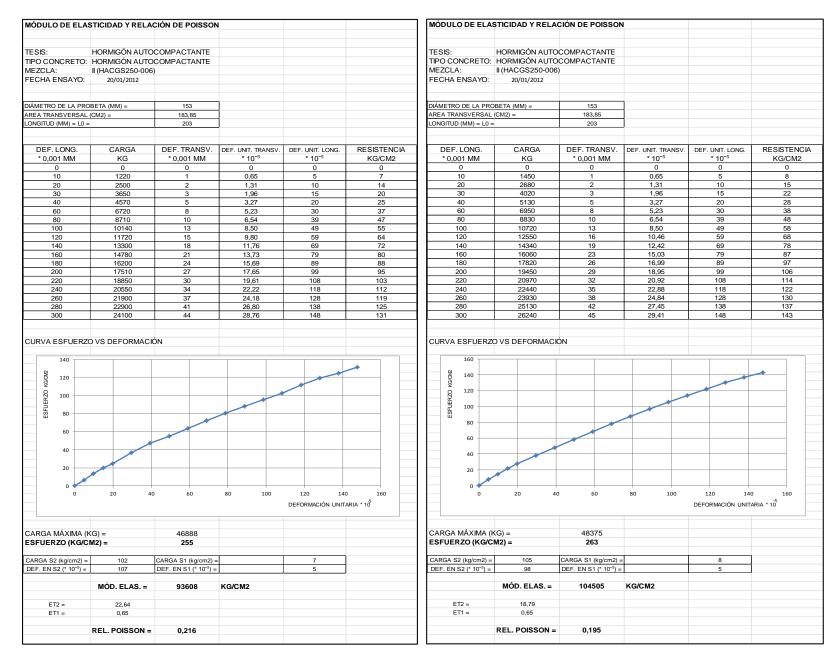




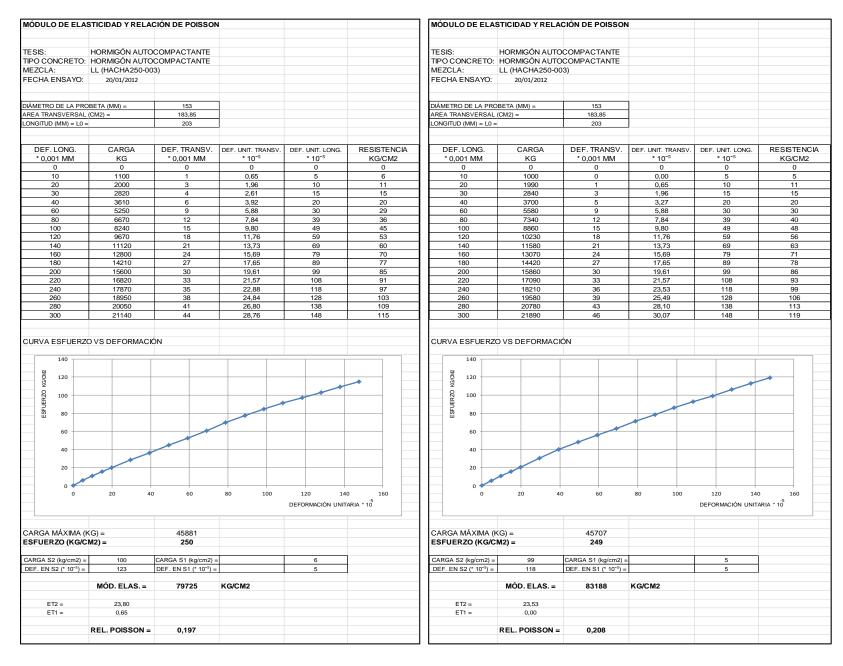


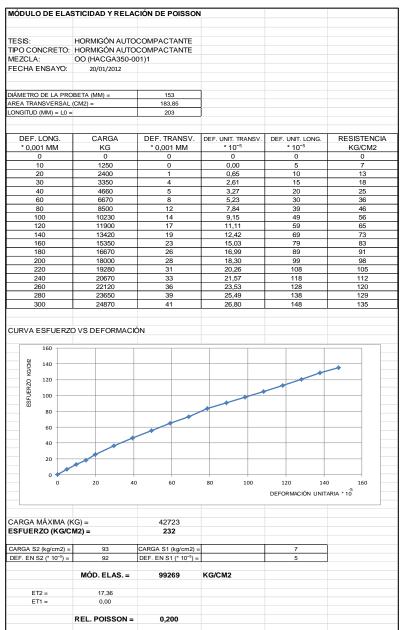


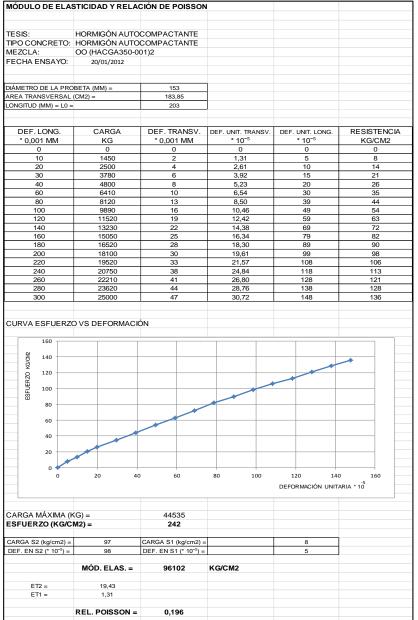




HORMIGÓN AUTOCOMPACTANTE:







ANEXO VII

COSTOS

	Pág
ANÁLISIS DE COSTOS	174
COSTO CC 250-350	175 – 176
COSTO HAC 250-350	177 – 178
COSTO MURO CC 250-350	179 – 180
COSTO MURO HAC 250-350	181 – 182

ANÁLISIS DE COSTOS

	COSTO \$/m ³
HORMIGÓN CONVENCIONAL, F´c = 250 kg/cm2 =	104,75
HORMIGÓN CONVENCIONAL, F´c = 350 kg/cm2 =	113,06
HORMIGÓN AUTOCOMPACTANTE, F´c = 250 kg/cm2 =	152,32
HORMIGÓN AUTOCOMPACTANTE, F´c = 350 kg/cm2 =	175,99
HORMIGONADO MURO (CC), F´c = 250 kg/cm2 =	173,07
HORMIGONADO MURO (CC), F´c = 350 kg/cm2 =	181,38
HORMIGONADO MURO (HAC), F´c = 250 kg/cm2 =	211,55
HORMIGONADO MURO (HAC), F´c = 350 kg/cm2 =	235,22
% de costo de HAC con respecto al CC, (F´c = 250 kg/cm2) =	45,41
% de costo de HAC con respecto al CC, (F´c = 350 kg/cm2) =	55,66
% de costo en muro de HAC con respecto al CC, (F´c = 250 kg/cm2) =	22,23
% de costo en muro de HAC con respecto al CC, (F´c = 350 kg/cm2) =	29,68

COSTO CC 250-350 ANÁLISIS DE PRECIOS UNITARIOS

CONCRETO CONVENCIONAL							
RUBRO:	HORMIGÓN SIMPLE F´c = 250 kg/cm2 UNIDAD: m3						
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто		
EQUIPO	Α	В	C= A*B	R			
Concretera un saco	1	3,15	3,15	0,75	2,36		
Herramienta menor	1	0,50	0,50	0,75	0,38		
SUBTOTAL A					2,74		
MANO DE OBRA							
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	COSTO		
MANO DE OBRA	Α	В	C= A*B	R	D = C*R		
Peón	5	2,56	12,80	0,75	9,60		
Maestro de obra	1	2,58	2,58	0,75	1,94		
SUBTOTAL B					11,54		
MATERIALES							
DESCRIPCI	ON	UNIDAD	CANTIDAD	P. UNITARIO	COSTO		
MATERIALI	ES		Α	В	C= A*B		
Cemento		kg	370	0,145	53,65		
Arena		kg	761	0,011	8,37		
Ripio		kg	970	0,010	9,70		
Agua		lt	200	0,005	1,00		
Aditivo superplastificante		kg	2,96	6,000	17,76		
SUBTOTAL C					90,48		
	TOTAL COSTOS DIRECTOS (A+B+C)						

RUBRO:	HORMIGÓN	m3				
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто	
EQUIPO	Α	В	C= A*B	R		
Concretera un saco	1	3,15	3,15	0,75	2,36	
Herramienta menor	1	0,50	0,50	0,75	0,38	
SUBTOTAL A					2,74	
MANO DE OBRA						
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	COSTO	
MANO DE OBRA	Α	В	C= A*B	R	D = C*R	
Peón	5	2,56	12,80	0,75	9,60	
Maestro de obra	1	2,58	2,58	0,75	1,94	
SUBTOTAL B					11,54	
MATERIALES						
DESCRIPCION UNIDAD CANTIDAD P. UNITARIO CO						
MATERIALES			Α	В	C= A*B	
Cemento		kg	415	0,145	60,18	
Arena		kg	746	0,011	8,21	
Ripio		kg	949	0,010	9,49	
Agua		lt	200	0,005	1,00	
Aditivo superplastificante		kg	3,32	6,000	19,92	
SUBTOTAL C	SUBTOTAL C					
	TOTAL COS	TOS DIRECT	OS (A+B+C)		113,06	

COSTO HAC 250-350 ANÁLISIS DE PRECIOS UNITARIOS

HORMIGÓN AUTOCOMPACTANTE						
RUBRO:	HORMIGÓN kg/cm2	m3				
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто	
EQUIPO	Α	В	C= A*B	R		
Concretera un saco	1	3,15	3,15	0,75	2,36	
Herramienta menor	1	0,50	0,50	0,75	0,38	
SUBTOTAL A					2,74	
MANO DE OBRA	_	T	1			
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	COSTO	
MANO DE OBRA	Α	В	C= A*B	R	D = C*R	
Peón	5	2,56	12,80	0,75	9,60	
Maestro de obra	1	2,58	2,58	0,75	1,94	
SUBTOTAL B					11,54	
MATERIALES				,		
DESCRIPCI	ON	UNIDAD	CANTIDAD	P. UNITARIO	COSTO	
MATERIAL	ES		Α	В	C= A*B	
Cemento		kg	415	0,145	60,18	
Arena		kg	1043	0,011	11,47	
Ripio		kg	532	0,010	5,32	
Agua		lt	212	0,005	1,06	
Aditivo superplastificante		kg	9,96	6,000	59,76	
Puzolana		kg	51,85	0,005	0,26	
SUBTOTAL C					138,05	
	TOTAL COS	TOS DIRECT	TOS (A+B+C)		152,32	

RUBRO:	HORMIGÓN	SIMPLE F'c	UNIDAD:	m3	
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто
EQUIPO	Α	В	C= A*B	R	
Concretera un saco	1	3,15	3,15	0,75	2,36
Herramienta menor	1	0,50	0,50	0,75	0,38
SUBTOTAL A					2,74
MANO DE OBRA	_				
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	COSTO
MANO DE OBRA	Α	В	C= A*B	R	D = C*R
Peón	5	2,56	12,80	0,75	9,60
Maestro de obra	1	2,58	2,58	0,75	1,94
SUBTOTAL B					11,54
MATERIALES					
DESCRIPO	CION	UNIDAD	CANTIDAD	P. UNITARIO	COSTO
MATERIA	LES		Α	В	C= A*B
Cemento		kg	490	0,145	71,05
Arena		kg	981	0,011	10,79
Ripio		kg	501	0,010	5,01
Agua		lt	222	0,005	1,11
Aditivo superplastificante		kg	12,25	6,000	73,50
Puzolana		kg	51,02	0,005	0,26
SUBTOTAL C					161,72
	TOTAL COS	TOS DIRECT	OS (A+B+C)		175,99

COSTO MURO CC 250-350

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:	HORMIGONA kg/cm2	UNIDAD:	UNIDAD: m3				
CON CONCRETO CONVENCIONAL							
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто		
EQUIPO	Α	В	C= A*B	R			
Vibrador	2	3,50	7,00	0,75	5,25		
Herramienta menor	1	0,50	0,50	0,75	0,38		
SUBTOTAL A					5,63		
MANO DE OBRA							
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	соѕто		
MANO DE OBRA	Α	В	C= A*B	R	D = C*R		
Peón	3	2,56	7,68	0,75	5,76		
Maestro de obra	1	2,58	2,58	0,75	1,94		
SUBTOTAL B					7,70		
MATERIALES							
DESCRIP	CION	UNIDAD	CANTIDAD	P. UNITARIO	соѕто		
MATERIA			Α	В	C= A*B		
Hormigón simple F kg/cm2	´c = 250	m3	1	104,75	104,75		
Encofrado recto		m2	11	5,00	55,00		
SUBTOTAL C					159,75		
	TOTAL COS	TOS DIRECT	OS (A+B+C)		173,07		

RUBRO:	HORMIGONADO DE MUROS, F´c = 350 kg/cm2 UNIDAD: m3						
CON CONCRETO CONVENCIONAL							
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто		
EQUIPO	Α	В	C= A*B	R			
Vibrador	2	3,50	7,00	0,75	5,25		
Herramienta menor	1	0,50	0,50	0,75	0,38		
SUBTOTAL A					5,63		
MANO DE OBRA							
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	соѕто		
MANO DE OBRA	Α	В	C= A*B	R	D = C*R		
Peón	3	2,56	7,68	0,75	5,76		
Maestro de obra	1	2,58	2,58	0,75	1,94		
SUBTOTAL B					7,70		
MATERIALES							
DESCRIP	CION	UNIDAD	CANTIDAD	P. UNITARIO	соѕто		
MATERIA	ALES		Α	В	C= A*B		
Hormigón simple F kg/cm2	´c = 350	m3	1	113,06	113,06		
Encofrado recto		m2	11	5,00	55,00		
SUBTOTAL C					168,06		
	181,38						

COSTO MURO HAC 250-350

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:	HORMIGONA kg/cm2	DO DE MUROS	S, F´c = 250	UNIDAD:	m3		
CON HORMIGÓN AUTOCOMPACTANTE							
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто		
EQUIPO	Α	В	C= A*B	R			
Vibrador					0,00		
Herramienta menor	1	0,50	0,50	0,75	0,38		
SUBTOTAL A					0,38		
MANO DE OBRA							
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	COSTO		
MANO DE OBRA	Α	В	C= A*B	R	D = C*R		
Peón	1	2,56	2,56	0,75	1,92		
Maestro de obra	1	2,58	2,58	0,75	1,94		
SUBTOTAL B					3,86		
MATERIALES							
DESCRIPC	ION	UNIDAD	CANTIDAD	P. UNITARIO	COSTO		
MATERIALES			Α	В	C= A*B		
Hormigón simple F´c = 250 kg/cm2		m3	1	152,32	152,32		
Encofrado recto		m2	11	5,00	55,00		
SUBTOTAL C					207,32		
TOTAL COSTOS DIRECTOS (A+B+C)					211,55		

RUBRO:	HORMIGONA kg/cm2	m3				
	CON HORMIGÓN AUTOCOMPACTANTE					
DESCRIPCION	CANTIDAD	TARIFA	COSTO/HORA	RENDIMIENTO	соѕто	
EQUIPO	Α	В	C= A*B	R		
Vibrador					0,00	
Herramienta menor	1	0,50	0,50	0,75	0,38	
SUBTOTAL A					0,38	
MANO DE OBRA						
DESCRIPCION	CANTIDAD	JORNAL/h	COSTO/HORA	RENDIMIENTO	соѕто	
MANO DE OBRA	Α	В	C= A*B	R	D = C*R	
Peón	1	2,56	2,56	0,75	1,92	
Maestro de obra	1	2,58	2,58	0,75	1,94	
SUBTOTAL B					3,86	
MATERIALES						
DESCRIPC	ION	UNIDAD	CANTIDAD	P. UNITARIO	соѕто	
MATERIALES			Α	В	C= A*B	
Hormigón simple F´c = 350 kg/cm2		m3	1	175,99	175,99	
Encofrado recto		m2	11	5,00	55,00	
SUBTOTAL C					230,99	
TOTAL COSTOS DIRECTOS (A+B+C)					235,22	