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RESUMEN 

En este proyecto se realizó un análisis estructural de primer orden del 

comportamiento de losas Bubbledeck y la aplicación de este sistema, 

comparado con sistemas de losas alivianadas. Los puntos que se analizaron 

fueron: la distribución interna de esfuerzos en losas Bubbledeck, los efectos 

producidos al utilizar este sistema de losas  en los rangos de aplicación 

especificados para cada caso de losas Bubbledeck y una comparación entre la 

aplicación de este sistema de losas y sistemas de losas alivianadas en 

estructuras de edificios de hasta 4 pisos. Los modelos se realizaron en el 

programa SAP2000, para el análisis de la distribución interna de esfuerzos se 

modelaron estructuras de losas con la inclusión de esferas de polietileno de 

alta densidad; para el análisis de losas Bubbledeck en los rangos de aplicación, 

se modelaron los diferentes tipos de losas Bubbledeck con las dimensiones 

especificadas para cada caso  y para el análisis comparativo entre losas 

Bubbledeck y losas alivianadas, se modelaron estructuras de edificios que 

utilicen ambos sistemas de losas. Como resultados se obtuvieron los valores 

de esfuerzos y la distribución de los mismos dentro de una losa Bubbledeck 

tomando en cuenta la presencia de esferas de polietileno, también se obtuvo 

las deflexiones producidas en cada tipo de losa Bubbledeck y finalmente una 

comparación técnica y económica de los efectos de utilizar losas Bubbledeck y 

losas alivianadas en edificios de hasta 4 pisos.  
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ABSTRACT 

In this project a first order structural analysis was performed for the behavior of 

Bubbledeck slabs and the application of this system, compared with waffle 

slabs systems. The points discussed were: the internal distribution of stresses 

in Bubbledeck slabs, the effects produced using this system of slabs in the 

ranges specified for each case of application of Bubbledeck slabs and a 

comparison between the application of this slab system and a waffle slab 

system in buildings up to 4 floors. The models were made in the program 

SAP2000, for the analysis of the internal stress distribution, slab structures were 

modeled with the inclusion of spheres of high density polyethylene; for the 

analysis of Bubbledeck slabs in application rates, diferent types of bubbledeck 

slabs were modeled with the dimensions specified for each case. For a 

comparative analysis between waffle slabs and Bubbledeck slabs, building 

structures using both slab systems were modeled. As a result values of 

stresses were obtained and their distribution inside a Bubbledeck slab 

considering the presence of polyethylene spheres, also it was obtained 

deflections produced in each type of Bubbledeck slab and finally a technical and 

economic comparison of the effects of using Bubbledeck slabs and waffle slabs 

in buildings up to 4 floors. 
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CAPITULO 1   INTRODUCCION 

 

1.1 ANTECEDENTES. 

 
Conforme avanza la tecnología, las estructuras cada vez se realizan más 

eficientes y de mayor magnitud, un continuo desarrollo en la mecánica de los 

materiales ha permitido que se puedan lograr estructuras más ligeras  y que se 

adaptan mejor ante las solicitaciones para las cuales son concebidas. Todos 

los avances que se realizan son muy importantes, especialmente en  

edificaciones en las cuales el factor económico es de gran importancia. 

Un correcto diseño estructural permite cumplir de manera adecuada las 

exigencias  para las cuales se concibe el proyecto, asegurando el 

funcionamiento de los elementos en toda  la vida útil de la construcción y  una 

respuesta adecuada de todos los parámetros que definen el comportamiento 

ante las acciones para las cuales  se realiza la obra. 

Un sistema estructural de gran importancia en las construcciones son las losas 

o sistemas de pisos, se denomina losa a los elementos estructurales 

bidimensionales, en donde la tercera dimensión es pequeña comparada con las 

otras dos dimensiones básicas. Las cargas en losas actúan de forma 

perpendicular al plano principal, pueden ser de diferentes formas y 

configuraciones según la necesidad para la cual se apliquen y en todo 

momento se busca hacerlas más ligeras pero cubriendo las mayores distancias 

posibles buscando así  siempre mejorar la productividad y el ahorro de energía 

en la construcción. 

Un tipo de losas muy  utilizado en la actualidad son las losas de hormigón 

reforzado, estos sistemas  presentan varias ventajas como son las altas 

resistencias ante los esfuerzos de compresión y acciones flexionantes, así 

como también un  costo relativamente bajo en la construcción de los 

elementos.  Sin embargo presenta ciertas desventajas en cuanto al peso y al 

mantenimiento de las estructuras, especialmente en construcciones de gran 

magnitud. 

En este ámbito, a mediados del siglo 20 se crearon sistemas de losas de 

concreto alivianadas huecas  con el fin de reducir las altas relaciones peso-

resistencia de los sistemas convencionales. Estos sistemas  reducen o 

cambian el concreto en el centro de la losa por un material más liviano con el 

fin de reducir el peso propio de la estructura. Sin embargo estos 

alivianamientos en las losas reducen la resistencia de las mismas ante 

esfuerzos cortantes y exposición a  fuego. (Lai, 2010)  

En la década de los 90s el ingeniero alemán Jorgen Breuning encontró una 

manera de mejorar estos inconvenientes en las losas, enlazando el espacio de 

aire, el acero y el concreto en una losa hueca bidireccional, mediante el uso de 
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esferas fabricadas con plástico dando así el surgimiento a la tecnología 

Bubbledeck.  

Este sistema de losas Bubbledeck presenta un gran avance hoy en día, es una 

tecnología amigable con el medio ambiente, por el uso de esferas de plástico 

reciclado (polietileno de alta densidad), que  reemplazan el hormigón  inefectivo 

en la losa, el  material de las esferas también puede ser reutilizable en casos 

de demolición de edificios, mejorando significativamente la producción de los 

materiales necesarios para estas losas y los  efectos ante la naturaleza que 

esto conlleva. 

 

El sistema de losas Bubbledeck se diseña de tal manera que los elementos 

actúan como losas solidas en cualquier dirección,  las esferas se ubican en las 

zonas dentro de la losa donde el material es menos esforzado, de esta manera 

se permite que los esfuerzos de compresión y tensión no se vean influenciados 

por las esferas y que  las fuerzas se puedan distribuir libremente,  por lo que se 

aprovecha y optimiza el material y las secciones de losa, se logra una 

reducción alrededor del 30% en el peso propio de la estructura y una rigidez 

cercana al 100% de lo que se tendría con una losa sólida. 

Actualmente este sistema se construye  en Europa y Los Estados Unidos como 

losas planas debido a las ventajas de esta tecnología, el sistema además 

puede producirse como elementos prefabricados de fácil transporte y 

colocación reduciendo el tiempo en la construcción, permite también mucha 

libertad en los diseños arquitectónicos ya  que el sistema puede adaptarse a 

diferentes formas y dimensiones con la posibilidad de realizar a cambios a 

bajos costos  a lo largo del proceso de construcción.  

Si bien las ventajas mencionadas anteriormente, muestran un sistema que 

posibilita mejores soluciones para la construcción de losas, se debe realizar un 

análisis de la aplicación de esta tecnología en los diferentes entornos. Muchos 

de los beneficios de la tecnología Bubbledeck observados en construcciones 

de otros países, pueden no ser aplicables directamente a nuestro medio, 

debido principalmente por ser un país ubicado en zona sísmica. 

En el  presente trabajo de titulación se busca mostrar el comportamiento de 

losas Bubbledeck y los efectos que conlleva la implementación de esta 

tecnología a construcciones que puedan realizarse a nuestro medio, con la 

aplicación de la normativa pertinente de tal manera de que se obtengan la 

mayor cantidad de beneficios dentro de un ámbito aplicable  a nuestro entorno. 

Este trabajo de titulación  busca  encontrar variantes que aprovechen las 

ventajas del sistema de losas Bubbledeck con la utilización de sistemas 

estructurales convencionales, de tal manera que se pueda realizar 

comparaciones directas entre la aplicación de esta tecnología  y la aplicación 

de sistemas de losas utilizados normalmente. 
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1.2 OBJETIVOS 

 

1.2.1 Objetivo General. 

Analizar el comportamiento de losas Bubbledeck y los efectos de la aplicación 

de este sistema en nuestro medio. 

 

1.2.2 Objetivos Específicos. 

- Analizar el comportamiento interno de losas Bubbledeck. 

- Analizar  las deflexiones producidas en los diferentes tipos de losas 

Bubbledeck ante las dimensiones especificadas para cada caso. 

- Analizar los efectos de la aplicación de losas Bubbledeck. 

- Comparar el sistema de losas Bubbledeck con los sistemas de losas 

actuales. 

 
 
 
 

1.3 JUSTIFICACION. 

 
Si bien la tecnología de losas Bubbledeck presenta varias ventajas frente al uso 

de losas solidas convencionales, antes de la realización de proyectos que 

adopten esta tecnología se debe hacer una análisis de la factibilidad en su 

aplicación, tomando en cuenta todas las variables que influyan en la elección y 

aprobación de proyectos, de tal manera que se pueda conocer el 

comportamiento de este sistema de losas ante posibles situaciones que 

puedan presentarse  en nuestro medio, logrando así  datos técnicos y 

verificables obtenidos  bajo una normativa correspondiente, con los cuales se 

puede realizar comparaciones directas con  otros sistemas de losas  utilizados 

normalmente. Razón por la cual en este proyecto de tesis se realizó un análisis 

comparativo de los aspectos técnicos y económicos, entre el sistema de losas 

Bubbledeck y otros sistemas de losas convencionales.  
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2 CAPITULO 2    MARCO TEORICO 

 

2.1 GENERALIDADES. 

 
Una losa es un componente estructural utilizado para proporcionar una 

superficie plana a una edificación. Es una amplia placa plana generalmente 

horizontal, cuyas superficies superior e inferior son paralelas o casi paralelas 

entre sí.(Nilson, Winter, & Yamin, 1999). Las losas pueden tener diferentes 

condiciones de apoyo, y el comportamiento en cuanto a los esfuerzos y 

deformaciones dependerá de cómo se encuentren configuradas las mismas. 

 

La configuración de una losa puede ser tal, que se apoye únicamente en dos 

de los lados, siendo así la acción estructural de la losa en una sola dirección, 

debido a que la transmisión de cargas es en forma perpendicular a las vigas de 

apoyo. La figura 2.1 a se muestra la configuración de una losa en una 

dirección, también se muestra en la figura 2.1 b la configuración de una losa en 

una dirección para el caso en donde utilizan vigas intermedias. 

  

     

                                      (a)                                                                             (b)  

Figura 2.1. Esquema de losas que trabajan en una dirección. (a) Esquema de losa en una dirección sin vigas interiores. (b) Esquema 

de losa en una dirección con vigas interiores. [12] 

       

Para casos en donde las losas son soportadas en los cuatro lados, la acción 

estructural se produce en dos direcciones. Sin embargo la losa debe contar con 

requisitos adicionales en cuanto a la relación entre sus lados para garantizar 
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que la distribución de las cargas se produzca en dirección de todos los lados 

apoyados. En la figura 2.2  se muestra la configuración de una losa en dos 

direcciones apoyada en sus cuatro lados por vigas. 

 

Figura 2.2. Esquema de losa que trabaja en dos direcciones. [12] 

 

En algunos casos las losas se pueden apoyar directamente sobre columnas, 

sin la utilización de vigas, en este caso las losas se conocen como placas 

planas o losas planas. Este tipo de losas incorpora una región con un sobre 

espesor de losa en la zona de la columna y emplea con frecuencia columnas 

con forma acampanada en la parte superior.(Nilson et al., 1999) En la figura 2.3 

se muestra la configuración de losa plana. 

 

Figura 2.3. Esquema de losa plana. [12] 
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2.2 LOSAS BIDIRECCIONALES. 

 
La ecuación general que describe el comportamiento de losas bidireccionales 

macizas, de espesor constante, es conocida como ecuación de LaGrange o 

ecuación de placas. 

 

   

   
  

   

       
 

   

   
 

 

 
               E.c (2.1) 

  
    

         
                E.c (2.2) 

Donde: 

 :    Ordenada de la elástica de deformación de la placa en un punto de 
coordenadas (x, y). 

 : Rigidez a la flexión de la placa. 

 : Módulo de elasticidad del hormigón. 
 : Espesor de la placa. 
µ: Coeficiente de Poissón del hormigón. 
 
La ecuación de LaGrange utiliza como fundamento la Ley de Deformación 

Plana de Kirchhoff que establece que una placa plana delgada, sometida a 

cargas perpendiculares a su plano principal, se deformará de modo que todos 

los puntos materiales que pertenecen a una recta normal a la superficie sin 

deformarse permanecerán dentro de la correspondiente recta normal a la 

superficie deformada (la versión análoga para vigas diría que las secciones 

transversales planas antes de la deformación permanecen planas después de 

la deformación).(M. R. Proaño, n.d.) 

Una ecuación que permite simplificar el estudio, así como visualizar un límite 

entre el análisis de una losa en una dirección a una en dos direcciones; se 

obtiene de las deflexiones en la losa al considerar franjas formadas en las 

direcciones de trabajo. 

 

Figura 2.4. Esquema de losa en dos direcciones sobre apoyos en los bordes.  [12] 
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En figura 2.4 se muestra una losa  que se  considera formada por franjas en 

dirección de los ejes, la deformación producida en el punto común de las dos 

franjas debe ser la misma. 

        

     
 

        

     
         E.c (2.3) 

  

  
 

   

   
                E.c (2.4) 

 

Donde: 

      Fracción de carga transmitida a la dirección corta (a). 
      Fracción de carga transmitida a la dirección larga  (b). 

       Dimensión corta de la losa. 
       Dimensión larga  de la losa. 
 

En la ecuación 2.4 anterior se hace una aproximación del comportamiento real 

de una losa en dos direcciones, si bien se debe realizar un análisis más 

complejo que el de dos franjas que se intersectan para mostrar el 

comportamiento de una losa bidireccional; la ecuación permite fijar valores con 

los cuales se puede caracterizar las direcciones en las que trabaja una losa. 

Se  puede  apreciar  que  para losas con relaciones de  dimensión  larga / 

dimensión corta  o   lb/la >= 2, la fracción de carga transmitida a la dirección 

larga es apenas del orden de un dieciseisavo de la transmitida en la dirección 

corta, por lo tanto la losa actuaría como si trabajase únicamente en la dirección 

corta. (Nilson et al., 1999) 

Debido a que la obtención de momentos flectores, cortantes y reacciones  en 

losas bidireccionales requiere de análisis complejos, se opta por la utilización 

de métodos simplificados. 

Los momentos a flexión y deflexiones en losas  bidireccionales son menos que 

los de las losas unidireccionales, por lo tanto la misma losa puede llevar más 

carga cuando está apoyada por los cuatro lados. La carga en este caso se 

distribuye en dos direcciones, y el momento a flexión en cada dirección es 

mucho menor que el momento a flexión en una losa unidireccional ya que la 

carga se distribuye en una sola dirección. 

Existen varios casos para losas en dos direcciones, en esta tesis trataremos 

específicamente: 

Losas en dos direcciones con vigas entre todos los apoyos. 
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2.3 DISEÑO DE LOSAS BIDIRECCIONALES 

 

2.3.1 Espesor mínimo de losa. 

Los espesores mínimos de losas (Código ACI, Sección 8.3.1.1 y 8.3.1.2) son 

independientes de la carga y el módulo de elasticidad del concreto, los cuales 

tienen una influencia importante en las deflexiones. Estos espesores mínimos 

no son aplicables a losas con cargas permanentes inusualmente altas o 

construidas con concreto que tenga un módulo de elasticidad significativamente 

menor que el del concreto común de peso normal. (ACI 8.3.1.1)  

Para losas no pre esforzadas sin vigas interiores que se extiendan entre los 

apoyos en todos los lados y que tengan una relación entre los lados no mayor a 

2, el espesor total de la losa h no debe ser menor que los valores dados en la 

tabla 2.1 y no debe ser menor que el valor dado en (a) o (b), a menos que se 

cumplan los límites de la deflexiones. 

(a) Losas sin ábacos 125mm 

(b) Losas con ábacos 100mm 
 

Tabla 2.1 Espesor mínimo de losas sin vigas interiores. Tomado de ACI 318S-14. 

 Espesor mínimo de losas no pre esforzadas en dos direcciones sin vigas interiores 

fy                             

Mpa 

Sin ábacos Con ábacos 

Paneles exteriores 
Paneles 

interiores 
Paneles exteriores 

Paneles 
interiores 

Sin vigas de 
borde 

Con vigas de 
borde  

Sin vigas de 
borde 

Con vigas de 
borde  

280 ln/33 ln/36 ln/36 ln/36 ln/40 ln/40 

420 ln/30 ln/33 ln/33 ln/33 ln/36 ln/36 

520 ln/28 ln/31 ln/31 ln/31 ln/34 ln/34 

 

 ln es la luz libre en la dirección larga, medida entre caras de los apoyos(ACI 

318S-14, Sección 8.3.1.2). 

Para losas no pre esforzadas con vigas entre apoyos en todos los lados, el 

espesor total de la losa h debe cumplir con los limites dados en la tabla 8.3.1.2 

ACI 318, a menos que se cumplan los límites de las deflexiones.   

Tabla 2.2 Espesor mínimo de losas con vigas interiores. Tomado de ACI 318S-14. 

0.2 ≤ αfm Se aplica espesor mínimo h (mm) 

0.2< αfm <2 Mayor de: 
  (    

  
    

)

              
 

125 

αfm ≥ 2 Mayor de: 
  (    

  
    

)

     
 

90 
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El termino β es la relación de la luz libre en la dirección larga a la luz libre en la 

dirección corta de la losa. 

αfm es el valor promedio de αf. 

αf es relación entre la rigidez a flexión de una sección de viga y la rigidez a 

flexión de una franja de losa limitada lateralmente por los ejes centrales de los 

paneles adyacentes (si los hay) a cada lado de la viga y se calcula de acuerdo 

al método de diseño directo. 

2.3.2 Método de diseño directo. 

El método de diseño directo (Código ACI, Sección 8.10), es un procedimiento 

aproximado para el análisis y diseño de losas en dos direcciones. Se limita a 

sistemas de losas sometidas a cargas uniformemente distribuidas. El método 

utiliza un conjunto de coeficientes para determinar los momentos de diseño en 

las secciones críticas. 

2.3.2.1 Limitaciones para el uso del método de diseño directo. 

 Debe existir un mínimo de tres vanos continuos en cada dirección.  

 Las longitudes de las luces contiguas medidas centro a centro de los 

apoyos en cada dirección no debe diferir en más de un tercio de la luz 

mayor.  

 Los paneles de las losas deben ser rectangulares, con una relación 

entre la luz mayor y menor, medidas de centro a centro de los apoyos 

del panel, no mayor a 2. 

 Las columnas pueden estar desalineadas hasta un 10 por ciento de la 

luz (medido e la dirección del des alineamiento) con respecto a cualquier 

eje que pase por el centro de la columnas sucesivas.  

 La carga viva no mayorada no debe exceder de dos veces la carga 

muerta no mayorada 

 Para un panel con vigas entre los apoyos en todos los lados, debe 

satisfacerse la siguiente ecuación (Código ACI, eq. 8.10.2.7a): 

      
     

 

     
           E.c (2.5) 

Donde: 

     Y     se calculan de acuerdo con (Código ACI, eq. 8.10.2.7b): 

    
      

      
         E.c (2.6) 

 Donde: 

    Módulo de Young del concreto en las vigas. 

      Inercia bruta de la sección de viga. 

     Módulo de Young del concreto en la losa. 

       Inercia bruta de la sección de losa. 
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2.3.2.2 Momento estático mayorado. 

El momento estático mayorado total, Mo, para un vano debe determinarse en 

una franja limitada lateralmente por el eje central de los paneles adyacentes al 

eje que une los apoyos.  

La suma absoluta del momento positivo y el promedio de los momentos 

negativos, en cada dirección, no debe ser menor que (Código ACI, eq. 

8.10.3.2):  

    
      

 

 
       E.c (2.7) 

Donde: 

   Longitud de la luz libre en la dirección en que deben considerarse los 

momentos, que se extienden desde la cara de las columnas, capiteles, cartelas 

o muros, y no debe ser menor que 0.65  . 

 

2.3.2.3 Distribución del momento estático  mayorado. 

Para un vano interior, Mo, debe distribuirse de la siguiente manera: 0.65Mo 

para momento negativo y 0.35Mo para momento positivo. 

Para un vano exterior se debe distribuir de acuerdo a la siguiente tabla: 

Tabla 2.3 Coeficientes de distribución de momento estático. Tomado de ACI 318S-14 

Tabla8.10.4.2 Coeficientes de distribución en un vano final 

 Borde exterior no 
restringido 

Losa con vigas 
entre todos los 

apoyos 

Losa sin vigas entre apoyos interiores 

Borde Exterior 
Totalmente 
Restringido 

 
Sin Viga de Borde Con viga de borde 

 
Momento 

negativo interior 
0,75 0,7 0,7 0,7 0,65 

Momento positivo 0,63 0,57 0,52 0,5 0,35 

Momento 
negativo exterior 

0 0,16 0,26 0,3 0,65 

 

 

2.3.2.4 Distribución de los momentos mayorados en la franja de 

columna y franja central 

Franja de Columna.  

 

Para el momento negativo interior, Mu, se basa en la siguiente tabla: 
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Tabla 2.4 Coeficientes de distribución  de momento negativo interior en franjas de columna. Tomado de ACI 318S-14 

Tabla 8.10.5.1 Fracción del momento negativo Interior Mu en una franja de 
columna 

αf1*L2/L1 
L2/L1 

0,5 1 2 

0 0,75 0,75 0,75 

≥ 1 0,9 0,75 0,45 

 

Para el momento negativo exterior, Mu, se basa en la siguiente tabla: 

 

Tabla 2.5 Coeficientes de distribución  de momento negativo exterior en franjas de columna. Tomado de ACI 318S-14 

Tabla 8.10.5.2 Fracción del momento negativo Exterior Mu en una 
franja de columna 

αf1*L2/L1 Βt 
L2/L1 

0,5 1 2 

0 
0 1 1 1 

≥ 2,5 0,75 0,75 0,75 

≥ 1 
0 1 1 1 

≥ 2,5 0,9 0,75 0,45 

 

Donde βt (relación entre la rigidez a torsión de la sección de la viga de borde y 

la rigidez a flexión de una franja de losa cuyo ancho es igual a la longitud de la 

luz de la viga medida centro a centro de los apoyos) se calcula de acuerdo a 

(Código ACI, eq. 8.10.5.2a): 

 

     
     

       
    E.c (2.8) 

Donde: 

  : Constante de la sección transversal para definir propiedades a la torsión de 

losas y vigas) se calcula de acuerdo a (Código ACI, eq. 8.10.5.2b): 

 

   ∑ (       
 

 
)
   

 
 E.c (2.9) 

 

Para el momento positivo, Mu, se basa en la siguiente tabla: 
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Tabla 2.6 Coeficientes de distribución  de momento positivo en franjas de columna. Tomado de ACI 318S-14 

Tabla 8.10.5.5 Fracción del momento positivo 
Interior Mu en una franja de columna 

αf1*L2/L1 
L2/L1 

0,5 1 2 

0 0,6 0,6 0,6 

≥ 1 0,9 0,75 0,45 

    

 

Momentos mayorados en vigas. 

Las vigas entre los apoyos deben diseñarse para resistir la porción de los 

momentos de la franja de columna, Mu, de acuerdo a: 

 

Tabla 2.7  Coeficientes de distribución  de momentos a vigas. Tomado de ACI 318S-14 

Tabla 8.10.5.7.1 Fracción de Mu de una franja de columna 
asignable a las vigas 

αf1*L2/L1 Coeficiente de  

0 0 

≥ 1 0,85 

 

Además de los momentos calculados de acuerdo a ACI( 8.10.5.7.1), las vigas 

deben ser diseñadas para resistir los momentos causados por cargas 

mayoradas aplicadas directamente sobre ellas. 

 

Momentos mayorados en las franjas centrales 

La fracción de los momentos mayorados positivos y negativo no resistida por 

las franjas de columnas debe asignarse proporcionalmente a las franjas 

centrales. 
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Figura 2.5. Secciones de franjas de columna y franja media. 

 

2.3.3 ESFUERZOS CORTANTES EN LOSAS. 

 
De acuerdo con la experimentación en que se basa la Teoría de las Líneas de 

fluencia, cuando una losa rectangular, sustentada en todo su perímetro por  

vigas de mayor peralte y sometida a una carga uniformemente distribuida que 

actúa en toda su superficie, se encuentra al borde del colapso, se fisura 

conformando triángulos y trapecios. (M. Proaño, 2008) 

 

         

(a)                                                                        (b) 
Figura 2.6. Modelos de fisuración  en losas. (a) Modelo real de fisuración. (b) Modelo idealizado de fisuración. 

 

Bajo este estado límite, las fuerzas cortantes que generan las cargas que 

actúan en los triángulos y trapecios se transmiten directamente a las vigas en 

las que se sustentan los respectivos triángulos y trapecios. (M. Proaño, 2008) 
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Figura 2.7. Ordenadas de fuerza cortante transmitida a las vigas. 

 

Las losas deben estar en capacidad de resistir las fuerzas cortantes generadas 

por este tipo de comportamiento. Las secciones críticas de las losas, para el 

diseño a cortante, se ubican en los sectores de ordenada máxima de los 

triángulos y trapecios, próximos a las vigas de apoyo.           (M. Proaño, 2008) 

 

Figura 2.8. Secciones críticas para fuerza cortante. 

 

 

2.4 LOSAS BUBBLEDECK. 

 
La tecnología Bubbledeck es un sistema estructural de losas planas de 

concreto reforzado, alivianadas mediante el  uso de esferas de plástico ( 

polietileno de alta densidad), el sistema   actúa  como una losa solida con un 

comportamiento uniforme en cualquier dirección ya que  está diseñado de tal 

manera que las zonas de compresión y tensión no están influenciadas por las 

partes huecas, las fuerzas pueden ser distribuidas libremente en las tres 

dimensiones de la estructura de tal manera que todo el hormigón se aprovecha. 
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Figura 2.9. Esquema de componentes de Losa Bubbledeck. [5] 

 

Los elementos que conforman las losas Bubbledeck se dimensionan según el 

Eurocodigo2 y la norma BS8110, y se presentan en 3 formas que pueden 

considerarse como elementos semi prefabricados. 

   

En la figura 2.10 se muestra la configuración de  un tipo de losas Bubbledeck 

llamado elementos filigrana (filigree element), se conforma por una parte 

prefabricada de concreto ubicada en la parte inferior de la losa, las esferas son 

sostenidas y ubicadas por una malla de acero interconectada (Lai, 2010), el 

hormigón en la parte superior de la losa, así como los refuerzos de acero son 

colocados en obra mediante procedimientos comunes. 
 

 
Figura 2.10. Esquema Losas Bubbledeck (filigree element) [6] 

 

La figura 2.11 muestra la clase de losas Bubbledeck llamada módulos 

reforzados (Reinforcement modules),  consisten en mallas de acero que 

sostienen las esferas, el hormigón de toda la losa así como refuerzos 

adicionales de acero son colocados en obra. 
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Figura 2.11 Losas Bubble deck (Reinforcement modules). [4] 

 

 

La tercera forma en las que se presentan las losas Bubbledeck, se conocen 

como losas terminadas (Finished slabs) y consisten en sistemas de losas 

prefabricados, los elementos se construyen en su totalidad antes de la 

colocación en obra, generalmente estas losas  se utilizan apoyadas en vigas y 

para luces menores que las otras  clases de losas Bubbledeck mencionadas 

anteriormente. 

 

2.4.1 Comportamiento a flexión en losas Bubbledeck. 

En losas Bubbledeck los alivianamientos se ubican en el medio de la sección 

donde el hormigón tiene menos influencia, mientras que las partes solidas se 

ubican en la parte superior y la parte inferior. 

 

 
Figura 2.12 Distribución de esfuerzos en losa sólida. [11] 
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Figura 2.13. Distribución de esfuerzos en losa Bubbledeck. [6] 

La figura 2.12  muestra la distribución de esfuerzos en una sección de losa 

solida convencional, en esta sección únicamente el bloque esforzado por 

compresión y el acero de refuerzo en la parte inferior contribuyen a resistir los 

esfuerzos de flexión. Las losas Bubbledeck remueven el concreto inefectivo de 

la sección remplazándolo por esferas huecas  de polietileno de alta densidad 

logrando que el bloque a compresión sea aproximadamente del mismo espesor 

que en una losa sólida, en casos donde los elementos sean altamente 

esforzados el bloque a compresión puede tomar parte de la zona de las 

esferas, siempre que la parte tomada no sea mayor al 20% del espacio de las 

esferas (Lai, 2010). En la figura 2.13 se muestran  los esfuerzos en una losa 

Bubbledeck, con la inclusión de las esferas.  

 

2.4.2 Comportamiento a cortante y punzonamiento en losas Bubbledeck.  
 

El punzonamiento es un fenómeno de falla asociado a fuerzas localizadas en 

los extremos de los elementos, se producen comúnmente en casos de losas 

planas debido a altas reacción por el contacto con columnas. Debido a que la 

capacidad de una losa ante esfuerzos cortantes y punzonamiento depende 

principalmente de la masa efectiva de hormigón,  la resistencia ante estos 

esfuerzos en losas Bubbledeck se ve afectada por la presencia de las esferas 

que sustituyen el concreto, comúnmente estas  losas se construyen bajo un 

diseño estructural que determina la magnitud de las fuerzas de corte y 

punzonamiento presentes y los valores con los cuales se sobre pasa la 

capacidad resistente, de forma que se aplican variantes constructivas al 

sistema. En casos donde las reacciones sean alta las losas Bubbledeck se 

forman de tal manera que se omiten los alivianamientos en zonas próximas a 

los apoyos. 
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Figura 2.14. Esquema de intersección de columnas con losas Bubbledeck. [5] 

En la figura 2.14 se puede notar el armado de una losa Bubbledeck, en donde 

se deja espacios sin alivianamientos, en zonas próximas a columnas, esta 

variante a la estructura de este tipo de losas da una idea de cómo sería la 

forma de losas Bubbledeck en los casos en donde las losas se apoyen sobre 

vigas perimetrales. 

Para el diseño de cortante, se trata a la losa Bubbledeck como si fuera una losa 

maciza con la inclusión de factores de reducción. Los fabricantes recomiendan 

que la resistencia a cortante  de una losa sólida de la misma profundidad debe 

ser reducida por un factor de 0.55- 0.6. Esto se obtuvo con la ayuda de 

ensayos de corte realizados sobre losas Bubbledeck de 230mm y 450mm de 

espesor en la Universidad Técnica de Dinamarca. (BubbleDeck, 2006). Los 

resultados mostraron que la capacidad de corte más pequeña de la losa 

aligerada es de aproximadamente 60% de la capacidad de una losa sólida con 

igual espesor. Esto ocurrió a la distancia en donde  la relación de fuerza 

impuesta al apoyo dividida por el espesor de la losa es de aproximadamente 3 

como se muestra en la Figura 2.15. 

 

Figura 2.15: Resumen de pruebas de capacidad cortante [5] 

 

Para el diseño se escogerá un valor de reducción conservativo del 55% de una losa sólida. 
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2.5 MATERIALES. 

 

2.5.1 Hormigón. 

El hormigón principalmente se evalúa por su resistencia a la compresión, los 

ensayos se realizan con cilindros de altura igual a dos veces el diámetro según 

las normas (ASTM C192), los cilindros son probados a los 28 días a 

velocidades de carga especificadas, con lo que se obtiene la resistencia 

característica del hormigón f`c. Resulta de gran importancia el curva  esfuerzo-

deformación unitaria a la compresión, para el diseño de estructuras de 

concreto. 

 

En la figura 2.16 se muestra algunas curvas esfuerzo-deformación unitaria 

típicas, se observa un tramo inicial relativamente elástico y lineal en el cual el 

esfuerzo y la deformación son proporcionales(Nilson et al., 1999). Alcanza el 

esfuerzo máximo o resistencia a la compresión en valores de deformación 

unitaria cercanos a 0.002 y 0.033 para hormigones de densidad normal, y 

0.003 y 0.0035 en hormigones livianos. 

 
Figura 2.16 Curvas esfuerzo- deformación. [12] 

 

Se determina el módulo de elasticidad del hormigón, el cual es función de la 

línea esfuerzo-deformación unitaria como las mostradas anteriormente y es una 

medida de la rigidez o resistencia a la deformación de dicho material (Harmsen, 

2005).  

Para definir el módulo de elasticidad del hormigón en los modelos estudiados 

en este proyecto de tesis, se emplea la siguiente expresión utilizada para 

hormigones de peso normal. 

        √           E.c (2.10) 

Donde: 
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   Modulo de elasticidad del hormigón en       . 

    Resistencia a la compresión del hormigón en       .  

Además el valor del módulo de Poisson utilizado en la caracterización del 

material en los modelos de este proyecto de tesis son del rango entre 0.15 y 

0.2, valores comunes para el hormigón. 

 

2.5.2 Acero. 

Para el diseño de estructuras de concreto se utiliza acero fabricado bajo las 

normas ASTM A615/615 M 04a y A706/706M 04b, se utiliza en forma de 

varillas de sección circular con corrugaciones utilizadas para favorecer la 

adherencia al hormigón(Harmsen, 2005). Las varillas pueden ser de diferentes 

calidades como grado 40, grado 60 o grado 75, cada una con diferentes 

valores de esfuerzo de fluencia y resistencia a la rotura, los valores utilizados 

en este proyecto de tesis son los correspondientes a acero grado 60: 

 

        
  

   
              

  

   
  

 

   : Esfuerzo de fluencia del acero. 

 

   : Resistencia mínima de tracción a la rotura. 

 

Se usan también mallas electro soldadas, las cuales están constituidos por 

alambres de acero liso o corrugado dispuesto en forma cuadrada o 

rectangular(Harmsen, 2005), para el proyecto de tesis se toma el valor de 

     
  

   
  para el esfuerzo de fluencia    y se utiliza el código ACI para 

determinar el espaciamiento entre los alambres. 

 

 
Figura 2.17 Curvas esfuerzo- deformación para acero. [12] 
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La figura 2.17 muestra la curvas esfuerzo- deformación unitaria para diferentes 

grados de acero, se observa que en la parte elástica inicial se tiene el mismo 

comportamiento en los diferentes tipos de acero, por lo que se asume que el 

parámetro del módulo de elasticidad  es el mismo y se toma el valor de 200000 

Mpa dado por el código ACI. 

 

2.5.3 Polietileno de alta densidad (HDPL). 

El polietileno de alta densidad o HDPE por sus siglas en inglés (HIGH 

DENSITY POLIETHYLENE), es un polímero termoplástico de la familia de los 

olefinicos conformado por unidades repetitivas de etileno. 

 

Se descubrió alrededor del año 1933 por químicos británicos, las primeras 

aplicaciones eran como aislante de cables submarinos y otras formas de 

recubrimiento de conductores debido a las buenas propiedades eléctricas de 

este material.  

El material es de fácil procesamiento y buena resistencia al impacto y a la 

abrasión, no resiste fuertes agentes oxidantes como ácido nítrico, ácido 

sulfúrico fumante, peróxidos de hidrogeno y halógenos, es un material con 

buenas propiedades mecánicas, químicas, buena  resistencia térmica, 

impermeable, inerte, con poca estabilidad dimensional y no toxico. 

En la siguiente tabla se muestran los valores de algunas de las propiedades 

físicas y mecánicas del material utilizados en este proyecto de tesis. 

 
 

 
Tabla 2.8 Características del polietileno de alta densidad. 

Densidad 940-970 (kg/m3) 

Módulo Elástico 1000 (N/mm2) 

Relación de Poisson 0,46 

Esfuerzo de Rotura 20 - 30 ( N/mm2) 

Módulo de Tracción 0,5 - 1,2 (Gpa) 

Resistencia de Tracción 15 - 40 (Mpa) 

 

Debido a las ventajas que tiene tanto en precio como por las propiedades 

químicas y mecánicas, el uso y las aplicaciones del polietileno de alta densidad 

se incrementado en gran medida. Se usa mucho en la fabricación de 

recipientes, tapas, utensilios domésticos, juguetes. La  principal aplicación es 

en tubos y conductos y en la fabricación de artículos huecos como botellas o en 

el caso de este proyecto de tesis en la fabricación de esferas huecas. 
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Figura 2.18. Esferas de polietileno de alta densidad. [5] 

 

 

2.6 AGRIETAMIENTO EN ELEMENTOS DE HORMIGON REFORZADO. 

 
El agrietamiento en los elementos de hormigón reforzado se puede producir por 

diferentes causas entre las cuales están las grietas producidas debido a que se 

sobrepasa valores de resistencia del hormigón ante ciertos esfuerzos. Este tipo 

de agrietamiento debido a acciones mecánicas (flexión, cortante, compresión, 

cizallamiento, torsión, punzonamiento), reduce significativamente la capacidad 

resistente de las estructuras de hormigón, las grietas pueden aparecer para 

cargas muy por debajo del nivel de servicio sin embargo son necesarias para 

asegurar que el refuerzo trabaje de manera efectiva.(Nilson et al., 1999). 

En el caso de grietas a flexión, estas se forman inicialmente en la armadura de 

refuerzo y progresan verticalmente hacia el eje neutro buscando el bloque de 

compresión, con la presencia de este tipo de grietas se produce una reducción 

en la inercia de las secciones y por consiguiente en la resistencia, en donde la 

magnitud en la que se reduce la inercia de las secciones depende de los 

momentos a los cuales está sujeto el elemento. 
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3 CAPITULO 3  METODOLOGIA 

 

3.1 COMPORTAMIENTO DE LOSAS BUBBLEDECK. 

 

3.1.1 Modelo del comportamiento en el programa SAP 2000. 

Para el análisis del comportamiento de losas Bubbledeck estudiado en el 

presente trabajo de titulación, se usaron de las secciones  tomados de la 

página web de la empresa Bubbledeck. Se modelaron losas con ayuda del 

programa SAP 2000, la geometría de las estructuras se construyó directamente 

en el programa con secciones sólidas para las partes que ocupa el hormigón y 

acero; y como elementos Shell las secciones formadas por las esferas.     

Las losas se modelaron para luces de  3 metros de longitud, las secciones para 

todos los casos corresponden a la losa Bubbledeck tipo BD 230 (Ver tabla 3.3), 

que corresponde a las losas de menor sección entre los productos de la 

empresa Bubbledeck. En la figura 3.1 se muestra un esquema de losa tipo BD 

230, con las dimensiones de los elementos y las secciones. 

 

 

Figura 3.1  Geometría de la sección transversal para losas BD 230. 

 

Las secciones de las esferas se formaron como superficies de revolución 

extruidas  a partir de líneas, mientras que las secciones de hormigón se 

construyeron como elementos solidos de revolución en las zonas ubicadas 

entre esferas y como solidos prismáticos  para las demás secciones, en ambos 

casos las extrusiones se realizaron a partir de áreas. 
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Figura 3.2  Secciones de esferas como elementos Shell. 

 

Figura 3.3  Secciones de  hormigón como elementos sólidos. 

Las esferas son elementos huecos, con contorno de 4 mm de espesor de 

polietileno de alta densidad(HDPE). Las caracteristicas del material de las 

eferas, asi como del hormigon y acero utilizado para el modelo se detallan en la 

Tabla 3.1. 

Tabla 3.1 Datos de los materiales. 

Material     

Hormigón  

f`c 280 Kg/cm² 

Peso especifico 2400 kg/m3 

Módulo de elasticidad E 252671Kg/cm² 

Módulo de Poisson 0,2 

Acero de refuerzo 

Fy 4200 Kg/cm² 

Módulo de elasticidad E 2030000 Kg/cm² 

Módulo de Poisson 0,3 

Polietileno de alta 
densidad (HDPE) 

Peso especifico 960 Kg/m3 

Módulo de elasticidad E 10200 Kg/cm² 

Módulo de Poisson 0,46 

 

Para los modelamientos de losas se asumieron cargas y combinaciones 

especificadas en la norma ecuatoriana de la construcción NEC_SE_CG_ 

(cargas no sísmicas), para esta parte no se tomaron en cuenta los efectos de 

sismos ya que se busca analizar el comportamiento interno. Se asumieron 
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también condiciones de  losas simplemente apoyadas a lo largo de todo el 

contorno. Las cargas asumidas para los modelos se resumen en la tabla 3.2. 

Tabla 3.2 Cargas de diseño. 

Tipo de carga  Valor Denominación 

Carga viva  480 Kg/m² Correspondiente a carga viva de oficinas 

Carga muerta 200 Kg/m² 
Carga muerta asumida correspondiente a 

elementos no estructurales. 

 

Se evaluaron los esfuerzos de flexión y corte, así como la distribución de los 

mismos producidos dentro de la estructura para los diferentes elementos 

sólidos. En el caso de los elementos de las esferas se evaluaron  los esfuerzos 

producidos en los elementos de área que conforman las mismas.  

3.2 MODELOS DE DEFLEXIONES DE LOS TIPOS DE LOSAS 

BUBBLEDECK EN SAP2000. 

 

3.2.1 Características de los modelos. 

Para el cálculo de las deflexiones, así como la capacidad de losas Bubbledeck, 

se tomaron los datos de geometría, características y  recomendaciones en 

cuanto a los rangos de aplicación para los diferentes tipos, los datos se 

obtuvieron de la página web de la empresa Bubbledeck.  En la tabla 3.3 se 

resumen los datos asumidos para los modelos. 

Tabla 3.3 Características de los diferentes tipos de losas Bubbledeck. 

Tipo de losa 
Bubbledeck 

h  (mm) 
Diámetro de 
las esferas  

(mm) 

Separación entre 
esferas (mm) Peso kg/m2 

Rango de 
aplicación   

m 

BD 230 230 180 200 370 5,0 - 8,3 

BD 280 280 225 250 460 7,0-10,0 

BD 340 340 270 300 550 9,0-12,0 

BD 390 390 315 350 640 11,0-14,0 

BD 450 450 360 400 730 13,0-16,4 

 

Las cargas así como las combinaciones de carga, se tomaron de la norma 

ecuatoriana de la construcción NEC_SE_CG_ (cargas no sísmicas). Para los 

modelos se asumieron condiciones de losas simplemente apoyadas y 

empotradas a lo largo de todo el contorno. 

Los valores para las deflexiones máximas permitidas se tomaron del 

reglamento ACI-318s-14 capítulo 9, sección 9.5 control de deflexiones. El valor 

de deflexión máxima permitida en los modelos se tomó de la tabla 9.5 

correspondiente a sistemas de entrepiso que soporten elementos no 
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estructurales susceptibles de daño, se calculó también el efecto de deflexiones 

a largo plazo del hormigón. El valor se obtiene de la siguiente formula: 

     
 

   
         E.c (3.1) 

 

En donde: 
 

    = Deflexión máxima permitida. 

  = Longitud libre del tramo. 

 
Al modelar los diferentes tipos de losas Bubbledeck se calculó un espesor 

equivalente correspondiente a la inercia de secciones de un metro para  cada 

tipo, para obtener los mismos valores en cuanto al peso propio de los 

elementos se realizó la modificación correspondiente  dentro del programa 

SAP2000. 

 

Tabla 3.4 Datos de cargas y pesos asumidos para los modelos en SAP 2000. 

CARGAS 

Tipo de carga  Valor Denominación 

Carga viva  480 Kg/m² Correspondiente a carga viva de oficinas 

Carga muerta 200 Kg/m² 
Carga muerta asumida correspondiente a 

elementos no estructurales. 

PESO DE ELEMENTOS 

Hormigón 2400 kg/m3 

 Losa BD 230 370 kg/m2 

Losa BD 280 460kg/m2 

Losa BD 340 550 kg/m2 

Losa BD 390 640 kg/m2 

Losa BD 450 730 kg/m2 

 

Los modelos se realizaron para secciones cuadradas, de dimensiones 

especificadas según los rangos de aplicación de los diferentes tipos de losas 

Bubbledeck. En la tabla 3.5 se resumen las dimensiones de los diferentes 

modelos. 
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Tabla 3.5 Dimensiones de los modelos de losas en  SAP2000. 

Tipo de losa 
Bubbledeck 

Largo de las 
secciones  (m) 

BD 230 5 

BD 230 6 

BD 280 7 

BD 280 8 

BD 340 9 

BD 340 10 

BD 390 11 

BD 390 12 

BD 450 13 

BD 450 14 

 

3.2.2 Inercias equivalentes en secciones alivianadas con esferas. 

Para obtener una aproximación de las inercias de los diferentes tipos de losas 

Bubbledeck, se tomaron secciones con un ancho  de un metro de longitud y de 

peralte correspondiente a cada caso. Debido a la presencia de las esferas se 

calculó la inercia de la sección  tomando en cuenta el número de esferas 

contenidas en un metro y se realizó una media ponderada  entre tres secciones 

tipo. 

 

 

Figura 3.4  Distancias para ponderaciones de inercia. 
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(a) 

 

(b) 

 

(c) 

 

Figura 3.5  Secciones de cálculo de inercia. (a) Sección sin esferas. (b) Sección con esferas para diámetro completo. (c) Sección con 

esferas con la mitad de diámetro. 

 

Los valores tomados para las ponderaciones se tomaron según la separación 

entre esferas y los diámetros de las mismas correspondientes a cada caso. Los 

valores de inercia equivalente para una sección de un metro de longitud se 

obtuvieron según la siguiente formula: 

 

    
                 

        
                   E.c (3.2) 

En donde: 

    : Valor de inercia equivalente para un metro de sección. 

   : Inercia de una sección tipo 1 para cada caso de losa Bubbledeck. 

   : Inercia de una sección tipo 2 para cada caso de losa Bubbledeck. 

   : Inercia de una sección tipo 3 para cada caso de losa Bubbledeck. 

  : Espesor total  asumido con sección tipo 1. 

  : Espesor total asumido con sección tipo 2. 

  : Espesor total asumido con sección tipo 3. 

En la siguiente tabla se resumen los valores de inercias y espesores de 

secciones tipo 1, tipo 2 y tipo 3 para los diferentes casos losas Bubbledeck, así 

como los valores de inercia equivalente. 
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Tabla 3.6 Inercia de secciones tipo e inercia equivalente de losas Bubbledeck. 

Tipo de 
losa 

Bubbledeck 

Inercia de un  
metro de 

longitud para 
sección tipo 1 

en cm4 

Espesor asumido 
con sección tipo 1 

en cm 

Inercia de un  
metro de 

longitud para 
sección tipo 2 

en cm4 

Espesor 
asumido con 
sección tipo 2 

en cm 

Inercia de un  
metro de 

longitud para 
sección tipo 3 en 

cm4 

Espesor asumido con 
sección tipo 3 en cm 

Inercia 
equivalente 

para un metro 
de longitud  

en cam4 

BD 230 101392 2 100103 9 75627 9 89218 

BD 280 182933 2,5 179788 11,25 132611 11,25 158873 

BD 340 327533 3 322641 13,5 249272 13,5 290114 

BD 390 494325 3,5 485414 15,75 351752 15,75 426157 

BD 450 759375 4 746234 18 549132 18 658852 

 

3.2.3 Agrietamiento de las secciones. 

Para la obtención de las deflexiones producidas se tomó en cuenta el efecto del 

agrietamiento en las losas, se calculó para cada tipo de losas Bubbledeck los 

valores de inercia efectiva y momento de agrietamiento. El valor de inercia 

efectiva se calculó mediante las formulas  dadas por el reglamento ACI 318s-

14:  

     √           E.c  (3.3) 

En donde: 

 

  : Módulo de ruptura del hormigón. 

 : Valor que depende del peso del hormigón (1 para hormigones de peso 

normal). 

   : Esfuerzo de compresión del hormigón.  

 

    
     

  
     E.c (3.4) 

En donde: 

   : Momento de agrietamiento del hormigón.  

  : Módulo de ruptura del hormigón. 

  : Inercia bruta de la sección. 

  : Distancia del centro de gravedad a la fibra más lejana de la sección. 
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      *   

   

  
  +              E.c (3.5) 

 

En donde: 

  : Inercia efectiva de la sección. 

  : Inercia bruta de la sección. 

   : Inercia agrietada de la sección. 

   : Momento de agrietamiento del hormigón.  

  : Momento producido.  

 

Tabla 3.7 Inercias y momentos de agrietamiento de losas BubbleDeck 

Tipo de losa 
Bubbledeck 

Inercia bruta 
para sección de 

un metro de 
longitud en 

cm4 

Inercia agrietada 
para sección de 

un metro de 
longitud en cm5 

Momento de 
agrietamiento  

Kgm 

BD 230 89218 15877 2904 

BD 280 158873 30234 3858 

BD 340 290114 47960 5802 

BD 390 426157 70860 6654 

BD 450 658852 157536 9955 

 

 

3.3 ANALISIS DE PORTICOS. 

 

3.3.1 Consideraciones generales. 

En el presente trabajo de titulación se modelaron pórticos de edificios de 3 y 4 

pisos, para diferentes dimensiones. Los modelos se realizaron en el programa 

SAP2000 con condiciones que representen la aplicación de losas alivianadas 

en dos direcciones y losas Bubbledeck. 

Los modelos se analizaron para un enfoque  sismo resistente de los 

componentes estructurales, se utilizó la norma ecuatoriana de la construcción 

NEC_SE_DS (peligro sísmico) y NEC_SE_CG_ (cargas no sísmicas). Se 

asume que las losas no contribuyen a la resistencia ante sismo, este será 

soportado únicamente por vigas y columnas. Se asumió perfiles de suelo tipo 

C, correspondiente a perfiles de suelo muy denso o roca blanda que cumplen 

los criterios de velocidad de onda necesarios. Se asume también que las 

estructuras estarán ubicadas en la ciudad de Cuenca y destinados a oficinas y 

salones de uso público.   
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Se realizaron 6 modelos de edificios, de los cuales 3 utilizan losas Bubbledeck 

y 3 utilizan losas alivianadas. El primer caso corresponde a un edificio de 3 

pisos, con longitud de vanos de 5 metros y altura de piso de 3 metros. El 

segundo caso corresponde a un edificio de 3 pisos, con longitud de vanos de 6 

y 7 metros, y altura de piso de 3 metros. Y el tercer caso corresponde a un 

edificio de 4 pisos con longitud de vanos de 7 y 8 metros, y altura de piso de 

3.5 metros. En cada caso se analizó el efecto de utilizar losas Bubbledeck y 

losas alivianadas, en todos los modelos se utilizó la losas Bubbledeck tipo BD 

230, mientras que en cada caso se cambió la sección de la losa alivianada. 

(Ver Anexo D) 

Tabla 3.8 Cargas asumidas para los modelos. 

CARGAS 

Tipo de carga  Valor Denominación 

Carga viva  480 Kg/m² Correspondiente a carga viva de oficinas 

Carga muerta 200 Kg/m² 
Carga muerta asumida correspondiente a 

elementos no estructurales. 

Carga viva de cubierta 100 Kg/m² Carga viva de techo. 

Carga de granizo 50 Kg/m² Carga mínima de granizo 

Peso de losa Bubbledeck 
BD 230 370 Kg/m² 

Peso por metro cuadrado de losa 
Bubbledeck BD 230 

Peso de losa alivianada 
sección 1 292,6 Kg/m² 

Peso por metro cuadrado de losa 
alivianada 1 

Peso de losa alivianada 
sección 2 368 Kg/m² 

Peso por metro cuadrado de losa 
alivianada 2 

Peso de losa alivianada 
sección 3 432 Kg/m² 

Peso por metro cuadrado de losa 
alivianada 3 

         

(a) 

                                       

(b) 



    UNIVERSIDAD DE CUENCA  
                                                                                                                                         Fundada 1867 
 

Teodoro Esteban Amaya Astudillo 
Boris Jaime Galindo Bacuilima 43 

                                                

(c) 

 

Figura 3.6  Secciones de losa alivianadas para modelos de edificios. (a) Sección losa alivianada tipo 1 y ancho de casetón para 

modelo de 5x5 (b) Sección losa alivianada tipo2 y ancho de casetón para modelo de 6x7.  (c) Sección de losa alivianada tipo 3 y 

ancho de casetón para modelo 7x8. 

 
 

3.3.2 Secciones de elementos de vigas y columnas. 

Para realizar los modelos se asumieron secciones  de vigas y columnas, para 

los diferentes casos de longitudes de vano. Se realizó el diseño de los 

elemento mediante hojas de cálculo según los valores obtenidos con el 

programa SAP2000, para cada caso se comprobó que los elementos  cumplan 

la normativa correspondiente en cuanto a las secciones y rigidez necesaria 

para resistir los efectos producidos por las cargas de diseño, y los efectos 

producidos por sismos. En la tabla 3.9 se muestran las secciones de los 

elementos de vigas y columnas para los diferentes modelos. 

 

 

Tabla 3.9 Secciones de vigas y columnas para los diferentes modelos. 

Estructura 

Modelos con losas Bubbledeck BD 230 Modelos con losas alivianadas. 

Peralte de 
vigas  H (cm) 

Ancho de 
vigas  B(cm) 

Columna 
cuadrada   L 

(cm) 

Peralte de 
vigas  H 

(cm) 

Ancho de 
vigas  B(cm) 

Columna 
cuadrada   L 

(cm) 

Modelo de estructura 
de 3 pisos, longitudes 

de vano 5x5 m 
35 30 35 35 30 35 

Modelo de estructura 
de 3 pisos, longitudes 

de vano 6x7 m 
45 40 45 45 40 45 

Modelo de estructura 
de 4 pisos, longitudes 

de vano 8x7 m 
60 40 50 60 40 50 

 



    UNIVERSIDAD DE CUENCA  
                                                                                                                                         Fundada 1867 
 

Teodoro Esteban Amaya Astudillo 
Boris Jaime Galindo Bacuilima 44 

3.3.3 Análisis del cortante de losas. 

Para el análisis se escogerá una sección de 1 metro donde las cargas serán 

aquellas que actúen sobre zonas ortogonales limitadas por la línea de cortante 

crítico y la línea de fisuración intermedia de la losa. 

 

 

Figura 3.7 Sección de diseño por cortante para losas. 

 

Donde: 

d: es el peralte de losa 

 

 

Se debe saber que el cortante resistido por el concreto para miembros no pre 

esforzados sin comprensión axial se calcula de acuerdo a (Código ACI, eq 

22.5.5.1): 

          √               E.c (3.6) 

Donde: 

  = factor de modificación que tiene en cuenta las propiedades mecánicas 

reducidas del concreto de peso liviano, relativa a los concretos de peso normal 

de igual resistencia a la compresión. 

   = ancho del alma o diámetro de la sección circular. 

    = distancia desde la fibra extrema en compresión hasta el centroide del 

refuerzo longitudinal en tracción. 
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    = resistencia especificada a la compresión del concreto 

Se debe cumplir que øVc > Vu para que no se requiera refuerzo por cortante 

(estribos). El análisis se realizara comparando los esfuerzos, el esfuerzo 

cortante vertical viene dado por: 

  
 

   
 ∫  

 

  
            E.c (3.7) 

Donde: 

 : Esfuerzo cortante. 
 : Fuerza cortante. 
 : Inercia de la sección. 

 : Ancho de la sección. 
    : Limites de integración. Figura 3.8 
 

 

Figura 3.8 Sección con límites de integración para esfuerzos cortantes. 

  
 

   
    ̅   

  

   
          E.c (3.8) 

Q es la suma de los momentos de área con respecto al eje neutro (E.N) 

 

El esfuerzo cortante máximo se produce en el eje neutro, para una sección 

rectangular el esfuerzo cortante máximo se obtiene de la siguiente manera: 

  
  

   
    ̅  

  
    

  
  
 (  

 

 
) (

 

 
)         E.c (3.9) 

      
  

           
  E.c (3.10) 
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Figura 3.9 Diagrama de esfuerzos cortantes para sección rectangular. 

El esfuerzo cortante se distribuye de forma parabólica. 

Se debe cumplir que:                     ,                      √                 

E.c (3.11) 

Esfuerzo cortante máximo en  losas BubbleDeck 

Una vez conocido el esfuerzo cortante máximo de la sección rectangular se 

puede obtener el esfuerzo cortante máximo de una sección de losa 

BubbleDeck  aplicando el coeficiente de reducción de 0.55 

      
  

               
       E.c (3.12) 

 

Esfuerzo cortante máximo en losas nervadas. 

El esfuerzo cortante en losas nervadas se produce de la siguiente manera: 

 

Figura 3.10 Diagrama de esfuerzos cortantes para losas nervadas. 

En la figura 3.10 se observa una sección de un nervio de una losa nervada 

donde el cortante máximo se produce siempre en lo que sería el alma de la 

sección, si el eje neutro se encuentra en el patín el cortante máximo es en la 

unión del alma con el patín, de lo contrario el esfuerzo cortante se produce en 

el eje neutro que estaría ubicado en el alma. 

3.3.4 Espectro de diseño. 

Para analizar los efectos producidos por sismos se utilizó el espectro de 

diseño, dado por la norma ecuatoriana de la construcción NEC_SE_DS (peligro 

sísmico). 
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Figura 3.11  Espectro de diseño. [Norma ecuatoriana de la construcción NEC_SE_DS (peligro sísmico] 

En donde: 

  : Razón entre la aceleración espectral para periodos de 0.1 seg, y el valor de 

aceleración máxima del terreno. El valor se obtiene según la ubicación del 

proyecto. 

        : Representan coeficientes de amplificación del suelo, se obtienen 

según la zona sísmica correspondiente. 

  : Espectro de respuesta. 

 : Periodo fundamental de vibración de la estructura. 

    Periodo límite de vibración en el espectro limite elástico. 

    Periodo límite de vibración en el espectro limite elástico que representa el 

sismo de diseño. 

   Aceleración máxima en roca para sismo de diseño, se obtiene dependiendo 

de la zona sísmica correspondiente. 

Los valores de    y   , son valores fijos obtenidos por formula que depende de 

los valores             , se calcula también el periodo fundamental de la 

estructura    según la siguiente formula:    

                   E.c (3.13) 

En donde: 

         Son coeficientes que dependen del tipo de edificio. 

     Representa la altura máxima de la edificación de n pisos en metros. 
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3.3.5 Cortante basal de diseño. 

El cortante basal de diseño se obtiene por la formula dada en la norma 

ecuatoriana de la construcción NEC_SE_DS (peligro sísmico). 

  
       

       
            E.c (3.14) 

En donde: 

-     Cortante basal de diseño. 

-        Espectro de diseño en aceleración evaluado en el periodo 

fundamental de la estructura. 

-          Coeficientes de elevación en planta y elevación 

respectivamente. 

-     Coeficiente de importancia de la estructura. 

-   Factor de reducción de resistencia sísmica. 

-   Carga sísmica reactiva, representada por la carga muerta total de 

la estructura. 

Tabla 3.10 Valores utilizados para espectro de diseño y cortante basal. 

Z     Factor 
de Zona 
sísmica 0,25 

Η 2,48 

R 1,3 

Tipo de 
suelo C 

Fa    Coeficiente 
de amplificación 

de suelo 1,3 

Fd    Coeficiente 
de amplificación 

de suelo 1,28 

Fs.    Coeficiente 
de amplificación 

de suelo 0,94 

Φp Irregularidad 
en planta 1 

Φe Irregularidad 
en elevación 1 

Coeficiente de 
importancia 1 
R factor de 

reducción de 
respuesta sísmica 8 

To   (seg) 0,09 

Tc   (seg) 0,51 

Tl (seg) 3,07 

Ct 0,06 

a 0,90 
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Los valores de derivas máximas de piso se controlaron para un valor del 2%, 

las derivas máximas producidas se calcularon mediante la siguiente formula: 

                     E.c (3.15) 

En donde: 

    Deriva máxima inelástica. 

    Desplazamiento obtenido en aplicación de las fuerzas laterales de diseño 

reducidas. 

   Factor de reducción de resistencia. 

 

Las fuerzas laterales de distribuyen en la altura de la estructura, utilizando la 

siguiente formula. 

   
      

∑        
   

       E.c (3.16) 

En donde: 

    Fuerza lateral aplicada en el piso x de la estructura. 

   Cortante basal de diseño. 

   Número de pisos de la estructura. 

    Peso asignado al piso X de la estructura. 

    Peso asignado al piso i de la estructura. 

    Altura al piso X de la estructura. 

    Altura al piso i de la estructura. 

   Coeficiente relacionado con el periodo de vibración de la estructura. 

 

Para los modelos los valores de las fuerzas de diseño y  masas de cada piso 

se consideraron  concentradas en el centro de masas con un  desplazamiento 

del 5% de la dimensión máxima del edificio. También se asignó factores de 

reducción de inercia de los elementos para la obtención de los efectos 

producidos por sismo. 

 

                                                                                       

 0.8 Ig para columnas. 
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Los valores de fuerzas laterales y cortante basal, calculados para los diferentes 

modelos se resumen en la tabla 3.11. 

Tabla 3.11 Fuerzas laterales y cortante basal. 

Modelo 
Modelos con losas 
Bubbledeck BD 230 

Modelos con losas alivianadas 

Modelo de estructura 
de 3 pisos, longitudes 

de vano 5x5 m 

Fuerza lateral 
piso 1 4030 Kg 

Fuerza lateral piso 
1 3450 Kg 

Fuerza lateral 
piso 2 8060 Kg 

Fuerza lateral piso 
2 6900 Kg 

Fuerza lateral 
Piso 3 8740 Kg 

Fuerza lateral Piso 
3 7140 Kg 

Cortante Basal 
V 20840 Kg Cortante Basal V 17490 Kg 

Modelo de estructura 
de 3 pisos, longitudes 

de vano 6x7 m 

Fuerza lateral 
piso 1 15020 Kg 

Fuerza lateral piso 
1 14860 Kg 

Fuerza lateral 
piso 2 30030 Kg 

Fuerza lateral piso 
2 29730 Kg 

Fuerza lateral 
Piso 3 33000 Kg 

Fuerza lateral Piso 
3 32620 Kg 

Cortante Basal 
V 78050 Kg Cortante Basal V 77260 Kg 

Modelo de estructura 
de 4 pisos, longitudes 

de vano 8x7 m 

Fuerza lateral 
piso 1 14120 Kg 

Fuerza lateral piso 
1 14400 Kg 

Fuerza lateral 
piso 2 28240 Kg 

Fuerza lateral piso 
2 28800 Kg 

Fuerza lateral 
Piso 3 42370 Kg 

Fuerza lateral Piso 
3 43200 Kg 

Fuerza lateral 
Piso 4 41900 Kg 

Fuerza lateral Piso 
4 43080 Kg 

Cortante Basal 
V 126650 Kg Cortante Basal V 

129490 
Kg 

 

 

3.3.6 Limitaciones de los modelos de pórticos de edificios. 

En los modelos realizados en el presente trabajo de titulación se asumieron 

casos de pórticos de edificios simétricos en planta y elevación, las cargas por 

peso y ocupación se asumieron constantes en los pisos, además se asumió el 

centro de masa de cada piso en la ubicación del centro de gravedad con la 

correspondiente excentricidad especificada en la norma ecuatoriana, también 

cabe mencionar que los modelos edificios fueron máximo de 4 pisos. Las 

condiciones mencionadas anteriormente se utilizaron en los casos de losas 

alivianadas y losas Bubbledeck, de manera de tener una buena comparación 

entre ambos sistemas, en los modelos realizados en el presente trabajo de 

titulación no se consideraron resultados para casos de mayor tamaño o 

condiciones arquitectónicas especiales que produzcan irregularidades en 

planta y elevacion, o casos en donde se necesite algún análisis especial o 

diferente a los mencionados anteriormente. 
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4 CAPITULO 4 RESULTADOS 
 

Se procedió a mostrar los resultados obtenidos de los modelos realizados en el  

programa SAP2000 para el análisis de comportamiento y deflexiones de losas 

Bubbledeck, y la comparación entre  pórticos con las mismas losas y con losas 

alivianadas. Siguiendo los procedimientos del capítulo 3, se mostrarán los 

esfuerzos producidos en losas Bubbledeck, así como la distribución de los 

mismos dentro de las secciones de losa; se mostrarán también las deflexiones 

producidas, tomando en cuenta el agrietamiento y el efecto a largo plazo para 

cada tipo de losa Bubbledeck y finalmente los efectos en los diferentes 

modelos de edificios, con  la aplicación de losas alivianadas y losas 

Bubbledeck. 

 

4.1 RESULTADOS DEL COMPORTAMIENTO DE LOSAS BUBBLEDECK. 

 

4.1.1 Distribución de esfuerzos en losas Bubbledeck. 

En la figura 4.1 a y 4.1 b  se muestra la distribución de esfuerzos en zonas de 

hormigón entre esferas y zonas de hormigón con la presencia de esferas 

dentro de la losa respectivamente, la escala de valores representada por los 

colores se encuentra en unidades de kilogramos, centímetros cuadrados. Se 

observa una distribución normal de esfuerzos en ambas secciones a pesar de 

la presencia de las esferas en los modelos, se obtienen  los esfuerzos máximos 

de compresión en la parte superior de la sección media de la losa y en la parte 

inferior en las secciones de los extremos; los esfuerzos máximos de tensión se 

muestran en la parte inferior de la sección media de la losa. 

   

(a) 
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(b) 

Figura 4.1  Distribución de esfuerzos en secciones de losa. (a) Esfuerzos en secciones sin esferas. (b) Esfuerzos en secciones con 

esferas. 

En la tabla 4.1 se muestran los valores de esfuerzos y momentos producidos 

en las secciones de los extermos y para la seccion media, en zonas de losa 

que se encuentran con la presencia de esferas y para zonas que se encuentra 

sin la presencia de las mismas. Se puede observar esfuerzos negativos de 

compresion en la parte superior de la seccion media y en la parte inferior de los 

extremos para ambos casos, los esfuerzos positivos de tensión se producen en 

la parte inferior para la  seccion media y en la parte superior para las secciones 

de los extremos en ambos casos. Se comprueba una distribucion normal de 

esfuerzos, debido a que las restricciones se asignaron en la parte superior e 

inferior de los extremos, el modelo simula el comportamiento de una losa con 

empotramientos en los extremos. La diferencias de valores entre secciones de 

los extremos para el caso de hormigon con esferas y hormigon sin esferas, se 

debe a que en el primer caso el punto evaluado se encuentra muy cercano al 

punto considerdo como condicion de apoyo.  

 

Tabla 4.1 Esfuerzos y momentos en secciones de losa. 

  Sección de hormigón sin esferas Sección de hormigón con esferas 

Sección media  

Esfuerzo en la parte 
superior 

(-)0,64kg/cm2 
Esfuerzo en la 
parte superior 

(-)0,3kg/cm2 

Esfuerzo en la parte 
inferior 

1,4 kg/cm2 
Esfuerzo en la 
parte inferior 

1,13 Kg/cm2 

Momento en la 
parte superior 

(-)25,25kg.m 
Momento en la 
parte superior 

(-)11,84 kg.m 

Momento en la 
parte inferior 

55,23 kg.m 
Momento en la 
parte inferior 

44,57kg.m 

Sección de los 
extremos 

Esfuerzo en la parte 
superior 

1,48kg/cm2 
Esfuerzo en la 
parte superior 

1,38kg/cm2 
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Esfuerzo en la parte 
inferior 

(-)14 kg/cm2 
Esfuerzo en la 
parte inferior 

(-)1,46 Kg/cm2 

Momento en la 
parte superior 

58,38kg.m 
Momento en la 
parte superior 

54,17 kg.m 

Momento en la 
parte inferior 

(-)552,3 kg.m 
Momento en la 
parte inferior 

(-)57,97kg.m 

 

 

4.1.2 Esfuerzo en las esferas. 

En la figura 4.2 obtenida con el programa SAP2000, se presenta los esfuerzos 

producidos sobre las esferas dentro de la losa para modelos de losas de  3 

metros. La escala de valores de esfuerzos representada en colores se 

encuentra en kg, centímetros cuadrados, se puede observar un rango máximo 

de valores entre -1kg/cm2 y 1kg/cm2.  

 

 

Figura 4.2  Esfuerzos en esferas. 

 

4.2 RESULTADOS DE DEFLEXIONES PARA LOS TIPOS DE LOSAS 

BUBBLEDECK. 

 
En la tabla 4.2 se resumen los valores de deflexiones obtenidos de los modelos 

para los diferentes tipos de losas Bubbledeck, la tabla muestra los valores de 

deflexión considerando un efecto a largo plazo. Se muestra el tipo de losa y el 

rango para el cual se aplicó, en todos los casos se consideró el efecto del 

agrietamiento tomando en cuenta las condiciones de borde. 
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Tabla 4.2 Deflexiones en losas Bubbledeck. 

Deflexiones producidas  

  Carga viva  480Kg/m2   Deflexiones a largo plazo que consideran 
daño de componentes no estructurales.  

L/480   
Carga muerta 

200kg/m2 
  

Tipo de 
BD  

Largo paneles (m) 
Máxima 
deflexión 

permitida cm 

Deflexión losas 
empotradas (cm) 

Deflexión losas 
simplemente 

apoyadas (cm) 

BD 230 5 1,04 0,07 0,4 

BD 230 6 1,25 0,15 1,81 

BD 280 7 1,46 0,17 1,98 

BD 280 8 1,67 0,2 3,74 

BD 340 9 1,88 0,5 3,2 

BD 340 10 2,08 1,22 5,81 

BD 390 11 2,29 0,46 7,12 

BD 390 12 2,50 0,6 10,66 

BD 450 13 2,71 0,58 6,4 

BD 450 14 2,92 1,08 8,9 
     

 

 

(a) 
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(b) 

Figura 4.3  Deflexiones en los tipos de losas Bubbledeck. (a) Deflexiones para losas simplemente apoyadas. (b) Deflexiones para 

losas empotradas. 

 

4.3 RESULTADOS DE MODELOS DE PORTICOS DE EDIFICIOS. 

 
Con respecto a los modelos de edificios analizados con el programa SAP2000, 

se obtuvo los valores de momentos máximos y cortantes máximos en vigas, 

momento máximo y fuerza axial máxima en columnas y las derivas piso, para el 

caso de losas alivianadas y losa Bubbledeck. Se obtuvo también las 

deflexiones de los dos tipos de losa aplicados en los modelos, la figura 4.4 se 

muestra los valores de deflexión producida en losas para alivianadas y 

Bubbledeck BD230. 

 

 

Figura 4.4  Deflexiones de losas alivianadas y losa Bubbledeck BD230, para diferente tamaños de losas. 
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4.3.1 Resultados de modelo edificio de 3 pisos con luces de 5 metros. 

En el modelo de edificio de 3 pisos con largo de losas de 5 metros, se utilizó la 

sección de losa alivianada tipo 1 (ver figura 3.6), y la losa Bubbledeck BD230. 

En la tabla 4.3 se resumen los valores obtenidos en el análisis de este modelo. 

Tabla 4.3 Resultados de vigas, columnas y derivas de piso para modelo de 5m x 5m. 

Modelo Losas alivianadas Sección tipo 1 Modelo Losas Bubbledeck BD230 

Viga             
35cm x30cm 

Momento positivo  
kgm 6480 

Viga             
35cm x30cm 

Momento positivo  
kgm 7100 

Momento negativo  
kgm 11540 

Momento negativo  
kgm 12460 

Cortante kg 9800 Cortante kg 10620 
Área de acero para 
momento positivo 

cm2 
6,096 

Área de acero para 
momento positivo 

cm2 
6,723 

Área de acero para 
momento negativo 

cm2 
11,504 

Área de acero para 
momento negativo 

cm2 
12,57 

Área de estribos cm2 1,005 Área de estribos cm2 1,005 

Columna de 
35cm x35cm 

Momento en columna  
kgm 6840 

Columna de 
35cm x35cm 

Momento en 
columna  kgm 7250 

Fuerza axial en 
columna  kg 92670 

Fuerza axial en 
columna  kg 100790 

Área de acero en 
columna cm2 17,15 

Área de acero en 
columna cm2 17,15 

Derivas de 
piso  cm 

Piso 1 2,63 
Derivas de 

piso  cm 

Piso 1 3,58 

Piso 2 3,77 Piso 2 4,33 

Piso 3 2,55 Piso 3 2,25 

4.3.2 Resultados de modelo edificio de 3 pisos con luces de 6 metros x 7 

metros. 

En el modelo de edificio de 3 pisos con largo de losas de 6 metros x 7 metros, 

se utilizó la sección de losa alivianada tipo 2 (ver figura 3.6), y la losa 

Bubbledeck BD230. En la tabla 4.4 se resumen los valores obtenidos en el 

análisis de este modelo. 

Tabla 4.4 Resultados de vigas, columnas y derivas de piso para modelo de 6m x 7m. 

Modelo Losas alivianadas Sección tipo 2 Modelo Losas Bubbledeck BD230 

Viga             
45cm x40cm 

Momento positivo  kgm 18570 

Viga             
45cm x40cm 

Momento positivo  
kgm 18840 

Momento negativo  
kgm 32930 

Momento negativo  
kgm 33410 

Cortante kg 18870 Cortante kg 19530 

Área de acero para 
momento positivo cm2 13,293 

Área de acero para 
momento positivo cm2 13,503 

Área de acero para 
momento negativo cm2 25,403 

Área de acero para 
momento negativo 

cm2 
25,847 

Área de estribos cm2 1,57 Área de estribos cm2 1,57 

Columna de 
Momento en columna  

kgm 21740 Columna de 
Momento en columna  

kgm 22020 
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45cm x 45cm Fuerza axial en columna  
kg 169130 45cm x 45cm Fuerza axial en 

columna  kg 170060 

Área de acero en 
columna cm2 20,35 

Área de acero en 
columna cm2 20,35 

Derivas de piso  
cm 

Piso 1 2,62 
Derivas de 

piso  cm 

Piso 1 2,65 

Piso 2 3,9 Piso 2 3,94 
Piso 3 2,77 Piso 3 2,8 

 

4.3.3 Resultados de modelo edificio de 4 pisos con luces de 7 metros x 8 

metros. 

En el modelo de edificio de 4 pisos con largo de losas de 7 metros x 8 metros, 

se utilizó la sección de losa alivianada tipo 3 (ver figura 3.6), y la losa 

Bubbledeck BD230. En la tabla 4.5 se resumen los valores obtenidos en el 

análisis de este modelo. 

Tabla 4.5 Resultados de vigas, columnas y derivas de piso para modelo de 7m x 8m. 

Modelo Losas alivianadas Sección tipo 3 Modelo Losas Bubbledeck BD230 

Viga             
60cm x40cm 

Momento positivo  kgm 30870 

Viga             
60cm x40cm 

Momento positivo  kgm 30430 

Momento negativo  kgm 50890 
Momento negativo  

kgm 49900 

Cortante kg 28070 Cortante kg 27680 
Área de acero para 

momento positivo cm2 15,908 
Área de acero para 

momento positivo cm2 15,665 

Área de acero para 
momento negativo cm2 27,609 

Área de acero para 
momento negativo cm2 26,997 

Área de estribos cm2 2,26 Área de estribos cm2 2,26 

Columna de 
50cm x 50cm 

Momento en columna  
kgm 39980 

Columna de 
50cm x 50cm 

Momento en columna  
kgm 38760 

Fuerza axial en columna  
kg 355700 

Fuerza axial en columna  
kg 350080 

Área de acero en 
columna cm2 25,44 

Área de acero en 
columna cm2 25,44 

Derivas de piso  
cm 

Piso 1 3,8 

Derivas de piso  
cm 

Piso 1 3,72 
Piso 2 5,63 Piso 2 5,5 
Piso 3 4,56 Piso 3 4,45 
Piso 4 2,65 Piso 4 2,59 

4.3.4 Resultados de fuerzas cortantes en losas. 

Para     = 280        y    = 1 El esfuerzo a cortante del concreto  obtenido 

con la ecuación E.c (3.11) es de 8.87         

4.3.4.1 Resultados de fuerzas cortantes para losas Bubbledeck 

Se analizó la losa Bubbledeck para el caso critico correspondiente al modelo de 

8mx7m, para este modelo se aplica el factor de reducción de  0.55 

        
 

 
   

     

 
         E.c (4.1) 

Donde: 

  : Cortante último. 

   Carga última. 
   Ancho unitario. 
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Se cumple que:                   

Por lo tanto no es necesario usar refuerzo a cortante en la losa BubbleDeck. 

De los casos estudiados se analizó el que produciría mayor carga por lo que se 

puede decir que la losa BubbleDeck no requerirá refuerzo a cortante en 

ninguno de los demás casos estudiados ya que    será menor.  

 

4.3.4.2 Resultados de fuerzas cortantes para losas nervadas. 

Sección de losa de 5mx5m. 

De acuerdo a la sección de diseño: 

        
 

 
   

     

 
        

                      
   

 
   

     

 
         

              

 

La distribución del esfuerzo cortante se obtiene con la ecuación E.c (3.8) y se 

representa de la  siguiente manera: 

 

Figura 4.5 Distribución de cortante para losa alivianada tipo 1. 

 

El valor de           es  8.87         (E.c (3.11)),  se cumple que             

      y por lo tanto no es necesario usar refuerzo a cortante. 

 
 

𝑘𝑔 𝑐𝑚  
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Sección de losa de 7mx6m. 

De acuerdo a la sección de diseño: 

        
 

 
   

     

 
        

                       
   

 
   

     

 
         

              

La distribución del esfuerzo cortante obtenido con la ecuación E.c(3.8), es de la 

siguiente manera: 

 

Figura 4.6 Distribución de cortante para losa alivianada tipo 2. 

El valor de           es  8.87         (E.c (3.11)), por lo tanto                   

 
Refuerzo a cortante requerido. 

                 Obtenido con E.c (3.6). 

 

El refuerzo a cortante debe calcularse de acuerdo a (Código ACI 318, eq 

22.5.10.5.3): 

    
      

 
   E.c (4.2). 

Donde: 

   = Área de refuerzo a cortante con un espaciamiento s. 
    = resistencia específica a fluencia del refuerzo transversal. 

  = distancia desde la fibra extrema en compresión hasta el centroide del 
refuerzo longitudinal en tracción.  

  = espaciamiento del refuerzo transversal, en este caso es igual a    . 
Se usaran varillas de diámetro de 6mm para el refuerzo a cortante: 

    
                            

  
    

 

𝑘𝑔 𝑐𝑚  
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Por lo tanto               

En la dirección de la luz corta no es necesario refuerzo a cortante ya que 

                  

 
Sección de losa de 8mx7m 

De acuerdo a la sección de diseño: 

        
 

 
   

     

 
        

                      
  

 
   

     

 
         

             

 

La distribución del esfuerzo cortante obtenido con la ecuación E.c (3.8), es de 

la siguiente manera: 

 

Figura 4.7 Distribución de cortante para losa alivianada tipo 3. 

El valor de           es  8.87         (E.c (3.11)), por lo tanto                   

Refuerzo a cortante requerido. 

                Obtenido con E.c (3.6). 

El refuerzo a cortante debe calcularse de acuerdo a (Código ACI 318, eq 

22.5.10.5.3), E.c (4.1). 

Se usaran varillas de diámetro de 6mm para el refuerzo a cortante: 

    
                            

  
    

 

               

𝑘𝑔 𝑐𝑚  



    UNIVERSIDAD DE CUENCA  
                                                                                                                                         Fundada 1867 
 

Teodoro Esteban Amaya Astudillo 
Boris Jaime Galindo Bacuilima 61 

Por lo tanto               

En la dirección de la luz corta es necesario refuerzo a cortante ya que           

<        Se usa el mismo diámetro de 6mm para el refuerzo a cortante. 

 

4.3.5 Comparación de resultados entre modelos realizados con losas 

alivianadas y con losas Bubbledeck. 

Se realizaron gráficos comparativos entre los efectos producidos en los 

modelos para la aplicación de losas alivianadas y losas Bubbledeck, en los 

siguientes gráficos se muestran los valores de momentos y cortantes en vigas; 

momentos y fuerza axial en columnas; y promedio de derivas de piso para los 

modelos de 5mx5m, 6mx7m y 7mx8m. Los valores mostrados en los gráficos 

se expresan como relación de los efectos con losas Bubbledeck sobre los 

efectos con losas alivianadas expresados en porcentaje. 

 

 

(a) 

Modelo 5x5 Modelo 6x7 Modelo 7x8

Momento positivos 9,57 1,45 -1,43

Momento negativo en vigas 7,97 1,46 -1,95

Momento en columnas 5,99 1,29 -3,05
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(b) 

 

 

(c) 

Figura 4.8 Relaciones en porcentaje de losa BubbleDeck/losas alivianadas. (a) Relaciones de momentos. (b) Relaciones de fuerzas 

cortantes y fuerzas axiales. (c) Relaciones de derivas de piso. 

Modelo 5x5 Modelo 6x7 Modelo 7x8

 Fuerza cortante" 8,37 3,50 -1,39

Fuerza axial 8,76 0,55 -1,58
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4.3.6 Comparación de cantidades de material y costos. 

Finalmente se realizó una comparación entre la cantidad de materiales 

(hormigón, acero, poli estireno y polietileno de alta densidad), utilizados en los 

modelos de estructuras de edificios para luces de 5mx5m, 6mx7m, 7mx8m;  en 

el caso  de aplicación de losas Bubbledeck y losas alivianadas. Se realizó 

también un análisis de costos relacionados con la aplicación de uno u otro 

sistema de losas. Los gráficos  se expresan, para el caso de cantidades de 

hormigón en metros cúbicos necesarios para vigas, columnas y losa; en el caso 

de las cantidades de acero el grafico se presenta en kilogramos de acero por 

metro cubico de hormigón. 

 

(a) 

 

(b) 

Figura 4.9 Cantidades de material para estructuras con losas alivianadas y losas BubbleDeck. (a) Volúmenes de hormigón en 

metros cúbicos.  (b) Kilogramos de acero por metro cubico de hormigón. 
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Finalmente se realizó un análisis del costo de materiales utilizados para 

estructuras de edificios que utilicen sistemas de losas alivianadas y sistemas 

de losas Bubbledeck, en la tabla 4.8 se resumen las cantidades de cada 

material, en el caso de losas alivianadas se muestra el  costo de casetones, y 

en el caso de losas Bubbledeck el costo de esferas. Como referencia se 

muestra el costo de material para hormigón y acero en los modelos de pórticos 

de edificios. 

Los costó de materiales se tomó de  empresas locales, se asumieron los 

siguientes precios:  

Tabla 4.6 Costos asumidos de materiales 

 

Costos de materiales 

Costo de metro 
cubico de 
hormigón 

240 $/m3 

Costo de kilogramo 
de Acero 1,95 $/kg 

Costo de casetones  1,45 $ 

Costo esferas de 
polietileno 0,95 $ 

 

Tabla 4.7 Cantidad total de materiales y costo total. 

  Estructuras losas alivianadas Estructuras losas Bubbledeck 

  Hormigón m3 
Acero 

kg 
Casetones 

Costo 
$ 

Hormigón m3 Acero kg Esferas 
Costo $ 

Modelo 
5x5 

65 4448 1200 26115 75 4655 7500 
34595 

Modelo 
6x7 

229 17700 4536 96110 232 16996 28350 
117187 

Modelo 
7x8 

443 34535 8448 185846 406 31132 52800 
210889 

 

Tabla 4.8 Cantidad de materiales y costo total sin casetones o esferas. 

  Estructuras losas alivianadas Estructuras losas Bubbledeck 

  Hormigón m3 Acero kg Costo $ Hormigón m3 Acero kg Costo $ 

Modelo 
5x5 

65 4448 24375 75 4655 27095 

Modelo 
6x7 

229 17700 89533 232 16996 88837 

Modelo 
7x8 

443 34535 173597 406 31132 158089 
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Figura 4.10 Costos total de estructura para losas alivianadas y losas BubbleDeck. 

 

 

Figura 4.11 Costos total  de hormigón y acero para losas alivianadas y losas BubbleDeck. 
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5 CAPITULO 5 CONCLUSIONES 

Realizando el análisis del comportamiento de losas Bubbledeck, el análisis de 

aplicación de los diferentes tipos de losas Bubbledeck  y el análisis comparativo 

entre la aplicación de este sistema y sistemas de losas alivianadas se tiene las 

siguientes conclusiones. 

 Según los modelos de losas Bubbledeck realizados en el programa SAP 

2000 se observó un comportamiento uniforme similar al de una losa 

sólida, la distribución de esfuerzos no se ve mayormente influenciada 

por las esferas de polietileno de alta densidad. Los esfuerzos de 

compresión y tensión se distribuyen a través de las zonas ocupadas por 

el hormigón.  

 Para secciones transversales de losa se observó un comportamiento 

similar al de cualquier elemento que soporta acciones flexionantes en 

donde los esfuerzos de compresión y tensión se distribuyen según las 

condiciones de apoyo.  

 Para secciones que se muestran ocupadas por las esferas se observó 

que estas se encuentran poco esforzadas, por lo que se puede 

corroborar que la transmisión de esfuerzos dentro de la losa se produce 

únicamente a través de las secciones de hormigón. 

 En los modelos de análisis de los tipos de losas Bubbledeck se observó 

que analizando los elementos como simplemente apoyados en sus 

bordes, la losa tipo BD 230 analizada para un rango de 5 metros es la 

única que cumple el valor de deflexión limite, las demás  losas no 

cumplen, en estos modelos tomando en cuenta el agrietamiento y los 

efectos a largo plazo del hormigón se produjeron reducciones 

considerables en la resistencia de las losas. 

 En los modelos de tipos de losas Bubbledeck analizados como 

elementos simplemente apoyados en los extremos, se observó que las 

mayores deflexiones se produjeron en la losa Bubbledeck tipo BD 390 

analizada según los rangos de aplicación sugeridos y tomando en 

cuenta agrietamiento y efecto largo plazo del hormigón. 

 En los modelos de losas Bubbledeck analizados como elementos 

empotrados en los extremos, se observó que para cada caso se cumple 

con los valores de deflexión límite, para estos modelos también se tomó 

en cuenta el agrietamiento y el efecto a largo plazo del hormigón. 

 En los modelos de tipos de losas Bubbledeck analizados como 

elementos empotrados en los extremos, la máxima deflexión se produjo 

en la losa Bubbledeck tipo BD 340 analizada en los rangos de aplicación 

sugeridos, en este caso también se tomó en cuenta el agrietamiento y 

efecto a largo plazo del hormigón.  

 En cada caso de modelos de losas Bubbledeck analizados como 

elementos simplemente apoyados o empotrados en los extremos se 

observa que el efecto de agrietamiento y el efecto a largo plazo reducen 

de forma diferente la capacidad resistente de cada modelo, esto se debe 
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a que la relación entre los momentos de agrietamiento y los momentos 

producidos varía mucho en cada caso. 

 En el caso que se pueda asegurar el empotramiento de las losas 

Bubbledeck, estas cumplirán los valores de deflexiones máximas 

permitidas. 

 Según las comparaciones realizadas entre los modelos de edificios se 

observó que los analizados con la aplicación de losas Bubbledeck 

produce menos deflexión de losas en los modelos de 5x5 metros y 6x7 

metros, en estos casos la deflexión producida representa el 59.3% y 

70.9 % respectivamente de la deflexión producida con la aplicación de 

las losas alivianadas correspondientes. 

  En el modelo de edificio con luces de 7x8 metros la deflexión producida 

con en losa Bubbledeck representa un 1.4% más que la deflexión 

producida en losa alivianada utilizada para este caso. 

 Se observa que tanto los momentos, cortantes, fuerzas axiales y derivas 

de piso son mayores en los modelos que utilizan losas Bubbledeck para 

los casos de 5x5 metros y 6x7 metros, en el caso de 7x8m se obtiene 

mayores efectos con la aplicación de losas alivianadas. 

 Se observa que se necesita mayor cantidad de hormigón y acero en los 

modelos que utilizan losas Bubbledeck para los casos de 5x5 metros y 

6x7metros, en el caso de 7x8 metros se necesita mayor cantidad de 

hormigón y acero en el modelo de losas alivianadas. 

 Los modelos de losas alivianadas para los casos de 7x6 metros y 

8x7metros, requieren acero de refuerzo a cortante. 

 Según la comparación de costos se observa que la aplicación de losas 

Bubbledeck resulta menos económica para cada caso, esto debido al 

costo de las esferas de polietileno de alta densidad. 

 Si se realiza una comparación de costos sin tomar en cuenta los precios 

de casetones ni de esferas de polietileno de alta densidad, se observa 

que para los modelos de 6x7 metros  y 7x8 metros resulta más 

económico la aplicación de losas Bubbledeck.  

 Para el precio de las esferas se asumió un costo de fabricación y de 

materiales según datos proporcionados por industrias de la región, al no 

contar con una industria dedicada a la fabricación de este tipo de 

elementos, los costos de  aplicación de losas Bubbledeck se vuelven 

perjudiciales. 

 Finalmente se concluye que desde el punto de vista técnico y para el 

caso que se garantice el empotramiento de los elementos la aplicación 

de losas Bubbledeck presenta mayores ventajas y beneficios que la 

aplicación de losas alivianadas, especialmente cuando se realicen 

construcciones de grande luces y para grandes  cargas. Si se toma en 

cuenta el punto de vista económico resulta mejor la aplicación de losas 

alivianadas, sin embargo si se redujera el costo de la fabricación de 

esferas y se proyecten estructuras que soporten grandes luces y 
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grandes cargas, resultara más efectiva desde todo punto de vista la 

aplicación de losas Bubbledeck. 

 

Recomendaciones de estudios futuros. 

Para continuar el estudio realizado en el siguiente trabajo de titulación se 

recomienda analizar los siguientes puntos: 

 Estudio de las uniones de los elementos y su comportamiento en caso 

de sismo. 

 Análisis dinámico de edificios de mayor altura que los estudiados en este 

trabajo. 

 Análisis riguroso del costo de la fabricación de las esferas de polietileno 

tomando en cuenta los procedimientos utilizados por la empresa. 

 Costo neto de la estructura de losa tomando en cuenta su aplicación 

como patente. 

 Investigar sobre el proceso constructivo y nuevas formas de realizar 

proyectos con esta tecnología de losas. 
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ANEXOS. 
 

ANEXO A: Memoria de cálculo de pórticos de edificios. 

 

Descripción materiales a utilizarse y especificaciones técnicas. 

Material Densidad kg/m3 
Módulo de 
elasticidad 

kg/cm2 

Módulo de 
poisson 

Características 

Hormigón 280 2400 252671 0,2 
Hormigón con resistencia a 
la compresión 280kg/cm2 

Acero de refuerzo 2400 2000000 0,5 
Acero con esfuerzo mínimo 

de fluencia  
 fy= 4200kg/cm2 

Polietileno de alta 
densidad HDPE 

960 10200 0,4   

2 

Sistema estructural escogido 

Ductilidad 
Tipo de sistema 

estructural 
Descripción 

Sistema Dúctil 
Pórticos 

resistentes a 
momento 

Pórticos especiales sismo resistentes de hormigón 
armado con vigas descolgadas 

3 

Suelo de cimentación 

Tipo de suelo Descripción 

C 
Perfil de suelo denso o roca blanda, cumple con parámetro de velocidad 

de onda. 360m/s < Vs<760m/s 

4 

Cargas seleccionadas y combinaciones de carga 

Combinaciones de carga  

Combinación  Valores de combinación  

1 1,4* Carga muerta 

2 1,2*Carga muerta +1,6*Carga viva+0,5*max(Carga de techo, Granizo) 

3 1,2*Carga muerta+1,6*max(Carga de techo, Granizo)+0,5*Carga viva 

4 1,2*Carga muerta+1,0*Viento+0,5*max(Carga de techo, Granizo) 

5 1,2*Carga muerta+1,0*Carga de sismo+0,2*Granizo 

Carga muerta Carga viva  

Material Valor Kn/m3 
Ocupación/ 

uso 

Valor carga 
distribuida 

kn/m2 
Valor carga concentrada kn 

Hormigón 
reforzado 

23,5 Vivienda 4,8 0 

Carga muerta asumida de 
componentes no estructurales Kn/m2 

2 

Carga de 
techo 
kn/m2 

Carga de granizo kn/m2 

1 0,5 

5 

Parámetros utilizados para fuerzas sísmicas 

Cortante basa de diseño 

Φp Φe I R   

1 1 1 8   

Ta Sa(Ta) 

Ct a Ta 0,101 
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0,055 0,9 0,39 

Modelo de 
5x5metos. Losa 

alivianada 

h total de la 
estructura m 

9 
h total de la 
estructura 

m 
9 K=1 

V Tn 17,49 
W peso total de pisos de 

la estructura Tn 
173,2 

Fuerza por piso Kn 

  Piso 1 2 3 

  Fuerza Tn 3,45 6,9 7,14 

Modelo de 
5x5metos. Losa 

Bubbledeck 

h total de la 
estructura m 

9 
h total de la 
estructura 

m 
9 K=1 

V Tn 20,84 
W peso total de pisos de 

la estructura Tn 
206,36 

Fuerza por piso Kn 

  Piso 1 2 3 

  Fuerza Tn 4,03 8,06 8,74 

Modelo de 
6x7metos. Losa 

alivianada 

h total de la 
estructura m 

9 
h total de la 
estructura 

m 
9 K=1 

V Tn 77,26 
W peso total de pisos de 

la estructura Tn 
765 

Fuerza por piso Kn 

  Piso 1 2 3 

  Fuerza Tn 14,86 29,73 32,62 

Modelo de 
6x7metos. Losa 

Bubbledeck 

h total de la 
estructura m 

9 
h total de la 
estructura 

m 
9 K=1 

V Tn 78,05 
W peso total de pisos de 

la estructura Tn 
772,8 

Fuerza por piso Kn 

  Piso 1 2 3 

  Fuerza Tn 15,02 30,03 33 

Modelo de 
7x8metos. Losa 

alivianada 

h total de la 
estructura m 

14 
h total de la 
estructura 

m 
9 K=1,04 

V Tn 129,49 
W peso total de pisos de 

la estructura Tn 
1282 

Fuerza por piso Kn 

Piso 1 2 3 4 

Fuerza Tn 14,4 28,8 43,2 43,02 

Modelo de 
7x8metos. Losa 

Bubbledeck 

h total de la 
estructura m 

14 
h total de la 
estructura 

m 
9 K=1,04 

V Tn 126,65 
W peso total de pisos de 

la estructura Tn 
1253,9 

Fuerza por piso Kn 

Piso 1 2 3 4 

Fuerza Tn 14,12 28,24 42,37 41,9 
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ANEXO B: Memoria de diseño de elementos de pórticos de edificios 

ELEMENTO 
CORTANTE 

MAXIMO (kg) 

MOMENTO 
MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 5x5m,Losas alivianadas 9800 6480 11540 

L=5m 

 
 

   

B=30cm 
   

H=35cm 
   

Recubrimiento =5cm 
   

D=28cm 
   

 

 

 

 

  

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=30 Cumple Área de estribos 

L/H >4 L/H = 14,28 Cumple 1.005cm2 

L<50B=15m L=5m Cumple  

Asmin= 14Bw*D/fy Asmin=2,8cm2 AsNegativo =11,504cm2  

Asmax=0,025Bw*D Asmax=21cm2 AsPositivo=6,096 cm2  

7cm 

   70 cm 

14 cm 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 As-/4 

10 Estribos 10 Estribos 24 Estribos 
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ELEMENTO 
CORTANTE 

MAXIMO (kg) 
MOMENTO MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 5x5m,Losas Bubbledeck 10620 7100 12460 

L=5m 

  

   
B=30cm 

   

H=35cm 
   

Recubrimiento =5cm 
   

D=28cm 
   

 
 

 

 

 

 

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=30 Cumple Área de estribos 

L/H >4 L/H = 14,28 Cumple 1.0005cm2 

L<50B=15m L=5m Cumple  

Asmin= 14Bw*D/fy Asmin=2,8cm2 AsNegativo =12,57cm2  

Asmax=0,025Bw*D Asmax=21cm2 AsPositivo=6,73 cm2  

7cm 

   70 cm 

14 cm 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 As-/4 

10 Estribos 10 Estribos 
24 Estribos 
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ELEMENTO 
CORTANTE 

MAXIMO (kg) 
MOMENTO MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 6x7m,Losas alivianadas 18870 18570 32930 

L=7m 

  

   
B=40cm 

   

H=45cm 
   

Recubrimiento =5cm 
   

D=37.7cm 
   

 

 

 

 

 

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=40cm Cumple Área de estribos 

L/H >4 L/H = 15.55 Cumple 1.57cm2 

L<50B=20m L=7m Cumple  

Asmin= 14Bw*D/fy Asmin=5.02cm2 AsNegativo =25.403cm2  

Asmax=0,025Bw*D Asmax=37.7cm2 AsPositivo=13.293cm2  

9cm 

18cm 

90cm 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 As-/4 

10 Estribos 10 Estribos 27 Estribos 
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ELEMENTO 
CORTANTE 

MAXIMO (kg) 
MOMENTO MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 6x7m, Bubbledeck 19530 18840 33410 

L=7m 

  

   
B=40cm 

   

H=45cm 
   

Recubrimiento =5cm 
   

D=37.7cm 
   

 

 

 

 

 

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=40cm Cumple Área de estribos 

L/H >4 L/H = 15.55 Cumple 1.57cm2 

L<50B=20m L=7m Cumple  

Asmin= 14Bw*D/fy Asmin=5.02cm2 AsNegativo =25.847cm2  

Asmax=0,025Bw*D Asmax=37.7cm2 AsPositivo=13.503cm2  

9cm 

90cm 

18cm 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 
As-/4 

10 Estribos 10 Estribos 27 Estribos 
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ELEMENTO 
CORTANTE 

MAXIMO (kg) 
MOMENTO MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 7x8m, Losa alivianada 28070 30870 50890 

L=8m 

  

   
B=40cm 

   

H=60cm 
   

Recubrimiento =5cm 
   

D=52.2cm 
   

 

 

 

 

 

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=40cm Cumple Área de estribos 

L/H >4 L/H = 13.3 Cumple 2.26cm2 

L<50B=20m L=8m Cumple  

Asmin= 14Bw*D/fy Asmin=6.96cm2 AsNegativo =27.607cm2  

Asmax=0,025Bw*D Asmax=52.2cm2 AsPositivo=15.908cm2  

10cm

m 

25cm 

1.2m 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 As-/4 

12 Estribos 12 Estribos 26 Estribos 
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ELEMENTO 
CORTANTE 

MAXIMO (kg) 
MOMENTO MAXIMO 

POSITIVO kgm 

MOMENTO 
MAXIMO 

NEGATIVO kgm 

Viga para pórtico de 7x8m, Losa Bubbledeck 27680 30430 49900 

L=8m 

  

   
B=40cm 

   

H=60cm 
   

Recubrimiento =5cm 
   

D=52.2cm 
   

 

 

 

 

 

 

 

REQUISITOS DE ELEMENTOS    

B>25 cm B=40cm Cumple Área de estribos 

L/H >4 L/H = 13.3 Cumple 2.26cm2 

L<50B=20m L=8m Cumple  

Asmin= 14Bw*D/fy Asmin=6.96cm2 AsNegativo =26.9cm2  

Asmax=0,025Bw*D Asmax=52.2cm2 AsPositivo=15.66cm2  

10cm

m 

25cm 

1.2m 

As+ As+ 

As- 

As- 

As- As- 

As- 

As- 

As-/2 

As-/4 
As-/4 

10 Estribos 10 Estribos 26 Estribos 



    UNIVERSIDAD DE CUENCA  
                                                                                                                                         Fundada 1867 
 

Teodoro Esteban Amaya Astudillo 
Boris Jaime Galindo Bacuilima 79 

ELEMENTO 
Fuerza axial Alivianada 

kg 
MOMENTO MAXIMO, 

Alivianada  kgm 

Viga para pórtico de 5x5m,Losas alivianadas y Losas Bubbledeck 92670 6840 

L=3m 

  

Fuerza axial Bubbledeck 
l kg 

MOMENTO MAXIMO 
Bubbledeck  kgm 

B=35cm 100800 7250 

H=35cm Cuantía Área longitudinal 

Recubrimiento =5cm 1.43% 17.15cm2 
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ELEMENTO 
Fuerza axial Alivianada 

kg 
MOMENTO MAXIMO, 

Alivianada  kgm 

Viga para pórtico de 6x7m,Losas alivianadas y Losas Bubbledeck 169100 21740 

L=3m 

  

Fuerza axial Bubbledeck 
l kg 

MOMENTO MAXIMO 
Bubbledeck  kgm 

B=45cm 170100 22020 

H=45cm Cuantía Área longitudinal 

Recubrimiento =5cm 1.% 20.35cm2 
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ELEMENTO Fuerza axial Alivianada kg 
MOMENTO MAXIMO, Alivianada  

kgm 

Viga para pórtico de 7x7m,Losas alivianadas y Losas Bubbledeck 355700 39980 

L=3.5m 

  

Fuerza axial Bubbledeck  
kg 

MOMENTO MAXIMO 
Bubbledeck  kgm 

B=50cm 350100 38760 

H=50cm Cuantía Área longitudinal 

Recubrimiento =5cm 1.01% 25.44cm2 
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ANEXO C: Espectro de diseño 

 

 

 

ANEXO D: Planos de planta y elevación de modelos de edificios. 
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